

LABORATORY FOR INTELLIGENT SYSTEMS AND CONTROLS

Neuromorphic Sensing and Control of Autonomous Micro-Aerial Vehicles

Commercialization Fellowship Technical Presentation

Taylor Clawson Ithaca, NY June 12, 2018

About Me: Taylor Clawson

- 3rd year PhD student in Mechanical and Aerospace Engineering
 - Advisor: Silvia Ferrari
- Past Experience
 - Mechanical Engineering B.S., Utah State University, 2013
 - Lead Developer of custom reliability analysis software at Northrop Grumman
- Graduate Research
 - Dynamics and Controls emphasizing neuromorphic sensing and control
 - Flight modeling for insect-scale robots
 - Neuromorphic autonomy for micro aerial vehicles
 - Autonomous target tracking and obstacle avoidance

Neuromorphic Sensing and Control

The Innovation

• Neuromorphic sensing and control algorithms for intelligent, energy-efficient autonomy

Spiking neural networks (SNNs) can learn online to improve performance or adapt to new conditions

Neuromorphic cameras have 1µs temporal resolution and require at most a few milliwatts of power

Motivation: Small-Scale Autonomous Flight

- Safer: weigh less than 1 pound and thus are safe to operate near humans
- Smaller: can access narrow or confined spaces inaccessible to other vehicles
- Autonomous flight expands the capability of a single operator to monitor a larger area
 - More effective search and rescue
 - Agricultural monitoring
 - Public event security

RoboBee [Ma, 2013]

Crazyflie 2.0 (https://www.bitcraze.io/crazyflie-2/)

Neuromorphic Control

Single-layer SNN Controller

- SNN function approximation by connection weights **M**, **W**, and **b**
- Output connection weights **W** determined offline by supervised learning
- Training data set \mathcal{D} generated by a stabilizing target control law (e.g. optimal linear control)

$$\left\{ \begin{array}{c} \\ \\ \\ \\ \end{array} \right\}$$

$$\mathbf{y}(t) = \mathbf{W}\mathbf{s}(t) = \mathbf{W}F(\mathbf{M}\mathbf{x}(t) + \mathbf{b})$$

$$\mathbf{W} = \underset{\mathbf{V}}{\operatorname{arg\,min}} \sum_{j} \left\| \mathbf{f}(\mathbf{x}_{j}) - \mathbf{V}F(\mathbf{M}\mathbf{x}_{j} + \mathbf{b}) \right\|^{2}$$

$$\mathcal{D} = \left\{ \left(\mathbf{x}_{j}, \mathbf{f}(\mathbf{x}_{j}) \right) \mid j = 1, \dots, M \right\}$$

Μ	Input Connection Weights	
W	Output Connection Weights	
b	Input bias	
$\mathbf{s}(t)$	Post-synaptic current	
F	Nonlinear activation function	
$\mathbf{f}(\mathbf{x}_j)$	Target control law data	
М	Number of training data points	

SNN Control Model

- Neurons generate spike trains $\rho(t)$ based on input current I(t)
- Synapses filter the spikes and generate postsynaptic current *s*(*t*)
- Synapses modeled as first-order low-pass filters *h*(*t*)

$$\rho(t) = \sum_{k=1}^{M} \rho_k(t) = \sum_{k=1}^{M} \delta(t - t_k)$$

$$s(t) = \int_0^t h(t-\tau)\rho(\tau)d\tau$$

$$h(t) = \frac{1}{\tau_s} e^{-t/\tau_s}$$

δ	Dirac delta	
t_k	Time of k th spike	
М	Spike count	
$ au_s$	Synaptic time constant	

Adaptive SNN Controller (Hovering Only)

8

- First step towards full flight envelope control
- Control signal **u**(*t*) provided entirely by spiking neural networks

$$\mathbf{u}(t) = \mathbf{u}_0(t) + \mathbf{u}_{adapt}(t)$$

- Non-adaptive term $\mathbf{u}_0(t)$ trained offline by supervised learning to approximate traditional control law
- Adaptive term $\mathbf{u}_{adapt}(t)$ adapts online to minimize output error

X _{ref}	Reference state	
\mathbf{u}_0	Non-adaptive control input	
u _{adapt}	Adaptive control input	
$\Delta \mathbf{x}$	State error	
<i>u</i> _a	Amplitude input	
u_p	Pitch input	
u _r	Roll input	

[[]T. S. Clawson, T. C. Stewart, C. Eliasmith, S. Ferrari "An Adaptive Spiking Neural Controller for Flapping Insect-scale Robots," *IEEE Symposium Series on Computational Intelligence (SSCI)*, Honolulu, HI, December 2017]

Adaptive SNN Controller (Hovering Only)

• Adaptive term \mathbf{u}_{adapt} comprised of inputs for flapping amplitude u_a , pitch u_p , roll u_r

$$\mathbf{u}_{adapt}(t) = \begin{bmatrix} u_a(t) & u_p(t) & u_r(t) \end{bmatrix}^T$$

• Output weights adapt online to minimize output error

 $E(t) = \mathbf{\Lambda}^{T} (\Delta x(t) + \alpha \Delta \mathbf{x}(t))$

• Every element of \mathbf{u}_{adapt} computed from a single network of 100 neurons, e.g.

 $u_a = \mathbf{W}_a \mathbf{s}_a(t)$

• The connection weights are updated online to minimize output error

 $\dot{\mathbf{W}}_{a}(t) = \gamma \mathbf{s}_{a}(t) E(t)$

[T. S. Clawson, T. C. Stewart, C. Eliasmith, S. Ferrari "An Adaptive Spiking Neural Controller for Flapping Insect-scale Robots," *IEEE Symposium Series on Computational Intelligence (SSCI)*, Honolulu, HI, December 2017]

Λ	Error weight matrix	
Δx	State error	
\mathbf{W}_{a}	Output connection weights	
\mathbf{S}_a	Post-synaptic current	
γ	Learning rate	

Cornell University

Adaptive SNN Controller (Hovering Only)

Comparison:

- SNN initialized with traditional controller
- SNN controller quickly adapts to wing asymmetries to stabilize hovering flight
- Traditional controller maintains stability, but drifts significantly from the target

2

3

4

5

(T. S. Clawson, T. C. Stewart, C. Eliasmith, S. Ferrari "An Adaptive Spiking Neural Controller for Flapping Insect-scale Robots," 10 *IEEE Symposium Series on Computational Intelligence (SSCI)*, Honolulu, HI, December 2017]

0

0

SNN Controller – Full Flight Envelope

- SNN trained to approximate steady-state gain of gain-scheduled controller
- Gain matrices dependent on scheduling variables **a**

 $\mathbf{u}(t) = -\mathbf{K}_1(\mathbf{a})\mathbf{x}(t) - \mathbf{K}_2(\mathbf{a})\mathbf{u}(t) - \mathbf{K}_3(\mathbf{a})\boldsymbol{\xi}(t)$

• Steady-state gain computed using transfer function and final value theorem

 $\mathbf{G}(s) \triangleq -(s\mathbf{I} + \mathbf{K}_2(\mathbf{a}))^{-1}\mathbf{K}_1(\mathbf{a})$

 $\mathbf{G}(0) = -\mathbf{K}(\mathbf{a})_2^{-1}\mathbf{K}_1(\mathbf{a}) \stackrel{\Delta}{=} \mathbf{K}_{ss}(\mathbf{a})$

• Network output weights computed to approximate steady-state gain matrix **K**_{ss}

$$\mathbf{W} = \underset{\mathbf{V}}{\operatorname{argmin}} \sum_{j} \left\| \mathbf{K}_{ss}(\mathbf{a}) - \mathbf{V}F(\mathbf{M}\mathbf{a}_{j} + \mathbf{b}) \right\|^{2}$$

• SNN Control input is a linear transformation of post-synaptic current

 $\mathbf{u}(t) = \mathbf{W}(\mathbf{a})\mathbf{s}(t)$

\mathbf{K}_{i}	PIF gain matrices	X	State deviation
u	Control deviation	ξ	Integral of output error
a	Scheduling variables	$\mathbf{G}(s)$	Transfer function
S	Laplace variable	\mathbf{K}_{ss}	Steady-state gain matrix
W	Output connection weights	S	Post-synaptic current

SNN Control – Climbing Turn

SNN Control – Complete Turn

Neuromorphic Sensing

Exteroceptive Sensing Motivation

- Onboard exteroceptive sensors required for full flight autonomy
- Fast dominant time scales of small-scale flight require high sensing rate and low latency
 - Traditional sensors consume large amounts of power for high sensing rate (e.g. ~100 watts for high speed camera)
 - High data rate requires additional data processing
- Neuromorphic vision sensors have 1µs temporal resolution and require at most a few milliwatts of power [Lichtsteiner, '08], [Brandli, '14]

Background: Neuromorphic Vision

- Neuromorphic cameras generate asynchronous events instead of frames
- An event at (*x*, *y*) is generated at time *t_i*, with polarity

 $p_{i} = \begin{cases} 1, & \text{if } \ln(I(x, y, t_{i-1})) - \ln(I(x, y, t_{i})) = -\theta \\ -1, & \text{if } \ln(I(x, y, t_{i-1})) - \ln(I(x, y, t_{i})) = \theta \end{cases}$

- "On" events when $p_i = 1$
- "Off" events when $p_i = -1$
- The *i*th event \mathbf{e}_i is described by the tuple $\mathbf{e}_i = (x, y, t, p)_i$

 $x, y \in \mathbb{N}^+ \qquad t \in \mathbb{R}^+ \qquad p \in \{-1, 1\}$

• The set of all events is

 $\mathcal{E} = \{\mathbf{e}_i \mid i = 1, \dots, N\}$

The Optical Flow Problem

Standard Optical Flow Problem

- Assume: $\frac{dI(x, y, t)}{dt} = 0$
- Determine horizontal and vertical flow (v_x, v_y) from

$$\frac{dI(x, y, t)}{dt} = \begin{bmatrix} I_x(x, y, t) & I_y(x, y, t) \end{bmatrix} \begin{bmatrix} v_x(x, y, t) \\ v_y(x, y, t) \end{bmatrix} + I_t(x, y, t) = 0$$

Neuromorphic Optical Flow

• Coordinates of some point $\mathbf{r} = \begin{bmatrix} r_x & r_y \end{bmatrix}^T$ in the image plane determined by optical flow

$$\begin{bmatrix} r_x(t_2) - r_x(t_1) \\ r_y(t_2) - r_y(t_1) \end{bmatrix} = \int_{t_1}^{t_2} \mathbf{v}(\tau) d\tau \approx \begin{bmatrix} v_x dt \\ v_y dt \end{bmatrix}, \qquad \mathbf{v}(\tau) = \begin{bmatrix} v_x(\tau) \\ v_y(\tau) \end{bmatrix}$$

- Scattered events are generated by motion of the point
- Determine optical flow by estimating the motion of points in the scene using the scattered events

(pixels)

Neuromorphic Optical Flow

- Existing neuromorphic optical flow methods rely on optimization [Benosman, '14], [Rueckauer, '16]
- Estimate continuous motion from discrete events
- Introduce continuous event rate *f* through convolution of events with continuous kernel *K*

$$f(x, y, t) = K(x, y, t) * E(x, y, t) \qquad E(x, y, t) = \sum_{i=1}^{N} \delta(x - x_i, y - y_i, t - t_i)$$

- Assume gradient **n** of event rate is normal to the motion of points in the scene
- Speed of the motion is inversely proportional to magnitude of gradient
- Optical flow is written directly in terms of the event rate gradient

$$t_i)$$

$$\mathbf{n} = \begin{bmatrix} a & b & c \end{bmatrix}^T$$

$$\mathbf{w} = \begin{bmatrix} \frac{\partial t}{\partial x} & \frac{\partial t}{\partial y} \end{bmatrix}^T = \begin{bmatrix} -\frac{a}{c} & -\frac{b}{c} \end{bmatrix}^T$$

$$\begin{bmatrix} v_x \\ v_y \end{bmatrix} = \left(\frac{1}{\|\mathbf{w}\|}\right) \frac{\mathbf{w}}{\|\mathbf{w}\|} = -\frac{c}{a^2 + b^2} \begin{bmatrix} a \\ b \end{bmatrix}$$

Neuromorphic Optical Flow Results

Neuromorphic Motion Detection

Detect motion relative to the environment using a rotating neuromorphic camera

Assumptions

- Known camera motion
- Camera motion dominated by rotation
- Total derivative of pixel intensity is zero

Neuromorphic Motion Detection

• Pixel intensity can be recovered by integrating the event rate

$$I(x, y, t) = \exp\left(\theta \int_0^t f(x, y, \tau) d\tau\right) + I(x, y, 0)$$

- By previous assumptions, future pixel intensity can be predicted if image-plane motion field (v_x, v_y) is known
- Motion field due to camera rotation is

$$v_x(x, y) = -\frac{x^2}{f}\omega_y(t) + \frac{xy}{f}\omega_x(t) - f\omega_y(t) + y\omega_z(t)$$
$$v_y(x, y) = -\frac{xy}{f}\omega_y(t) + \frac{y^2}{f}\omega_x(t) - x\omega_z(t) + f\omega_x(t)$$

• Pixel intensity after a short time Δt is predicted from motion field:

$$\tilde{I}(x, y, t) = I(x - v_x \Delta t, y - v_y \Delta t, t - \Delta t)$$

Neuromorphic Motion Detection Results

1. Compute difference between predicted and measured intensity

 $\Delta I(x, y, t) = I(x, y, t) - \tilde{I}(x, y, t)$

2. Denoise by convolving with a multivariate Gaussian kernel K_{Σ} with covariance Σ

 $\Delta I'(x, y, t) = K_{\Sigma}(x, y, t) * I(x, y, t)$

3. Detect motion by comparing smoothed intensity difference with a threshold γ

$$m(x, y, t) = \begin{cases} 1, & \text{if } |\Delta I'(x, y, t)| > \gamma. \\ 0, & \text{otherwise.} \end{cases}$$

22

Summary

Innovation

• Neuromorphic sensing and control algorithms for intelligent, energy-efficient autonomy

Potential Applications

- Autonomous flight for small-scale UAVs
 - Real-time target detection
 - Obstacle avoidance

Crazyflie 2.0 (https://www.bitcraze.io/crazyflie-2/)

Neuromorphic Sensing and Control of Autonomous Micro-Aerial Vehicles

Taylor Clawson June 12, 2018

Related Work

T. S. Clawson, S. Ferrari, S. B. Fuller, R. J. Wood, "Spiking Neural Network (SNN) Control of a Flapping Insect-scale Robot," *Proc. of the IEEE Conference on Decision and Control*, Las Vegas, NV, pp. 3381-3388, December 2016.

T. S. Clawson, S. B. Fuller, R. J. Wood, S. Ferrari "A Blade Element Approach to Modeling Aerodynamic Flight of an Insect-scale Robot," *American Control Conference (ACC)*, Seattle, WA, May 2017.

T. S. Clawson, T. C. Stewart, C. Eliasmith, S. Ferrari "An Adaptive Spiking Neural Controller for Flapping Insect-scale Robots," *IEEE Symposium Series on Computational Intelligence (SSCI)*, Honolulu, HI, December 2017.