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• Neuromorphic sensing and control algorithms for intelligent, energy-efficient 

autonomy

Neuromorphic Sensing and Control
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inivation (https://inivation.com/)

Neuromorphic cameras have 1μs temporal 

resolution and require at most a few 

milliwatts of power

Spiking neural networks (SNNs) can learn 

online to improve performance or adapt to 

new conditions

The Innovation
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https://inivation.com/


• Safer: weigh less than 1 pound and thus are safe to 

operate near humans

• Smaller: can access narrow or confined spaces 

inaccessible to other vehicles

• Autonomous flight expands the capability of a single 

operator to monitor a larger area

– More effective search and rescue

– Agricultural monitoring

– Public event security

Motivation: Small-Scale Autonomous Flight

Crazyflie 2.0 (https://www.bitcraze.io/crazyflie-2/)

27g 9cm

RoboBee [Ma, 2013]

https://www.bitcraze.io/crazyflie-2/


Neuromorphic Control
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Single-layer SNN Controller
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• SNN function approximation by connection 

weights M, W, and b

• Output connection weights W determined

offline by supervised learning

• Training data set      generated by a stabilizing 

target control law (e.g. optimal linear control)
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• Neurons generate spike trains ρ(t) based on 

input current I(t)

• Synapses filter the spikes and generate post-

synaptic current s(t)

• Synapses modeled as first-order low-pass 

filters h(t)

SNN Control Model
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• First step towards full flight envelope control

• Control signal u(t) provided entirely by spiking 

neural networks

Adaptive SNN Controller (Hovering Only)
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• Non-adaptive term u0(t) trained offline by supervised 

learning to approximate traditional control law

• Adaptive term uadapt(t) adapts online to minimize 

output error

     

xref Reference state

u0

Non-adaptive control 

input

uadapt Adaptive control input

Δx State error

ua Amplitude input

up Pitch input

ur Roll input

0( ) ( ) ( )adaptt t t+=u u u

[T. S. Clawson, T. C. Stewart, C. Eliasmith, S. Ferr ri “A  Ad p ive Spiki g Neur   Co  ro  er for F  ppi g I sec -sc  e Robo s,”

IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, December 2017]



Adaptive SNN Controller (Hovering Only)
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• Adaptive term uadapt comprised 

of inputs for flapping amplitude 

ua, pitch up, roll ur

• Output weights adapt online to 

minimize output error

• Every element of uadapt computed from a single network of 100 neurons, e.g.

• The connection weights are updated 

online to minimize output error
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[T. S. Clawson, T. C. Stewart, C. Eliasmith, S. Ferr ri “A  Ad p ive Spiki g Neur   Co  ro  er for F  ppi g I sec -sc  e Robo s,”

IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, December 2017]



• SNN initialized with traditional controller

• SNN controller quickly adapts to wing 

asymmetries to stabilize hovering flight

• Traditional controller maintains stability, 

but drifts significantly from the target

Adaptive SNN Controller (Hovering Only)
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[T. S. Clawson, T. C. Stewart, C. Eliasmith, S. Ferr ri “A  Ad p ive Spiki g Neur   Co  ro  er for F  ppi g I sec -sc  e Robo s,”
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• SNN trained to approximate steady-state gain of gain-scheduled controller

• Gain matrices dependent on scheduling variables a

• Steady-state gain computed using transfer

function and final value theorem

• Network output weights computed to 

approximate steady-state gain matrix Kss

• SNN Control input is a linear 

transformation of post-synaptic current

SNN Controller – Full Flight Envelope
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SNN Control – Climbing Turn
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SNN Control – Complete Turn
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Neuromorphic Sensing
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• Onboard exteroceptive sensors required for full 

flight autonomy

• Fast dominant time scales of small-scale flight 

require high sensing rate and low latency

– Traditional sensors consume large amounts of 

power for high sensing rate (e.g. ~100 watts 

for high speed camera)

– High data rate requires additional data 

processing

• Neuromorphic vision sensors have 1μs temporal 

resolution and require at most a few milliwatts of 

power [Lichtsteiner, ’ 8], [Brandli, ’  ]

Exteroceptive Sensing Motivation
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Image Credit: inivation (https://inivation.com)



• Neuromorphic cameras generate 

asynchronous events instead of frames

• An event at (x, y) is generated at time

ti, with polarity

• “O ” eve  s whe  

• “Off” eve  s whe  

• The ith event ei is described by the 

tuple

• The set of all events is

Background: Neuromorphic Vision
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• Scattered events are generated by motion of the point

• Determine optical flow by estimating the motion of 

points in the scene using the scattered events

The Optical Flow Problem
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• Coordinates of some point                        in the 

image plane determined by optical flow

• Assume:

• Determine horizontal and vertical flow (vx, vy) from
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Neuromorphic Optical Flow

• Assume gradient n of event rate is normal to 

the motion of points in the scene

• Speed of the motion is inversely proportional 

to magnitude of gradient

• Optical flow is written directly in terms of the 

event rate gradient 2 2
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• Existing neuromorphic optical flow methods rely 

on optimization [Be os   , ’  ], [Rueckauer, ’  ]

• Estimate continuous motion from discrete events

• Introduce continuous event rate f through 

convolution of events with continuous kernel K
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Neuromorphic Optical Flow Results
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Mean processing time 

per event: 0.7 μs



Neuromorphic Motion Detection
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Detect motion relative to the environment 

using a rotating neuromorphic camera

Camera View

World View

Assumptions

• Known camera motion

• Camera motion dominated by rotation

• Total derivative of pixel intensity is zero

Neuromorphic Camera



• Pixel intensity can be recovered by integrating the event rate

• By previous assumptions, future pixel intensity can be predicted if image-plane 

motion field (vx, vy) is known

• Motion field due to camera rotation is

• Pixel intensity after a short time Δt is predicted 

from motion field:

Neuromorphic Motion Detection
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1. Compute difference between 

predicted and measured intensity

2. Denoise by convolving with a 

multivariate Gaussian kernel KΣ

with covariance Σ

3. Detect motion by comparing 

smoothed intensity difference 

with a threshold γ

Neuromorphic Motion Detection Results
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Summary
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• Neuromorphic sensing and control algorithms for 

intelligent, energy-efficient autonomy

Innovation

• Autonomous flight for small-scale UAVs

– Real-time target detection

– Obstacle avoidance

Potential Applications

Crazyflie 2.0 (https://www.bitcraze.io/crazyflie-2/)

27g 9cm

Neuromorphic CameraStandard Camera Detected MotionDirection of Motion

https://www.bitcraze.io/crazyflie-2/
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