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Outline 

• Introduction and Motivation 

• Problem Formulation 

• Methodology: Information Based Sensor Planning 

̵ Target behavior described by single model  

̵ Target behavior described by mixture model mobile 

̵ Sensor dynamics constraints 

• Simulation and Results 

• Conclusion 



 
• Security surveillance  

 

• Tracking endangered species 

 

• Environmental monitoring 

               ⋮ 
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Introduction and Motivation 

Target behaviors learning 



• Goal:  control actuated or configurable sensors to actively 

collect most valuable information 

̵ Estimator: compute the system state by fusing the data  

̵ Planner: determine the control by optimizing a function of 

costs and utilities 

̵ Actuator: follow the task execution as closely as possible 

• Challenge:  

̵ Nonlinear target dynamics 

̵ Adaptive to data 

̵ Define ‘value’ of information 

̵ Number of sensors < number of targets  

 

 

Introduction and Motivation 
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• Workspace: 𝒲 ⊂ ℝ2, convex polygon 

• Target dynamics: unknown form 

𝐱 𝑗(t) = f[xj(t)],  j =1,…,N 

• Sensor dynamics: known  

𝐬 (t) = g[s(t), u(t)],  u(t) U 

• Detection model: limited sensor field of view (FOV) 

 

• Measurement model: known with additive noise 

m(t) = h[x(t), s(t)]+n,  n ∼ 𝒩(0,2) 

• Goal: determine optimal control u*(t) of sensors, such that collected 

measurements are most useful for learning f  

Mathematical Problem Formulation 
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Target behaviors learning 



Example Problem 

• Workspace: MIT raven testbed 

• Target dynamics: unknown velocity field 

                 f: [x y]T[𝑥   𝑦 ]T  

• Sensor dynamics: linear with constraints 

• Detection model: camera FOV 

• Measurement model: mj(t)=[xj(t) vj(t)]+n 

 

 

Sensor 

Target  

Workspace FOV 

Fig. example of f[xj(t)]  



Methodology Part I: 

Target Dynamics Modelling 
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Methodology: Target Modeling 

Single target: Gaussian process (GP) regression 

                                                                {x(t), 𝐱 (t)}⇒ f ⋅   

 

 

• Notation:  f (x)  GP[𝜃(x), 𝜙(x, x’)] 

• Mean function: 𝜃(x) = 𝔼f [f(x)] 

• Covariance function: 𝜙(x, x’) = 𝔼f {[f(x)  𝜃(x)][f(x’)  𝜃(x’)]}T 

• Covariance matrix:    

 

 

)]([)( tt xfx 

A Gaussian process is a stochastic process, that is a collection of random 

variables { f (x) | x  X } indexed by a set X, for which any finite subset, 

{ f (x1), ...,  f (xk)}, has a joint multivariate Gaussian distribution. 
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Prediction on f() = [f(1)    f(k)]
T  given data {p, o}:   

         f() |{p, o}  𝒩(𝝁,  )  

• mean: 𝝁 = 𝜽() + (, p)(p, p)-1[o  𝜽(p)] 

• covariance: 𝚺 = (, )  (, p)(p, p)-1(p, )  
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Gaussian Process Regression 

http://scikit-learn.org/0.11/_images/plot_gp_regression_1.png 

Fig. 1D GP regression example 
Fig. 2D GP regression example 
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Dirichlet Distribution 

Dirichlet distribution: distribution over k-dimensional probability simplex 

 

• Density function of   Dir([1   ...   k]) 

 

• Example                            
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Dir([2,2,2]) 

http://slideplayer.us/slide/783946/ 

Dir([2,2,10]) Dir([0.2,0.2,0.2]) 



Dirichlet process: distribution of infinite-dimension  

 

 

Dirichlet Process 

A Dirichlet process with parameters H and , denoted by DP[, H(A)], 

is a distribution of a random probability measure P, if for any finite 

measureable partition {Bi | 1 i  n} of A, it is true that 

                [P(B1)    P(Bn)]
T   Dir([H(B1)    H(Bn)])  

https://upload.wikimedia.org/wikipedia/commons/d/d3/Dirichlet_process_draws.svg 

• Three samples drawn from DP(100, 𝒩(0,0.1)) 

• discrete distribution 

• countably infinite number of point masses  

 



• Objective of DPGP-MM: describe target dynamics, {ℱ, 𝝅} 

̵ Velocity field: 2D spatial phenomenon  Gaussian process 

̵ Clustering  Dirichlet process 

 

• DPGP mixture model[1]: 

 

 

 

GP0 𝜽𝑖 

Multiple targets: Dirichlet process prior over mixture of Gaussian process 

models (DPGP mixture model) 

DPGP Mixture Model 

{𝜽𝑖 , 𝐰}  DP(α,GP0), i = 1,..., 

      Gj  Cat(w), j = 1,...,N 

  fGj(x)  GP(θGj, ), j = 1,...,N 

 

f1(x)  f2(x)  f3(x)  

… 

 w Gj 
𝜽𝐺𝑗 

i = 1,..., 

j = 1,...,N 



Methodology Part II: 

Information Value of Measurement 



DPGP info-value: difference between posterior and prior DPGP model 

                        φ[𝝂; m(k+1)] = D{p[𝝂|Q(k+1)]||p[𝝂|Q(k)]} 

 

 

 

DPGP Information Value 
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• D: Kullback-Leibler (or other) divergence 

D(P1 || P2)= ln
p1 x

p2 x
p1(x)dx

∞

−∞
 

• 𝝂𝑖 = [fi(𝝃1)
T     fi(𝝃𝐿)

T ]T 

• 𝝂  = [𝝂1
𝑇    𝝂𝑀

𝑇 ]T 

• Q(k) = {m(ℓ), G(ℓ) | 1 ℓ k} 

• velocity field-target association, G, is unknown 

• future measurement, m(k+1), is unknown 



Expected info-value: DPGP-EKLD 

         

• Assumptions: 

− VF-target association distribution learnt by DPGP model 

− measurement consistent with GP regression 

• Theorem I: The GP-EKLD can be simplified as 
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• p[xj(k+1)|Q(k)] is hard to compute 

DPGP-EKLD 

𝜑 [𝝂; m(k+1)] = 𝔼𝐺𝑗[𝔼𝐦 𝑘+1 [φ[𝝂; m(k+1)]]] 

where 



Gaussian Process Sum  
Particle Filter 

Estimate p[xj(k)|Q(k)]   𝒩(𝝁𝑖 , 𝚺𝑖)
𝑀
𝑖=1  
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• Time update 

• Measurement update 

p[xj(k+1)|Q(k)] 



Approximation of DPGP-EKLD 

         

 

• Theorem II: The approximation is unbiased and variance of error 

decreases with sample number.  
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DPGP-EKLD (2) 

Fig. Framework of DPGP-EKLD sensor planning 
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Greedy DPGP-EKLD 
Sensor Planning Algorithm 

Examining DPGP-EKLD 

• Free-flying sensor dynamics 

• FOV shape does not change 

Greedy algorithm to sensor planning 

• Reduce planning to weighted points cover 

• Each sample is weighted by   

• Complexity using segment tree: 𝑂(MNS log(MNS)) 
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•  Workspace: 𝒲 = x ∈ ℝ2  1 ≤ 𝑥 ≤ 10, 1 ≤ 𝑦 ≤ 10} 

 

•  Velocity fields: ℱ = 𝐟1, 𝐟2, 𝐟3, 𝐟4  

• Probability of choosing every velocity field: 𝝅 =
1

4
    

1

4
    

1

4
   
1

4
 

   

Example Problem for  
Examining DPGP-EKLD 

• Sensor dynamics: free-flying objective 



: Observed target trajectories   : Points of interest 

Result: Less Informative Prior 

Fig. DPGP error 

Fig. The distribution of observed trajectory percentage,  

averaged on the 50 runs of simulations 



Methodology Part III: 

Incorporating Sensor Dynamics 
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Sensor Dynamics 

• Linear sensor dynamics with constraints 

 

 

 

 

• Example: Pan-tilt (PT) Camera dynamics: 

 

 

 

 

 

 

 

 

 

. 
 s(t) = As(t) + Bu(t)  

 u(t)  U 
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Hardness of Using DPGP-EKLD 

• Equivalence to mutual information 

 

 

 

 

• Theorem III: Given rational number m and a rational covariance 

matrix 𝚲 over a set of Gaussian random variablesV=S ∪U, deciding 

whether there exists a subset A  S of cardinality k such that I(A;U) 

 m is NP-complete. 

• Theorem IV: Finding the optimal control trajectory that maximizes 

the DPGP-EKLD, subject to the constraints on the camera state and 

the control input, is NP-hard. 

• Proof by restriction 

• Targets are static  

• Sensor moves fast enough as if free-flying 

 

  

 

 

 



Lower Bound of DPGP-EKLD 

• Theorem V: The DPGP-EKLD evaluated for measurements obtained 

between time step k and time step k’ is lower bounded by discounted 

summation of the mutual information as follows, 

  

 

 

 

Fig. 2 DPGP-EKLD (black line) and 

the additive lower bound (red line) 
Fig. 1 Simulation scenario for validation 

of the additive lower bound.  



• Objective function: 

 

 

 

 

 

• Receding horizon control 

• closed-loop control strategy: target/sensor state update 

• constraints: at least finite horizon 

• infinite horizon solution obsolete after DPGP-MM update 

• lower computational complexity 
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Receding Horizon Control 



Lexicographic algorithm for multiple output optimization 

 

 

 

 

• For the same target, objective function corresponding to velocity field with 

higher target-VF association probability is more important 

 

 

• For different targets, objective function corresponding to velocity field with 

higher target-VF association probability is also more important 

 

 

• When i=i ’, use ideal value to determine the sequence 
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Lexicographic Algorithm 
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Lexicographic Algorithm 

• First iteration: convex quadratic programming with linear constraints  



• The ith iterations: additional constraints 

 

 

 

 

 

 

 

 

 

• 𝐚𝑗 ∈ 𝑆𝑎 𝑘 ⟺ 𝐬 ∈ 𝒯 𝐚𝑗   

•   

• 𝒯 𝐚𝑗  is convex, symmetric, horizontal upper and lower bound 

• Theorem VI: Area of polygon ABCDEF divided by area of 𝒯(𝐚𝑗) is 

lower bound by 1 − (√2 − 1)^2/2 ≈ 91.4%, if the view angle of 

camera is no more than 90∘.   

Lexicographic Algorithm 
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Simulations and Results 
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Simulation Setup 

Data set 1 (thanks to Miao Liu@MIT) 

• Pedestrian data set collected at 

Building 4, MIT 

• 91 targets: 50 training, 41 testing 

• Sampling time: 0.1s  

• Subsampled to remove stops  

• Workspace: 23m x 17 m 

Data set 2 (thanks to Miao Liu@MIT) 

• Pedestrian data set collected at Hallway 

• 73 targets: 50 training, 23 testing 

• Sampling time: 0.1s  

• Subsampled to remove stops  

• Workspace: 20m x 20 m 
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Simulation Setup 

[1] http://www.axis.com/files/datasheet/ds_p5624e_1496709_en_1509.pdf 

[1] 
Sensor (simulated) 

• AXIS P5624-E PTZ Dome Network Camera 

• Pan: 360 degree endless, 0.2 - 350 

degree/second 

• Tilt: 180 degree, 0.2 - 350 degree/second 

• Positioned in the center of hall way 
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Simulation Result 

• Accumulated reward by different approaches 

• cope with multiple targets  

• limited sensor field of view 

• aim at learning the change of target model 
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Simulation Result 

• Final model obtained by the lexicographic algorithm compared 

with the testing target trajectories 
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Simulation Result 
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Conclusion 

• Information driven sensor planning 

• Target dynamics modelling  

̵ GP regression for nonlinear dynamics  

̵ Dirichlet process for clustering 

• Information value (DPGP-EKLD) as utility function 

̵ Free-flying sensor dynamics 

̵ Linear dynamics with constraints 

• Future work 

̵ Nonlinear sensor dynamics model 

̵ Decentralized control 

              ... 



Thank you! 
 


