

LABORATORY FOR INTELLIGENT SYSTEMS AND CONTROLS

Sensor Planning for Multiple Targets Tracking

IDO

Hongchuan Wei

Advisor: Silvia Ferrari Laboratory for Intelligent Systems and Controls

> Cornell Robotics In Society Seminar December 14, 2015

- Introduction and Motivation
- Problem Formulation
- Methodology: Information Based Sensor Planning
 - Target behavior described by single model
 - Target behavior described by mixture model mobile
 - Sensor dynamics constraints
- Simulation and Results
- Conclusion

Introduction and Motivation

Target behaviors learning

- Security surveillance
- Tracking endangered species
- Environmental monitoring

[1] http://dowley.com/Services/VideoSurveillance/tabid/91/Default.aspx[2] An Information Value Function For Nonparametric Gaussian Processes

[3] www.h3c.com

Introduction and Motivation

- Goal: control actuated or configurable sensors to actively collect most valuable information
 - Estimator: compute the system state by fusing the data
 - Planner: determine the control by optimizing a function of costs and utilities
 - Actuator: follow the task execution as closely as possible
- Challenge:
 - Nonlinear target dynamics
 - Adaptive to data
 - Define 'value' of information
 - Number of sensors < number of targets

Target behaviors learning

- Workspace: $\mathcal{W} \subset \mathbb{R}^2$, convex polygon
- Target dynamics: unknown form

$$\dot{\mathbf{x}}_{j}(t) = \mathbf{f}[\mathbf{x}_{j}(t)], \ j = 1, \dots, N$$

• Sensor dynamics: known

$$\dot{\mathbf{s}}(t) = \mathbf{g}[\mathbf{s}(t), \mathbf{u}(t)], \ \mathbf{u}(t) \in U$$

• Detection model: limited sensor field of view (FOV)

$$P_{d} = \begin{cases} 0 : \mathbf{x}_{j}(t) \notin S(t) \\ 1 : \mathbf{x}_{j}(t) \in S(t) \end{cases}$$

• Measurement model: known with additive noise

$$\mathbf{m}(t) = \mathbf{h}[\mathbf{x}(t), \mathbf{s}(t)] + \mathbf{n}, \ \mathbf{n} \sim \mathcal{N}(0, \sigma^2)$$

• Goal: determine optimal control $\mathbf{u}^*(t)$ of sensors, such that collected measurements are most useful for learning \mathbf{f}

Example Problem

LABORATORY FOR INTELLIGENT SYSTEMS AND CONTROLS

- Workspace: MIT raven testbed
- Target dynamics: unknown velocity field

f: $[x \ y]^T \rightarrow [\dot{x} \ \dot{y}]^T$

- Sensor dynamics: linear with constraints
- Detection model: camera FOV
- Measurement model: $\mathbf{m}_j(t) = [\mathbf{x}_j(t) \ \mathbf{v}_j(t)] + \mathbf{n}$

LABORATORY FOR INTELLIGENT SYSTEMS AND CONTROLS

Methodology Part I: Target Dynamics Modelling

IDD

Single target: Gaussian process (GP) regression $\dot{\mathbf{x}}(t) = \mathbf{f}[\mathbf{x}(t)] \longrightarrow \{\mathbf{x}(t), \dot{\mathbf{x}}(t)\} \Rightarrow \mathbf{f}(\cdot)$

A Gaussian process is a stochastic process, that is a collection of random variables $\{f(\mathbf{x}) \mid \mathbf{x} \in \mathcal{X}\}$ indexed by a set \mathcal{X} , for which any finite subset, $\{f(\mathbf{x}_1), ..., f(\mathbf{x}_k)\}$, has a joint multivariate Gaussian distribution.

- Notation: $f(\mathbf{x}) \sim \text{GP}[\theta(\mathbf{x}), \phi(\mathbf{x}, \mathbf{x}')]$
- Mean function: $\theta(\mathbf{x}) = \mathbb{E}_f[f(\mathbf{x})]$
- Covariance function: $\phi(\mathbf{x}, \mathbf{x}') = \mathbb{E}_{f} \{ [f(\mathbf{x}) \theta(\mathbf{x})] [f(\mathbf{x}') \theta(\mathbf{x}')] \}^{T}$

• Covariance matrix:
$$\Phi(\mathbf{a}, \mathbf{b}) = \begin{bmatrix} \phi(\mathbf{a}_1, \mathbf{b}_1) & \cdots & \phi(\mathbf{a}_1, \mathbf{b}_n) \\ \vdots & \ddots & \vdots \\ \phi(\mathbf{a}_m, \mathbf{b}_1) & \cdots & \phi(\mathbf{a}_m, \mathbf{b}_n) \end{bmatrix}$$

Gaussian Process Regression

Prediction on $\mathbf{f}(\boldsymbol{\xi}) = [f(\boldsymbol{\xi}_1) \quad \cdots \quad f(\boldsymbol{\xi}_k)]^T$ given data $\{\mathbf{p}, \mathbf{o}\}$:

 $\mathbf{f}(\boldsymbol{\xi}) | \{\mathbf{p}, \mathbf{o}\} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

• mean: $\boldsymbol{\mu} = \boldsymbol{\theta}(\boldsymbol{\xi}) + \boldsymbol{\Phi}(\boldsymbol{\xi}, \mathbf{p}) \boldsymbol{\Phi}(\mathbf{p}, \mathbf{p})^{-1} [\mathbf{o} - \boldsymbol{\theta}(\mathbf{p})]$

• covariance: $\boldsymbol{\Sigma} = \boldsymbol{\Phi}(\boldsymbol{\xi},\,\boldsymbol{\xi}) - \boldsymbol{\Phi}(\boldsymbol{\xi},\,\mathbf{p}) \boldsymbol{\Phi}(\mathbf{p},\,\mathbf{p})^{-1} \boldsymbol{\Phi}(\mathbf{p},\,\boldsymbol{\xi})$

Dirichlet distribution: distribution over k-dimensional probability simplex

$$\boldsymbol{\pi} = [\pi_1 \quad \cdots \quad \pi_k]^T, \quad \text{for } \pi_k \geq 0, \quad \Sigma_k \pi_k = 1$$

• Density function of $\boldsymbol{\pi} \sim \text{Dir}([\alpha_1 \quad \dots \quad \alpha_k])$

$$p(\boldsymbol{\pi}) = \frac{\Gamma(\boldsymbol{\Sigma}_{k}\boldsymbol{\alpha}_{k})}{\boldsymbol{\Pi}_{k}\Gamma(\boldsymbol{\alpha}_{k})}\boldsymbol{\Pi}_{k}\boldsymbol{\pi}_{k}^{\boldsymbol{\alpha}_{k}-1}$$

• Example

Dirichlet process: distribution of infinite-dimension π

A Dirichlet process with parameters H and α , denoted by $DP[\alpha, H(A)]$, is a distribution of a random probability measure P, if for any finite measureable partition $\{B_i | 1 \le i \le n\}$ of A, it is true that $[P(B_1) \cdots P(B_n)]^T \sim Dir([\alpha H(B_1) \cdots \alpha H(B_n)])$

- Three samples drawn from $DP(100, \mathcal{N}(0,0.1))$
- discrete distribution
- countably infinite number of point masses

Multiple targets: Dirichlet process prior over mixture of Gaussian process models (DPGP mixture model)

- Objective of DPGP-MM: describe target dynamics, $\{\mathcal{F}, \boldsymbol{\pi}\}$
 - Velocity field: 2D spatial phenomenon \leftarrow Gaussian process
 - Clustering \leftarrow Dirichlet process

LABORATORY FOR INTELLIGENT SYSTEMS AND CONTROLS

Methodology Part II: Information Value of Measurement

IDO

DPGP Information Value

DPGP info-value: difference between **posterior** and **prior** DPGP model

 $\varphi[\mathbf{\nu}; \mathbf{m}(k+1)] = D\{p[\mathbf{\nu}|Q(k+1)]||p[\mathbf{\nu}|Q(k)]\}$

• D: Kullback-Leibler (or other) divergence

$$D(P_1 || P_2) = \int_{-\infty}^{\infty} \ln\left(\frac{p_1(x)}{p_2(x)}\right) p_1(x) dx$$

•
$$\boldsymbol{\nu}_i = [\mathbf{f}_i(\boldsymbol{\xi}_1)^T \quad \cdots \quad \mathbf{f}_i(\boldsymbol{\xi}_L)^T]^T$$

- $\boldsymbol{\nu} = [\boldsymbol{\nu}_1^T \cdots \boldsymbol{\nu}_M^T]^T$
- $Q(\mathbf{k}) = \{ \mathbf{m}(\boldsymbol{\ell}), \ G(\boldsymbol{\ell}) \mid 1 \leq \boldsymbol{\ell} \leq k \}$
- velocity field-target association, G, is unknown
- future measurement, $\mathbf{m}(k+1)$, is unknown

DPGP-EKLD

Expected info-value: DPGP-EKLD

$$\hat{\varphi}[\boldsymbol{\nu}; \mathbf{m}(k+1)] = \mathbb{E}_{G_j} \big[\mathbb{E}_{\mathbf{m}(k+1)} \big[\varphi[\boldsymbol{\nu}; \mathbf{m}(k+1)] \big] \big]$$

- Assumptions: ٠
 - VF-target association distribution learnt by DPGP model
 - measurement consistent with GP regression
- Theorem I: The GP-EKLD can be simplified as

$$\hat{\varphi}\left[\boldsymbol{\upsilon}; \mathbf{m}(k+1)\right] = \sum_{i,j} w_{ij} \int_{\mathcal{S}} h_i[\mathbf{x}_j(k+1)] \times p\left(\mathbf{x}_j(k+1) | Q(k)\right) d\mathbf{x}_j$$

where

W

$$\begin{aligned} h_i[\mathbf{x}_j(k+1)] &= \frac{1}{2} \left[\operatorname{tr} \left(\mathbf{\Sigma}_{i,k}^{-1} \mathbf{\Sigma}_{i,k+1} \right) - \ln \left(|\mathbf{\Sigma}_{i,k+1} \mathbf{\Sigma}_{i,k}^{-1}| \right) - 2L + \operatorname{tr} (\mathbf{Q}^{-1} \mathbf{R}^T \mathbf{\Sigma}_{i,k}^{-1} \mathbf{R} \mathbf{Q}^{-1}) \sigma_v^2 \right] \\ \mathbf{A} &= \mathbf{\Phi}[\mathbf{Y}_i(k), \mathbf{Y}_i(k)] + \sigma_v^2 \mathbf{I}_{2k} & \mathbf{R} = \mathbf{\Phi}[\mathbf{\xi}, \mathbf{x}_j(k+1)] - \mathbf{\Phi}[\mathbf{\xi}, \mathbf{Y}_i(k)] \mathbf{A}^{-1} \mathbf{B} \\ \mathbf{B} &= \mathbf{\Phi}[\mathbf{Y}_i(k), \mathbf{x}_j(k+1)] & \mathbf{Q} = \mathbf{D} - \mathbf{B}^T \mathbf{A}^{-1} \mathbf{B} \\ \mathbf{D} &= \mathbf{\Phi}[\mathbf{x}_j(k+1), \mathbf{x}_j(k+1)] + \sigma_v^2 \mathbf{I}_2 \end{aligned}$$

 $p[\mathbf{x}_{i}(k+1)|Q(k)]$ is hard to compute •

Gaussian Process Sum Particle Filter

Estimate $p[\mathbf{x}_{j}(k)|Q(k)] \sim \sum_{i=1}^{M} \mathcal{N}(\boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i})$

• Measurement update

DPGP-EKLD (2)

Approximation of DPGP-EKLD

$$\hat{\varphi}\left[\boldsymbol{v}; \mathbf{m}(k+1)\right] \approx \sum_{i,j} \frac{w_{ij}}{S} \sum_{\mathbf{x}_j^{(\ell)} \in \mathcal{S}(k)} h_i[\mathbf{x}_j^{(\ell)}]$$

• Theorem II: The approximation is unbiased and variance of error decreases with sample number.

Fig. Framework of DPGP-EKLD sensor planning

LISC LABORATORY FOR INTELLIGENT SYSTEMS AND CONTROLS

Greedy DPGP-EKLD Sensor Planning Algorithm

Examining DPGP-EKLD

- Free-flying sensor dynamics
- FOV shape does not change

Greedy algorithm to sensor planning

- Reduce planning to weighted points cover
- Each sample is weighted by $w_{ij}h_i[\mathbf{x}_j^{(\ell)}]/S$
- Complexity using segment tree: $O(MNS \log(MNS))$

Algorithm 2 DPGP-EKLD

Require: $\theta(\cdot), \phi(\cdot, \cdot), \mathcal{S}, \boldsymbol{\xi}, N_f$

- 1: for k do = $1:N_f$
- 2: Sample target positions from the current target position distribution
- 3: Propagate the target positions to the next time step
- 4: Calculate the DPGP-EKLD for each propagated target position
- 5: Solve the weighted sum problem for every zoom level
- 6: Report the optimal FOV center position and the optimal zoom level
- 7: Carry out the control
- 8: end for

Example Problem for Examining DPGP-EKLD

- Workspace: $\mathcal{W} = \{ \mathbf{x} \in \mathbb{R}^2 \mid 1 \leq x \leq 10, 1 \leq y \leq 10 \}$
- Sensor dynamics: free-flying objective
- Velocity fields: $\mathcal{F} = \{\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3, \mathbf{f}_4\}$

LABORATORY FOR INTELLIGENT SYSTEMS AND CONTROLS

• Probability of choosing every velocity field: $\pi = \begin{bmatrix} 1 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{bmatrix}$

ULISC LABORATORY FOR INTELLIGENT

SYSTEMS AND CONTROLS

Result: Less Informative Prior

Fig. The distribution of observed trajectory percentage, averaged on the 50 runs of simulations

Fig. DPGP error

150

Time, t(s)

200

250

300

50

100

LABORATORY FOR INTELLIGENT SYSTEMS AND CONTROLS

Methodology Part III: Incorporating Sensor Dynamics

IDD

Sensor Dynamics

• Linear sensor dynamics with constraints

$$\dot{\mathbf{s}}(t) = \mathbf{A}\mathbf{s}(t) + \mathbf{B}\mathbf{u}(t)$$
$$\mathbf{u}(t) \in U$$

• Example: Pan-tilt (PT) Camera dynamics:

$$\mathbf{s} = \begin{bmatrix} \psi & \Phi & \dot{\psi} & \dot{\Phi} \end{bmatrix}^{T}$$
$$\mathbf{u} = \begin{bmatrix} u_{1} & u_{2} \end{bmatrix}^{T}$$
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & \Delta t & 0 \\ 0 & 1 & 0 & \Delta t \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \text{ and } \mathbf{B} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ k_{1} & 0 \\ 0 & k_{2} \end{bmatrix}$$
$$\mathbf{Cs} \le \mathbf{1}_{c} \text{ and } -\mathbf{1}_{2} \le \mathbf{u} \le \mathbf{1}_{2}$$

Equivalence to mutual information

SYSTEMS AND CONTROLS

$$\hat{\varphi}(\boldsymbol{\upsilon}; M_j(k, k')) = \mathbb{E}_{M_j(k, k')} \left\{ \mathbb{E}_{G_j} \left\{ \varphi(\boldsymbol{\upsilon}; M(k, k')) \right\} \right\}$$
$$= \sum_{i=1}^M w_{ij} I(\boldsymbol{\upsilon}_i; M_j(k, k'))$$

- Theorem III: Given rational number m and a rational covariance • matrix Λ over a set of Gaussian random variables $V=S \cup U$, deciding whether there exists a subset $A \subset S$ of cardinality k such that I(A; U) \geq m is *NP*-complete.
- Theorem IV: Finding the optimal control trajectory that maximizes the DPGP-EKLD, subject to the constraints on the camera state and the control input, is *NP*-hard.
 - Proof by restriction •
 - Targets are static
 - Sensor moves fast enough as if free-flying

LABORATORY FOR INTELLIGENT SYSTEMS AND CONTROLS LOWER Bound of DPGP-EKLD

• Theorem V: The DPGP-EKLD evaluated for measurements obtained between time step k and time step k' is lower bounded by discounted summation of the mutual information as follows,

Fig. 1 Simulation scenario for validation of the additive lower bound.

Fig. 2 DPGP-EKLD (black line) and the additive lower bound (red line)

Receding Horizon Control

• Objective function:

$$J_{ij} \triangleq w_{ij} \sum_{\ell=k}^{k'} (1-\gamma) \gamma^{\ell-k} I(\boldsymbol{v}_i; \mathbf{m}_j(\ell)) P(\mathbf{s}(\ell), \mathbf{x}_j(\ell))$$
$$P(\mathbf{s}, \mathbf{x}_j) = 1 - \|\mathbf{H}\mathbf{s} - \mathbf{h}(\mathbf{x}_j)\|^2 / h$$

- Receding horizon control
 - closed-loop control strategy: target/sensor state update
 - constraints: at least finite horizon
 - infinite horizon solution obsolete after DPGP-MM update
 - lower computational complexity

$$\begin{array}{ll} \underset{\mathbf{u}(\ell), \ k \leq \ell \leq k'}{\text{maximize}} & \begin{bmatrix} J_{11} & \cdots & J_{MN} \end{bmatrix}^T \\ \text{subject to} & \mathbf{s}(k) = \mathbf{s}_0 \\ & \mathbf{s}(\ell+1) = \mathbf{A}\mathbf{s}(\ell) + \mathbf{B}\mathbf{u}(\ell), \ \ell = k, \dots, k' \\ & -\mathbf{1} \leq \mathbf{u}(\ell) \leq \mathbf{1}, \ \ell = k, \dots, k' \end{array}$$

Lexicographic algorithm for multiple output optimization

$$\max_{\boldsymbol{\chi}} \quad J'_{i}(\boldsymbol{\chi})$$
s.t.
$$J'_{j}(\boldsymbol{\chi}) \geq J'^{*}_{j}, \ j = 1, \dots, i-1$$

$$\boldsymbol{\chi} \triangleq [\mathbf{s}^{T}(k) \ \cdots \ \mathbf{s}^{T}(k') \ \mathbf{u}^{T}(k) \ \cdots \ \mathbf{u}^{T}(k')]^{T} \in U$$

• For the same target, objective function corresponding to velocity field with higher target-VF association probability is more important

$$J_{ij} \succeq J_{i'j} \Leftrightarrow w_{ij} \ge w_{i'j}, \text{ for } i \neq i', j = 1, \dots, N$$

• For different targets, objective function corresponding to velocity field with higher target-VF association probability is also more important

$$J_{ij} \succeq J_{i'j'}$$
, for $i < i', j \neq j'$

• When i=i, use ideal value to determine the sequence

$$J_{ij}^{I} \triangleq \max_{\boldsymbol{\chi}} \left\{ J_{ij}(\boldsymbol{\chi}) \mid \boldsymbol{\chi} \in U \right\}$$
$$J_{ij} \succeq J_{ij'} \Leftrightarrow J_{ij}^{I} \ge J_{ij'}^{I}, \text{ for } i = 1, \dots, M, \ j \neq j'$$

Lexicographic Algorithm

• First iteration: convex quadratic programming with linear constraints

$$J_{ij} = \left(\sum_{\ell=k}^{k'} \beta(\ell) - \mathbf{c}^T \mathbf{c}\right) - \left(\boldsymbol{\chi}^T \mathbf{Q}^T \mathbf{Q} \boldsymbol{\chi} - \mathbf{c}^T \mathbf{Q} \boldsymbol{\chi}\right)$$

where,

$$\mathbf{Q} \triangleq \begin{bmatrix} \sqrt{\frac{\beta(k)}{h}} \mathbf{H} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \sqrt{\frac{\beta(k+1)}{h}} \mathbf{H}^{\cdot} \ddots & \vdots \\ \mathbf{0} & \sqrt{\frac{\beta(k+1)}{h}} \mathbf{H}^{\cdot} & \mathbf{0}_{2K \times 2K} \\ \vdots & \ddots & \ddots & \mathbf{0} \\ \mathbf{0} & \cdots & \mathbf{0} & \sqrt{\frac{\beta(k')}{h}} \mathbf{H} \end{bmatrix}^{T}$$
$$\mathbf{c} \triangleq \begin{bmatrix} \sqrt{\frac{\beta(k)}{h}} \mathbf{h}^{T}[\mathbf{x}_{j}(k)] & \cdots & \sqrt{\frac{\beta(k')}{h}} \mathbf{h}^{T}[\mathbf{x}_{j}(k')] \end{bmatrix}^{T} \\ \beta(\ell) \triangleq w_{ij}(1-\gamma)\gamma^{\ell-k} I(\mathbf{v}_{i};\mathbf{m}_{j}(\ell)), \ \ell = k, \dots, k' \end{bmatrix}$$

Lexicographic Algorithm

• The *i*th iterations: additional constraints

• $\mathbf{a}_j \in S_a(k) \Leftrightarrow \mathbf{s} \in \mathcal{T}(\mathbf{a}_j)$

LABORATORY FOR INTELLIGENT SYSTEMS AND CONTROLS

- $\mathcal{T}(\mathbf{a}_j) : |\Delta \Phi| \le tan^{-1} [h/(2\lambda)], \quad |\Delta \psi| \le tan^{-1} \left(\frac{w}{2\lambda} \operatorname{sec}(\Phi_j) \cos(\Delta \Phi)\right)$
- $\mathcal{T}(\mathbf{a}_j)$ is convex, symmetric, horizontal upper and lower bound
- Theorem VI: Area of polygon *ABCDEF* divided by area of $\mathcal{T}(\mathbf{a}_j)$ is lower bound by $1 - (\sqrt{2} - 1)^2/2 \approx 91.4\%$, if the view angle of camera is no more than 90°.

LABORATORY FOR INTELLIGENT SYSTEMS AND CONTROLS

Simulations and Results

IDD

LISC LABORATORY FOR INTELLIGENT SYSTEMS AND CONTROLS

Simulation Setup

Data set 1 (thanks to Miao Liu@MIT)

- Pedestrian data set collected at Building 4, MIT
- 91 targets: 50 training, 41 testing
- Sampling time: 0.1s
- Subsampled to remove stops
- Workspace: 23m x 17 m

Data set 2 (thanks to Miao Liu@MIT)

- Pedestrian data set collected at Hallway
- 73 targets: 50 training, 23 testing
- Sampling time: 0.1s
- Subsampled to remove stops
- Workspace: 20m x 20 m

LISC LABORATORY FOR INTELLIGENT SYSTEMS AND CONTROLS

Simulation Setup

Sensor (simulated)

- AXIS P5624-E PTZ Dome Network Camera
- Pan: 360 degree endless, 0.2 350 degree/second
- Tilt: 180 degree, 0.2 350 degree/second
- Positioned in the center of hall way

31

Simulation Result

• Accumulated reward by different approaches

- cope with multiple targets
- limited sensor field of view
- aim at learning the change of target model

Simulation Result

• Final model obtained by the lexicographic algorithm compared with the testing target trajectories

33

Simulation Result

TABLE I
ROOT MEAN SQUARE ERROR (RMSE) OF DPGP-MM

Algorithms	All data	Optimal solution	Lexicographic	Entropy reduction	Greedy	Potential field	Patrol	Random
Bldg4 data	8.97%	9.12%	9.15%	16.25%	15.68%	29.72%	27.47%	92.81%
Hallway data	9.03%	9.58%	10.88%	18.52%	17.89%	30.21%	40.17%	93.51%

$\epsilon = \frac{1}{N} \sum_{j=1}^{N} \sum_{i=1}^{M} w_{ij} \sqrt{\frac{1}{N}}$	$\frac{\delta t}{(t_{f_j} - t_{0_j})} \sum_{k=1}^{(t_{f_j} - t_{0_j})/\delta} k^{(t_{f_j} - t_{0_j})/\delta}$	$\frac{\delta t}{\ \mathbf{v}_j(k) - \hat{\mathbf{v}}_j(k)\ _2^2}} \frac{\ \mathbf{v}_j(k)\ _2^2}{\ \mathbf{v}_j(k)\ }$
--	---	---

TABLE IICOMPUTATIONAL COMPLEXITY

Algorithms	Theoretical complexity	Experimental complexity (s)		
Aigoriumis	Theoretical complexity	Bldg4 data	Hallway data	
Optimal solution	NP	16.014	15.092	
Lexicographic	$O\left([(L+k)^2 + T^2d^3]MNT\right)$	0.081	0.073	
Entropy reduction	$O\left((k^2 + T^2 d^3) M N T\right)$	0.077	0.072	
Greedy	$O([(L+k)^2 + \log(MN)]MN)$	0.044	0.044	
Information potential	$O\left([(L+k)^2+d]MN\right)$	0.003	0.003	
Patrol	O(1)	< 0.001	< 0.001	
Random	$O((L+k)^2MN+dT)$	0.002	0.002	

Conclusion

- Information driven sensor planning
- Target dynamics modelling
 - GP regression for nonlinear dynamics
 - Dirichlet process for clustering
- Information value (DPGP-EKLD) as utility function
 - Free-flying sensor dynamics
 - Linear dynamics with constraints
- Future work
 - Nonlinear sensor dynamics model
 - Decentralized control

. . .

LABORATORY FOR INTELLIGENT SYSTEMS AND CONTROLS

Thank you!

100