
Quadcopter Path Planning Using Optical Flow

Drew Mitchner

MEng Report - Fall 2018

1 Introduction

The RoboBee, a flapping microrobot, can sustain hover and follow trajectories using an adaptive spiking neural
net controller. Due to power requirements and to mimic actual insect flight, a neuromorphic camera allows the
RoboBee to interact with its environment and allows application of path-planning algorithms. However, hardware
constraints including lack of appropriately sized neuromorphic sensor and lack of on-board power or computing
prevents current tests of control algorithms. Thus, two methods of testing control algorithms are proposed and
developed.

First, a hardware-in-the-loop configuration will simulate the neuromorphic camera in conjunction with Blender,
a modeling software used to create photorealistic images and animations. The simulated image will be fed into the
controller, which outputs the desired control inputs for the robot.

Second, a micro-aerial vehicle equipped with RGB-camera is developed which can execute and test the same
control algorithms which will be used on the RoboBee.

2 Hardware

2.1 RoboBee

Figure 1

The RoboBee is developed at the Wyss Institute at Harvard University. Leveraging new pop-up MEMS technology,
the RoboBee achieves micro-scale flight by flapping its wings up to 120 times a second.

1



2.2 CrazyFlie 2.0

Figure 2

The CrazyFlie 2.0 is a micro aerial quadrotor developed by BitCraze. It has on-board IMU and optic flow sensor for
hover-assist, as well as a Python API interface.

2.3 Camera Deck

Figure 3

The camera deck is comprised of a Turbowing DVR Cyclops FPV Camera, 5V step-up regulator, and transceiver. The
regulator provides a steady, 5V input to the camera, which takes RGB video in real time, and the transceiver sends
the data to a off-board computer.

2



3 Hardware-In-The-Loop Configuration

The hardware-in-the-loop simulation allows the RoboBee to execute control inputs without sensors or on-board
computing. An overview of the configuration is shown below.

Figure 4: Overview of the control loop architecture used for the hardware-in-the-loop configuration.

In this configuration, the VICON motion capture system detects the robot state. A script then takes the most
recent state measurement and moves the camera inside a Blender API and renders an image of what the robot
would see if it did have its on-board sensors. The image is then converted into a neuromorphic image and is the
resulting data is used in creating high-level control inputs.

To test the rendering speed in Blender, a Python script runs through 1,000 different camera locations and renders
each image, and returns the pixel data to use for path planning. The results of these tests are shown in the table
below.

Setup Image Rate Camera Time Render Time Pixel Time
OpenGL (with UI) 28 Hz 0.1 ms 21.6 ms 9.8 ms

Blender Render (with UI) 11.5 Hz 0.1 ms 78.5 ms 8.5 ms
Blender Render (without UI) 11.8 Hz 0.01 ms 85.3 ms 0.01 ms

Table 1: Results of the 1000-image tests measuring speed of the sensor simulator. The current setup generates images at about
11.8 Hz.

An ideal goal is to be able to run this sensor simulation at 50Hz, but a slower rate would also be effective.

3



4 Quadrotor Path Planning

A path-planning demo utilizing the quadrotor will demonstrate the advantages of the neuromorphic sensor and
corresponding neuromorphic algorithms over a traditional frame-based camera. The proposed advantages are:
reduced power consumption, reduced computation, and quicker response times leading to more robust obstacle
avoidance or target tracking.

The algorithms used for path-planning depend heavily on assumptions made for the demonstration. There will
be only one moving target, and all other obstacles will be stationary. There are four main aspects to accomplish this
task.

1. Target recognition and tracking

2. Obstacle detection and avoidance

3. Path planning

4. Control inputs

4.1 Target Recognition and Tracking

In the demo, the quadrotor will identify and follow a moving target. Because there will only be one moving object in
the scene, any movement detected will be assumed to be the target.

To accomplish this, the quadrotor will begin in a "loiter" phase, where it hovers in place. When optical flow
values of a region of pixels exceeds a certain threshold, the robot will detect the corner pixels in the region and
identify these as the target.

Figure 5: Optical flow used to detect and track pixels of interest in real time.

Visual servoing will be used to keep the target roughly in the center of the frame. The rotational yaw velocity can
be used to center the target laterally, with PD-control used to determine the magnitude and direction of the rotation
rate. Overall, this yaw rotation is always considered independently from the rest of the motion of the system - the
quadrotor always attempts to point at the target.

Visual servoing will also be used to center the target vertically, though the quadrotor will be required to move
up or down to achieve this, as pitching forward or back as with laterally will cause the vehicle to translate in an
undesirable way.

4



This method allows the robot to quickly re-detect the target if it loses track of a certain percentage of the target
pixels. The robot re-enters the "loiter" phase, and quickly identifies the moving object.

4.2 Obstacle Avoidance

As with the rest of the path-planning, obstacle avoidance will utilize the Farneback dense optical flow algorithm to
acquire the optical flow of every pixel at every time step. A visualization of this algorithm is shown below.

Figure 6: Farneback method calculates optical flow at all points.

The magnitude of the optical flow at each point is related to the distance away an obstacle is (larger magnitudes
indicate closer obstacles). By using Structure-From-Motion, the quadrotor can leverage the stationary obstacles
assumption and use its single camera as if it were stereo vision by combining two proceeding frames. This allows
the vehicle to estimate the depth of obstacles. By using an inverse square law or Gaussian curve, the depth to each
pixel is translated into a force on the quadcopter, and the sum of the total force results in a net repulsive force on the
vehicle.

4.3 Path Planning

The overall path planning structure is thus similar to a potential field algorithm. The target pixels create an attractive
potential, which influences the translational and rotational velocities of the vehicle. The optical flow of the obstacles
creates a repulsive potential which solely influences the translational motion.

Manual tuning of the relative magnitudes of these effects will be required to ensure they are all of similar
magnitude.

5



4.4 Control Inputs

Control inputs will be sent to the vehicle via the CrazyFlie Python API. Specifically, the function "_set_vel_setpoint(velocity_x,
velocity_y, velocity_z, rate_yaw)" will be used to set each of the body frame velocities and yaw rate at each time step.

6


	Introduction
	Hardware
	RoboBee
	CrazyFlie 2.0
	Camera Deck

	Hardware-In-The-Loop Configuration
	Quadrotor Path Planning
	Target Recognition and Tracking
	Obstacle Avoidance
	Path Planning
	Control Inputs


