
METHODS COMPARISON ON FLOW MODEL
CONSTRUCTION AND PARAMETER

ESTIMATION

A Thesis

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Master of Science

by

Dongheng Jing

August 2020



© 2020 Dongheng Jing

ALL RIGHTS RESERVED



ABSTRACT

Knowing the equation of an unknown dynamical system is essential when try-

ing to apply optimal control. Sometimes researchers do not have a comprehen-

sive knowledge to a nonlinear system. The unknown part might be the function

representing the relation between states (e.g. transfer function), or key param-

eters of a dynamical system (e.g. proportional constant of spring in a linear

spring system). Various methods have been developed to identify the dynam-

ics of an unknown system. In this thesis, multiple approaches include Neural

Network polynomial Extraction (NN-poly), Sparse Identification of nonlinear

Dynamics (SINDy) and Non-Uniform Discrete Fourier Transform (NUDFT) are

compared over their ability to find the expression of unknown systems or to

estimate key parameters of a dynamical system. Multiple tasks with different

purposes are created to test the performances of these methods.
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CHAPTER 1

INTRODUCTION

Neural Network polynomial Extraction (NN-poly) is a recently developed

approach to generate mathematical model for a nonlinear system from data [11].

It utilizes a fully connected feed forward neural network to map input to output

data. Then the neural network model is approximated to a funciton in polyno-

mial forms as an explicit expression to the relation between input and output

data. Another widely used approach is Sparse Identification for Nonlinear Dy-

namical system (SINDy) [2]. SINDy can also generate model of an unknown

nonlinear system by determining the weight sum of candidate functions. The

candidate functions are defined by users based on prior knowledge about the

nonlinear system. This thesis uses a case study- 2-DoF spring pendulum to

show how the above methods generate mathematical model to an unknown

dynamical system.

A recently developed control approach for air vehicles in turbulent flow is

developed by Yang et al. [10]. The new control approach is via IMF [8] and

based on the principles of inertial particle transport theory [1]. The new ap-

proach requires prior knowledge of the turbulent flow. Key parameters such as

the mean velocity, the vortex length scale and the vortex time scale have to be

known to use the above approach. However, in real life, key parameters and the

differential equations of the nonlinear system may be unknown. It is essential

to estimate flow structure and determine the mathematical expression of the

dynamics of vehicle traversing in turbulent flow. Then safety, robustness and

efficiency of a vehicle navigate in highly turbulent flow may be guaranteed.

This thesis also compares NN-poly and SINDy over their ability and per-
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formances to determine an explicit expression of the dynamics of an air vehicle

traversing in turbulent flow without prior knowledge. NN-poly and SINDy

both can generate mathematical models to a dynamical system. They are com-

pared over the ability to generate models that better predict the next state of a

vehicle moving in a turbulent flow. Besides NN-poly and SINDy, Non-Uniform

Discrete Fourier Transform (NUDFT) is compared with SINDy over the ability

estimate parameters of a dynamical system. SINDy and NUDFT are compared

over the task of flow parameter estimation. The parameter estimation task as-

sumes some prior knowledge is known. Both of the model construction and

parameter estimation tasks use simulation data from an uncontrolled vehicle

traversing in a cellular flow, which is a two-dimensional homogeneous turbu-

lent flow.

This thesis is organized as follows. In Chapter 3, each of the above methods

are introduced in detail. In Chapter 4, there is a case study over spring pen-

dulum system. It exemplifies how NN-poly and SINDy generate model for an

unknown nonlinear system without prior knowledge. In Chapter 5, method-

ologies on how to apply the above methods for the model construction task and

parameter estimation task are explained. This chapter also introduces metrics

for evaluating each method. Then in this chapter presents results and compar-

isons of the above methods. In Chapter 6, conclusion and discussions are made.

2



CHAPTER 2

PROBLEM FORMULATION

2.1 Model Construction

Given an nonlinear system of unknown dynamics, the system can be written

in state-space representation:

Ẋ = f (X) (2.1)

where, X is the state. Assuming full history of the state variables known from

data, and the data is sampled at equally spaced time points, the system can also

be represented in discrete-time state-space equations:

Xk+1 = f [Xk] (2.2)

where, Xk and Xk+1 represent the state at kth and (k + 1)th time points.

The full history of state variables with noise can be regarded as observation

y, which is defined as follows:

yk = Xk + ε (2.3)

where, yk is the observation at kth time point, and ε is the noise due to unavoid-

able measurement error. The noise can be assumed as white Gaussian noise

with zero bias. Then, finding the relation between yk and yk+1 is equivalent to

finding the relation between Xk and Xk+1 given in Eqn. 2.2.

NN-poly and SINDy are both designed to find the function f (·) that maps yk

to yk+1, where f (·) can also be regarded as the relation from Xk to Xk+1. NN-poly

and SINDy differs in the process.
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NN-poly takes the pair of adjacent states < yk, yk+1 > as input and output

pair to train a fully connected feed forward neural network. The trained model

fnn(·) is subject to minimize prediction error as shows in Eqn. 3.1.

fnn(·) = argmin
fnn

fcost[yk+1, fnn(yk)] (2.4)

where, fnn(xk) makes prediction ŷk+1 from yk, and fcost(·) is the cost function that

represents the difference between yk+1 and ŷk+1. The cost function can be mean

squared error (MSE) or mean absolute error (MAE). Then, by taking deriva-

tives of fnn, the neural network model fnn can be represented in Taylor series

fpoly as polynomial form shows in Eqn. 2.5a. At last, the discrete-time state-

space representation of the system can is approximated using the above model

in polynomial form given in Eqn. 2.5b.

ŷk+1 = fpoly(yk) (2.5a)

X̂k+1 = fpoly(Xk) (2.5b)

SINDy requires prior knowledge to the nonlinear system to construct candi-

date functions fcand,i, where subscript i means the ith candidate function. SINDy

tries to find a function subject to lowest cost as shows in Eqn. 2.6. The only dif-

ference of using SINDy compared to NN-poly is the function found by SINDy

contains only the candidate functions that selected by users. fsindy can be re-

garded as a linear combination of the candidate functions in Eqn. 2.7, where ξi

is a weight matrix corresponding to the ith candidate function.

fsindy(·) = argmin
fsindy

fcost[yk+1, fsindy(yk)] (2.6)

fsindy(·) =
∑

i

ξi fcand,i (2.7)
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2.2 Parameter Estimation

In some cases, researchers have prior knowledge to a dynamical system, but

the prior knowledge is not comprehensive. Then the dynamical system may be

represented in the following form:

Ẋ = f (X; p) (2.8)

where, p contains parameters of the dynamical system; f (·) is known. Thus, for

an parameter estimation task, the goal is to estimate parameter p.

5



CHAPTER 3

INTRODUCTION OF METHODS

Methods being adopted and evaluated in this thesis include Neural Network

polynomial Extraction (NN-poly), Sparse Identification of Nonlinear Dynamics

(SINDy), and Non-Uniform Discrete Fourier Transform (NUDFT). NN-poly and

SINDy are able to generate analytical solution to a nonlinear system but differs

in performance. SINDy and NUDFT are able to estimate parameters of a non-

linear system.

3.1 NN-poly

Neural network is a powerful tool to make predictions based on data. The-

oretically, a neural network with nonlinear activation function is able to fit any

curve and make accurate prediction. A neural networks can be used to predict

the next state of a dynamical system based on data acquired from current and

past state. However, the expression of a trained neural network model is not

explicit.

Ŷ = fnn(X) (3.1)

where Ŷ is the prediction, X is input, and fnn is the trained neural network

model. With implicit expression of a dynamical system, optimal control may

not be easily applied. Neural Network polynomial Extraction (NN-poly) is a

method of representing a trained neural network model in polynomial form.

With the explicit polynomial expression, a dynamical system may be able to

be well studied. Constraints may be applied to the dynamical system to en-

sure safety criteria, and optimal control algorithms may be applied. The trained

6



neural network can be a shallow feed forward network (1 hidden layer fully

connected neural network) or a multi-hidden-layer feed forward network.

Figure 3.1: Structure of a feed forward neural network with notations

The reformulation of a trained neural network to polynomial form is through

Taylor expansion. Simplification of the Taylor series of neural network model is

processed to save computational time and boost efficiency. A dynamical system

may be represented in the following two forms:

Xt+1 = fpoly(Xt) (3.2a)

Ẋ = fpoly(X) (3.2b)

where Xk and Xk+1 are states in discrete time, fpoly(X) is a function in polynomial

form in terms of state X.

7



3.1.1 Taylor Expansion of Neural Network Model

A typical Taylor expansion is in the following form:

y = f (x) =

∞∑
k=0

f (k)(x0)
(x − x0)k

k!
(3.3)

When presenting the Taylor series as a matrix function, same as substituting

scalar x with vector x, scalar y with y and f (k)(x0) with Jacobian J(k)(x0), the term

J(k)(x0) and (x−x0)k become higher order tensors. Thus, according to Granados’s

paper [4], two tensor operators are introduced: ⊗, meaning outer product, and

�, meaning inner product. The outer product operation to two tensors yields to

a tensor of higher order; the order of the yielded tensor is the sum of the order

of the two tensors (Eqn. 3.4a). The inner product operation to two tensors yields

to a tensor of lower order; the order of the yielded tensor is the difference of the

order of the two tensors (Eqn. 3.4c). Outer product operator and inner product

operator are defined as the following:

Let a ∈ Rm1×m2×···×mp and b ∈ Rn1×n2×···×nq , p and q are positive integer,and p > q,

then,

let y = a ⊗ b; then, yi1i2...ip j1 j2... jq = ai1i2...ipb j1 j2... jq (3.4a)

ak⊗ := a ⊗ a ⊗ · · · ⊗ a (3.4b)

let y = a � b; then, yi1i2...ip−q =
∑

j1

∑
j2

· · ·
∑

jq

ai1i2...ip−q j1 j2... jqb j1 j2... jq (3.4c)

where in Eqn. 3.4b, it means k a’s outer product, and k is a non-negative integer.

Eqn. 3.4a and Eqn. 3.4c are presented in index notation. Jacobian Jk is the kth

derivative of function f (·). Let x be a vector, x ∈ Rm×1, then,

J(k) =
∂k f (x)

∂x∂x · · · ∂x
(3.5)

and the number of ∂x in the denominator is k. Let y = f (x) and y ∈ Rn×1, then

J(k) ∈ Rn×m×m×···×m, where the number of m is k. Consequently, the Taylor series of
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a matrix function can be reformulated from Eqn. 3.3 to as the follows:

y = f (x) =

∞∑
k=0

J(k)(x0) �
(x − x0)k⊗

k!
(3.6)

Any infinitely differentiale function has a Taylor series as Eqn. 3.6, then, a

fully connected feed forward neural network with nonlinear activation func-

tions such as tanh(·) and sigmoid(·), can be represented as its Taylor series. Eqn.

3.7 shows a model of a fully connected shallow neural network. Ŷ ∈ Rn is the

prediction of the trained neural network model given the input X ∈ Rm. As-

suming k neurons in the hidden layer, W1 ∈ Rk×m stands for the weight passing

from input to the hidden layer, b1 ∈ Rk is bias of the hidden layer; Wout ∈ Rn×k is

the weight matrix passing from hidden layer to output layer, bout is bias of the

output layer. σ(·) is the activation function.

Ŷ = fnn(X) = Woutσ(W1X + b1) + bout (3.7)

Note that the activation function has to be differentiable everywhere. Two

most used activation functions that fulfill the requirement are tanh(·) and

sigmoid(·). If taking a matrix as the input of the two activation functions, these

two activation functions act on each entry of the input matrix independently.

That is, applying activation function does not change size of the input function.

Therefore, taking derivatives of the activation function also does not change the

size of input function as Eqn. 3.8 shows.

σ(



x11 x12 · · · x1n

x21 x22 · · · x2n

...

xm1 xm2 · · · xmn


) =



σ(x11) σ(x12) · · · σ(x1n)

σ(x21) σ(x22) · · · σ(x2n)
...

σ(xm1) σ(xm2) · · · σ(xmn)


(3.8a)
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σ′(



x11 x12 · · · x1n

x21 x22 · · · x2n

...

xm1 xm2 · · · xmn


) =



σ′(x11) σ′(x12) · · · σ′(x1n)

σ′(x21) σ′(x22) · · · σ′(x2n)
...

σ′(xm1) σ′(xm2) · · · σ′(xmn)


(3.8b)

Then, deriving from Eqn. 3.6, the Taylor series of a fully connected feed

forward shallow neural network model is as follows:

Ŷ = fnn(X) =

∞∑
k=0

J(k)
nn (X0) �

(X − X0)k⊗

k!
(3.9a)

J(k)
nn (X0) = Wout(σ(k)(W1X0 + b1) ◦W1k) (3.9b)

where, ◦ is element-wise multiplier, however, for a tensor operation in this al-

gorithm, it is defined as Eqn. 3.10. Assume x ∈ Rz and W ∈ Rz×d1×d2×···×dk , then

Z = x ◦W has the following property in index notation:

Zi j1 j2... jk = xiWi j1 j2... jk (3.10)

W1k is the kth order tensor of weight matrix W1. The calculation from W1 to W1k

does not follow the defined operator ⊗, because the dimension of (X−X0)k⊗ is k,

then the dimension of W1k must be k + 1. Assume W1 ∈ Rz1×d, W1k is defined as

follows:

W1k
i0i1i2...ik =

k∏
j=1

W1
i0i j

(3.11)

3.1.2 Simplification

It is clear from Eqn. 3.9a that as the order k increases, total number of ele-

ment in the terms J(k)
nn (X0) and (X−X0)k⊗ increases exponentially. The increase in

10



number of entries means the increase of computation time, which makes the al-

gorithm inefficient. To boost efficiency and save computational time, the follow-

ing two facts are considered: first, modern computers are optimized for matrix

manipulation; second, there are redundant entries of the same value within ten-

sors J(k)
nn (X0) and (X −X0)k⊗. Based on these facts, the concept of simplification is

to unfold the tensors into matrices, and remove redundant entries by combining

entries of the same value.

It is easy to prove that for a fully connected feed forward neural network,

regardless the number of hidden layers, partial derivatives of its mathematical

model must have the same value if the partial derivatives are with respect to

the same variables (e.g. ∂2 fnn
∂x1∂x2

=
∂2 fnn
∂x2∂x1

). Also, in a tensor a = x2⊗, it is easy to

prove that ai1i2 = ai2i1 . Thus, a multi-dimensional tensor can be simplified as

a matrix or a vector that only contains unique entries from the original tensor.

Each unique entry corresponds to a unique combination of subscripts.

An observation of the redundant terms in the above tensors is that their geo-

metrical representation are symmetric as shows in Fig. 3.2. Each axis represents

a subscript of tensor J(k)
nn (X0) or (X − X0)k⊗ (they have to be an integer but in

continuous representation). Reduction ratio is defined as the total number of

redundant entries over the number of all entries. It is a indicator of saved com-

putational effort. The reduction ratio is approximately equal to the area/volume

of the non-colored part to the whole for 2D and 3D tensors. Assuming a state

vector X has large number of state variables, the reduction ratio of 2D and 3D

tensors are approximately 50% and 83%. Thus, unfolding the tensors into ma-

trix/vector form with only unique entries reduces the computation effort, and

the algorithm may be more efficient.
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Figure 3.2: Geometry representation of unique entries in 2D and 3D tensors

The reduction ratio r is calculated as follows:

r = 1 −
∏k

i=1
d+i−1

i

dk (3.12)

where d is the number of state variables in a state vector, and k is the order of

the tensor.

Another observation is that for each unique entry, it has a group of redun-

dant entries. This group contains all entries of the same combination of sub-

scripts. An example may be for a tensor a = X3⊗, the group a112 contains entries

a112, a121 and a211; while group a111 contains itself as the only member. The num-

ber of members in a group is defined as multiplicity. Assuming a unique entry

representing a group of same-valued entries of a kth order tensor, the subscripts

form a set v = {i1, i2, . . . , ik} (e.g. for X1233, v = {1, 2, 3, 3}), n unique subscripts

forms a new set vu = {i∗1, i
∗
2, . . . , i

∗
n} (e.g. vu = {1, 2, 3}) , the corresponding num-

ber of same subscripts forms a set m = {m1,m2, . . . ,mn} (e.g. m = {1, 1, 2}), then

the multiplicity of the unique entry (representing the whole group of entries,

denoted as µv) is the following:

µv =
k!∏n

j=1 m j!
(3.13)
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Unfold J(k)
nn (X0) and (X − X0)k⊗ into matrix/vector form, match the unique

entries and the multiplicity, denoted as Jk∗(X0) and (X−X0)k∗, then Eqn. 3.9a can

be rewritten in the following form:

Ŷ = fnn(X) =

∞∑
k=0

Jk∗
nn(X0) · (Mk ◦

(X − X0)k∗

k!
) (3.14)

where Mk is a matrix consist of all multiplicities of kth order tensor (X − X0)k⊗.

The entries in Mk matches the entries in (X − X0)k∗; ◦ is the element-wise multi-

plication operator.

Taking X0 as a zero vector, then Eqn. 3.14 is simplified as the following form:

Ŷ = fnn(X) =

∞∑
k=0

Jk∗
nn(0) · (Mk ◦

Xk∗

k!
) (3.15)

where 0 is the zero vector.

A multiple hidden-layer feed forward neural network approximation is

based on the approximation of single hidden-layer feed forward neural net-

work. Taking the Taylor series approximation of one layer to the prior layer,

the multi-layer approximation can be calculated recursively as shows in Eqn.

3.16.

Z j+1 = f j(Zj) =

∞∑
k=0

Ak
Z j

(Zj − Zj0)k∗ (3.16a)

Ŷ = f0( fh( fh−1(· · · (X)))) (3.16b)

where Z j is the jth hidden layer, Ak
Z j

is the kth order coefficient in matrix form of

the approximation from Zj to Zj+1.

13



3.2 SINDy

SINDy stands for Sparse Identification for Nonlinear Dynamics. It is a

method for finding governing equations of a dynamical system from data [3].

Assume data is sparsely sampled from t1 to tm, where m is an integer greater

than 1, X is defined as the following:

X =



x1(t1) x2(t1) · · · xn(t1)

x1(t2) x2(t2) · · · xn(t2)
...

x1(tm) x2(tm) · · · xn(tm)


(3.17)

where x1 to xn are state variables and each column vector records all data of a

state variable sampled from t1 to tm. Then the expression of a dynamical system

can be represented as the following:

Ẋ = f (X) (3.18)

SINDy takes a target expression of a dynamical system as a sparse combina-

tion of many other single-term functions (e.g. sin(x), x2, ex,. . . , where x stands for

a random state variable). Given the fact that most dynamical systems contain

limited number of terms in its expression, a bag of candidates is created. The

bag of candidates contain limited number of single-term functions, denoted as

Θ(X).

Θ(X) =

[
f1(X) f2(X) · · · fp(X)

]
(3.19)

where f1 to fp are user-defined single-term functions. Selection of the candidates

are based on prior knowledge of the dynamical system or random guess.

The goal of using SINDy method is to determine which terms are the dom-

inant terms of the expression and to determine the coefficients placed ahead of

14



each dominant term. Weight matrix Ξ contains all coefficients corresponding to

each candidate. Values of entries in Ξ indicate the significance of a candidate to

the true expression.

ˆ̇X = Θ(X)Ξ (3.20)

where ˆ̇X is the prediction given the bag of candidate Θ(X) and calculated weight

matrix Ξ.

SINDy method contains two steps: candidate construction and coefficient

calculation.

3.2.1 Candidate Construction

The bag of Candidates Θ(X) is constructed highly based on the prior knowl-

edge of a dynamical system. Polynomials and trigonometry functions are often

selected as candidates. A column vector of which all entries are 1 is also of-

ten selected. The entry in weight matrix corresponding to the 1 column vector

refers to a constant term in the expression of a dynamical system. An example

of candidate function selection is as follows [5]:

Θ(X) =

[
1 X X2 X3 sin(X)

]
(3.21)

where mathb f 1 stands for the column vector containing only 1 as entries, X con-

tains all state variable columns, X2 and X3 contains all combination of state vari-

able columns that to the order of 2 and 3.

X2 =

[
x2

1 x1 · x2 x1 · x3 · · · x2
n

]
(3.22)
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3.2.2 Coefficient Calculation

The calculation of Ξ is equivalent to solving A in a linear equation Y = XA if

X is a square matrix. If Θ(X) is not a square matrix, estimation of Ξ is equivalent

to finding Ξ subject to the minimal square error between Ẋ and ˆ̇X. Θ(X) has to

be over-determined to utilize the least square optimization. Therefore, number

of candidates cannot exceed the number of states.

Ξ = argmin
Ξ

‖Ẋ −Θ(X)Ξ‖22 (3.23)

A threshold value δ is set. Any entry in the calculated Ξ lower than the

threshold is rounded to zero. A new bag of candidates Θ∗(X) is constructed

such that, the candidate column corresponding to the zero entry of Ξ is deleted

from the original bag of candidates. Similar process to Eqn. 3.23, a new weight

matrix denoted as Ξ∗ is then calculated. Ξ∗ can be regarded as the final result of

coefficient calculation. Therefore, the expression of the dynamical system can

be represented as the following:

Ẋ = Θ∗(X)Ξ∗ (3.24)

3.3 NUDFT

Non-Uniform Discrete Fourier Transform (NUDFT) is a method widely used

in signal processing. It can transform a not equally spaced sampled data in time

space into frequency space. It may be used for finding the analytical solution to

a nonlinear system because some nonlinear systems may have periodic terms

such as sin(·) in its expression. Using NUDFT may help researchers quickly find
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key parameters such as frequency in the periodic term. The NUDFT method

can find the dominant frequency of a signal with discrete and non-uniform sam-

pling. In this thesis MATLAB® function nufft is used.

17



CHAPTER 4

CASE STUDY: 2-DOF SPRING PENDULUM

The case 2-DoF spring pendulum is an example case that shows how NN-

poly and SINDy generate model of an unknown nonlinear system from data.

The dynamics of 2-DoF spring pendulum system (diagram shown in Fig. 4.1) is

as following equations:

ẍ +
k
m

(
√

x2 + y2 − L0)
x√

x2 + y2
= 0 (4.1a)

ÿ +
k
m

(
√

x2 + y2 − L0)
y√

x2 + y2
+ g = 0 (4.1b)

where, k, m, L0 and g are parameters of the system, representing spring con-

stant, mass of the point mass, length of the spring at rest and gravitational ac-

celeration. x and y are components of position of the point mass; ẍ and ÿ are

acceleration of the point mass in x and y direction.

Figure 4.1: Diagram of 2-DoF spring pendulum system

The simulation data is generated from time t0 = 0s to t f = 25s with dt = 0.05s

given the parameters and initial condition in Tab. 4.1. A 20 dB white Gaussian

noise is added to simulate measurement noise.
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k 5N/m
m 1kg
L0 1m
g 10m/s2

Initial
Condition

x0 = 1
y0 = −1
ẋ0 = 0
ẋ0 = 0

Table 4.1: Parameters of 2-DoF spring pendulum and Initial Condition

Assuming x, y, ẋ ẏ are all observable, state X can be [x y ẋ ẏ]T . Full history of

state X is in discrete time, and the goal is to find the relation from current state

to next state as shows in Eqn. 4.2.

Xk+1 = f [Xk] (4.2)

where, k is a dummy variable standing for current state.

4.1 Metrics of Evaluation

From Eqn. 4.1, it is hard to find an exact equation in the form of Eqn. 4.2.

Thus, mean square error is a metric to evaluate the accuracy of mathematical

models generated by NN-poly and SINDy.
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4.2 NN-poly

4.2.1 Methodology

NN-poly takes a pair of states as input and output. The pair of states are

adjacent states < Xk,Xk+1 >. Hyper parameters of neural network for training

and maximum order of the polynomial in NN-poly approximation are as shows

in the following Tab. 4.2.

number of hidden layers 1
number of neurons in hidden layer 4

activation function tanh
max order for approximation 3

Table 4.2: NN-poly setting

Then deriving from Eqn. 3.15, the NN-poly algorithm is able to generate a

equation in polynomial form up to the 3rd order to represent the relation be-

tween current and next state as shows in Eqn. 4.3a. Eqn. 4.3b to 4.3d shows all

elements in each flattened polynomial term.

X̂k+1 = A0 + A1X1∗
k + A2X2∗

k + A3X3∗
k (4.3a)

X1∗
k =

[
xk yk ẋk ẏk

]T

; (4.3b)

x2∗
k =

[
x2

k xkyk xk ẋk xkẏk y2
k yk ẋk ykẏk ẋ2

k ẋkẏk ẏ2
k

]T

; (4.3c)

x3∗
k =

x3
k x2

kyk x2
k ẋk x2

k ẏk xky2
k xkyk ẋk xkykẏk xk ẋ2

k xk ẋkẏk xkẏ2
k

y3
k y2

k ẋk y2
k ẏk yk ẋ2

k yk ẋkẏk ykẏ2
k ẋ3

k ẋ2
k ẏk ẋkẏ2

k ẏ3
k


T

(4.3d)
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4.2.2 Result

The model generated by NN-poly is section A.1.1 in the Appendix. As shows

in Fig. 4.2 and Fig. 4.3, the prediction is close to the true data. Mean square error

in training set and validation set is as follows:

x y ẋ ẏ
Training set 0.0171 0.0182 0.0353 0.0280

Validating set 0.0171 0.0176 0.0407 0.0289

Table 4.3: NN-poly model mean square error

Figure 4.2: Result of training set using NN-poly
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Figure 4.3: Result of validating set using NN-poly

From Fig. 4.2 to 4.3 and Tab. 4.3, it shows NN-poly generates an accurate

model that predicts the next state within tolerable error. The errors might result

from the measurement error.
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4.3 SINDy

4.3.1 Methodology

SINDy takes two steps. The first step is creating candidate functions Θ(Xk),

where Xk contains states from X1 to XT−1. The second step is calculating coeffi-

cient matrix Ξ, in which each entry corresponds to a certain candidate function.

Since assuming no prior knowledge, the selection of candidate functions are

polynomial terms up to 3rd order, sinusoidal functions and exponential func-

tions.

Θ(Xk) =

[
1 Xk X2

k X3
k sin(Xk) cos(Xk) exp(Xk)

]
(4.4)

where, X2 and X3 includes all combination of state variables that are to the sec-

ond and third order (e.g. x2, ẋy, x2y). Since state X contains 4 state variables, the

number of terms in the bag of candidates Θ(Xk) is 47.

Then, under the principle given by Eqn. 3.23, coefficient matrix Ξ is cal-

culated such that the dot product of Xk and Ξ approximates Xk+1, where Xk+1

includes states from X2 to XT . Setting the coefficient threshold as 0.05, the up-

dated candidate functions and coefficient matrix are Θ∗(Xk) and Ξ∗.

At last, the discrete-time state-space equation generated using SINDy

method is as follows:

X̂k+1 = Θ∗(Xk)Ξ∗ (4.5)
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4.3.2 Result

The model generated by SINDy is section A.1.2 in Appendix. As shows in

Fig. 4.4 and Fig. 4.5, the prediction is far from the true data. Mean square error

in training set and validation set is as follows:

x y ẋ ẏ
Training set 0.0190 0.0187 0.0238 0.0187

Validating set 0.0170 0.0178 0.0223 0.0212

Table 4.4: SINDy model mean square error

Figure 4.4: Result of training set using SINDy
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Figure 4.5: Result of validating set using SINDy

From the above Fig. 4.4 and 4.5, it is clear that SINDy is able to generate

a mathematical model that accurately predict the next state given current state

data with tolerable errors.

4.4 Comparison

Both NN-poly and SINDy are able to generate a mathematical model that

accurately predict the next state in this example case. These two approaches

differs in the requirement of prior knowledge to an unknown nonlinear system.
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NN-poly does not require any prior knowledge while SINDy requires; however,

comparing to SINDy, NN-poly is not able to include sinusoidal term and expo-

nential terms in its expression. These two approaches are both efficient as the

computational time of each not exceeding 1 second in this example case.
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CHAPTER 5

CASE STUDY: VEHICLE TRAVERSING IN TURBULENT FLOW

Vehicle traversing in turbulent flow focus on the dynamics of an air vehi-

cle traversing in a simplified homogeneous turbulent flow- a two-dimensional

cellular flow. The cellular flow model contains periodic changing arrays of ed-

dies [7]. A cellular flow model is simple, yet many flows in real life are of this

structure, such as convective cellular motion in clouds [9]. A two-dimensional

cellular flow model can be represented as the following form in Eqn. 5.1.

wx = U0sin(πx/L)cos(πy/L) (5.1a)

wy = −U0cos(πx/L)sin(πy/L) (5.1b)

where, x and y represent a position in inertial frame, wx and wy are the velocity

component in x and y direction, U0 is the mean velocity, and L is the length scale

of the flow velocity field. The time scale of vortices is defined as τw = L/U0.

Like many previous researches, in this thesis, the air vehicle is treated as

a point mass. Assuming the flow is incompressible and the Reynolds number

small, then the dynamics of a point-mass thrust-driven air vehicle is as follows:

mẍ = 3πLµ(w − ẋ) + T (5.2)

where, x = [x y]T is the position of the air vehicle in inertial frame, w = w(x) =

[wx wy]T is the velocity of the cellular flow measured at position x, T ∈ R2 is a

constant thrust, µ is the dynamic viscosity, m and L are the mass and span of of

the point-mass air vehicle [6]. Denote τ = m
3πLµ as the inertial response time of

the air vehicle, Eqn. 5.2 becomes Eqn. 5.3 as follows:

ẍ =
1
τ

(w − ẋ) + aT (5.3)
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where aT is the acceleration due to thrust. Then the full expression of the dy-

namics of point-mass air vehicle is as follows:

ẍ =

ẍ

ÿ

 =
1
τ

 U0sin(πx/L)cos(πy/L) − ẋ + ax

−U0cos(πx/L)sin(πy/L) − ẏ + ay

 (5.4)

where, ax and ay are acceleration component in x and y direction due to the

constant thrust T.

In this case compares performance of methods in different tasks. The first

task is a model construction. Given the above background, the first task as-

sumes Eqn. 5.4 is not known. The differential equation such as Eqn. 5.3 can be

written as state-space equation Ẋ = f (X), where X = [x y ẋ ẏ]T . It can also be

derived into discrete-time state-space equation Xk+1 = f (Xk). The goal is to find

the mathematical expression of the function f (·) that minimize the prediction

error as shows in Eqn. 5.5.

f = argmin
f
‖Xk+1 − f (Xk)‖22 (5.5)

The second task is to find key parameters of the cellular flow velocity field.

The parameters need to be estimated are mean velocity U0 and length scale L.

Denoting p = [U0 L]T , Eqn. 5.3 then becomes the following:

ẍ =
1
τ

[w(x; p) − ẋ] + aT (5.6)

Given that aT is a known constant, τ is a known constant, ẍ and ẋ are both ac-

quired from simulation, and assuming w is an unknown periodic function, the

goal is to find p that minimizing the difference between prediction and obser-

vation as shows in Eqn. 5.7.

p = argmin
p
‖w[x(t)] − f(x; p)‖22 (5.7)
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where, w[x(t)] contains full history of the flow velocity profile measured at posi-

tion x and time t, f(x; p) is some function that contains a certain parameter p as a

variable. This task does not require to find the correct expression of w, or f[x(t)]

in the above equation. For NUDFT, finding L is equivalent of transferring w

into frequency domain and finding the dominant frequency. The dominant fre-

quency has a direct relation to the length scale L. However, for SINDy, finding

a expression of w that includes the parameter p is a necessity.

Two tasks are setup over the same simulation data to test the performance

of each algorithm introduced in previous chapter. The first task is model con-

struction. NN-poly and SINDy are compared in this task. The goal for the two

methods is to generate a discrete-time state-space equation that minimize the

prediction error of the next state of vehicle moving in cellular flow given cur-

rent and past states.

5.1 Metrics of Evaluation

5.1.1 Model Construction Task

Metrics for evaluation for the model construction task are computation time,

state error (mean squared error), coefficient error, length of solution, and coeffi-

cient stability, given in Tab. 5.1.
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Metrics Measurement Definition/Equation
Computing Time Efficiency Time cost to run calculation

State Error
(Mean Squared Error) State Accuracy MS E = 1

T

∑T
k=1(xk − x̂k)2

Coefficient Error Expression Accuracy

MSE of coefficients
(if in polynomial form)

CE = 1
m

∑m
i=1(ci − ĉi)2

N/A if not in polynomial form

Parameter Stability
Expression Accuracy

and Complexity

Largest parameter divided
by smallest coefficient

PS =
max(p)
min(p)

Length of Solution
Expression Accuracy

and Complexity
Number of nonlinear

terms in solution

Table 5.1: Metrics of evaluation for model construction task

Computing time reflects the number of calculation of computers. It is also a

indicator of the complexity of an algorithm. Computing time reflects efficiency

of an algorithm. State error is measured by calculating the mean square error of

states. It measures state accuracy, or how close the prediction to the true value

of state variables in one state. Coefficient error is a unique metric of evaluation

only if the true expression of a dynamic system is in polynomial form, or the

mathematical expression of the dynamic system can be represented in polyno-

mial form which contains limited number of terms (e.g. sin(·) is not applicable

for this metric because its polynomial form has infinite terms). Parameter sta-

bility calculates the ratio of largest absolute value of coefficients to the least. A

large ratio might indicate instability, because a small disturbance in current state

might result a huge change to the next state. Length of solution represents the

complexity of the mathematical expression that an algorithm yields given data

from a dynamic system. Shorter length of solution means less complexity, and

might be more close to the true expression of a nonlinear system.
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5.1.2 Parameter Estimation Task

Metrics for evaluation for the parameter task are computing time and pa-

rameter relative error, given in Tab. 5.2.

Metrics Measurement Definition/Equation
Computing Time Efficiency Time cost to run calculation

Relative Error Accuracy p̂−p
p

Table 5.2: Metrics of evaluation for parameter estimation task

where, p̂ is the estimated value of parameter, and p is the true value of parame-

ter.

5.2 Task 1: Model Construction

The model construction task assumes no prior knowledge of the dynamics

of the vehicle or the turbulent flow is known. Simulation data contains position

[x y]T of the vehicle and velocity [ẋ ẏ]T of the vehicle from t0 to t f . Then state X

is defined as [x y ẋ ẏ]T . Data is equally spaced sampled over time period from t0

to t f . Sample rate is 100 hz, which means dt is 0.01 second. Then, T is defined

as the total number of states, T = (t f − t0)/dt + 1. The goal is to find the discrete-

time state-space equation of the dynamical system of the vehicle traversing in

cellular flow. The reason for using discrete-time state-space representation is to

reduce the effort calculating accelerations. The calculation of acceleration may

be highly influenced by the noise level, and noise causes inaccuracy.

Two methods use the same simulation data. It simulates a point-mass ve-
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hicle traversing in the cellular flow field. The parameters of the vehicle and

cellular flow structure is as follows in Tab.

Time scale of vehicle τ 0.3 s
Length scale of flow L 4.5 m
Time scale of flow τw 0.354 s

Initial state [1 0.5 0 0]T

Time range 0 - 40 s
dt 0.01 s

Table 5.3: Simulation setting for model construction task

5.2.1 NN-poly

Methodology

NN-poly takes a pair of states as input and output. The pair of states are

adjacent states < Xk,Xk+1 >. Hyper parameters of neural network for training

and maximum order of the polynomial in NN-poly approximation are as shows

in the following Tab. 5.4.

number of hidden layers 1
number of neurons in hidden layer 10

activation function tanh
max order for approximation 2

Table 5.4: NN-poly setting

Then deriving from Eqn. 3.15, the NN-poly algorithm is able to generate

a equation in polynomial form up to the 2nd order to represent the relation

between current and next state.

X̂k+1 = A0 + A1X1∗
k + A2X2∗

k (5.8)
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Result

Generating model using NN-poly costs 5.669 seconds. The model generated

by NN-poly is A.1 in the Appendix. As shows in Fig. 5.1 and Fig. 5.2, the pre-

diction is close to the true data. Mean square error in training set and validation

set is as follows:

x y ẋ ẏ
Training set 27.9684 43.3893 0.0462 0.2427

Validating set 208.6989 330.5952 0.1246 0.0970

Table 5.5: NN-poly model mean square error

Figure 5.1: Result of training set using NN-poly
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Figure 5.2: Result of validating set using NN-poly

From the above figures, it is clear that NN-poly is able to generate a model

that accurately represent the discrete-time state-space equation of the dynamics

of point-mass vehicle traversing in cellular flow. The parameter stability is 4763,

and the length of solution is 15.
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5.2.2 SINDy

Methodology

Using SINDy to conduct model construction task includes two steps. The

first step is creating candidate functions Θ(Xk), where Xk contains states from X1

to XT−1. The second step is calculating coefficient matrix Ξ, in which each entry

corresponds to a certain candidate function.

Since assuming no prior knowledge known, the choice of candidate func-

tions includes constant term, polynomial terms up to the third order, sinusoidal

functions, and exponential functions. The choice of Candidate functions are

listed as follows:

Θ(Xk) =

[
1 Xk X2

k sin(Xk) cos(Xk) exp(Xk)
]

(5.9)

where, X2 includes all combination of state variables that are to the second (e.g.

x2, ẋy). Since state X contains 4 state variables, the number of terms in the bag

of candidates Θ(Xk) is 27.

Then, under the principle given by Eqn. 3.23, coefficient matrix Ξ is cal-

culated such that the dot product of Xk and Ξ approximates Xk+1, where Xk+1

includes states from X2 to XT . Setting the coefficient threshold as 0.01, the up-

dated candidate functions and coefficient matrix are Θ∗(Xk) and Ξ∗.

At last, the discrete-time state-space equation generated using SINDy

method is as follows:

X̂k+1 = Θ∗(Xk)Ξ∗ (5.10)

35



Result

Generating model using SINDy costs 1.675 seconds. The model generated

by SINDy is A.2 in Appendix. As shows in Fig. 5.3 and Fig. 5.4, the prediction

is far from the true data. Mean square error in training set and validation set is

as follows:

x y ẋ ẏ
Training set 3.6515 e+03 5.4029 e+03 0.0208 e+03 0.0336 e+03

Validating set 1.0352 e+04 2.2644 e+04 0.0019 e+04 0.0032 e+04

Table 5.6: SINDy model mean square error

Figure 5.3: Result of training set using SINDy
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Figure 5.4: Result of validating set using SINDy

From the above figures, it is clear that SINDy generates a model that not

accurately represent the discrete-time state-space equation of the dynamics of

point-mass vehicle traversing in cellular flow. The parameter stability is unable

to calculate as all entries in the coefficient matrix is zero. The length of solution

is 27.
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5.2.3 Comparison

In this task, NN-poly is able to approximate the model of vehicle accurately

and efficiently. However, SINDy is not able to generate an accurate model. NN-

poly is able to generate a reliable model only if the neural network is able to

approximate the output data accurately. The reason of SINDy not able to gen-

erate a reliable model might be due to Eqn. 3.23. Solving the above equation

uses MATLAB®function backslash. However, the calculation starts from a zero

matrix, while a zero metrix being a local minimum of the cost function. On

the contrary, the neural network starts from random weights and biases. Thus,

comparing NN-poly and SINDy, NN-poly is likely to generate a more accurate

model.

5.3 Task 2: Parameter Estimation

The parameter estimation task assume the only unknown part is the flow

structure. The goal is to find key parameter vortex time scale τw of the cellular

flow. Given that τ is a function of mean velocity U0 and the vortex length scale

L, τw = L/U0, the goal becomes estimating L and U0.

An air vehicle traversing in a cellular flow of the following parameter setting

is simulated with randomized initial position and zero initial velocity.
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Time scale of vehicle τ 0.3 s
Length scale of flow L 4.5 m
Time scale of flow τw 0.354 s

Time range 0 - 40 s
dt 0.01 s

Table 5.7: Simulation setting for parameter estimation task

Then, to evaluate the overall performance of these two methods, air vehicles

traversing in cellular flows of different parameters have been simulated. The

algorithms are then tested on different sampled data sets to estimate the corre-

sponding flow parameters. The vortex time scale τw of the cellular flow for each

test is ranging from 0.05s to 1s. The length scale L is a random number, and

the vehicle’s initial position is also randomized while the initial velocity is set to

zero. The two methods use the same data set.

5.3.1 SINDy

Methodology

It can be assumed that the unknown equation of flow velocity field are peri-

odic functions. Length scale L is the period of the periodic functions, and U0 is

the maximum magnitude. Then, w can be written in the following form:

w =

wx

wy

 = U0

px(x; L)

py(x; L)

 (5.11)

where, px and py represent the unknown periodic equations, and the magnitude

of [px py]T does not exceed 1. Parameter p consists of two element U0 and L,

where U0 is related to the magnitude of the periodic functions, and L is related
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to the period of the periodic functions. Then there are two steps to find these

two parameters. The first step is to find L, then U0 is easy to be estimated.

A group of candidate functions are created based on the prior knowledge.

The choices of candidate functions are as follows:

fcand ∈ { sin
πx
L
, sin

πy
L
, cos

πx
L
, cos

πy
L
,

sin
πx
L

sin
πy
L
, sin

πx
L

cos
πy
L
, cos

πx
L

sin
πy
L
, cos

πx
L

cos
πy
L
}

(5.12)

Besides the choice of candidate functions, choices of possible values of L are also

created.

Lcand = [Llb, Llb + dL, Llb + 2dL . . . , Lub] (5.13)

where Llb and Lub are the lower and upper bound of Lcand, and dL is the incre-

mental size. The choice of candidate trigonometric functions and length scales

leads to the complete library of candidate functions Θ(X) containing all possible

candidates:

Θ(X) =



sin ( π
Lcand

x)T

sin ( π
Lcand

y)T

cos( π
Lcand

x)T

cos( π
Lcand

y)T

[sin( π
Lcand

x) ◦ sin( π
Lcand

y)]T

[sin( π
Lcand

x) ◦ cos( π
Lcand

y)]T

[cos( π
Lcand

x) ◦ sin( π
Lcand

y)]T

[cos( π
Lcand

x) ◦ cos( π
Lcand

y)]T



T

=



sin( π
Llb

x)T

sin( π
Llb+dLx)T

...

sin( π
Lub

x)T

...

[cos( π
Llb

x) ◦ cos( π
Llb

y)]T

[cos( π
Llb+dLx) ◦ cos( π

Llb+dLy)]T

...

[cos( π
Lub

x) ◦ cos( π
Lub

y)]T



T

(5.14)

where, x ∈ Rd and y ∈ Rd record full history of vehicle position x(t) and y(t) from

t0 to t f , and ◦ is element-wise multiplication. Assuming Lcand contains k possible

selection of L, then Θ(X) ∈ Rd×8k. Each column of Θ(X) is a representation of a
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combination of a candidate function and a candidate length scale L, then the

column can be defined as fi, j, where i means the ith candidate function fcand,i, and

j means the jth candidate length scale Lcand, j.

Derived from Eqn. 3.23, the coefficient matrix Ξ∗ is found under the criteria

as follows in Eqn. 5.15.

Ξ = argmin
Ξ

‖w[x(t)] −Θ(X)Ξ‖22 (5.15)

where w[x(t)] is the full history of flow velocity sampled at position x and time

t. The threshold of coefficients is set to be zero.

Then all weights corresponding to a certain Lcand, j are summed up. The can-

didate weight Lcand, j with the highest weight sum is the estimated length scale

L̂.

L̂ = argmax
Lcand, j

∑
i

ξ( fcand,i, Lcand, j) (5.16)

where, ξ( fcand,i, Lcand, j is the weight corresponding to the ith candidate function

and jth candidate length scale.

Since the goal is to estimate U0 and L, it is not necessary to identify the ex-

act form of periodic functions fx and fy. After obtaining the estimated length

scale L̂, the bag of candidate functions is updated. The updated bag of can-

didates, denoted as Θ∗, contains all periodic candidate functions with L̂ only.

The size of the updated candidate set Θ∗ is significantly less than the original

Θ. Using SINDy, the expected periodic function, denoted as f̃x and f̃y, is the

weighted sum of all periodic candidate functions with non-zero weights. Given

that the maximum magnitude of the flow velocity cannot exceed U0, the max-

imum amplitudes of identified fx and fy with highest weight are both
√

2/2.
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Hence, expected periodic functions f̃x and f̃y have to be normalized as follows:

f ∗i =
√

2 ·
f̃i −

1
2 [max( f̃i) + min( f̃i)]

max( f̃i) − min( f̃i)
, i = x, y (5.17)

where f ∗i is the normalized periodic function, and f̃i is the expected periodic

function. Plugging the normalized periodic function f∗ = [ f ∗x f ∗y ]T back in Eqn.

5.11, we can obtain the flow velocity components in the form:

x[x(t)] = U0f∗(X) (5.18)

where X contains sampled vehicle states, and Φ(X) is obtained from sampled

vehicle state derivatives based on prior basic knowledge of the cellular flow

characteristics and the vehicle dynamics. Then U0 can be estimated by finding

a value subject to the minimum difference between U0f∗(X) and x[x(t)]

U0 = argmin
U0

‖w[x(t)] − U0f∗(X)‖22 (5.19)

Result

In the single test, as shown in Fig. 5.5, the estimated vortex length scale with

is L̂ = m. The corresponding estimated mean velocity is Û0 = m/s. Therefore,

the resultant estimated vortex time scale is τ̂w = L̂/Û0 = 0.s. Tab. 5.8 shows that

the cellular flow parameters U0, L and τw can be estimated accurately within the

permissible range of error ±5%.

U0(m/s) L(m) τw(s)
True Value 12.71 4.50 0.354

Estimated Value 12.08 4.40 0.364
Percentage Error -4.96% -2.2% 2.82%

Table 5.8: SINDy single test result
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Figure 5.5: Weights of length scale candidates

For simulations using 100 different parameter settings, it costs 139.873 sec-

onds to run the 100 tests. The result is as in Fig. 5.6 and Tab. 5.9. In Fig. 5.6, the

number in x-axis is the number of tests. Each test is an independent simulation.

It has its unique parameter setting and the corresponding full history of vehi-

cle’s position and velocity data from t0 to t f . From Fig. 5.6, it shows that in most

times, SINDy method can estimate τw accurately with only a few outliers possi-

bly due to measurement noise and the inaccuracy caused by estimating the state

derivatives via finite difference approximation. However, some data points in

Fig. 5.6 show that deviated estimations of L and U0 are sometimes compen-

sated by division, which yields to relatively good estimation of τw. SINDy can

estimate the vortex length scale L more accurately than the mean velocity U0.
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Figure 5.6: Overall estimation performance of SINDy

U0(m/s) L(m) τw(s)
Mean Absolute Error -1.50 0.19 0.068

Mean Percentage Error -11.2% 4.42% 3.52%
Mean Square Error 12.567 3.1324 0.0348

Table 5.9: SINDy random parameter test result - 100 runs

5.3.2 NUDFT

Methodology

The NUDFT method can find the dominant frequency of a signal with dis-

crete and non-uniform sampling. It uses MATLAB®function nufft. In the cel-

lular flow problem, the velocity field is a function of position (x = [x, y]T ), and

the positions where flow velocity is measured are not equal-spaced distributed.
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Thus, applying the NUDFT method to wx and wy with respect to x and y should

yield to four sets of data in frequency domain. Taking the weight sum of each

frequency, and the frequency corresponds to the highest weight sum is expected

to be f̂ , and L should be the inverse of the expected frequency L̂ = 1/ f̂ .

It may happen that the expected frequency is close to zero or relatively high.

A low frequency f̂ might indicate the simulation data is biased and has less

change with respect to x or y; a high frequency might indicate a high noise that

contaminate the simulation data. Then, lower and upper bound of frequency l

are set to minimize the influence of the above stated bias and noise. Frequency

lower than fub and higher than flb will be neglected. Then a new expected fre-

quency f̂ ∗ is the frequency with the highest weight sum, and L̂ = 1/ f̂ .

One of the drawback of this method is that, it is unclear the true expression

of the velocity field. Thus, estimation of U0 is simply taking the largest absolute

value of w[x(t)].

Result

In the single test, as shown in Fig. 5.7, the expected frequency with the

highest weight sum is f̂ = 0.223, then the estimated vortex length scale with

is L̂ = 4.48m. The corresponding estimated mean velocity is Û0 = 12.53m/s.

Therefore, the resultant estimated vortex time scale is τ̂w = L̂/Û0 = 0.358s. Tab.

5.10 shows that the cellular flow parameters U0, L and τw can be estimated ac-

curately within the permissible range of error ±5%.

45



U0(m/s) L(m) τw(s)
True Value 12.71 4.50 0.354

Estimated Value 12.53 4.48 0.358
Percentage Error -1.42% -0.44% 1.13%

Table 5.10: NUDFT single test result

Figure 5.7: Frequency domain of flow velocity in terms of position x and y

For simulations using 100 different parameter settings, it costs 80.849 sec-

onds. The result is as in Fig. 5.8 and Tab. 5.11. The accuracy of estimating L is

high, while the accuracy of estimating τw is highly influenced by the accuracy of

estimating U0. From Fig. 5.8 it is clear that errors in estimating U0 is the major

cause of errors in estimating τw.
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Figure 5.8: Overall estimation performance of NUDFT

U0(m/s) L(m) τw(s)
Mean Absolute Error -0.9212 -0.0044 -0.0502

Mean Percentage Error 18.17% 0.29% -12.42%
Mean Square Error 144.34 0.1062 0.0058

Table 5.11: NUDFT random parameter test result - 100 runs

5.3.3 Comparison

For both methods, SINDy is able to estimate parameter τw accurately in most

time if having reasonable assumptions to the range of L and incremental size dL;

NUDFT is able to retrieve parameter L correctly in most time if setting a reason-

able lower and upper bound of frequency f , though the estimation of U0 is less

accurate than SINDy. SINDy costs more time to complete 100 independent tests,

so NUDFT is more efficient.
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One way might to improve the performance is using a combination of the

two methods (e.g. finding L using NUDFT and U0 using SINDy). The accuracy

and efficiency of estimating L can be conducted using NUDFT method as the

result shown in Tab. , and the accuracy of estimating U0 is guaranteed when

using SINDy method.
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CHAPTER 6

CONCLUSION AND DISCUSSION

From the comparison between NN-poly and SINDy over model construc-

tion, it shows the better performance of NN-poly. For the specific task of find-

ing discrete-time state-space equation of a vehicle traversing in a cellular flow,

NN-poly is able to approximate the relation between current and next state via a

shallow feed forward neural network. Then the Taylor expansion of the neural

network model in polynomial form explicitly shows the mathematical expres-

sion. SINDy, in this specific task, is not able to find an accurate solution, possibly

because of the periodic term in the true expression. A periodic term with un-

known period creates a local minimum at origin when performing least square

optimization. Thus SINDy finds all coefficients close to zero, which is wrong.

Another possible explanation may be the exponential term in the selection of

candidate functions. A small coefficient corresponding to the exponential term

may cause the resultant weight matrix diverging from an accurate one. There-

fore, the selection of candidate function influences the performance of SINDy,

and this is a disadvantage when no prior knowledge known to researchers. On

the contrary, NN-poly is able to find an accurate solution without any prior

knowledge. However, NN-poly is now only able to provide a solution in poly-

nomial form. NN-poly needs to develop the ability of representing a nonlinear

system with terms other than polynomials, such as periodic terms and expo-

nential terms.

From the comparison between SINDy and NUDFT over parameter estima-

tion, it shows that SINDy is overall more accurate than NUDFT, while NUDFT’s

less computation time makes it more efficient. If having reasonable assumption
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of upper and lower bound of the length scale L, both of the methods are able

to estimate it accurately. Yet NUDFT takes less time to compute, and in most

cases NUDFT estimates the length scale (inverse of frequency) more accurate

than SINDy. As for estimating mean velocity U0, SINDy performs better than

NUDFT because SINDy is more likely to find the estimated mean velocity Û0

with less error. In future works, researchers may combine these two methods-

using NUDFT to find length scale and using SINDy to find mean velocity. Then

the hybrid of these two methods is expected to be more accurate and efficient.
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APPENDIX A

APPENDIX

A.1 Spring Pendulum Model Construction

A.1.1 NN-poly

A0 =

[
−0.0047 −0.0087 −0.0727 −0.2279

]T

A1 =



1.0393 −0.1099 −0.0142 0.0077

0.0042 1.0161 0.0164 0.0013

−0.0044 −0.0164 0.8895 −0.0197

0.0016 0.0159 0.0586 0.9724



T

A2 =



−0.0057 0.0064 −0.0005 −0.0029

0.0022 −0.0015 −0.0016 −0.0040

−0.0009 −0.0022 −0.0017 0.0025

−0.0009 −0.0027 0.0006 −0.0004

−0.0002 0.0021 −0.0015 −0.0037

−0.0006 −0.0016 0.0033 −0.0007

−0.0011 −0.0030 −0.0008 0.0017

−0.0017 −0.0066 −0.0410 0.0292

0.0011 0.0036 0.0136 −0.0131

−0.0002 −0.0007 −0.0062 0.0010



T
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A3 =



−0.0567 0.0630 0.0102 0.0065

0.0195 −0.0227 −0.0037 −0.0026

−0.0006 0.0006 0 −0.0003

0.0007 −0.0011 −0.0004 −0.0007

−0.0071 0.0072 0.0012 0.0008

0.0002 −0.0002 −0.0002 −0.0004

−0.0003 0.0002 −0.0002 −0.0005

−0.0001 −0.0002 −0.0001 0.0002

−0.0001 −0.0003 0 0

−0.0002 −0.0004 −0.0001 −0.0002

0.0022 −0.0032 −0.0004 −0.0002

0 0.0002 −0.0001 −0.0003

0.0001 −0.0001 −0.0002 −0.0005

−0.0001 −0.0002 0.0002 0

−0.0001 −0.0003 −0.0001 0.0001

−0.0001 −0.0004 0 −0.0001

−0.0001 −0.0004 −0.0028 0.0019

0.0001 0.0002 0.0009 −0.0009

0 −0.0001 −0.0004 0

0 −0.0001 −0.0001 −0.0005



T

52



A.1.2 SINDy

Ξ(row 1-23) =



21.0296 −9.3386 22.3314 −2.4213

19.3548 1.4934 2.3597 2.8501

−0.2952 0 0.1443 −0.5336

16.7412 −10.5123 10.2451 −0.7461

0 0 0 0.9981

−12.6064 −8.9944 −37.1500 13.5624

0 0 0 0

0 0 0 0

0 0 0 0

0.5610 1.0434 0.8715 0.8178

0 0 0 0

0 0 0 0

4.6522 −3.0627 1.1700 −0.0847

0 0 0 0

0 0 0 0

−6.6957 −2.8955 −11.7916 3.9812

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


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Ξ(row 24-47) =



0 0 0 0

0 0 0 0

0.1936 0.3975 0.2097 0.2925

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0.3928 −0.2680 0 0

0 0 0 0

0 0 0 0

0 0 0 0

−29.6717 −9.5073 −36.6146 10.3768

0.7699 1.8426 0.5267 1.1869

−1.6811 1.2746 1.1349 −0.0663

0 0 0 0

−14.0721 −10.1516 −40.4285 13.8466

0.7183 1.3979 1.1306 1.0503

−1.1365 0.6103 −1.6986 0.1290

0 0 0 0

11.3017 7.9524 34.2303 −13.2409

−0.4464 −0.7984 −0.6738 −0.6446

−18.6138 10.8326 −18.3059 1.2093

0 0 0 0


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A.2 Vehicle in Cellular Flow Model Construction

A.2.1 NN-poly

A0 =

[
0.0973 0.1275 0.0374 −0.0273

]T

A1 =



0.9996 −0.0086 −0.0293 0.0026

−0.0190 0.9824 0.0246 −0.0038

0.0013 −0.0047 0.9995 −0.0211

−0.0017 0.0132 −0.0198 0.9947



T

A2 =



0.0004 0.0004 0.0001 0.0004

0.0003 0.0004 −0.0001 −0.0003

0.0000 −0.0001 0.0005 0.0018

−0.0000 −0.0002 0.0004 0.0010

0.0002 0.0002 0.0000 0.0002

0.0002 0.0004 −0.0004 −0.0014

0.0001 0.0002 −0.0003 −0.0007

−0.0004 −0.0012 0.0018 0.0088

−0.0002 −0.0012 0.0020 0.0043

−0.0002 −0.0006 0.0010 0.0033



T

(A.1)

A.2.2 SINDy

SINDy model can be represented as follows:

Ŷ = 1Ξ0 + XkΞ1 + X2
kΞ2 + sin(Xk)Ξsin + cos(Xk)Ξcos + exp(Xk)Ξexp (A.2a)
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Ξ0 =

[
0 0 0 0

]
Ξ1 =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


Ξ2 =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



(A.2b)

Ξsin =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


Ξcos =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


Ξexp =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


(A.2c)
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