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ABSTRACT

The treasure hunt problem was introduced to describe the problem of planning

the path and measurements of a sensor installed on a ground robot, in order

to classify multiple targets in an obstacle-populated environment. The use of

conventional path-planners like probabilistic roadmaps (PRM) for this purpose

requires prior knowledge of the workspace while other online path-planning

algorithms rely on the sensor’s ability to form a global map and localize itself

in it. However, in unknown workspaces, under environmental pressures like

fog, the information captured by the sensor is extremely local leading to a non-

convergent global map, which subsequently limits the functioning of the algo-

rithms. Artificial systems implement decision and control policies to optimize

a given cost function on one hand, humans use satisficing decision strategies to

overcome the limitations of partial information on the other. Satisficing strate-

gies lead to solutions that are not always optimal for a given system, but which

are good enough to meet all its needs at a certain level given the constraints

on resources. To overcome the limitations of the current artificial systems, this

work aims to create the building blocks for an adaptive heuristic path planner

which efficiently tackles the treasure hunt problem in unknown workspaces un-

der environmental pressures. Two different path planners that mimic satisficing

strategies have been simulated. With the results of this work, adaptive heuristic

path planners can further be developed which will improve autonomous area

exploration and efficiently solve the treasure hunt problem.



BIOGRAPHICAL SKETCH

Abhishek Puthige is an M.S. student in the Laboratory for Intelligent Systems

and Controls (LISC) at Cornell University. He received his B.Tech degree in

Mechanical Engineering from PES University. His research interests include

vehicle intelligence, robotics, and machine learning.

iii



This document is dedicated to all Cornell graduate students.

iv



ACKNOWLEDGEMENTS

I would like to thank Dr. Silvia Ferrari for her kind guidance and immense

support for my endeavours during my time at Cornell University. It was a great

honor to conduct my research under her guidance. I would also like to thank Dr.

Fengqi You as my committee member for his valuable advice on my research. I

would also like to thank Yucheng Chen, Jane Shin, and Shi Chang for their help

with my research and defense. I would also like to thank all LISC members,

who provided me invaluable support on both my work and life.

v



TABLE OF CONTENTS

Biographical Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction and Background 1

2 Problem Formulation and Assumptions 5

3 Simulations and Results 9
3.1 Sensor parameters and simulation environment design . . . . . . 9

3.1.1 Sensor parameters . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 Environment design . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Simulations in MATLAB® and Webots® environments . . . . . . 20
3.2.1 Evaluation of performance of the target feature classifiers 22
3.2.2 Path planning algorithms for adverse weather conditions 25

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.1 Performance of different feature classifiers . . . . . . . . . 27
3.3.2 Expected entropy reduction study . . . . . . . . . . . . . . 31
3.3.3 Performance of path planning algorithms and classifiers . 35

4 Conclusion and Discussion 45

5 Future Work 47

Bibliography 48

vi



LIST OF TABLES

3.1 Fog densities and the corresponding visibility levels . . . . . . . 15
3.2 Target identities and their corresponding features . . . . . . . . . 22
3.3 List of binary classifiers for different features . . . . . . . . . . . . 23
3.4 Calculated information gain form each additional level of classi-

fication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Distance travelled and the number of targets discovered in

workspace 1 for different number of total targets . . . . . . . . . 37
3.6 Distance travelled and the number of targets discovered in

workspace 2 for different number of total targets . . . . . . . . . 38
3.7 Probabilities of treasure given texture of objects . . . . . . . . . . 42

vii



LIST OF FIGURES

2.1 Line of sight visibility without fog. . . . . . . . . . . . . . . . . . . 7

3.1 Overview of Workspace 1 representing a home setting . . . . . . 12
3.2 Overview of Workspace 2 representing a warehouse setting . . . 13
3.3 Overview of Workspace 3 representing a maze . . . . . . . . . . . 14
3.4 Snapshot of a watermelon at 5 different fog densities . . . . . . . 16
3.5 Different target layouts for workspace 1 . . . . . . . . . . . . . . . 17
3.6 Different target layouts for workspace 2 . . . . . . . . . . . . . . . 18
3.7 Different target layouts for workspace 3 . . . . . . . . . . . . . . . 19
3.8 All possible target features . . . . . . . . . . . . . . . . . . . . . . 21
3.9 Change in performance of shape classifiers with varying fog

densities and target distances . . . . . . . . . . . . . . . . . . . . . 28
3.10 Change in performance of color classifiers with varying fog den-

sities and target distances . . . . . . . . . . . . . . . . . . . . . . . 29
3.11 Change in performance of texture classifiers with varying fog

densities and target distances . . . . . . . . . . . . . . . . . . . . . 30
3.12 Bayesian Network for showing target features and treasure clas-

sifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.13 Conditional probabilities used for estimating information gain . 34
3.14 Number of targets detected in workspace 1 for each of the plan-

ning algorithms for different simulations . . . . . . . . . . . . . . 36
3.15 Number of targets detected in workspace 2 for each of the plan-

ning algorithms for different simulations . . . . . . . . . . . . . . 36
3.16 Distance travelled per target discovered for Workspace 1 . . . . . 38
3.17 Distance travelled per target discovered for Workspace 2 . . . . . 39
3.18 Overall classification accuracy for all target features detected in

workspace 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.19 Overall classification accuracy for all target features detected in

workspace 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.20 Treasure classification accuracy for workspace 1 . . . . . . . . . . 43
3.21 Treasure classification accuracy for workspace 2 . . . . . . . . . . 43

viii



CHAPTER 1

INTRODUCTION AND BACKGROUND

Autonomous mobile robots are being increasingly deployed in a variety of ap-

plications like robo-taxis, urban surveillance, and landmine detection. The nav-

igation task of such robots can be tessellated into perception, path-planning,

and motion control given an objective. In the context of an autonomous mobile

robot, perception is defined as the sensory experience of the world, which in-

cludes recognizing and interpreting the sensor data [1]. Motion control refers to

controlling the robot to manipulate it and produce favorable changes in its state.

Path planning refers to estimating a sequence of actions that transform a robot’s

initial state to a desired final state with the aim of achieving a pre-determined

objective. It is becoming an ever-increasing part of our lives with the advances

being made in the domain of autonomous technologies. These technologies use

path planning in many different ways with different optimization objectives,

such as energy and terrain considerations in the mars rover [2], and traffic, dis-

tance, and the local environment in autonomous vehicles [3–6]. Due to a myriad

applications of path-planners, several solutions have been developed to solve

these problems [7–12]. These formulations depend on several factors like the

type of the system and its constraints and the optimization objective. For in-

stance, the indoor navigation of a robot problem can either be represented by

a graph with nodes and edges corresponding to the configuration space in the

environment [13–15] or as a potential gradient problem in which there is an at-

tractive force from the target and a repulsive force from the obstacles [16, 17].

Despite the many possible formulations, these algorithms suffer from the draw-
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back of either requiring the knowledge of the global environment as a priori or

require to be able to simultaneously map the environment and localize them-

selves. In the presence of environmental pressures like fog, the ability of vision

based sensors to perceive the world around them decreases, due to which the

information available is hyper-local, making it challenging to localize the robot

and map the world around it. Thus, the path planning problem of navigating

a robot in an unknown workspace under adverse environmental conditions re-

quires a different approach.

Satisficing is a set of choice strategies for systems dealing with real-world

problems of noisy data, insufficient intelligence, time and computational pres-

sures, and other constraints [18]. Satisficing strategies lead to solutions that

are not always optimal for a given system and environment, but which are

good enough to meet all of its needs at a certain level [19–21]. Current artifi-

cial systems often implement decision and control policies that are designed to

optimize a given cost function. In contrast, biological organisms use satisfic-

ing strategies because of the available partial or no prior data about the history,

present context, and potential outcomes of decisions. Thus, artificial systems

may fail to return a feasible policy under real world constraints, like those of

time, computation, and weather conditions, unlike biological organisms which

are capable of producing fast but ”good enough” decisions that trade-off the

benefits of accumulating exhaustive data against the potential costs of missing

an impending deadline. Moreover, the optimal strategies based on small-world

assumptions can lead to failures or disasters when applied to our large-world

which is filled with uncertainty and noisy information [22]. The implementa-
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tion of such satisficing strategies in autonomous systems teamed with humans

could also facilitate cooperation.

Heuristics are quick decision-making systems that ignore part of the infor-

mation to save time and effort. A significant feature of a successful satisfic-

ing method is that it finds ways to circumvent the traditional speed-accuracy

trade-off, resulting in a marginal loss in accuracy or optimality in exchange

for a large gain in speed and resource conservation [23–26]. Studies have also

shown that satisficing in humans is mediated by the use of heuristics [23, 24].

For the purpose of this research, heuristic path planners are defined as those

planners which are capable of learning the way in which humans employ sat-

isficing strategies [27] while attempting to navigate an unknown environment

with limited sensory information.

Ferrari S., first proposed the treasure hunt problem in [28] to describe the

fundamental problem of sensor path planning. Traditionally, robot path plan-

ning algorithms have been designed to determine an optimal path, given the

initial and final configurations and kinodynamic constraints [29, 30]. However,

sensor path-planning typically addresses a different paradigm with the aim of

obtaining measurements from either a subset or all of the possible targets in the

workspace [31–33], making many of the approaches commonly used in robot

path planning inapplicable to sensor path planning. The treasure hunt prob-

lem that we are motivated to solve is a target classification problem introduced

in [34] to describe the problem of planning a path and measurements of a sensor

installed on a ground robot, in order to classify multiple targets in an obstacle-
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populated environment, where spatially distributed targets are represented by

hidden hypotheses variables which can never be observed; but only inferred

from a set of correlated cues.

To overcome the limitations of the methods mentioned above and to develop

adaptive heuristic path planners aimed at solving the treasure hunt problem ef-

ficiently, this thesis presents the required building blocks for a path planning

problem with obstacle avoidance, while allowing measurements on the neces-

sary targets under environmental pressures. As chapter 3 would elaborate, the

building blocks consist of random walk and area coverage algorithms which

can be fused together intelligently to create an adaptive algorithm capable of

creating satisficing strategies, similar to those used by biological organisms

like humans, for a robot navigating an unknown environment under external

pressures like fog, time, and ”money”. The chapter further shows the simula-

tions of the aforementioned strategies in the Webots® simulator and analyses

their performance on the treasure-hunt problem. Further, it also talks about

the dataset created for training detectors and classifiers under foggy conditions,

while analysing the performance of existing classifiers under the influence of

fog and the target distance. Finally, the thesis outlines the potential future steps

that can be taken to create an adaptive heuristic path planner.
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CHAPTER 2

PROBLEM FORMULATION AND ASSUMPTIONS

This thesis considers the problem of planning the path of a directional sensor

onboard an unmanned ground vehicle (UGV) to classify a set of targets in an

unknown obstacle-populated workspace under environment pressures like fog.

The workspace, which is denoted by,W ⊂ R2 is assumed here to be a compact

subset of a Euclidean space, populated with n fixed targets, at unknown loca-

tions, denoted by T1, ...,Tn. The probabilistic model of sensor measurements

and classification has been learned from data and expert knowledge using a

Bayesian Network (BN). BN represents a joint probability mass function (PMF)

by a directed acyclic graph (DAG), G = (N ,E). The node set N consists of M

discrete feature random variables X1, ..., XM and a categorical random variable

Y . Each feature random variable X j ∈ N is associated with a finite set of mu-

tually exclusive states X j = {x1, ..., x ȷ}, and the states of the categorial random

variable Y is Y = {y1, y2}. Each node in N is associated with a conditional prob-

ability table (CPT) of BN parameters. The set of edges E represents conditional

dependencies between nodes in N , and expresses the joint PMF as

p(N) = p(X1, ..., XM,Y) = p(Y |pa(Y))
M∏
j=1

p(X j|pa(X j)) (2.1)

where pa(X j) is the parent set of X j , such that ∀Xi ∈ pa(X j) there exists a directed

arc (i, j) ∈ E and similarly for pa(Y).

W is also populated with n static obstacles B1, ...,Bn whose geometry and
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positions are not known a priori. The UGV’s geometry is described by a rigid

object A ⊂ R2 that is a compact subset of W. The UGV is equipped with a

directional sensor, such as a camera, with a field of view (FoV) denoted by S.

A configuration vector q = [x, y, θ]T ∈ C specifies the position of the UGV’s

geometrical center and orientation of the UGV with respect to a fixed Cartesian

frame FW embedded inW with origin OW , where configuration space C ⊂ W ×

(−π, π] denotes the space of all possible values of the configuration vector q.

q also specifies a moving Cartesian frame FA embedded in A with origin OA

defined at the position of UGV. The UGV is assumed to obey the a unicycle robot

kinematics. The control input is u = [v ω]T ∈ U = {v, ω | 0 ≤ v ≤ vm, 0 ≤ ω ≤ ωm},

where vm, ωm ∈ R+ are the maximum permissible velocity and angular velocity

respectively. The unicycle model is

q̇(t) =


ẋ(t)

ẏ(t)

θ̇(t)


=


cosθ(t) 0

sinθ(t) 0

0 1


v(t)

ω(t)

 = g[q(t)]u(t) (2.2)

A C-obstacle is a subset of C that has collisions with at least one obstacle,

denoted as CBi ≡ {q ∈ C | A(q) ∩ Bi , ∅}, where A(q) denotes the subset ofW

occupied by A with UGV configuration q. Then, the union of all C-obstacles

obtained from B is defined as the C-obstacle region, i.e., CB =
⋃

i CBi. The free

configuration is the complement of the C-obstacle region, i.e., C f ree = C \ CB

[35]. The robotic sensor is free to rotate and translate in this free configuration
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Figure 2.1: Line of sight visibility without fog.

space, while remaining fixed on the UGV.

A directional sensor is influenced by occlusions caused by obstacles in its

line-of-sight (LoS), in front of the target of interest Ti, and the density of fog in

the environment. The FOV of a sensor with dynamic state q operating in an

environment with fog density F can be modeled as a compact subset S(q, F) of

W occupied by S when the UGV is at configuration q. Let xT be the position

of an interest point in target Ti. The coordinate of the point of interest in FA is

rT = xT −q. xT is in the LoS of the sensor at q if there are no points in the obstacle

region B that are co-directional with rT and closer to q than xT and is within the

visibility range, VF for a given fog density F , or

∄ ξ ∈ B s.t. ξ � rT = ∥ξ∥∥rT ∥ and ∥ξ∥ < ∥rT ∥ and ∥ξ∥ < ∥VF∥ (2.3)

where ξ is defined with respect to FA, and it is assumed that Ti∩B = Ø. Target Ti
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is visible to the sensor if S(q)∩Ti , Ø} and Ti is in the LoS of the sensor. C-target

of target Ti is defined as a subset of C such that CT i = {q ∈ C | S(q, F) ∩ Ti , Ø}

and the LoS test is satisfied for all obstacles. Under the influence of fog, passing

the LoS test does not guarantee the target visbility. Therefore, the path planning

problem for visiting targets under foggy conditions can be defined as:

”Plan a trajectory inC f ree such that there exists a C-targetCT i in the trajectory

given the environmental pressures and sensor measurements.”
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CHAPTER 3

SIMULATIONS AND RESULTS

This chapter introduces the workspaces designed for the treasure-hunt problem.

In addition to this, each of the designed workspaces have different possible tar-

get layouts which correspond to different target densities. The different path

planning approaches used have been simulated and tested on a subset of the

designed workspaces. In addition to this, simulations have been carried out to

test the performance of the classifiers against changing levels of fog and target

distances. Further, information gain from each additional level of classification

has also been estimated. All of the simulations have been carried out in the

Webots® simulator.

3.1 Sensor parameters and simulation environment design

This section includes details about the different sensor parameters and the de-

tails about the different designs of the different workspaces which have been

created.

3.1.1 Sensor parameters

The sensor used for observing the targets is a camera. The open angle of the

camera, also known as half of the sensor field-of-view, α is π/4. Theoretically,

the detection range of the camera is infinite. However, the detection has been
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contracted to be bounded between rmin and rmax which are 0.1 meters and 2.0

meters respectively. These parameters have been determined from the sensor

applied in the immersive satisficing experiments which have been carried out

previously by Ferrari [36, 37]. These sensor specifications also support the on-

board computer vision algorithms for target feature extraction and classifica-

tion.

3.1.2 Environment design

The environment design is predominantly influenced by the following parame-

ters, the size of the workspace, the layout of the obstacles in the worksapce, the

number of targets or the target density in the workspace, their types, and the

level of fog. The design for each of which has been described below.

Workspace design

The workspace design consists of two main parameters - the dimensions of the

workspace and the layout of the obstacles in the workspace. The dimensions

of all the workspaces designed have been kept consistent with those of the hu-

man active satisficing experiment, which are 9 metres in length and 9 metres

in width. This has been done in order to facilitate comparison of results of the

heuristic path planners developed and the human experiments conducted to

study their satisficing strategies.

In this thesis, three workspace designs have been proposed. They have been
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designed to resemble a typical house, a warehouse, and a maze. Figure 3.1

shows the workspace that’s been designed to resemble a typical house. It can be

seen that the workspace has been divided into four quadrants to resemble the

division of a house into four rooms. The bottom-left room is designed to resem-

ble a typical bedroom with a bed, an arm-chair, a study desk, and a wardrobe.

Next to it,is a dining room with a table and a potted plant. In the top-left corner

of the workspace, a living-room can be found which includes a couch, a show-

case, another storage shelf, and a painting. The final room represents a room for

gatherings which includes four chairs and a painting. The lighting for each of

the rooms is provided by a ceiling light of white color in the middle of the room

to ensure even distribution of light. The color of the lights play an important

role in our simulations as changing them would lead to a hue being cast on all

the objects which would affect the results of feature classifiers.
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Figure 3.1: Overview of Workspace 1 representing a home setting

Figure 3.2 represents a warehouse with an attached office. This workspace

has been tessellated into three sections. Two of the smaller, equally size sections

are designed to resemble a shipment receiving room in a warehouse, and an

office. The larger section is designed to resemble a storage section with ship-

ment boxes and barrels placed all around. Similar to the first workspace de-

12



sign, shown in Figure 3.1, this workspace is also illuminated by four evenly

distributed ceiling lights of white color to ensure even lighting conditions.

Figure 3.2: Overview of Workspace 2 representing a warehouse setting

Figure 3.3 represents a maze. The thin walls used in the maze, present a

unique challenge such that their accurate detection by sensors like lidar or radar

can be challenging when viewed from the side. In addition to using thing walls

in the maze, obstacles like shipping crates and potted plants are also present in

13



this environment. These obstacles are placed in a manner that they provide the

robot with a narrow path to move from one place to another. Such conditions

have known to be challenging for algorithms like probabilistic roadmaps (PRM)

and rapidly-exploring random trees (RRTs). These cases can be used to analyze

the performance of heuristic path planners where modern path planners are

known to struggle.

Figure 3.3: Overview of Workspace 3 representing a maze
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Fog densities

In this thesis, a significant emphasis has been placed on the effects of fog on

the functioning of path-planners and feature classifiers. In order to study these

effects, it was imperative to characterize the different fog densities.In the We-

bots® simulator, the levels of fog are defined by visibility range, such that a

higher visibility range corresponds to a lower fog level. The simulator offers

three different types of fog, ”LINEAR”, ”EXPONENTIAL”, and ”EXPONEN-

TIAL2”. Each of these levels corresponds to the function used for blending the

fog with ”LINEAR” being most artificial looking fog and ”EXPONENTIAL2”

using a squared exponential blending function to return the most natural look-

ing fog. In these simulations ”EXPONENTIAL2” setting has been used for fog.

Fog has been characterized into five different levels which are no fog, haze, light

fog, medium fog, and dense fog. The visibility ranges corresponding to the lev-

els of fog has been tabulated in Table 3.1

Fog level Visibility (metres)
No fog ∞

Haze 1.6
Light fog 1.2

Medium fog 0.8
Dense fog 0.4

Table 3.1: Fog densities and the corresponding visibility levels

Figure 3.4 shows a watermelon placed at 100cm from the camera at varying

levels of fog. It can be seen that the watermelon becomes invisible to the camera

under the dense fog conditions.
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Figure 3.4: Snapshot of a watermelon at 5 different fog densities

Target layout

The layout of targets has the potential to greatly impact the number of targets

that have been discovered by the robot under any given initial conditions. All

the proposed target layouts have been designed such that they are largely uni-

formly distributed across all the workspace. For each of the three worksapces,

four different target layouts have been proposed, which correspond to differ-

ent target densities. The sparse target configuration has only three targets dis-

tributed across the workspace, while the few targets configuration has five. The

medium targets configuration has been designed to have thirteen targets in the

workspace and the many targets configuration is designed to have fifteen tar-

gets distributed across the workspace. Sections a-d in Figures 3.5 - 3.7 contain

16



the target four different target layouts for each of the workspaces, in increasing

order of the number of targets in the worksapce.

Figure 3.5: Different target layouts for workspace 1
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Figure 3.6: Different target layouts for workspace 2
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Figure 3.7: Different target layouts for workspace 3

Target features

In the simulations, each target is initially shown as a cylinder of gray color with

a radius of 0.05 metres and a height of 0.1 metres. Each target is known to have

three levels of features. The first level is the shape of the target, which could

either be a sphere or a box. The second level of features is the color of the object
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which could either be green or orange, if the target is known to be spherical or

brown or black, if the target is known to be a box. The final level of features is the

texture of the target such that they resemble either a plain surface or a striped

surface. In the case of a green sphere, the potential target identities are apple or

watermelon. For an orange sphere, the potential target identities are orange or

basketball, while the potential target identities for a brown box are cardboard

box or wooden box, and the possible target identities for a black box are either a

computer or a book. Figure 3.8 shows all the possible target features. In the first

column are all the target features whose parent is a box, from top-to-bottom,

they are black box, brown box, computer, book, cardboard box, and wooden

box respectively. In the second column are all the features whose parent is a

sphere, from top-to-bottom, they are green sphere, orange sphere, watermelon,

apple, orange, and basketball respectively.

3.2 Simulations in MATLAB® and Webots® environments

This section describes in detail the steps for revealing different target fea-

tures, the algorithms proposed for addressing the treasure-hunt problem and

the workspace designs used for testing the performance of the proposed algo-

rithms.
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Figure 3.8: All possible target features
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3.2.1 Evaluation of performance of the target feature classifiers

The process of evaluating the performance of the target feature classifiers can

be broken down into two steps. The first being the updation of the target cues

to reveal more features and the second being the updation of environmental

variables like the level of fog, the target distance and its orientation. The details

of each of the two steps have been described in greater detail in the sub-section

below.

Revealing target features

As mentioned previously, each target has three levels of features. The first corre-

sponds to its shape, while the second and third correspond to color and texture

respectively. There are a total of eight possible identities which have been enu-

merated as shown in Table 3.2. Based on the enumeration of each target, the

shape, color, and texture are displayed every time the target features are up-

dated.

Target identity Shape Color Texture
1

Sphere
Green

Apple surface
2 Watermelon stripes
3

Orange
Orange surface

4 Basketball stripes
5

Box
Brown

Cardboard box surface
6 Wooden box stripes
7

Black
Computer surface

8 Book stripes

Table 3.2: Target identities and their corresponding features
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Estimating classification performance

In order to evaluate the performance of the classifiers, it is important to have

working knowledge of the different classifiers. In our case, we only use binary

classifiers. Each of these binary classifiers is a support vector machine (SVM)

trained on the histogram of oriented gradients (HOG) features extracted from

the entire image. For classifying all the possible target features, seven binary

classifiers are being used, as listed in Table 3.3.

Target feature Binary classifier outputs
Shape Sphere-Box

Color
Orange-Green
Brown-Black

Texture

Apple surface - Watermelon stripes
Orange surface - Watermelon stripes

Cardboard box surface - Wooden box stripes
Computer surface - Book stripes

Table 3.3: List of binary classifiers for different features

For the purposes of this work, the target distance, rT has been defined as the

horizontal distance between the imaging sensor and the center of the target as

shown in Figure 2.1

To understand the effects of fog densities and the target distance, the per-

formance of the classifiers has been evaluated over nine different, uniformly

distributed target distances with five different levels of fog. The list of the target

distances can mathematically be defined as rT = {t ∈ R | t = 0.2i, 2 ≤ i ≤ 10}

At each combination of target distance and fog level, ten batches of a hundred

trials have been simulated and classified. Classifying one trial implies that all

three features of the object have been classified independently. For classifying a
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given target, the simulation methodology is as follows - initially, each target is

of an unknown shape represented by a cylinder in the simulations. The target

is then updated to reveal the shape and the shape classifier is called. Then, the

target is updated to reveal its color, in addition to the already revealed shape.

Now, depending on the ground truth of the target identity, one of the two color

classifiers is called. After classifying the object color, the target is updated for

a third time to reveal its texture. Now, again, depending on the ground truth

of the target texture, the appropriate texture classifier is called. Once the target

texture has been classified, it is then reset to a cylinder to run another trial. This

process ensures that the performance of the preceding classifier does not affect

the results of the current classifier.

Dataset for training object detectors and classifiers

By simulating the different objects to analyze the performance of the classifiers,

we have also been able to create a dataset of all the different objects at their

various feature levels, orientations, target distances, and fog densities. Cumu-

latively, this becomes a dataset of 108,000 images. The dataset can be broken

down into three mutually exclusive categories - shape, color, and texture. Un-

der the shape category, there exist 36,000 images of spheres and boxes of smooth

texture and gray color. Out of these 36,000 images, 17,900 are spheres and 18,100

are boxes. There are 36,000 more images for the purposes of color classification

which consists of 8831 green spheres of smooth texture, 9069 orange spheres of

smooth texture, 9150 brown boxes of smooth texture, and 8950 black boxes of

smooth texture as well. The dataset for texture classification consists of another
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36,000 images. This portion of the data consists of 4460 Apples, 4371 Watermel-

ons, 4585 Basketballs, 4484 Oranges, 4558 Cardboard boxes, 4592 wooden boxes,

4435 books, and 4515 computers. The dataset does not contain any images for

targets beyond 140cm in the case of medium fog and beyond 80cm for the case

of dense fog because at those distances, the targets become invisible due to the

fog pressure.

3.2.2 Path planning algorithms for adverse weather conditions

Adverse weather conditions like fog or heavy rain produce challenging con-

ditions for vision based sensors like cameras and lidar wherein the effective

range of the sensor is reduced. The effective range of the sensor plays an im-

portant role in the robot being able to localize itself in the environment. With

extremely limited range of a sensor, it is very challenging to localize the robot.

The algorithms discussed in this section are random-walk and area-coverage

algorithms, which have been implemented in a manner that they search the un-

known workspace for targets of interest while avoiding the obstacles.

Simulations of random-walk algorithm

In the random walk algorithm, the robot keeps moving straight unless it en-

counters an obstacle. When the robot encounters an obstacle, it turns away from

it by an arbitrary amount until it clears the obstacle and then continues moving

forward. When the robot detects a visible target, the robot stops to perform tar-
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get classification and once all the features have been classified, the target node

is deleted from the simulation and the robot continues to move forward. Click-

ing here loads a video of the bird’s eye view of the robot being controlled by

the random walk algorithm without the presence of fog in order to visualize the

robot motion. Clicking here loads a video of the robot preforming the random

walk motion under medium fog conditions. For this video, only the robot’s

first-person-view (FPV) is available due to the presence of fog. The results in

this thesis analyze the performance of this algorithm in workspaces 1 and 2 un-

der the medium fog conditions.

Simulations of area-coverage algorithm

In the area coverage algorithm, the robot preforms a sweeping/zig-zag motion.

The robot keeps travelling straight until it encounters an obstacle. All the obsta-

cles in the workspace can be classified under two broad categories; workspace

corners or not. If the obstacle encountered is a workspace corner, which is de-

fined as having an obstacle in the front and either on the left or the right sides

of the robot, the robot will turn away from the corner and continue in a striaght

line. However, if the obstacle encountered is not a corner, it will turn around and

continue the sweeping motion. By doing this, the direction of sweep changes by

π/2 radians every time a corner is detected, whereby the robot visits the previ-

ously unexplored parts of the workspace. This method explores a given section

of the workspace more thoroughly while trading off the ability to explore more

sections of the workspace in a limited amount of time as compared to the previ-

ous random-walk algorithm. Clicking here loads a video of the bird’s eye view
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of the robot being controlled by the area coverage algorithm without the pres-

ence of fog in order to visualize the robot motion. Clicking here loads a video of

the robot preforming the area coverage motion under medium fog conditions.

For this video, only the robot’s first-person-view (FPV) is available due to the

presence of fog. The results in this thesis analyze the performance of this algo-

rithm in workspaces 1 and 2 under the medium fog conditions.

3.3 Results

This section talks about the results from the above simulations and the expected

entropy reduction study.

3.3.1 Performance of different feature classifiers

The performance of feature classifiers can be divided into three sections de-

pending on the features, shape, color, and texture namely. The results from

360 batches of simulations for each of which have been shown in the following

subsections -

Performance of shape classifier

From Figure 3.9, it can be seen that the average values of the accuracy of classi-

fications under the no fog conditions are at 100% upto a target distance of 80cm.

With an increasing fog pressure, it can be noted that the classifier accuracy drops
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to its worst-case performance of about 50%. This indicates that the classifier has

potentially not been trained with targets at distances greater than 80cm. It can

be seen that the optimal target distance for shape classification, if the visibil-

ity is greater than 0.8m, is 80 cm. The results for target distances greater than

80cm under dense fog conditions and the results for target distances greater

than 140cm under medium fog conditions have not been plotted due the targets

being completely covered by fog and being invisible.
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Figure 3.9: Change in performance of shape classifiers with varying fog densi-
ties and target distances
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Performance of color classifiers

From Figure 3.10, it can be noted that, in general, the accuracy of the classifica-

tions seems to be following a downward trend. However, intermittently, it can

be noted that there is a rise in the classification accuracy with an increase in the

target distance. With an increase in the density of fog, the accuracy of the clas-

sification of the target classifier seems to be reducing. However, it can be noted

that the classifications under foggy conditions out-perform the classifications

under the no-fog condition when the target distance is greater than 120cm. This

could be attributed to the brown walls in the simulation, visible only under no

fog conditions, leading to incorrect color classification.
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Figure 3.10: Change in performance of color classifiers with varying fog densi-
ties and target distances
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Performance of feature classifiers

From Figure 3.11, it can be noted that the accuracy of texture classification re-

duces as the distance and fog level increases as expected. It can also be noted

that the worst-case performance of this classifier is slightly lower than 50%. In

the presence of fog, it can be noted that the best classifier performance was

achieved when the target was closest to the camera. However, the best clas-

sification performance has been observed to be achieved at a target distance of

60cm under the no fog conditions. This could potentially be the result of some

of the targets, such as the computers and books, being larger than the camera’s

FoV when they have been placed at a target distance of 40cm.
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Figure 3.11: Change in performance of texture classifiers with varying fog den-
sities and target distances
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3.3.2 Expected entropy reduction study

In information-driven sensor planning, the planner navigates to collect valuable

sensor measurements for target classification. Further, the process of measuring

the updated cues and attempting to classify them has additional computational

costs. Thus, it is important to estimate the quality of the measurements before

obtaining them, such that the cost of those measurements do not exceed the

information gained from them. Expected entropy reduction (EER) evaluates a

measurement’s reward by the ability to reduce the uncertainty in the classifica-

tion variable. Entropy reduction is formulated using conditional entropy. The

conditional entropy of a discrete and random variable Y given another variable

Z is described by the expected value of the entropies of the conditional distribu-

tions over the range of the conditioning random variable [?]

H [Y |Z] = −
∑

z

∑
y

P(y, z) log2 P(y|z) (3.1)

where H[·] denotes the Shannon entropy, and
∑

y denotes the marginalization

over the range of Y .

Then entropy reduction, which is shown to be additive in [?], describes the

reduction in uncertainty brought by a set of new measurements Z j with prior

information about Zi as

∆Ĥ[Y; Z j|Zi] = H[Y |Zi] − H[Y |Zi,Z j] (3.2)

The entropy reduction will represent the information value brought by a

new set of measurements Mi. As mentioned above, it is important to note that
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the actual entropy reduction ∆Ĥ[Yi; Mi|Fi] can not be determined without know-

ing the result of the measurement set Mi. Instead, the expected entropy reduc-

tion is applied to address this issue. Given a set of prior knowledge Fi, the

information value of a target is represented in terms of the EER brought by

measuring all of its remaining features

EER(Fi) =


H[Yi|Fi] − EMi H[Yi|Fi,Mi] if li < L

0 if li = L

(3.3)

where EMi H[Yi|Fi,Mi] =
∑L

k=li+1
∑Nk

q=1[H[Yi|xi,k = xq
i,k]P(xi,k = xq

i,k|Fi)]. The condi-

tional entropy H[Yi|Fi] and H[Yi|xi,k = xq
i,k] are computed using the definition in

Eq.3.2 and the posterior PMF where all the probabilities have been acquired us-

ing the BN CPTs. The conditional probabilities of the different target features

has been shown in Figure 3.13 and information gain calculated using this infor-

mation has been shown in 3.4
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Figure 3.12: Bayesian Network for showing target features and treasure classifi-
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Figure 3.13: Conditional probabilities used for estimating information gain

Classification Level Information Gain
Shape 0.0049
Color 0.372 0.0788

Texture 0.0623 0.5865 0.0593 0.2705

Table 3.4: Calculated information gain form each additional level of classifica-
tion

From Table 3.4, it can be noted that there is a very low amount of information

gained from the shape classifiers. The color classifiers also, have a low informa-

tion gain. From the information gain of texture classifiers, it can be noted that

classifying the texture of an orange sphere and that of a black box lead to rel-

atively high information gains while classifying the texture of a green sphere

and a brown box leads to low information gain. This knowledge can be further

used in the path planners when performing target classification in order to ana-

lyze if the information gain from the additional classification step is greater than

the cost of performing the said measurement and classification in order to more
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efficiently use the available resources.

3.3.3 Performance of path planning algorithms and classifiers

This section goes over the performance metrics being used to compare the over-

all performance , in the simulations, which includes the performance of the clas-

sifiers and that of the path planners. The feature and treasure classifications

have been compared to estimate the feature classification performance and the

number of targets detected and distance travelled are to estimate the perfor-

mance of the path planners. Ideally, it is expected for the classification accura-

cies to be high while the distance travelled would be lower with a high number

of target detections. The following are the performance metrics observed for the

each of the eight simulations in the two workspaces.

Number of targets discovered

For each case, the following Figures 3.14 and 3.15 represent the number of tar-

gets detected for each of the different algorithms against the total number of

targets present in the workspace.
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Figure 3.14: Number of targets detected in workspace 1 for each of the planning
algorithms for different simulations
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Figure 3.15: Number of targets detected in workspace 2 for each of the planning
algorithms for different simulations
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From the above Figures 3.14 and 3.15, it can be noted that, on average, ran-

dom walk tends to detect more targets as compared to the area coverage al-

gorithm. This is so because the area coverage algorithm’s performance is con-

strained by the amount of time the simulations are run for.

Distance travelled

At each timestep, the distance travelled by the robot is updated. In addition to

looking at just the distance travelled by the robot, looking at the distance trav-

elled per target discovered would help us understand which algorithm works

better. Table 3.5 shows the distance travelled by the robot and the number of

targets discovered by each of the algorithms in the first workspace and table 3.6

shows the same for the second wrokspace.

Planner Total Targets Distance Travelled (m) Targets Detected

Area coverage

3 310.61 1
7 224.18 3

13 246.38 6
15 205.78 8

Random walk

3 274.66 2
7 164.87 7

13 291.69 11
15 236.86 11

Table 3.5: Distance travelled and the number of targets discovered in workspace
1 for different number of total targets

Figure 3.16 plots the distance travelled per target discovered in workspace 1

for random walk and area coverage algorithms.
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Planner Total Targets Distance Travelled (m) Targets Detected

Area coverage

3 271.34 1
7 265.94 5

13 134.70 7
15 216.25 8

Random walk

3 106.85 2
7 107.27 5

13 219.49 10
15 226.57 12

Table 3.6: Distance travelled and the number of targets discovered in workspace
2 for different number of total targets
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Figure 3.16: Distance travelled per target discovered for Workspace 1

Figure 3.17 plots the distance travelled per target discovered in workspace 2

for random walk and area coverage algorithms.
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Figure 3.17: Distance travelled per target discovered for Workspace 2

From Figures 3.16 and 3.17 we can see that the distance travelled per target

detected tends to decrease as the number of targets in the workspace increase.

This is because the total distance travelled by the robot in either of the planners

remains largely consistent across the different simulations because this depends

a lot maximum speed of the robot, which is the same for both simulations.

Sequential classification results

In these simulations, every time an object is detected, we first try to classify its

shape, and based on its result, we load the color classifier, and based on whose

result, the texture classifier is loaded. In doing so, we simulate the classifications

in a manner that we would do in the real world where the ground truth of the

object is unknown. Thus if the first level of classification is incorrect, all the
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subsequent levels of classification will also be incorrect. The results of these

sequential classifications can be seen in Figures 3.18 and 3.19.
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Figure 3.18: Overall classification accuracy for all target features detected in
workspace 1
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Figure 3.19: Overall classification accuracy for all target features detected in
workspace 2

All the above mentioned accuracies are percentages of the detected objects

classified. Furthermore, from the simulations it has been noted that the shape

classifier is biased to predict a box, the box color classifier is biased to predict

brown, and the texture classifier is biased to predict the surface texture of a

cardboard box. This leads to a very large number of final predictions being

cardboard boxes.

Treasure classification results

In order for an object to be correctly classified as a treasure or not, we check

if all the target features (shape, color, and texture) have been correctly classi-

fied. Only then do we attempt to classify the detected object as a treasure or
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not. If any of the previous feature classifications is incorrect, it is assumed that

the final treasure classification is also incorrect. Further, the results of treasure

classification depend predominantly on the conditional probability table which

gives us the probabilities of a detection being a treasure given its texture. The

said conditional probability table has been shown in 3.7.

Target Name Treasure probability
Apple 0.93

Watermelon 0.59
Orange 0.88

Basketball 0.05
Carboard box 0.69
Wooden box 0.39
Computer 0.14

Book 0.94

Table 3.7: Probabilities of treasure given texture of objects

Figure 3.20 plots the treasure classification accuracy for our simulations in

workspace 1 for the different algorithms and the different number of targets

and Figure 3.21 does the same for workspace 2. Please note that the different

algorithms have been mentioned to indicate the source of the data and the trea-

sure classification has no bearing on it.
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Figure 3.20: Treasure classification accuracy for workspace 1
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Figure 3.21: Treasure classification accuracy for workspace 2

From Figures 3.20 and 3.21, we can infer that the number of targets correctly
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classified as treasure or not is quite low. The nature of these results could be

attributed to the propagation of incorrectly classified results from the shape and

color classifiers, in addition to not being able to discover all the targets.
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CHAPTER 4

CONCLUSION AND DISCUSSION

In this thesis, two sensor path planning methods have been proposed for the

treasure-hunt problem, which overcome the shortcomings of many of the com-

monly used path planning algorithms. The first algorithm proposed was that

of a random-walk where the robot travels straight until it encounters and ob-

stacle and then turns around in a random direction and continues to do so until

it either detects all the obstacles in the workspace or runs out of simulation

time. The second method is that of area coverage where the robot travels in a

sweeping/zig-zag motion until it detects a corner, in which case, it turns away

from it and continues the sweeping motion to explore the workspace until it

either discovers all the targets in the workspace or runs out of simulation time.

Three workspaces have been designed in the Webots® simulator to simulate

a home, a warehouse, and a maze respectively. For each of these workspaces,

four different target layouts have been proposed. In addition to this, any com-

bination of the aforementioned workspaces and target layouts can be recreated

at five different levels of fog which correspond to the following - no fog, haze,

light fog, medium fog, and dense fog. The path planners proposed in this thesis

have been simulated in the workspaces resembling a home and a warehouse

and it has been noted that the random-walk planner tends to visit more targets

in the given simulation time. However, without any time constraints, the area

coverage algorithm would have eventually visited all the waypoints.

The performance of all of the feature classifiers as a function of fog density
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and target distance has been analyzed. The optimal target observation distance

under no fog conditions was estimated to be about 80cm whereas under the

presence of fog, it was found to be about 60cm. As the target distance increases

further, the accuracy of the classifiers tends to reduce. Similarly, light fog con-

ditions improved the performance of the classifier for nearby objects. However,

the overall trend observed was that as the density of the fog increases, the per-

formance of the feature classifier reduces. In doing so, we have also been able

to create a dataset of images capable of being used for training future classifiers

and object detectors for the treasure-hunt problem. Additionally, the informa-

tion gain at each level of features has also been analyzed to enable future studies

on object classification, its cost and trade-offs.
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CHAPTER 5

FUTURE WORK

With the building blocks that have been presented in this thesis, the next steps

would be to use them and to create an adaptive sensor path planner such that

it switches between area coverage and random-walk strategies depending on

the environment and the revealed cues. Further heuristics path planners can be

developed using these building blocks such that they return satisificing policies

under real-world constraints for the treasure-hunt problem. These new strate-

gies can also be tested for robustness under other environmental pressures like

rain, and other pressures like time and money. In addition to this, so far, all

the algorithms used in solving the treasure hunt problem have assumed the

target location to be known in some capacity. However, in order to relax this

assumption, an object detector capable of recognizing the targets of interest can

be trained on the dataset created. The said dataset can also be used to retrain

the classifiers to improve the feature classification results.

47



BIBLIOGRAPHY

[1] Ming Xie. Fundamentals of robotics - linking perception to action. In Series
in Machine Perception and Artificial Intelligence, 2003.

[2] Masahiro Ono, Thoams J Fuchs, Amanda Steffy, Mark Maimone, and Jeng
Yen. Risk-aware planetary rover operation: Autonomous terrain classifica-
tion and path planning. In 2015 IEEE aerospace conference, pages 1–10. IEEE,
2015.

[3] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James Diebel.
Practical search techniques in path planning for autonomous driving. Ann
Arbor, 1001(48105):18–80, 2008.

[4] Kazi Mahmud Hasan, Khondker Jahid Reza, et al. Path planning algorithm
development for autonomous vacuum cleaner robots. In 2014 International
Conference on Informatics, Electronics & Vision (ICIEV), pages 1–6. IEEE, 2014.

[5] Chris Urmson, Joshua Anhalt, Drew Bagnell, Christopher Baker, Robert
Bittner, MN Clark, John Dolan, Dave Duggins, Tugrul Galatali, Chris
Geyer, et al. Autonomous driving in urban environments: Boss and the
urban challenge. Journal of Field Robotics, 25(8):425–466, 2008.

[6] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James Diebel.
Path planning for autonomous vehicles in unknown semi-structured envi-
ronments. The international journal of robotics research, 29(5):485–501, 2010.

[7] Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram
Burgard, Lydia Kavraki, and Sebastian Thrun. Principles of Robot Motion:
Theory, Algorithms, and Implementations. MIT Press, May 2005.

[8] Purushothaman Raja and Sivagurunathan Pugazhenthi. Optimal path
planning of mobile robots: A review. International journal of physical sci-
ences, 7(9):1314–1320, 2012.

[9] James J Kuffner. Goal-directed navigation for animated characters using
real-time path planning and control. In International Workshop on Capture
Techniques for Virtual Environments, pages 171–186. Springer, 1998.

48



[10] Julien Pettre, Jean-Paul Laumond, and Daniel Thalmann. A navigation
graph for real-time crowd animation on multilayered and uneven terrain.
In First International Workshop on Crowd Simulation, volume 43, page 194.
New York: Pergamon Press, 2005.
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