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Abstract

This dissertation presents a basic information-driven sensor management problem,

referred to as treasure hunt, that is relevant to mobile-sensor applications such as

mine hunting, monitoring, and surveillance. The objective is to classify/infer one

or multiple fixed targets or treasures located in an obstacle-populated workspace by

planning the path and a sequence of measurements of a robotic sensor installed on

a mobile platform associated with the treasures distributed in the sensor workspace.

The workspace is represented by a connectivity graph, where each node represents

a possible sensor deployment, and the arcs represent possible sensor movements.

A methodology is developed for planning the sensing strategy of a robotic sensor

deployed. The sensing strategy includes the robotic sensor’s path, because it deter-

mines which targets are measurable given a bounded field of view. Existing path

planning techniques are not directly applicable to robots whose primary objective

is to gather sensor measurements. Thus, in this dissertation, a novel approximate

cell-decomposition approach is developed in which obstacles, targets, the sensor’s

platform and field of view are represented as closed and bounded subsets of an Eu-

clidean workspace. The approach constructs a connectivity graph with observation

cells that is pruned and transformed into a decision tree, from which an optimal

sensing strategy can be computed. It is shown that an additive incremental-entropy

function can be used to e�ciently compute the expected information value of the

measurement sequence over time.

The methodology is applied to a robotic landmine classification problem and the

board game of CLUEr. In the landmine detection application, the optimal strat-

egy of a robotic ground-penetrating radar is computed based on prior remote mea-

surements and environmental information. Extensive numerical experiments show

that this methodology outperforms shortest-path, complete-coverage, random, and

grid search strategies, and is applicable to non-overpass capable platforms that must

avoid targets as well as obstacles. The board game of CLUEr is shown to be an
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excellent benchmark example of treasure hunt problem. The test results show that a

player implementing the strategies developed in this dissertation outperforms players

implementing Bayesian networks only, Q-learning, or constraint satisfaction, as well

as human players.
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Chapter 1

Introduction

This dissertation addresses the coupled problems of motion and measurement plan-

ning for a robotic sensor, so called treasure hunt problems. It is assumed that the

robotic sensor referring to a sensor installed on a mobile robot platform navigates a

workspace in order to make measurements from multiple targets or treasures whose

features and classification must be inferred from the measurements. Sensor planning

refers to the problem of determining a strategy for gathering sensor measurements to

support a sensing objective, such as target classification. When the sensors are in-

stalled on robotic platforms an important part of the problem is planning the sensor

path [1–4]. In fact, the robotic sensor path planning problem, which refers to plan

the path and the measurements of a robotic sensor, is coupled with the robot motion

planning, because the targets measured by the sensor depend on the path and mo-

tions of its platform. Several approaches have been proposed for planning the path

of mobile robots with on-board sensors to enable navigation and obstacle avoidance

in unstructured dynamic environments, e.g., [5–10]. However, these methods are not

directly applicable to robotic sensors whose primary objective is to support a sensing

objective, rather than to navigate a dynamic environment [11]. The reason is that

these methods focus on how the sensor measurements pertaining the environment can

best support the robot motion, rather than focusing on the robot motions that should

be planned based on the measurement process and best support the sensing objec-

tive [11]. This dissertation addresses the problem of robotic sensor path planning

in order to classify multiple targets distributed in an obstacle-populated workspace.

The objective is to optimize overall sensing performance. This problem, known as the
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treasure hunt [12], arises in many applications, such as robotic mine hunting [4, 13],

cleaning [1], and monitoring of urban environments [14], manufacturing plants [15],

and endangered species [16].

The most popular approaches to sensor path planning include coverage path-

planning [2,11], random [2], grid [17], and optimal search strategies [17,18]. Optimal

search strategies typically outperform other approaches in applications where a-priori

information is available, such as sensor models, environmental conditions, and prior

measurements [17]. However, they do not yet provide a systematic and general ap-

proach for sensor path planning in geometric sensing problems. Geometric sensing

problems require a description of the geometry and position of the targets and of

the sensor’s field of view (FOV) [19]. Viewpoint planning has been shown by several

authors to be an e↵ective approach for optimally placing or moving vision sensors

based on the target geometry and sensor FOV, using weighted functions or tessellated

space approaches [19–21]. Probabilistic deployment has been shown to be an e↵ective

approach for searching for targets in a region of interest (ROI) by computing a search

path based on the probability of finding a target in every unit bin of a discretized,

obstacle-free workspace [1, 22, 23].

In this dissertation, an approximate cell decomposition approach is developed for

solving the aforementioned treasure-hunt problem. Its advantage over existing sensor

path planning techniques is that it takes into account the motion and geometry of

closed and bounded subsets of an Eucledian space representing the sensor’s platform

and field of view, as well as the geometry and position of multiple fixed targets and

obstacles in the ROI. Traditionally, approximate cell decomposition has been used

to plan the motions of a robot with geometry A, in order to avoid collisions with

multiple fixed obstacles in a workspace W [24]. In this dissertation, the approach

in [24] is modified to plan the motions of a robotic sensor with FOV S and plat-
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form A, in order to make measurements from multiple targets in W (comprising the

ROI), while avoiding collisions with the obstacles in W . Since the sensor is installed

on-board the robot, the configuration of both A and S can be specified with re-

spect to the same coordinate frame, embedded in W . Then, the free-configuration

space is decomposed to obtain a connectivity graph with observation cells that each

enable a unique set of measurements from one or more targets in W . This novel

approximate-and-decompose procedure can be considered as a systematic approach

for constructing so-called detection cells, used for information-driven sensor planning

in [25,26].

Information-driven sensor planning refers to sensor planning based on the ex-

pected information value or benefit of sensor measurements, and has been shown by

several authors to be a general and e↵ective framework for computing the expected

measurements’ value in sensor planning problems [25–28]. While robot path plan-

ning typically aims to optimize a deterministic additive function such as Eucledian

distance, sensor path planning aims to optimize a stochastic sensing objective that

is not necessarily additive. Also, the sensor’s position and parameters (or mode)

must be planned prior to obtaining sensor measurements. Therefore, while the mea-

surements ultimately determine performance with respect to the sensing objective

(e.g., classification), they cannot be factored into the planning problem [25–29]. Re-

cently, the authors showed that using an additive expected entropy reduction (EER)

function instead of relative entropy [25, 26] leads to improved target classification in

non-Gaussian sensor fusion [30]. In this dissertation, EER, a type of incremental

entropy, is used to formulate the expected value of the sensor measurements in terms

of a posterior probability mass function (PMF) obtained from a-priori information

(Section 3). Further numerical comparison of di↵erent information measure of the

expected value of the posterior sensor measurements is implemented in Section 3.2.
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A procedure is presented for pruning and transforming the connectivity graph into a

decision tree that is used to determine the sensing strategy with maximum expected

measurement profit.

In summary, the advantages of three approaches mentioned above, robot path

planning, geometric sensing and information-driven sensor planning, are combined

in this dissertation to solve the proposed treasure hunt problem, in which the path

of a robotic sensor is planned based not only on the geometry of its platform, but

also that of its FOV, so that one can optimize its measurement sequence and mo-

tions, by taking into account the intersections of its FOV with the targets as well

as the expected value of information associated with the measurements. The trea-

sure hunt problem and the robotic sensor planning methodology are demonstrated

through the board game of CLUEr and a demining application, where CLUEr is

a singleton hypothesis variable treasure hunt problem and the demining application

contains multiple hypothesis variables. A computerized game of CLUEr is devel-

oped and represents an excellent benchmark for the treasure hunt problem. Our

results show that the methodology developed outperforms both human players and a

computer player implementing Bayesian networks only [31], Q-learning [12] and con-

straint satisfaction approach [32]. In the demining application, it is shown that the

proposed method accounts not only for the geometry of the obstacles and the robots,

but also for the geometry of the targets and of the sensor field of view. This method

allows to obtain global optimal solution for planning both the robot motions and the

sensor measurements simultaneously. The proposed method also allows to account

for minefield environmental conditions and prior IR sensor information in planning

the optimal sensor strategy, and achieves much better overall e�ciency than other

methods, such as A*, fixed grid, complete and random coverage.
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Chapter 2

Problem Formulation and Assumptions

The purpose of many surveillance systems deploying sensors mounted on robotic

platforms is to infer one or more hidden variables from the measurements and fusion

of multiple target features. A hidden or hypothesis variable, yi, may represent a

target’s class or typology, and the measurements may represent physical properties

that are observable provided the target lies within the sensor’s field of view. The

outcomes of the measurements are unknown a priori, and only by visiting the target’s

site they can be obtained.

Let W denote a Euclidean space that is populated with r fixed targets Ti, i =

1, 2, . . . , r, and n fixed obstacles Bj, j = 1, 2, . . . , n, such that Ti \ Bi = ? for all

i, j. Assume that to each target Ti there is associated one hidden variable yi that is

discrete and, possibly, random, with a finite set of mutually exclusive states denoted

by Y = {y1
i , y

2
i , . . . , y

p
i }. Although it cannot be directly measured or observed, yi can

be inferred from a set of test variables, Mi = {mi1, . . . ,miM}, through a known joint

probability distribution: P (yi,Mi). Every variable mi` also is random and discrete

and has N` possible outcomes, where mk
i` denotes the kth outcome of measurement

mi`.

A map of all potential targets’ and obstacles’ geometry and location is provided

a priori. The robotic platform is denoted by A, and its configuration, q, specifies

the position and orientation of a moving Cartesian frame FA, embedded in A, with

respect to a fixed Cartesian frame, FW . The sensor S is mounted on A with a

fixed position and orientation that can be specified through the same moving frame

of reference FA. Where, S and A are closed and bounded subsets of W . In this
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dissertation, we address the problem of planning the path of A for the purpose of

enabling sensor measurements from the targets, while avoiding collisions with the

obstacles.

The robot free-configuration space Cfree is decomposed into a finite set of discrete

cells, K = {1, 2, . . .}. An observation cell in K is a convex polygon in Cfree with

the property that every configuration in it enables the observation of at least one

target in W . A void cell in K is a convex polygon in Cfree that does not enable any

target measurements. A methodology is presented in Section 4.1 for obtaining the

aforementioned decomposition. The robot may visit only one cell at a time and, after

visiting a cell i, the sensor can move to an adjacent cell, j, by incurring a cost dij =

dji. The adjacency relationships between these cells are provided by a connectivity

graph, G (as shown in Section 4.1). Due to energy and time considerations, only

a subset of targets in W may be visited by the sensor. Since the measurements

outcomes are unknown a priori, the expected profit of the measurements obtained

from P (yi,Mi) is used to plan the robotic sensor actions using hypothesis-driven

decision making [33], also known as pre-posterior decision analysis [34] .

For convenience, a discrete time tk is used as an index for the sequential nature

or causality of the sensor movements from one cell to the next. Suppose the sensor

is inside cell i at time tk. Then, the cells that can be visited subsequent to i, at

a time tk+1, are all the cells that are adjacent to i in G. At every time tk, the

sensor makes a decision, u(tk), on whether to make an available measurement, and a

decision, a(tk), on which cell to move to at time tk+1. The robotic sensor performance

is defined as the profit of the observation performed at tk:

R(tk) = wB ·B(tk)� wJ · J(tk)� wD ·D(tk) (2.1)

Where, B is the observation benefit, J is the observation cost, D is the cost of the

sensor movement: D(tk+1) = D(i, j) = dij, and wB, wJ and wD are the weights.
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As shown in Section 3.3, B can be formulated in terms of an information reward

function. Therefore, an optimal policy for the robotic sensor can be obtained by

solving the following problem:

Problem 2.0.1 (Treasure Hunt Problem) Given a layout W and a joint proba-

bility distribution, P (yi,Mi), for any Ti ⇢ W, find the sequence of decisions �⇤ =

{u(tk), a(tk) | k = 0, . . . , f} that maximizes the expected observation profit,

V (tf ) = E

(
fX

k=0

R(tk)

)
, (2.2)

along an obstacle-free channel ⌧ ⇤ ⌘ {0, i, . . . ,j, f}, for a robotic sensor S in-

stalled on a platform A, that must travel from an initial configuration q0 2 0 to a

final configuration qf 2 f .
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Chapter 3

Information-Driven Sensor Planning

Information-driven sensor planning aims at making decisions regarding the optimal

sensor type, mode, or configuration by formulating the sensing objectives through

information theory. An underlying di�culty in sensor planning consists of assessing

the value of sensor measurements prior to observing their outcomes. Several authors

have proposed using information-theoretic functions for sensor planning. Schmaedeke

used relative information content, which actually was relative entropy, to solve a

multisensor-multitarget assignment problem [28]. Kastella used relative entropy to

manage agile sensors for target detection and classification with underlying Gaussian

probability distributions [25, 26]. Zhao investigated information objective functions

such as entropy and Mahalanobis distance measure for sensor collaboration applica-

tions [27]. Recently, it was shown in [30] that using incremental entropy instead of

relative entropy leads to improved target classification and feature inference, when

the underlying distributions are non-Gaussian and the measurements accuracy varies

significantly among targets. Therefore, in this dissertation, incremental entropy is

used to formulate the observation benefit function B, as shown in Section 3.3.

A common approach to implementing information-theoretic functions for sensor

planning is to confine each target to a discrete cell [25]. Then, it can be assumed that

when the sensor is directed toward a single cell (indexed by j) it produces a set of

discrete or continuous measurements that depend on the target found in the cell, and

here are denoted by Mj. Although the target characteristics are unknown a priori,

if the posterior probabilities P (Mj | yj) and the priors P (yj) are given, the problem

of planning the sensor mode and the cell to be measured can be solved by determin-
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ing the cell with maximum relative-entropy [25]. These existing methods utilize an

abstract notion of target cells and do not provide any guidelines for systematically

defining and computing the cells in terms of physical parameters. Therefore, they

cannot be readily applied to plan the sensor movements relative to the targets, or to

devise a strategy for pointing the sensor toward the target of interest. Also, since

they implement a non-additive relative-entropy objective function, they can select

only one optimal cell (or target) at a time from an available set.

In this research, we develop a methodology that defines cells as geometric subsets

of a robot configuration space and, systematically, computes a discrete-cell represen-

tation of a given workspace W , based on the robotic sensor geometries A and S,

respectively (Section 4.1). Also, since the sensor must visit an optimal sequence of

targets, we implement the incremental entropy approach that we developed in [30],

and that is reviewed in Section 3.3.

3.1 Review of Bayesian Network Sensor Modeling

A probabilistic model of the sensor measurements is obtained in the form of a

Bayesian network (BN), using the approach in [35]. BNs map causal-e↵ect rela-

tionships among all relevant variables by learning the underlying joint probability

distributions from data and, possibly, heuristic arguments. They can be used for

modeling a generic sensor measurement process by selecting the BN nodes to rep-

resent variables that influence the measurements outcomes, and by learning the BN

arcs and parameters from prior measurement data. The BN nodes are selected by

considering the following sets of variables: the operating parameters or mode V , the

environmental conditions E, the measurements M, and the actual target features

F that must be inferred from M. Also, when the sensor measurements are used

for classification, the target category is represented by a variable or node y. In this
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dissertation, upper case letters are used to define sets, and lower case letters are used

to define variables. After the BN nodes XS = {V, E,M, F, y} have been selected, all

of their possible instantiations must be identified such that they are countable and

mutually exclusive.

The BN arcs and conditional probability tables (CPTs) are determined by a batch

learning algorithm. In this approach [35], the initial architecture is specified based

on expert knowledge of the sensor working principles, as shown in Fig. 3.1. Subse-

quently, the final BN arcs and CPTs that best capture the measurement process are

obtained from a database of prior sensor measurements. This database consists of

several training cases in which all variables in XS are instantiated, and is constructed

by obtaining sensor measurements from several known targets, under known environ-

mental conditions [36]. After training is completed, the BN model specifies the joint

probability distribution underlying the sensor measurements in terms of the following

factorization,

P (XS) = P (V, E,M, F, y) =
Y

x
l

2X
S

P (xl | pa(xl)) (3.1)

where pa(xi) denotes the parents of a node xi in XS. 

Sensor Mode,  
V 

Measurements,  
M 

Environmental 
Conditions, E

Target 
Features, F y 

:  Node Cluster 

Figure 3.1: Initial architecture of BN sensor model

When measurements are obtained from an unknown target, Ti, the outcomes of

Mi are known and, together with any information pertaining the mode, Vi, and

environmental conditions, Ei, they provide the evidence ei for the BN model of the

sensor used to obtain the measurements. Thus, the BN model can be used to infer
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the features, Fi, and classification, yi of Ti, by computing P (Fi, yi | ei) [35]. In

many applications, such as demining, the measurements obtained from multiple and

heterogeneous sensors must be obtained and fused in order to achieve satisfactory

classification performance. In this case, the BN models of each sensor type are used in

combination with by the Dempster-Shafer (DS) rule of evidence combination [37,38]

to obtain a fused posterior probability distribution for Fi and yi, as shown in [35].

In summary, the BN model of a sensor provides a convenient representation for the

probability distributions underlying the measurement process, based on prior data

and expert knowledge. The BNs can be used to infer target features and classifications

from known measurements. Also, they can be used to compute the observation benefit

function, B, for the sensor measurements before the actual measurements become

available, i.e. a posteriori, as shown in the next section.

3.2 Information Measure Comparisons

In this section, di↵erent information measures are compared so as to select an e↵ec-

tive one which will yield good classification performance for path and sensor planning

in THPs. A robotic demining problem is applied to implement the numerical com-

parisons. In this application, first an IR (infrared) sensor mounted on an airplane

flying over the minefield was used to obtain prior information, and then autonomous

ground vehicles (AGVs) carrying a posterior Ground Penetrating Radar (GPR) sen-

sor moved around to improve the discovery and classification of objects buried under-

ground. Both prior and expected posterior sensor information was used as feedback

to the vehicle for control and planning purposes. The purpose of GPR sensor mea-

surements is to reduce the uncertainty in the hypothesis variable yi and improve its

classification. Let M denote a new (posterior) set of GPR measurements, given an

a-priori evidence set E0 = {v0, E0, M0}, which may include known environmental
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conditions, as well as the measurements M0 and mode v0 of a previously-deployed

IR sensor. The superscript ( · )0 denotes one or more random variables whose values

are known a priori.

The problem of sensor planning is to determine the best way to task a sensor

or group of sensors when each sensor may have many modes and search patterns.

Typically, the sensors are used to gain information about the kinematic state (e.g.

position and velocity) and identification of a group of targets. Recently, Cramér-Rao

bounds have been used to control the measurement sequence in a sensor management

setting [39, 40]. The bound is also known as the Cramér-Rao inequality or the in-

formation inequality [41] and has close relation to Fisher information measure which

has been used for optimizing a sampling design [42]. In its simplest form, the bound

states that the variance of any unbiased estimator is at least as high as the inverse

of the Fisher information measure.

Other information measures as a mean of information-driven sensor planning

has been proposed by several authors for computing the expected measurements’

value [25–28]. In the sensor planning problems using Bayesian estimation, reduction

in entropy of the posterior distribution that is expected to be induced by the mea-

surement is a good measure of the quality of a sensing action. Thus, information

theoretic sensor planning methodologies strive to take the sensing path or decision

that maximizes the expected information gain. The possible sensing decisions are

enumerated, the expected information gain for each measurement is calculated, and

the decision that yields the maximal expected gain is chosen. Several di↵erent in-

formation measures, such as simple heuristics, entropy and discrimination (relative

entropy or Kullback-Leibler divergence), are compared in an application of dynamic

sensor collaboration in ad hoc sensor networks [27]. Other related applications of dis-

crimination gain based on a measure of relative entropy, the Kullback-Leibler (KL)
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divergence, are described in [25,26,28]. Especially, in [26], a quite general information

measure called the Rényi information divergence [43], also known as the ↵-divergence,

is utilized to guide scheduling sensors for multiple target tracking applications. In

the limiting case of ↵ 7! 1, the Rényi divergence becomes the commonly utilized

(KL) discrimination. A partially observable Markov decision process (POMDP) was

proposed for sensing a hidden target from sensors on a platform by minimizing the

expected cost, and the classification actions were taken by weighing the expected

cost of performing future sensing actions with expected future reduction in the Bayes

risk [29].

Information measures such as mutual information and entropy reduction are also

commonly used as learning metrics that have been used in the machine learning

literature. Quadratic entropy and information potential are used as metrics in un-

supervised learning [44]. Maximizing mutual information is applied in unsupervised

neural networks learning [45].

In this section, di↵erent information measures are defined below and then their

numerical comparisons are implemented via the demining application described in

Chapter 6. While the details of this demining application will be explained in Chapter

6, the purpose of considering this demining problem in this section is to compare the

performance of di↵erent information measures in sensor planning applications.

Information entropy is a function that represents the uncertainty or lack of in-

formation in a discrete and random variable that can be defined with respect to a

variable’s probability distribution. The entropy H(x) of a discrete random variable

x is defined by [41]:

H(x) = �
X

x

P (x) log2 P (x). (3.2)
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The conditional entropy H(y|x) where y is the hypothesis variable is defined as [41]:

H(y|x) = �
X

x

P (x)H(y|x) = �
X

x

P (x)
X

y

P (y|x) log2 P (y|x). (3.3)

Consider instead the incremental entropy or conditional mutual information [41] that

for three discrete and random variables y, x1, and x2 is defined as:

I(y; x2|x1) = H(y|x1)�H(y|x1, x2) (3.4)

= Ey,x1,x2

⇢
log2

P (y, x2|x1)

P (y|x1)P (x2|x1)

�
(3.5)

where, E denotes the expectation with respect to its subscript. Since the conditional

entropy H(y | E0, M) cannot be determined prior to measuring M , the EER,

�H(y; M |E0) ⌘ H(y|E0)�
X

M

⇥
H(y|E0, M)P (M |E0)

⇤
= H(y|E0)� E[H |E0, M ].

(3.6)

The proposed EER actually equals incremental entropy or conditional mutual infor-

mation I(y; M |E0) = H(y|E0)�H(y|E0, M), since E[H |E0, M ] = H(y|E0, M).

The calculation of information gain between two densities f1 and f0 is done using

the Rényi information divergence:

D↵(f1kf0) =
1

↵� 1
log2

Z
f1(x) f 1�↵

0 (x) dx (3.7)

The determining factor ↵ is viewed as the degree of di↵erentiation between the two

densities under consideration. when ↵ 7! 1, the Rényi divergence becomes KL dis-

crimination or relative entropy. The discrimination D (y|E0) is defined as:

D (y|E0) =
X

y

P (y|E0) log2

P (y|E0)

P (y)
. (3.8)
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It was empirically determined that if the two densities are very similar, i.e., di�cult to

discriminate, then the indexing performance of the Hellinger a�nity distance (↵ =

0.5) was observed to be better than the discrimination, or Kullback-Leibler (KL)

divergence, or relative entropy. The expected discrimination gain (EDG) is defined

as:

�D(y; M |E0) ⌘
X

M

⇥
D(y|E0, M)P (M |E0)

⇤�D (y|E0) = E[D|E0, M ]�D (y|E0).

(3.9)

The expected Hellinger a�nity distance (EHAD) is defined as:

EHAD(y; M |E0) ⌘
X

M

⇥
D0.5(P (y|E0, M)kP (y|E0))P (M |E0)

⇤
. (3.10)

The Fisher information is defined as:

J(✓) = E✓


@ ln f(x; ✓)

@✓

�2

. (3.11)

By the Cramér-Rao Inequality, the mean squared error of any unbiased estimator

T (x) of the parameter ✓ is lower bounded by the reciprocal of the Fisher information,

i.e.,

J(✓) � 1

var(T )
=

1

E(x2)� E(x)2
(3.12)

For the case, when a Gaussian distribution can approximate the posterior, the Fisher

information satisfies:

J(✓) =
1

var(T )
. (3.13)

In the demining problem, the parameter to be estimated is the hypothesis variable

y and the observable random variables are the sensor measurements. Since all the

random variables in the demining problem are discrete, it is hard to compute the
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Fisher information in 3.11. Therefore, the Fisher information J(y|E0, M) can be

approximated as:

J(y|E0, M) ' 1

var(y|E0, M)
. (3.14)

The expected fisher information gain (EFIG) can be defined as:

�J(y; M |E0) ⌘
X

M

⇥
J(y|E0, M) P (M |E0)

⇤� J(y|E0). (3.15)

The Information Potential (IP), denoted by V (y|E0, M) , of P (y|E0, M) is defined

as:

V (y|E0, M) =
pX

i=1

P (y = i|E0, M)2, (3.16)

where y is with a finite range Y = {y1, . . . , yp}. The expected information potential

gain (EIPG) is defined as:

�V (y; M |E0) ⌘
X

M

[V (y|E0, M) P (M |E0)]� V (y|E0). (3.17)

The quadratic entropy of y given {E0, M} can be defined as:

HR2(y|E0, M) = � log2 V (y|E0, M). (3.18)

The expected quadratic entropy reduction (EQER) is defined as:

�HR2(y; M |E0) ⌘ HR2(y|E0)�
X

M

[HR2(y|E0, M) P (M |E0)]. (3.19)

The terms needed for computing the information measures defined above can be

obtained via IR and GPR sensor models in Fig. 6.1 and BN classifier in Fig. 6.2.

For comparison, the 98 target cells in the example mine field shown in Fig. 7.8 are

searched using the following three methodologies:
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1. Directed Search (DS): advance through the cells in the same order for every

frame, taking one measurement over each cell.

2. Expected Discrimination Gain Based Search (EDGBS): direct the sensor to

search the cells with the highest expected discrimination gain, taking one mea-

surement over each cell.

3. Expected Entropy Reduction Based Search (EERBS): direct the sensor to

search the cells with the highest expected entropy reduction, taking one mea-

surement over each cell.

4. Expected Hellinger A�nity Distance Based Search (EHADBS): direct the sen-

sor to search the cells with the highest expected Hellinger a�nity distance,

taking one measurement over each cell.

5. Expected Fisher Information Gain Based Search (EFIGBS): direct the sensor

to search the cells with the highest expected Fisher information gain, taking

one measurement over each cell.

6. Expected Quadratic Entropy Reduction Based Search (EQERBS): direct the

sensor to search the cells with the highest expected quadratic entropy reduction,

taking one measurement over each cell.

7. Expected Information Potential Gain Based Search (EIPGBS): direct the sensor

to search the cells with the highest expected information potential gain, taking

one measurement over each cell.

Assume that the GPR sensor is only allowed to make a fixed number of measure-

ments, due to energy and time limitations. The goal is to direct the GPR to search

the target cell sequence that produces the maximum improvement of average IR-GPR
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sensor fusion classification accuracy, using fixed GPR measurement times. If the clas-

sification is correct, then the classification accuracy is 1; otherwise 0. The results are

shown in Fig. 3.2 and 3.3. In Fig. 3.2, the average classification accuracy which is

defined as the sum of classification accuracy over the number of measured targets

is shown on the ordinates. In Fig. 3.3, average classification accuracy gain which

is defined as average classification accuracy after both IR and GPR measurements

minus average classification accuracy only with IR measurements.
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Figure 3.2: Average classification accuracy using seven searching technique.

As is seen from Fig. 3.2 and 3.3, considering both the classification accuracy and

classification gain, Expected Hellinger A�nity Distance Based Search (EHADBS) and

Expected Entropy Reduction Based Search (EERBS) are the best two. In Fig. 3.2,

although the information measure of EFIG yields the highest average classification

accuracy given that the amount of fixed GPR measurement times is less than 25,

this information measure brings worse classification gain, shown in Fig. 3.3, than
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Figure 3.3: Average classification accuracy gain using seven searching technique.

many other measures, such as EDG, EER, EHAD, etc. Although in the demining

problem, EHADBS is better than EERBS in achieving better classification gain,

EER is still selected in this dissertation to formulate the expected value of the sensor

measurements due to the following three reasons. The first reason, which is the most

important, is that the EER is the mutual information in nature and is shown to be

an additive function of a sequence of sensor measurements in Theorem 5.3.1 and [46].

This property brings several advantages. For instance, the principle of optimality is

satisfied [47] and EER can be used to e�ciently compute the expected information

value of the measurement sequence over time. Secondly, accounting for a tradeo↵

between the classification accuracy and classification gain, the performance di↵erence

between EER and EHAD is not big. In Fig. 3.2, when the amount of fixed GPR

measurement times is less than 40, EER yields better classification accuracy, whereas

EHAD gives better classification gain than EER. Finally, it is easy to substitute EER
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with EHAD while the sensor planning methodology proposed in this dissertation

keeps the same.

On the other hand, EER may show its disadvantage in some classification appli-

cations where high classification confidence level is strongly favored. For example, in

the robotic demining problem, if the misclassification of a true mine as a clutter is

more concerned on than the misclassification of a clutter as a mine and the claim of

a clutter should be based on high confidence level, EER may not be the best choice,

because the change from a probability distribution of a relatively high confidence level

to one of the favored higher confidence level will result in little reduction in entropy.

In this case, a possible new information measure can be designed based on EER so

that the new measure is piece-wise, e.g., having a large gain for a small increase in

high confidence level. Another example is about the information measure of EHAD

which describes the “informal” distance between two distributions. Assume that the

prior sensor measurement gives a correct classification. A false posterior sensor mea-

surement may bring an unfavored estimate and will result in a big gain in Hellinger

a�nity distance between the two posterior distributions obtained by both prior and

posterior sensors, and only by prior sensor, but the correct classification may be lost

after the posterior sensor measurement is taken. In brief, we have to admit that dif-

ferent information measures have di↵erent advantages and disadvantages. The choice

or design of a suitable information measure really depends on the specific problem

and its objectives. As this dissertation focuses on proposing general methodologies

to solve the treasure hunt problem, it is easy to substitute one information measure

with another while the systematic methodologies keep unchanged.

It can be shown in Appendix A that theoretically, �H(y; M |E0) = �D(y; M |E0).

However, we have two sensor models, IR sensor model and GPR sensor model. There

are errors in these IR and GPR models which are learned from data. One of the ob-
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vious evidences is that the prior probability of feature set T in IR model PIR(T )

is not equal to the prior probability of feature set T in GPR model PGPR(T ). In

calculating EER and EDG in eq. 3.6 and 3.9, some terms have to be obtained

from the two di↵erent models. Therefore, this results in that in the calculation,

�H(y; M |E0) 6= �D(y; M |E0). Their di↵erence, �H(y; M |E0) � �D(y; M |E0), re-

flects the model errors, and if viewed as a random variable, can be shown of mean

0.

3.3 Information Benefit Function

In an hypothesis-driven motion planning problem, the benefit of performing a se-

quence of measurements ZT = {M1,M2, . . .} by moving the sensor in W during

a period of time T is to decrease the uncertainty in the corresponding hypothesis

variables {y1, y2, . . .}. Since the measurements outcomes are unknown a priori, the

benefit of observation must be defined over the posterior distributions P (yi | Mi).

Also, if the sensor measurements are fused with prior measurements, which may have

been collected by a di↵erent type of sensor, the benefit of information must take those

measurements into account as well.

As shown in [46], the incremental entropy is an additive function and the reduction

in uncertainty brought about by a sequence of measurements ZT is given by the sum

B(T ) =
X

M
i

2Z
T

I(yi;Mi|M0
i )

=
X

M
i

2Z
T

�
H(yi|M0

i )� EM
i

[H(yi|Mi)P (Mi|M0
i )]
 

(3.20)

Where, M0
i denotes the set of prior sensor measurements available for target Ti, and

Z0 ⌘ {M0
1, . . . ,M0

r} is the set of all prior measurements from W . Finally, using the

method presented in [30], all terms in the above benefit function can be formulated
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in terms of CPTs available from the BN models of the sensors implemented. B(T )

is also called the expected entropy reduction (EER) brought about by a sequence of

measurements ZT .
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Chapter 4

Methodology: Robotic Sensor Motion

Planning

Existing robot motion planners have been devised to account for the presence of

obstacles that the robot must avoid to reach a goal configuration in the workspace [48].

Cell decomposition is a well-known obstacle avoidance method that decomposes the

free robot configuration space,

Cfree = C \
n[

j=1

CBj = {q 2 C | A(q) \ (
n[

j=1

Bj) = ?} (4.1)

into a finite collection of non-overlapping convex polygons, or cells, within which a

path free of obstacles can be easily generated. CBj is a C-obstacle and
Sn

j=1 CBj

is the C-obstacle region [48]. The approximate rectangloid decomposition method,

referred to as approximate-and-decompose [24], can be utilized to obtain an approx-

imate cell decomposition of Cfree for a convex polygonal robot A that is capable of

translating and rotating in W . In this method, cells of a predefined rectangloid shape

are used to decompose the bounding and bounded approximations of the obstacles,

until the connectivity of Cfree is properly represented. Then, the union of the cells

that are strictly outside the C-obstacle region are used to construct a non-directed

connectivity graph representing the adjacency relationships between them. Finally,

the connectivity graph is searched for the shortest path between an initial and a final

configuration, q0 and qf .
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4.1 Approximate-and-Decompose Method for Mo-

tion Planning in the Presence of Targets

In this section, a method based on the approximate-and-decompose approach [24] is

developed for robotic sensor planning in the presence of targets. It is assumed that

the sensor is mounted with a fixed position and orientation that can be specified

through the same moving frame of reference as the robot, FA, where:

Definition 4.1.1 (Field of View) The field of view of a sensor mounted on A is a

closed and bounded subset S(q) ⇢W such that every point x 2 S(q) can be observed

by the sensor when the robot occupies the configuration q specifying the position and

orientation of a moving Cartesian frame FA, embedded in A, with respect to a fixed

Cartesian frame, FW .

In order for a target to be observable by the sensor, it must intersect its field of

view. Therefore, the subsets of W where the sensor can collect measurements can be

defined similarly to C-obstacles [48], as follows:

Definition 4.1.2 (C-Target) The target Ti in W maps in the robot’s configuration

space, C, to the C-target region CT i = {q 2 C | S(q) \ Ti 6= ?}.

Example 4.1.3 Suppose the robot geometry A can be approximated by a rectangle,

and the sensor field of view S is a triangle that has a fixed orientation ✓s with respect

to FA, as shown in Fig. 4.1.a. Let A be a robot that can translate freely but cannot

rotate. Then, Fig. 4.1.b shows the geometry of the C-obstacle corresponding to an

L-shaped obstacle, and Fig. 4.1.c shows the geometry of the C-target corresponding

to a rectangular target.
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Figure 4.1: Example of C-obstacle (b) and C-target (c) obtained for a sensor with
field of view S that is installed on a robot with geometry A at a fixed orientation ✓s

(a).

While the robot geometry A must avoid collisions with the C-obstacle region, the

sensor field of view S must intersect one or more C-targets in order for the sensor

to make measurements. Since the sensor is installed on the robotic platform, the

position and orientation of S depend on the position and orientation of A. In other

words, q specifies the position and orientation of both S and A. Consequently, the

targets measured by the sensor depend on the robot path, and the robot must avoid

obstacles while searching for targets. Our approach consists of planning the sensor

measurements in concert with the robot motion, and of treating the targets as the

dual of the obstacles.

Although obstacles and targets may not intersect, the corresponding C-obstacles

and C-targets intersect when a set of robot configurations that enables an observa-

tion, S(q)\Ti 6= ?, causes the robot to collide with a nearby obstacle, A(q)\Bj 6= ?.

In this case, it follows that CT i \ CBj 6= ? and, therefore, C-targets cannot be con-

sidered as observation cells. Additionally, although targets may not intersect, the

corresponding C-targets may intersect when a set of robot configurations enables an

observation of multiple targets. A simple example of workspace populated with C-
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obstacles and C-targets is shown in Fig. 4.2. Therefore, a systematic approach is

developed for dealing with both C-targets and C-obstacles, and obtain a decomposi-

tion of Cfree, K, that contains and unequivocal subdivision of void and observation

cells. A void cell is a convex polygon  in Cfree with the property that none of the

targets are observable from any of the configurations in . Also, we introduce the

formal definition:

Definition 4.1.4 (Observation Cell) An observation cell is a convex polygon ̄ in

Cfree with the property that every configuration in ̄ enables the same non-empty set

of observations Z(̄) = {Mi | q 2 ̄, q 2 CT i}.

We present the approach for C = W ⇥ [✓, ✓0], where W ⇢ R2, and [✓, ✓0] is

the range of robot orientations. C is decomposed by first partitioning the interval

[✓, ✓0] into ⌫ maximal closed subintervals Iu, with u = 1, . . . , ⌫. Then, the bounding

approximations of C-obstacles and the bounded approximations of C-targets in the

rectangloid W ⇥Iu are obtained via the outer projection of C-obstacle and the inner

projection of C-targets into R2, respectively. The void rectangloid cells are extracted

from the complement of the union of the bounding approximations of C-obstacles

with the bounded approximations of C-targets in W ⇥ Iu. The observation cells are

rectangloids extracted from the bounded approximations of C-targets.

Let x, y, and ✓ denote the coordinates and orientation in FW . Then,  =

[x, x0]⇥ [y, y0]⇥ [✓, ✓0] denotes a rectangloid cell in C. We denote the intersections

of  with the C-obstacles and C-targets by CBj[] = CBj \ and CT i[] = CT i\,

respectively. Then, the following approximation are obtained, as shown in Fig. 4.2.b:

Definition 4.1.5 (Bounding Rectangloid Approximation) A bounding rectan-

gloid approximation of CBj[], denoted by RBj[], is a collection of non-overlapping

rectangloids Rv, v = 1, . . . , p, whose union contains CBj[].
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Definition 4.1.6 (Bounded Rectangloid Approximation) A bounded rectangloid

approximation of CT i[], denoted by R0T i[], is a collection of non-overlapping rect-

angloids R0
v, v = 1, . . . , p0, whose union is contained in CT i[].

 
 
 
 
 
 

CT1 

CT2 
CB1 

CT3 W 

Bounded 
Approximation 
 

Bounding 
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W
(a) (b) 

Figure 4.2: Simple example of workspace W populated with both C-obstacles and
C-targets (a) and corresponding bounded and bounding approximations (b).

The above approximations are computed and decomposed for all obstacles and

targets in W using the following steps:

1. Decompose [✓, ✓0]: The range of orientations is cut into non-overlapping intervals

Iu = [�u, �u+1], with u = 1, . . . , ⌫, �1 = �⇡/2, �⌫+1 = ⇡/2, and ⌫ � 1. Then,

let u = [x, x0]⇥ [y, y0]⇥ Iu.

2. Compute RBj[u] and R0T i[u]: For every u = 1, . . . , ⌫ and j = 1, . . . , n,

compute the outer projection,

OCBj[
u] = {(x, y) | 9✓ 2 Iu : (x, y, ✓) 2 CBj[

u]} (4.2)

and generate bounding rectangloid approximation of OCBj[u]⇥ u. For every

u = 1, . . . , ⌫ and i = 1, . . . , r, compute the inner projection,

ICT i[
u] = {(x, y) | 8✓ 2 Iu : (x, y, ✓) 2 CT i[

u]} (4.3)

and generate bounded rectangloid approximation of ICT i[u] ⇥ u. Then, for

8q 2 RBj[u] and 8✓ 2 Iu, A avoids collisions with Bj. And, for 8q 2 RT i[u]

and 8✓ 2 Iu, S can make measurements from Ti.
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3. Obtain void cells decomposition, Kvoid: For every u = 1, . . . , ⌫, generate a

rectangloid decomposition Ku
void of the void configuration space,

Cu
void = u \ {

n[

j=1

RBj[
u] [

r[

i=1

R0T i[
u]} (4.4)

Since Cu
void is the complement of a union of rectangloids within a rectangloid,

it can easily be decomposed as a union of rectangloids. Then, let Kvoid =

[⌫
u=1 Ku

void.

4. Obtain observation cells decomposition, Kz: Let the free observation space be

defined as,

Cu
z =

r[

i=1

R0T i[
u] \

n[

j=1

RBj[
u]

=
r[

i=1

{R0T i[
u] \

n[

j=1

RBj[
u]} ⌘

r[

i=1

{Cu
z,i} (4.5)

For every u = 1, . . . , ⌫ and i = 1, . . . , r, generate a rectangloid decomposition

of Cu
z,i \

S
l 6=i Cu

z,l, containing cells from which only one target is observable.

For every u = 1, . . . , ⌫, generate a rectangloid decomposition of
Sr

i=1{Cu
z,i \

S
l 6=i Cu

z,l}, containing cells from which two or more targets are observable. Then,

the union of both cell decompositions constitutes the set of observation cells,

Kz.

The above decomposition is not significantly harder than a decomposition involv-

ing only obstacles. Step 4 can be carried out by using Boolean operations of rectan-

gloids , and each rectangloid decomposition is polynomial in the number of vertices.

After the above steps are completed, the entire cell decomposition K = Kvoid [ Kz,

is used to obtain the following graph:
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Definition 4.1.7 (Connectivity Graph with Observations) A connectivity graph

with observations, G, is a non-directed graph where the nodes represent either an ob-

servation cell or a void cell, and two nodes in G are connected by an arc if and only

if the corresponding cells are adjacent.

Therefore, a connectivity graph with observations di↵ers from a classical connectivity

graph in that each observation cell is labeled and has a corresponding index set of

allowable measurements (from step 4), i.e., the index set of Z(̄). As in classical cell

decomposition methods, the cost associated with moving between any two cells in

the connectivity graph is attached to the arc between their corresponding nodes. In

this dissertation, the motion cost between any two nodes i and j representing void

or observation cells, and connected by an undirected arc (i, j) in G, is given by the

following Euclidean distance in C,

D(i, j) ⌘ max ||A(q̄i)�A(q̄j)|| = dij = dji. (4.6)

taken from [49], where q̄i denotes the geometric centroid of the cell i.

As an example, the approximate decomposition and connectivity graph obtained

for the workspace in Fig. 4.2 are illustrated in Figs. 4.3 and 4.4, respectively.
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Figure 4.3: Approximate rectangloid decomposition of W , in Fig. 4.2, into void (a)
and observation (b) cells, obtained from steps (3) and (4), respectively.
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Figure 4.4: Connectivity graph obtained from the approximate rectangloid decom-
position in Fig. 4.3, with observation cells labeled in grey.

4.2 Pruned Connectivity and Decision Trees

Through the connectivity graph G presented above, the robot and field of view geome-

tries can be represented as a point in the configuration space. Due to the stochastic

nature of the sensor measurements, the benefit associated with each observation cell

cannot be represented by a deterministic function value, like the motion cost (4.6).

Instead, a pre-posterior optimal policy that maximizes the expected observation profit

(2.2) can be obtained by pruning G and transforming it into a decision tree DT . As

an intermediate step, using the methodology presented in [46], G is pruned and rep-

resented by a connectivity tree Tr that contains a subset of feasible paths, including

the one leading to the overall optimal policy.

Suppose at time tk, the robotic sensor is in a configuration q 2 i. Then, if

only the adjacency relations in G are taken into consideration, the number of cells

that can be visited at tk+1 grows exponentially with k. However, if the objective

of minimizing the distance metric (4.6) in configuration space is taken into account,

the connectivity tree can be pruned at every time step, tk, thereby eliminating a

significant number of sub-optimal channels based on the principle of optimality [47].

We adopt the following definition, introduced in [46]:

Definition 4.2.1 (Connectivity Tree) The connectivity tree Tr associated with a

connectivity graph with observations, G, and two cells containing the initial and final
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robot configurations, 0 3 q0 and f 3 qf , is a tree graph with 0 as the root and

f as the leaves. The nodes represent standard or observation cells, and an additive

cost metric d is attached to each arc. A branch from the root to a leaf represents a

channel or sequence of cells joining q0 and qf , with the following properties:

• Two branches are said to be information equivalent if they join the same cells,

i and l, and contain the same set of observation cells, regardless of the order.

• Two branches that are information equivalent can co-exist in Tr if and only if

they represent the same channel.

• A branch in Tr connecting any two cells i and l has the smallest overall cost

of any other information-equivalent branch in G.

The pruning algorithm presented in Appendix C is a type of label-correcting al-

gorithm [50]- [51] which guarantees that Tr contains the path in G with the minimum

cumulative cost between 0 and f , as well as a subset of paths in G that are not in-

formation equivalent. Each of these paths enables a di↵erent subset of measurements

with minimum motion cost. A proof of the properties of the resulting connectivity

tree is provided in Appendix D. It is demonstrated in Section 3.3 that the order of

the observations does not change the total expected observation benefit, as defined

in Section 3.3. Therefore, by obtaining all paths that are not information equivalent

in Tr, the observation profit can be excluded by the above transformation G ) Tr

without eliminating any candidate solutions to the optimal policy �⇤. As an illustra-

tive example, consider the connectivity graph in Fig. 4.4, with 0 and f as labeled

in the figure. The corresponding connectivity tree obtained by the pruning algorithm

is shown in Fig. 4.5. A branch in Tr represents a channel or sequence of cells, and a

corresponding free path in configuration space for the robot A.

In this section, a methodology is presented for representing the treasure hunt
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problem (Problem 1) by means of a pruned decision tree DT , obtained by the trans-

formations G ) Tr ) DT . Decision trees can be used to represent discrete-time

dynamic processes (see [33, Section4.4] for a comprehensive review). Decision and

chance nodes comprise nonleaf nodes, and the leaves are the utility nodes. After a

decision tree is obtained from Tr, it can be easily searched for the optimal policy

by maximizing the total reward function (2.2). The obtained optimal solution is a

nonmyopic global optimal solution, because the decision tree theoretically contains

all candidate policies from 0 to f and the total reward function of a policy is con-

ditional on all future observations along the sensor path induced by the according

policy.

The decision tree DT in this dissertation is a tuple {UC , UD, R, A} with 0 as

the root and the values of the reward function R : ⌦(�) ! R as the leaves. ⌦ is

the domain of the chance and decision nodes, UC and UD, defined over a branch

� in DT . Each branch represents a feasible sequence of cells and decisions, � =

{x(tk), u(tk) | k = 0, . . . , f}, and contains a channel ⌧ connecting 0 to f in G. DT

is constructed from Tr such that for 8⌧ 2 Tr, 9� 2 DT such that ⌧ ⇢ �. Branches

in DT connect 0 to the leaves through the set of directed arcs A. The decision tree

representation of the treasure hunt problem, DT , is obtained from Tr by the following

assignments:

• Let the chance node x(tk) 2 UC in a branch � denote a cell i 2 G that the

robotic sensor can visit at time tk, such that i 2 ⌧ ⇢ �. Since x(tk) only has

one instantiation i, it implies the action decision to move to i along ⌧ .

• Let the test-decision node u(tk) 2 UD, with x(tk) � u(tk) in �, denote the set

of admissible test-decisions. For example, in Fig. 4.6, if the cardinality of the

set of observations Z(i) at time tk |Z(i)| = 1, ⌦(u(tk)) = {#1, #2, #3, #un},
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Table 4.1: Algorithm to generate decision tree DT from Tr

For every branch ⌧ 2 Tr

for k = 0, . . . , f , let x(tk) = i

if x(tk) is an observation cell, then
Insert a test-decision node u(tk) following x(tk)
Attach the following instantiation to the arc (u(tk), x(tk+1)):
u(tk) = arg max#{wB ·B(tk)� wJ · J(tk)},8# 2 ⌦(u(tk))}

end; [if]
end;[for loop]
Add a utility node as the leave numbered with the reward of

the channel ⌧
Link the chance, decision and utility nodes to form a branch

� 2 DT
end; [for loop]
Merge all branches � so that they only diverge from the very first
di↵erent nodes in DT

where #j, j = 1, . . . , 3, denotes the test-decision to observe the target with jth

sensor mode and #un denotes the decision of not performing any measurements.

• Let arc (xi, xj) 2 A, a link from node xi to xj, denote that xj is taken directly

following xi. An arc from a test-decision node to a chance node is labeled with

the action chosen.

The algorithm to construct a decision tree DT from the connectivity tree Tr is

shown in Table 4.1. The branch in DT with maximum utility gives the optimal policy

�⇤ of path and sensor planning from 0 to f .

Example 4.2.2 The pruned connectivity tree and decision tree obtained for the workspace

in Fig. 4.2 and connectivity graph in Fig. 4.4 are illustrated in Figs. 4.5 and 4.6,

respectively. As is seen from Figs. 4.2 and 4.3, if i 2 {̄12, ̄13, ̄14}, Z(i) =

{M1}; if i 2 {̄16, ̄17, ̄18, ̄19, ̄20}, Z(i) = {M2}; Z(̄15) = {M1,M2}; if

i 2 {̄21, ̄22, ̄23}, Z(i) = {M3}. It is assumed in this example that the expected

information benefit of M1,M2 and M3 over the test decision domain {#1, #2, #3, #un}
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orderly is {0.25, 0.2, 0.4, 0}, {0.03, 0.02, 0.01, 0} and {0.15, 0.25, 0.1, 0}, respec-

tively. In the algorithm shown in Table 4.1, wB = 20, wJ = 1. J(tk) is set to equal the

times of sensor taking measurements; otherwise, J(tk) = 0. Once one measurement

Mi is taken, the information benefit of taking another Mi along the same branch will

become 0 and thus the corresponding test decision is chosen to be ”not performing any

tests”, i.e., #un. For example, in the first branch in Fig. 4.6, u(t6) = #un at cell ̄22

since M3 has been taken at ̄21. In Fig. 4.6, the branch with the total utility of 0.2

represents the optimal policy �⇤ from 0 = 1 to f = 11.
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Figure 4.5: Connectivity tree Tr obtained from the connectivity graph in Fig. 4.4
via pruning algorithm.
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Figure 4.6: Decision tree DT obtained from the connectivity tree in Fig. 4.5.
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Chapter 5

Application I: Optimal Strategies in the

Board Game of CLUEr

The board game of CLUEr constitutes an excellent benchmark example. While its

rules and objectives can be easily understood, and are already well known by most,

this game exhibits all the basic challenges of the treasure hunt problem.

A key aspect of the game is that in order to make a suggestion involving a partic-

ular room and collect evidence about the corresponding card, the player’s pawn must

be inside the room. Hence, the type of evidence that may be collected depends on the

position of the pawn.

Bayesian models of uncertainty have been used for game playing in [52], where the

expected payo↵s were obtained from a probabilistic evaluation function learned from

data. Although there exist several computer version of CLUEr, to our knowledge

this is the first mathematical treatment of CLUEr game strategies. The influence

diagram representation of CLUEr [46], or decision tree obtained by the methodology

in Section 4.2, is used to compute optimal game strategies, including moving the pawn

and making suggestions. The strategies are tested through an interactive simulation

of CLUEr that allows human players to confront the computer, which is referred to

as intelligent computer player (ICP). In each trial, one human player (HP) confronts

the ICP and a constrained satisfaction player (CSP) as shown in Section 5.3.6.

36



5.1 Rules of the Game

The board game of CLUEr is a popular detective game where the objective of each

player is to determine the guilty suspect, weapon, and room of an imaginary murder

that takes place in the CLUEr mansion (Fig. 5.1). In this mansion, there are nine

rooms: the dining room (rd), the library (rl), the billiard room (rb), the hall (rh), the

kitchen (rk), the lounge (rg), the ballroom (ra), the study (rs), and the conservatory

(rc). The players each choose a pawn representing one of the six potential suspects:

Colonel Mustard (sm), Miss Scarlett (st), Professor Plum (sp), Mr. Green (sg), Mrs.

White (sw), and Mrs. Peacock (sk). In this dissertation, it is assumed that there are

three players: the human player, the ICP, and the RCP. The imaginary murder can

take place by one of six weapons: knife (wk), rope (wr), candlestick (wc), lead pipe

(wp), revolver (wv), and wrench (wh). Each item in the game is represented by an

illustrated card, such that there is a total of twenty-one cards in the deck.

At the onset of the game one card from each item category (room, suspect, and

weapon) is randomly selected, removed from the deck and hidden in an envelope

representing the murder’s guilty suspect, room, and weapon for the remainder of the

game. The remaining cards are dealt to the players who subsequently eliminate their

own cards from the list of possible hidden items. The players move their pawns about

the mansion by rolling the die, and when they enter a particular room, say ri, they

can make a suggestion that involves ri and any item from the suspect and weapon

category. It is by making suggestions that the players collect information about the

other players’ cards and, consequently, can infer the hidden cards in the envelope.

There are three ways for a pawn to enter a room: (i) a door illustrated on the

game board (Fig. 5.1), (ii) a secret passage connecting opposite corners (Fig. 5.1),

or (iii) being suggested as the murder suspect by one of the other players. Upon
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entering a room, a player pi must make a suggestion involving the potential room,

suspect, and weapon. The next player in the turns’ rotation, pi+1, must refute the

suggestion by showing one these cards, if possible, and otherwise state that he has

none of the suggested cards. In the latter case, the next player, pi+2, must attempt

to refute the suggestion. Then, the turn goes to the next player (in this case, pi+1).

When neither pi+1 nor pi+2 are able to refute it, it can be inferred that the suggested

cards are the hidden ones, or that the player pi has suggested one of her own cards.

All of these possibilities, and even blu↵s, are allowed in the CLUEr simulation.

 

Figure 5.1: CLUEr mansion and game pieces. CLUEr & c�2006 Hasbro, Inc.
Used with permission.

5.2 Interactive CLUEr Simulation

The hypothesis-driven path planning technique developed in this dissertation is tested

by means of an interactive simulation of the game of CLUEr that allows experienced

human players to play against the ICP, through the MATLAB Graphical User Inter-

face (GUI) Toolbox. The human player assigns pawns to the three players, the HP,

the ICP, and the RCP, and the simulation deals the cards randomly to the players.

At any time the human player can see his cards on the screen at the command of
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a button. The die is replicated by a random number generator that produces an

integer between one and six. The mansion is illustrated on a virtual board where the

players can move the pawns within the distance given by the die roll, and can enter

the various rooms through the doors or secret passages, as in the real game. At each

turn, a player must (1) roll the virtual die; (2) move the pawn on the virtual board

by a distance no greater than the die roll and, possibly, enter a room by clicking on

the desired location; (3) make a suggestion; (4) make an accusation or transfer the

turn to the next player; all in this sequence. The human player makes a suggestion

(or an accusation) by means of pull-down menus containing all twenty-one items, and

one of the computer players refutes the suggestion by displaying one of its cards on

the screen. The computer players make a suggestion by displaying the three desired

cards on the screen. If a computer player must refute this suggestion a warning is

displayed on the screen to the HP, but the value of the card is exchanged only be-

tween the computer players as data in the MATLAB environment. If it is the turn

of the HP to refute the computer’s suggestion, then an appropriate pull-down menu

is displayed such that the HP can choose which card to “show” to the computer.

Typically, human players take notes during the game to record the outcomes of

the suggestions, while the computer players record and access information through

the MATLAB environment. Human players can see their cards on the screen at

any time during their turn, and their actions are observed by the computer through

MATLAB interfaces.

5.3 Methodology and Results

The moving pawns are viewed as point robots navigating around the board. The

suggestions in the game of CLUEr are viewed as measurements that depend on

the room (or target), and whose outcomes are are unknown a priori. Based on a
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probabilistic argument and on the evidence obtained during the game, it is possible

to develop a pre-posterior strategy for navigating the board optimally and gather

information about the hidden cards. A game strategy consists of the test decision

on whether to enter a room and make a suggestion, and of action decision on how to

move the pawn inside the game board. The benefit of reaching a room (or target)

is the reduction in uncertainty that is expected from the corresponding suggestion.

The costs of reaching a room and entering it are the distance traveled and the turn

missed for making a suggestion, respectively.

5.3.1 Information Reward Function in the CLUEr

In hypothesis-driven decision problems the benefit of performing one or more tests

or measurements mi, . . . ,mj 2 M is to decrease the uncertainty of the hypothesis

variable y. Since the outcome of the tests is unknown a priori, the benefit of obser-

vation, B(tk),is defined over the posterior probability distribution P (y|mi, . . . ,mj).

Information entropy, conditional entropy and mutual information (or EER) is defined

in eq. 3.2, 3.3 and 3.4. Then, the following result provides an appropriate function

for the benefit of observation.

Theorem 5.3.1 Let ZT = {z1, z2, . . . , zf�1} be a sequence of measurements about an

hypothesis variable y that are performed through a Markov process defined over a set

of decision epochs T = {t1, t2, . . . , tf}. Then, the incremental entropy,

�H(tk) ⌘ H(tk�1)�H(tk)

= H(y|zk�1, zk�2, . . . , z1)�H(y|zk, zk�1, zk�2, . . . , z1)

= I(y; zk | zk�1, zk�2, . . . , z1) (5.1)

is a conditional mutual information, and represents the reduction in uncertainty in

y that is incurred at time tk, when an additional measurement zk is performed. The
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incremental entropy is a reward function that is additive over time. Hence, the total

measurement benefit,

B(tf ) =
f�1X

k=1

�H(tk) = I(y; z1, z2, . . . , zf�1) (5.2)

is the reduction in uncertainty brought about by all measurements in ZT .

See Appendix E for the proof. Also, the following result follows from the above

theorem, which is useful in obtaining a decision policy that leads to an optimal

measurement sequence ZT = {z1, z2, . . . , zf�1} chosen from a set M (with f < r):

Remark 5.3.2 The total measurement benefit at any time ti 2 (t0, tf ],

B(ti) =
iX

k=1

�H(tk) (5.3)

that is obtained from a sequence of tests whose individual outcomes are independent

of time, is independent of the order in which the tests are performed.

A proof is provided in Appendix F. The same result applies to the cost of measure-

ment, J , provided it is an additive function. It follows that, as shown in Appendix

D, the pruning algorithm can eliminate information-equivalent branches based solely

on distance, without eliminating solutions that are optimal with respect to the total

measurement profit (2.2). As shown in (5.3), at any time tk incremental entropy must

be computed for all combinations of measurement outcomes that may be obtained

prior to tk. Therefore, the results in the following section are derived to demonstrate

that for certain forms of the joint PMF, P (y, M), the incremental entropy can be

obtained e�ciently using an approach that is recursive with respect to tk.
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5.3.2 E�cient Incremental Entropy Computation Over Time

Based on the formulation of the treasure hunt problem, the hypothesis variable y must

be inferred from a subset of M , given P (y, M). From eq. (5.1), the measurement

benefit for an admissible measurement, zk = mj 2M , at time tk is,

I(y; zk = mj | Zt
k�1

) = Ey,m
j

,z
k�1,...,z1

⇢
log2

P (y, mj | Zt
k�1

)

P (y |Zt
k�1

)P (mj|Zt
k�1

)

�
(5.4)

and must be computed for every admissible sequence of measurements Zt
k�1
⌘

{z1, z2, . . . , zk�1}, obtained before tk. The joint probability P (y, mj, Zt
k�1

) can be

obtained by marginalizing the remaining measurements out of the joint probability

distribution P (y, M), and the posterior probabilities in eq. (5.4) can be obtained from

P (y, mj, Zt
k�1

) by a straightforward application of the general factorization property

and Bayes rule.

Suppose the joint probability P (y, M) is known in the form of the Bayesian net-

work (BN) in Fig. 5.2.a, that represents a particular form of factorization,

P (y, M) = P (y) ·
Y

m
j

2M

P (mj | y) (5.5)

where all of the terms are known from the BN CPTs, shown in Fig. 5.2.a. Then, by

exploiting the above factorization, the incremental entropy can be computed recur-

sively over time. At time t0, the entropy of the hypothesis variable is H(t0) = H(y)

and can be obtained from the CPT P (y) in Fig. 5.2.a, as shown in eq. (3.2). If

the subset of measurements Mk are obtained by the sequence of measurements Zt
k

,

and none of the measurements are ever repeated over the time period (t0, tf ], then

H(tk) = H(y | Zt
k

) can be obtained from eq. (3.3), using the posterior probability,

P (y | Zt
k

) =
P (y, Zt

k

)

P (Zt
k

)
=

P
m

i

62M
k

P (y, M)

P (Zt
k

)
=

P
m

i

62M
k

{P (y) · Qm
j

2M P (mj | y)}
P (Zt

k

)
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=
P (y) · {Qm

i

2M
k

P (mi | y)} · {Pm
j

62M
k

Q
m

j

62M
k

P (mj | y)}
P (Zt

k

)

=
P (y) · Qm

i

2M
k

P (mi | y)

P (Zt
k

)
=

P (zk = ml | y) ·P (y, Zt
k�1

)

P (Zt
k

)
(5.6)

and the joint probability

P (Zt
k

) =
X

y

P (y, Zt
k

) =
X

y

P (zk = ml | y) ·P (y, Zt
k�1

) (5.7)

The last term in the numerator of eq. (5.6) equals one by the unity law of probabil-

ity, and P (zk = ml | y) is available from the BN CPT associated with node ml. The

above distributions are both formulated with respect to P (y, Zt
k�1

), which is avail-

able from the previous time step, letting k = 0, 1, 2, . . . , f . Thus, the incremental

entropy is computed as �H(tk) = H(tk�1) � H(tk), where H(tk�1) also is known

from the previous time step. If there is more than one admissible measurement at

any time t0  ti  tk, then the above computation must be carried out for every

one of them, but can still be performed recursively. This recursive entropy compu-

tation exploits the BN factorization to gain computational e�ciency compared to a

brute-force marginalization of the joint probability distribution, P (y, M). A similar

approach also is used in the arc-reversal method and in junction-tree propagation

algorithms [53].

Another case in which the incremental entropy computation can be carried out

recursively is that of a BN structure that has feed-forward connections among the

measurement nodes, as illustrated in Fig. 5.2.b. The measurement nodes are ordered

such that if mi < mj, then there is an arc from mi to mj, and the joint probability

including the hypothesis variables exhibits the following factorization,

P (y, M o) = P (y) ·
rY

j=1

P (mj | y, mj�1, . . . ,m1) (5.8)
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y 

m1 m2

P(m1 | y) P(m2 | y, m1) 
P(mr | y, m1, …, mr-1) 

… mr

(b) 

P(y) y 

m2 … mrm1

P(y) 

P(m1 | y) P(m2 | y) P(mr | y) 

Figure 5.2: Examples of e�cient Bayesian network factorization of the joint prob-
ability distribution P (y, M).

where, the measurement set is now totally ordered M0 ⌘ {m1, . . . ,mr}. This type

of BN structure may be useful in representing the probabilistic relationships be-

tween measurements with the same domain that are interchangeable and thus can

be ordered according to the time at which they are performed, such that M o
k =

{m1, m2, . . . ,mk} = Zt
k

, and M o
k ⇢ M o. Although the incremental entropy is com-

puted by the same approach, the posterior probability needed to compute H(tk) is

now obtained by exploiting the new BN factorization (eq. 5.8),

P (y | Zt
k

) = P (y | zk, Zt
k�1

) =
P (zk |y, Zt

k�1
) ·P (y | Zt

k�1
)

P (zk | Zt
k�1

)
(5.9)

and by applying the probability law P (y | z1, z2) = P (z2 | y, z1) ·P (y|z1)/P (z2|z1).

The posterior probability at the denominator also can be computed recursively,

P (zk | Zt
k�1

) =
X

y

P (y, zk | Zt
k�1

) =
X

y

P (zk |y, Zt
k�1

) ·P (y | Zt
k�1

),

as well as the joint probability table needed for computing the entropy:

P (y, Zt
k

) = P (y, zk, Zt
k�1

) =
X

m
i

62Mo

k

P (y, M o)
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=
X

m
j

62Mo

k

P (y) ·
rY

j=1

P (mj | y, mj�1, . . . ,m1)

= P (y) ·
kY

i=1

P (mi | y, mi�1, . . . ,m1) ·
X

8m
j

>m
k

{
rY

j=k+1

P (mj | y, mj�1, . . . ,m1)}

= P (y) ·
kY

i=1

P (mi | y, mi�1, . . . ,m1) = P (zk |y, Zt
k�1

) ·P (y, Zt
k�1

) (5.10)

The above equation is an e�cient computation that allows the entropy to be com-

puted recursively from the probability distributions required by the previous time

step, P (y | Zt
k�1

) and P (y, Zt
k�1

), and from the available BN CPT P (zk | y, Zt
k�1

) =

P (mk | y, mk�1, . . . ,m1).

One possible approach is to use the BNs in Fig. 5.2 to compute the probabilities

needed by the benefit function (5.3) at every time slice tk. Another approach, used

in this dissertation, is to include the hypothesis variable y in the ID representation

of underlying POMDP, as shown in Fig. 5.3, and to assign the probabilities obtained

in this section to the hidden node y(tk). This hidden node has the same domain

as y, and ⇡(y(tk)) = {z(t1), . . . , z(tk)}. Since y is parent only to the utility node,

the ID in Fig. 5.3 does not have a complexity problem, provided xk is observable.

If xk is hidden, or if the domain of M is very large, then the solution of this ID

may require information blocking or the use of a limited memory ID (LIMID) [54].

An example of treasure hunt problem and solution is provided in the next section.

Unlike common POMDP where the utility nodes are formulated as the cost and the

expected cost is minimized, the proposed ID formulates utility nodes as information

benefit, which is a function of the posterior distribution of hypothesis variable y(tk),

and will maximize the expected information reward. One of the interesting issues

is the convergence property of the ID representation of underlying POMDP under

45



new information benefit formulation of utility nodes. But the convergence problem

of the proposed ID is beyond the topics of this dissertation, since the ID is only used

as a tool to solve the treasure hunt problem arising in the game of CLUEr and the

decision tree proposed in Section 4.2 is also an e↵ective approach. Furthermore, in

the CLUEr simulations that have run, the ID never fails to produce optimal policies.
 

… 
a(t0) 

v(t0) 

a(t1) 

v(t1) 

x(t0) 

z(t1) 

x(t1) 

u(t1) 

y(t1) 

a(t2) 

v(t2) 

u(t2) 

y(t2) 

x(t2) 

z(t2) 

x(tf ) 

… 

v(tf) 

Figure 5.3: Influence diagram representation of the treasure hunt problem (the
CPTs attached to yk, P (y | Zt

k

), are obtained from a BNs (e.g., Fig. 5.2) by arc
reversal.

5.3.3 Connectivity Tree for Navigating the CLUEr Mansion

The CLUEr mansion (Fig. 5.1) constitutes the pawns’ two-dimensional workspace

W . Since the rooms can only be accessed through doors or secret passages, these

locations represent the set of observation cells KT
i

that enable the suggestion or

measurement mi, associated with the room Ti. The ICP pawn can translate in

the horizontal or vertical directions, moving from bin to bin in the two-dimensional

grid illustrated on the game board (Fig. 5.1). Hence, the connectivity graph of

this workspace can be obtained by a convex polygonal decomposition (CPD) [48]

comprised of polygons that are decomposable into the existing square bins, as shown

in Fig. 5.4. The corresponding CLUEr connectivity graph is illustrated in Fig. 5.5,

where the nodes representing void cells are shown in white, and the nodes representing
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observation cells are shown in grey (the room that is entered through these cells is

shown by a dashed line). Since the pawn can only move to adjacent bins according

to the number rolled, the appropriate workspace metric is the Manhattan distance

or taxicab metric [55], that is,

dij = D(i, j) = ||cx
i

� cx
j

||+ ||cy
i

� cy
j

|| = dji (5.11)

where, || · || denotes the L2-norm in units of bins, and (cx
i

, cy
i

) are the xy-coordinates

of the geometric centroid of the ith cell.
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Figure 5.4: Convex polygonal decomposition (CPD) of the CLUEr workspace,
where void cells are shown in white, observation cells in grey, and obstacles in black.

The connectivity tree obtained by the pruning algorithm is shown in Table 5.1,

for 0 = 3 and f = 51. Every time 0 or f change, a new connectivity tree

must be obtained from G. Although the pawn’s location typically is given by the

optimal strategy, the pawn may be moved to a room by a player suggesting the ICP

pawn’s character as the potential suspect. In this case, a new connectivity tree is
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Figure 5.5: Connectivity graph with observations for CLUEr, corresponding to the
CPD in Fig. 5.4, with dashed lines indicating the room that can be entered through
each observation cell (adjacent to the room door).
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Table 5.1: Connectivity tree for q0 2 3 and qf 2 51 (arcs and costs are as shown
in Fig. 5.5).

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

1 2 3 4 a 6 a 6 c g a g 7 d

t14 t15 t16 7 5 7 c 7 5 b c b 14 14

15 b b t17 14 15 5 15 14 a 7 a 15 15

17 a 18 b t18 22 14 16 17 6 14 7 17 16

18 17 19 a 18 26 17 19 18 7 17 14 18 17

19 18 20 18 19 t19 23 20 21 15 18 15 21 19

20 19 21 19 21 19 24 22 22 19 21 19 22 20

21 20 22 21 22 21 27 25 23 20 22 20 23 21

22 21 23 22 23 23 t20 26 24 23 25 22 24 23

23 22 24 23 24 24 21 52 27 24 26 23 25 24

25 23 25 24 25 25 23 t21 51 25 27 24 26 25

26 24 26 25 26 26 25 23 t22 26 51 26 27 26

27 25 27 26 27 27 26 25 25 51 64 27 51 27

51 27 51 27 51 51 27 27 27 52 51 52 51

52 51 52 51 52 52 51 51 51 t23 t24 52 60 52

56 52 56 52 52 52 52 27 51 61 62 58

60 54 54 51 52 63 64 59

62 58 52 t25 69 61

69 59 51 63
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generated using the new initial position 0. Also, a new connectivity tree is required

when the desired final position f changes as a consequence of the evidence obtained

during the game. In CLUEr, f is nearest observation cell adjacent to the room with

maximum probability of being the hidden one. The joint probability distribution over

the CLUEr cards and the insertion of evidence are modeled by a BN, as shown in

the next section.

5.3.4 CLUEr Bayesian Network

The inference process required to estimate the hidden CLUEr cards representing the

murder’s weapon, room, and guilty suspect, is automated by means of a Bayesian net-

work that models the relationships between the game cards. Assuming there are three

players in the game, the eighteen cards remaining in deck can be equally distributed

into groups of six cards per player. Every card in the deck is represented by one node

in the CLUEr BN. The hidden room (yr), weapon (yw), and suspect (ys) cards are

represented by three nodes whose domain equals the domain of the cards’ respective

categories, i.e.: ⌦(R) = {rd, rl, rb, rh, rk, rg, ra, rs, rc}, ⌦(S) = {sm, st, sp, sg, sw, sk},
and ⌦(W ) = {wk, wr, wc, wp, wv, wh}. Every time a card is dealt, its value influences

those of the cards that are dealt subsequently. The hidden cards influence only the

cards in the same category. However, since the categories of the players’ cards are

unknown, a general BN accounting for all possible relationships has the structure

shown in Fig. 5.6, where Cji denotes the jth card of ith player, and an arc is placed

between two cards Cji ! Clk when k > i, or when k = i and l > j. Also, every card

Cji has twenty-one possible outcomes, i.e., ⌦(Cji) = ⌦(R) [ ⌦(S) [ ⌦(W ). The BN

in Fig. 5.6 has a complexity problem, because the CPT attached to the last node

C63 is of order O(1025).

A tractable CLUEr BN structure is obtained by introducing an assumption on
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ys yw yr 

C11 C21 C31 

C41 C51 C61 

C12 C22 C32 

C42 C52 C62 

C13 C23 C33 

C43 C53 C63 

Figure 5.6: Structure of the exact BN model for the CLUEr cards, where an arc
between two node clusters indicates connections among all the nodes in the clusters
in the direction shown.

the categories of the cards that are dealt to each player. The cards are dealt uniformly

among the three players, such that: (i) p1 has two suspect cards, one weapon card,

and three room cards; (ii) p2 has one suspect card, two weapon cards, and three room

cards; and, (iii) p3 has two suspect cards, two weapon cards, and two room cards.

The ICP is chosen to always be p3 who has the disadvantage of having less room cards

than the other players. p1 and p2 can be either human or random computer players.

Also, the ICP always knows its own cards, therefore they are excluded from the

CLUEr BN, and their values are eliminated from the BN domain, which is created

at the onset of game. Let Cs
ji, Cw

ji, and Cr
ji denote the jth suspect, weapon, and

room cards, respectively, that each belong to the ith player, with i = 1, 2. After the

cards are dealt by the simulation, the BN domain is determined by the following set

operations,

⌦(ys) = ⌦(Cs
ji) = ⌦(S̄) ⌘ ⌦(S) \ ⌦(Cs

l3) = {sı : ı = 1, . . . , 4}

⌦(yw) = ⌦(Cw
ji) = ⌦(W̄ ) ⌘ ⌦(W ) \ ⌦(Cw

l3) = {w| : | = 1, . . . , 4}

⌦(yr) = ⌦(Cr
ji) = ⌦(R̄) ⌘ ⌦(R) \ ⌦(Cr

l3) = {r◆ : ◆ = 1, . . . , 7}
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with i, l = 1, 2. Since cards of di↵erent categories are conditionally independent, with

the above assumption when a card is hidden or dealt to a player it only influences

the cards that are dealt subsequently and are in the same category. Thus, the rela-

tionships between the hidden cards and the cards dealt to p1 and p2 can be modeled

by the CLUEr BN in Fig. 5.7, for which inference is feasible.
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C11
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C32
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 Figure 5.7: Structure of approximate BN model for the CLUEr cards, where it is

assumed that Player 1 is dealt two suspect cards, one weapon card, and three room
cards, and Player 2 is dealt one suspect card, two weapon cards, and three room
cards.

The CPTs of the CLUEr BN (Fig. 5.7) are obtained by inspection: cards with

the same domain may not acquire the same instantiation, and cards with di↵erent

domains are independent. Let a binary variable � be defined over a set of finite

and discrete nodes, X = {x1, . . . , xn}, that all have the same domain of n mutually

exclusive state values ⌦(x) = {x1, . . . , xn}, such that,

�(X) =

 
Y

l

Y

k 6=l

(1� �ij) : xl = xi, xk = xj, 8 (xl, xk) 2 X; xi, xj 2 ⌦(x)

!
. (5.12)
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Then, the CPTs of the CLUEr BN shown in Fig. 5.7 are given by,

P (C`
ji | pa(C`

ji)) =
�(C`

ji [ pa(C`
ji))

|⌦(C`
ji)|� |pa(C`

ji)|
(5.13)

and,

P (y` = `j) =
1

|⌦(y`)| , 8`j 2 ⌦(y`) (5.14)

The symbol | · | denotes the cardinality of a set, and ` denotes the card category.

Hence, the above equations hold for ` = s, w, r. This BN is used by the ICP to make

an intelligent suggestion any time its pawn enters a room in the CLUEr mansion. It

also is used to obtain the joint probability distribution over the hypothesis variables

and the tests that can be performed during the game, as illustrated in Section 5.3.6.

The following section illustrates how evidence is computed and entered in the CLUEr

BN, based on the replies provided by the other players during the game.

5.3.5 Evidence Tables Construction and Update

New evidence can become available during every player’s turn, when suggestions are

proven or refuted by the other two players. The simplified CLUEr BN in Fig. 5.7

consists of three BNs, one for each card category. Therefore, the game evidence

can be organized into three independent tables, Es, Ew, and Er, that are used to

store hard and soft evidence about the respective BN nodes. Hard evidence refers

to perfect knowledge of a node’s instantiation. If the probability distribution of a

node over its possible values is known, it is referred to as soft evidence (se), and is

represented by a known probability distribution function Q( · ). Je↵rey’s rule is used

as a mechanism for updating soft evidence in a BN with an unknown node x, given
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soft evidence about its children ch(x):

P (x | se) =
X

ch(x)

P (x | ch(x)) P (ch(x) | se) =
X

ch(x)

P (x | ch(x)) Q(ch(x)) (5.15)

Hard evidence can be viewed as a special type of soft evidence, where a value of one

is assigned to the instantiated value, and all the other values have a zero probability

in Q.

The evidence tables contain the latest soft or hard evidence about the players’

cards, that are the children of the hidden hypothesis variable ys, yw, and yr to be

inferred. Let E` denoted a (N ⇥M) matrix of known probabilities for all children

of the hypothesis variable y`, such that every row in E` contains Q(C`
ji), for all

C`
ji 2 ch(y`) (as shown in Fig. 5.7), where N = |ch(y`)| and M = |⌦(y`)|. At the

onset of the game, all cards have equal probability to assume any of the values in

their respective domain. Hence, the evidence tables are initialized according to the

following equation,

E` = {e`
kl} =

⇢
1

|⌦(y`)|
�

, at t0 (5.16)

where e`
kl represents the element in the kth row and lth column of E`. After t0,

the evidence tables are updated with the evidence obtained through the players’

suggestions, based on the following rules:

1. By the unity law, all probabilities in the same row must sum to one,

MX

l=1

e`
kl = 1

where, M = |⌦(y`)|.

2. Hard evidence negating an instantiation is constant over time, therefore,

if C`
ji 6= `ı at t◆, then Q(C`

ji = `ı) = 0, 8t > t◆.
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3. Hard evidence supporting an instantiation is constant over time and also negates

the instantiation for all other cards in the same category. Thus,

if C`
ni = `m 2 ⌦(y`) at t◆, then e`

nm = 1, e`
nl = e`

km = 0,

for, 8k 6= n, 8l 6= m, and 8t > t◆.

The evidence tables are updated at every player’s turn, using a rule-base sys-

tem derived from the CLUEr game rules. Let the set of three instantiations G =

{sG, wG, rG} denote the suggestion of a player whose pawn is in room rG, where

sG 2 ⌦(S), wG 2 ⌦(W ), and rG 2 ⌦(R). There are two cases that allow the ICP to

obtain soft evidence from the suggestion of another player: (a) one or more players

are not able to refute the suggestion of a player pi, with i = 1, 2, 3, revealing that

they do not possess any of the three cards; or, (b) a player refutes the suggestion

made by a player other than the ICP. In these cases, the ICP can observe G, but not

the actual instantiation in G that was used to refute it. The information content of

the latter observation depends on the hard evidence that was previously available.

Hard evidence is obtained only when the ICP makes a suggestion that is refuted by

one of the other players who shows one card to the ICP. All evidence is stored in

the evidence tables, but the type of evidence determines how the tables are updated.

The evidence tables update consists of two steps: I. updating the probabilities, and

II. guaranteeing that the new probabilities satisfy rules (1)-(3).

I. The evidence tables probabilities are updated to reflect the evidence observed

from the latest turn, t◆, as follows:

a) Soft Evidence: Let G denote a suggestion by a player pi that cannot be

refuted by at least one other player. Then, for any pk (k 6= i, k 6= 3) that
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cannot refute G, set

e`
jm = 0, for 8`G 2 G, and 8 j : C`

jk 2 ch(y`) (5.17)

where `G = `m 2 ⌦(y`).

b) Soft Evidence: Let G denote a suggestion by a player pi that is refuted by

pk (i, k 6= 3, i 6= k), by showing a card CG unknown to the ICP, but such

that ⌦(CG) = G. Let �` = ⌦(y`) \ {`m : e`
nm = 1, 8C`

ni 2 ch(y`)} denote

the set of free instantiations for cards of the ` category, based on E`
old. The

set �G ⌘ G \ (�s [ �w [ �r) contains the free instantiations in the suggestion

made by pi, and the evidence table is updated as,

e`
ln = Pnew(C`

lk = `G) = P (C`
lk = `G | CG = `G) P (CG = `G)

+ P (C`
lk = `G | CG 6= `G) [1� P (CG = `G)]

⇡ P (CG = `G) + Pold(C
`
lk = `G)[1� P (CG = `G)] (5.18)

where `G = `n 2 ⌦(y`), Pold( · ) is available from E`
old, and we set

l = max
j

P (C`
jk = `G), and P (CG = `G) =

⇢
1/|�G|, if `G 2 �G
0, if `G 62 �G

.

c) Hard Evidence: Let G denote an ICP suggestion that is refuted by pk (k=1

or 2) who shows a card `G = `m 2 ⌦(y`), and

h = max
j

H(C`
jk), then e`

hm = 1 and e`
hl = 0,

for 8l 6= m in the table E`. Where, H is the information entropy defined in

eq. (3.2).

II. The evidence table row and column containing the element e`
ij that was updated

in Step I are normalized by the following procedure:
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- Let M = |⌦(y`)| be the number of columns in the matrix E`. Then,

if e`
il = 1, set e`

im = 0, 8m 6= l.

Otherwise, compute the following variations,

let �e`
i = 1�

MX

m=1

e`
im, then e`

il = e`
il +

�e`
i

M
, 8 l 6= j, and 8 e`

il 6= 0.

Set the elements, e`
il, that are negative equal to zero, and repeat the above

procedure until they all are non-negative.

- Consider the column in E` that contains e`
ij, then

if e`
kj = 1, set e`

nj = 0, 8 n 6= k, n 6= i.

Otherwise, leave the column unaltered.

5.3.6 Results: Optimal Game Strategies

The CLUEr decision tree can be obtained by the methodology in Section 4.2, or

an influence diagram can be obtained by folding the connectivity tree and augment-

ing it with observation and test-decision nodes, using the procedure presented in [46],

leading to Fig. 5.3. x(tk) represents the cells that can be visited at time tk. z(tk) rep-

resents the set of suggestions that can be performed at time tk. Each action decision,

a(tk), determines the cell to which the pawn moves at time tk+1, and each test deci-

sion u(tk) determines whether one of the admissible suggestions will be performed.

Since the turn is lost every time a suggestion is made, the cost of observation J(tk)

is the average distance that can be traveled in one turn. The tradeo↵ between value

and cost of observation is specified through the weights wB, wD, and wJ , obtaining

an ICP that favors moving quickly about the board versus entering the rooms when

wB << wD, wJ , and viceversa.
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The set of CLUEr measurements consists of the suggestions that can be per-

formed inside the nine rooms in the mansion, M = {md, ml, mb, mh, mk, mg, ma,

mc}. Each measurement in M can be performed only inside its room, and its out-

come is unknown a priori. However, since its posterior probability can be computed

from P (yr, M), it is used to estimate the information reward through eq. (5.1). Let

the suggestions made in the seven rooms that do not belong to the ICP be denoted

by MC = {m◆ : ◆ = 1, . . . , 7, r◆ 2 ⌦(yr)}. Then, each suggestions in MC has four

mutually-exclusive outcomes, defined as: r◆ belongs to p1 (m1
◆ ), r◆ does not belong to

p1 but belongs to p2 (m2
◆ ), r◆ does not belong to neither p1 nor p2 (m3

◆ ), and r◆ = un

(m4
◆ ). Each outcome corresponds to a possible reply by p1, and p2 (if p1 has none of

the suggested cards), in response to an ICP suggestion in room r◆. Thus, the CPT

of a suggestion m◆ 2MC in the CLUEr BN (Fig. 5.8) is,

P (m◆ = m1
◆ | Cr

l1 = r◆, Cr
ji) = 1, if �(pa(m◆)) = 1, for l = 1, 2, 3

P (m◆ = m2
◆ | Cr

l2 = r◆, Cr
ji) = 1, if �(pa(m◆)) = 1, for l = 4, 5, 6

P (m◆ = m3
◆ | Cr

ji 6= r◆) = 1, if �(pa(m◆)) = 1, for 8j, i

P (m◆ = m4
◆ | Cr

ji) = 1, if �(pa(m◆)) = 0, (5.19)

and is defined for 8Cr
ji 2 ch(yr), where �( · ) is given by eq. (5.12), and all other CPT

entries are set equal to zero. Then, the CLUEr BN and the evidence tables (Section

5.3.5) are used to evaluate the information benefit, as shown in Section 3.3.

Every time P (yr | Er) undergoes a substantial change, the CLUEr influence dia-

gram is used to obtain a new optimal plan for the ICP moves, using the exact LIMIDs

algorithm [54], implemented by the Bayesian Network Toolbox for Matlab [56]. Some

examples are provided in Table 5.2, for various combinations of q0 and qf , and of the

weights wB and wJ . It can be seen from these paths that when the cost of obser-

vation is weighted highly with respect to its benefit (wJ >> wB) the paths tend to
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Figure 5.8: BN model of the CLUEr suggestions that may be performed in the
seven rooms that are in the domain of the hidden room card, ⌦(yr).

have fewer observation cells, unless entering a room shortens the distance traveled by

means of a secret passage. In order to verify the approach, the paths obtained with

wB set equal to zero are illustrated in Table 5.2. In this case, the test decisions are

always negative, and the paths tend to include only void cells. On the other hand,

when wJ << wB, the paths include several observation cells and, typically, corre-

sponding positive test decisions. It also is possible to move through an observation

cell (e.g., a in the first row of Table 5.2) with a negative test decision, indicating that

a suggestion is not made but the cell is visited to minimize distance.

5.3.7 Results: Comparisons to Other Methods

We tested the ICP by making it compete against human players (HP) and the CSP

player (Table 5.3) through the interactive simulation described in Section 5.2. In

these games, the ICP is fully autonomous. It implements the paths obtained from

the ID to move its pawn, and utilizes the CLUEr BN to make suggestions inside the

rooms visited along the path. The CSP player implements a constraint satisfaction

approach [32, Chapter 5], with two types of constraints: (C1) y` 6= C`
ji, for 8 `, i, j,
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Table 5.2: Optimal CLUEr paths obtained using di↵erent benefit and cost weights.

q0, qf wB, wJ Optimal cell sequence B(T ) J(T ) D(T )

1, 18 0, 0 [1 2 3 7 a 22 20 17 16 18] 0 0 10.5

0, 12 [1 2 3 4 5 12 13 16 18] 0 0 11.5

12, 0 [1 2 3 4 5 6 c 6 5 7 a 22 20 17 16 18] 9.55 14.5 0

1, 51 0, 0 [1 2 3 4 5 6 c g 64 63 62 d 51] 0 0 10.5

0, 6 [1 2 3 7 14 15 17 19 21 23 25 27 52 51] 0 0 21.5

10, 6 [1 2 3 4 5 6 c g 64 63 62 d 51] 7.96 12 10.5

100, 22 0, 0 [100 97 s k 46 39 38 37 40 a 22] 0 0 7

0, 6 [100 97 94 91 92 89 87 85 83 0 0 18

79 76 19 17 20 22]

12, 0 [100 97 98 99 h 99 98 97 s k 46 13.84 0 11

39 38 37 40 a 22]

and (C2) C`
ji 6= C`

nm, for i, m = 2, 3, j, n = 1, 2, 3, and i 6= m or j 6= n. When the

CSP makes a suggestion G, and the ith player refutes it by showing its own card `G,

the following value is obtained C`
ji = `G, for some j. In order to make a suggestion,

the CSP searches an assignment for ys, yw, and yr that satisfies (C1)-(C2). Based on

a heuristic strategy recommended by the CLUEr game rules, the CSP pawn moves

to the nearest room to begin making suggestions. Then, it moves back and forth

between two adjacent rooms to determine ys, yw, and subsequently navigates the

board to determine yr. The CSP and a naive version of the ICP both use a heuristic

rule developed in [31] to navigate the board without implementing the ID developed

in this dissertation.

Table 5.3: Game results for the ICP competing against HP and CSP

Winning Player: ICP HP CSP
ICP with ID 48.0% 40.0% 12.0%

ICP without ID 36.0% 44.0% 20.0%
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The game results in Table 5.3 show that, by utilizing the ID, the ICP wins more

often than the HP or the CSP. Without ID, an ICP implementing only the CLUEr

BN (proposed in [31]) wins more often than the CSP, but less often than the HP.

Recently, a CLUEr player implementing a neural network and Q-learning was

presented in [12]. Its framework is illustrated in Fig. 5.9. The basic idea to develop

the neural player is to train a neural network to approximate the decision-value

function representing the value of information, for which there exists no general

closed-form representation (the incremental entropy is not assured to be the best

value function). Bayesian inference, test (suggestions), and action (motion) decision

making are unified using an MDP framework. For more details, refer to [12]. Its

winning rates show that while it beats the BN and CSP player 60% and 75% of

the times, respectively, it performs similarly to the HP. Therefore, based on Tables

5.3 and 5.4, the ICP with ID can be considered as the most e↵ective of all of the

aforementioned players. The game records show that, typically, the player who first

infers the hidden room card yr correctly wins the game, and that the ICP typically

does so before the other players. Thus, its success can indeed be attributed to its

strategy for selecting the optimal pawn movements and suggestions that maximize

the information reward (2.2) associated with yr.

Table 5.4: Game results for the Neural Player competing against CSP and ICP
without ID

Winning Player: Neural Player CSP
Winning Rate 75.0% 25.0%

Winning Player: Neural Player ICP without ID
Winning Rate 60.0% 40.0%
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Figure 5.9: MDP Neural Player; Bayesian inference, test (suggestions), and action
(motion) decision making are unified using an MDP framework.
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Chapter 6

Application II: Feature-level Fusion and

Target Classification in Robotic Demining

The treasure hunt problem and the robotic sensor planning methodology presented

in Section 2, 3 and 4 is also demonstrated through a demining application. The

simulated minefield (Section 6.1) contains multiple obstacles and targets of various

size and geometry. The obstacles may consist of buildings, bodies of water, or trees

that must be avoided by the robot platform. The targets consist of buried mines and

clutter objects characterized by various features, such as, metal content, depth, and

shape, that can be used to classify them as either mines or false alarms. Since the

targets are buried, the features must be extracted from raw measurements, and their

accuracy depends on the environmental conditions and on the sensor type and mode

by which the measurements are obtained.

Typically, multiple and heterogeneous sensor measurements are required to clas-

sify the targets with reasonable accuracy [35]. We consider a scenario that com-

monly arises in modern demining systems [57]. An infrared (IR) sensor is initially

deployed on an airborne platform, such as, an autonomous air vehicle (UAV), to

obtain cursory measurements from the entire minefield. Subsequently, a more accu-

rate ground penetrating radar (GPR) sensor is deployed on a ground robot platform,

which may be overpass capable, to obtain additional measurements. Using feature-

level fusion [30,35], the GPR and IR measurements can be combined to improve the

accuracy of target classification, such that additional resources can be deployed to

excavate the mines.

Since the deployment of more capable sensors, such as GPR installed on ground
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robots, can be very costly, it is desirable to plan the sensor motions and measure-

ments such that their e↵ectiveness is maximized and the costs minimized. Thus, the

methodology presented in Sections 4 is implemented to obtain an optimal policy �⇤,

including the path ⌧ ⇤ and measurement sequence Z⇤
T , for a GPR sensor installed on

a ground robot. The optimal policy takes into account prior information that consist

of the IR sensor mode and measurements, and of the environmental conditions in

the minefield. Although we assume the environmental conditions to be the same for

the IR and GPR sensor, the method is also applicable if the environment changes

after the IR measurements are obtained. The geometry and location of obstacles and

potential targets are obtained from prior airborne IR sensors, cameras, and maps of

the minefield of interest.

6.1 Demining System Simulation

The sensor planning methodology is tested on the simulation of a landmine sensing

system developed in [35], which includes sensors, targets, obstacles, soils, and me-

teorological conditions. A grid is superimposed on a rectangular minefield dividing

it into square bins, where the grid spacing is equal to one unit distance. Soil com-

position (e.g., clay or sand), soil characteristics (e.g., magnetic properties, moisture,

uniformity), vegetation, and time-varying meteorological conditions are modeled ac-

cording to [36,57–59], and can be assigned to each bin in the minefield at random or

at user-specified positions. The environmental conditions are assumed uniform inside

each bin. As shown in [35], GPR and IR measurements of the target features are

reproduced and deteriorated according to the operating conditions and surrounding

environment.

Anti-tank mines (ATM), anti-personnel mines (APM), unexploded ordnance (UXO),

and clutter objects (CLUT) are reproduced based on the Ordata Database [36] and
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placed in the field with a pre-determined geometry. Every target has associated ac-

tual features of depth d, size z, shape s, and metal content c (Table 6.1). When

a sensor detects an object, the simulation uses the actual target features and envi-

ronmental/meteorological conditions to generate sensor data with random noise and

errors that are commensurate to the given situation (see [60] for more details). Subse-

quently, a set of measured features that depends on the sensor and the environmental

conditions is obtained for the target. The sensor platform is simulated by a rectangle

or triangle with sensor field of view denoted by a triangle geometry S mounted on

the platform. When the sensor is turned on, the senor field of view appears along

the robot motion path and the simulation produces measured features for the region

intersected by its field-of-view, based on its geometry S and configuration q in the

minefield.

6.2 IR and GPR Sensors and Bayesian Network

Models

Infrared sensors detect anomalies in infrared radiation that is either emitted by mines,

soil, or vegetation. Based on the location of the sensor, the radiation data can be

processed to build an image of an horizontal area and to estimate the depth of the

object therein. Images can be obtained for depths up to 12 cm. The mode of IR

sensors, mIR, influences the measured target features and is uniquely determined

by its height above the ground. Therefore, airborne IR sensors typically obtain

only cursory measurements of size and shape for shallow-buried objects. Because

they rely on temperature variations, their performance also is highly influenced by

environmental conditions, such as, time, weather, vegetation, and soil properties.

Using the methodology reviewed in Section 3.1 and presented in [35], a BN model

is obtained for an Agema Thermovision 900 sensor [36, 57–59]. The BN architecture
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and node definitions are shown in Figure 6.1 and Table 6.1, respectively.

GPR sensors emit radio waves that penetrate the ground and process their re-

flections at the boundaries of materials characterized by di↵erent refraction indexes.

Images of underground vertical slices and of any objects buried within is obtained

over S by sensing discontinuities in electrical properties. The measured size, shape,

and depth of an underground object can be obtained from these images through sig-

nal processing techniques [61], such as edge extraction. The frequency of the radio

wave and its bandwidth determine the search mode mGPR. Since penetration depth

increases at lower frequencies and image resolution improves at higher frequencies,

the optimal GPR mode depends on target features and on environmental conditions.

For example, very high frequencies may be required in the presence of ground discon-

tinuities to overcome the so-called ground-bounce e↵ect (GBE) [57]. The GPR BN

model illustrated in Fig. 6.1, taken from [35], is learned from data and prior expert

knowledge. After the IR and GPR models are learned, given IR or GPR measure-

ments, the posterior distribution of the feature set {d, z, s} can be inferred. Then

the posterior distribution of the feature set {d, z, s} is viewed as soft evidence and is

entered to the BN classifier shown in Fig. 6.2 to infer the posterior distribution of

hypothesis variable y representing if the target is a mine or clutter.

Using the methodology developed in Chapter 4 and [30], the relationships between

sensor mode, environmental conditions, and feature-level Dempster-Shafer fusion per-

formance are accounted for in planning the optimal GPR path and measurement

sequence, given prior IR measurements.

6.3 Optimal GPR Sensor Planning

The GPR sensor is installed on-board a robotic platform with geometry A, and

field-of-view S. After the minefield, or W , is simulated, the cell decomposition K
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Figure 6.1: Architectures of IR and GPR BN sensor models (taken from [35]), with
nodes defined in Table 6.1.
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Figure 6.2: Architectures of BN Classifier (taken from [60]), with nodes defined in
Table 6.1 and hypothesis variable y.

is obtained using the methodology in Section 4.1. Then a connectivity graph with

observations, G is constructed from K. A decision tree DT , obtained by the transfor-

mations G ) Tr ) DT , is utilized to compute the optimal policy �⇤ of path planning

and sensor measurement planning for the GPR sensor platform.

The optimal channel ⌧ ⇤ along the optimal policy �⇤ is transformed into a free

path for the robot A by connecting the centroid of initial cell 0 and the centroid of

final cell f through the midpoints of the intersections of every two successive cells

in ⌧ ⇤.

For comparison to the optimal path ⌧ ⇤, four di↵erent methods, A* algorithm,

complete coverage, random coverage and fixed grid search, are implemented to plan

the robot’s path. The shortest path ⌧short is searched from the connectivity graph G by

A* algorithm [48] given initial configuration q0 2 0 and final configuration qf 2 f ,
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Table 6.1: List of nodes in Bayesian network models of GPR and IR sensors

Set: Node: Instantiations and corresponding range:

V GPR mode: mGPR

depth search, resolution search,
anti ground-bounce-e↵ect search

IR mode: mIR

surface-mine search,
shallow-buried-mine search

E Soil moisture (%): sr dry [0-10], wet (10-40], saturated (> 40)
Soil composition: sc very-sandy, sandy, high-clay, clay, silt
Soil uniformity: su yes, no

Vegetation: v no-vegetation, sparse, dense
Weather: w clear, overcast, raining

Illumination: i
low (7-10 a.m. and 6-9 p.m.),

medium (10-1 p.m.), high (1-6 p.m.)

F Depth (cm): d
surface [0], shallow-buried (0-12],
buried (12-60], deep-buried (> 60)

Size (cm): z
small (2-13], medium (13-24],

large (24-40], extra-large (> 40)
Shape: s cylinder, box, sphere, long-slender, irregular

based on the the same distance definition as in ⌧ ⇤, including rotation distance. The

measurements along ⌧short are taken using a fixed GPR sensor mode of depth search

and knowledge of the environmental conditions is only used as evidence in processing

GPR sensor measurements for inference, when the path is being executed.

The method of complete coverage motivated from [2] and [62] generates a path,

⌧cover, along which all the targets in W are able to be observed by the sensor. In

a workspace without obstacle, complete coverage performs simple back-and-forth

motions. In a workspace W with obstacles, the motion keynote of complete coverage

is still back and forth, but the robot has to rotate around the obstacles and go through

the areas unable to be covered the back and forth motions. Let Wcovered ✓W denote

the workspace where all the targets in Wcovered are able to be observed by the sensor

along path ⌧cover. Wuncovered = W\Wcovered. Let Lcover denote the set of observation

cells ⌧cover goes though in order from the initial configuration q0. Based on the
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connectivity graph G obtained by the cell decomposition presented in section 4.1, the

path of ⌧cover is generated using the following algorithm: (1) choose a configuration

q0 in the upper right corner of W so that q0 2 an observation cell ̄0, then add ̄0

into the list of Lcover and set ⌧cover initially be empty; (2) in the back-forth direction,

every approximate h bins distance, choose a configuration qi 2 ̄i ✓Wuncovered, then

add ̄i into Lcover; (3) Using A*, search a shortest path ⌧ from ̄i�1 to ̄i through G,

combine ⌧ and the old ⌧cover into a new path from ̄0 to ̄i, and replace the old ⌧cover

by setting the new path to be ⌧cover; (4) repeat (2) and (3) from i = 1 until the back-

forth motions have to stop; (5) If there is an connected area Wconnected ✓Wuncovered,

perform (1)-(4) to generate a path ⌧cover
sub

and a new list Lcover
sub

; (6) find the two

closest cells i and j in ⌧cover to ⌧cover
sub

; (7) break ⌧cover at the cells i and j, insert

⌧cover
sub

to form a new path, set it to be the new ⌧cover, according add the members in

Lcover
sub

into Lcover by the order from q0 2 ̄0; (8) repeat (5)-(7) until Wcovered = W ,

and output ⌧cover and the list of observation cells Lcover.

Random coverage [2] [62], ⌧rand, is generated with the following algorithm: (1)

select the initial position q0 2 ̄0 2 Lcover; (2) randomly select the second cell ̄i from

Lcover\{̄0, . . . , ̄i�1}, i = 1, . . . , 0.5|Lcover|, where | · | denotes the cardinality of the

set of Lcover; (3) using A* search a path ⌧i from ̄i�1 to ̄i; (4) combine all the paths

in series ⌧i, i = 1, . . . , 0.5|Lcover| to obtain a random coverage path ⌧rand.

The fixed grid path, ⌧grid, which is used in [17] and in a di↵erent version in [2],

is generated using following algorithm: (1) Given initial configuration q0 2 0 and

final configuration qf 2 f , find the closest observation cell ̄i 2 Lcover to 0 and the

closest cell ̄j 2 Lcover to f ; (2) Get the sequence ̄i, . . . , ̄j directly out of Lcover and

generate another sequence 0, ̄i, . . . , ̄j, f ; (3) view members in the new sequence

as fixed grids, use A* algorithm to obtain the shortest path between each pair of the

adjacent grids and combine these paths in series to generate ⌧grid. The GPR mode
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along ⌧grid is fixed.

6.4 Performance Metrics

One of the main challenges of sensor planning is that the sensor path must be planned

before the targets are properly classified. So although the observation benefit, (3.20),

reflects the value of a measurement sequence, the actual classification improvement

cannot be assessed a priori. Therefore, the methodology presented in the previous

section is evaluated by computing e�ciency metrics after the sensor policy has been

executed, and GPR measurements have been obtained from all the targets along

the sensor path. Let �Ny denote the number of targets properly classified after

fusing GPR and IR measurements minus the targets properly classified before de-

ploying the GPR, based solely on IR measurements. Then, the e�ciency metric

⌘y(�) = �Ny(�)/D(⌧) is the classification improvement per unit distance of a policy

�, inducing the robot path ⌧ . Let NT denote the number of observed targets along

path ⌧ . Then, the e�ciency metric ⌘T (�) = NT (�)/D(⌧) is the number of observed

targets per unit distance along ⌧ .

As shown in [35], one advantage of using BN models to process sensor measure-

ments and infer the target features and classification is that a confidence level (CL)

is provided in the form of a posterior probability P (Fi, yi | e), given the evidence for

a target Ti. Thus, after both IR and GPR measurements are obtained, the state of

yi can be estimated along with a CL representing the probability that the estimate

provided is correct. An error metric that accounts for CL is obtained by weighting

the distance from the true value of the inferred variable by the respective probability:

Jy(Ti|e) = py
i

·gy
i

(6.1)

where py
i

is a 1 ⇥ p vector of probabilities obtained by the inference algorithm:
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py
i

⌘ [P (y1
i | e) · · ·P (yp

i | e)]. gy
i

is a p ⇥ 1 vector containing the distance gy
i

between the true value of yi (i.e., yv
i ) and all of its possible instantiations: gy

i

⌘
[gy

i

(y1
i , y

v
i ) · · · gy

i

(yp
i , y

v
i )]. The distance gy

i

is a discrete metric that is feature specific

and satisfies the following conditions: Jy(Ti) = 0.5, when py
i

is uniform, and at the

worst estimation, Jy(Ti) = 1 is the maximum value of eq. 6.1 [60] .

Let Jy(Ti|eIR) denote the error metric before deploying the GPR, based solely on

IR measurements for Ti and Jy(Ti|eIR, eGPR) denote the error metric after fusing GPR

and IR measurements. Let �Jy(Ti) = Jy(Ti|eIR)� Jy(Ti|eIR, eGPR). Therefore, �Jy

is the error reduction brought by the GPR measurement. Let �J�
y =

P
T

i

2T
⌧

�Jy(Ti)

denote the total error reduction over a policy �, where T⌧ denote the set of observed

targets given a policy � corresponding to the measurement sequence ZT . Then, the

e�ciency metric ⌘J
y

(�) = �J�
y /D(⌧) is the error reduction per unit distance of a

policy �, inducing ⌧ .

Let �H(Ti) = H(yi | MIR
i ) � H(yi | MGPR

i ,MIR
i ) denote the actual (not ex-

pected) entropy reduction brought by taking GPR measurements MGPR
i over target

Ti. Let �H� =
P
T

i

2T
⌧

�H(Ti) denote the total entropy reduction given the policy

�. Then, the e�ciency metric ⌘H(�) = �H⌧/D(⌧) is the entropy reduction per unit

distance of a policy �, inducing ⌧ .
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Chapter 7

Application II: Robotic Demining Results

7.1 Influence of Measurements and Environmen-
tal Information on Sensor Path

7.1.1 Influence of Target Presence

Fig. 7.1 is used to illustrate that the presence of targets and obstacles must be

accounted for in planning the motions of the robot. Suppose there are three equally

important targets in the workspace, as shown in Fig. 7.1. If the robot travels to the

left of the obstacle, it will necessarily miss the two targets located to the right of it.

The path illustrated in Fig. 7.1 is the optimal path computed by our methodology.

 

 
 
 

τ1 

q0 qf 

Figure 7.1: Example: minefield with 4 potential targets. Environment conditions
are constant through this minefield. Two candidate paths ⌧ ⇤ and ⌧1 from initial
position q0 to final position qf in the minefield. The Robot geometry is denoted by
A; the sensor field of view is denoted by S.
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7.1.2 Influence of Prior Sensor Measurements

Fig. 7.2 is used to illustrate that prior IR sensor measurements must be accounted

for in planning the motions of the robot. Suppose there are two candidate paths of

approximately equal distance and approximately equal number of targets, as shown

in Fig. 7.2. The environment conditions are constant throughout the minefield and

the GPR mode is optimally selected. Based on prior IR measurements, the targets’

information benefit, i.e., EER, can be computed by eq. 3.20. The robot travels

through the obstacles and takes measurements of the two important targets located

between the obstacles. The path illustrated in Fig. 7.2 is the optimal path computed

by our methodology.

 
 

 
 

 

T1 
T2 

T3 

T4 

τ1 
Performance 

Path τ* τ1 

Targets T3, T4 T1, T2

D(tf) 20.33 18.91

B(tf) 14.62 3.85 

ηy 0.0970 0 
 

q0 

qf 

Figure 7.2: Example: minefield with 4 potential targets. Environment conditions
are constant through this minefield. Red: the highest information benefit (Target
3 and 4); Magenta: intermediate information benefit (Target 1); Green: low in-
formation benefit (Target 2). Highest information benefit means EER > 0.2; low
information benefit means EER < 0.1; intermediate information benefit means EER
is between 0.1 and 0.2. Two candidate paths ⌧ ⇤ and ⌧1 from initial position q0 to
final position qf in the minefield.
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7.1.3 Influence of Environmental Conditions

Fig. 7.3 is used to illustrate that influence of environmental conditions must be

accounted for in planning the motions of the robot. Suppose there are multiple paths

of approximately equal distance and with approximately the same number of targets,

as shown in Fig. 7.3. Our methods chooses the one along which the environmental

conditions are the most favorable to GPR measurements.

  
 
 

T1T2

T3

T4

T5

T6
T7

τ1

τ2

Performance q0

Path τ* τ1 τ2

Targets T3, T4, 
T5

T1, T2, 
T5

T3, T6, 
T7

D(tf) 19.46 18.78 19.32 

B(tf) 16.75 9.66 10.06 

ηy 0.1542 0.0532 0.1035

 

 
Soil: 

Dry    Wet    Saturated 
qf

Figure 7.3: Example: minefield with 7 potential targets. Red: the highest in-
formation benefit (Target 4, 5 and 6); Magenta: intermediate information benefit
(Target 2, 3 and 7); Green: low information benefit (Target 1). Target 1 and target
3 are identical but buried under di↵erent environmental conditions; Target 2, 4 and
6 are identical but buried under di↵erent environmental conditions; Target 5 and 7
are identical but buried under di↵erent environmental conditions. Three candidate
paths ⌧ ⇤, and ⌧1 and ⌧2 from initial position q0 to final position qf in the minefield.

7.1.4 Influence of Sensor Mode

Fig. 7.4 is used to illustrate that influence of sensor mode must be accounted for in

planning the motions of the robot. Suppose that if the GPR mode is fixed a priori,

then the candidate two paths would have approximately the same total reward, but

when the GPR mode is optimized, one path has higher reward then the other, as

shown in Fig. 7.4. Our method chooses the one along which leads to the best

classification improvement when the sensor mode is optimized.
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τ1 

T1 
T2 

T3 

T4 Performance 

Path τ* τ1 

Targets T1, T2 T3, T4 

D(tf) 12.78 12.04 
Fixed GPR 
mode, 

yJη  0.0250 0.0191 

Optimal GPR 
mode, *

yJ
η  0.0382 0.0143 

q0 qf 

Figure 7.4: Example: minefield with 4 potential targets. Two candidate paths ⌧ ⇤

and ⌧1 from initial position q0 to final position qf in the minefield.

7.1.5 Influence of Robot Geometry on the Optimal Path

Fig. 7.5 is used to illustrate that influence of robot geometry must be accounted for

in planning the motions of the robot. Suppose there are several candidate paths of

approximately equal information benefit, as shown in Fig. 7.5. By taking account

robot geometry, the path with overall shortest distance (including rotation distance)

illustrated in Fig. 7.5 is computed by our methodology to achieve the highest path

e�ciency. Two robots A1 and A2 of di↵erent geometry carrying the same GPR sensor

are deployed in the minefield shown in Fig. 7.5.

7.1.6 Influence of Sensor Geometry on the Optimal Path

Fig. 7.6 is used to illustrate that influence of sensor geometry must be accounted for

in planning the motions of the robot. Suppose that because of the geometry of the

field of view , once the robot gets su�ciently near a target, it can rotate to take a

measurement of the target, as shown in Fig. 7.6. While having longer distance, the

optimal path illustrated in Fig. 7.6 is computed by our methodology so that it has a

higher information benefit due to the high EER target along the way.
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(a) 

(b) 

T1 
T2 T3 

T4

T5 

T6

T7τ2 

τ3 

T5

T2 
T3 

T4

T6 

T7T5T1 

q0 

qf 

qf 

q0 

τ1 

τ3 

Robot geometry A2 

Path τ*
 = τ2 τ3 

Targets T4, T5, T6 T4, T6, T7 

D(tf) 30.94 33.59 

B(tf) 9.71 9.91 

Robot geometry A1 

Path τ*
 =τ1 τ2 τ3 

Targets T1, 
T2, T3 

T4, 
T5, T6 

T4, 
T6, T7 

D(tf) 20.47 27.50 32.95

B(tf) 9.93 9.71 9.91 

Figure 7.5: Example: minefield with 7 di↵erent potential targets. Environment
conditions are di↵erent through this minefield. Red: the highest information benefit
(Target 1 and 4); Magenta: intermediate information benefit (Target 2, 5 and 7);
Green: low information benefit (Target 3 and 6). Three candidate paths for robot
A1 and two candidate paths for robot A2.
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(a) (b) 

T1 

T2 
T3

T4 T5 

T1

T2 T3 

T4 T5

τ2 

τ1 

qf 

q0 q0 

qf 

Sensor geometry S1 

Path Targets D(tf) B(tf) yJη  

τ*  T1,T2,T3 22.6 14.6 0.0381

τ2 T4,T5 15.1 4.67 0.0226
 

Sensor geometry S2 

Path Targets D(tf) B(tf) yJη  

τ*  T1,T4,T5 21.3 14.4 0.0516

τ1 T1,T2,T3 22.6 14.6 0.0381
 

Figure 7.6: Example: minefield with 5 di↵erent potential targets. Environment
conditions are di↵erent through this minefield. Red: the highest information benefit
(Target 1 ); Magenta: intermediate information benefit (Target 2 and 4); Green: low
information benefit (Target 3 and 5). Two candidate paths for robot A with sensor
field of view S1.

7.2 Path E�ciency in Full Scale Simulations and

Comparison with Existing Methods

In this section, the method is demonstrated by computing a robotic sensor path and

measurement sequence in a simulated minefield. The path e�ciency obtained by our

method is compared to the shortest path, complete coverage and random coverage

applied to the same minefield, using the same prior information. The comparison

shows our method achieves better e�ciency by using the metrics ⌘T , ⌘y, ⌘J
y

and ⌘H

in Section 6.4. The optimal path ⌧ ⇤ is shown in Fig. 7.7. A complete coverage path

is shown in Fig. 7.8.
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qf 
q0 

τ* efficiency 

ηT 0.4610 

ηy 0.0595 

yJη  0.0446 

ηH 0.0599 

Figure 7.7: Example: optimal path ⌧ ⇤ from the upper left corner to down left corner
in the field (wB = 20, wJ =1) It is a long path in the field and covers 27/98 targets
in the field. The robot translates and rotates to pass narrow passages, and tends to
take measurements over important targets (colored red and magenta) along the path.
.

 
 
 

  
 
 

q0 

qf τcov efficiency 

ηT 0.2683 

ηy 0.0055 

yJη  0.0153 

ηH 0.0410 

Figure 7.8: Example: complete coverage path ⌧cover. It covers 98/98 targets in
the field. A sample of robot/sensor configuration is illustrated along the path. The
trajectory of the c.g. is shown in a blue solid line.
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Table 7.1: Method e�ciency and comparison with other approaches

Method

Average
Path

E�ciency Optimal

Shortest
(Improvement

of ⌧ ⇤)

Complete
Coverage

(Improvement
of ⌧ ⇤)

Random
Coverage

(Improvement
of ⌧ ⇤)

Fixed
Grid

(Improvement
of ⌧ ⇤)

⌘T = NT
D 0.4610

0.3053
(51.0%)

0.2683
(71.8%)

0.1441
(219.9%)

0.2321
(98.6%)

⌘y = �N
y

D 0.0595
0.0407
(46.2%)

0.0055
(981.8%)

0.0114
(421.9%)

0.0122
(387.7%)

⌘J
y

= �J
y

D 0.0446
0.0157

(184.1%)
0.0153

(191.5%)
0.0098

(355.1%)
0.0133

(235.3%)

⌘H = �H
⌧

D 0.0599
0.0330
(81.5%)

0.0410
(46.1%)

0.0244
(145.5%)

0.0343
(74.6%)

7.3 Overall Method E�ciency Comparisons

In this section, a representative average for our method is computed for di↵erent

types of minefields and compared to compare to other methods, such as, complete

coverage and random coverage. The average of our method is obtained by averaging

the e�ciency for several optimal paths planned with di↵erent initial and final condi-

tions. Di↵erent initial and final configurations will specify di↵erent paths computed

by our method. Di↵erent minefield will yield di↵erent path e�ciency even using the

same method. Therefore, this section is designed to show that our proposed method

generally achieves better path e�ciency than other methods, not depending on spe-

cific initial and final conditions. It is also shown that our method can be used to

cover most of the configuration space using several optimal paths and outperforms

complete coverage and random coverage methods.
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7.3.1 Obstacles Density and Narrow Passages

The example shown in Fig. 7.9 computes paths and e�ciency metrics for fields (or

regions of the same field) that have di↵erent concentration of obstacles and narrow

passages. In easy condition, i.e., low obstacles density case, given a fixed cost, our

method tends to cover more targets than in harsh condition, i.e., high obstacles den-

sity case. Therefore, the performance of our method depends on obstacle geometries

of di↵erent density. Based on the average classification gain shown in Fig. 7.10 and

similar results of other path e�ciency metrics, such as, error reduction, the pro-

posed method shows a better e�ciency than complete coverage and random coverage

methods under obstacle geometries of di↵erent density.

 
    Low obstacle density Medium obstacle density      High obstacle density 
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(a) (b) (c) 

Figure 7.9: Example: minefields of di↵erent obstacle density.

 
 
 

 0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
 Optimal
 Complete Coverage
 Random Coverage

 
 
 

D
J y

Jy

σ
η

Δ
=  

Low Medium High 

Influence of obstacles density and narrow passages 

Figure 7.10: The average classification gain ⌘J
y

= �J�
y /D(⌧) for the three minefields

shown in Fig 7.9.
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7.3.2 Target Density

The example shown in Fig. 7.11 computes paths and e�ciency metrics for fields (or

regions of the same field) that have di↵erent concentration of targets and the same

density of obstacles. Based on the average classification gain shown in Fig. 7.12

and similar results of other path e�ciency metrics, the proposed method shows a

better e�ciency than complete coverage and random coverage methods under target

geometries of di↵erent density. The most significant improvement is obtained for

high target density case, because in this case, our method easily covers more targets

in a given cost than the other two density cases. 
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(a) (b) (c) 

Figure 7.11: Example: minefields of di↵erent target density.
 
 
 
 

0

0.02

0.04

0.06

0.08

0.1
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 Optimal
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Low Medium High 

Influence of targets density 

D
J y

Jy

σ
η

Δ
=  

Figure 7.12: The average classification gain ⌘J
y

= �J�
y /D(⌧) for the three minefields

shown in Fig. 7.11.
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7.4 Non-overpass Capable Platforms

This is important in the case of a non-overpass capable platform, which may be

destroyed by driving over a landmine. In the example shown in Fig. 7.13, the robot

has a square geometry and the sensor field of view is an isoceles triangle. The optimal

path, illustrated in Fig. 7.13, shows that all of the following objectives are achieved,

(1) the robot avoids robot collisions with obstacles and mines;

(2) the sensor is able to take measurements over targets;

(3) the optimal path displays good path e�ciency, that is comparable to the average

path e�ciency displayed in mild target density (Section 7.3.2).
 
 

 
 
 
 

T1 

T3 

T2 

T5

T6

T4

T7

T8
τ* efficiency 

ηT 0.1575 

ηy 0.0630 

yJη  0.0451 

Targets 
T1, T2, 
T3, T5, 
T6 

 
q0 

qf 

Figure 7.13: Non-overpass capable robot example: minefield with 8 di↵erent poten-
tial targets . Environment conditions are di↵erent through this minefield. Red: the
highest information benefit (Target 1, 2 and 6); Magenta: intermediate information
benefit (Target 4, 5 and 7); Green: low information benefit (Target 3 and 8). Optimal
path ⌧ ⇤ is obtained given the parameters wB = 20, wJ = 1.
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Chapter 8

Conclusion

The objective of the treasure hunt problem is to infer hidden variable(s) or treasure(s)

from an available set of measurements that are accessible only through observation

cells in a given connectivity graph G. A novel and systematic approach has been pro-

posed to solve this class of problem. Using cell decomposition, the pruning algorithm

and the benefit-of-information function presented in this dissertation, a reduced sub-

set of feasible solutions is obtained in the form of a pruned connectivity tree, which

can be folded into a decision graph, such as, decision tree or influence diagram. The

proposed new approximate cell decomposition approach for robotic sensor path plan-

ning accounts for not only the geometry of obstacles but also the geometry of the

targets and of the sensor field of view. The keystones of this novel approach is the

new concepts of observation cells and C-targets. BN sensor model/formalism is de-

veloped for target classification and measurement fusion. The solution of the treasure

hunt problem is a nonmyopic global optimal policy that produces the path in G and

the corresponding measurement sequence with the maximum expected observation

profit.

The board game of CLUEr is found to be an excellent benchmark for the treasure

hunt problem. Therefore, the methodology is implemented to obtain an intelligent

computer player that outperforms several human players, as well as a computer player

obtained by Bayesian networks only, Q-learning, or constraint satisfaction. The land-

mine detection and classification application with the crucial characteristics of trea-

sure hunt problem verifies the e�ciency of the proposed approach. Information-driven

sensor path planning achieves highest path e�ciency among shortest path, complete
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coverage, random search, and fixed grid strategies.

The methodologies proposed here have many applications in the sensor network

community pertaining to target detection, classification and tracking. The recom-

mendations for future work lie in the following directions: consider a moving FOV

instead of a fixed FOV with regard to the robot geometry in this dissertation; im-

prove real-time feedback of new sensor measurements; extend the sensor path plan-

ning methodology to track and pursue dynamic targets, since the targets considered

in this dissertation are static; extend the methodology to multi-sensor multi-platform

applications, e.g., multi-platform collaborative demining, while only one platform and

one robotic sensor is considered in the demining application in this dissertation; and

implement the proposed approach in demining physical experiments.
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Appendix A

Theoretic Relationships between

Expected Entropy Reduction and

Expected discrimination Gain

The proposed EER is defined as:

�H(y; M |E0) ⌘ H(y|E0)�
X

M

⇥
H(y|E0, M)P (M |E0)

⇤
. (A.1)

It is actually a type of conditional mutual information I(y; M |E0).

The expected discrimination gain (EDG) is defined as:

�D(y; M |E0)

⌘
X

M

⇥
D(y|E0, M)P (M |E0)

⇤�D (y|E0)

=
X

M

"
P (M |E0)

X

y

P (y|E0, M) log2

P (y|E0, M)

P (y)

#

�
X

y

P (y|E0) log2

P (y|E0)

P (y)

=
X

M

{P (M |E0)[
X

y

P (y|E0, M) log2 P (y|E0, M)

�
X

M

P (y|E0, M) log2 P (y)]}

�[
X

M

P (y|E0) log2 P (y|E0)�
X

y

P (y|E0) log2 P (y)]
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=
X

M

{P (M |E0)
X

y

P (y|E0, M) log2 P (y|E0, M)}

�
X

M

{P (M |E0)
X

y

P (y|E0, M) log2 P (y)}

�[
X

y

P (y|E0) log2 P (y|E0)�
X

y

P (y|E0) log2 P (y)]

=
X

M

{P (M |E0)
X

y

P (y|E0, M) log2 P (y|E0, M)}

�
X

y

P (y|E0) log2 P (y|E0)

�
X

M

{P (M |E0)
X

y

P (y|E0, M) log2 P (y)}

+
X

y

P (y|E0) log2 P (y)

=
X

M

{P (M |E0)H(y|E0, M)}�H(y|E0)

�
X

M

{P (M |E0)
X

y

P (y|E0, M) log2 P (y)}

+
X

y

P (y|E0) log2 P (y)

= �H(y; M |E0)

�
X

M

{P (M |E0)
X

y

P (y|E0, M) log2 P (y)}

+
X

y

P (y|E0) log2 P (y)

= �H(y; M |E0)�
X

M

X

y

{P (M |E0)P (y|E0, M) log2 P (y)}

+
X

y

P (y|E0) log2 P (y)
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= �H(y; M |E0)�
X

M

X

y

{P (y, M |E0) log2 P (y)}

+
X

y

P (y|E0) log2 P (y)

= �H(y; M |E0)�
X

y

P (y|E0) log2 P (y) +
X

y

P (y|E0) log2 P (y)

= �H(y; M |E0) (A.2)

It is shown above that theoretically, the proposed EER �H(y; M |E0) equals the

EDG �D(y; M |E0) which was first proposed in [25]. Both of them are actually

mutual information.
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Appendix B

Properties of Approximate Cell

Decomposition in the Presence of Targets

This section analyzes the properties of the cell decomposition presented in Section

4.1.

Property 1 For 8q 2 u, if q 62 RBj[u], then A avoids collisions with Bj, and if

q 2 RT i[u], then S can make measurements from Ti.

Proof: It follows from the definition of bounding approximation and bounded approx-

imation that CBj[u] ✓ OCBj[u]⇥ Iu and ICT i[u]⇥ Iu ✓ CT i[u]. For bounding

rectangloid approximation, RBj[u], of OCBj[u] ⇥ Iu, we have OCBj[u] ⇥ Iu ✓
RBj[u]. For bounded rectangloid approximation,R0T i[u], of ICT i[u]⇥Iu, we have

R0T i[u] ✓ ICT i[u]⇥Iu. It follows that CBj[u] ✓ RBj[u] andR0T i[u] ✓ CT i[u],

q 62 RBj[u], then q 62 CBj[u], since q 2 u implies q 62 CBj. Thus, A(q) \ Bj = ?,

which means that A avoids collisions with Bj. If q 2 RT i[u], then q 2 CT i[u], and

thus S(q) \ Ti 6= ?, which means that S intersects Ti, or in other words S can take

measurements from Ti. ⇤

Property 2 If A, S, Bj (j = 1, . . . , n), and Ti (i = 1, . . . , r) are all convex polygons

in an Euclidean workspace W ⇢ R2, the time complexity of the approximate cell

decomposition in the presence of targets (Section 4.1) is O((nB + nT )2), where nB is

the number of edges of all n obstacles, and nT is the number of edges of all r targets.

Proof: If A, S, Bj (j = 1, . . . , n), and Ti (i = 1, . . . , r) are all convex polygons in

W ⇢ R2, then CBj (j = 1, . . . , n) and CT i (i = 1, . . . , r) are also convex [48]. Let
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nA denote the number of edges of A, which can be considered a constant. In Steps

(1)-(2) (Section 4.1), CBj[u], j = 1, . . . , n and CT i[u], i = 1, . . . , r for every every

u = 1, . . . , ⌫ are computed by first discretizing Iu into ku values, with �u + l�✓ for

0  l  ku, and �✓ = (�u+1 � �u)/ku. This strategy converts the computation of

CBj[u] and CT i[u] in a 3D world to the computation of C-obstacles and C-targets

in a 2D world at di↵erent robot orientations (e.g., imagine CBj[u] and CT i[u]

as a stack of ku polygonal regions). The time for computing the 2D C-obstacle

CBj[[x, x0] ⇥ [y, y0] ⇥ (�u + l�✓)], for all j = 1, . . . , n, in W at the robot rotation

orientation (�u + l�✓) for every l, 0  l  ku, is O(nB). The time for computing

CT i[[x, x0] ⇥ [y, y0] ⇥ (�u + l�✓)], for all i = 1, . . . , r, in W at the robot rotation

orientation (�u+l�✓) for every l, 0  l  ku, is O(nT ) [63]. Since ku is a constant, the

times for computing CBj[u], for all j = 1, . . . , n, and CT i[u], for all i = 1, . . . , r, are

also O(nB) and O(nT ), respectively. Based on the numerical approach for computing

CBj and CT i,

OCBj[
u] =

k
u[

l=1

{CBj[[x, x
0
]⇥ [y, y

0
]⇥ (�u + l�✓)]} (B.1)

ICT i[
u] =

k
u\

l=1

{CT i[[x, x
0
]⇥ [y, y

0
]⇥ (�u + l�✓)]}. (B.2)

for every u = 1, . . . , ⌫. Thus, the time for computing OCBj[u] in (B.1) is O((nA +

cj) log(nA + cj)) where cj is the number of edges of Bj [64],
Pn

j=1 cj = nB. Since this

approximate cell decomposition is resolution-complete, it can be assumed that the

number of orthogonal rectangloids in RBj[u] and R0T i[u] is linearly proportional

to the number of edges of Bj and Ti, respectively. Then, the time for generating the

bounding rectangloid approximation RBj[u] of OCBj[u]⇥Iu (Step (3)) is O(cj) and

for all j = 1, . . . , n, the time complexity is is
Pn

j=1 {O((nA + cj) log(nA + cj)) + O(cj)} 
O(nB log nB). Similarly, the time complexity to obtain R0T i[u] for all i = 1, . . . , r
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(Step (3)) is O(nT log nT ).

In Step (4) (Section 4.1), the decomposition of Cu
void into non-overlapping rectan-

gloids can be performed as the vertical decomposition in 2D presented in [63], thus

it can be carried out in time O((nB + nT ) log(nT + nT )) [63]. Step (5) (Section 4.1)

is comprised of two stages. The first stage decomposes R0T i[u]\{Sn
j=1RBj[u] [

Sr
l=1,l 6=iR0T l[u]} into cells from which only one target is observable. And, the second

stage decomposes R0T i[u] \Sr
l=1,l 6=iR0T l[u] \ Sn

j=1RBj[u] into cells from which

two or more targets are observable. The time required by the first stage is O(nB+nT ),

because convex polygons are characterized by the property that the boundaries of any

pair intersect at most two points. Therefore, the complexity of the common exterior

is linear in order with respect to the number of polygons’ edges, i.e., nB + nT [64].

Also, it can be easily to shown that R0T i[u]\{Sn
j=1RBj[u] [ Sr

l=1,l 6=iR0T l[u]}
is an orthogonal polygon without holes, since RBj[u] and R0T i[u] (for 8i, j) are

connected, and never contain each other by definition. The time for optimally par-

titioning an orthogonal polygon without holes into the minimum number of rectan-

gloids is linear in the number of edges [65]. It follows that the first stage takes time

O(nT (nB + nT )), and the second stage also takes time O(nT (nB + nT )). It can be

concluded that the entire approximate cell decomposition procedure (Section 4.1)

takes time O(nB) + O(nT ) + O(nB log nB) + O(nT log nT ) + O((nB + nT ) log(nB +

nT )) + 2⇥O(nT (nB + nT ))  O((nB + nT )2), or simply O((nB + nT )2). ⇤
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Appendix C

Label-Correcting Pruning Algorithm

The connectivity graph with observations G is provided as a list of integers {0,±1, . . . , N =

f} ordered by their absolute value and corresponding to the list of cellsK = {0, 1, . . . ,N=f},
such that x = ±i represents the cell i, and x � 0 if i is a void cell, or x < 0 if i is

an observation cell. The adjacency relations in G are represented by an N ⇥N sym-

metric matrix A = {aij}, with aij = 1 if i and j are connected in G, and aij = 0

otherwise; aii = 0 to ensure tree growth. Another symmetric matrix of the same

dimensions D = {dij} contains the distance metric evaluated for all arcs in G, and

the notation D(k,m) is used to refer to the element in its kth row and mth column,

or dkm.

The output of the pruning algorithm is a tree Tr in the form of two 2-dimensional

arrays, TREE and DIST. Every element or node TREE(j, t) consists of a cell index,

x = ±i, representing a cell i that is encountered at time index t along the jth tree

branch TREE(j, 0)! TREE(j, 1) · · · ! TREE(j, t�1)! TREE(j, t)! TREE(j,

t + 1) ! · · · TREE(j, tf ). The array DIST contains the distance associated with

each arc in TREE, namely DIST(j, t) = dik if TREE(j, t) = ±i and TREE(j, t� 1)

= ±k. The pruning algorithm compiles these arrays incrementally, beginning with

the root 0 and growing branches spatially (column-wise) and temporally (row-wise)

one node at a time, and pruning branches that are information-equivalent and sub-

optimal with respect to distance. Hence, an array DISTtot also is computed such

that its (j, t)th-element is the total distance between 0 and the node in TREE(j, t).

VISITED is a list that contains the indices of the nodes that have been considered

so far by the algorithm, and DISTshort contains the corresponding distance from 0
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that is the shortest distance for all information-equivalent branches so far.

The above variable structures support the following operations:

- ADJACENT(x, xroot, xs): obtain all of the nodes adjacent to x in G that are

within a distance dM of xs, and do not include xroot,

- CUT(branch, t): remove all nodes that follow the last observation cell in branch

column-wise, and return the time index t of the last observation cell

- GROW(TREE, x, xg): add the arc x! xg to the tree structure in TREE

- GETOBSERV(branch): extracts all observation cells in branch and sorts them

in ascending ordering number (i.e., absolute value),

- INSERT(LIST, x): adds an item x at the end of the list in LIST,

- PRUNE(TREE, x): for any branch in TREE with x as a leaf cut the branch

down to but not including its first joint, which is the last node going forward

in time that generates other branches not ending in x (i.e., is repeated along

the same column)

Then, the following algorithm produces the connectivity tree Tr associated with

G, 0, and f , for a parameter dM that is chosen by the user:

Pruning Algorithm {

procedure Tr(G, 0, f , dM)

begin

initialize TREE = {0}, and all other variables as empty

while ¬ END(TREE) do
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ix  index of first, shortest row in TREE that does not end in f

ivoid  index of first observation-free branch of shortest overall distance

x = TREE(ix,end), xroot = TREE(ix,end�1), xs = TREE(ivoid,end)

adjacent  ADJACENT(x, xroot, xs)

for every node xa 2 adjacent do

xg = nil

branchnew  GROW(TREE(ix, · ), x, xa)

distancenew = DISTshort(x) + D(x, xa)

if xa 62 VISITED then

begin

xg = xa

VISITED  INSERT(VISITED, xa)

DISTshort  INSERT(DISTshort, distancenew)

end;

else if xa > 0 [xa 2 Kvoid] and distancenew < DISTshort(xa) then

begin

TREE  PRUNE(TREE, xa)

xg = xa
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end;

else if xa < 0 [xa 2 Kz] then

begin

observnew = GETOBSERV(branchnew)

j  index value that gives OBSERV(j, · ) = observnew

if j = nil then xg = xa

else [observnew 2 OBSERV]

begin

(branchold, t)  CUT(TREE(j, · ))

if distancenew < DISTtot(j, t)

begin

TREE  PRUNE(TREE, TREE(j, t))

xg = xa

end;

end;

end;

TREE  GROW(TREE, x, xg)

Update DIST, DISTtot, DISTshort, and OBSERV based on x and xg
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xchild  INSERT(xchild, xg)

end; [for loop]

if xchild = nil then TREE  PRUNE(TREE, x)

xchild = nil

end; [while loop]

end; [procedure]

}
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Appendix D

Properties of Connectivity Tree Obtained

by Pruning

The pruning algorithm applies the principle of optimality [47] to paths connecting

two nodes 0 and f in G. First, we demonstrate that Tr contains the path of shortest

overall distance d0f = df0. Since f is fixed, we seek the shortest path from f to

0 by means of dynamic programming, working backwards from 0 to f . At the

second-to-last stage, t1, the admissible nodes x(t1) are those adjacent to 0 and they

all are kept by the algorithm, along with their distance, and marked “visited”. At

t1, all paths are already optimal because there is only one path to each admissible

cell. At step t2 however the admissible nodes x(t2) are all cells adjacent to any cell

in x(t1). Suppose a void cell a is revisited, then only the path with the shortest

overall distance d⇤0a is kept by the pruning algorithm. Thus, at any moment in time

t0  tk  tf the set of admissible and void nodes x⇤(tk) > 0 that are kept in Tr all lie

on the path of minimum distance between t0 and tk. Suppose x⇤(tk) = {a, b, c},
then the paths kept are those with the optimal distances d⇤0a, d⇤0b, and d⇤0c, respectively.

By the principle of optimality, it follows that, for each of these paths,

d⇤fa0 = d⇤0a + daf ,

d⇤fb0 = d⇤0b + dbf ,

d⇤fc0 = d⇤0c + dcf ,

where, d⇤fa0 corresponds to the path of minimum distance from f to 0, through

a. Thus, if any of the cells in x⇤(tk), say b, lie on the path of minimum overall

distance, that is d⇤f0 = d⇤fb0, then the optimal path kept between 0 and b also
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lies on the optimal path between f and 0 (which is found when the algorithm

terminates). Since the shortest path connecting f to 0 is equivalent to the shortest

path connecting 0 to f , and d⇤f0 = d⇤0f , then the pruning algorithm keeps the

optimal path, provided all cells are void.

Now suppose some of the cells in G are observation cells and, thus, are not always

eliminated based solely on distance. If an observation cell, ̄e, is visited for the first

time, or is revisited through a non-information-equivalent branch (j = nil), then it

always is kept regardless of distance. Since this step does not eliminate but only

adds paths, it cannot eliminate the overall optimal path, with distance d⇤0f . Instead,

suppose ̄e is visited twice by the algorithm: once at time ti by a path through a node

a, and once at time tj � ti by a path through b that is characterized by a shorter

distance, i.e., d⇤0e = d⇤0be < d⇤0ae. Then, if the two paths are information equivalent,

the observation cell is treated like a void cell and the path 0 · · · ! b · · · ! ̄e is

kept, such that,

d⇤fe0 = d⇤0e + def .

Thus, if ̄e lies on shortest path from f to 0, then so does the path through b, with

distance d⇤0be, that is kept by the pruning algorithm. The same argument applies to

any subsequent time when ̄e is revisited through an information-equivalent branch

that is shorter than the one stored in TREE. Hence, the branch that remains when

the tree is complete is the shortest of all information-equivalent branches connecting

0 and f through ̄e.

The final case is that of an observation cell, say ̄g, that is revisited through an

information-equivalent branch through a node a. Suppose the existing information-

equivalent branch in TREE, through b, contains ̄g (by definition of information-

equivalent branches) but terminates in another cell c. In other words, the two

branches are distinct and information equivalent, but the paths connecting 0 and
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̄g along them are not information equivalent. In this case, the shortest branch can

still be eliminated. Consider the existing branch up to the last observation cell in

it, say ̄e, such that the new branch 0 · · · ! a · · · ! ̄g can be compared to the

shortest information-equivalent path in the existing branch, namely 0 · · · ! b · · ·
! ̄g · · · ! ̄e (which has been pruned of the path connecting ̄e to c, but may still

contain b as well as any other nodes anywhere along the path). If d0ge > d0ag, then

d0ag < d0bg because dge cannot be negative. By the principle of optimality d⇤0g = d0ag,

and if ̄g lies on the overall optimal path from f to 0, so does the path 0 · · · !
a · · · ! ̄g. Since the existing path through b to ̄g is distinct and sub-optimal

with respect to the former, then it cannot lie on the shortest path from f to 0.

Thus, this existing branch can be eliminated because it is information-equivalent and

longer in distance than the new branch. Moreover, eliminating this branch does not

eliminate another possibly-optimal path, because if such a path went through the

existing branch it would go through ̄g, and if ̄g lies on the optimal path, then by

the principle of optimality the optimal path must include 0 · · · ! a · · · ! ̄g, or

d⇤f0 = d⇤0ag + dgf .

Finally, through the operation ADJACENT, the pruning algorithm disallows the

parent of a node to be its direct child because this branch always leads to a suboptimal

path. Consider a branch 0 · · · ! p ! c in TREE that can be grown through

the nodes adjacent to its last cell c. By definition the parent p always is adjacent

to the child node in TREE, in this case c. Also, if p is in TREE it implies that

its branch contains the shortest information-equivalent path from 0 to p with the

shortest distance d⇤0p, and d⇤f0 = d⇤0p + dpf . Thus, if c is added to the branch along

with p as its direct child, producing 0 · · · ! p ! c ! p · · · ! f , the resulting

total distance is d⇤0p + 2 · dpc + dpf > d⇤0p + dpc + dpf , and thus is sub-optimal even

when p lies on the optimal path from f to 0. Moreover, since the order of the

98



measurements is irrelevant (Remark 5.3.2), if p is an observation cell, revisiting it

at a later time never adds information value to the path, and the branch remains

information-equivalent to itself.
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Appendix E

Proof of Theorem 5.3.1

At time t0, before any measurements are taken, the uncertainty in the hypothesis

variable y is the entropy H(y), computed from the prior probability P (y) (eq. 3.2).

At time t1, when the first measurement z1 is obtained, the uncertainty in y is given

by H(y|z1) and using the result that conditioning reduces entropy [41],

H(y|z1)  H(y) (E.1)

where, the equality holds if and only if y ? z1. At time t2, when a second measurement

z2 is obtained, the chain rule for entropy [41] is applied, such that,

H(y, z1, z2) = H(y, z1|z2) + H(z2) = H(y|z2, z1) + H(z1|z2) + H(z2) (E.2)

and

H(y, z1) = H(z1) + H(y|z1). (E.3)

Then, the conditional entropy at t2 can be written as,

H(y|z1, z2) = H(y, z1|z2)�H(z1|z2)  H(y, z1)�H(z1|z2), (E.4)

where, the inequality applies because conditioning reduces entropy. Using eq. (E.3),

the above inequality is

H(y|z1, z2)  H(y|z1) + H(z1)�H(z1|z2). (E.5)

Furthermore, H(z1|z2)  H(z1), thus [H(z1)�H(z1|z2)] � 0, and it follows from eq.

(E.5) that conditioning the probability of y upon both z1 and z2 must reduce entropy

with respect to conditioning y upon z1 alone, regardless of the outcome of z2:

H(y|z1, z2)  H(y|z1). (E.6)
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Let zi and zj be any two measurements taken at times ti and tj, respectively, during

the Markov process. Then, by induction,

H(y|z1, . . . , zf�1)  H(y|z1, . . . , zj)  H(y|z1, . . . , zi)  H(y) (E.7)

provided tj > ti. Thus, the conditional entropy is a decreasing function over T ,

and when the measurements are not independent (as by our initial assumption) it

is a monotonically decreasing function, since the above inequalities all become strict

inequality.

Therefore, if we define H(tk) to be the entropy of the hypothesis variable y con-

ditioned upon all of the measurements obtained up to tk, the incremental entropy

between two subsequent time steps,

�H(tk) ⌘ H(tk�1)�H(tk) = I(y; zk | zk�1, zk�2, . . . , z1) � 0 (E.8)

is the reduction in entropy brought about by the latest measurement zk, and from eq.

(E.7) it is always a non-negative quantity. From the definition in eq. (3.4), it can be

seen that the incremental entropy between two time steps is the mutual information

between y and the latest measurement zk, given all previous measurements up to zk�1.

The incremental entropy is said to be an additive function over time because for any

two time instants ti, tj 2 T , with ti < tj, the total reduction in entropy incurred over

the time interval [ti, tj] is equal to the sum of the incremental entropies,

Pj
k=i �H(tk) = �H(ti) + �H(ti+1) + · · ·+ �H(tj�1) + �H(tj)

= H(y|z1, . . . , zi�1)�H(y|z1, . . . , zi) + H(y|z1, . . . , zi)�H(y|z1, . . . , zi+1)
+ · · ·
+H(y|z1, . . . , zj�2)�H(y|z1, . . . , zj�1) + H(y|z1, . . . , zj�1)�H(y|z1, . . . , zj)
= H(y|z1, . . . , zi�1)�H(y|z1, . . . , zj) = I(y; zj, . . . , zi|zi�1, . . . , z1)

(E.9)

that simplifies to the given mutual information because all of the intermediate terms

cancel each other out. It also follows that since there are no prior measurements at
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time t0, the total reduction in entropy,

f�1X

k=1

�H(tk) = H(y)�H(y|z1, . . . , zf�1) = I(y; z1, . . . , zf�1) = B(tf ) (E.10)

is the reduction in the uncertainty of y due to the knowledge of all of the measure-

ments in the given sequence. ⇤
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Appendix F

Proof of Remark 5.3.2

Let Mk = {m`, mj, . . . ,ml} ⇢ M denote a subset of i measurements in M =

{m1, . . . ,mr}, with i < r, that are performed over the time period (t0, tk] 2 T ,

leading to the sequence Zt
k

= {z1 = m`, z2 = mj, . . . , zi = ml}. Then, the total

measurement benefit up to time tk is,

B(tk) =
kX

|=1

�H(t|) = I(y; z1, z2, . . . , zi) = I(y; m`, mj, . . . ,ml) (F.1)

according to Theorem 5.3.1. Where, Mk and M are unordered sets, while Zt
k

is a

totally ordered set. Consider a di↵erent sequence of the same tests Mk, such that

another totally ordered set is defined, for example Z 0
t
k

= {z1 = ml, z2 = m`, . . . , zi =

mj}. Then, the total measurement benefit up to time tk is:

B0(tk) =
kX

|=1

�H(t|) = I(y; z1, z2, . . . , zi) = I(y; ml, m`, . . . ,mj) (F.2)

From the definition of mutual information (eq. 3.4),

I(y; m`, mj, . . . ,ml) = Ey,m
`

,m
j

,...,m
l

⇢
log2

P (y |m`, mj, . . . ,ml)

P (y)

�

= Ey,m
l

,m
`

,...,m
j

⇢
log2

P (y |ml, m`, . . . ,mj)

P (y)

�
(F.3)

= I(y; ml, m`, . . . ,mj)

where, the expectation Ey,m
`

,m
j

,...,m
l

is computed by marginalizing its argument mul-

tiplied by the joint probability distribution, P (y, m`, mj, . . . ,ml). Since both the
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marginalization operation and the union of sets, denoted by a comma in the proba-

bility distributions, are commutative, the mutual information of y and the sequence

Zt
k

can be written as in eq. (F.3) above. Thus, I(y; z1, z2, . . . , zi) = I(y; Mk), or

B(tk) = B0(tk), for any ordered sequence of measurements Zt
k

containing the set of

measurements Mk. ⇤
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110



Biography

Chenghui Cai was born in August 1978 in a small village of Hunan Province located

in the south of China. Although the life was hardscrabble, he grew up very happily

with great care from the whole family, and the childhood gave him not only an

intimate acquaintance with the ordinary people but also a keen sense of obligation.

He was a naughty student with just OK grade until his eleventh year. In this year,

the beginning of his fifth grade in the element school was the turning point of his life,

because he met one of the best teachers. His love of study and curiosity of knowledge

was strongly inspired. Thereafter, there was no holding him, and he entered Tsinghua

University, Beijing, China. In the first two years of his college, he cared a lot about

his class grades, and he finally succeeded to realize that the scores are almost useless,

at least to him. He began to be absent often in classes and learn a lot outside the

classes. He started to have, and still has, strong interests in many subjects, such

as philosophy, history, politics, religions, psychology, literature, and biographies of

some great scientists. Fortunately, he kept his interests in mathematics, physics and

all kinds of mechanics; otherwise, he might not be able to finish a dissertation in

engineering today. He also participated in many competitions and got some awards.

His research experience began during his undergraduate program at Tsinghua

University, Beijing, China when he worked on a team project of obstacle-avoiding

autonomous wheeled mobile robot. He continued his research as a master’s student

at Tsinghua University working on the power management of a humanoid robot. In

his Ph.D. study, he has covered a wide variety of research subjects ranging from

robotics, information-driven sensor planning, adaptive dynamic programming, infor-

mation fusion, computational intelligence to Bayesian learning, inference and deci-

sion. His current research interests lie in: design and analysis of algorithms for active

111



sensing, learning, decision-making under uncertainty, and computational intelligence;

investigation of theory and properties of neural and probabilistic networks; develop-

ment of optimal planning and control techniques with applications to robotic sensors,

intelligent surveillance, etc.; and engineering applications of Bayesian inference and

decision to statistical modeling from data. So far, he has submitted four papers and

published fifteen.

112


