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Abstract

This dissertation presents a novel distributed optimal control (DOC) problem for-

mulation that is applicable to multiscale dynamical systems comprised of numerous

interacting systems, or agents, that together give rise to coherent macroscopic be-

haviors, or coarse dynamics, that can be modeled by partial differential equations

(PDEs) on larger spatial and time scales. The DOC methodology seeks to obtain op-

timal agent state and control trajectories by representing the system’s performance

as an integral cost function of the macroscopic state, which is optimized subject to

the agents’ dynamics. The macroscopic state is identified as a time-varying proba-

bility density function to which the states of the individual agents can be mapped

via a restriction operator. Optimality conditions for the DOC problem are derived

analytically, and the optimal trajectories of the macroscopic state and control are

computed using direct and indirect optimization algorithms. Feedback microscopic

control laws are then derived from the optimal macroscopic description using a po-

tential function approach.

The DOC approach is demonstrated numerically through benchmark multi-agent

trajectory optimization problems, where large systems of agents were given the ob-

jectives of traveling to goal state distributions, avoiding obstacles, maintaining for-

mations, and minimizing energy consumption through control. Comparisons are

provided between the direct and indirect optimization techniques, as well as existing

methods from the literature, and a computational complexity analysis is presented.
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The methodology is also applied to a track coverage optimization problem for the

control of distributed networks of mobile omnidirectional sensors, where the sensors

move to maximize the probability of track detection of a known distribution of mobile

targets traversing a region of interest (ROI). Through extensive simulations, DOC

is shown to outperform several existing sensor deployment and control strategies.

Furthermore, the computation required by the DOC algorithm is proven to be far

reduced compared to that of classical, direct optimal control algorithms.
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1

Introduction

Optimal control is a well-known approach for optimizing the performance of a dy-

namical system that is described by a small system of ordinary differential equations

(ODEs). It has been successfully implemented in a myriad of applications, such

as, for developing controllers for aircraft flight and stabilization, industrial chemical

processes, robotics, and economics [75]. However, many existing problems of current

interest involve highly complex systems that require capabilities beyond those of

optimal control to maximize system performance. These applications can be found

in a broad range of fields, and involve systems that are subject to significant non-

Gaussian inputs, coupling effects between many systems, or models that consist of

partial differential equations (PDEs). Optimal control methods can theoretically

optimize coupled systems by formulating a high-level macroscopic performance as a

combination of the system states and controls, but the approach is limited in practice

because if the number of coupled systems is large, the computational complexity can

become prohibitive. Systems that are subject to small random effects can be han-

dled with existing stochastic optimal control methodologies, but these approaches are

not suited for systems with large disturbances from random variables with arbitrary
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probability distributions. Additionally, several complex systems require complicated

expressions, such as PDEs, to represent the macroscopic system dynamics which

cannot be derived in closed form and therefore cannot be optimized with optimal

control.

This dissertation presents a novel approach for optimizing the system-level, or

macroscopic, performance of a multiscale stochastic dynamical system consisting of

a large number of agents that are modeled at a local, or microscopic, scale by ODEs or

stochastic differential equations (SDEs) and exhibit a collective macroscopic behavior

modeled by a PDE. A new distributed optimal control (DOC) problem formulation

is proposed where the system’s macroscopic state is represented as a probability

density function (PDF), and the macroscopic performance is defined as an integral

cost function subject to the macroscopic dynamics represented by a PDE. Necessary

conditions for optimality are derived, and direct and indirect numerical algorithms

are described to optimize the system performance and solve for the optimally evolving

PDF state representation. Then optimal trajectories of the microscopic agents can

be calculated from the optimal PDF by utilizing a novel artificial potential field

function to construct microscopic control policies. Therefore, the DOC approach is

a new optimal control methodology that extends the capabilities of optimal control

to complex, multiscale systems.

The DOC methodology is demonstrated here numerically through multi-agent

trajectory optimization problems, where the objective is to plan the paths of large

groups of agents through obstacle-populated workspaces to goal configurations while

avoiding obstacles and minimizing energy consumed. It was recently shown that

optimizing the trajectories of N agents in an obstacle-populated environment is

polynomial-space-hard (PSPACE-hard) in N [35]. Problems classified as PSPACE-

hard are at least as difficult as any problem solvable in polynomial space (PSPACE),

and the PSPACE class contains many problems for which no efficient solutions are
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known. Therefore, a PSPACE-hard problem is generally considered to be computa-

tionally intractable for large N , as the most efficient algorithms that are currently

available would require exponential deterministic time in the worst case [66].

Many complex systems ranging from renewable resources [67] to very large scale

robotic (VLSR) systems [64] can be described as multiscale dynamical systems com-

prised of many interactive agents. Several approaches have been proposed for tackling

the control of VLSR systems while avoiding the complexity issues for large N [19].

This is typically done by decoupling the problem into independent components for

which solutions can be found quickly at the expense of optimality and completeness

(i.e. the ability to find a solution if one exists). These approaches include prioritized

planning techniques, which plan the paths of agents individually in order of priority

[26, 80, 10, 18], and path coordination methods, which plan the paths of the robots

independently then adjust the microscopic control laws to avoid mutual collisions

[38, 45, 34]. Swarm-intelligence methods, such as foraging and schooling [30], view

each agent as an interchangeable unit subject to local objectives and constraints

through which the swarm can converge to a range of pre-defined distributions, but

the solutions produced do not optimize the macroscopic system performance subject

to the microscopic agent dynamics. Approaches that maintain the system’s coupled

behavior for multiple agents have also been presented [60, 61]. These methods uti-

lize cell decomposition and roadmap techniques, but the computational complexity

grows exponentially with the number of agents.

The DOC approach presented in this dissertation does not rely on decoupling the

agents’ dynamics or on specifying the agents’ distribution a priori. Instead, DOC

optimizes the macroscopic performance of the system subject to agent dynamics that

are coupled via the objective function, and relies on the macroscopic dynamic equa-

tions and restriction operator that characterize the multiscale system to reduce the

computational complexity of the optimal control problem. As a result, the compu-
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tation required is significantly reduced compared to classical optimal control, and

near-optimal trajectories of cooperative agents can be computed over large spatial

and time scales.

The DOC methodology can also be applied to track coverage optimization for

the control of distributed networks of mobile omnidirectional sensors, where the

sensors are deployed to cooperatively track moving targets in a ROI. The emergence

of dependable sensor network and autonomous-vehicle technologies have allowed for

the production of affordable surveillance systems that are both effective and versatile.

These systems often employ large numbers of autonomous vehicles carrying wireless

sensors to cooperatively detect, classify, localize, or track (DCLT) multiple targets in

dynamic nonlinear environments, and they are used for a wide variety of applications

in both the civilian and military areas including the detection and tracking of possible

intruders [82], the tracking and monitoring of endangered species [70], environmental

monitoring, and battlefield surveillance [63]. These types of systems typically have

very complex designs with many variables to consider, such as sensor selection, data

routing protocols and sensor placements, and high numbers of sensors are often

required to cover large regions of interest and to achieve acceptable confidence-levels

for sensor detections. For this reason, the ability to optimize these systems can

greatly influence their effectiveness [83].

Several authors have addressed the placement of sensors to meet DCLT objec-

tives, assuming that the sensors are stationary [7, 57, 42]. Other existing approaches

for generating sensor trajectories include area coverage [20, 1], random [1], grid [48],

and optimal search strategies [48, 74]. Cooperative control methods have also been

developed to manage the sensors’ formation in response to the sensed environment

[1, 33]. Although optimal control is often considered the most general and effec-

tive approach to trajectory optimization [75, 72], its applicability to mobile sensor

networks has been very limited to date due to the lack of suitable DCLT objective
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functions and to the computational complexity associated with solving the optimality

conditions numerically for a large number of sensors [8].

Recently, a probabilistic track coverage performance function was derived in

terms of the probability density function (PDF) of sensor positions by extending

the geometric-transversal approach using Poisson flats [27]. Track coverage is a met-

ric that relates to a sensor network’s ability to detect target vehicles as they traverse

a region of interest (ROI). In many surveillance applications, track coverage is often

seen as advantageous over other objective functions, such as area coverage, since it

provides a high level of confidence when a target is detected [84, 46]. This is espe-

cially important under conditions where false alarms are frequent. The performance

of networks of agents, such as sensors and autonomous vehicles, engaged in collab-

orative tasks, such as surveillance, search and rescue, and chemical plume detection

and tracking, has also been recently shown to be a function of the agents PDF over

the ROI [11, 59, 12, 83]. Therefore, one approach that has been proposed to deploy

networks of agents is to sample an assumed PDF for the agent position [83]. Another

approach is to perform locational optimization based on a given PDF, and obtain a

network representation using centroidal Voronoi partitions [22, 53]. Finally, the tra-

jectories of groups of agents can be computed using a hierarchical control approach

[3], by first establishing a virtual adaptive boundary for the network, and then com-

puting the lower-level control inputs to satisfy the boundary in lower-dimensional

space.

Because existing approaches do not optimize the PDF (or virtual boundary) sub-

ject to the agent dynamic constraints, the agents may be unable to achieve the

assumed distribution due to bounded state and control inputs. Conversely, if the

assumed PDF is too conservative, the actual network performance may be subop-

timal, and may not allow the network to achieve its maximum performance. Fur-

thermore, because existing methods cannot be used to determine time-varying agent
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distributions, they cannot fully exploit the capabilities of mobile sensors or take

into account time-varying and heterogeneous environmental conditions. The DOC

approach, addresses the problem of optimizing the time-varying macroscopic state,

or PDF, for a multiscale dynamical system comprised of a system of agents in an

obstacle-populated environment. Similarly, a sensor network can be viewed as a

multiscale dynamical system in which the performance to be optimized is an integral

function of the sensors’ PDF, and the sensor dynamics are provided by the equations

of motion of the sensor platforms.

This dissertation is organized as follows. Background on existing approachs for

multi-agent trajectory optimization is reviewed in Chapter 2. The DOC problem

formulation and assumptions are presented in Chapter 3. The derivation of the op-

timality conditions for the DOC problem are given in Chapter 4. Chapter 5 presents

the probability density function approach for defining the agents’ microscopic feed-

back control laws. Direct and indirect optimization algorithms for obtaining solutions

to the DOC problem are described in Chapter 6. Numerical simulations and results

for the problem of planning optimal agent trajectories through obstacle-populated

regions via DOC and a comparison of the algorithms outlined in Chapter 6 are pre-

sented in Chapter 7. Chapter 8 presents numerical simulations for the sensor network

track coverage optimization problem. And finally, Chapter 9 gives the conclusions

of this dissertation.
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2

Background

2.1 Classical Optimal Control

Optimal control can be considered the most general approach to optimizing the per-

formance of a dynamical system over time. Since its inception in the early 1970s,

it has been applied to a variety of dynamical systems, including physical, chemical,

economic, mechanical and air vehicles, in order to derive optimal control laws or tra-

jectories. However, despite its effectiveness at solving a large number of control and

optimization problems, classical optimal control experiences several shortcomings

that severely limit its applicability to distributed dynamical systems [8].

The classical optimal control formulation considers a system whose dynamics can

be approximated by a small system of ODEs,

9xptq � f rxptq,uptq, ts, xpT0q � x0 (2.1)

where, x P X � <n is the system state, and u P U � <m is the control [75]. The

dynamics in (2.1) also depend on system parameters that represent the physical

characteristics of the system and scale the system’s response to control inputs and to

its own motions. Optimal control seeks to determine the state and control trajectories

7



that optimize an integral cost function,

J � φrxpTf qs �

Tf»
T0

L rxptq,uptq, tsdt (2.2)

over a time interval rT0, Tf s, subject to (2.1) and, potentially, to an r-dimensional

inequality constraint

qrxptq,uptq, ts ¤ 0r�1 (2.3)

The necessary conditions for optimality are given by the well-known Euler-Lagrange

equations, which can be derived using calculus of variations [75]. When the system

dynamics are linear and the cost function is quadratic, a linear-optimal control law

known as a linear quadratic regulator (LQR) can be obtained from the matrix Riccati

equation with a terminal condition, and its solutions constitute necessary and suffi-

cient conditions for optimality. For a nonlinear system and a general cost function,

the necessary conditions for optimality amount to a Hamiltonian boundary-value

(HBVP) problem for which there are no closed-form solutions and, therefore, they

typically are solved numerically [75, 14].

If the observation process is uncertain or the dynamic system is forced by random

disturbances, then the problem is referred to as a stochastic optimal control problem.

In the optimal control literature to date, emphasis has been placed on the class of

stochastic systems with small random effects because useful solutions are not yet

available for the stochastic optimization of nonlinear systems with random variables

of arbitrary probability distributions [75, pg. 421]. Furthermore, optimal control

has limited scalability. In principle, optimal control can be extended to N dynami-

cal systems by considering N coupled differential equations and by formulating their

cooperative performance as a single cost function of an Nn-dimensional state and

an Nm-dimensional control, where n and m are the dimensions of the microscopic
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state and control, respectively. However, the computational complexity of solving

the corresponding optimality conditions typically becomes prohibitive for large val-

ues of N . Additionally, the classical optimal control formulation is not well-suited to

systems in which the macroscopic dynamics cannot be derived in closed form. As is

demonstrated in the chapters to follow, the DOC methodology presented in this dis-

sertation is capable of overcoming each of these limitations and therefore extends the

capabilities of optimal control to complex systems described by numerous interacting

dynamical systems.

2.2 Swarm-intelligence, Behavior-based Control, and Potential Field
Approaches

The use of potential fields is a well-known approach to agent motion planning that

treats the agent as a particle under the influence of an artificial potential field or

function, U , that captures the geometric characteristics of the workspace or region

of interest (ROI), W . The approach then results in control laws that instruct the

agents to follow the directions of steepest descent within the potential function. So

far, several potential field methods have been developed for generating a collision-free

path for an agent that must travel from an initial configuration q0 to a goal config-

uration qf , without a prior model of the obstacles. The advantage of the potential

field technique over other motion planning approaches, such as, cell decomposition

and probabilistic roadmap methods, is that it can easily account for obstacles that

are sensed online, i.e., during the motion execution [44]. However, since each agent

exhibits a greedy behavior, the potential field method is not capable of producing

trajectories that optimize a macroscopic performance function of a system consist-

ing of several cooperative agents. In addition, because the agents follow directions of

steepest descent, an agent can potentially get stuck at a local minimum. In this case,

the method can be combined with a graph searching technique, or a random-walk
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algorithm, to help the agent escape local minima.

Several potential functions have been proposed in the literature to generate U ,

such that the agent can be guaranteed to reach qf , while effectively avoiding obstacles

in W [65, 69, 31]. Typically, the potential function is the sum of an attractive

potential Uatt that “pulls” the agent toward qf , and a repulsive potential Urep that

“pushes” the agent away from the obstacles, i.e.:

Upqq � Uattpqq � Ureppqq (2.4)

The method is implemented by discretizing the agent workspace obtained by the

Cartesian product, G�C ÑW , between the agent geometry G, and the configuration

space C. The potential function is evaluated for all q P C, using a finite resolution

grid [6] which, in on-line motion planning, can be limited to the neighborhood of the

agent configuration at the present time t. Subsequently, at any time t P rT0, Tf s,

an artificial force Fpqq that is proportional to the negative gradient of the artificial

potential, �∇Upqq, is applied to the agent, such that the agent will follow the

steepest-descent direction of U .

Every obstacle in W , where Bi denotes the geometry of the ith obstacle, maps in

C to a C-obstacle that is defined as the subset of C that causes collisions with Bi, i.e.,

CBi � tq P C | Gpqq X Bi � Hu, where Gpqq represents the subset of W occupied by

the platform geometry G when the agent is in the configuration q. The union of all

C-obstacles in W is referred to as the C-obstacle region. Thus, to avoid collisions,

the agent is free to explore the free configuration space, defined as the complement

of the C-obstacle region CB in C, i.e., Cfree � CzCB [44].

In an alternate branch of work called swarm intelligence, potential field methods

have been adapted to control systems of distributed agents [30, 64, 49]. Swarming,

in the biological sense, refers to the behavior seen in nature where social organisms,

such as ants or fish, aggregate together into groups to accomplish high-level objec-
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tives, for example foraging and defense. Each individual organism operates with

a simple local strategy, usually only reacting to the environment and other nearby

organisms. This large number of local interactions combine to form a collective be-

havior that works to achieve the swarm objectives. Similarly, this concept is applied

to a distributed system of agents, where each agent follows a simple local strategy

that has been designed to produce a desired macroscopic behavior. In the swarming

problems relevant to this research, individual agents within the swarms are controlled

by using modified attractive and repulsive potentials to form the local strategy, or

microscopic control law. This approach has been implemented on several distributed

agent path planning problems with macroscopic objectives that include navigating

to a target configuration, maintaining a swarm formation, and traveling to desir-

able environmental locations (e.g. areas providing nutrition when foraging). This

swarming methodology has also been shown to be effective in such problems when

the environment is not known a priori. However, the approach is not capable of

producing trajectories of several agents that optimize the macroscopic performance

due to the greedy behavior implicit in potential field methods.

The DOC methodology overcomes the limitations in these methods by generating

the optimal trajectories of the macroscopic representation of the distributed system

when optimizing the performance where the macroscopic representation is defined

as a PDF of the microscopically evolving agent states. Therefore, DOC can perform

the optimization subject to the dynamics of all agents in the distributed system.

To obtain the microscopic control laws for the individual agents, the potential field

approach was utilized to design a novel attractive potential that can be used for

navigation via PDFs. Then by using the optimal PDF and the novel potential

function, we provide the means to determine the optimal trajectories of the individual

sensors from the optimal macroscopic description of the system.
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3

DOC Multi-agent Trajectory Optimization Problem

3.1 Problem Formulation and Assumptions

This work considers the problem of computing the optimal state and control trajec-

tories for a multiscale dynamical system comprised of N dynamical systems, referred

to as agents, that can each be described by a small system of SDEs, referred to as

the detailed equation,

9xiptq � f rxiptq,uiptq, ts �Gwiptq, xipT0q � xi0 , (3.1)

where xi P X � Rn and ui P U � Rm denote the microscopic state and control of the

ith agent, respectively, X denotes the n-dimensional microscopic state space, and U

is the space of m admissible microscopic control inputs. The microscopic dynamics

are influenced by additive Gaussian noise, where the disturbance on the ith agent,

wi P Rn, is a vector of independent and identically distributed random variables from

a standard Gaussian process, and G is a time-invariant matrix. A standard Gaussian

process is used here for simplicity, but this approach is applicable to any diffusion

process. In this paper, the notations xi and ui represent the state and control of a

specific agent i, and x and u are used as general geometric values within X and U
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and do not correspond to any single agent. It is assumed that the microscopic states,

xi, of every agent i � 1, ..., N are fully observable and free of error.

On larger spatial and temporal scales, the interactions of the N agents give rise to

macroscopic coherent behaviors, or coarse dynamics. A macroscopic state, denoted

by X P R`, can be introduced that consists of `   n variables that capture the macro-

scopic system dynamics and performance, such as the lower-order moments of the

evolving distribution of the agents’ microscopic states [40]. It can be deduced from

the detailed equation, either by deriving it from first principles, or using equation-

free methods [40], and it is assumed that the multiscale system’s performance can

be defined as a function of X. A restriction operator ℘ can be determined that maps

the collective microscopic states of all agents to a macroscopic description X. Since

the microscopic agent states change with time, ℘ is a time-varying PDF of the agent

states defined over the microscopic state space X , such that ℘ : X � R Ñ R and

Xptq � ℘px, tq. Then the probability of the ith agent having the state xi at time t is

given by,

P pxi P Bq �

»
B

℘px, tqdx (3.2)

for any subset B � X , where ℘ is a non-negative function that satisfies the normal-

ization property, »
X
℘px, tqdx � 1 (3.3)

Furthermore, N℘px, tq represents the density of agents in X .

The coarse dynamics of the multiscale system can be derived from the continuity

equation, which is a PDE that governs the motion of a conserved, scalar quantity,

where in this context the quantity is a probability. Through state constraints, it is

possible to guarantee that, at any time t P pT0, Tf s, xiptq P X for all i, and, thus,

agents in X are never created nor destroyed. Then since the agent dynamics are
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given by the detailed equation (3.1), it is known that ℘ is advected by the velocity

field v � f rx,u, ts P Rn and diffused by the additive Gaussian noise Gw. From

the continuity equation and Gauss’s theorem, the time-rate of change of ℘ can be

defined as the sum of the negative divergence of the advection vector p℘vq and the

divergence of diffusion vector pGGT∇℘q [52]. Then, the dynamics of the agent PDF

are governed by a parabolic PDE called the advection-diffusion equation,

B℘

Bt
��∇ � t℘rxptq, tsvptqu �∇ � tpGGT q∇℘rxptq, tsu

��∇�t℘rxptq, tsf rxptq,uptq, tsu�ν∇2℘rxptq, ts (3.4)

where, the gradient ∇ denotes a row vector of partial derivatives with respect to

the elements of x, p�q denotes the dot product, and the divergence is written as the

dot product between p℘vq and the gradient ∇. If the microscopic dynamics are not

influenced by any disturbances, such that w � 0, then the coarse dynamics are given

by the advection equation, which is a hyperbolic PDE,

B℘

Bt
� �∇ � r℘px, tq vs (3.5)

� �∇ � r℘px, tq fpx,u, tqs (3.6)

The reader is referred to [17] for a detailed derivation of the advection-diffusion and

advection equations.

Assuming the initial agent distribution is a known PDF ℘0, the macroscopic

evolution equation (3.6) is subject to the following initial and boundary conditions,

℘px, T0q � ℘0pxq (3.7)

℘px, tq � 0, @t P pT0, Tf s, @x P BX (3.8)

such that agents remain in the interior of X at all times. Additionally, ℘ must obey

the normalization condition (3.3), and the state constraint

℘px, tq � 0, @t P pT0, Tf s, @x R X (3.9)
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The macroscopic system performance is a function of the agent distribution and

control, and it can be expressed as an integral cost function of the system macroscopic

state, Xptq � ℘px, tq, and control, u,

J � φr℘px, Tf qs �

» Tf
T0

»
X
L r℘px, tq,uptq, tsdxdt (3.10)

where L is the Lagrangian and φ is the terminal cost. Then, the DOC problem con-

sists of finding the optimal agent distribution, ℘�, and controls, u�, that minimize

the macroscopic cost J over a (large) time interval pT0, Tf s, subject to the dynamic

constraint (3.6), the normalization condition (3.3), the initial and boundary condi-

tions (3.7)-(3.8), and the state constraint (3.9). Since the DOC problem does not

obey the classical optimal control formulation [75], new optimality conditions are

derived in Chapter 4, and then they are validated numerically in Chapter 7 through

a multi-agent path planning problem.

3.2 Conservation Law Analysis

In this section, we prove that the dynamics of the closed-loop DOC problem have a

Hamiltonian structure. Consequently, the dynamics are shown to conserve the agent

PDF, ℘, as it evolves in time, and a conservative numerical scheme, such as finite

volume (FV), can be used to discretize the evolution equation (3.5) [77]. The Hamil-

tonian structure provides a constant of motion for the trajectories of the controlled

system dynamics [32]. Optimal trajectories thus correspond to trajectories that have

vanishing variations along these constants of motion according to the maximum prin-

cipal of optimal control [41]. Because the coarse dynamics can be described by the

advection equation (3.5), the open-loop system is inherently conservative [73]. In

this section, we show that the DOC problem satisfies the Hamilton equations,

Bψ

Bq
� �

dp

dt
,
Bψ

Bp
�
dq

dt
(3.11)
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where ψ � ψpp,q, tq is the Hamiltonian function, q � qptq P Rn are the generalized

coordinates, and p � pptq P Rn are the generalized momenta.

For simplicity, the proof is presented for n � 2, where x � rx ysT denotes the

position of the ith agent in R2. Then, the Hamiltonian function is determined by

recasting the detailed equation (3.1) into a three-dimensional time-invariant ODE.

Letting x̂ � rx y tsT and ûpx̂q � uptq, (3.1) can be written as,

�
9xpx̂, ûq 9ypx̂, ûq 9t

�T
� f̂px̂, ûq (3.12)

where, X is transformed into the time-space domain X̂ � X � pT0, Tf s. It also

follows that the macroscopic evolution equation (3.5) can be rewritten as,

B℘px̂q

Bt
�
Br℘px̂q 9xpx̂, ûqs

Bx
�
Br℘px̂q 9ypx̂, ûqs

By
� 0 (3.13)

where, now ℘ is only a function of x̂.

Now, let A � rAx Ay Ats � Apxq denote the vector potential of the product

p℘ûq, i.e.:

℘px̂qûpx̂q � ∇�Apxq (3.14)

By performing a coordinate transformation to a canonical reference frame defined

such that Ay � 0, A can be used to relate the two-dimensional time-varying system

to the three-dimensional time-invariant form, such that the Hamiltonian functions

for the two forms are equivalent [4, 73]. The coordinate transformation is then given

by F : x̂ Ñ x̃, where x̃ � rx p tsT , and,

p � �Axrx, ypx, p, tq, ts (3.15)

The resulting vector potential is A � tAxrx, ypx, p, tq, ts 0 Atrx, ypx, p, tq, tsu, which

is governed by

℘ 9x �
BAt
By

, ℘ 9y �
BAx
Bt

�
BAt
Bx

, ℘ � �
BAx
By

(3.16)

16



where, the function ypx, p, tq is implicitly defined in (3.15). Then, the equivalent

system is,

dx̃

dt
� f̃px̃q �

�
BAt
Bp

�
BAt
Bx

1

�T
(3.17)

and the time scales in the physical and canonical forms are also equivalent.

Finally, choosing the Hamiltonian function,

ψpx, p, tq � Atrx, ypx, p, tq, ts (3.18)

The Hamilton equations in (3.11) are satisfied as follows,

Bψ

Bx
� �

dp

dt
,

Bψ

Bp
�
dx

dt
(3.19)

and are equivalent to a two-dimensional time-varying system in canonical space

X̃ � FpX̂ q, with Hamiltonian function ψ. Furthermore, this Hamiltonian formu-

lation is unconditionally valid for any system governed by (3.1) and (3.5), and is

mathematically equivalent to Lagrangian fluid transport for unsteady flow in two

dimensions, proving the conservative property of (3.5) [73].
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4

DOC Optimality Conditions

4.1 Deterministic Case

The necessary conditions for optimality are derived by using calculus of variations

to determine the agent distribution and control laws that minimize the integral cost

function (3.10). Since the optimization of (3.10) is subject to a set of dynamic

and equality constraints, the integral to be minimized is found by adjoining the

dynamic constraints to the cost function (3.10) using a Lagrange multiplier [29].

By this approach, necessary conditions for optimality are found from the first-order

effects of control variations that must be zero at all times for the integral cost to

be stationary. Then, higher-order sensitivity to control variations can be tested to

discriminate between cases in which the integral is a minimum, a maximum, or is

neither [29].

From the distributive property of the dot product and by change of sign, the

advection equation (3.5) is rewritten as the time-varying equality constraint,

�
B℘

Bt
� p∇℘q � f � ℘p∇ � fq � 0 (4.1)
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where the functions’ arguments are omitted for brevity. Since (4.1) is a dynamic

constraint that must be satisfied at all times, a time-varying Lagrange multiplier,

λrx, ts, is used to adjoin the equality constraint (4.1) to the integral cost (3.10).

Then, the augmented cost function,

JA � φr℘px, Tf qs �

Tf»
T0

»
X

"
L p℘,u, tq � λ

�
B℘

Bt

� p∇℘q � f � ℘p∇ � fq
�)

dxdt (4.2)

is to be minimized with respect to the functional forms of the time-varying agent

distribution ℘ and control u, and subject to the equality constraints (3.3),(3.7)-(3.9).

The integrand of (4.2) must satisfy stationarity conditions throughout pT0, Tf s

in order for JA to be stationary [29]. This is proven by introducing the Hamiltonian,

Hr℘px, tq,uptq, λpx, tq, ts � Lr�s � λrp∇℘q � f � ℘p∇ � fqs (4.3)

which is a function of the agent distribution, the control, and the Lagrange multiplier,

and is analogous to the Hamiltonian from Pontryagin’s minimum principle [75]. The

augmented cost function (4.2) is then re-written in terms of the Hamiltonian and

simplified using integration by parts,

JA � φr�s �

Tf»
T0

»
X

"
Hr�s � λ

B℘

Bt

*
dxdt

� φr�s �

»
X
rλpT0q℘pT0q � λpTf q℘pTf qsdx

�

Tf»
T0

»
X

"
Hr�s � Bλ

Bt
℘

*
dxdt (4.4)

By the fundamental theorem of calculus of variations [29], an integral with fixed

end points, T0 and Tf , is stationary for weak variations if the first order effect of
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variations in the function, or curve, to be optimized are zero throughout pT0, Tf s.

Thus, for JA to be stationary, the first-order effect of control variations δuptq on

(4.4) must be zero for all t P pT0, Tf s. By the causality of the macroscopic dynamic

equation (3.6), control perturbations lead to perturbations in ℘, and thus the first

variation of JA is

δJA �

Tf»
T0

»
X

�"
BHr�s
B℘

� 9λ

*
δ℘pδuq �

BHr�s
Bu

δu



dxdt

�

�"
Bφr�s

B℘
� λ

*
δ℘pδuq


����
t�Tf

� rλδ℘pδuqs|t�T0 (4.5)

For an extremum, we must have δJA � 0 for all δ℘, δu, and the variations from

δ℘ and δu must independently vanish along the optimal solution curve. Thus, the

equations,

9λ � �
BHr�s
B℘

� �
BLr�s
B℘

� λp∇ � fq (4.6)

and,

0 �
BHr�s
Bu

�
BLr�s
Bu

� λ

�
p∇℘q Bf

Bu
� ℘

B

Bu
p∇ � fq

�
(4.7)

must be satisfied for T0 ¤ t ¤ Tf , subject to the terminal conditions

λpTf q �

"
Bφr�s

B℘

*����
t�Tf

(4.8)

Equations (4.6)-(4.8) constitute necessary conditions for optimality for the DOC

problem in Chapter 3. Thus, the optimal agent distribution ℘� must satisfy (4.6)-

(4.8) along with the normalization condition (3.3), the initial and boundary con-

ditions (3.7)-(3.8), and the state constraint (3.9). If these conditions are satisfied,

the extremals can be tested using higher-order variations to verify that they lead
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to a minimum of the augmented cost function JA in (4.2). In particular, sufficient

conditions for optimality could be derived from the second-order derivatives of the

Hamiltonian (4.3) with respect to u, or Hessian matrix that is positive definite for a

convex Hamiltonian. In this dissertation, we consider admissible solutions of (4.6)-

(4.8) to be optimal if perturbations at any t P pT0, Tf s only increase the value of

JA.

4.2 Stochastic Case

The optimality conditions for the stochastic case of the DOC problem presented

in Section 3 are derived here using calculus of variations. A Lagrange multiplier,

λpx, tq, is used to adjoin the dynamic and equality constraints, (3.7)-(3.9), (3.3), to

the integral cost function (3.10), obtaining the augmented integral cost function,

JA �

»
X
φ tXptf q, tfu dx�

»
t

»
X

#
L rXptq,uptqs� (4.9)

λpx, tq
�B℘px, tq

Bt
�∇ � r℘px, tqfpx,u, tqs�

ν∇2℘px, tq
�+
dxdt.

Let ξ � ruT , ℘, λsT denote a vector of variables for the DOC problem, where

function arguments are omitted hereon for brevity. The necessary condition for

optimality is,

∇JApu, ℘, λq � lim
εÑ0

JApξ � εδξq � JApξq

ε
� 0, (4.10)

where ∇JA is the gradient of JA with respect to the variables, u, ℘, λ, and the vector

ε δξ � ε rδuT , δ℘, δλsT contains the variations of the DOC variables.
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The variation in the PDF, ℘Ñ ℘� ε℘, results in the condition,

lim
εÑ0

JApu, ℘�εδ℘, λq�JApu, ℘, λq

ε
�

»
X

Bφ

B℘

���
tf
δ℘dx (4.11)

�

»
t

»
X

BL

B℘
δ℘�λ

�
Bδ℘

Bt
�∇ � pδ℘ fq�∇2δ℘

�
dxdt�0.

which provides the weak formulation of the DOC optimality conditions. The fun-

damental theorem of variational calculus (FTVC) is used to arrive at the strong

formulation of the DOC optimality conditions. From the FTVC, and integration by

parts, the partial derivatives acting on the variations are»
t

»
X
λ
Bδ℘

Bt
dxdt � (4.12)

»
X
λδ℘dx

��tf
t0
�

»
t

»
X

Bλ

Bt
δ℘dxdt,

»
t

»
X
λ∇ � pδ℘ fq dxdt � (4.13)

»
t

»
BX
λpf � n̂qδ℘dxdt�

»
t

»
X
∇λ � fδ℘dxdt,

»
t

»
X
νλ∇2δ℘dxdt � (4.14)

»
t

»
BX
νλp∇δ℘ � n̂qδ℘dxdt�

»
t

»
X
ν∇λ �∇δ℘dxdt �

»
t

»
BX
νλp∇δ℘ � n̂qδ℘dxdt�

»
t

»
BX
ν∇λ � n̂δ℘dxdt�

»
t

»
X
ν∇2λδ℘dxdt.

Because an initial condition for ℘ is given at t0, as shown in (3.7), the initial
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variation in the PDF is δ℘
��
t0
� 0, and (4.12) simplifies to

»
t

»
X
λ
Bδ℘

Bt
dxdt � (4.15)

»
X
λδ℘dx

��
tf
�

»
t

»
X

Bλ

Bt
δ℘dxdt.

The boundary condition (3.8) implies that (4.14) simplifies to»
t

»
X
νλ∇2δ℘dxdt � (4.16)

�

»
t

»
BX
ν∇λ � n̂δ℘dxdt�

»
t

»
X
ν∇2λδ℘dxdt.

Then, by substituting the results in (4.13), (4.15), and (4.16) into (4.11), and group-

ing like terms, the variation in (4.11) can be written as

0 �

»
X

�
Bφ

B℘
� λ



δ℘
���
tf
dx� (4.17)

»
t

»
BX
pλpf � n̂q � ν∇λ � n̂q δ℘dxdt�

»
t

»
X

�
BL

B℘
�
Bλ

Bt
�∇λ � f � ν∇2λ



δ℘dxdt.

By the FTVC, the variation in (4.17) can be written as the adjoint PDE:

Bλ

Bt
�
BL

B℘
�∇λ � f � ν∇2λ (4.18)

SJT: λpx, tf q � �
Bφ

B℘

���
tf

x P X ,

λpf � n̂q � νp∇λq � n̂ � 0 x P BX
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The variation in the control law, u Ñ u� εδu,

lim
εÑ0

JApu� εδuq � JApuq

ε
� (4.19)

»
t

»
X

BL

Bu
� λ

�
∇ �

�
℘
Bf

Bu
δu


�
dxdt �

»
t

»
X

BL

Bu
�∇λ �

�
℘
Bf

Bu



δudxdt�

»
t

»
BX
λ

�
℘
Bf

Bu
� n̂



δudxdt.

must equal zero for optimality, by the FTVC, i.e.:

0 �
BL

Bu
�∇λ �

�
℘
Bf

Bu



. (4.20)

Finally, the variation in the Lagrange multiplier, λ Ñ λ � εδλ, leads to the macro-

scopic state equation. Thus, the DOC optimality conditions are given by the set of

PDEs:

B℘

Bt
��∇ � p℘fq � ν∇2℘ (4.21)

SJT: ℘px, t0q � ppxq x P X ,

∇℘ � n̂ � 0 x P BX

Bλ

Bt
�
BL

B℘
�∇λ � f � ν∇2λ (4.22)

SJT: λpx, tf q � �
Bφ

B℘

���
tf

x P X ,

λ � 0 x P BX

0 �
BL

Bu
�∇λ �

�
℘
Bf

Bu



. (4.23)

The macroscopic state (4.21) and adjoint (4.22) equations are parabolic PDEs.

The control equation (4.23) is an algebraic equation relating the optimal u to ℘ and
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λ. If (4.21)-(4.23) are satisfied, then the resulting ℘ and u are the optimal control

and resulting agent distribution for the macroscopic control problem. To obtain the

sufficient conditions for optimality, the second-order variations of JA may be tested

to verify that these values in fact are at an extremal that is a minimum of J , but

in this paper, the solutions are considered to be optimal if any perturbations only

increase the value of J . Chapter 6 presents a generalized reduced gradient (GRG)

method to solve the optimality conditions to determine optimal DOC trajectories.
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5

Probability Density Function Approach to Path
Planning

5.1 Microscopic Feedback Control Laws

The microscopic control laws are determined from the optimal macroscopic descrip-

tion ℘� by defining an attractive potential that pulls the agents toward ℘�. Since

℘� is a time-varying distribution, the potential function is defined as a quadratic

function of the error between ℘� and the estimated agent distribution, ℘̂, at time

pt� δtq:

Uatt �
1

2
t℘̂rx, t� δts � ℘�rx, t� δtsu2 (5.1)

The time interval δt is a small time constant that is chosen to prevent the agents from

lagging behind ℘�. The estimate ℘̂rx, t�δts is computed by stepping the macroscopic

dynamic equation (3.5) forward in time by an interval δt from ℘̂rx, ts, and ℘̂rx, ts is

computed via kernel density estimation (KDE) from the agents’ positions at time t.

KDE is a non-parametric technique used to estimate the PDF of a random variable

by representing it as a summation of kernel functions [71]. For simplicity, the kernel
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function was selected here as the standard multivariate Gaussian kernel,

κpxq �
1

2π
exp

�
�1

2
xTx



(5.2)

Figure 5.1 illustrates an example attractive potential function, Uatt, where KDE is

used to approximate ℘̂.

To prevent the sensors from colliding with obstacles a repulsive potential is also

introduced and defined as,

Ureppxq �

#
1
2
ηp 1

ρpxq
� 1

ρ0
q2 if ρpxq ¤ ρ0

0 if ρpxq ¡ ρ0

(5.3)

where, ρpxq is the Euclidean distance from x to the nearest obstacle space CB,

ρpxq � min
x1PCB

}x� x1}, CB � YN
i�1CBi (5.4)

η ¡ 0 is a scaling factor, and ρ0 ¡ 0 is a distance-of-influence parameter that is

chosen by the user. The total potential field can then be defined as a weighted sum

of the attractive and repulsive potentials,

Upxq � waUattpxq � wrUreppxq (5.5)

where wa ¡ 0 and wr ¡ 0 are user-defined weighting terms. Then, a microscopic

control law that minimizes (5.5) can be obtained that returns agent trajectories that

follow the negative gradient of U , based on the detailed equation (3.1), such that

u� � cr℘�px, t� δtqs.

5.1.1 Decentralization of Agent Density Estimation

Kernel density estimation is a well-known non-parametric approach for estimating

the probability density function (PDF) from which a set of independent and indenti-

cally distributed data samples were taken. Given a data set yj, j � 1, ..., Ny,yj P <d
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(a)

(b)

Figure 5.1: Example of attractive potential based on difference between optimal
PDF and actual sensor density. Yellow circles represent individual sensor positions,
and solid black shapes represent geometric obstacles. (a) Optimal distribution ℘�

plotted on background. (b) Attractive potential function Uatt plotted on background.
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that is assumed to be from some unknown PDF f , the kernel density estimation

takes the form [68],

f̂ �

Ny¸
j�1

wjKHj
py � yjq (5.6)

where wj, j � 1, ..., Ny is the weighting coefficients satisfying the condition
°Ny

j�1wj �

1, and the jth kernel centered at yj is defined as,

KHj
py � yjq � |Hj|

� 1
2KpH

� 1
2

j py � yjqq (5.7)

The kernel function K is a user-defined d-variate non-negative symmetric real-value

function [68]. The band-width matrix Hj is a parameter that controls the smooth-

ing of the KDE algorithm, and it must be positive definite and symmetric. With

appropriate parameter choices, KDE has been shown to be an effective method for

estimating the underlying PDF in many cases and often only requires a few samples

to give adequate results [68]. However the general KDE algorithm described above

requires centralized processing due to the summation, which might not be feasible

in a distributed agent network.

Alternatively a distributed KDE algorithm based on information spreading can

be used that does not require centralized processing and is asymptotically consistent

with the centralized version in cases where the network is fully connected [36]. The

primary difference is that the distributed KDE algorithm uses an information sharing

protocol to exchange kernel information between sensors incrementally until a com-

plete and accurate approximation of the global KDE is achieved by each agent. It has

been shown that as long as the network is fully connected, the connectivity structure

will only affect the convergence speed and will not worsen the estimation accuracy

[51]. Therefore, KDE can be performed in a distributed manner with accuracies that

are nearly identical to the centralized method and with the only requirement being

the full connectivity of the network.
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Each agent maintains a local estimation of the agent distribution, governed by

a stored kernel set Si � t  wi,k,xi,k,Hi,k ¡, k � 1, ..., Niu, where xi,k denotes the

position of agent k perceived by the ith agent, Ni is the number of kernels stored by

agent i, and Hi,k and wi,k are the bandwidth matrix and weighting coefficient of the

kth kernel stored by agent i. At time t0, the kernel set of each agent only contains

the kernel generated using its own position. The agents also maintain a neighbor set,

where the ith agent’s neighbors are defined as any agents located within the distance

of a communication radius r. Then through an information spreading process, the

agents choose a random neighbor and compare their kernel sets with one another. If

an agents sees that its neighbor has newer or previously unknown kernel information,

they will save the information to their own stored kernel set. Then a new random

neighbor will be chosen, and the process repeats.

In practice, the information communicated would include the sensors’ positions

and kernel parameters to construct the kernels and the corresponding sensors’ indices

and positional measurement timestamps to enable the overwriting of old data. Note

that for many homogeneous agent networks (networks with identical sensors), the

bandwidth matrices Hi,k and weighting parameters wi,k may be defined to be con-

sistant across the network, making their communication unnecessary and reducing

communication requirements. For simplicity, in this paper the bandwidth matrix is

defined as Hi,k � cI2@i, k, where c is a constant and I2 is the two-dimensional iden-

tity matrix, and the weighting parameters are calculated as wi,k �
1
Ni
@i, k. Then the

purpose of the communications essentially becomes to give each agent full positional

knowledge of all agents in the network.

Using their known sets of agent positions, each agent can then generate the

corresponding kernels and combine them to obtain a local estimation of the PDF.

For simplicity, the standard two-dimensional Gaussian kernel function is chosen in
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this paper and defined as,

Kpxq �
1

2π
e�

1
2
xT x (5.8)

which is used to construct the kernels as follows,

KHi,k
px� xiq � |Hi,k|

� 1
2KpH

� 1
2

i,k px� xiqq (5.9)

Then the local estimation of the PDF can be calculated by each agent as,

f̂i �
Ni̧

k�1

wi,kKHi,k
px� xi,kq (5.10)

Once the ith agent has a local density estimation, the potential function (5.1)

can be computed with ℘̂ � f̂i. Then the feedback control law is constructed from

the negative gradient of the potential function �∇Ui. Therefore by using the decen-

tralized kernel density estimation approach, each agent in the network can derive its

own feedback control law without centralized network computations.
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6

Numerical Solutions to DOC Problem

6.1 Solution via Direct Optimization

The DOC problem presented in Chapter 3 is solved using a direct method inspired

by direct methods traditionally used to solve classical optimal control problems nu-

merically [14]. The direct method presented in this paper discretizes the continuous

DOC problem about a finite set of collocation points, and then transcribes it into

a finite-dimensional nonlinear program (NLP) that can be solved using a sequential

quadratic programming (SQP) algorithm.

By representing ℘ as a parametric approximation, such as Gaussian mixure mod-

els [28] or harmonic functions [54, 25], the size of the optimization problem can be

reduced, and a functional form of ℘ can be obtained. To reduce complexity, a finite

Gaussian mixture model is used in this paper to provide a parametric approximation

of ℘� obtained from the superposition of z components with Gaussian PDFs f1, . . .,

fz, and corresponding mixing proportions or weights w1, ..., wz. The n-dimensional

multivariate Gaussian PDF,

fjrx, ts �
1

p2πqn{2|Σj|1{2
er�p1{2qpx�µjq

T Σ�1
j px�µjqs (6.1)
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is referred to as the component density of the mixture, and is characterized by a

time-varying mean vector µj P Rn, and a time-varying covariance matrix Σj P Rn�n,

with j � 1, . . . , z. We assume that, at any t P pT0, Tf s, the agent distribution can be

represented as follows,

℘px, tq �
z̧

j�1

wjptqfjrx, ts (6.2)

where, 0 ¤ wj ¤ 1 @j, and
°z
j�1wj � 1 [56]. In this paper, it is assumed that z

is fixed and is chosen by the user, based on problem complexity. Then, an optimal

agent distribution ℘� can be obtained by determining the optimal trajectories of

the mixture model parameters from the DOC problem, where the mixture model

parameters to be optimized over time are the weights wj, the elements of µj, and the

covariances in Σj, with j � 1, . . . , z. In addition to satisfying the DOC constraints

and optimality conditions, the mixture model parameters must be determined such

that the component densities f1, . . ., fz are nonnegative and obey the normalization

condition (3.3) for all t P pT0, Tf s.

The optimal trajectories of the mixture model parameters can be obtained by

discretizing the continuous DOC problem in state space and time about a finite set

of collocation points in X � pT0, Tf s and formulating it as a finite-dimensional NLP.

Let ∆t denote a constant discretization time interval, and k denote the discrete time

index, such that ∆t � pTf � T0q{K, and thus tk � k∆t, for k � 0, . . . , K. It is

assumed that the microscopic control inputs, u, are piecewise-constant during every

time interval, and that,

℘k � ℘rx, tks �
z̧

j�1

wjptkqfjrx, tks (6.3)

�
z̧

j�1

wjk
1

p2πqn{2|Σjk|1{2
er�p1{2qpx�µjkq

T Σ�1
jk px�µjkqs
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represents the agent distribution at tk. Then the set of weights twjku, the elements

of µjk, and Σjk @j, k are all grouped into a vector ζ that represents the trajectories

of the mixture model parameters in discrete time.

Since ℘ is a conserved quantity of a Hamiltonian system (Section 3.2), the evo-

lution equation (3.5) can be discretized using a conservative numerical scheme. The

FV scheme is used for this paper because it does not suffer from dissipative error

when using a coarse-grained state discretization, as is often favorable to save compu-

tational cost [77]. The FV approach partitions the state space X into FVs defined

by a constant discretization interval ∆x P Rn, and each centered about a collocation

point xl P X � Rn, with l � 1, ..., X. Let ℘l,k and ul,k denote the finite-difference

approximations of ℘pxl, tkq and cr℘pxl, tkqs, respectively. Then, the finite-difference

approximation of the evolution equation (3.5) is obtained by applying the divergence

theorem to (3.5) for every FV, such that, ℘k�1 � ℘k �∆tρk, where,

ρk � �

»
S

r℘k fp℘l,k,ul,k, tkqs � n̂ dS (6.4)

and S and n̂ denote the FV boundary and unit normal, respectively. To ensure

numerical stability, the discretization intervals ∆t and ∆x are chosen to satisfy the

Courant-Friedrichs-Lewy condition [77].

Then, letting ∆xpjq denote the jth element of ∆x, the discretized DOC problem
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can be written as the finite-dimensional NLP,

min JD �
ņ

j�1

∆xpjq

X̧

l�1

�
φl,K �∆t

Ķ

k�1

L p℘l,k,ul,k, tkq
�

sbj to ℘k�1 � ℘k �∆tρk � 0, k � 1, . . . , K

ņ

j�1

∆xpjq

X̧

l�1

℘l,k � 1 � 0, k � 1, . . . , K

℘l,0 � g0pxlq, @xl P X

℘l,k � 0, @xl P BX , k � 1, . . . , K

(6.5)

where φl,K � φp℘l,Kq is the terminal constraint.

From (6.3) it can be seen that ℘l,k and ul,k are functions solely of the mixture

model parameters ζ, which constitute the NLP variables. Also, since ℘ is modeled

by a Gaussian mixture, the state constraint (3.9) is always satisfied and needs not be

included in the constraints. The solution ζ� of the NLP in (6.5) is obtained using an

SQP algorithm that solves the Karush-Kuhn-Tucker (KKT) optimality conditions

by representing (6.5) as a sequence of unconstrained quadratic programming (QP)

subproblems with objective function JSpζq � JDpζq �
°
 λξpζq, where ξ denotes

the th constraint in (6.5), and λ denotes a vector of multipliers of proper dimensions.

At every major iteration ` of the SQP algorithm, the Hessian matrix H � BJS{Bζ

is approximated using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method

H`�1 � H` �
q`q

T
`

qT` ∆ζ`
�

HT
` ∆ζT` ∆ζ`H`

∆ζT` H`∆ζ`
(6.6)

Where ∆ζ` � ζ` � ζ`�1, and q` is the change in the gradient ∇JS � BJS{Bζ at the

`th iteration [62]. The Hessian approximation (6.6) is then used to generate a QP
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subproblem,

min hpd`q � p1{2q dT` H`d` �∇JTS d`

sbj to ∇ξT d` � ξ � 0, @
(6.7)

in d`, the search direction. The optimal search direction d�
` is computed from the

above QP using an off-the-shelf QP solver [55], such that ζ`�1 � ζ` � α`d
�
` .

The step-length α` is determined by an approximate line search in the direction

d�
` , aimed at producing a sufficient decrease in the merit function,

Ψpζ`q � Jpζ`q �
¸


rT`, ξpζ`q (6.8)

based on the Armijo condition, and a penalty parameter r`, defined in [62]. The

algorithm terminates when the KKT conditions are satisfied within a desired toler-

ance.

6.2 Solution via Indirect Method

The DOC optimality conditions (4.21)-(4.23) consist of a coupled set of parabolic

PDEs. Because analytical solutions to these PDEs are not available, this section

presents a GRG approach for computing the numerical solution of the DOC opti-

mality conditions. The approach exploits the causality of the macroscopic dynamic

equation (3.4) to represent JA solely as a function of u. Then an extremum of the

DOC problem (3.1)-(3.4) can be found by determining the parameters of the control

laws (6.9) that satisfy the optimality conditions.

GRG methods improve iteratively upon the approximation of the optimal con-

trol law and of the macroscopic state and Lagrange multiplier by holding the other

fixed during each update. During every iteration of the GRG algorithm, the lat-

est approximation of u� � c�rxptq, ts, in parameterized form (6.9) is used to solve

macroscopic state and adjoint PDEs, (4.21) and (4.22), to obtain an approximation
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for ℘� and λ�. Subsequently, holding the approximations of ℘� and λ� fixed, the

approximation for u� is updated so as to minimize (3.10), and satisfy the third and

final optimality condition. This process is repeated until the norm of the gradient is

below a user-defined tolerance or any update to u� causes an increase in J .

The GRG method falls under a larger class of optimization techniques referred

to as Nested Analysis and Design (NAND). In NAND approaches, the gradient is

obtained at each iteration of the optimization by eliminating the state and co-state

variables by solving the PDEs using a numerical algorithm, and only the control is

considered [15]. Alternatively, a Simultaneous Analysis and Design (SAND), or full

space, optimization strategy could be used in which the optimization over the state,

co-state, and control are preformed simultaneously. However, it has been shown that

SAND methods are often very ill-conditioned, where the individual PDEs in the

NAND techniques are typically better conditioned [16].

Algorithm 1 GRG Optimality Solver

initialize αj,kptq
while ||g|| ¡TOL do

℘̃Ð solve macroscopic state PDE (u)

λ̃Ð solve adjoint PDE (℘̃,u)
for all ` do

g` Ð compute gradient (℘̃, λ̃,u)
end for
for all j, k do

αj,k Ð update αj,k (J,g)
end for

end while

To obtain a closed form representation of the control for all x, the jth element of

the control vector, uj, can be parameterized as the sum of M linearly-independent

basis functions φ1p�q, . . . , φMp�q, such that

uj �
¸
k

φkpxqαj,kptq, for j � 1, . . . ,M. (6.9)

Then, the goal of the indirect method is to obtain the parameters, α�j,kptq, that
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minimize the cost function (3.10), subject to the aforementioned constraints. As

shown in Section 4.2, since the macroscopic state, ℘, and the Lagrangian multiplier,

λ, can be found explicitly as a function of u, a generalized reduced gradient (GRG)

method [76] can be used to determine the optimal parameters of the control law

(6.9).

An analytical representation of the gradient of the cost function J , denoted by

g, with respect to the controls u can be found, thereby circumventing the need for

finite difference to approximate the gradient, greatly reducing the computational

requirements. The gradient of J is calculated as follows. Let ℘̃ and λ̃ satisfy (4.21)

and (4.22), respectively, for a given u. Then the gradient is given by

∇uJ � ∇uJA

���
℘̃,λ̃

�

»
X

Bφ

B℘
∇u℘ δu

���
℘̃,tf

dx� (6.10)

»
t

»
X

#
BL

Bu
δu�

BL

B℘
∇u℘ δu�∇uλ δu

�
B℘

Bt
�∇ � p℘fq

�
�

λ

�
B

Bt
p∇u℘ δuq�∇ �

�
∇u℘fδu� ℘

Bf

Bu
δu


�

� ν∇2∇u℘δu

+
℘̃,λ̃

dxdt

Performing integration by parts and recalling that ℘̃ and λ̃ were defined to satisfy

(4.21) and (4.22), equation (6.10) becomes

∇uJ �

»
t

»
X

�
BL

Bu
�∇λ̃ �

�
℘̃
Bf

Bu


�
δudxdt. (6.11)

Let the time be discretized into Q equally spaced points, tq � t0 � q∆t, where

q � 0, ..., Q, and ∆t � ptf � t0q{Q. Then from (6.11) it follows that

BJ

Bαj,k

�����
t�tq

� ∆t

»
X

�
BL

Buj
�∇λ̃ �

�
℘̃
Bf

Buj


�
t�tq

φkdx. (6.12)
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The previous equation gives the gradient of the cost function with respect to the

parameters that determine the control u. Using this expression of the gradient, u

can be updated using one of many gradient-based optimization schemes, such as the

Sequential Quadratic Programming (SQP) method described in Section 6.1. The

algorithm for solving the optimality conditions is then given in Algorithm 1.

6.3 Complexity Analysis

The computational complexities of the DOC methods presented in the previous sec-

tions are compared to that of a classical direct method for optimal control taken

from [14]. The classical direct method was also used in [8] to optimize the track

coverage of a mobile sensor network. The results in [8] showed that the applicabil-

ity of classical optimal control is limited by the network size, and that the classical

direct method can optimize the track coverage of networks with up to N � 20. The

approach obtains an NLP representation of the classical optimal control problem for

N -coupled ODEs in the form (3.1), and an integral cost function of the microscopic

sensors state and control vectors. Subsequently, the NLP solution can be obtained

using an SQP algorithm with the computational complexity shown in Table 6.1.

Table 6.1: Computational Complexity of SQP Solution

Direct DOC Indirect DOC Classical OC
Hessian update OpzXK2q OpMXKq OpnmN2K2q

QP subproblem Opz2XK3q OpM2XK3q Opnm2N3K3q

Line search OpXKq OpXKq OpnNKq

The Hessian update (6.6), the solution of the QP subproblem (6.7), and the

line-search minimization of the merit function (6.8) are the most computationally-

expensive steps of the SQP algorithm described in Section 6.1. The computational

complexity of these three steps is shown in Table 6.1 for the classical optimal control

(OC), the direct DOC, and the indirect DOC methods. For all methods, the QP
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subproblem is the dominant computation, which is carried out by a QR decompo-

sition of the active constraints using Householder Triangularization [62]. Then, the

computation required by the classical OC method exhibits cubic growth with re-

spect to K and N , and becomes prohibitive for N ¡¡ 1. The computation required

by the DOC methods exhibits cubic growth only with respect to K, and quadratic

growth with respect to z or M . Thus, for systems with X    nN and z    mN

(or M    mN), the DOC approach can bring about considerable computational

savings.

Unlike the direct methods, the indirect method requires the solution of two PDEs,

(4.21) and (4.22), at each step of the iterative optimization process. Thus, the com-

putational time depends upon the number of computations required for the quasi-

newton and line search methods, as well as the number of computations required to

numerically solve the PDEs (4.21) and (4.22). However, if it is assumed that the

solutions to (4.21) and (4.22), ℘ and λ, have been obtained, and that the integration

within the gradient (6.12) can be accurately approximated in OpXq computations,

then for the indirect method, the Hessian update requires OpMXKq computations.

If it is further assumed that z � M , or that the number of parameters required

to approximate ℘� sufficiently in the direct method is approximately equal to the

number of parameters needed to adequately approximate u� in the indirect method,

then the indirect approach provides a significant reduction in computations required

in the Hessian update step of the optimization process, as it is linear in the num-

ber of temporal collocation points, K, whereas the direct methods have quadratic

dependence on K.
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7

Planning Optimal Paths through
Obstacle-Populated Regions via DOC

This chapter addresses the problem of planning optimal trajectories of large groups

of agents through obstacle-populated regions to goal configurations. With existing

approaches, such as optimal control and roadmap techniques, optimizing the paths

of a coupled multi-agent system is classified as PSPACE-hard and is intractable due

to the computational complexity associated with a large number of agents. Other

methods solve the problem by decoupling the system or relaxing the global optimal-

ity conditions. By doing so, the solutions sacrifice performance and completeness.

The DOC methodology presented in this dissertation can determine near-optimal

agent trajectories by optimizing the system’s macroscopic performance subject to the

agents’ dynamics, which allows systems to plan paths for many agents that achieve

objectives such as minimizing travel distances and energy consumed, avoiding colli-

sions with obstacles, and maintaining a specific formation for the agent distribution

to maintain, in addition to reaching a given goal configuration.
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7.1 Problem Formulation

The DOC problem and optimality conditions presented in the previous section are

demonstrated through a multi-agent trajectory optimization problem. Consider a

system of N cooperative unicycle robots traveling through an obstacle-populated

compact space W � R2, referred to as the workspace, and occupied by M obstacles

B1, . . . ,BM , where Bj � W . The dynamics of each robot are described by the

nonlinear unicycle model,

9xi � vi cos θi 9yi � vi sin θi 9θi � ωi (7.1)

where qi � rxi yi θis
T is the configuration of agent i, which contains the xy-

coordinates, xi and yi, and heading angle, θi, with i � 1, . . . , N . The microscopic

control vector of agent i is ui � rvi ωis
T , where vi and ωi are the linear and angular

velocities, respectively.

The macroscopic state of the system is described by the time-varying PDF, or

restriction operator, ℘ : X � R Ñ R, such that the probability of xi � rxi yis
T is

given by (3.2), in terms of ℘. It follows that W � X , and ℘ can be regarded as the

density of agents in W at time t P pT0, Tf s. Given an initial distribution ℘0pxq, the

agents must travel in W to meet a goal distribution gpxq, while avoiding obstacles,

and minimizing energy consumption. The goal distribution is assumed to be time-

invariant, and all M obstacles’ positions and geometries are assumed known without

error. This section shows that all of these trajectory optimization objectives can be

expressed in terms of the PDF, ℘, to be optimized.

A measure of the difference between ℘ and the goal distribution, g, is given by

the instantaneous Kullback-Leibler (KL) divergence at time t,

Dp℘ || gq �

»
X
℘px, tq log2

℘px, tq

gpxq
dx (7.2)
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where, by definition, the support set of ℘ is contained by the support set of g, and the

value 0 log2p0{0q is replaced with 0 for continuity [23]. Although the KL divergence

is not a true distance function because it is not symmetric, it is a suitable objective

function because its value increases when the difference between ℘ and g increases,

and vice versa. Also, the KL divergence of ℘ and g is zero when the two distributions

are equal.

A repulsive potential Urep can be generated from the obstacles’ geometries B1, . . . ,

BM inW , as shown in [44]. Then, the obstacle avoidance objective can be represented

by the product ℘Urep. The energy consumption is modeled as a quadratic function

of the control. The DOC cost function to be minimized is,

J �

» Tf
T0

�
wd Dp℘ || gq �

»
W

�
wr ℘ Urep � we uTRu



dx

�
dt

where, R is a diagonal positive-definite matrix. The scalar weights wd, wr, and we

can be chosen by the user or from a Pareto optimization curve, and represent the

desired tradeoff between the three competing objectives. By this formulation of the

cost function, the KL divergence of ℘ and g is minimized throughout pT0, Tf s.

The solution of the DOC problem can be approached by a parametrization tech-

nique that approximates the function to be optimized by a weighted linear combi-

nation of basis functions [50, 79]. Finite Gaussian mixture models are commonly

used to provide parametric approximations of PDFs. Thus, in this chapter, the

agent distribution is approximated by a mixture model comprised of z components

with Gaussian PDFs f1, . . ., fz, and corresponding mixing proportions (or weights)

w1, ..., wz. The n-dimensional multivariate Gaussian PDF,

fjpx, tq �
et�p1{2qrx�µjptqs

T Σjptq
�1rx�µjptqsu

p2πqn{2|Σjptq|1{2
(7.3)

is referred to as the component density of the mixture, and is characterized by a
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time-varying mean vector µj P Rn, and a time-varying covariance matrix Σj P Rn�n,

with j � 1, . . . , z. We assume that, at any t P pT0, Tf s, the agent distribution can be

approximated as follows,

℘px, tq �
z̧

j�1

wjptqfjpx, tq (7.4)

where, 0 ¤ wj ¤ 1 for any j, and
°z
j�1wj � 1 [56]. In this chapter, it is assumed that

z is fixed, and chosen by the user. Then, an approximately-optimal agent distribution

℘� can be obtained by determining the optimal trajectories of the mixture model

parameters, i.e., µ�j , Σ�
j , and w�

j , for j � 1, . . . , z.

In addition to satisfying the DOC constraints and optimality conditions, the

mixture model parameters must be determined such that the component densities

f1, . . ., fz are nonnegative and obey the normalization condition for all t P pT0, Tf s.

This is accomplished by discretizing the continuous DOC problem in space and time,

about a finite set of collocation points in X�pT0, Tf s. Let ∆x and ∆t denote constant

space and time discretization intervals, respectively, that, to guarantee numerical

stability, are chosen according to the Courant-Friedrichs-Lewy condition [77]. Then,

by formulating the discretized DOC problem as a finite dimensional NLP, the optimal

mixture model parameters can be computed via sequential quadratic programming

(SQP) [13], as detailed in Chapter 6.

Once an optimal agent distribution ℘� is obtained from the DOC problem (7.1)-

(7.3), the microscopic control laws are obtained from the negative gradient of the

potential function (5.1). For robots described by the unicycle model (7.1), the mi-

croscopic control law is,

ui � rvc Qpθ̂i,�∇UqsT (7.5)

where,

Qp�q � tapθ̂iq � arΘp�∇UqsusgntarΘp�∇Uqs � apθ̂iqu
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is the minimum differential between the agent’s actual heading angle θ̂i and the

desired heading angle Θp�∇Uq, vc is the agent’s speed, sgnp�q is the sign function,

and ap�q is an angle wrapping function [44].

7.2 Numerical Simulations and Results

7.2.1 Optimal Agent Trajectories computed with DOC Approach

The DOC solution of the multi-agent trajectory optimization problem presented in

Chapter 3 is illustrated through an example in which N � 500 agents with unicycle

dynamics (7.1) must travel from the initial distribution, g0, to the goal distribution,

g, plotted in Fig. 7.1, during a time interval p0, 22s hr. The initial microscopic

states xi0 are determined by sampling g0. Subsequently, the agents must travel in a

workspaceW � r0, Ls�r0, Ls, with L � 15 km, and three obstacles plotted in solid

black in Fig. 7.1. All agents are assumed to have a linear velocity vi � 0.7 km/hr,

and an angular velocity ωi P r�ωmax, � ωmaxs, where ωmax � 0.52 rad/s. The cost

function weights, wd � 20, wr � 0.1, and we � 1, are chosen based on the units and

relative magnitudes of the three navigation objectives.

The computational complexity of the optimization performed in this example

is of the order of the dominant computation of the algorithm’s quadratic program

(QP) subproblem, which is a QR decomposition using Householder Triangularization

[62]. This leads to a complexity of Opz2XK3q that does not grow with the number

of agents N . The number of mixture components, z � 6, is chosen to obtain the

best tradeoff between accuracy and computational complexity. Time is discretized

in intervals of ∆t � 1 hr, such that K � 22, and the state space is discretized using

X � 900 collocation points. As a result, the optimal agent distribution could be

computed in several hours on a Core-2 Duo CPU 2.13-GHz computer with 8-GB

RAM, while the corresponding classical optimal control problem for N � 500 was

found to be intractable on the same machine.
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(a)

(b)

Figure 7.1: Initial (a) and goal (b) agent distributions for a workspace with three
obstacles (solid black).
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The optimal agent distribution, ℘�, and the values of the agents’ microscopic

state variables, xi, are plotted in Fig. 7.2 at four sample moments in time, t � 5

hr (a), t � 10 hr (b), t � 15 hr (c), and t � 22 hr (d). The evolution of the

microscopic state, xi, is simulated by integrating the closed-loop detailed equation

(7.1) numerically for all i, using a time interval δt � 3 s. At every time step of the

numerical integration, the feedback control law is evaluated according to (7.5), from

the attractive potential (5.1) defined in terms of the optimal distribution ℘�. The

time-histories of the DOC microscopic state and control for three, randomly-chosen

agents are plotted in Fig. 7.3, and the state trajectories of six, randomly-chosen

agents are plotted in Fig. 7.2(d). The results show that, as specified by the cost

function (7.3), over time ℘� meets the goal distribution g, while agents also avoid

obstacles in W , and minimize energy consumption.

The optimal agent distributions obtained via SQP are also used to show that

any perturbations from the optimal mixture model parameters increase the error

in the optimality conditions derived in Section 4.1. Figure 7.4 shows the effects of

perturbations in the covariances of two mixture components at t � 21 hr, for the

optimal distribution in Fig. 7.2. Here, the jth component’s covariance is modified

such that Σj � Σ�
j � cjI2, where cj is the perturbation parameter varied in Fig.

7.4, and e1 and e2 denote the mean-squared errors for the optimality conditions

(4.6) and (4.7), respectively. These results are representative of an extensive set of

simulations in which the means, covariances, and component weights were perturbed

from optimal at various times. In all cases, the optimality conditions were validated

numerically by showing that e1 and e2 were at a minimum for the mixture model

parameters ζ� computed via SQP.

It is also simple to add additional objectives to the optimization problem. For

example, we can force the distribution to maintain specific coupled formations by

modifying the Lagrangian. This is illustrated with a distribution of m � 3 mixture
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(a) (b)

(c) (d)

Figure 7.2: Optimal evolution of agent distribution and microscopic state (yellow
circles) for N � 500 microscopic agents, at four instants in time. State trajectories
(blue lines) of 6 randomly chosen agents are plotted in (d).

components and an added objective of holding the pattern of an equilateral triangle

with a constant edge length, a � 2. To achieve this, we introduce a new term,

Sp℘px, tqq �
M̧

m�1,m�`

|}µm � µ`} � a| (7.6)

that gives a penalty when the distribution differs from the desired configuration and

is minimized when the pattern is matched, where µm is the mean of the mth mixture

component, and | � | represents absolute value. Then Sr℘px, tqs and a new weighting
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Figure 7.3: Microscopic state and control histories for 3 agents randomly chosen
from the example in Fig. 7.2.

constant, wS, can be appended to the Lagrangian,

Lr℘px, tq,uptq, ts � wDDαr℘px, tq||gpx, tqs (7.7)

� wSSr℘px, tqs

�

»
A
rwp℘px, tqUreppxq

� weu
TRusdx

The optimization can then be performed with the same numerical method as de-

scribed above. The initial and target distributions shown in Figure 7.2.1 are given,

and like the previous examples, the objectives are to match the target distribution
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(a)

(b)

Figure 7.4: Numerical error for optimality conditions (4.6) (a) and (4.7) (b) as a
function of covariance perturbation parameters.
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while avoiding obstacles and minimizing energy consumed. The optimized PDF

evolution is displayed in Figure 7.2.1. It can be seen that the distribution quickly

converges to the desired pattern and maintains the shape throughout the time inter-

val.

7.2.2 Environmental Effects on Dynamics

The DOC approach can also be applied to problems where the environmental effects

in the workspace can affect the agent dynamics. In this case, we consider an additive

velocity effect that can be thought of as similar to ocean currents or wind, such that

the agents’ velocities in inertial frame is 9q1 � 9q � νpqq, where νpqq P R2 is the

local current velocity vector at position q. In practice, environmental effects can be

modeled using environmental forecasts with assimilated data [9, 2, 37, 47], to exploit

the natural dynamics for the transport of agents and minimize the energy required.

For simplicity, consider microscopic agent dynamics in the body coordinate frame

(fixed to the vehicle) that are modeled by a single integrator model for a point robot

that was modified from the model proposed in [85],

�
9x
9y

�
�

�
vx
vy

�
� σI2

�
ηx�
ηy

�
(7.8)

where qi � rxi yis
T denotes the configuration vector of the ith agent, and xi and

yi are the xy-coordinates. The microscopic control vector of the ith agent is ui �

rvxi vyis
T , where vxi and vyi are linear velocities in the x and y directions, respectively.

The disturbance vector is wi � rηx ηys
T , where ηx and ηy are independent random

variables with values given by standard Gaussian processes, σ is a constant, and I2 is

the identity matrix. The agents exist in a workspaceW � r0, Lxs� r0, Lys, Lx � 20

km and Ly � 16 km, over a time interval pt0, tf s, where t0 � 0 and tf � 15 hr. The

workspace is occupied by M obstacles B1, . . . ,BM , where Bj � W . A static current

velocity field, νpqq, is assumed to be known and is plotted in Figure 7.7. The agents

51



Figure 7.5: (a) Initial agent distribution. (b) Target agent distribution
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Figure 7.6: Optimal solution for evolving agent distribution with objective to
maintain triangular pattern. (a) t = 0, (b) t = 8, (c) t = 15, (d) t = 21

have a given initial distribution ℘0 shown in Figure 7.2.2, and the initial microscopic

states and sampled from ℘0. The system objectives are again to match a goal agent

distribution, g, plotted in Figure 7.2.2, avoid the geometric obstacles, and minimize

energy consumed. The objective function (7.3) is used.

The optimal state and control trajectories are computed using the DOC ap-

proach with the direct optimization algorithm, described in Section 6.1, for the case

described both with and without the added environmental effects. A comparison

is presented here to demonstrate how the DOC approach can consider and exploit

the environment when calculating optimal trajectories. The optimal evolution of the
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Figure 7.7: Current velocity field and obstacles in workspace.

agent PDF for the case without currents is plotted in Figure 7.2.2, and the same

solution is shown in Figure 7.10 with the microscopic states of N � 500 agents that

are control by the DOC method. The same is done for the case with currents, where

the optimal time-varying agent PDF is shown in Figure 7.11, and the solution with

the resulting N � 500 agent states and current vector field superimposed is presented

in Figure 7.12.

The two solutions are seen to differ significantly, where in the case without cur-

rents, most agents travel above the right-most obstacle since that path offers the

shortest, and consequently, optimal distance to the goal distribution. When the

environmental effects are added, since the current velocities are generally in the di-

rection of the path below the right-most obstacle, the agents can save significant

energy costs by exploiting the currents along the path. Therefore, the path below

the obstacle is optimal for more agents, and most agents are shown to travel along
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Figure 7.8: (a) Initial agent distribution. (b) Target agent distribution
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(a) (b)

(c) (d)

(e) (f)

Figure 7.9: The evolution of the optimal agent PDF ℘� for the case with no
currents is computed with the direct DOC algorithm and plotted at six instants in
time.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.10: The evolution of the optimal agent PDF ℘� and the microscopic agent
trajectories for the case with no currents is computed with the direct DOC algorithm
and plotted at six instants in time.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.11: The evolution of the optimal agent PDF ℘� for the case with currents
is computed with the direct DOC algorithm and plotted at six instants in time.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.12: The evolution of the optimal agent PDF ℘� and the microscopic agent
trajectories for the case with currents is computed with the direct DOC algorithm
and plotted at six instants in time.
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that path in this case.

7.2.3 Comparison of Direct and Indirect Approaches

In this section, a comparison between the direct and indirect DOC optimization

approaches is presented to demonstrate the differences and advantages of the two

algorithms. Also results from a stochastic gradient descent approach, a popular ex-

isting method for similar problems [58], are shown for comparison. As described

in Chapter 6, the direct method discretizes the continuous DOC problem about a

finite set of collocation points, and the PDE constrained optimization problem is

transcribed into a finite-dimensional nonlinear program, which is then solved using a

sequential quadratic programming algorithm. For agent dynamics that are governed

by SDEs, the indirect approach uses a GRG method for solving the optimality condi-

tions obtained from the PDE-constrained optimization problem. The GRG method

eliminates the state and co-state variables at each iteration of the optimization by

solving the corresponding PDEs, and the gradient, with respect to the control, of

the macroscopic cost functional is obtained [15, 16].

Since the agent PDF is approximated by a mixture of Gaussians for the direct

optimization approach, the shape of the PDF is limited. In complex workspaces,

the optimal PDF shape might be irregular, and in these cases, the direct method

will be hindered. However, since the indirect approach uses harmonic functions to

approximate the PDFs, it has a greater level of flexibility in its solution, and as a

result, might be capable of achieving a better solution than the direct method.

To demonstrate this, the optimal state and control trajectories for the problem

described in Section 7.2.2 are computed using the DOC approach with the indirect

optimization algorithm, described in Section 6.2, for the case described both with

and without the added environmental effects. The optimal evolution of the agent

PDF for the case without currents is plotted in Figure 7.13, and the same solution is
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shown in Figure 7.14 with the microscopic states of N � 500 agents that are control

by the DOC method. The same is done for the case with currents, where the optimal

time-varying agent PDF is shown in Figure 7.15, and the solution with the resulting

N � 500 agent states and current vector field superimposed is presented in Figure

7.16. As with the direct method, it is shown that the indirect DOC approach exploits

the environment to find the optimal agent trajectories. The optimal PDF evolution

is also seen to form shapes that bend around corners and are more efficient than

those of the Gaussian mixture model.

As an additional comparison, a stochastic gradient descent algorithm described

in [58], is simulated for the same problem. Stochastic gradient descent is an approach

for obtaining the control laws for a system of robots in stochastic scenarios, where the

principle underlying the algorithm is to express a goal configuration of the system

as a minimum of an objective function and then to apply a gradient descent on

that function as a motion plan from the initial to the goal configuration. This

method follows the same idea as classical potential field techniques for feedback

motion planning, where a gradient descent is performed on a function to compute

a path from an initial state to a goal configuration, and where the agents have

local control policies that are not coupled with other agents. Stochastic gradient

descent can also typically be implemented in environments with uncertain dynamics

or measurements. For this example, the goal states of the agents were sampled from

the target distribution, g. The trajectories determined using the stochastic gradient

descent approach for the case with currents and N � 500 agents is shown in Figure

7.17.

The performance of the direct DOC, indirect DOC, and stochastic gradient de-

scent approach for the example with N � 500 agents and a current velocity field are

shown in Table 7.1 and Figure 7.18. Due to its ability to represent a greater range of

PDF shapes, the indirect DOC approach was able to outperform the direct method
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(a) (b)

(c) (d)

(e) (f)

Figure 7.13: The evolution of the optimal agent PDF ℘� for the case with no
currents is computed with the indirect DOC algorithm and plotted at six instants
in time.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.14: The evolution of the optimal agent PDF ℘� and the microscopic
agent trajectories for the case with no currents is computed with the indirect DOC
algorithm and plotted at six instants in time.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.15: The evolution of the optimal agent PDF ℘� for the case with currents
is computed with the indirect DOC algorithm and plotted at six instants in time.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.16: The evolution of the optimal agent PDF ℘� and the microscopic agent
trajectories for the case with currents is computed with the indirect DOC algorithm
and plotted at six instants in time.
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(a) (b)

(c) (d)

Figure 7.17: The microscopic agent trajectories for the case with currents is com-
puted with the stochastic gradient descent algorithm and plotted at six instants in
time.

in this case. The indirect method also has a much shorter runtime due to its use of an

analytical gradient of the cost function. In contrast, the direct method must compute

finite difference approximations of the gradient, leading to many more cost function

evaluations during the optimization. The stochastic gradient descent approach has

a very short runtime, but since the agents’ trajectories are not optimized over the

time interval and the agents’ dynamics are decoupled, the method’s performance is

much worse than both DOC algorithms. Also note that the trajectories determined

from the DOC method reach the target distribution in less time than those found

with stochastic gradient descent.
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Table 7.1: Performance comparison of trajectory planning approaches

Integral Cost, J Run Time (hr) Peak Memory (Gb)
Direct DOC 78.79 58.31 3.751
Indirect DOC 67.16 11.44 4.622

Stochastic Gradient Descent 134.98 0.095 0.021

Figure 7.18: Comparison of the Lagrangian function evaluated over the time pe-
riod pT0, Tf s for the direct DOC, indirect DOC, and stochastic gradient descent
approaches.
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8

A Distributed Optimal Control Approach to Sensor
Network Trajectory Optimization

The novel distributed optimal control methodology discussed in the previous chap-

ters is demonstrated on a cooperative track detection problem in sensor networks,

where the fundamental objective is to compute the agent trajectories that optimize

the probability that a target track through a rectangular region of interest (ROI)

will be detected by various independent sensors at several times. Cooperative track

detection is known to be well-suited to systems where no knowledge about the targets

is given a priori, and the sensors are likely to report false alarms while opportuni-

ties for correct target detections are infrequent. Cooperative track detection fuses

multiple closest-point-of-approach (CPA) detections from different sensors to con-

firm detections, and the tracks of an unknown number of targets can be constructed

from multiple consecutive frames of observations provided by low-cost sensors utiliz-

ing multiple hypothesis tracking (MHT) [39] or geometric invariants [84] algorithms.

However, there are no current methods capable of optimizing the objectives of large

sensor networks subject to nonlinear vehicular dynamics and time-varying environ-
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mental states. It is shown in this dissertation that distributed optimal control is

effective even with such difficult conditions.

8.1 Problem Formulation

This paper considers the problem of optimizing the state and control trajectories of

a network of N mobile sensors used to detect a moving target in a rectangular ROI,

W � r0, Ls � r0, Ls � R2, during a fixed time interval, t P pT0, Tf s, where T0 and

Tf are both given. The ROI may be populated with obstacles, and each sensor is

mounted on a robot or vehicle whose motion is governed by a small system of ODEs,

9xiptq � f rxiptq,uiptq, ts, xipT0q � x0i (8.1)

where xi P X � Rn is the vehicle state, X is an n-dimensional state space, ui P U �

Rm is the vehicle control vector, and U is the space of m admissible control inputs

of the ith mobile sensor.

It is assumed that the system performance is a function of the macroscopic net-

work state, X P R`, where `   n. The macroscopic state, X, represents the macro-

scopic dynamic condition of the sensor network, and is obtained via a restriction

operator, ℘ : X � R Ñ R, which maps the microscopic sensor state vectors into the

macroscopic description, such that Xptq � ℘rxptq, ts. In this paper, the restriction

operator is the PDF of x � rx ysT P W , and, thus, ℘ also represents the density of

sensors in W at time t.

The sensors are assumed to be omnidirectional, with a constant effective range,

r P R, defined as the maximum range at which the received signal exceeds a desired

threshold [8]. Then, the field-of-view (FOV) of every sensor can be modeled by a

disk Cpx, rq � R2, with center at x, and radius r (Fig. 8.1. The complexity of the

assumed spatio-temporal track model is a function of the size of the ROI, and of the

expected target dynamics [27]. In this paper, it is assumed that the target moves at
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constant speed, vT ¡ 0, and heading, θT P r0, 2πq, such that every possible target

track can be represented by a ray or half line, RθT pxT0q P R2
�, with slope tanpθT q, and

origin xT0 (Fig. 8.1). However, the same approach can also be extended to Markov

motion models [81], as will be shown in a separate paper. Then, the probability of a

target detection by a sensor at x can be described by the Boolean detection model

Pdrxptq, ts �

#
1, if RθT pxT0q X Cpx, rq � H

0, otherwise
(8.2)

A target track, RθT pxT0q, is said to be detected when it can be formed from multi-

ple independent detections obtained by the sensor network over time [84, 46, 43, 24].

For example, the event-based algorithm developed in [84] can be used to determine

all possible target tracks based on multiple closest-point-of-approach (CPA) detec-

tions obtained by a proximity network. The number of detections required per track

is represented by a constant parameter k, such that 1 ¤ k ¤ N , and its value is de-

cided based on the level of confidence required by the sensor system [84]. Then, the

probability of track detection is defined as the probability of obtaining k independent

detections when a target is present in the ROI.

The problem considered in this paper is to compute collision-free state and control

trajectories, x� and u�, for all N sensors, such that the probability of track detec-

tion in W is maximized, and the energy consumption is minimized, subject to the

microscopic agent dynamics (8.1). The trajectory optimization problem described in

this section can be formulated as a DOC problem in which the network performance

depends on the sensors’ PDF, as show in the next section.
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8.2 Cooperative Track Detection

8.2.1 Background on Track Coverage

In surveillance systems that employ distributed sensors to detect intruding targets

over a large region of interest (ROI), a track-before-detect strategy can be utilized to

determine the positional information of the targets with a high level of confidence,

even when false-alarms are frequent. The problem of cooperative track detection

was first introduced in [46], and is concerned with the probability that a target

traversing through a ROI is detected by a cooperative sensor network by obtaining

multiple elementary (e.g. closest-point-of-approach) detections at various moments

in time. A target is stated as detected when its track can be formed or estimated

by fusing multiple independent detections according to an assumed spatio-temporal

model of the target tracks. With this methodology, the tracks of an unknown number

of targets can be assembled from multiple consecutive frames of observations. These

systems are often relatively affordable since this data can be collected by simple,

low-cost (e.g. passive) proximity sensors, using multiple hypothesis tracking [39] or

geometric invariants [84] algorithms.

A general omni-directional proximity sensor can be defined such that the signal

received by the ith sensor at xi can be described as isotropic energy attenuated by

the environment according to the following power law,

Eiptq � cF rλiptqs
�α (8.3)

where, λiptq is the distance between the ith sensor and the target at time t. The

attenuation coefficient, α, and the scaling constant, c, depend on the physical mech-

anisms of wave propagation and on the environmental conditions. F represents the

target source level, and is assumed to be independent of both time and sensor loca-

tion [21, 84]. Then, a closest-point-of-approach (CPA) detection is said to take place

when Ei exceeds a threshold ϑi, which is typically tuned by an operator [78]. At the
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CPA detection time, the values of Ei and xi are reported by the ith sensor to the

central processor. From (8.3), the maximum range at which the ith sensor can report

a CPA detection, given a target source level F and a threshold ϑj, is calculated as,

ri � pcF q1{αϑi (8.4)

Thus if the effects of any sensor vehicle propulsion on sensing are neglected, the

value of ri can be estimated from the environmental conditions, and can be assumed

known and constant for all i � 1, . . . , n [7, 82].

The probability of cooperative track detection, also known as track coverage [7],

is a useful metric for sensor network performance that can be used as an objective

function for optimization. When n is very large, it can be derived by the distributed

search approach presented in [82]. This approach assumes that all n sensors have the

same range, ri � r for all i, and that the probability of detection of the ith sensor is

equal to one everywhere inside their field-of-view, and is equal to zero elsewhere.

The dimensions of the ROI, W , and the time interval rT0, Tf s are chosen such

that the target vehicles can be assumed to move at a constant speed V and heading

θ, and to maintain a constant source amplitude. After a minimum of k detections are

obtained from k distinct sensors in the network, the values of Ei and xi are fused by

a central processor to estimate the target track [84]. The number of required target

detections k depends on the false-alarm rate, on the measurement errors, and on the

track accuracy required by the surveillance system [84].

The sensors’ state and the targets’ speeds, headings, and initial positions are con-

sidered as random variables described by the joint PDFs fxpxi, tq, fV pV, tq, fθpθ, tq,

and fT pxT0 , tq, respectively. The PDF of the sensors’ state is a function of time,

because the sensors move to optimize their probability of track detection. The PDFs

of the target track’s parameters are assumed to be known functions of time that

are obtained from the aforementioned target-tracking algorithms [39, 84]. Then, the
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detection region ΩT �W can be grown isotropically from the target track,

xT ptq � xT0 � V rcos θ sin θsTdt (8.5)

over a time differential dt � rT0, Tf s, where xT pT0q � xT0 PW . Let the event Di �

t1, 0u represent the set of all possible mutually-exclusive outcomes corresponding to

sensor i reporting (1) or not reporting (0) a target detection. Then, assuming the

targets are distributed uniformly inW , the probability of a detection being reported

by sensor i is given by a spatial Poisson process,

PrtDi � 1 | xT ptq PWu � 1� e�φt (8.6)

where,

φtpxT0 , V, θq �

» Tf
T0

»
ΩT pxT0

,θ,V dtq

fxpxi, tqdxdt (8.7)

is the coverage factor for a sensor sampled from fxpxi, tq, and with a detection region

ΩT . The coverage factor of a spatial Poisson process is defined as the expected value

of the number of points that fall in a small region or subset of a Euclidian space.

Where, every point that falls into this region corresponds to a detection event Di � 1.

In a network of n sensors, the set of events tD1, . . . , Dnu is reported to the central

processor to attempt to form a target track, and a successful track detection is de-

clared when
°n
i�1Di ¥ k. Thus, the probability of a successful track detection by at

least k sensors can be described using Bernoulli trials [82]. Assuming that individual

detection events are statistically identical and independent, and that φt    1 and

n ¡¡ 1, the probability of successful track detection in W can be approximated by
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an integral function of the sensors’ PDF,

Pt � Prp
ņ

i�1

Di ¥ k | xT ptq PWq (8.8)

� 1�

» Tf
T0

» 2π

0

» Vmax

Vmin

»
W
e�nφtpxT0

,V,θqfT pxT0 , tq

� fV pV, tqfθpθ, tq
k�1̧

m�0

rnφtpxT0 , V, θqs
m

m!
dxT0dV dθdt

as shown in [82]. Where, Vmin and Vmax are the target’s minimum and maximum

speeds, respectively, and the coverage factor φtpxT0 , V, θq is a function of fxpxi, tq, as

shown in (8.7).

8.2.2 Probabilistic Track Coverage

It was recently shown that the probability of track detection is a function of the sen-

sors’ positions that can be derived in closed form by considering the cone generated

by the sensor FOV, also referred to as coverage cone [27]. For an omnidirectional

FOV, Cpx, rq, the coverage cone KpC,xT0q is defined as the cone generated by C, i.e.,

as the set of all nonnegative combinations of the elements of C, with origin xT0 [7].

An example of coverage cone for an omnidirectional sensor positioned at x, and with

an effective range r is illustrated in Fig. 8.1. Then, the coverage cone KpC,xT0q can

be shown to contain all target tracks in W that are detected by the sensor, and that

lie between the cone extremals, characterized by lines with orientations g1 and g2 [7].

Since the track parameters vT , θT , and xT typically are uncorrelated random

variables, prior target information is provided in terms of the probability density

functions (PDFs) fxT
pxT q, fθT pθT q, and fvT pvT q, which are routinely outputted by

target tracking algorithms [5]. Then, all target tracks with origin xT0 can be viewed

as Poisson flats that are placed in the open cone with a density fθT pθT q [27]. By

viewing x as a random variable with PDF ℘, the coverage cone KpC,xT0q can be
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Figure 8.1: Coverage cone of an omnidirectional sensor at x for a target track with
origin xT0 .

considered as an interval of length 2α that is placed randomly in θ-phase space,

or θ P r0, 2πq. As shown in detail in [27], the expected number of Poisson flats

that fall in KpC,xT0q can be obtained by writing the cone extremals in rectangular

coordinates,

g1,2px,xT0q �

#
t0, 2πu, if }x� xT0} ¤ r

γpx,xT0q�αpx,xT0q, otherwise
(8.9)

where

γpx,xT0q � sin�1rpy�yT q{}x�xT0}s (8.10)

αpx,xT0q � sin�1pr{}x�xT0}q. (8.11)

Assuming all N sensor positions are independently and identically sampled from

the PDF ℘, multiple detections can be viewed as repeated Bernoulli trials. It follows
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that the probability that a detection event will occur at least k times is given by,

Pr

�
Ņ

i�1

Di ¥ k | xT0 PW

�
� 1�

k�1̧

m�0

N !

m!pN �mq!
φms p1� φsq

N�m (8.12)

where Di P t1, 0u denotes the detection event for a sensor indexed by i, for i �

1, . . . , N , and the outcomes 1 and 0 represent a successful and unsuccessful detection

events, respectively [27]. Let φs denote the expected number of rays with origin xT0

that fall in the coverage cone KpC,xT0q, referred to as coverage factor, such that

φs �

»
W
℘px, tq

» g2px,xT0
q

g1px,xT0
q

fθT pθT qdθTdx (8.13)

Then, for an independent random variable xT0 with PDF fxT
pxT0q, and for φs ! 1

and N " 1, the probability of obtaining at least k independent target detections, or

probability of track detection, is

Ps � 1�

»
W
fxT

pxT0qe
�Nφs

k�1̧

m�0

pNφsq
m

m!
dxT0

� 1� Ptp℘q (8.14)

The complete proof, provided in [27], is based on the Poisson limit theorem.

The probability of track detection, Ps, is a performance function that represents

the track coverage for a probabilistic sensor network with a distribution, ℘, and

multiple targets with tracking parameters with uncertainties described by the PDFs

fxT
and fθT , that are possibly nonuniform. It can be seen from (8.14), that the

network track-coverage performance is a function of the sensor distribution, ℘, and,

consequently, of the sensor control input, u, by virtue of the dynamic equation (8.1).

The obstacle avoidance and energy minimization objectives can also be expressed as

a function of ℘ and u, by introducing a repulsive potential function Urep generated
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from the obstacles in W , as shown in [28, 44]. Then, the objective function for the

N mobile sensors can expressed as an integral cost function,

J �

» Tf
T0

�
wsPs �

»
W
pwr℘Urep � weu

TRuqdx

�
dt (8.15)

to be minimized with respect to ℘ and u, and subject to the dynamic and equality

constraints in (3.7)-(3.9), (3.3). The constant weights ws, wr, and we, are chosen by

the user based on the desired tradeoff between the sensing, obstacle-avoidance, and

energy objectives, and R is a diagonal positive-definite matrix.

Because the network performance (8.15) is a function of the macroscopic network

state, the DOC approach proposed in [28] can be applied to determine the optimal

sensor state and control trajectories, as explained in the following section.

8.3 Numerical Simulations and Results

Two numerical examples are presented to demonstrate the effectiveness of the DOC

methodology described in the previous sections. The first example considers a net-

work of N � 100 sensors that are each installed on a vehicle with nonlinear unicycle

kinematics,

9x � v cos θ 9y � v sin θ 9θ � ω (8.16)

and deployed in an obstacle-free workspace W � r0, Ls � r0, Ls, with L � 16 km,

over a time interval pT0, Tf s, with T0 � 0 and Tf � 15 hr. The sensor configuration,

q � rx y θsT , consists of the x, y-coordinates, and heading angle θ. The sensor control

vector is u � rv ωsT , where v is the linear velocity, and ω is the angular velocity.

The sensors are assumed to have constant linear velocities of v � 0.5 km/hr, and

maximum angular velocities of ωmax � 0.52 rad/s, such that ω P r�ωmax, � ωmaxs.

The microscopic feedback control law is defined to minimize the potential function,

U , in (5.1), and is obtained from the negative gradient of U . For sensors described
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by the nonlinear unicycle model (8.16), the microscopic control law is,

u � rv Qpθ, φqsT (8.17)

where φ � �∇U , and,

Qp�q � tapθq � arΘpφqsusgntarΘpφqs � apθqu

is the minimum differential between the sensor’s actual heading angle θ and the

desired heading angle Θpφq, sgnp�q is the sign function, and ap�q is an angle wrapping

function [44].

It is assumed that the sensors are deployed in W with an initial distribution ℘0,

and, thus, at t � T0 they are located at a set of initial positions sampled from ℘0.

The number of independent elementary detections required to declare a target track

detection is chosen to be k � 2. The PDF of the initial target position, fxT
pxT0q,

plotted in Fig. 8.2, is a two-dimensional Gaussian mixture,

fxT
pxT0q�

2̧

`�1

1

p2πqn{2 detpΣq1{2
er�p1{2qpxT0

�µ`q
T Σ�1pxT0

�µ`qs (8.18)

with means µ1 � r2 2sT km and µ2 � r3 4sT km, and covariance Σ � I2, where In

denotes an n� n identity matrix. The heading PDF, fθT pθT q, shown in Fig. 8.3, is

fθT pθT q �

#
1.92 prad�1q, if 0 ¤ θT ¤ 0.52 pradq

0, otherwise
(8.19)

For simplicity, the target speed is constant and equal to vT � 0.2 km/hr. Then,

the evolution of the target PDF fxT
pxT q over time can be computed from fxT

pxT0q,

fθT pθT q, and vT , and is plotted in Fig. 8.4.

The cost function weights are ws � 1, wr � 0, and we � 0.1, based on the relative

importance of the sensing, obstacle-avoidance, and energy objectives, respectively.
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(a)

(b)

Figure 8.2: Initial sensor distribution (a) and PDF of initial target position (b) for
obstacle-free example.
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Figure 8.3: PDF of target heading for obstacle-free example.

In this example, wr � 0 because the ROI contains no obstacles. The number of

mixture components is z � 6, and the state space is discretized using X � 900 collo-

cation points, and ∆t � 1 hr, such that K � 15. The optimal sensor distribution ℘�

obtained by the DOC method is plotted in Fig. 8.5 at four sample moments in time,

and the corresponding instantaneous cost (or Lagrangian) is plotted in Fig. 8.6 for

(a) (b)

(c)

Figure 8.4: Evolution of target PDF at three instants in time for obstacle-free
example in Figs. 8.2-8.3.
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(a) (b)

(c) (d)

Figure 8.5: Evolution of optimal sensor PDF, ℘�, microscopic state (black dots),
and FOVs (black circles) at four instants in time, for obstacle-free example in Figs.
8.2-8.3, and N � 100 sensors.

Figure 8.6: Time-history of cost function Lagrangian for DOC solution in Fig. 8.5.
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the entire interval pT0, Tf s. From ℘�, the sensors state and control trajectories are

obtained by integrating the closed-loop microscopic dynamic equation (8.1) numer-

ically, using the DOC feedback control law in (7.5), and a time step δt � 3 s. The

instantaneous sensors state and FOV are superimposed on ℘� in Fig. 8.5 to illustrate

the sensors positions along the optimal trajectories over time. It can be seen from

Fig. 8.6 that as the Lagrangian decreases over time, as the sensor network moves to

accomplish its objectives of optimizing the probability of track detection (8.14) and

minimizing the energy consumption associated with control usage.

(a) (b)

(c)

Figure 8.7: Grid (a), random (b), and uniform (c) sensor distributions and sampled
sensor positions (black dots), and FOVs (black circles).

The performance of the DOC method is also compared to three existing sensor

network deployment strategies known as grid, random, and uniform deployments
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[56], plotted in Fig. 8.7. The grid deployment is obtained by sampling a Gaussian

mixture PDF with supportW , and z � 16 components arranged in a grid formation.

The random deployment is similarly obtained but uses a Gaussian mixture in which

the means are randomly generated over W , and the uniform deployment is obtained

by sampling a uniform distribution with support W . For all three strategies the

sensor positions are obtained using finite-mixture sampling [56], and are assumed

to be constant over time. Subsequently, the cost function in (8.15) and the actual

number of target track detections were evaluated for each strategy, and averaged

over twenty simulations. The results, summarized in Table 8.1, show that sensors

deployed by the DOC method outperform other deployment strategies.

Table 8.1: Performance comparison of sensor deployment strategies.

Deployment Cost Track Detections
Strategy Function, J (k � 2)
DOC �13.801 998

Uniform �5.034 488
Grid �6.254 549

Random �3.951 454

The second example considers a network of N � 250 sensors with nonlinear

unicycle kinematics in (8.16). In this case, however, the sensors are deployed in an

obstacle-populated workspaceW � r0, Ls�r0, Ls shown in Fig. 8.8, with L � 16 km,

T0 � 0, and Tf � 15 hr. The number of independent elementary detections required

to declare a target track detection is k � 3, and the initial sensor distribution, ℘0,

is shown in Fig. 8.8.a. The PDF of the initial target position is plotted in Fig. 8.8,

and is modeled by the Gaussian mixture,

fxT
pxT0q�

3̧

`�1

w`
p2πqn{2 detpΣ`q1{2

er�p1{2qpxT0
�µ`q

T Σ�1
` pxT0

�µ`qs (8.20)

with means µ1 � r10 6sT km, µ2 � r10 9sT km, and µ3 � r12.5 7.5sT km, and

covariances Σ1 � I2, Σ2 � 1.5 � I2, and Σ3 � 3 � I2. The mixing proportions are
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w1 � 0.2, w2 � 0.2, and w3 � 0.6. The PDF of the target heading distribution,

shown in Fig. 8.9, is

fθTpθT q�

$'&
'%

1.43 prad�1q, if 0.70 ¤ θT ¤ 1.43 pradq

or 2.18 ¤ θT ¤ 2.53 pradq

0, otherwise

(8.21)

As in the first example, the target speed is assumed constant and equal to vT � 0.2

km/hr.

The cost function weights are ws � 1, wr � 0.02, and we � 0.1, to include the

obstacle-avoidance objective. The number of mixture components is z � 6, and the

state space is discretized into X � 900 collocation points, and ∆t � 1 hr, such that

K � 15. The optimal sensor PDF obtained by the DOC method is plotted in Fig.

8.11, along with the sensors microscopic state and FOVs, at four instants in time.

From the time-history of the Lagrangian, evaluated at each time step and plotted

in Fig. 8.12, it can be seen that the instantaneous cost is reduced over time, as the

sensor network maximizes its probability of track detection (8.14), avoid obstacles,

and minimizes the energy consumption.

A performance comparison was also completed for this case, where grid, ran-

dom, and uniform deployment strategies, plotted in Fig. 8.13, were modified for the

workspace W containing geometric obstacles. The grid formation has z � 17 Gaus-

sian mixture components, where the components overlapping the obstacles were re-

moved, and the random deployment uses z � 20 components with means randomly

generated with the constraint that they be at least a distance r from the nearest

obstacle. The uniform deployment uses a sensor distribution defined uniformly over

W . As with the previous example, the sensor states are obtained via finite-mixture

sampling from each distribution and are assumed to be constant over time. The

sample positions are also required to be at a distance greater than r from the nearest

obstacle.
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(a)

(b)

Figure 8.8: Initial sensor distribution (a) and PDF of initial target position for
example with obstacles (solid black).
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Figure 8.9: PDF of target heading for example with obstacles.

In addition, a stochastic gradient approach [58] is simulated for comparison.

Stochastic gradient methods use a similar concept as classical potential function

methods for feedback motion planning, where a gradient descent is performed on a

function to compute a path from an initial state to a goal configuration, and they can

typically be implemented in environments with uncertain dynamics or measurements.

(a) (b)

(c)

Figure 8.10: Evolution of target PDF at three instants in time for example with
obstacles (solid black) in Figs. 8.8-8.9.
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(a) (b)

(c) (d)

Figure 8.11: Evolution of optimal sensor PDF, ℘�, microscopic state (black dots),
and FOVs (black circles) at four instants in time, for example with obstacles (solid
black) in Figs. 8.8-8.9.

Figure 8.12: Time-history of cost function Lagrangian for DOC solution in Fig.
8.11.
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(a) (b)

(c)

Figure 8.13: Grid (a), random (b), and uniform (c) sensor distributions with
sampled sensor positions (black dots), FOVs (black circles), and geometric obstacles
(solid black).

For this example, the goal states are sampled from a time-invariant goal sensor PDF,

plotted in Fig. 8.14, that minimizes the cost function (8.15) over only the instant

in time t � Tf and without the dynamic constraints. The initial sensor states are

sampled from ℘0. Each sensor seeks to move toward the closest goal state, s, that

is not already occupied by another sensor. Adding a repulsive potential term, Urep,

for obstacle avoidance to the state update law given in [58], a microscopic feedback

control law for use with the vehicle dynamics from (8.16) can be formulated as (7.5)

with U � wa}s � q} � wbUrep, where wa � 1 and wb � 2.5 are weighting constants.

The states of the sensors simulated using the stochastic gradient method are plotted

in Fig. 8.15 at three instants in time, along with the goal sensor PDF and static goal
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microscopic states.

Figure 8.14: Goal sensor PDF from which the goal microscopic states were sampled
for the stochastic gradient method.

The cost function (8.15) and the actual number of target track detections were

computed, averaging over twenty simulations for each method. To evaluate (8.15) for

the stochastic gradient method, a PDF was constructed from the microscopic sensor

states at each timestep using kernel density estimation with a standard Gaussian

kernel. The results are summarized in Table 8.2, and the DOC approach is shown

to outperform the other strategies.
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(a) (b)

(c)

Figure 8.15: States of N � 250 sensors (solid yellow circles) with FOVs (black
circles) controlled using the stochastic gradient approach and plotted at three instants
in time. The sensors travel toward goal states (black dots) sampled from a goal sensor
PDF (plotted on background).

Table 8.2: Performance comparison of sensor deployment strategies for example case
with obstacles.

Deployment Cost Track Detections
Strategy Function, J (k � 3)
DOC �5.956 933

Stochastic Gradient �0.884 847
Uniform 3.196 387
Grid 2.639 421

Random 2.844 395

90



9

Conclusions

This dissertation presents a novel distributed optimal control problem formulation

that is applicable to multiscale dynamical systems comprised of numerous interacting

systems, or agents, that together give rise to coherent macroscopic behaviors, or

coarse dynamics, that can be modeled by partial differential equations on larger

spatial and time scales. The DOC methodology seeks to obtain optimal agent state

and control trajectories by representing the system’s performance as an integral

cost function of the macroscopic state, which is optimized subject to the agents’

dynamics. The macroscopic state is identified as a time-varying probability density

function to which the states of the individual agents can be mapped via a restriction

operator. Optimality conditions for the DOC problem are derived analytically, and

the optimal trajectories of the macroscopic state and control are computed using

direct and indirect optimization algorithms. Feedback microscopic control laws are

then derived from the optimal macroscopic description using a potential function

approach.

The DOC approach is demonstrated numerically through benchmark multi-agent

trajectory optimization problems, where large systems of agents were given the ob-
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jectives of traveling to goal state distributions, avoiding obstacles, maintaining for-

mations, and minimizing energy consumption through control. Comparisons are

provided between the direct and indirect optimization techniques, as well as existing

methods from the literature, and a computational complexity analysis is presented.

The indirect method is demonstrated to have a higher performance and shorter run-

time than the direct approach due to its greater flexibility of PDF approximations

and its availability of an analytical gradient of the cost function. The methodology

is also applied to a track coverage optimization problem for the control of distributed

networks of mobile omnidirectional sensors, where the sensors move to maximize the

probability of track detection of a known distribution of mobile targets traversing

a region of interest (ROI). Through extensive simulations, DOC is shown to out-

perform several existing sensor deployment and control strategies. Furthermore, the

computation required by the DOC algorithm is proven to be far reduced compared

to that of classical, direct optimal control algorithms.

The recommended future work is as follows. A fully decentralized DOC method-

ology can be developed that includes a decentralized optimization algorithm in ad-

dition to the decentralized microscopic control law. Systems with heterogeneous

agents can be investigated, where several classes of agents may exist, each governed

by unique dynamic models. Non-conservative problems can be considered, where

the introduction and removal of agents is a property of the environment or part of

the control. The applicability of DOC for varying number of agents is also an area

of interest, where the effectiveness of the DOC methodology for small numbers of

agents can be evaluated. Through alternative numerical methods, such as two-stage

approaches or approximate dynamic programming, the numerical properties of the

optimization algorithms can be improved, including the avoidance of local minima,

lowering runtime, and reducing memory required. DOC can be applied to a number

of applications, such as traffic control or resource allocation in response to disasters.
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