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• Safer: weigh less than 1 pound and thus are safe to 
operate near humans 

• Smaller and covert: can access narrow or unfriendly 
spaces inaccessible to other vehicles 

• Autonomous flight expands the capability of a single 
operator to monitor previously inaccessible spaces 
– More effective search and rescue 
– Surveillance in complex environments 
– Security in densely populated, sensitive regions  

Motivation: Insect-Scale Autonomous Flight 

Crazyflie 2.0 (https://www.bitcraze.io/crazyflie-2/) 

27g 9cm 

RoboBee [Ma, 2013] 

https://www.bitcraze.io/crazyflie-2/
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• Size, weight and power constraints 

• RoboBee power budget: ~21mW 

• Only ~2mW available for sensing  
and control 

• Fast dynamics 

• Dominant timescales on the order  
of a few hundred milliseconds 

• Physical parameter variations 

• Small wing asymmetries result  
in undesired torque during flight 

• Highly susceptible to external disturbances such as wind gusts 

Challenges: Insect-scale Sensorimotor Control 
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Open Loop Flight 

Funded by the ONR Grant # N00014-17-1-2614 






• Neuromorphic sensing and control algorithms for intelligent, energy-efficient 
autonomy 

Neuromorphic Sensing and Control 
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inivation (https://inivation.com/) 

Neuromorphic cameras have 1μs temporal 
resolution and require at most a few 
milliwatts of power 

Spiking neural networks (SNNs), or 
neuromorphic chips, can learn online to 
improve performance or adapt to new 
conditions 

Emerging Technologies 
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https://inivation.com/


1. Model the RoboBee flight dynamics, validate with experimental data 

2. Develop adaptive flight controllers which account for physical variations 

3. Develop sensing algorithms to perform target tracking and obstacle avoidance 

Research Goals 
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Modeling 
Exteroceptive Sensing 

Adaptive Flight Control 
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Assumptions: 
• Rigid wings with passive pitching 

dynamics 

• No stroke-plane deviation 

• Control inputs u affect  
stroke angle 

 
• Stroke angle modeled by second 

order system 
 
 
 
 

Wing Modeling 
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Pitch Roll 

Wing Euler Angles 
Stroke Angle Stroke-Plane Deviation Wing Pitch 

0wθ =
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• Aerodynamic forces on wing caused by translational motion 
• Locally, lift and drag are proportional 

to the square of the incident velocity vC 

• Where 

• Rotational damping Mrd caused by 
span-wise rotation of wing 

Aerodynamic Forces and Moments 
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[T. S. Clawson, S. B. Fuller, R. J. Wood, S. Ferrari “A Blade Element  
Approach to Modeling Aerodynamic Flight of an Insect-scale Robot,”  
American Control Conference (ACC), Seattle, WA, May 2017.] 



Model Validation 
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Initial Condition 
Trajectory • Validate model with open 

loop flight tests 
• Dominant longitudinal and 

lateral modes visible in 
experimental data 

• Model predicts the same 
dominant modes 

v x
 

Longitudinal Phase Space 






• Steady maneuvers are trajectories with minimum period equal to the flapping 
period T and constant control inputs 

• Command input y* defines maneuvers in terms of commanded speed u*, climb 
angle γ*, turn rate    , and sideslip angle β* 

• The most general steady maneuver is 
the coordinated turn 

• Other steady maneuvers include: 

Steady Maneuvers 
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Longitudinal Flight Lateral Flight 
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Steady Forward – Lateral Mode 
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Lateral mode becomes stable 
in forward flight 

Lateral mode 
shape v shows 
coupling between 
yaw and roll 

Time constant τ and frequency 
f of longitudinal mode: 






Peak-to-peak stroke amplitude and mean stroke angle 
as a function of speed and climb angle 

Longitudinal Flight 
Envelope 
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Peak-to-peak stroke amplitude 

Mean stroke angle 

Flight Envelope 



• Fixed-gain controllers require hand calibration for each robot [Ma, ’13], 
[Dickson, ’08] 

• Adaptive controller for wind gust disturbance rejection only stabilizes about 
hovering [Chirarattananon, P. ’17] 

• Hovering control of simplified 2D model with SNN [Clawson, T.S. ’16] 
 
 

• Develop a full envelope flight controller, which can adapt online to physical 
parameter variations 

• Spiking neural networks (SNNs) can adapt online 
and can be implemented in power-efficient 
neuromorphic chips 

Flapping Wing Flight Control 
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Accomplished Research Goal: 



• Neurons generate spike trains ρ(t) based on 
input current I(t) 

• Synapses filter the spikes and generate post-
synaptic current s(t) 

• Synapses modeled as first-order low-pass 
filters h(t) 

Event-based SNN Control Model 
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• SNN trained to approximate steady-state gain of gain-scheduled PIF 
• PIF Gain matrices dependent on scheduling variables a 

• Steady-state gain computed using transfer 
function and final value theorem 

• Network output weights computed to  
approximate steady-state gain matrix Kss 

• SNN Control input is a linear  
transformation of post-synaptic current 

SNN Controller – Full Flight Envelope 
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SNN Control – Complete Turn 
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• Neuromorphic cameras generate 
asynchronous events instead of frames 

• An event at (x, y) is generated at time 
ti, with polarity 

 

• “On” events when  

• “Off” events when  

• The ith event ei is described by the  
tuple 

• The set of all events is 

Neuromorphic Vision Sensors 
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• Scattered events are generated by motion of the point 

• Determine optical flow by estimating the motion of 
points in the scene using the scattered events 

Neuromorphic Optical Flow 
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• Coordinates of some point                        in the 
image plane determined by optical flow 

• Assume: 

• Determine horizontal and vertical flow (vx, vy) from 
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Standard Optical Flow Problem 
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Neuromorphic Motion Detection 
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Detect motion relative to the environment  
using a rotating neuromorphic camera 

Camera View 

World View 

Assumptions 
• Known camera motion 
• Camera motion dominated by rotation 
• Total derivative of pixel intensity is zero 

Neuromorphic Camera 












1. Compute difference between 
predicted and measured intensity 

 
2. Denoise by convolving with a 

multivariate Gaussian kernel KΣ 
with covariance Σ 

 
3. Detect motion by comparing 

smoothed intensity difference 
with a threshold γ 

Neuromorphic Motion Detection Results 
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Summary of Research Accomplishments 
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Modeling 
1 

Adaptive Flight Control 2 

Exteroceptive Sensing 
3 

• Flight model captures dominant modes 
• Set points for steady maneuvers were computed 
• Model predicts that forward flight becomes 

stable with increasing speed 

• Adaptive SNN Controller can adapt to 
unmodeled parameter variations 

• SNN can provide control for full flight envelope 

• Optical flow can be efficiently computed from 
neuromorphic cameras 

• Target motion can be detected from a rotating 
neuromorphic camera 






• With the model: 
– Analyze stability at additional set flight set points to show bifurcations as a 

function of flight speed and other variables 
• On the physical RoboBee: 

– Integrate SNN controller with the current hardware setup 
– Demonstrate basic maneuvers with the SNN Controller 

• In Simulation: 
– Using neuromorphic cameras, track a moving target while avoiding 

obstacles in an unknown environment 
• On a small quadcopter: 

– Attach regular camera and use frames to 
simulate neuromorphic camera in real time 

– Track a moving target while avoiding  
obstacles in an unknown environment 

Future Work 
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Crazyflie 2.0 (https://www.bitcraze.io/crazyflie-2/) 
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Back-up Slides 
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• Wing stroke angle ϕw controlled independently for each wing 
• Thrust and body torques controlled by modulating stroke angle commands 

Background: RoboBee Actuators 

Video of RoboBee test flight courtesy of the Harvard Microrobotics Lab 24 

Pitch Roll 






• Aerodynamic forces in flapping flight differ from classic airfoil models 

• Modeling aerodynamic effects on flapping wings 
– Computationally expensive CFD models [Liu, ’98], [Sun, ’02] 
– Simplified models can accurately predict stroke-averaged forces  

[Whitney, ’10], [Dickinson, ’99], [Wang, ’04] 

• Modeling flight dynamics of the insect or robot body 
– Simple 2D models [Ristroph ’13] 
– Stroke-averaged models [Chirarattananon, ’16] 
– Kinematically-constrained wing trajectories 

• Limited wing pitch [Oppenheimer, ’10] 
• Kinematic models from experimental data [Wang, ’16], [Dickson, ’08] 

• Finding hovering set point and analyzing modes of motion and stability  
[Wu, ’12] 

 

Modeling Flapping Wing Flight 
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• To find set points corresponding to steady maneuvers, solve equations of 
motion subject to maneuver constraints cm = 0 

• Discretize ODE and write dynamics as constraints using Hermite-Simpson rule 

• Dynamics constraints can be written in terms of constant matrices A, B: 

• Use nonlinear program to  
numerically solve: 

Solving for Maneuver Set Points 
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Single-layer SNN Controller 
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( ) ( ) ( ( ) )t t F t= = +y Ws W Mx b
• SNN function approximation by connection 

weights M, W, and b 

• Output connection weights W determined 
offline by supervised learning 

• Training data set      generated by a stabilizing 
target control law (e.g. optimal PIF controller) 
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• Onboard exteroceptive sensors required for full 
flight autonomy 

• Fast dominant time scales of insect-scale flight 
require high sensing rate and low latency 
– Traditional sensors consume large amounts of 

power for high sensing rate (e.g. ~100 watts 
for high speed camera) 

– High data rate requires additional data 
processing 

• Neuromorphic vision sensors have 1μs temporal 
resolution and require at most a few milliwatts of 
power [Lichtsteiner, ’08], [Brandli, ’14] 

Exteroceptive Sensing Motivation 
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Image Credit: inivation (https://inivation.com) 



Neuromorphic Optical Flow 

• Assume gradient n of event rate is normal to 
the motion of points in the scene 

• Speed of the motion is inversely proportional 
to magnitude of gradient 

• Optical flow is written directly in terms of the 
event rate gradient 
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• Existing neuromorphic optical flow methods rely 
on optimization [Benosman, ’14], [Rueckauer, ’16] 

• Estimate continuous motion from discrete events 

• Introduce continuous event rate f through 
convolution of events with continuous kernel K 
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