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 Introduction and Motivation
* Problem Formulation

* Methodology: Information Based Sensor Planning

- Target behavior described by single model
- Target behavior described by mixture model mobile

- Sensor dynamics constraints

 Simulation and Results

* (Conclusion
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Target behaviors learning

* Security surveillance
* Tracking endangered species

*  Environmental monitoring

[2]

(3]

[1] http://dowley.com/Services/VideoSurveillance/tabid/91/Default.aspx
[2] An Information Value Function For Nonparametric Gaussian Processes 3
[3] www.h3c.com
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* Goal: control actuated or configurable sensors to actively
collect most valuable information

- Estimator: compute the system state by fusing the data

- Planner: determine the control by optimizing a function of
costs and utilities

- Actuator: follow the task execution as closely as possible
* Challenge:

- Nonlinear target dynamics

- Adaptive to data

- Define ‘value’ of information

- Number of sensors < number of targets
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Target behaviors learning

«  Workspace: W c R?, convex polygon

Target dynamics: unknown form
() = £x,(8)], j=1,....¥
* Sensor dynamics: known
5(t) = gls(t), u(t)], u(t) €U
* Detection model: limited sensor field of view (FOV)

0:x(t) & S(t)
Fa = {1 x,(t) € S(t)

*  Measurement model: known with additive noise
m(t) = h[x(t), s(t)|+n, n~ N(0,0%)

*  Goal: determine optimal control u"(t) of sensors, such that collected
measurements are most useful for learning f
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Sensor

Target Sensitive
Region
Workspace
¢ Workspace: MIT raven testbed B
NN T
« Target dynamics: unknown velocity field 25 N a
E 2 SN v
R T . . T = \ %
f: [xy]"=[x y] > §§:\ —
. . . . 15, A
¢ Sensor dynamics: linear with constraints U o
At ‘ r t ]
*  Detection model: camera FOV 1 () °

Fig. example of f[x,(¢)]

*  Measurement model: m(t)=[x;(t) v,(t)]+n
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Single target: Gaussian process (GP) regression

x(t) = £[x(t)] — {x(t), x(t)}=> ()

A Gaussian process is a stochastic process, that is a collection of random
variables { f (x) | x € X } indexed by a set X, for which any finite subset,
{f(xy), ..., T(x,)} has a joint multivariate Gaussian distribution.

* Notation: f(x) ~ GP|0(x), ¢(x, X')]
°  Mean function: 0(x) = E;[f(x)]
*  Covariance function: ¢(x, x') = E,{[f(x) - 0(x)][f(x") - 6(x)]}*

_¢(a‘17b1) ¢(a‘17bn)

* Covariance matrix: ®(a,b) =

_¢(am7bl) ¢(a’m7bn>_
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Prediction on f(§) = [f(§,) - f(§,)]! given data {p, o}:
f(&) |{p7 0} ~ N(I‘l’ ) )
* mean: g = 6() + ©(E, p)@(p, p)”'lo - 8(p)]

* covariance: £ = ®(&, §) — ®(&, p)@(p, p)'P(p, &)

20

© flz) = sin(x)

+ ¢ Observations

— Prediction
I 95% confidence interval

Fig. 1D GP regression example
Fig. 2D GP regression example

http://scikit-learn.org/0.11/_images/plot_gp_regression_1.png
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Dirichlet distribution: distribution over k-dimensional probability simplex

T=[n, - mwJ]f form, >0, £x, =1
* Density function of # ~ Dir([e; ... «])
[(Za) a,-1
p(n) = I, 7!
IT,(ex,)

*  Example

U

1

1
%

Dir([2,2,2]) M Dir([2,2,10)) " Dir(j0.2,0.2,0.2])

http://slideplayer.us/slide/783946/

10
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Dirichlet process: distribution of infinite-dimension 7

A Dirichlet process with parameters H and «, denoted by DP[«, H(A)],
is a distribution of a random probability measure P, if for any finite
measureable partition {B;| 1< i < n} of A, it is true that

[P(B,) - P(By)|" ~ Dir([eH(B,) - «aH(B,)))

0.04}

0.02+

0.00 Ly Ll |. . - ]IJ

*  Three samples drawn from DP (100, N (0,0.1))
* discrete distribution

* countably infinite number of point masses

https://upload.wikimedia.org/wikipedia/commons/d/d3/Dirichlet process’draws.svg
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Multiple targets: Dirichlet process prior over mixture of Gaussian process

models (DPGP mixture model)

*  Objective of DPGP-MM: describe target dynamics, {F, m}

- Velocity field: 2D spatial phenomenon <« (Gaussian process
- Clustering « Dirichlet process

 DPGP mixture modelll:

{0;,w} ~ DP(a,GP,), i = 1,...,0
GJ ~ C&t(W), j — 17...,N
ij(X> ~ GP(OGﬁ (I))7 j=1.,N

10
i:lVMQ\\
N
j= LN

[ — 10 N
A INNT F7 777 TN Lo
T ZTINNTL sz iIANNN DO W
TZZINNTD zriANNNN  DICDCC NN
TFr S TNNTS 77 1 EANNNN N NN
TP ONNT AL SZIANNNNNY LB
W R A AN NN ,,,,,f‘i}
SR NS AN N NN IZIIizd
NN 22N VN NN I bt 20

ORI oSNNS 12 gl >4
0 5 10 0 5 10 0 5 10

f,1(X) f5(X) f3(x)
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DPGP info-value: difference between posterior and prior DPGP model

olv; m(kt1)] = DLV QU+ 1))l Q)

D: Kullback-Leibler (or other) divergence
0
D1 2)= [ in(BS) nio
—00 pz (X)

© v =[fi(§)" - £(E)T]T

= {m(¥), G(#) | 1< ¢ <k}

VeIOC1ty fleld—target association, G, is unknown

future measurement, m(k+1), is unknown

14
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Expected info-value: DPGP-EKLD

@[v; m(k+1)] = Eg, [Emesn [o[v; m(k+1)]]]
Assumptions:

- VF-target association distribution learnt by DPGP model
- measurement consistent with GP regression

Theorem I: The GP-EKLD can be simplified as

b [ m(k + 1) wa/ s ( + D] % p (x5 + 1)|QK)) dx;

where
il (k +1)] = 5 [tr (Bt Zins) = (B Zi4]) = 20 + tr(Q'RTE; [RQ )0
A = ®[Y;(k),Y(k)] + 021y, R =®[¢,x;(k+1)] - ¢ Yi(k)]A'B
B = ®[Y;(k),x;(k+1)] Q=D-B’A'B

D = ®[x;(k+1),x;(k+ 1)] + 021,

p[x,(k+1)|Q(k)] is hard to compute

15
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Estimate p[x,(k)|Q(k)] ~ SV (g, X))
«  Time update plx;(k+1)[Q()]

O Z - .:°. -7 : O
L M

* Measurement update

: O
+[r: :+U 7 O )

o
O

O
QO
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Approximation of DPGP-EKLD

* Theorem II: The approximation is unbiased and variance of error
decreases with sample number. ;- T-mzzoo---- :

I B \ oo T I ______ |
| |
' Sensor Plannin : ' Learned :
I g I
. _ : . GP-MM :
| |
1 : 1 v :
| DPGP-EKLD - —> Filter !
: Value Function .‘h ] : :
Ix.(k+
:_ Controller : X0 )]:_ DPGP-MM Inference :

Fig. Framework of DPGP-EKLD sensor planning
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Sensor Planning Algorithm
Examining DPGP-EKLD Z Wij [X(g)]
. . ,l: '
*  Free-flying sensor dynamics 2 S ’
X €S(k),i,j
 FOYV shape does not change ‘
Greedy algorithm to sensor planning o
o
. . . [
* Reduce planning to weighted points cover e ° .
. . ¢ [
+  Each sample is weighted by w;;h; [XJS )] /S ® e e °
: : o ®
* Complexity using segment tree: O(MNS log(MNS)) 2
Algorithm 2 DPGP-EKLD
Require: 9()7 (1)(, ')7 S, &, Nf
1: for k do = 1: /Ny
2: Sample target positions from the current target position distribution
3: Propagate the target positions to the next time step
4: Calculate the DPGP-EKLD for each propagated target position
5: Solve the weighted sum problem for every zoom level
6: Report the optimal FOV center position and the optimal zoom level
7: Carry out the control 18

8: end for
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e Workspace: W ={x€R?|1<x<10,1<y<10}
* Sensor dynamics: free-flying objective
° VGlOCity fields: F = {fll fz, f3, f4,}

T

f3(x) = [-0.5 sin([r/4 0.3]"x)]|

* Probability of choosing every velocity field: T = E % % 1]

19
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0.8 5.
0.6 (91
0.4 5
E
02 =
0
x (m) x (m)
/\/ : Observed target trajectories : Points of interest
0.081
DP-GP EKL
~ 05 e - e Mewisi
ii: -5:;; g0.0 A Random
o B VF3 = \
E Vs z
)@:025 §
Z o -
& DP-GP EKLD MI Heuristic Random
Fig. The distribution of observed trajectory percentage, ° 0 e B

averaged on the 50 runs of simulations Fig. DPGP error
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Methodology Part 11
Incorporating Sensor Dynamics
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* Linear sensor dynamics with constraints
$(t) = As(t) + Bu(t)
u(t) e U

*  Example: Pan-tilt (PT) Camera dynamics:

u:[ul UQ]T
1 0 At 0] (0 0]
0 1 0 At 0 0
A=1g g 1 ol adB=1. 4
00 0 1| 0 ko
Cs<1, and —1,<u<l1,

22
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* Equivalence to mutual information

& (03 M (k, K')) = Bgy 4y { By {9(0s M(k ) 1 }

* Theorem III: Given rational number m and a rational covariance
matrix A over a set of Gaussian random variables V=5 U U, deciding

whether there exists a subset A < § of cardinality & such that I(A4;U)
> m is NP-complete.

* Theorem IV: Finding the optimal control trajectory that maximizes
the DPGP-EKLD, subject to the constraints on the camera state and
the control input, is NP-hard.

*  Proof by restriction
* Targets are static

* Sensor moves fast enough as if free-flying
23
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 Theorem V: The DPGP-EKLD evaluated for measurements obtained
between time step k and time step k' is lower bounded by discounted
summation of the mutual information as follows,

M K’
Al ‘ / -k . _
b(w My (B K)) > S (L=t (03 my (1))
i=1,4=k
10
target 1
X X X X X X X X
8x X X X %X X X X
X XNX X X X X §
6X X X X X X g
g X X| x4 x X =
4% x X X X X X X X = 10710 : :
5 :
= 0 5 time step, k 15 20
arget2¢ x X X X X X g , :
2 X X X X X X X X
target 3
X: collocation points, il jo 10T .
OO 5 10 0 5 time step, k 15 20

x (m)

Fig. 1 Simulation scenario for validation  Fig. 2 DPGP-EKLD (black line) and
of the additive lower bound. the additive lower bound (red line)
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*  Objective function:
kl
t=k
P(s,x;) = 1— |[Hs — h(x;)||*/h

* Receding horizon control
* closed-loop control strategy: target/sensor state update
* constraints: at least finite horizon
* infinite horizon solution obsolete after DPGP-MM update
* lower computational complexity
maximize [Jll Lo JMN}T
u(l), k<t<k’

subject to s(k) = sg
s({+1)=As(l) +Bu({), L =k, ... K

—1<ul) <1, L=k, ... K
25
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Lexicographic algorithm for multiple output optimization
max J;(x)
X
st Jilx)=>J g=1,...,i—1

X =1[s' (k) - 8" (K) u'(k) - u' (K)]" €U
 For the same target, objective function corresponding to velocity field with
higher target-VF association probability is more important
J@'j - J?;fj < Wiy Zwirj, forigéi’, j=1,...,N

« For different targets, objective function corresponding to velocity field with
higher target-VF association probability is also more important

Jij = g, fori <, j# 4
*  When =3 ’, use ideal value to determine the sequence
Jij = max {Ji;(x) | x € U}
Jij = iy = Ji; = J, fori=1,..., M, j#j 26
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* First iteration: convex quadratic programming with linear constraints

kf
Jij = (Zﬁ(@ - CTC) - (XTQTQX — CTQX)
=k

where,
B(k ]
PHH o 0
0 f@(k"‘l)H
Q= h O2r x2K
' 0
Bk’
R 0 /X2 H _
B(R) B i
c2 [ ThT[ J(k)] h hT[XJ(k,)]]

27
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* The ith i1terations: additional constraints
/ JES : .

Camera T
B C 7(a)
2 oK A \,,\
l § (I)(k) ::::::::::: /
= F | E
/2 , !
0 () vk 2n(0)

pan angle

° aj ESa(k) — S ET(aj)

© T(a): |A®| < tan~'[h/(2\)], |AY¥| < tan~? (%Sec(@j)COS(AQ)))

- T (aj) is convex, symmetric, horizontal upper and lower bound

* Theorem VI: Area of polygon ABCDEF' divided by area of T'(a;) is

lower bound by 1 — (V2 = 1)72/2 = 91.4%, if the view angle of
camera is no more than 90°.
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Simulation Setup

Data set 1 (thanks to Miao Liu@MIT)

Pedestrian data set collected at

Building 4, MIT

* 91 targets: 50 training, 41 testing
* Sampling time: 0.1s
*  Subsampled to remove stops

* Workspace: 23m x 17 m

1

Data set 2 (thanks to Miao Liu@MIT)

* Pedestrian data set collected at Hallway ?
* 73 targets: 50 training, 23 testing 15
*  Sampling time: 0.1s 0
*  Subsampled to remove stops

* Workspace: 20m x 20 m >

20

P ,_
I) »
l 3 %
) ()
L
BN \ /,_;'.E_U
0 5 10 15 20
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Sensor (simulated)

« AXIS P5624-E PTZ Dome Network Camera

* Pan: 360 degree endless, 0.2 - 350
degree /second

 Tilt: 180 degree, 0.2 - 350 degree/second

* Positioned in the center of hall way

. [1]

0 o x (m) 31

[1] http://www.axis.com/files/datasheet/ds_p5624e_1496709_en_1509.pdf
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Simulation Result

¢ Accumulated reward by different approaches

) 600 '—&— Optimal solution

— —&— Lexicographic algorithm
Entropy reduction algorithm

~ —~&A— Greedy algorithm

2 —/— Potential field

« 400 [ Patrol algorithm

—<— Random algorithm

= 300

= 300 [ —6— Optimal solution
" —&— Lexicographic algorithm
Entropy reduction algorithm
—4&— Greedy algorithm
—— Potential field
>— Patrol algorithm

N
(o))
o

[)®)
o
o

150

100 |

a1
o

200
time step, k

accumulated reward, D(v; M(1

time step, k

* cope with multiple targets
* limited sensor field of view
* aim at learning the change of target model

32
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* Final model obtained by the lexicographic algorithm compared
with the testing target trajectories

y (m)
fuY
: Ei’.’g
A :

1\ [0
0 - 8
x (m)

Target trajectories
‘A with initial position
Predicted target

velocity

33
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Simulation Result

TABLE I
ROOT MEAN SQUARE ERROR (RMSE) oF DPGP-MM
: Optimal : . Entropy .
Algorithms All data . Lexicographic . Greedy | Potential field | Patrol | Random
solution reduction
Bldg4 data 8.97% 9.12% 9.15% 16.25% 15.68% 29.72% 2747% | 92.81%
Hallway data | 9.03% 9.58% 10.88% 18.52% 17.89% 30.21% 40.17% | 93.51%
N M .
e LS SN g st =00)/0t vy ()
N £~ . WA] (ty, —to;) £~k=1 v (Rl
7=1:=1 J J
TABLE 11
COMPUTATIONAL COMPLEXITY
) , _ Experimental complexity (s)
Algorithms Theoretical complexity
Bldg4 data | Hallway data
Optimal solution NP 16.014 15.092

Lexicographic O([(L + k)* + T°d’|MNT) 0.081 0.073

Entropy reduction O((k* + T*d*)MNT) 0.077 0.072

Greedy O([(L + k)* + log(MN)|MN) 0.044 0.044

Information potential O([(L + k)* + d]JMN) 0.003 0.003

Patrol O(1) < 0.001 < 0.001
Random O((L + k)>MN +dT) 0.002 0.002 34
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* Information driven sensor planning

* Target dynamics modelling

- GP regression for nonlinear dynamics

- Dirichlet process for clustering

* Information value (DPGP-EKLD) as utility function
- Free-flying sensor dynamics

- Linear dynamics with constraints

Future work

- Nonlinear sensor dynamics model

- Decentralized control
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Thank you!



