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Neuromorphic Systems Background
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• Produce asynchronous events based on 

pixel-level changes in brightness

• Pixels are sensitive to log of brightness, 

resulting in high dynamic range (~120 dB)

• Eliminates redundant data, allowing high 

temporal resolution (1 μs precision) and 

low latency (at most 1 ms)

• Sparse output: reduced computational cost

• Low power consumption (~3 mW)

• Does not measure absolute brightness

Neuromorphic Vision Sensors
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• Neuromorphic cameras generate 

asynchronous events instead of frames

• An event at (x, y) is generated at time

ti, with polarity

• The ith event ei is described by the 

tuple

• The set of all events is

Neuromorphic Vision Sensors
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• Neuromorphic chips compute with 

networks of spiking neurons connected 

through synapses

• Many neuromorphic chip designs are more 

power efficient than alternatives across 5 

decades of precision [Boahen, 2017]

Neuromorphic Chips: Digital and Analog
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DARPA SyNAPSE Board with IBM TrueNorth Chips

Neurogrid [Benjamin, 2014]

Images: K. Boahen https://web.stanford.edu/group/brainsinsilicon/neurogrid.html#Choices; DARPA http://www.darpa.mil/NewsEvents/Releases/2014/08/07.aspx
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• Memristors (memory + resistor) are devices 

whose resistance can be modulated by the 

charge passing through them

• Memristors mimic Spike-Timing Dependent 

Plasticity (STDP) in biological synapses, 

which can be used to train neural networks 

[Hu, 2014]

• Memristor-based neuromorphic chips

have been used to demonstrate control 

of a walking insect on simulated 

hardware [Mazumder, 2016]

Neuromorphic Chips: Memristors

P. Mazumder, D. Hu, I.Ebong, X. Zhang, Z. Xu, and S. Ferrari, “Digital implementation of a virtual insect trained by spike-timing dependent 

plasticity,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016.

D. Hu, X. Zhang, Z. Xu, S. Ferrari, and P. Mazumder, “Digital implementation of a spiking neural network (SNN) capable of spike-timing-

dependent plasticity (STDP) learning,” Proc. of the IEEE 14th International Conference on Nanotechnology (IEEE NANO), 2014.



Small Autonomous Robots
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1

• Safer: weigh a few grams or less and thus are safe to operate near humans

• Smaller: can access narrow or confined spaces inaccessible to other vehicles

• Efficient: flapping flight is more efficient at this scale than in larger vehicles

Small Bio-inspired Autonomous Robots
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1. HAMR [Baisch, 2014]

2. DelFly [deCroon, 2012]

3. RoboBee [Ma, 2013]

• Available sensors limited by total vehicle weight of less than a few grams

• Sensitive to environmental disturbances and physical parameter variations

2
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• Thrust and body torques controlled by modulating wing stroke angle

• Several biologically-inspired sensors have been developed for autonomous flight

The RoboBee
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Video and images courtesy of the Harvard Microrobotics Lab

Pitch Roll

Ocelli Antenna

Optical Flow Six-axis IMU

Available Sensors



Neuromorphic Sensing and Control
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Single-layer SNN Controller
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• SNN function approximation by connection 

weights M, W, and b

• Output connection weights W determined

offline by supervised learning

• Training data set      generated by a stabilizing 

target control law (e.g. optimal PIF controller)
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• Neurons generate spike trains ρ(t) based on 

input current I(t)

• Synapses filter the spikes and generate post-

synaptic current s(t)

• Synapses modeled as first-order low-pass 

filters h(t)

SNN Control Model
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• PIF control law is used as the target function for training an SNN offline

• Optimal linear controller guaranteed 

to stabilize linear system

• Control law proportional to error in

state x, control u, and integral of output ξ

• The control law minimizes the quadratic cost J

PIF Compensator
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• First step towards full flight envelope control

• Control signal u(t) provided entirely by spiking 

neural networks

Adaptive SNN Controller (Hovering Only)
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• Non-adaptive term u0(t) trained offline by 

supervised learning to approximate PIF control law

• Adaptive term uadapt(t) adapts online to minimize 

output error

Plant

xref Reference state

u0

Non-adaptive control 

input

uadapt Adaptive control input

Δx State error

ua Amplitude input

up Pitch input

ur Roll input0( ) ( ) ( )adaptt t t+=u u u

[T. S. Clawson, T. C. Stewart, C. Eliasmith, S. Ferrari “An Adaptive Spiking Neural Controller for Flapping Insect-scale Robots,”

IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, December 2017]



Adaptive SNN Controller (Hovering Only)
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• Adaptive term uadapt comprised 

of inputs for flapping amplitude 

ua, pitch up, roll ur

• Output weights adapt online to 

minimize output error

• Every element of uadapt computed from a single network of 100 neurons, e.g.

• The connection weights are updated 

online to minimize output error
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[T. S. Clawson, T. C. Stewart, C. Eliasmith, S. Ferrari “An Adaptive Spiking Neural Controller for Flapping Insect-scale Robots,”

IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, December 2017]



• SNN initialized with PIF

• SNN controller quickly adapts to 

asymmetries in the wings to stabilize 

hovering flight

• PIF compensator maintains stability, but 

drifts significantly from the origin

Adaptive SNN Controller (Hovering Only)
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• SNN trained to approximate steady-state gain of gain-scheduled PIF

• PIF Gain matrices dependent on scheduling variables a

• Steady-state gain computed using transfer

function and final value theorem

• Network output weights computed to 

approximate steady-state gain matrix Kss

• SNN Control input is a linear 

transformation of post-synaptic current

SNN Controller – Full Flight Envelope
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SNN Control – Climbing Turn
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Exteroceptive Sensing
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• Onboard exteroceptive sensors required for full 

flight autonomy

• Fast dominant time scales of insect-scale flight 

require high sensing rate and low latency

– Traditional sensors consume large amounts of 

power for high sensing rate (e.g. ~100 watts 

for high speed camera)

– High data rate requires additional data 

processing

• Neuromorphic vision sensors have 1μs temporal 

resolution and require at most a few milliwatts of 

power [Lichtsteiner, ’ 8], [Brandli, ’  ]

Exteroceptive Sensing Motivation
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Image Credit: inivation (https://inivation.com)



• Scattered events are generated by motion of the point

• Determine optical flow by estimating the motion of 

points in the scene using the scattered events

The Optical Flow Problem
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• Coordinates of some point                        in the 

image plane determined by optical flow

• Assume:

• Determine horizontal and vertical flow (vx, vy) from
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Neuromorphic Optical Flow

• Assume gradient n of event rate is normal to 

the motion of points in the scene

• Speed of the motion is inversely proportional 

to magnitude of gradient

• Optical flow is written directly in terms of the 

event rate gradient 2 2
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• Existing neuromorphic optical flow methods rely 

on optimization [Benosman, ’  ], [Rueckauer, ’  ]

• Estimate continuous motion from discrete events

• Introduce continuous event rate f through 

convolution of events with continuous kernel K
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Neuromorphic Optical Flow Results
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Mean processing time 

per event: 0.7 μs



Independent Motion Detection
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Detect motion relative to the environment  using a 

rotating and translating neuromorphic camera

Camera View

World View

Assumptions

• Known camera motion

• Total derivative of pixel intensity is zero

Neuromorphic Camera



• By previous assumptions, depth of the point can be estimated if image-plane 

motion field (vx, vy) is known

• For some stationary point in the environment Q, its projection P onto the image 

plane will move with velocity                          where

Motion Detection: Known Camera Motion
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• With an additional constraint on the 

velocity of P, it is possible to solve for 

the depth d
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Motion Detection and Depth Estimation
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1 2

3 4

1. Events can be visualized 

by their spatio-temporal 

coordinates

2. Depth d is computed 

from the events using 

known camera motion

3. Events are transformed 

into the world frame 

using estimated depth

4. A temporal low-pass 

filter separates moving 

and stationary objects

Stationary

Moving



Conclusion and Future Work
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• Small-scale robots provide many potential benefits, including safety, access to 

confined spaces, and power efficiency

• Enabling autonomy in small-scale robots requires high frequency sensing and 

control loops that operate on only a few milliwatts of power

• Adaptive spiking neural networks can 

control complex systems and can be 

directly implemented on power efficient 

hardware

• Neuromorphic cameras can effectively 

detect motion and depth from moving 

platforms to enable efficient autonomous 

flight

Conclusions

28
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Moving



• Demonstrate control of maneuvers on the physical RoboBee using adaptive 

SNN controllers

• Use neuromorphic depth estimation and motion 

detection to perform obstacle avoidance and target 

tracking with the RoboBee in simulation

• Verify motion detection and depth estimation results 

with experiments on small quadcopters in flight

• Hardware-in-the-loop experiments with the 

physical RoboBee and simulated neuromorphic 

cameras to demonstrate autonomous target tracking and obstacle avoidance

• Control quadcopter flight using adaptive SNN flight control implemented on 

neuromorphic chips

Future Work
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Crazyflie 2.0 (https://www.bitcraze.io/crazyflie-2/)
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