

### An Information Value Function For Nonparametric Gaussian Processes

IDD

H. Wei, W. Lu, and S. Ferrari Laboratory for Intelligent Systems and Controls (LISC), Department of Mechanical Engineering and Materials Science, Duke University

> MURI 2 Workshop 2012, MIT (Boston, MA) April 18, 2012

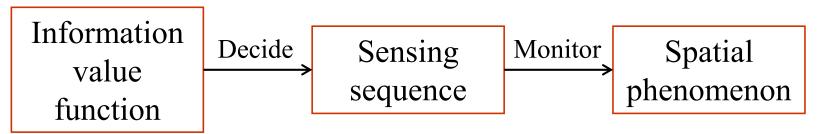


### Outline

- Introduction and Motivation
- Problem Formulation
  - Sensor planning
- Methodology
  - Gaussian process: data representation
  - Information value function: greedy algorithm
- Simulation
  - Criteria: estimating error and estimating variance
  - Comparison with random algorithm
- Summary and Conclusions



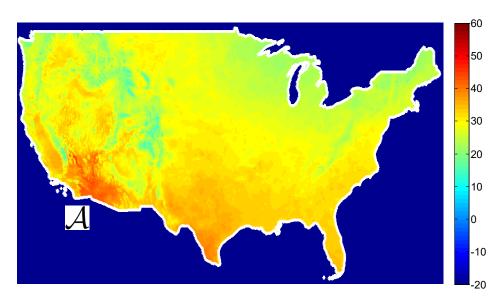
#### **Information Value Functions for Sensor Planning:**



- State of the art
  - "An Information Potential Approach to Integrated Sensor Path Planning and Control", G. Zhang, et al.
  - "A Comparison of Information Functions and Search Strategies for Sensor Planning", 2012. S. Ferrari, et al.
- Main contribution:
  - Method for continuous spatial phenomenon



## **Spatial Phenomenon**



Nomenclature $\mathcal{A}$ : Region of Interestg: Spatial phenomenon

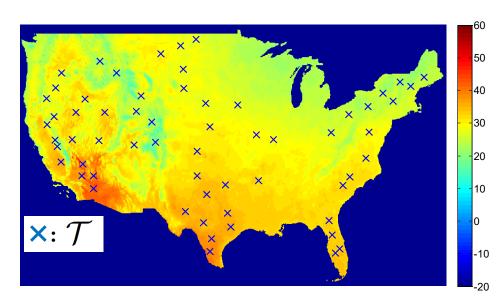
### Spatial phenomenon,

$$g(\mathbf{x}), \mathbf{x} \in \mathcal{A}$$

- Defined over two-dimensional region of interest,  $\mathcal{A} \subset \mathbb{R}^2$
- Time invariant
- Max temperature of the continental United States in August
   Introduction Problem formulation Methodology Simulation Summary 4



### Targets



#### Nomenclature

- A: Region of Interest
- g: Spatial phenomenon
- $\mathcal{T}$ : Targets

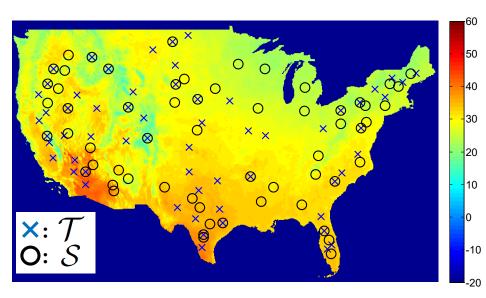
#### Set of targets,

$$\mathcal{T} = \{\mathbf{t}_i | i = 1, \cdots, r\}, \mathbf{t}_i \in \mathcal{A}$$

- Represent points of highest interest in  $\mathcal{A}$
- $\mathcal{T}$  and r can change over time



## **Accessible Sensing Locations**



### Nomenclature

- A: Region of Interest
- g: Spatial phenomenon
  - $\mathcal{T}$ : Targets
- S: Accessible sensing locations

### Set of accessible sensing locations, ${\cal S}$

$$\mathcal{S} = \{\mathbf{s}_i | i = 1, \cdots, l\} \subset \mathcal{A}$$

- Known *a priori*
- Size of *S* is limited



At the *k*th time step  $t_k$ ,

• Sensor takes one measurement from,

$$-\mathbf{y}_k \in \mathcal{S}$$

• sensor model:

$$- z_k = g(\mathbf{y}_k) + \varepsilon$$

- $\varepsilon$ : additive Gaussian noise,  $\mathcal{N}(0, \sigma^2)$
- History of sensing sequence

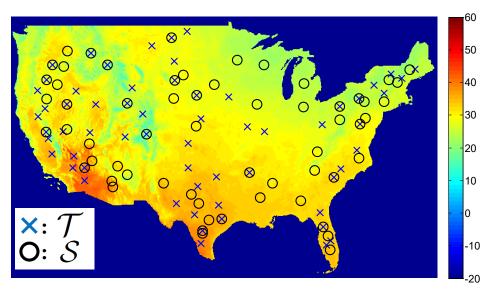
$$\mathbf{Y}_k = [\mathbf{y}_1 \mid \cdots \mid \mathbf{y}_k]$$

• History of observations

$$\mathbf{Z}_k = [\mathbf{z}_1 | \cdots | \mathbf{z}_k]$$



## **Sensor Planning Problem**



#### Nomenclature

- A: Region of Interest
- g: Spatial phenomenon
- $\mathcal{T}$ : Targets
- S: Accessible sensing locations

 $\mathbf{Y}_k = [\mathbf{y}_1 | \cdots | \mathbf{y}_k]$  $\mathbf{Z}_k = [\mathbf{z}_1 | \cdots | \mathbf{z}_k]$ 

#### **Sensor planning**:

Decide 
$$\mathbf{Y}_{k}^{*} = [\mathbf{y}_{1}^{*} | \cdots | \mathbf{y}_{k}^{*}]$$
 that minimizes  

$$err = \frac{1}{r} \sqrt{\sum_{\mathbf{x}_{i} \in \mathcal{T}} (g(\mathbf{x}_{i}) - \mathbb{E}[f(\mathbf{x}_{i}) | \mathbf{Y}_{k}, \mathbf{Z}_{k}])^{2}}$$
for  $\mathbf{y}_{i}^{*} \in \mathcal{S}, i = 1, ..., k$ 

Introduction Problem formulation Methodology Simulation Summary 8



### **Gaussian Process: Model the Spatial Phenomenon**

### **Estimation of spatial phenomenon:**

- $g(\mathbf{x}) \xleftarrow{\text{estimation}} f(\mathbf{x}), \mathbf{x} \in \mathcal{A}$
- $f(\mathbf{x}) \sim \text{Gaussian process}$

Gaussian process:

$$f(\mathbf{x}) \sim GP(m(\mathbf{x}), k(\mathbf{x}_1, \mathbf{x}_2))$$
$$m(\mathbf{x}) = E[f(\mathbf{x})]$$
$$k(\mathbf{x}_1, \mathbf{x}_2) = E[(f(\mathbf{x}_1) - m(\mathbf{x}_1))(f(\mathbf{x}_2) - m(\mathbf{x}_2))]$$

Notation:

- $\mathbf{X}_T = [\mathbf{x}_1 | \cdots | \mathbf{x}_r], \mathbf{x}_i \in \mathcal{T}, i = 1, \dots, r$ •  $\mathbf{f}(\mathbf{X}_r) = [\mathcal{A}_r], \mathbf{x}_i \in \mathcal{T}, i = 1, \dots, r$
- $\mathbf{f}(\mathbf{X}_T) = [f(\mathbf{x}_1) \cdots f(\mathbf{x}_r)]^T$
- $\mathbf{m}(\mathbf{X}_T) = [m(\mathbf{x}_1) \cdots m(\mathbf{x}_r)]^T$
- $\mathbf{K}(\mathbf{X},\mathbf{Y})[i, j] = k(\mathbf{x}_i, \mathbf{y}_j), \mathbf{x}_i = \mathbf{X}[:, i], \mathbf{y}_j = \mathbf{Y}[:, j]$



### **Gaussian Process: Model the Spatial Phenomenon**

Prior distribution on targets:

$$\mathbf{f}(\mathbf{X}_T) \sim \mathcal{N}(\mathbf{m}(\mathbf{X}_T), \mathbf{K}[\mathbf{X}_T, \mathbf{X}_T])$$

Prediction:

$$\begin{bmatrix} \mathbf{Z}_k \\ \mathbf{f}(\mathbf{X}_T) \end{bmatrix} \sim \mathcal{N} \left( \begin{bmatrix} \mathbf{m}(\mathbf{Y}_k) \\ \mathbf{m}(\mathbf{X}_T) \end{bmatrix}, \begin{bmatrix} \mathbf{K}(\mathbf{Y}_k, \mathbf{Y}_k) + \sigma^2 I & \mathbf{K}(\mathbf{Y}_k, \mathbf{X}_T) \\ \mathbf{K}(\mathbf{X}_T, \mathbf{Y}_k) & \mathbf{K}(\mathbf{X}_T, \mathbf{X}_T) \end{bmatrix} \right)$$

Posterior distribution on targets:

$$\mathbf{f}(\mathbf{X}_T)|\mathbf{Y}_k,\mathbf{Z}_k\sim\mathcal{N}(oldsymbol{\mu}_k,\mathbf{\Sigma}_k)$$
 ,

where,

$$\begin{split} \boldsymbol{\mu}_k &= \mathbf{m}(\mathbf{X}_T) + \mathbf{K}(\mathbf{X}_T, \mathbf{Y}_k) [\mathbf{K}(\mathbf{Y}_k, \mathbf{Y}_k) + \sigma^2 I]^{-1} (\mathbf{Z}_k - \mathbf{m}(\mathbf{Y}_k)) \\ \mathbf{\Sigma}_k &= \mathbf{K}(\mathbf{X}_T, \mathbf{X}_T) - \mathbf{K}(\mathbf{X}_T, \mathbf{Y}_k) [\mathbf{K}(\mathbf{Y}_k, \mathbf{Y}_k) + \sigma^2 I]^{-1} \mathbf{K}(\mathbf{Y}_k, \mathbf{X}_T) \end{split}$$



### **EDG: Measure Expected Difference by Sensing Action**

Kullback-Leibler (KL) divergence: difference between P(x) and Q(x)

$$D(P||Q) = -\int_{-\infty}^{\infty} \ln \frac{P(x)}{Q(x)} P(x) dx$$

Choose  $\{\mathbf{y}_k, \mathbf{z}_k\}$  to maximize

$$D(p(\mathbf{f}(\mathbf{X}_T)|\mathbf{Y}_k, \mathbf{Z}_k)||p(\mathbf{f}(\mathbf{X}_T)|\mathbf{Y}_{k-1}, \mathbf{Z}_{k-1}))$$

But  $z_k$  is unknown  $\Rightarrow$  expected discrimination gain (EDG)

$$\hat{\varphi}_D(\mathbf{f}(\mathbf{X}_T); z_k | \mathbf{y}_k, \mathbf{Y}_{k-1}, \mathbf{Z}_{k-1}) = \int D(p(\mathbf{f}(\mathbf{X}_T) | \mathbf{Y}_{k-1}, \mathbf{Z}_{k-1}, \mathbf{y}_k, z_k) || p(\mathbf{f}(\mathbf{X}_T) | \mathbf{Y}_{k-1}, \mathbf{Z}_{k-1})) \\ \times p(z_k | \mathbf{Y}_{k-1}, \mathbf{Z}_{k-1}, \mathbf{x}_k) dz_k.$$



### **EDG for Multivariate Gaussian Distribution**

For multivariate Gaussian distributions, the EDG is

$$\hat{\varphi}_D(\mathbf{f}(\mathbf{X}_T); z_k | \mathbf{y}_k, \mathbf{Y}_{k-1}, \mathbf{Z}_{k-1}) = \int_{-\infty}^{\infty} \frac{1}{2} (\operatorname{tr}(\mathbf{\Sigma}_{k-1}^{-1} \mathbf{\Sigma}_k) - \ln(\frac{\operatorname{det}(\mathbf{\Sigma}_k)}{\operatorname{det}(\mathbf{\Sigma}_{k-1})}) - r + (\boldsymbol{\mu}_k - \boldsymbol{\mu}_{k-1})^T \mathbf{\Sigma}_{k-1}^{-1} (\boldsymbol{\mu}_k - \boldsymbol{\mu}_{k-1})) \mathcal{N}(\mu_{z_k}, \sigma_{z_k}) dz_k$$

where

$$\mu_{z_k} = \mathbf{K}(\mathbf{y}_k, \mathbf{Y}_{k-1}) [\mathbf{K}(\mathbf{Y}_{k-1}, \mathbf{Y}_{k-1}) + \sigma^2 I]^{-1} (\mathbf{Z}_{k-1} - \mathbf{m}(\mathbf{Y}_{k-1})) + m(\mathbf{y}_k)$$

and

$$\sigma_{z_k} = \mathbf{K}(\mathbf{y}_k, \mathbf{Y}_{k-1}) [\mathbf{K}(\mathbf{Y}_{k-1}, \mathbf{Y}_{k-1}) + \sigma^2 I]^{-1} \mathbf{K}(\mathbf{Y}_{k-1}, \mathbf{y}_k) - k(\mathbf{y}_k, \mathbf{y}_k)$$

Introduction Problem formulation Methodology Simulation Summary 12



Integrating EDG analytically over  $\mathbf{z}_k$  to reduce computation  $\hat{\varphi}_D(\mathbf{f}(\mathbf{X}_T); \mathbf{z}_k | \mathbf{y}_k, \mathbf{Y}_{k-1}, \mathbf{Z}_{k-1}) = \frac{1}{4} c \sigma_{\mathbf{z}_k}^3 \sqrt{\pi} + \frac{1}{2} \sigma_{\mathbf{z}_k} \sqrt{\pi} \Big( \operatorname{tr}(\mathbf{\Sigma}_{k-1}^{-1} \mathbf{\Sigma}_k) - \ln(\frac{\det(\mathbf{\Sigma}_k)}{\det(\mathbf{\Sigma}_{k-1})}) - r + \mathbf{V}_1^T \mathbf{M}_1^T \mathbf{\Sigma}_{k-1}^{-1} (\mathbf{M}_1 \mathbf{V}_1 - 2\mathbf{M}_2 \mathbf{V}_2) + \mathbf{V}_2^T \mathbf{M}_2^T \mathbf{\Sigma}_{k-1}^{-1} \mathbf{M}_2 \mathbf{V}_2 \Big)$ 

where

$$\mathbf{M}_{1} = \mathbf{K}(\mathbf{X}_{T}, \mathbf{Y}_{k-1})(\mathbf{K}(\mathbf{Y}_{k-1}, \mathbf{Y}_{k-1}) + \sigma^{2}I)^{-1}$$
$$\mathbf{M}_{2} = \mathbf{K}(\mathbf{X}_{T}, \mathbf{Y}_{k})(\mathbf{K}(\mathbf{Y}_{k}, \mathbf{Y}_{k}) + \sigma^{2}I)^{-1}$$
$$\mathbf{V}_{1} = \mathbf{Z}_{k-1} - \mathbf{m}(\mathbf{Y}_{k-1})$$
$$\mathbf{V}_{2} = [(\mathbf{Z}_{k-1} - \mathbf{m}(\mathbf{Y}_{k-1}))^{T} \quad \mu_{z_{k}} - m(\mathbf{y}_{k})]^{T}$$
$$c = \operatorname{diag}(\mathbf{M}_{2}^{T}\Sigma_{k-1}^{-1}\mathbf{M}_{2})[k]$$



### Information Value function: Greedy Algorithm

Greedy algorithm for sensor planning:

```
Input: functions: \mathbf{m}, \mathbf{K}(\cdot, \cdot);
              sets: \mathcal{S}, \mathcal{T};
              scalars: maximum number of observations, N_f
Output: sensing location sequence \mathbf{Y}_{N_f}
begin
           \mathbf{Y}_{N_f} \leftarrow \emptyset;
           for k = 1 : N_f
                      \mathbf{y}_k = \operatorname{argmax} \hat{\varphi}_D(\mathbf{f}(\mathbf{X}_T); z_k | \mathbf{y}_k, \mathbf{Y}_{k-1}, \mathbf{Z}_{k-1})
                                    \mathbf{y}_k \in \mathcal{S}
                      \mathbf{Y}[k] = \mathbf{y}_k
                      z_k = g(\mathbf{y}_k) + \varepsilon
                      \mathbf{Z}[k] = z_k
           endfor
           return Y
end
```



#### Data:

Maximum temperature distribution of the continental United States territory in August, 1997

### **Prior distribution:**

•  $m(\mathbf{x}) = 0$ 

• 
$$k(\mathbf{x}_1, \mathbf{x}_2) = e^{-\|\mathbf{x}_1 - \mathbf{x}_2\|^2}$$

### **Other parameters:**

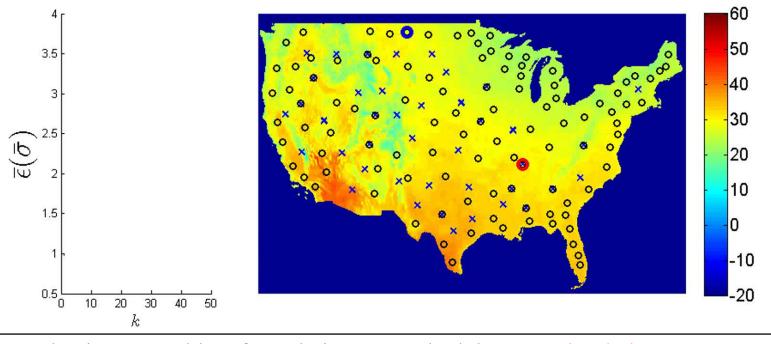
| parameter | value    | memo                                   |
|-----------|----------|----------------------------------------|
| r         | 41       | number of targets                      |
| l         | 100      | number of accessible sensing locations |
| σ         | 1.0 [°C] | standard variance of sensing noise     |

Introduction Problem formulation Methodology Simulation Summary 15



### **Performance Criteria and Result**

Estimation error: 
$$\bar{\epsilon}(\hat{\phi}_D) = \frac{1}{r} \| \boldsymbol{\mu}_k - \mathbf{g}(\mathcal{T}) \|$$
  
Estimation variance:  $\bar{\sigma}(\hat{\phi}_D) = \frac{1}{r} \operatorname{tr}(\boldsymbol{\Sigma}_k)$   
Random algorithm:  $\mathbf{y}_k \in S \sim 1/l$ 



• K

Problem formulation Methodology Simulation Introduction Summary 16





- Problem formulation
  - Sensor planning
- Methodology
  - Gaussian process: data representation
  - Information value function: greedy algorithm
- Contribution
  - Greedy algorithm for continuous spatial phenomenon
- Future work
  - More covariance function
  - More nonparametric Bayesian models for various phenomena



# Thanks Welcome Questions

#### **References:**

- G. Zhang, W. Lu, and S. Ferrari, "An Information Potential Approach to Integrated Sensor Path Planning and Control," IEEE Transactions on Robotics, submitted.
- W. Lu, G. Zhang, S. Ferrari, M. Anderson, and R. Fierro, "An Information Potential Approach for Tracking and Surveilling Multiple Moving Targets using Mobile Sensor Agents, " Journal of Defense Modeling and Simulation, accepted.
- S. Ferrari, G. Zhang, and C. Cai, "A Comparison of Information Functions and Search Strategies for Sensor Planning," IEEE Transactions on Systems, Man, and Cybernetics - Part B, Vol. 42, No. 1, 2012.