

LABORATORY FOR INTELLIGENT SYSTEMS AND CONTROLS ONR Unmanned Maritime Systems Technology (UMST) Program Review, Miramar Beach, FL January 29, 2019

Event-based Sensorimotor Planning and Control

PIs: Silvia Ferrari* and Robert Wood*

John Brancaccio Professor of Mechanical and Aerospace Engineering, Cornell
 Charles River Professor of Engineering and Applied Sciences, Harvard

Ph.D. Student: Taylor S. Clawson

Motivation: Insect-Scale Autonomous Flight

- Safer: weigh less than 1 pound and thus are safe to operate near humans
- Smaller and covert: can access narrow or unfriendly spaces inaccessible to other vehicles
- Autonomous flight expands the capability of a single operator to monitor previously inaccessible spaces
 - More effective search and rescue
 - Surveillance in complex environments
 - Security in densely populated, sensitive regions



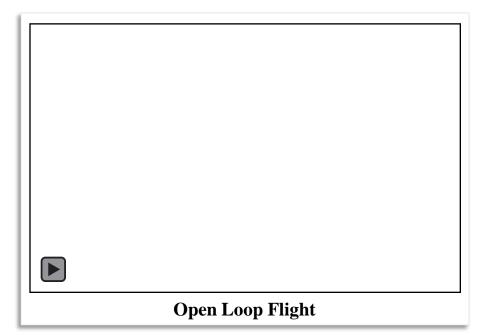
Crazyflie 2.0 (https://www.bitcraze.io/crazyflie-2/)



RoboBee [Ma, 2013]

Challenges: Insect-scale Sensorimotor Control

- Size, weight and power constraints
 - RoboBee power budget: ~21mW
 - Only ~2mW available for sensing and control
- Fast dynamics
 - Dominant timescales on the order of a few hundred milliseconds
- Physical parameter variations
 - Small wing asymmetries result in undesired torque during flight

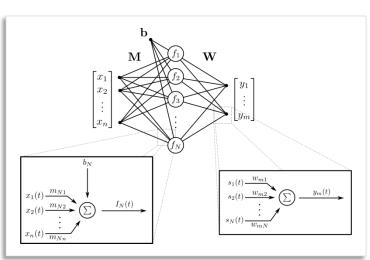


• Highly susceptible to external disturbances such as wind gusts

Neuromorphic Sensing and Control

Emerging Technologies

• Neuromorphic sensing and control algorithms for intelligent, energy-efficient autonomy



Spiking neural networks (SNNs), or neuromorphic chips, can learn online to improve performance or adapt to new conditions

Neuromorphic cameras have 1µs temporal resolution and require at most a few milliwatts of power

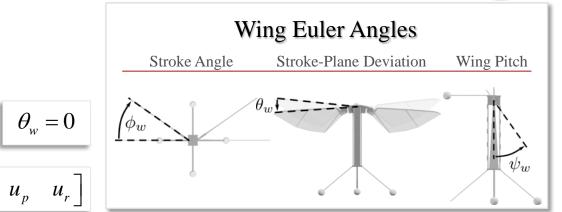
Research Goals Modeling 3 M_{rd,l} **Exteroceptive Sensing** $\mathbf{M}_{rd,r}$ $O_R O_{P_r}$ G $m_l \mathbf{g}$ $m_b \mathbf{g}$ $m_r \mathbf{g}$ Adaptive Flight Control $y_m(t)$ $I_N(t)$

- 1. Model the RoboBee flight dynamics, validate with experimental data
- 2. Develop adaptive flight controllers which account for physical variations
- 3. Develop sensing algorithms to perform target tracking and obstacle avoidance

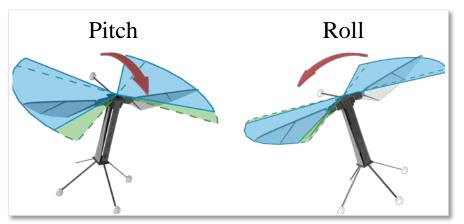
Wing Modeling

Assumptions:

- Rigid wings with passive pitching dynamics
- No stroke-plane deviation
- Control inputs **u** affect stroke angle
- Stroke angle modeled by second order system



$$\ddot{\phi}_w(t) + 2\zeta \omega_n \dot{\phi}_w(t) + \omega_n^2 \phi_w(t) = \frac{u_a \pm u_r}{2} \sin(\omega_f t) + u_p$$



 $\mathbf{u} = \int u_a$

ζ	Effective damping ratio	ω_f Effective natural frequent	ncy
ω_n	Forcing frequency	u_a Flapping amplitude inpu	ıt
u_p	Pitch input	u_r Roll input	

Aerodynamic Forces and Moments

- Aerodynamic forces on wing caused by translational motion
- Locally, lift and drag are proportional to the square of the incident velocity $\mathbf{v}_{\rm C}$

$$F_L(\alpha) = \frac{1}{2} \rho \int_0^R C_L(\alpha) \mathbf{v}_C^T \mathbf{v}_C c(r) dr$$

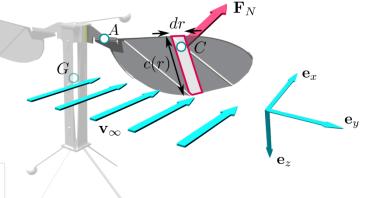
• Where
$$\mathbf{v}_{C} = \mathbf{v}_{G} + \mathbf{\omega}_{b} \times \mathbf{r}_{A/G} + \mathbf{\omega}_{r} \times \mathbf{r}_{C/A} - \mathbf{v}_{\infty}$$

 $C_{L}(\alpha) = C_{L_{max}} \sin(2\alpha)$

• Rotational damping \mathbf{M}_{rd} caused by span-wise rotation of wing

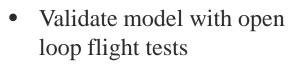
$$\mathbf{M}_{rd} = -\frac{1}{2} \rho C_{rd} \int_{0}^{R} \int_{z_0}^{z_1} (\mathbf{\omega}_y^2 z^2) |z| dz dr$$

[T. S. Clawson, S. B. Fuller, R. J. Wood, S. Ferrari "A Blade Element Approach to Modeling Aerodynamic Flight of an Insect-scale Robot," *American Control Conference (ACC),* Seattle, WA, May 2017.]

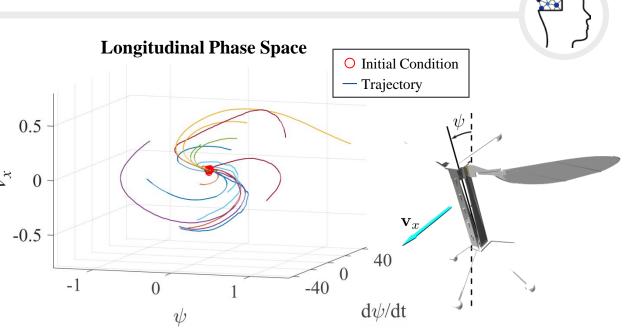


F_L	Lift force	α	Angle of attack
$\mathbf{r}_{A/G}$	Position of hinge relative to body CG	$\mathbf{r}_{C/A}$	Position of blade element relative to hinge
\mathbf{v}_{c}	Velocity of element	\mathbf{F}_{N}	Aerodynamic normal force
$\mathbf{\omega}_{b}$	Body angular rate	ω _w	Wing angular rate
\mathbf{v}_{∞}	Free stream velocity	c(r)	Chord length
\mathbf{M}_{rd}	Rotational damping moment	C_L	Lift coefficient
C_{rd}	Rotational coefficient		

Model Validation



- Dominant longitudinal and lateral modes visible in experimental data
- Model predicts the same dominant modes



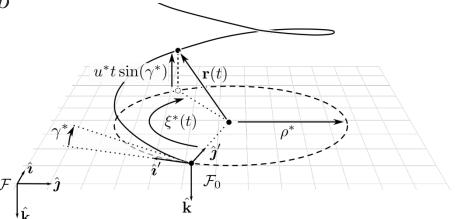


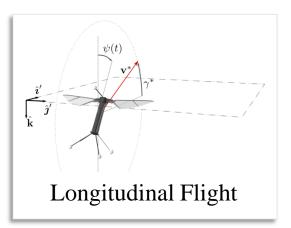
Steady Maneuvers

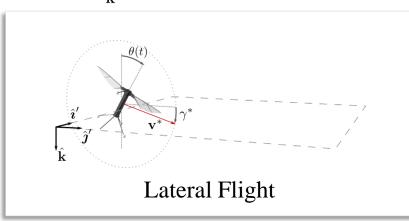
- *Steady* maneuvers are trajectories with minimum period equal to the flapping period *T* and constant control inputs
- Command input \mathbf{y}^* defines maneuvers in terms of commanded speed u^* , climb angle γ^* , turn rate $\dot{\xi}^*$, and sideslip angle β^*

 $\mathbf{y}^* = \begin{bmatrix} u^* & \gamma^* & \dot{\xi}^* & \boldsymbol{\beta}^* \end{bmatrix}$

- The most general steady maneuver is the coordinated turn
- Other steady maneuvers include:

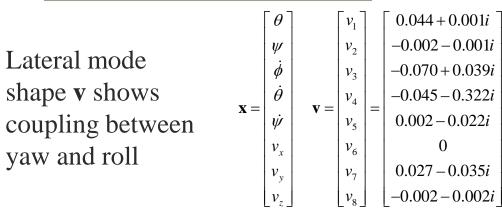




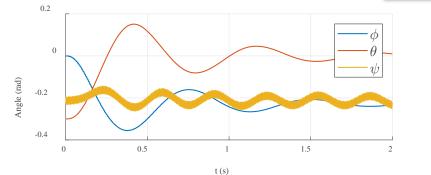


Steady Forward – Lateral Mode

Lateral mode becomes stable in forward flight



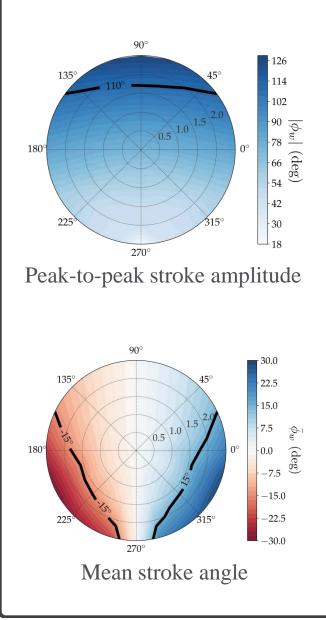
Time constant τ and frequency f of longitudinal mode:

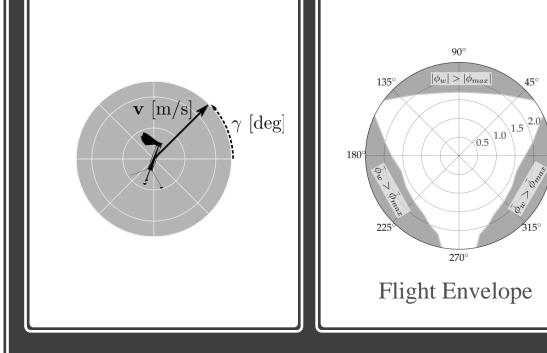


 $\tau = 0.62s$ f = 1.38Hz

10

Cornell University





Longitudinal Flight Envelope

Peak-to-peak stroke amplitude and mean stroke angle as a function of speed and climb angle

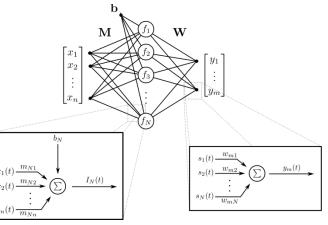
0°

Flapping Wing Flight Control

- Fixed-gain controllers require hand calibration for each robot [Ma, '13], [Dickson, '08]
- Adaptive controller for wind gust disturbance rejection only stabilizes about hovering [Chirarattananon, P. '17]
- Hovering control of simplified 2D model with SNN [Clawson, T.S. '16]

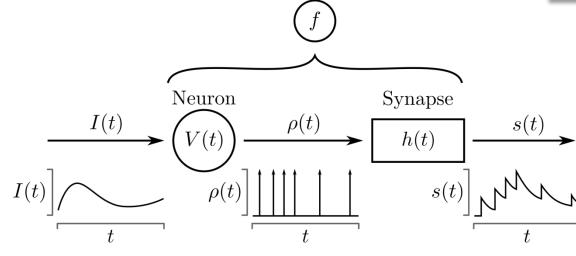
Accomplished Research Goal:

- Develop a full envelope flight controller, which can adapt online to physical parameter variations
- Spiking neural networks (SNNs) can adapt online and can be implemented in power-efficient neuromorphic chips



Event-based SNN Control Model

- Neurons generate spike trains $\rho(t)$ based on input current I(t)
- Synapses filter the spikes and generate postsynaptic current *s*(*t*)
- Synapses modeled as first-order low-pass filters *h*(*t*)



$$\rho(t) = \sum_{k=1}^{M} \rho_k(t) = \sum_{k=1}^{M} \delta(t - t_k)$$

$$s(t) = \int_0^t h(t-\tau)\rho(\tau)d\tau$$

$$h(t) = \frac{1}{\tau_s} e^{-t/\tau_s}$$

δ	Dirac delta
t_k	Time of k th spike
М	Spike count
$ au_s$	Synaptic time constant

SNN Controller – Full Flight Envelope

- SNN trained to approximate steady-state gain of gain-scheduled PIF
- PIF Gain matrices dependent on scheduling variables **a**

 $\tilde{\mathbf{u}}(t) = -\mathbf{K}_1(\mathbf{a})\tilde{\mathbf{x}}(t) - \mathbf{K}_2(\mathbf{a})\tilde{\mathbf{u}}(t) - \mathbf{K}_3(\mathbf{a})\boldsymbol{\xi}(t)$

• Steady-state gain computed using transfer function and final value theorem

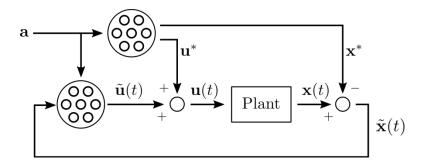
 $\mathbf{G}(s) \triangleq -(s\mathbf{I} + \mathbf{K}_2(\mathbf{a}))^{-1}\mathbf{K}_1(\mathbf{a})$

 $\mathbf{G}(0) = -\mathbf{K}(\mathbf{a})_2^{-1}\mathbf{K}_1(\mathbf{a}) \triangleq \mathbf{K}_{ss}(\mathbf{a})$

• Network output weights computed to approximate steady-state gain matrix **K**_{ss}

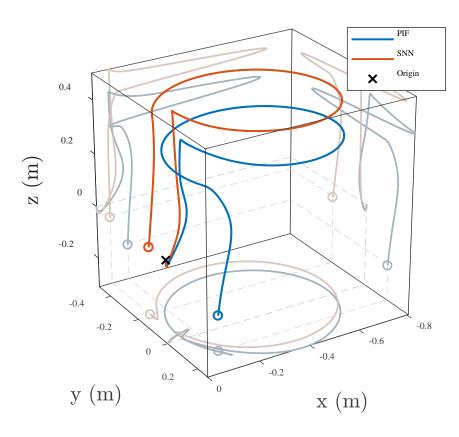
$$\mathbf{W} = \underset{\mathbf{V}}{\operatorname{argmin}} \sum_{j} \left\| \mathbf{K}_{ss}(\mathbf{a}) - \mathbf{V}F(\mathbf{M}\mathbf{a}_{j} + \mathbf{b}) \right\|^{2}$$

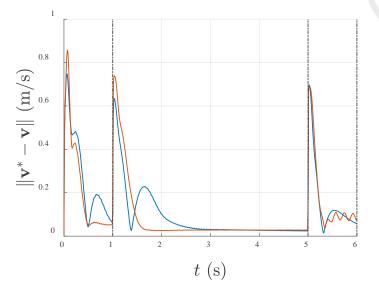
• SNN Control input is a linear transformation of post-synaptic current $\tilde{\mathbf{u}}(t) = \mathbf{W}(\mathbf{a})\mathbf{s}(t)$

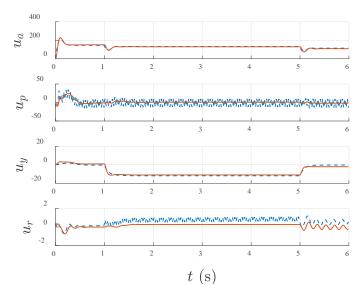


\mathbf{K}_{i}	PIF gain matrices	ĩ	State deviation
ũ	Control deviation	ξ	Integral of output error
a	Scheduling variables	$\mathbf{G}(s)$	Transfer function
S	Laplace variable	\mathbf{K}_{ss}	Steady-state gain matrix
W	Output connection weights	S	Post-synaptic current

SNN Control – Complete Turn







15

Neuromorphic Vision Sensors

- Neuromorphic cameras generate asynchronous events instead of frames
- An event at (*x*, *y*) is generated at time *t_i*, with polarity

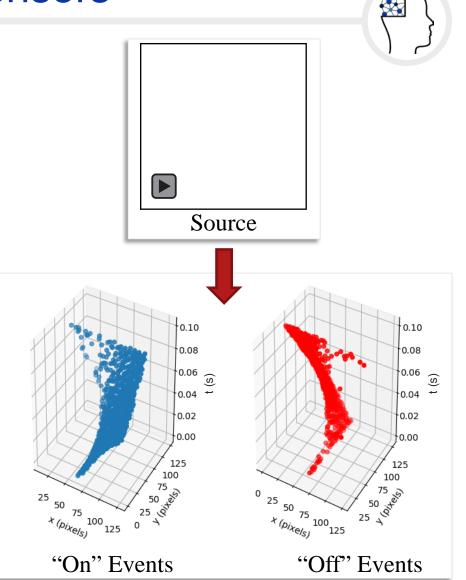
 $p_{i} = \begin{cases} 1, & \text{if } \ln(I(x, y, t_{i-1})) - \ln(I(x, y, t_{i})) \ge -\theta \\ -1, & \text{if } \ln(I(x, y, t_{i-1})) - \ln(I(x, y, t_{i})) \le \theta \end{cases}$

- "On" events when $p_i = 1$
- "Off" events when $p_i = -1$
- The *i*th event \mathbf{e}_i is described by the tuple $\mathbf{e}_i = (x, y, t, p)_i$

 $x, y \in \mathbb{N}^+$ $t \in \mathbb{R}^+$ $p \in \{-1, 1\}$

• The set of all events is

 $\mathcal{E} = \{\mathbf{e}_i \mid i = 1, \dots, N\}$



Neuromorphic Optical Flow

Standard Optical Flow Problem

- Assume: $\frac{dI(x, y, t)}{dt} = 0$
- Determine horizontal and vertical flow (v_x, v_y) from

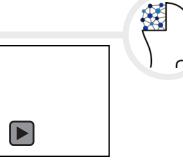
$$\frac{dI(x, y, t)}{dt} = \begin{bmatrix} I_x(x, y, t) & I_y(x, y, t) \end{bmatrix} \begin{bmatrix} v_x(x, y, t) \\ v_y(x, y, t) \end{bmatrix} + I_t(x, y, t) = 0$$

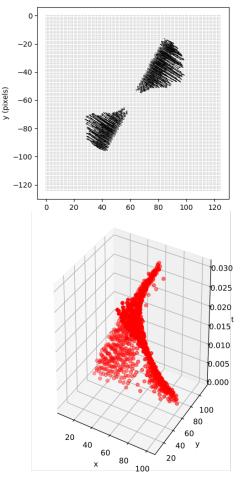
Neuromorphic Optical Flow

• Coordinates of some point $\mathbf{r} = \begin{bmatrix} r_x & r_y \end{bmatrix}^T$ in the image plane determined by optical flow

$$\begin{bmatrix} r_x(t_2) - r_x(t_1) \\ r_y(t_2) - r_y(t_1) \end{bmatrix} = \int_{t_1}^{t_2} \mathbf{v}(\tau) d\tau \approx \begin{bmatrix} v_x dt \\ v_y dt \end{bmatrix}, \qquad \mathbf{v}(\tau) = \begin{bmatrix} v_x(\tau) \\ v_y(\tau) \end{bmatrix}$$

- Scattered events are generated by motion of the point
- Determine optical flow by estimating the motion of points in the scene using the scattered events





Neuromorphic Motion Detection

Detect motion relative to the environment using a rotating neuromorphic camera

Assumptions

- Known camera motion
- Camera motion dominated by rotation
- Total derivative of pixel intensity is zero

Camera View	Neuromorphic Camera

Worl	d View	Į	

20

40

60

80

100

120

0

3a

20 -

40 -

60 -

80 ·

100 -

120

0

40

80

60

100 120

20

 ΔI

 $\Delta I'$

Neuromorphic Motion Detection Results

1. Compute difference between predicted and measured intensity

 $\Delta I(x, y, t) = I(x, y, t) - \tilde{I}(x, y, t)$

2. Denoise by convolving with a multivariate Gaussian kernel K_{Σ} with covariance Σ

 $\Delta I'(x, y, t) = K_{\Sigma}(x, y, t) * I(x, y, t)$

3. Detect motion by comparing smoothed intensity difference with a threshold γ

$$m(x, y, t) = \begin{cases} 1, & \text{if } |\Delta I'(x, y, t)| > \gamma. \\ 0, & \text{otherwise.} \end{cases}$$

120 -100 40 100 120 80 120 т 3b 80 20 -70 40 60 50 60 40 80 30

 $\Delta I'$

-2

2

20

40 -

60 -

80 -

100 -

50

25

-25

-50

-75

20

10

100

120

0

20

100

120

100

Cornell University

Summary of Research Accomplishments

- Flight model captures dominant modes
- Set points for steady maneuvers were computed
- Model predicts that forward flight becomes stable with increasing speed
- Adaptive SNN Controller can adapt to unmodeled parameter variations
- SNN can provide control for full flight envelope

Exteroceptive Sensing

Adaptive Flight Control

Modeling

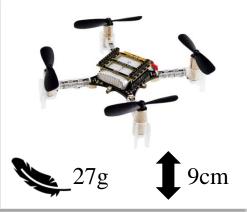
M_{rd,l}

3

- Optical flow can be efficiently computed from neuromorphic cameras
- Target motion can be detected from a rotating neuromorphic camera

Future Work

- With the model:
 - Analyze stability at additional set flight set points to show bifurcations as a function of flight speed and other variables
- On the physical RoboBee:
 - Integrate SNN controller with the current hardware setup
 - Demonstrate basic maneuvers with the SNN Controller
- In Simulation:
 - Using neuromorphic cameras, track a moving target while avoiding obstacles in an unknown environment
- On a small quadcopter:
 - Attach regular camera and use frames to simulate neuromorphic camera in real time
 - Track a moving target while avoiding obstacles in an unknown environment



Crazyflie 2.0 (https://www.bitcraze.io/crazyflie-2/)

Funded by the ONR Grant # N00014-17-<u>1-</u>2614

Event-based Sensorimotor Planning and Control

PIs: Silvia Ferrari* and Robert Wood*

Ph.D. Student: Taylor S. Clawson

Published Work

T. S. Clawson, S. Ferrari, S. B. Fuller, R. J. Wood, "Spiking Neural Network (SNN) Control of a Flapping Insect-scale Robot," *Proc. of the IEEE Conference on Decision and Control*, Las Vegas, NV, pp. 3381-3388, December 2016.

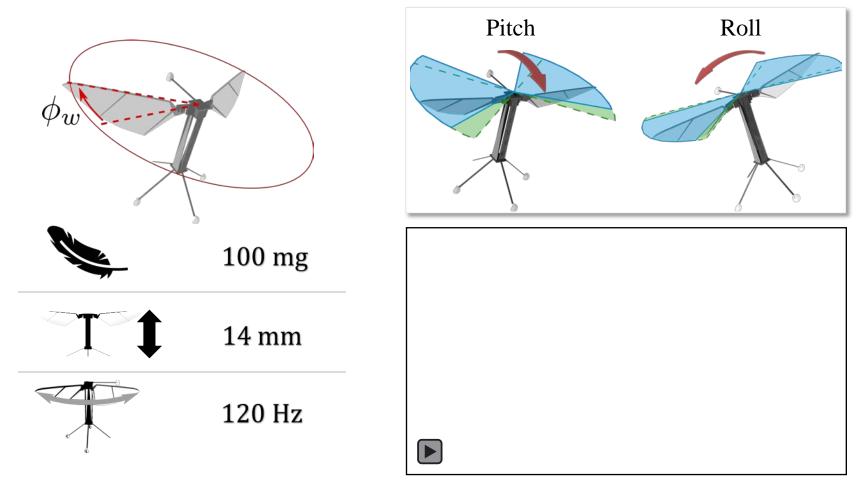
T. S. Clawson, S. B. Fuller, R. J. Wood, S. Ferrari "A Blade Element Approach to Modeling Aerodynamic Flight of an Insect-scale Robot," *American Control Conference (ACC)*, Seattle, WA, May 2017.

T. S. Clawson, T. C. Stewart, C. Eliasmith, S. Ferrari "An Adaptive Spiking Neural Controller for Flapping Insect-scale Robots," *IEEE Symposium Series on Computational Intelligence (SSCI)*, Honolulu, HI, December 2017.

Back-up Slides

Background: RoboBee Actuators

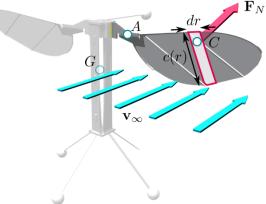
- Wing stroke angle ϕ_w controlled independently for each wing
- Thrust and body torques controlled by modulating stroke angle commands



Video of RoboBee test flight courtesy of the Harvard Microrobotics Lab

Modeling Flapping Wing Flight

- Aerodynamic forces in flapping flight differ from classic airfoil models
- Modeling aerodynamic effects on flapping wings
 - Computationally expensive CFD models [Liu, '98], [Sun, '02]
 - Simplified models can accurately predict stroke-averaged forces [Whitney, '10], [Dickinson, '99], [Wang, '04]
- Modeling flight dynamics of the insect or robot body
 - Simple 2D models [Ristroph '13]
 - Stroke-averaged models [Chirarattananon, '16]
 - Kinematically-constrained wing trajectories
 - Limited wing pitch [Oppenheimer, '10]
 - Kinematic models from experimental data [Wang, '16], [Dickson, '08]
- Finding hovering set point and analyzing modes of motion and stability [Wu, '12]



Solving for Maneuver Set Points

• To find set points corresponding to steady maneuvers, solve equations of motion subject to maneuver constraints $\mathbf{c}_m = \mathbf{0}$

$$\mathbf{x}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t)$$
 $\mathbf{c}_m \triangleq \mathbf{x}^*(T) - \mathbf{x}(T)$

• Discretize ODE and write dynamics as constraints using Hermite-Simpson rule

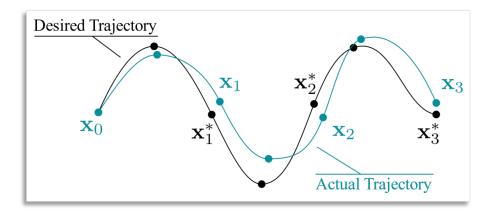
$$\mathbf{0} = \bar{\mathbf{x}}_{k+1} - \frac{1}{2}(\mathbf{x}_{k+1} + \mathbf{x}_{k}) - \frac{\Delta t}{8}(\mathbf{f}_{k} - \mathbf{f}_{k+1}) \qquad \mathbf{0} = \mathbf{x}_{k+1} - \mathbf{x}_{k} - \frac{\Delta t}{6}(\mathbf{f}_{k+1} + 4\bar{\mathbf{f}}_{k+1} + \mathbf{f}_{k})$$

• Dynamics constraints can be written in terms of constant matrices **A**, **B**:

$$\mathbf{c}_{d}(\mathbf{x},\mathbf{u}) \triangleq \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{q}(\mathbf{x},\mathbf{u})$$
$$\mathbf{q}(\mathbf{x},\mathbf{u}) \triangleq \Delta t \begin{bmatrix} \mathbf{f}_{1} & \overline{\mathbf{f}}_{2} & \mathbf{f}_{2} & \overline{\mathbf{f}}_{3} & \dots & \mathbf{f}_{M} \end{bmatrix}^{T}$$

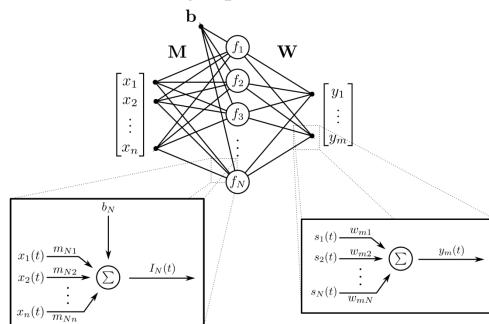
• Use nonlinear program to numerically solve:

$$\begin{bmatrix} \mathbf{c}_m(\mathbf{x}) \\ \mathbf{c}_d(\mathbf{x}, \mathbf{u}) \end{bmatrix} = \mathbf{0}$$



Single-layer SNN Controller

- SNN function approximation by connection weights **M**, **W**, and **b**
- Output connection weights **W** determined offline by supervised learning
- Training data set \mathcal{D} generated by a stabilizing target control law (e.g. optimal PIF controller)



$$\mathbf{y}(t) = \mathbf{W}\mathbf{s}(t) = \mathbf{W}F(\mathbf{M}\mathbf{x}(t) + \mathbf{b})$$

$$\mathbf{W} = \arg\min_{\mathbf{V}} \sum_{j} \left\| \mathbf{f}(\mathbf{x}_{j}) - \mathbf{V}F(\mathbf{M}\mathbf{x}_{j} + \mathbf{b}) \right\|^{2}$$

$$\mathcal{D} = \left\{ \left(\mathbf{x}_{j}, \mathbf{f}(\mathbf{x}_{j}) \right) \mid j = 1, \dots, M \right\}$$

Μ	Input Connection Weights
W	Output Connection Weights
b	Input bias
$\mathbf{s}(t)$	Post-synaptic current
F	Nonlinear activation function
$\mathbf{f}(\mathbf{x}_j)$	Target control law data
М	Number of training data points

Exteroceptive Sensing Motivation

- Onboard exteroceptive sensors required for full flight autonomy
- Fast dominant time scales of insect-scale flight require high sensing rate and low latency
 - Traditional sensors consume large amounts of power for high sensing rate (e.g. ~100 watts for high speed camera)
 - High data rate requires additional data processing
- Neuromorphic vision sensors have 1µs temporal resolution and require at most a few milliwatts of power [Lichtsteiner, '08], [Brandli, '14]

Neuromorphic Optical Flow

- Existing neuromorphic optical flow methods rely on optimization [Benosman, '14], [Rueckauer, '16]
- Estimate continuous motion from discrete events
- Introduce continuous event rate *f* through convolution of events with continuous kernel *K*

$$f(x, y, t) = K(x, y, t) * E(x, y, t) \qquad E(x, y, t) = \sum_{i=1}^{N} \delta(x - x_i, y - y_i, t - t_i)$$

- Assume gradient **n** of event rate is normal to the motion of points in the scene
- Speed of the motion is inversely proportional to magnitude of gradient
- Optical flow is written directly in terms of the event rate gradient

$$t_i)$$

$$\mathbf{n} = \begin{bmatrix} a & b & c \end{bmatrix}^T$$

$$\mathbf{w} = \begin{bmatrix} \frac{\partial t}{\partial x} & \frac{\partial t}{\partial y} \end{bmatrix}^T = \begin{bmatrix} -\frac{a}{c} & -\frac{b}{c} \end{bmatrix}^T$$

$$\begin{bmatrix} v_x \\ v_y \end{bmatrix} = \left(\frac{1}{\|\mathbf{w}\|}\right) \frac{\mathbf{w}}{\|\mathbf{w}\|} = -\frac{c}{a^2 + b^2} \begin{bmatrix} a \\ b \end{bmatrix}$$