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About Me: Taylor Clawson @}

« 3 year PhD student in Mechanical and Aerospace Engineering
— Advisor: Silvia Ferrari

» Past Experience
— Mechanical Engineering B.S., Utah State University, 2013

— Lead Developer of custom reliability
analysis software at Northrop Grumman NORTHROP GRUMMAN

« Graduate Research —
— Dynamics and Controls emphasizing neuromorphic sensing and control
— Flight modeling for insect-scale robots

— Neuromorphic autonomy for micro aerial
vehicles

— Autonomous target tracking and obstacle avoidance
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Neuromorphic Sensing and Control @}

The Innovation

« Neuromorphic sensing and control algorithms for intelligent, energy-efficient
autonomy

Spiking neural networks (SNNs) can learn
online to improve performance or adapt to

new conditions

Neuromorphic cameras have 1us temporal
resolution and require at most a few
milliwatts of power

inivation (https://inivation.com/)



https://inivation.com/
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Motivation: Small-Scale Autonomous Flight @}

« Safer: weigh less than 1 pound and thus are safe to
operate near humans

« Smaller: can access narrow or confined spaces
Inaccessible to other vehicles

« Autonomous flight expands the capability of a single

operator to monitor a larger area &,279 t 9em
— More effective search and rescue

— Agricultural monitoring
— Public event security

RoboBee [Ma, 2013]


https://www.bitcraze.io/crazyflie-2/

Neuromorphic Control @}
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Single-layer SNN Controller @}

« SNN function approximation by connection

weights M, W, and b y(t) = Ws(t) = WF (Mx(t) +b)

« Output connection weights W determined

2
. : : W =argmin ) |f(x,)-VF(Mx. +b
offline by supervised learning % Z,:H (x)) = VF(M; +b)|

» Training data set D generated by a stabilizing

target control law (e.g. optimal linear control) D:{(Xj’f(xj)ﬂ J=1,---,|V|}

M Input Connection Weights
W Output Connection Weights

b Input bias

s(t)  Post-synaptic current

Nonlinear activation
function

f(x)  Target control law data

Ym(t) Number of training data
points
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SNN Control Model @}
* Neurons generate spike trains p(t) based on N <
input current I(t) p(t)_;p"(t)_;g(t_tk)

« Synapses filter the spikes and generate post- ot
synaptic current s(t) s(t) = [ h(t-7)p(r)de

 Synapses modeled as first-order low-pass h(t) = 1 v
filters h(t) 7s
A

r N\ o  Dirac delta

Neuron Synapse L Time of kt spi
‘ h spike

I(t) p(t) s(t) .
> > h(t) |———— M  Spike count

7, Synaptic time constant
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Adaptive SNN Controller (Hovering Only) @}

X7«6f_> OOOOO Ug O >
(o]¢) + n
A
Y+
O
A_
Wadapt X  Reference state
Non-adaptive control
Ug .
input
Uagapt Adaptive control input
 First step towards full flight envelope control Ax  State error
« Control signal u(t) provided entirely by spiking L AT (9L

neural networks Pitch input

U(t) = u0 (t)+ uadapt (t)

* Non-adaptive term u,(t) trained offline by supervised
learning to approximate traditional control law

* Adaptive term u,q,,(t) adapts online to minimize
output error

u,  Rollinput

[T. S. Clawson, T. C. Stewart, C. Eliasmith, S. Ferrari “An Adaptive Spiking Neural Controller for Flapping Insect-scale Robots,” 8
IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, December 2017]
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Adaptive SNN Controller (Hovering Only) @}

* Adaptive term u,q,,, comprised Xref o
of inputs for flapping amplitude
u,, pitch u,, roll u,

Upge ®© =[U, () U, ) u, ()]

* Output weights adapt online to
minimize output error

E(t) = AT (AX(t)+aA x(t))

* Every element of u,g,, computed from a single network of 100 neurons, e.g.

u, = Wasa (t) A Error weight matrix

. . AX  State error
« The connection weights are updated

online to minimize output error

W. Output connection weights

S Post-synaptic current

Wa (t)=ys,(t)E(t) ¥ Learning rate

[T. S. Clawson, T. C. Stewart, C. Eliasmith, S. Ferrari “An Adaptive Spiking Neural Controller for Flapping Insect-scale Robots,” 9
IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, December 2017]



Cornell University

Comparison:

Adaptive SNN Controller (Hovering Only)

SNN initialized with traditional controller

SNN controller quickly adapts to wing
asymmetries to stabilize hovering flight

Traditional controller maintains stability,
but drifts significantly from the target

t(s
[T. S. Clawson, T. C. Stewart, C. Eliasmith, S. Ferrari “An Adaptive Spiking Neural Controller for Flapping Insect-scale Robots,”

IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, December 2017]

z(m)

y (m)

Adaptive SNN
PIF

X Hovering Target

Adaptive SNN
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SNN Controller — Full Flight Envelope @}

« SNN trained to approximate steady-state gain of gain-scheduled controller
« Gain matrices dependent on scheduling variables a

u(t) = —K, @x(t) - K, (a)u(t) - K, (a)&(t)
O

« Steady-state gain computed using transfer —rﬁ—l lx*
x(t) Y-

function and final value theorem

00\ u(t

G(s) 2 (sl + K, (@)) 'K, (a) rooooo o _:OW (1)

G(0)=-K(a),'K,(@) =K (a)

» Network output weights computed to — -
approximate steady-state gain matrix K, = PIFgammatrices -y State deviation

Control deviation & Integral of output error

Scheduling variables G(S) Transfer function

° SNN Control input iS a “near S Laplace variable KSs Steady-state gain matrix
transformation of post-synaptic current ~ w Outeutconnection g Post-synaptic current
weights

u(t) = W(a)s(t)
11
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SNN Control — Climbing Turn @}

0.8
— | —PIF =) 0
1 SNN -
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/ >
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g
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SNN Control — Complete Turn @}
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Neuromorphic Sensing @}
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Exteroceptive Sensing Motivation @}

* Onboard exteroceptive sensors required for full
flight autonomy

« Fast dominant time scales of small-scale flight
require high sensing rate and low latency

— Traditional sensors consume large amounts of
power for high sensing rate (e.g. ~100 watts
for high speed camera)

— High data rate requires additional data
processing

« Neuromorphic vision sensors have 1us temporal
resolution and require at most a few milliwatts of
power [Lichtsteiner, *08], [Brandli, *14]

15

Image Credit: inivation (https://inivation.com)
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Background: Neuromorphic Vision @}

» Neuromorphic cameras generate
asynchronous events instead of frames

* Aneventat (x, y) is generated at time
t;, with polarity
LA In((x, Y.t 4)) = In(I(x, Y, 8)) =0 Source
DIV i Iyt ) -In(L(x, vt ) = 6

* “On” events when p, =1
e “Off” events when p, =-1

* The ith event e, is described by the
tuple e =(x,y.t, p),

X,ye N’ teR" pe{-11} oo
,\‘g

50 .¢¢

X " 100 25 8

 The set of all events is
£={e, \i =1,...,N} “On” Events “Off” Events
16
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The Optical Flow Problem

Standard Optical Flow Problem
« Assume: dl(x,y,t) 0o
dt

* Determine horizontal and vertical flow (v, v,) from

di(x,y,t)

A
dt _[IX(X’y’t) Iy(xiy’t)][VX(X "

v, (X, y,t)]i_ l.(x,y,t)=0
Neuromorphic Optical Flow

: : T
« Coordinates of some point r = [rx ry] in the

Image plane determined by optical flow
rt)-rt)| & v, dt v, (7)
{ry (t,)-r, (tl)} B tf v(r)dz ~ {vydt}’ v(e) = {vy (r)}

« Scattered events are generated by motion of the point

» Determine optical flow by estimating the motion of
points in the scene using the scattered events

y (pixels)

-1004
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Neuromorphic Optical Flow @}

Existing neuromorphic optical flow methods rely
on optimization [Benosman, *14], [Rueckauer, "16]

Estimate continuous motion from discrete events

Introduce continuous event rate f through
convolution of events with continuous kernel K

fYD=KOGYDFEG YD | EX Y. =Y 50 %,y- yut-t)

Assume gradient n of event rate is normal to n=[a b cf

the motion of points in the scene

Speed of the motion is inversely proportional W:{ ot ot }T {_ a _QT
to magnitude of gradient Ox oy c ¢

Optical flow is written directly in terms of the {V} ( 1 J W c m

event rate gradient v W)Wl a7




y (pixels)
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Neuromorphic Optical Flow Results @}

Mean processing time
per event: 0.7 us
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Neuromorphic Motion Detection %}

Detect motion relative to the environment
using a rotating neuromorphic camera

Assumptions
« Known camera motion
« Camera motion dominated by rotation
« Total derivative of pixel intensity is zero

World View

Camera View Neuromorphic Camera

20



Cornell University

Neuromorphic Motion Detection @}

» Pixel intensity can be recovered by integrating the event rate
I(x,y,t)= exp(&ﬁ f (X, y,r)dr)+ 1(x,y,0)

« By previous assumptions, future pixel intensity can be predicted if image-plane
motion field (v,, v,) Is known

 Motion field due to camera rotation is

2

v,(6Y) == 0,0+ 0,0~ To,0) + yo,)

2

v, (x9) ==L 0,0+ 0,0 -x0,0+ f0,0

« Pixel intensity after a short time At is predicted
from motion field:

[(X,y,t) = 1(X—V,At, y -V At,t — At)

21
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Neuromorphic Motion Detection Results @}

1. Compute difference between
predicted and measured intensity G Al

AL(X, Y, 1) =1(X, y,t)=T(X,y,t)

2. Denoise by convolving with a
multivariate Gaussian kernel K.
with covariance X

AL'(X, y,1) = K (X, y, ) * 1 (X, y,1)

201

3. Detect motion by comparing
smoothed intensity difference
with a threshold y

40

60
| o
100 1

1L if |AI(x,y, 1) > 7.
0, otherwise.

m(x, y,t) ={

22
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Summary g}

Innovation

» Neuromorphic sensing and control algorithms for
intelligent, energy-efficient autonomy

Potential Applications

« Autonomous flight for small-scale UAVs
— Real-time target detection

— Obstacle avoidance &,279 I 9cm

Crazyflie 2.0 (https://www.bitcraze.io/crazyflie-2/)

Standard Camera Neuromorphic Camera = Direction of Motion __Detected Motion
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