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Abstract

This dissertation addresses an information-driven sensor path planning problem

which has various applications such as robot cleaning, environment monitoring, and

manufacturing. Information-driven sensor path planning is concerned with plan-

ning the measurements of a sensor or a sensor network in order to support sensing

objectives, such as target detection, classification and localization, based on prior

information. When the sensor’s field-of-view or visibility region is bounded, the sen-

sor’s position and orientation determine what targets can be measured at any given

time. Therefore, the sensor path must be planned in concert with the measurement

sequence. When sensors are installed on robotic platforms and are deployed in an

obstacle-populated environment, the sensor path must also avoid collisions between

the platform and the obstacles or other robotic sensors. Addressing this sensor path

planning problem, this dissertation first presents a general and systematic approach

for deriving information value functions that represent the expected utility of sensor

decisions in a canonical sensor planning problem. The resulting information functions

and search strategies are compared through extensive numerical simulations involving

direct-search, alert-confirm, task-driven, and log-likelihood-ratio search strategies,

and the maximum a-posteriori, maximum-likelihood, and Neyman-Pearson decision

rules. After that a novel o↵-line information roadmap method is developed to nav-

igate single robotic sensor in which obstacles, targets, sensor’s platform and field

of view are represented as closed and bounded subsets of an Euclidean workspace.
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The information roadmap is sampled from a normalized information theoretic metric

that favors samples with a high value of information in configuration space. Finally,

when multiple robotic sensors are deployed in the workspace, and information of

the workspace such as geometry, location, and prior measurements on targets and

obstacles can become available online, another novel sensor path planning method,

named information potential method, is proposed to take into account the new infor-

mation obtained over time. Targets with high information value tend to have high

probability to be measured by the robotic sensor network. A hybrid control system

is utilized to coordinate and control each robotic sensor in the network to detect

and measure obstacles and targets in the workspace. The potential function is also

utilized to generate the milestones in a local probabilistic roadmap method to help

robotic sensors escape their local minima.

The proposed methods are applied to a landmine classification problem to plan

the path of a robotic sensor network in which each robot is equipped with a ground-

penetrating radar. Other sensors, such as infrared sensors on unmanned aerial vehi-

cles (UAVs), are utilized a priori for target detection and cursory classification. In

the o↵-line sensor path planning applications for a single robotic sensor, experiments

show that paths obtained from the information roadmap exhibit a classification ef-

ficiency significantly higher than that of existing robot motion strategies. Also, the

information roadmap can be used to deploy non-overpass capable robots that must

avoid targets as well as obstacles. Then in the multiple online robotic sensor network

path planing applications, experiments show that path obtained from the informa-

tion potential method takes advantages of the online information and coordination

among robotic sensors, and the results show that the information potential method

outperforms other strategies such as rapidly-exploring random trees and classical

potential field methods that does not take target information value into account.
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Introduction

This dissertation addresses the problem of sensor path planning for a robotic sensor

network. Sensor path planning is concerned with planning the measurements of a

sensor or a sensor network in order to support sensing objectives, such as target

detection, classification and localization. When the sensor’s field-of-view (FOV) or

visibility region is bounded, the sensor’s position and orientation determine what

targets can be measured at any given time. Therefore, the sensor path must be

planned in concert with the measurement sequence. When sensors are installed

on robotic platforms and are deployed in an obstacle-populated environment, the

sensor path must also avoid collisions between the platform and the obstacles or

other robots [2–4]. The problem of planning the sensor path in order to maximize

the information profit, while minimizing the distance traveled and avoiding collisions

with the obstacles, is referred to as treasure hunt [5–7]. This problem is relevant

to many sensor applications such as, robotic mine hunting [8], cleaning [2], and

robotic games [9], as well as the monitoring of urban environments [10], underwater

objects [11], manufacturing plants [12], and endangered species [13].

In sensor path planning, prior information such as sensor models, environmental

conditions, and prior measurements may be available. In many applications, such as

monitoring, maintenance, and surveillance operations, the set of all measurements

that can be acquired by a sensor significantly exceeds its available time and pro-

cessing capabilities [12]. The sensor can then be viewed as an information-gathering
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agent that must make decisions on the mode and measurement sequence, in order

to optimize the performance of a sensing task, such as detection, classification, and

tracking [14–16]. A basic di�culty in sensor planning consists of assessing the sensor

performance that will result from the sensor decisions prior to obtaining the sensor

measurements [6, 17,18]. Many sensing tasks can be reduced to the problem of esti-

mating one or more random variables from partial or imperfect measurements [19].

Therefore, the sensor performance depends on the amount of information, or lack

thereof, associated with these variables, and the utility of the sensor decisions can

be represented by the expected information value.

Several information theoretic functions have been proposed in the literature to

measure the information value in sensor planning and management problems. Rela-

tive entropy was used in [20] to solve a multisensor-multitarget assignment problem,

and in [21, 22] to manage agile sensors with Gaussian models for target detection

and classification. Shannon entropy and the Mahalanobis distance were applied and

compared in [18] for sensor selection in ad-hoc sensor networks. Shannon entropy

was also used in [23,24] for tracking a moving target using a Kalman filter. Recently,

mutual information has been used for sensor planning in multi-target detection, clas-

sification, and feature inference by ground-penetrating radars and infrared sensors

in [6, 25]. An approach based on mutual information was also presented in [26] for

adjusting the parameters of a camera in an object recognition application.

Due to the significant di↵erences between the aforementioned sensing tasks and

applications, there presently exists no systematic and general approach for estimating

information theoretic functions prior to obtaining the sensor measurements. Further-

more, little work has been done on comparing these information functions on canon-

ical sensor problems, and on generalizing the results beyond a particular sensor type

and application. The comparative study closest to the one presented in this disserta-

tion pertains the optimal choice of the ↵ parameter in the Rènyi divergence [22]. It
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was determined that the optimal value of ↵ for a multitarget tracking application in-

volving a simulated moving target indicator (MTI) sensor is 0.5. An empirical study

showing that task-driven approaches may slightly outperform information-driven ap-

proaches was recently conducted in [27] using a synthetic-aperture-radar model with

two modes of operation, and eight possible target locations or cells. However, the

study in [27] only considered one sensor model and one information function, i.e. the

Rènyi divergence with ↵ = 0.5.

In this dissertation, a general approach is presented for estimating and compar-

ing six information value functions derived from mutual information, Rènyi diver-

gence, Kullback-Leibler (KL) divergence, information potential, quadratic entropy,

and the Cauchy-Schwartz distance. Although the Cauchy-Schwartz distance and in-

formation potential have not been previously applied to sensor planning, they are

considered here because they have been successfully implemented for blind-source

separation, feature extraction, and machine learning [28–30]. As reviewed in [31],

sensor performance depends on the search strategy, and on the decision rule used for

hypothesis acceptance and rejection. In the information-driven approach, the search

strategy consists of selecting the sensor mode and measurement sequence that max-

imize the information value function. Other e↵ective search strategies that have

been proposed in the literature and are implemented in this dissertation are direct

search, alert-confirm search, task-driven or Bayes’ risk search, and log-likelihood-

ratio search [27, 32, 33]. Therefore, in this dissertation, these search strategies also

are evaluated and compared to the information-driven approach, using the maxi-

mum likelihood, and maximum a-posteriori decision rules, and five sensor models

obtained from Bernoulli, Poisson, binomial, and mixture-of-binomials distributions,

and a noisy power law. All approaches are implemented on a canonical problem

formulation that is relevant to a variety of applications [1,22,34]. The e↵ects of prior

information and data fusion are investigated by simulating prior distributions with

3



three levels of information-to-noise ratio.

With various information metric analyzed in this dissertation, the prior informa-

tion such as sensor models, environmental conditions, and prior measurements are

able to be utilized to compute the information value of measuring a target in optimal

search strategies [35,36] for sensor path planning, and results in a better performance

than other existing approaches such as coverage path-planning [3, 37], random [3],

and grid [35] search strategies. One of the popular path planing algorithm, cell de-

composition [5,6], has been successfully developed for solving geometric sensor path

planning problems, such as the treasure hunt, when a prior model of the obstacles and

the targets is available. Although it has the advantage of being resolution complete,

this method is computationally intensive and may not be applicable to problems with

many robotic sensors, obstacles, and targets. Also, cell decomposition is not easily

applicable when information about the obstacles and targets is obtained incremen-

tally over time. This dissertation presents two new sensor path planning methods,

referred to as information roadmap method and information potential method, that

compute sensor paths for geometric sensing.

In the information roadmap method (IRM), the probabilistic roadmap approach

or (PRMs) is combined with information-driven sensor planning to generate the path

for a robotic sensor. This o↵-line method takes into account the robotic sensor’s plat-

form and field of view, as well as the geometry and position of multiple fixed targets

and obstacles in the workspace. Traditionally, PRMs have been used to plan the

motions of a robot with geometry A, in order to avoid collisions with multiple fixed

obstacles in a workspace W [38–41]. While robot path planning typically aims to

optimize a deterministic additive function such as Eucledian distance, sensor plan-

ning aims to optimize a stochastic sensing objective that is not necessarily additive.

Another basic di�culty in sensor planning is that, although the measurements ulti-

mately determine the sensor performance, they cannot be factored into the planning
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problem because the sensor’s position must be planned prior to obtaining the sen-

sor’s measurements [18, 20–22, 42]. Recently, several authors have shown that this

di�culty can be overcome by an approach known as information-driven sensor plan-

ning, which uses information theoretic metrics to estimate the measurements’ value

prior to deploying the sensor [18, 20–22].

The information roadmap method developed in this dissertation combines the

advantages of PRMs and information-driven sensor planning, by sampling a nor-

malized information theoretic metric defined over the robot free configuration space.

The information theoretic metric can be various information functions of potential

targets, as introduced in Chapter 3. A new hybrid sampling strategy is presented

in Chapter 4 to generate an information roadmap that contains a high density of

milestones with high information metric value, as well as milestones that capture the

connectivity of the free configuration space. A new query phase is also presented for

searching the information roadmap using an A⇤-type algorithm that returns the path

of maximum information profit whenever one exists, and returns failure otherwise.

The information roadmap method is demonstrated by planning the path of a

mine hunting ground-penetrating radar (GPR) installed on a ground robot. The re-

sults show that the method outperforms existing sensor path-planning methods that

are applicable to geometric sensing (namely, complete coverage [3, 37] and random

search [3]) under a wide range of workspace conditions and geometries, increasing

the average classification e�ciency by up to one order of magnitude. Also, the in-

formation roadmap can be used to deploy non-overpass capable robotic sensors that

may be damaged or destroyed when driving over landmines. As a result, the robotic

sensor avoids collisions with potential mines, while obtaining measurements from

them, both in wide-open regions of the workspace and inside narrow passages.

The second method, referred to as information potential method (IPM), is de-

veloped for online sensor path planing such that cursory measurements of targets
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and obstacles obtained incrementally over time are utilized for planning sensor path.

Although several potential fields have been developed for robot motion planning,

existing techniques are not directly applicable to geometric sensor path planning be-

cause they do not take into account the geometries of the targets and of the sensor

FOV, and do not consider the information value of the sensor measurements [43–49].

In the classical potential field method [50–53], for example, the robot’s objective is

to navigate the workspace to reach a goal configuration by following the negative

gradient of a potential function that is designed to provide a repulsive potential near

the obstacles and an attractive potential toward the goal configuration. Although

the potential field method is well suited to on-line motion planning and to conver-

gence analysis, its e↵ectiveness is limited by the tendency of the robot to get stuck in

local minima of the potential function [54]. An e↵ective approach for escaping local

minima is to follow a new local path generated through a random-walk algorithm.

Another way to solve this problem is to construct a potential field without any local

minima besides the goal. Functions with this probability are called Morse function

or Harmonic function [55–58]. The disadvantage of using potential fields free of un-

desired local minima is that their computational cost is usually high. Especially in

on-line path planning, a potential over the whole configuration space generated by

obstacle or target needs to be recomputed every time when a new target or obstacle

is detected, and the computation is usually expensive. Potential field has been previ-

ously combined with PRMs. In Sensor-based robot path planning, Kazemi [47] uses

the potential field approach to bias the distribution of random nodes. In [59] the po-

tential energy of a protein is utilized to sample the milestones of the PRMs. These

methods, however, does not applicable for sensor path planning since no sensing

objective is considered.

In this dissertation, a novel potential function is presented for generating attrac-

tive potentials toward the targets, based on their geometries, locations and informa-
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tion from prior measurements. The potential function is also utilized to construct

a local probabilistic information roadmap with which the robotic sensor can escape

from the local minimum.

One of the key results presented in this dissertation is that the same adaptive

potential function can be used to generate the navigation potential and the roadmap,

thereby providing a natural framework for integrating the two approaches. A method

is presented for using the adaptive information roadmap to escape local minima of

the potential function in place of random-walk algorithms that can lead the sensor

to regions of poor information value. In a cooperative sensor network, the adaptive

information of targets and obstacles can also be exchanged between robots and used

to plan the path of other robots based on the latest sensed information. By defining

a potential function in configuration space, this approach accounts for the geometries

and positions of the obstacles, targets, sensor’s platform and FOV. The information

value of the targets is represented by defining the potential function in terms of their

information value conditioned on prior sensor measurements. As a result, the sensors

visit targets that o↵er the best tradeo↵ between distance and information value, and

through this on-line sensor path planning approach, they adapt their paths based on

new sensor measurements obtained from targets or obstacles that were previously

undetected.

This dissertation is organized as follows. The sensor path planning problem and

assumptions addressed in this dissertation are presented in Chapter 1. Background

on information functions and robot motion planning is reviewed in Chapter 2. A

general and systematic approach for estimating the information functions prior to ob-

taining the sensor measurements is presented in Chapter 3. The information roadmap

method is developed and demonstrated for a single robotic sensor path planning in

Chapter 4. Chapter 5 presents the information potential method for planning the

paths of multiple robotic sensors that obtain, and share via wireless communications,
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information about the targets and obstacles incrementally over time.
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1

Problem Formulation and Assumptions

This dissertation addresses the problem of planning the path of a robotic sensor, or

robotic sensor network, where each robotic sensor has platform geometry A, and a

field-of-view geometry S, and navigates a workspace W for the purpose of classifying

multiple fixed targets based on new (posterior) and prior sensor measurements, and

environmental information. W is assumed to be a compact and bounded subset

of a two- or three-dimensional Euclidian space. Both A and S are assumed to be

rigid convex sets, and S has a fixed position and orientation with respect to A.

Prior measurements may be available from airborne sensors, environmental maps, or

from another type of sensor installed on the robotic sensor plaftorm, and are used to

estimate the geometry and location of targets and obstacles inW [60,61]. The robotic

sensor workspace W is populated with n fixed obstacles B = {B1, . . . ,Bn} ⇢W, and

m fixed targets T = {T1, . . . , Tm} ⇢ W , with Bi \ Tj = ; for 8i 2 IB and 8j 2 IT ,

where IB and IT are the index sets of B and T .

Let FA be a moving Cartesian frame embedded in A. Then, every point of A and

every point of S have a fixed position with respect to FA, and a configuration vector

q = [x y ✓]T 2 SE(2) can be used to specify the position (x, y) and orientation ✓ of
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both A and S with respect to a fixed inertial frame FW , embedded in W . Obstacles

and targets are also assumed to be fixed and rigid in W , such that every point of Bi,

for 8i 2 IB, and every point of Tj, 8j 2 IT , has a fixed position with respect to FW .

Let the configuration space C denote the space of all possible robot configurations.

A C-obstacle is a subset of C that causes collisions with at least one obstacle in B,

i.e., CBi ⌘ {q 2 C | A(q) \ Bi 6= ;}, where A(q) denotes the subset of W occupied

by the platform geometry A when the robot is in the configuration q. The union

of all C-obstacles obtained from B is referred to as the C-obstacle region. Thus,

in searching for targets in W , the robotic sensor is free to rotate and translate in

the free configuration space, which is defined as the complement of the C-obstacle

region CB in C, i.e., Cfree = C\CB [50]. The path of the robotic platform’s centroid

is defined as a continuous map ⌧ : [0, 1] ! C, with q0 = ⌧(0) and qf = ⌧(1), where

q0 and qf are the initial and goal configurations, respectively. Since S is mounted

on A, the path ⌧ determines the targets in W that can be measured by the robotic

sensor, while traveling from q0 to qf .

In standard estimation theory, a sensor that obtains a vector of measurements

Z 2 Z ⇢ Rr in order to estimate an unknown state vector X 2 X ⇢ Rn is modeled

as,

Zk = h(Xk, �k) (1.1)

where h : Rn ⇥ R} ! Rr is a deterministic vector function that is possibly nonlin-

ear, � 2 R} is the random vector representing the sensor characteristics, such as

sensor mode, environmental conditions, and sensor noise or measurement errors. It

is assumed that the sensor model is time invariant and k is the discrete time index.

In many sensor applications, however, the state, the measurements, and the sensor

characteristics also are random vectors. Therefore, a more general observation or

measurement model that has been adopted in the literature is the joint probability
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mass function (PMF) p(Zk,Xk, �k). This joint PMF may be given by the factoriza-

tion,

p(Zk,Xk, �k) = p(Zk | Xk, �k)p(Xk)p(�k) (1.2)

which includes the conditional PMF p(Zk | Xk, �k), the priors p(Xk) and p(�k),

and assumes that Xk and �k are independent. Various sensors, including infrared,

ground penetrating radars, and synthetic aperture radars have been modeled as (1.2)

in target detection, classification, and tracking applications [1, 21, 22, 27, 34]. In this

dissertation, the joint PMF in (1.2) is considered to be the sensor model, and is

assumed known. Since the sensor model holds for all targets and environmental

conditions, and can be assumed to remain constant over time, (1.2) can be written

as p(Zi,Xi, �i) for every target Ti 2 T .

The purpose for deploying the robotic sensor inW is to obtain measurements from

a subset of targets in T . To each target Ti 2 T , there is associated an information

value denoted by Vi that is computed by the information function defined in Chapter

3, and represents the expected benefit of making measurements from Ti, based on

the sensor model and on prior information. Vi can be considered as the expected

uncertainty reduction for target features or classification.

While the platform Amust avoid collisions with the obstacles B and other robotic

sensors, the sensor’s FOV S must intersect Ti in order to obtain the measurements Zi.

Since S is mounted on A, the platform motion must be planned in concert with the

sensor measurements, and the path ⌧ must simultaneously avoid obstacles and other

robotic sensors while searching for targets. Let the measurement set of a robotic

sensor along a path ⌧ be defined as Z(⌧) = {Zi | Ti \ S(q) 6= ;, ⌧(s) = q, s 2

[0, 1], i 2 IT}, where S(q) is the subset of W occupied by S at a configuration

q, along ⌧ . Then, the robotic sensor path ⌧ between q0 and qf must avoid all

obstacles and other robotic sensors in W , and maximize the information value of the
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measurement set Z(⌧) by traveling the minimum distance. These above formulation

and assumptions apply to the remaining chapters; however in specific problems, some

extra descriptions and assumption may apply.
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2

Background

2.1 Information Theoretic Functions

Information theoretic functions have been used to evaluate the information value

of sensor measurements in a wide range of applications. As pointed out in [18], a

natural choice for measuring information value is entropy. Shannon entropy measures

the uncertainty of a discrete random variable X, with finite range X , from its PMF

pX(x) = Pr({X = x}) for x 2 X , and is defined as

H(X) = �
X

x2X

pX(x) log2 pX(x) (2.1)

Since the computation of (2.1) requires knowledge of the PMF, it cannot be used to

compute the information value, because the posterior PMF of X, or belief state, is

unknown before the measurements are obtained [18]. Furthermore, the optimization

of entropy-based functions is usually ill posed, because entropy is nonadditive, and

myopic, i.e., it does not consider the e↵ects of prior measurements on those that are

performed subsequently [14,42]. Another shortcoming of (2.1) is that it is not a true

metric, because it is nonsymmetric, and it does not satisfy the triangle inequality
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[6, 42]. In the remainder of this thesis, the PMF pX(x) will be represented by the

shorthand notation p(x). Also, uppercase characters are used to denote discrete

random variables, and lower case characters are used to denote real numbers, such

as the numerical values of random variables.

The Rény information or ↵-divergence has been proposed in [62] as a means for

quantifying the change in the belief state brought about by the sensor measurements.

It is based on the Rény’s entropy of order ↵, defined as,

HR↵(X) =
1

↵� 1
log2

X

x2X

p↵(x) (2.2)

which relates to (2.1) through the properties lim↵!1 HR↵(X) = H(X), and HR↵(X) �

H(X) � HR�
(X) if 1 > ↵ > 0 and � > 1. Let the current belief state be represented

by a PMF q(x), and suppose a posterior distribution p(x) is expected as a result of

a sensor decision pertaining the sensor mode and measurement sequence. Then, the

↵-divergence,

D↵(p k q) =
1

↵� 1
log2

X

x2X

p↵(x) q1�↵(x) (2.3)

can be viewed as a measure of the di↵erence between the two PMFs q(x) and p(x),

where the ↵ parameter represents the emphasis placed on the degree of di↵erentiation

between the tails of the distributions. In [22], the value ↵ = 0.5 was found to be

optimal for representing the information value in multitarget tracking applications

in which the two PMFs q(x) and p(x) are close. In the limit of ↵ ! 1, (2.3) can be

shown to reduce to the KL divergence or relative entropy, defined as,

D(p k q) =
X

x2X

p(x) log2

p(x)

q(x)
(2.4)

which was first applied to sensor planning in the seminal work by Kastella [21]. Like

entropy, however, the Rény information and KL divergence functions are nonadditive,
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nonsymmetric, and do not satisfy the triangle inequality.

An additive, symmetric, and non-myopic function based on conditional mutual

information was recently proposed in [5], and successfully applied to multitarget

detection and classification in [6]. Mutual information is a measure of the information

content of one random variable about another random variable [63]. The conditional

mutual information of two random variables X and Z, given Y , is defined as,

I(X; Z | Y ) = H(X | Y )�H(X | Z, Y )

=
X

x2X

X

y2Y

X

z2Z

p(x, y, z) log2

p(x, z | y)

p(x | y)p(z | y)

(2.5)

and represents the reduction in uncertainty in X due to knowledge of Z, when Y

is given. Where, H(X | Y ) denotes the conditional entropy of X given Y , and is

defined in [63]. Although (2.5) requires knowledge of the posterior PMF and, thus,

of the sensor measurements, this di�culty can be circumvented by using the expected

conditional entropy, as shown in Chapter 3. Mutual information can also be shown

to be a concave function of p(x | y) for fixed p(z | x, y), using the approach in [63].

Based on the Cauchy-Schwartz (CS) inequality, the information function defined

as,

C(p, q) = log2

P
x2X p2(x)

P
x2X q2(x)

⇥P
x2X p(x)q(x)

⇤2 (2.6)

was proposed as a measure of the di↵erence between two PMFs p(x) and q(x)

in [28, 29], and used therein for blind-source separation and feature extraction. The

information function in (2.6) is based on quadratic entropy, which is obtained from

(2.2) by letting ↵ = 2. Quadratic forms are particularly well suited to numerical

optimization because they are characterized by high convergence rates and smooth

gradient variations near the minimum, and, in the absence of constraints, they typ-

ically do not exhibit multiple stationary points. Therefore, in this thesis, quadratic
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entropy and the information potential, defined as,

V (X) =
X

x2X

p2(x) (2.7)

are also considered for sensor planning. Optimizing the information potential in (2.7)

is equivalent to optimizing the quadratic entropy, because HR2(X) = � log2 V (x).

However, (2.2) and (2.7) cannot be utilized for sensor planning because they require

knowledge of the posterior PMF. Instead, as shown in Chapter 3, they are utilized

to derive two new information functions, the expected quadratic entropy and the

expected information potential.

Information functions can also be defined for continuous random variables, based

on their probability density functions [63]. The discrete variable formulation is

adopted throughout this dissertation because it leads to a more e�cient numeri-

cal implementation. The information theoretic functions reviewed above are used

to derive information value functions for the canonical sensor problem presented in

Chapter 3.

2.2 Bayesian Network Approach to Sensor Modeling

A common approach for modeling the sensor measurement process is to utilize a joint

PMF of the relevant variables, which may include target classification and features,

sensor measurements and parameters (or mode), and environmental conditions. The

joint PMF of a particular sensor may be obtained by means of estimation algorithms

(e.g., [18, 22]), or by learning algorithms using wavelets or mixtures of Gaussians

[35, 64]. In this dissertation, we adopt the method presented in [1, 34], in which

the PMF is learned from data and represented by a Bayesian network (BN) model.

The advantages of BN models are that they can easily deal with many variables,

they are accompanied by very e�cient learning and inference algorithms, and they
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provide a convenient factorization of the joint PMF that can be used to simplify the

computation of posterior PMFs required by information theoretic metrics.

A Bayesian network model is a pair comprised of a directed graph and of a set

of conditional probability tables (CPTs) that together specify the multivariate joint

PMF of a set of discrete random variables known as the universe [65]. Every random

variable in the BN universe is assumed to have a finite range, and is represented

by a node in the graph. Arcs between the nodes represent conditional probability

relationships between the variables. As shown in [1, 34], the BN model of a sensor

measurement process is obtained by defining the universe as the set of all variables

that influence the sensor measurements, such as, the set of sensor-mode parameters

S, the set of environmental conditions E, the set of measurements M , the set of

actual target features F to be inferred from M , and the target classification variable

y, i.e., U ⌘ {S,E, M,F, y}. Then, the BN arcs and CPTs are determined from a

database of prior sensor data, using BN batch learning algorithms [66]. The database

consists of several cases in which all variables in U are sampled by obtaining sensor

measurements from several known targets, under known operating and environmental

conditions [1].

After the BN model is determined, it specifies the joint PMF underlying the

sensor measurements in terms of the recursive factorization,

P (Ui) ⌘ P (Si, Ei, Mi, Fi, yi) =
Y

uj2Ui

P (uj | pa(uj)) (2.8)

= P (Mi | Si, Ei, Fi)P (Fi | yi)P (yi)P (Si)P (Ei) (2.9)

which holds for any target Ti, i.e., 8i 2 IT . Where, pa(uj) denotes the set of parents

of a node uj 2 Ui, and factors in (2.8) are the BN CPTs. Since the parents of a node

uj are all the nodes in the BN with an outgoing arc to uj, the factorization in (2.8)

reflects the BN graph structure, which is learned from data and, thus, depends on the
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sensor type. The factorization in (2.9), corresponding to the BN structure in Fig. 2.1,

has been shown to apply to various sensor types [1,34]. When sensor measurements

are available from a target Ti, a junction-tree BN inference algorithm [67] computes

the posterior PMF P (Fi, yi | Ei) from the BN CPTs in (2.9), and from the evidence

Ei, which includes the values of the measurements Mi, and the values of known

operating (Si) and environmental conditions (Ei). The unknown target features

and classification are estimated as the values with the highest posterior probability,

i.e., T̂i, ŷi = argmaxF j
i ,yl

i
P (Fi = F j

i , yi = yl
i | Ei). And, the posterior probability

P (F̂i, ŷi | Ei) is known as the confidence level (CL). The BN models of multiple

and heterogeneous sensors can be used in combination with the Dempster-Shafer

rule of evidence combination to perform feature-level sensor fusion [1]. Also, in this

dissertation, the factorization (2.9) is used to compute the information value of a

measurement set, V (⌧) in (4.1), before the measurements become available. 

Sensor Mode,  
Si

Environmental 
Conditions, Ei

:  BN Node 

:  BN Arc 

:  Set of BN Nodes 
Measurements,  

Mi

Target 
Features, Fi

yi

Figure 2.1: Typical structure of a BN sensor model [1].

2.3 Probabilistic Roadmap Methods

Probabilistic roadmap methods (PRMs) are a class of randomized motion planning

algorithms that have recently received considerable attention because they are ca-

pable of handling problems with many degrees of freedom, or large workspaces with

many obstacles, for which other motion planning methods are computationally infea-

sible [38–41]. So far, these methods have been applied to classical motion planning,

in order to plan the path of a robot with geometry A that connects q0 to qf by
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a minimum distance, avoiding collisions with the set of obstacles B in W . In this

dissertation, PRM is modified to solve the sensor path planning problem, thereby

also accounting for the sensor’s field-of-view geometry S, and the set of targets T in

W to find the robotic sensor path ⌧ .

PRM planners sample the free configuration space Cfree and construct a roadmap

graph by means of a learning phase. Subsequently, a collision-free path from q0 to

qf is determined from the roadmap by a so-called query phase [41]. The roadmap

is an undirected graph G = (L, A), comprised of a set of nodes or milestones

L = {c1, . . . , cNm}, and a set of arcs A = {(ci, cj)| ci, cj 2 L}. Every milestone

ci 2 L represents a value of the robot configuration q sampled from Cfree using a

probability density function (PDF). Every arc (ci, cj) 2 A represents a simple local

path, typically a straight line, that connects ci and cj in Cfree, and is determined

by an extremely fast local planner. Assuming the roadmap properly represents the

connectivity of Cfree, multiple queries can be used in the second stage to construct a

path from q0 to qf by concatenating several feasible paths in G, in order of increasing

distance from nodes q0 and qf , until they are successfully connected. A smoothing

algorithm can then be applied to obtain a more natural and shorter path by means

of geometric operations [68].

The main di�culties in constructing appropriate roadmaps for PRMs are pro-

viding coverage of wide-open regions of Cfree, and representing the connectivity of

Cfree even in the presence of narrow passages. The use of uniform and Gaussian dis-

tributions have been proposed in [41] and in [40], respectively, in order to generate

milestones that would properly cover wide-open regions of Cfree. More recently, an

hybrid strategy combining a bridge test with a Gaussian probability density func-

tion along narrow passages, and a uniform probability density function in wide-open

regions of Cfree was proposed in [38], in order to construct appropriate roadmaps for

workspaces with both characteristics. The bridge test is based on the observation
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that a narrow passage in C has at least one restricted direction between C-obstacles

that can be identified by a short straight-line segment or bridge with endpoints on

two C-obstacles. Let b and b0 be two random variables representing the two end-

points of a bridge in C. Since bridges must connect C-obstacles, b is sampled from a

uniform distribution f(b) over CB that is zero in Cfree, and b0 is sampled from the

conditional probability density function,

f(b0 | b) = �
b

(b0)I(b0)/Z
b

(2.10)

normalized by Z
b

⌘
R
C �

b

(b0)I(b0)db0. �
b

is a multivariate Gaussian probability

density function that is radially symmetric, and has a standard deviation that de-

pends on the width of the bridge length (Section 4.4.2). I(b) is a binary function

that equals 1 when b 2 CB, and 0 otherwise. Then, as shown in [38], milestones

can be obtained with a higher frequency inside narrow passages by sampling the

probability density function,

⇡G(q) =

Z

C
f(b0 | b)f(b)db =

Z

CB
�

b

(2q� b)I(2q� b)/Z
b

db (2.11)

obtained by choosing the desired configuration q as the midpoint on the bridge from

b to b0, such that b0 = 2q � b. In order to also include milestones from wide-open

regions of C, a uniform probability density function ⇡U is defined over Cfree, and the

hybrid sampling strategy,

⇡H = v⇡G + (1� v)⇡U (2.12)

is used to cover both wide-open regions and narrow passages in Cfree. The user-

defined parameter 0  v  1 is chosen to emphasize either distributions in the

mixture (Section 4.4.2).

In this dissertation, a new probability density function is presented for sampling

milestones based on the geometry and information value of the targets in W . A
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new hybrid sampling strategy (Section 4.2) is derived from prior measurements and

environmental information, and from the probabilistic sensor model reviewed in the

next section. Then, the profit of information, (4.1), is used in place of the classi-

cal distance metric [39] in the query phase (Section 4.3), to determine the path of

maximum information profit in the roadmap.

2.4 Background on Potential Field

The potential field method is a robot motion planning technique that utilizes an

artificial potential function to find the obstacle-free path of shortest distance in an

Euclidian workspace. The obstacles and the goal configuration, are considered as

sources to construct a potential function U which represents the characteristics of

the configuration space. Although di↵erent approaches have been utilized to generate

U [51–53,69], the potential function always consists of two components, the attractive

potential Uatt generated by the goal configuration, and the repulsive potential Urep,

generated by the obstacles. The total potential is given by,

U(q) = Uatt(q) + Urep(q) (2.13)

where q is any configuration in C. The force applied on the robot is proportional to

the negative gradient of U ,

rU(q) = [
@U(q)

@q1
,
@U(q)

@q2
, . . . ,

@U(q)

@qn

]T (2.14)

where q = [q1 q2 . . . qn]T 2 Rn.

As shown in [50], the repulsive potential can be represented as,

Urep(q) =

(
1
2⌘( 1

⇢(q) �
1
⇢0

)2 if ⇢(q)  ⇢0

0 if ⇢(q) > ⇢0

(2.15)
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where ⌘ is a scaling factor, ⇢(q) is the distance between the robot and the nearest

obstacle in Euclidean space, and ⇢0 is a constant parameter that is chosen by the

user. The attractive potential is given by,

Uatt(q) =
1

2
"⇢2

goal(q) (2.16)

where " is a scaling factor, and ⇢goal(q) is the distance between the robot and the goal

configuration. In (2.15) and (2.16), only the obstacle closest to q is considered to

generate Urep(q), and the target is assumed to be a single point in Cfree. This makes

the potential function di�cult to be updated online when new obstacles and targets

are sensed during the path execution, because for each value of q, the potential needs

to update by computing its distance from the closest obstacle and target.

In this dissertation, a novel potential function is presented that takes into account

the geometries of the sensor’s FOV and of the targets, as well as the information value

of the targets. The proposed potential function is used for online sensor network path

planning in Chapter 5.
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3

Comparison of Information Functions for Sensor
Classification

In this chapter, various information functions are utilized to derive the information

value of measuring a group of cells. Information-driven search strategy based on

these information functions is demonstrated in a canonical sensor planning problem

with five sensor models and their performance is compared to other existing search

strategies.

3.1 Canonical Sensor Planning Problem

As discussed in Chapter 1, in many sensor applications, the state vector, the measure-

ments, and the sensor characteristics are random variables. The sensor measurement

model can be represented by the joint PMF p(Zk,Xk, �k), which typically is known

in terms of the factorization,

p(Zk,Xk, �k) = p(Zk |Xk, �k)p(Xk)p(�k) (3.1)

and assumes Xk and �k are independent [1, 6, 25]. Both models (1.1) and (3.1) are

time invariant, and are obtained in discrete time, indexed by k = 1, . . . , f .
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The probabilistic model in (3.1) assumes that Zk, Xk, and �k are discrete ran-

dom variables with finite ranges X , Z, and ⇤, respectively. Continuous random

variables can be considered using an analogous model based on the joint probability

density function (PDF) [22]. The conditional PMF p(Zk |Xk, �k) is sometimes also

referred to as sensor model, and is obtained from the physical principles underlying

the measurement process. The priors p(Xk) and p(�k) are computed from prior en-

vironmental information when available or, otherwise, are assumed to be uniformly

distributed. Various sensors, including infrared, ground penetrating radars, and syn-

thetic aperture radars, have been modeled using (3.1) for demining, surveillance, and

radar target tracking applications [1,21,22,27,34]. In the remainder of this chapter,

the joint PMF (3.1) is considered as the sensor model. The problem dimensions are

chosen as n = r = 1, and } = 3.

Consider a sensor modeled by (1.1) or (3.1) that is implemented for the purpose of

classifying multiple targets confined to a discrete set of cells K = {1, . . . ,c}, with

c � f . The sensor planning problem considered in this chapter consists of selecting

one cell from K at every time k = 1, . . . , f , such that the rate of correct target

classification is maximized and the rate of false alarms is minimized. It is assumed

that there is at most one target in each cell, and that targets do not move and do not

change over time. Then, the state of the ith cell i, denoted by Xi, can be used to

represent both the presence and classification of a target in i. The range X contains

a value representing an empty cell, and a set of values representing all possible

target types, including a high-risk target type denoted by xr. The measurement

variable associated with i, denoted by Zi, is a discrete random variable with finite

range Z, that is unknown a priori. If the sensor obtains measurements from i at

time k, then Zk = Zi = zk, Xk = Xi, and the measurement value zk is known

thereafter. Since measurements are imperfect and random, the actual value of Xi

remains unknown, but can be estimated from zk, as explained in Section 3.3. Over
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time the sensor can obtain multiple measurements from the same cell in order to

improve its estimate. Therefore, at every time k, the sensor planning algorithm

must decide which cell to measure before zk is known, and based on the set of

measurements Mk�1 = {z1, . . . , zk�1} obtained up to time (k � 1).

This problem formulation is inspired by canonical sensor planning problems pre-

viously presented in [21, 32], and can be used to manage sensors in demining, and

sensing-and-pursuit applications, as shown in [6, 7, 10, 70]. For example, a set K

that obeys the aforementioned assumptions can be obtained from multiple geomet-

ric targets located in an obstacle-populated workspace, using the approximate cell

decomposition method developed in [6]. This formulation can also be used in the

case of moving targets by viewing the cells as state variables at di↵erent time in-

stants, as shown in [7, 10, 22, 70]. Then, the value of information associated with a

cell i 2 K at time k can be estimated using the information functions presented in

the next section.

3.2 Information Value Functions for Sensor Planning

Information theoretic functions are a natural choice for representing the value of

information because they measure the absolute or relative information content of

probability mass (or density) functions. However, as shown in Chapter 2, computing

these functions requires knowledge of the PMFs representing the prior and posterior

belief state. Since in sensor planning problem the posterior belief state typically is

unknown, in this section, we present a general approach for utilizing information

theoretic functions to estimate the information value of a cell or target prior to

obtaining the corresponding sensor measurements and posterior belief. Although it

is assumed that the sensor parameters are known a priori, the approach can be easily

extended to the case in which they also must be selected by the sensor manager by

adjoining them to Zi.
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Suppose the sensor manager is considering obtaining an unknown measurement

Zi from i at time k, given all past measurements Mk�1. Then, the information

value of i can be represented by the change in belief state brought about by Zi,

as measured by the ↵-divergence in (2.3). At time k, the change between the prior

belief state, p(Xi | Mk�1, �i), and the posterior belief state, p(Xi | Zi,Mk�1, �i), can

be estimated by taking the expectation with respect to Zi, denoted by EZi . Then,

from (2.3), the information value can be represented by the expected ↵-divergence,

defined as,

'̂D↵(Xi; Zi | Mk�1, �i)

⌘ EZi

�
D↵[p(Xi | Zi,Mk�1, �i) k p(Xi | Mk�1, �i)]

 

=
X

zj2Z

D↵[p(Xi | Zi = zj,Mk�1, �i) k p(Xi | Mk�1, �i)]

⇥ p(Zi = zj | Mk�1, �i) (3.2)

By taking the expectation with respect to Zi, the measurement value zk is no longer

needed, and '̂D↵ can be computed from Mk�1 and the sensor model, as explained

below.

As shown in [22], measurements that are obtained at di↵erent time instants can

be assumed to be conditionally independent given the state, i.e.,

p(zk�1 |Xi, z
k�2, . . . , z1, �i) = p(zk�1 |Xi, �i) (3.3)

As a result, an e�cient rule can be derived for updating the belief state iteratively

over time using the sensor model (3.1) in combination with Bayes’ rule. Suppose a

measurement zk�1 is obtained from cell i 2 K at time (k � 1). Then, the PMF of
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Xi given Mk�1 and �i can be updated by the rule,

p(Xi | Mk�1, �i) = p(Xi | zk�1,Mk�2, �i)

=
p(zk�1 |Xi,Mk�2, �i)p(Xi | Mk�2, �i)

p(zk�1 | Mk�2, �i)

=
p(zk�1 |Xi, �i)p(Xi | Mk�2, �i)P

x`2X p(zk�1 |Xi = x`, �i)p(Xi = x` | Mk�2, �i)

(3.4)

where, p(Xi | Mk�2, �i) is known from the previous time step (k�2), and p(zk�1 |Xi, �i)

is known from (3.1). As additional measurements are obtained at subsequent time

steps, (3.4) can be implemented iteratively by updating the time and cell index ac-

cordingly. Finally, the posterior belief inside the expectation in (3.2) is computed by

applying Bayes’ rule for every value zj 2 Z:

p(Xi | Zi = zj,Mk�1, �i)

=
p(zj |Xi, �i)p(Xi | Mk�2, �i)P

x`2X p(zj |Xi = x`, �i)p(Xi = x` | Mk�2, �i)

(3.5)

The expected discrimination gain (EDG), originally proposed in [21], can be

derived by taking the expectation of the Kullback-Leibler divergence defined in (2.4),

i.e.:

'̂D(Xi; Zi | Mk�1, �i)

⌘ EZi

�
D[p(Xi | Zi,Mk�1, �i) k q(Xi | Mk�1, �i)]

 

=
X

zj2Z

D[p(Xi | Zi = zj,Mk�1, �i) k q(Xi | Mk�1, �i)]

⇥ p(Zi = zj | Mk�1, �i) (3.6)

It can be seen that, by this approach, EDG can be computed from the same PMFs

in (3.4)-(3.5) used to compute '̂D↵ .

As shown in [6], an information value function based on conditional mutual in-

formation can be used to represent the reduction in uncertainty in Xi, due to the
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knowledge of Zi, when Mk�1 and �i are given. Based on the definition in (2.5), com-

puting the conditional mutual information I(Xi; Zi | Mk�1, �i) requires computing

the entropy H(Xi | Zi,Mk�1, �i), which in turn requires knowledge of Zi (as pointed

out in [18]). Therefore, a more suitable measure for sensor planning is the expected

conditional mutual information (EER), defined as

'̂I(Xi; Zi | Mk�1, �i) ⌘ EZi

�
I(Xi; Zi | Mk�1, �i)

 

= H(Xi | Mk�1, �i)� EZi

�
H(Xi | Zi,Mk�1, �i)

 

= H(Xi | Mk�1, �i)�
X

zj2Z

H(Xi | Zi = zj,Mk�1, �i)

⇥ p(Zi = zj | Mk�1, �i) (3.7)

Where, the entropy H(Xi | Zi = zj,Mk�1, �i) is computed from (3.5), using (2.1).

The expected Cauchy-Schwartz information function, derived from the CS measure

in (2.6), and defined as,

'̂C(Xi; Zi | Mk�1, �i)

⌘ EZi

�
C[p(Xi | Zi,Mk�1, �i), p(Xi | Mk�1, �i)]

 

=
X

zj2Z

C[p(Xi | Zi = zj,Mk�1, �i), p(Xi | Mk�1, �i)]

⇥ p(Zi = zj | Mk�1, �i) (3.8)

can be used to obtain an alternative measure of the distance between the prior and

the posterior belief state for a cell i, prior to obtaining the measurement Zi.

Although they have not been previously applied to sensor planning, the quadratic

entropy and information potential are considered here because quadratic forms are

well-suited to numerical optimization. By viewing each of these two functions as a

measure of the uncertainty associated with a distribution, the information value of

i can be represented by the expected information potential gain (EIPG), defined
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as,

'̂V (Xi; Zi | Mk�1, �i)

⌘ EZi

�
V [p(Xi | Zi,Mk�1, �i)]� V [p(Xi | Mk�1, �i)]

 

= EZi

�
V [p(Xi | Zi,Mk�1, �i)]

 
� V [p(Xi | Mk�1, �i)]

=
X

zj2Z

V [p(Xi | Zi = zj,Mk�1, �i)]p(Zi = zj | Mk�1, �i)

� V [p(Xi | Mk�1, �i)] (3.9)

and derived from the information potential in (2.7). The expected quadratic entropy

reduction (EQER) is similarly defined as,

'̂R2(Xi; Zi | Mk�1, �i)

⌘ EZi

�
R2[p(Xi | Mk�1, �i)]�R2[p(Xi | Zi,Mk�1, �i)]

 

= R2[p(Xi | Mk�1, �i)]� EZi

�
R2[p(Xi | Zi,Mk�1, �i)]

 

= R2[p(Xi | Mk�1)]�
X

zj2Z

R2[p(Xi | Zi = zj,Mk�1, �i)]

⇥ p(Zi = zj | Mk�1, �i) (3.10)

and, like EIPG, can be computed from the PMFs in (3.4)-(3.5). It can be seen from

(3.9) and (3.10) that optimizing the EIPG is not equivalent to optimizing EQER.

In the next sections, the above information value functions are utilized to select

the optimal sequence of cells for the canonical sensor problem in Section 3.1, and

compared to other search strategies previously presented in the literature.

3.3 Search Strategies

A greedy information-driven search (IS) strategy for solving the sensor planning

problem presented in Section 3.1 consists of selecting the sequence of cells with the

maximum expected information value. Assuming the expected information value '̂
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can be represented by one of the functions derived in Section 3.2, at every time k,

the cell l with index,

l = arg max
i
{'̂(Xi; Zi | Mk�1, �i)} (3.11)

is selected from K. After the measurement value Zl = zk is obtained, the measure-

ment set is updated by letting Mk = {Mk�1, zk}, and the posterior PMF of Xl is

updated using (3.4). The IS strategy is applied iteratively over time, until k = f . For

comparison, direct-search, alert-confirm search, task-driven, and log-likelihood-ratio

search strategies, which have been shown to outperform other approaches, such as,

index rule, and sequential-probability-ratio test in [32] are also implemented on the

canonical sensor problem in Section 3.1.

Direct search (DS) consists of selecting cells in the order in which they are pro-

vided in K, obtaining only one measurement from each cell [32]. Alert-confirm (AS)

is a sensor management approach implemented in multitarget radar systems which

consists of selecting cells in the order in which they are provided in K until an

“alert” is obtained. The alert triggers a “confirm” cycle that obtains additional

measurements until a desired level of confidence (CL), such as a desired signal-to-

noise ration (SNR), is achieved, or until the probability of detection exceeds that

of false alarm [32, 33]. Only when the confirm cycle is completed, the sensor moves

on to the next cell. In this chapter, the CL for the AS strategy is represented by a

desired belief state or posterior PMF, defined as,

CLi ⌘ max
xj

p(Xi = xj | Mk�1, �i) (3.12)

and is required to be equal to 0.9. Therefore, at time k the sensor obtains a mea-

surement from i if CLi < 0.9. Otherwise, the sensor moves to i+1, and obtains

measurements from i+1 until CLi+1 � 0.9. Although AS can lead to good sensor

30



performance, its key disadvantage is that it cannot be used to minimize time or

energy consumption.

Task-driven (TS), or Bayes-risk, search strategies have been recently proposed

for applications in which a sensor is deployed to perform a single task, such as

to find mines or minimize tracking errors, and base the management decisions on

a heuristic criterion, such as the associated risk level [27, 42]. These applications

can be considered by introducing a high-risk state value xr in the canonical sensor

problem, which represents a high-risk target class (such as a mine) or target location.

Then, the TS strategy selects the cells with the maximum a-posteriori probability

for the value xr, optimizing the risk associated with declaring Xi = xr [27,42]. Since

the a-posteriori probability of xr is unknown at the time of the sensor decision, it is

estimated as follows,

P̂ k
r (Xi) ⌘ EZi

⇥
p(Xi = xr | Mk�1, �i, Zi)

⇤
(3.13)

similarly to the approach proposed in [27]. Then, at time k, the TS strategy selects

the cell l, with index,

l = arg max
j
{P̂ k

r (Xi)} (3.14)

31



from K. Since P̂ k
r (Xi) is independent of Zi, (3.14) can be simplified as follows,

l = arg max
i

�
EZi

⇥
p(Xi = xr | Mk�1, �i, Zi)

⇤ 

= arg max
i

X

zj2Z

p(Xi = xr | Mk�1, �i, Zi = zj)

⇥ p(Zi = zj | Mk�1, �i)

= arg max
i

X

zj2Z

p(Xi = xr,Mk�1, �i, Zi = zj)

p(Zi = zj | Mk�1, �i)p(Mk�1, �i)

⇥ p(Zi = zj | Mk�1, �i)

= arg max
i

X

zj2Z

p(Xi = xr, Zi = zj | Mk�1, �i)

= arg max
i

p(Xi = xr | Mk�1, �i) (3.15)

and the TS strategy selects cells in the order of decreasing probability for the high-

risk state xr.

The log-likelihood-ratio (LLR) criterion has been successfully implemented for

the evaluation of track formation hypotheses in multiple target tracking applications

[31, 33]. When two possible hypothesis can be used to explain the data, the LLR is

proportional to the ratio between the likelihood of the data given the first hypothesis,

over the likelihood of the data given the second hypothesis. Typically, the likelihood

is multiplied by the prior probability of the hypothesis, such that the LLR can be

computed recursively using Bayes’ rule [33]. In this chapter, the LLR definition

in [33] is extended to non-binary state variables with a high-risk value xr, as follows:

Lk(Xi) ⌘ ln


p(Zi |Xi = xr)p(Xi = xr)

p(Zi |Xi 6= xr)p(Xi 6= xr)

�

= ln

"
p(Zi |Xi = xr)p(Xi = xr)P

xj2X ,xj 6=xr p(Zi |Xi = xj)p(Xi = xj)

#
(3.16)

Then, since a cell i must be selected before the measurement Zi and its likelihoods
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are known, a LLR search (LLRS) strategy is developed by taking the expectation of

(3.16), and selecting the cell l with the highest expected LLR, as shown in (3.17).

It can be seen from (3.17) that LLRS selects cells in the order of decreasing log

ratio of the expected posterior probability of xr, divided by the expected posterior

probability of all other state values in X .

l = arg max
i

EZi

⇢
ln


p(Zi |Xi = xr,Mk�1, �i)p(Xi = xr | Mk�1, �i)

p(Zi |Xi 6= xr,Mk�1, �i)p(Xi 6= xr | Mk�1, �i)

��

= arg max
i

X

zj2Z

p(Zi = zj | Mk�1, �i)⇥

ln


p(Zi = zj |Xi = xr,Mk�1, �i)p(Xi = xr | Mk�1, �i)

p(Zi = zj |Xi 6= xr,Mk�1, �i)p(Xi 6= xr | Mk�1, �i)

�

= arg max
i

X

zj2Z

p(Zi = zj | Mk�1, �i)⇥

ln


p(Zi = zj, Xi = xr,Mk�1, �i)p(Mk�1, �i)

p(Zi = zj, Xi 6= xr,Mk�1, �i)p(Mk�1, �i)

�

= arg max
i

X

zj2Z

p(Zi = zj | Mk�1, �i)⇥

ln

"
p(Xi = xr | Mk�1, �i, Zi = zj)P

xj2X ,xj 6=xr p(Xi = xj | Mk�1, �i, Zi = zj)

#
(3.17)

3.4 Sensor Decision Rules and Performance

The sensor decision rule refers to the criterion used to decide or estimate the state

value of a cell after the sensor measurement is obtained. Although this criterion

does not a↵ect the search strategy because it is implemented a posteriori, it a↵ects

the sensor performance. As reviewed in [31], a number of decision rules may be

employed to decide what value of Xi to accept, based on the posterior belief state

or PMF p(Xi | Mk, �i), computed from (3.4) using the latest measurement zk. The

Neyman-Pearson rule accepts a state value only if its likelihood ratio is greater than a
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desired significance level. The minimax and Bayes cost functions utilize user-defined

weights to quantify the risk or cost of choosing one state value over the others based

on its likelihood and posterior probability, respectively. When these weights are

set equal to one, the minimax and Bayes cost functions reduce respectively to the

maximum likelihood and maximum a-posteriori rules implemented in this chapter.

The maximum a-posteriori rule accepts the state value x⇤ 2 X , if its probability

is greater than the posterior probability of any other value given the data, i.e.:

X̂i = x⇤, i↵ p(Xi = x⇤ | Mk, �i) � p(Xi = x` | Mk, �i),

8x` 2 X , x` 6= x⇤
(3.18)

When Mk contains no measurements about a cell i, the prior is used in place of

the posterior probability in (3.18). The maximum-likelihood (MLE) rule accepts the

state value x⇤ 2 X if its likelihood is greater than that of any other value given the

data, i.e.:

X̂i = x⇤, i↵ p(zk |Xi = x⇤) � p(zk |Xi = x`),

8x` 2 X , x` 6= x⇤
(3.19)

It can be seen from (3.19) that the MLE rule can only be applied to cells for which

at least one measurement has been obtained.

For the canonical sensor problem considered in this chapter, the sensor perfor-

mance is characterized by the rate of correct classification and the rate of false alarms.

Let n denote the total number of cells with a state value that is estimated correctly,

and nr denote the number of cells with the high-risk state value xr that is estimated

correctly. The number of false alarms, nfa, represents the number of cells that are

empty but are incorrectly declared to contain a target by the decision rule. Then, at

any time k, the rate of correct classification is,

Fc(k) =
n(k)

c
(3.20)
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where c is the total number of cells in K. The rate of correct classification for

high-risk targets at time k is,

Fr(k) =
nr(k)

cr

(3.21)

where cr is the number of cells in K with state value xr. The frequency of false

alarms at time k is,

Ffa(k) =
nfa(k)

ce

(3.22)

where ce is the number of empty cells in K .

3.5 Simulated Sensor Models

The comparative performance of the information functions, search strategies, and

decision rules presented in the previous sections is investigated by simulating three

types of prior distributions, and five sensor models. Four sensor models are simulated

by generating the joint PMF in (3.1) from Bernoulli, binomial, Poisson, and mixture-

of-binomials distributions, and one sensor model is simulated using the classical form

in (1.1) using a nonlinear power law and Gaussian noise. The canonical sensor

planning problem in Section 3.1 is simulated by generating the set K of c cells, with

ct targets, and c = ct + ce. The state of each cell has the range X = {x1, x2, x3, x4},

where x1 and x2 denote two types of empty cells (e.g., clear terrain and clutter), x3

and x4 denote two types of targets, and the high-risk value is xr = x4. The sensor

characteristics and environmental conditions in i are represented by the random

vector �i = [↵i �i �i]T . Each random element in �i is assumed to have three possible

values, thus the range ⇤ of �i has nine possible values.

The sensor model in (3.1) represents the joint probability of the sensor mea-

surements in Z, the target state values in X , and the sensor and environmental

characteristics in ⇤. In practice, this joint probability distribution is determined
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from the physical processes underlying the sensor measurements, and by the nature

of the targets and environmental conditions in the region of interest [1]. In this chap-

ter, (3.1) is simulated by means of well-known probability distributions, in order to

conduct a comparative study that is independent of the sensing application. Let

✓ 2 [0, 1] denote a parameter of the distribution that can be viewed as the influence

of the cell state and environmental conditions on the probability of success of the

sensor measurements. Then, ✓ can be modeled as a function of Xi and �i, i.e.,

✓ = g(Xi, �i) ⌘ ⌘j ↵
aj1

i �
aj2

i �
aj3

i , Xi = xj, 8xj 2 X (3.23)

where, ⌘j > 0 and A = {aij} 2 R4⇥4 are parameters that represent the e✏uence of

Xi and �i on ✓, respectively, and are shown in Appendix A.

Poisson models and Bernoulli trials have been used to model moving target de-

tections by distributed sensor networks in [71–73]. A Bernoulli experiment has a

random outcome that can take two mutually exclusive values, e.g., success or fail-

ure, and, when repeated N independent times, leads to a sequence of N Bernoulli

trials [74]. Let the measurement Zi denote the random variable associated with one

Bernoulli trial. In the Bernoulli sensor model Zi must be binary, thus all targets are

assigned the high-risk value xr. Then, the probability of a measurement’s success

(zj = 1), e.g., target detection, and the probability of failure (zj = 0), are used to

generate the posterior PMF in the sensor model, based on the Bernoulli distribution

p(Zi = zj | ✓) = ✓zj(1� ✓)1�zj , zj = 0, 1. (3.24)

In the binomial sensor model, the measurement Zi denotes the number of observed

successes in N Bernoulli trials, such that Z = {z1, . . . , zN}, where N = 3. Then, the

posterior PMF in the binomial sensor model can be generated based on the binomial

distribution,

p(Zi = zj | ✓) =

✓
N

zj

◆
✓zj(1� ✓)N�zj , zj = 0, . . . , N, (3.25)
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where, Xi can take all four possible values in X .

A Poisson process is a random experiment that generates a number of changes

in a fixed interval, such as space or time, and whose probability can be described

by an infinite series that converges to an exponential function [74]. Let the mea-

surement Zi denote the number of changes in the each interval, and let ✓ in (3.23)

represent the parameter of the distribution. Then, assuming the number of changes

in nonoverlapping intervals are independent, and ✓ > 0, the Poisson sensor model

can be generated from the Poisson distribution,

p(Zi = zj | ✓) = e�✓ ✓zj

zj!
, zj = 0, 1, 2, . . . , (3.26)

where, it can be shown that ✓ is equal to the expected number of changes in the

process, or ✓ = E(Zi). Finally, the Bernoulli, binomial, and Poisson models are

generated by substituting (3.23) in (3.24), (3.25), and (3.26), respectively, for all

zj 2 Z.

A more complex sensor model is obtained by means of a mixture of distributions,

which compounds multiple PMFs using positive mixing proportions or weights [74].

Mixture models are used in a variety of applications, ranging from classification to

statistical inference, and are reviewed comprehensively in [75]. Since the random

variables considered in this chapter are discrete, we consider a mixture of two bino-

mial distributions,

f(Y ) =
2X

l=1

wl

✓
Nl

Y

◆
✓Y

l (1� ✓l)
Nl�Y , 0  wl  1,

2X

l=1

wl = 1, (3.27)

formulated in terms of a discrete random variable Y with range Y = [2
l=1{0, . . . , Nl}.

The mixing proportions are w1 and w2, and the binomial parameters are ✓1 and ✓2.

Let ✓1 = ✓ = g(Xi, �) in (3.23), with parameters shown in Appendix A. Also, let

✓2 =
p

✓1, and N1 = 3 and N2 = 5. Then, the posterior PMF in the mixture-of-
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binomials sensor model can be generated according to the distribution,

p(Zi = zj | ✓) = w

✓
N1

zj

◆
✓zj(1� ✓)N1�zj + (1� w)

✓
N2

zj

◆

⇥ ✓zj/2(1�
p

✓)N2�zj , 0  w  1, zj = 0, . . . , 5
(3.28)

where, w is a user-defined weight that is set equal to 0.5.

A sensor model that is widely applicable and obeys the classical form (3.30) is

an exponential power law that models the received isotropic energy generated by a

constant target source level, and attenuated by the environment. This power law

is commonly applied to acoustic, magnetic, and optical sensor measurements that

are governed by linear wave propagation models [17, 76]. When the received signal

exceeds the sensor’s threshold, the target is detected and its distance from the sensor

is computed using the sensor model and the known environmental conditions. We

consider a multitarget scenario in which each target is located in one cell, say i 2 K,

and the state Xi represents the distance between the sensor and the target in i.

Then, the distance Xi can be estimated from a measurement Zi obtained according

to the power law,

Zi = ai||Xi||�↵i + ⌫i, i = 1, . . . , ct (3.29)

and subject to additive, zero-mean Gaussian noise ⌫i. Where, k · k denotes the L2-

norm, ai is a known constant that depends on the target characteristics, and ↵i is

an attenuation coe�cient that depends on the environmental conditions. In this

chapter, it is assumed that Xi is a scalar, ai = 10, and ↵i = 0.3 for all i 2 K,

obtaining the power law in Fig. 3.1 when ⌫i = 0.

In order to compare the classical model results to those obtained for the prob-

abilistic sensor models, the range of Xi is discretized into four possible values X =

{1, 2, 3, 4}. The zero-mean Gaussian noise ⌫i is fully specified by its standard de-
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Figure 3.1: Received isotropic energy model as a function of distance from the
target, for classical sensor model with ⌫i = 0.

viation �i. Thus, the sensor and environmental parameters can be represented by

�i = [ai ↵i �i]T . It follows that the posterior probability of the classical sensor

measurements in i, given Xi and �i, is

p(Zi = zj |Xi, �i) = 1p
2⇡ �i

e�(zj�aiX
�↵i
i )2/(2�2

i ),

zj 2 [0, 13] (3.30)

Where, Zi and �i are continuous random variables, and Xi is a discrete random

variable. Thus, (3.30) is referred to as a normal mixed model [77]. In this chapter,

three noise models are considered with standard deviations �i = 1, 3, and 5, for all

i 2 K. As an example, the posterior probability (3.30) is plotted in Fig. 3.2 for

�i = 1.

The five sensor models are simulated as follows. When a cell i is selected from K

at time k, one measurement value zk is sampled from the corresponding joint PMF in

(3.1), given the values of Xi and �i in i. The prior p(Xi) in (3.1) represents the prior

information available about the cells’ state variables. In this chapter, three models

of p(Xi) are considered that are referred to as uninformative prior, informative prior,

and informative prior with large noise. The uninformative prior is modeled as a
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 Figure 3.2: Posterior probability of classical sensor measurements for �i = 1.

uniform probability distribution over the range X , indicating that any value of Xi

is equally probable for any cell i 2 K. The informative prior is generated by using

the sensor to obtain one measurement per cell, i.e.:

p(Xi = x`) = p(Xi = x` | Z1 = z1, . . . , Zc = zf ),

for f = c, and 8x` 2 X . (3.31)

The informative prior with large noise represents imperfect expert knowledge or mea-

surements obtained from a less accurate sensor. For the probabilistic sensor models in

(3.24)-(3.28), this prior is generated by adding a random, uniformly-distributed error

✏k to every sensor measurement in (3.31), such that Zi = zk +✏k for all i, k = 1, . . . , c.

For the classical sensor model (3.30), ✏k is sampled from a Gaussian distribution with

zero-mean and standard deviation that is equal to 2�i for all i, k = 1, . . . , c. The

comparative results obtained by simulating the three priors and five sensor models

described in this section are presented in the next section.

3.6 Numerical Simulations and Results

This section presents the results obtained by implementing the information theo-

retic functions presented in Section 3.2, and the search strategies and decision rules
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presented in Section 3.3, on the canonical sensor problem presented in Section 3.1.

The canonical sensor problem is simulated by generating a set K with c = 1000 cells

as follows. In the Bernoulli sensor simulation, all ct = 500 cells with targets are

assigned the high-risk state value x4 = xr (as explained in Section 3.5), 300 cells

are assigned the value x1 (empty), and 200 cells are assigned the value x2 (clutter).

In the binomial, Poisson, and binomial-mixture sensor simulations, 300 cells are as-

signed the value x1 (empty), 200 cells are assigned the value x2 (clutter), 200 cells

are assigned the value x3 (target), and 300 cells are assigned the value x4 = xr. In

the classical sensor simulation, the state values represent the sensor’s distance from

the target (Section 3.5). Therefore, a target is assigned to every cell in K, such that

ct = c = 1000, where 200 cells are assigned the distance x1, 300 cells are assigned

the distance x2, 200 cells are assigned the distance x3, and 300 cells are assigned

the distance x4. In all sensor simulations, the state values are assigned to the cho-

sen number of cells in random order, by sampling the cell index using a uniform

pseudorandom number generator [78].

In every simulation, the value of the parameter vector �i is assigned randomly

to each cell, by sampling the uniform prior distribution p(�k) over the range ⇤.

The probability p(Xi) is not uniform and is unknown a priori. The three models of

uninformative, informative, and large-noise informative priors (Section 3.5) are im-

plemented separately to simulate cases in which prior information about Xi is either

unavailable, available, or is available but very noisy, respectively. After the set of

cells K is generated, the sensor measurements are obtained using the search strate-

gies presented in Section 3.3. In order to investigate how the search performance

varies as a function of time, k is varied from 0 to up to 3000 time steps. As soon as

a measurement is obtained from a cell, it is processed using the belief-state update

rule in (3.4), and the decision rules in Section 3.4.

The numerical results are organized as follows. For each sensor model, the rates
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of correct classification (Fc), correct classification for high-risk targets (Fr), and false

alarms (Ffa) are first evaluated using the IS strategy with each of the information

functions presented in Section 3.2. The information function with the best perfor-

mance is then used to compare the IS strategy to DS, AS, TS, and LLR strategies.

For every sensor model and search strategy, a comparative study is conducted using

the maximum a-posteriori and MLE decision rules, and the three models of pri-

ors. The results obtained from extensive numerical simulations are summarized and

organized by sensor model in the next five subsections.

3.6.1 Bernoulli Sensor Model

The correct classification rate for high-risk targets, Fr, obtained by the IS strategy

using di↵erent information functions, the informative prior, and the maximum a-

posteriori and MLE rules is plotted in Figs. 3.3 and 3.4. It can be seen that the

maximum a-posteriori rule significantly outperforms the MLE rule for all information

functions. This comparison is representative of the numerical results obtained for

other performance metrics (Fc and Ffa), and for other priors and sensor models,

which are omitted here for brevity. Also, while it may be well-suited for sensor

applications that require a very low rate of false alarms, the Neyman-Pearson rule

was found to perform poorly compared to both the a-posteriori and MLE rules,

because of its high rate of unclassified cells that do not meet the required significance

level. Therefore, only the results obtained by the maximum a-posteriori decision rule

are presented hereon in the chapter.

It can also be seen from Fig. 3.3 that the quadratic-entropy information function,

'̂R2 , leads to the best rate of correct classification Fr in the presence of an informative

prior. On the other hand, as shown in Fig. 3.5, '̂R2 leads to the highest rate of false

alarms compared to other information functions. In the Bernoulli sensor simulation,

all information functions were found to display approximately the same value of Fc
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Figure 3.3: Correct classification rate for high-risk targets obtained with the max-
imum a-posterior decision rule, and an informative prior.
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Figure 3.4: Correct classification rate for high-risk targets obtained with the MLE
decision rule, and an informative prior.
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for all 0  k  f . Therefore, information functions that achieved high values of Fr,

performed poorly in terms of Ffa, and viceversa. The information function '̂I , based

on mutual information, provides a good compromise between Fr and Ffa. Therefore,

for the Bernoulli sensor model, the IS strategy is compared to direct search, alert-

confirm search, task-driven search, and log-likelihood-ratio search, using '̂I .

As shown in Fig. 3.6, in the presence of an informative prior, the IS strategy

was found to achieve the highest rate of correct classification, and the highest rate

of correct classification for high-risk targets (not shown for brevity). The lowest

false-alarm rate was obtained by the AS, TS, and LLRS strategies, because they

obtain multiple measurements from few selected cells with low uncertainty, until

they achieve high confidence levels for the estimated state values. In the presence

of an uninformative prior, the information functions were found to perform virtually

identically under all three measures of performance, Fr, Fc, and Ffa. The IS strategy

was found to outperform all other search strategies in classification performance

(Fr and Fc) at all times steps, but was significantly outperformed by the AS, TS,

and LLRS strategies with respect to the false-alarm rate, Ffa. Therefore, it can

be concluded that for the Bernoulli sensor model the IS strategy with the mutual-

information function, '̂I , leads to the best classification performance. The AS, TS,

and LLRS strategies exhibit similar performance, and lead to the lowest rate of false

alarms in all of the Bernoulli simulations.

3.6.2 Poisson Sensor Model

The rate of correct classification and the rate of false alarms for the Poisson sensor

model with informative prior are plotted in Figs. 3.7 and 3.8, respectively, for di↵er-

ent information functions. These results show that for 0  k  180 the functions '̂I

and '̂R2 perform similarly, and for k > 180 the function '̂R2 achieves the best per-

formance with respect to both classification, and false alarms. The function '̂R2 also
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Figure 3.5: False-alarm rate with informative prior.
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Figure 3.6: Correct-classification rate with informative prior.

achieves the highest value of Fr among all information functions (results are omitted

for brevity). Therefore, for the Poisson sensor model, the IS strategy is compared to

the DS, AS, TS, and LLRS strategies using '̂R2 , as shown in Fig. 3.9. It can be seen

from Fig. 3.9 that the IS strategy achieves the highest rate of correct classification

for high-risk state targets. The simulations show that, for the Poisson sensor model,

the IS strategy outperforms the other search strategies also with respect to the rates
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of correct classification and false alarms.
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Figure 3.7: Correct-classification rate with informative prior.
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Figure 3.8: False-alarm rate with informative prior.

In the presence of an informative prior with large noise, all information functions

perform similarly with respect to Fc. However, '̂R2 achieves slightly better perfor-

mance with respect to Fr, and significantly better performance with respect to the

rate of false alarms, shown in Fig. 3.10. When compared to other search strategies,

IS leads to significantly higher rates of correct classification, Fc (Fig. 3.11) and Fr,
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Figure 3.9: Correct-classification rate for high-risk state targets, with informative
prior.

and to a significantly lower rate of false alarms, Ffa (Fig. 3.12). Therefore, for

the Poisson sensor model, the IS strategy with quadratic entropy, '̂R2 , leads to the

best sensor performance overall, in the presence of both an informative prior and an

informative prior with large noise.
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Figure 3.10: False-alarm rate with large-noise informative prior.
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Figure 3.11: Correct-classification rate with large-noise informative prior.

3.6.3 Binomial Sensor Model

The same set of simulations performed for the Bernoulli and Poisson sensor models

were performed using the binomial sensor model. The results (omitted here for

brevity) showed that, for the binomial model, the IS strategy with the quadratic-

entropy function '̂R2 , achieves the best performance of all strategies with respect

to all three performance measures, Fc, Fr, and Ffa. Subsequently, this IS strategy

was compared to DS, AS, TS, and LLRS, using an infinite time horizon, defined as

f ! 1. In practice, an infinite-time horizon is simulated by letting f >> c, such

that Fc ! 1, Fr ! 1, and Ffa ! 0, as k ! f . For this study, the number of cells in

K is chosen as c = 50, and measurements are obtained up to a final time f = 3000.

As shown by the results in Figs. 3.13 and 3.14, in the limit of k ! f , the IS strat-

egy classifies all cells correctly, and eliminates all false alarms. It can be seen from

Figs. 3.13-3.14 that the AS and DS strategies approach the IS performance with a

slower rate of convergence, and leave a small percentage of cells improperly classi-

fied. Also, although the TS and LLRS strategies have the advantage of displaying

low false-alarm rates (Section 3.6.1), by always selecting cells with a high expected
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Figure 3.12: False-alarm rate with large-noise informative prior.

confidence level, TS and LLRS also leave a substantial percentage of cells improperly

classified even as k ! f (Figs. 3.13-3.14). Therefore, it can be concluded that the IS

strategy is better suited to infinite-horizon problems in which, given su�cient time

and sensor measurements, it is desirable to correctly classify all cells, or all targets.
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Figure 3.13: Correct-classification rate for high-risk state targets, with informative
prior, c = 50, and f = 3000.
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Figure 3.14: False-alarm rate with informative prior, c = 50, and f = 3000.

3.6.4 Mixture-of-Binomials Sensor Model

The rates of correct classification, Fc and Ffa, for the mixture-of-binomials sensor

model are plotted in Figs. 3.15-3.16, using di↵erent information functions, and an

informative prior. The results in Fig. 3.15 show that '̂C achieves the highest values

of Fr for 0  k  375, but is outperformed by '̂R2 for k > 375. Although none

of the information functions clearly outperforms the others with respect to Fr, '̂R2

outperforms all functions, and at all time steps, with respect to Ffa (Fig. 3.16) and

Fc (results not shown for brevity). Therefore, the IS strategy is implemented using

'̂R2 , and compared to DS, AS, TS, and LLRS strategies in Figs. 3.17-3.18. It can

seen from Figs. 3.17-3.18, and from the Fc comparison (omitted for brevity), that,

for the mixture-of-binomials sensor model and an informative prior, the IS strategy

outperforms all other strategies, both with respect to classification and false alarms.

Extensive mixture-of-binomials sensor simulations were also conducted using the

uninformative prior and the informative prior with large noise. It was found that the

information functions all perform similarly with respect to Fc, Fr, and Ffa. Also,

while the IS strategy led to significantly higher values of Fr compared to the other

50



 

0 200 400 600 800 1000
0.88

0.89

0.9

0.91

0.92

0.93

0.94

 

 

 
 

F r
 

k 

Mixture-of-Binomials Model 

Dϕ̂  

Iϕ̂  

2
ˆRϕ  

Cϕ̂  

α
ϕDˆ  

Vϕ̂  

Figure 3.15: Correct-classification rate for high-risk state targets, with informative
prior.

search strategies, IS was outperformed by the DS strategy with respect to Fc and

Ffa.

3.6.5 Classical Sensor Model

The classification performance (Fc) of the six information functions considered in

this chapter was found to be approximately equal for all three levels of sensor noise

(�i = 1, 3, 5), and for all priors p(Xi). However, as the noise level increases from

�i = 1 to 5, the information functions increasingly di↵er in their rates of false alarms,

Ffa, and in their rates of correct high-risk-target classification, Fr. In particular, '̂I

and '̂D achieve slightly better values of Fr than other functions for �i = 1, 3 and

�i = 5, respectively, but also display the highest rates of false alarms. '̂R2 achieves

slightly lower values of Fr than '̂I and '̂D, but displays the lowest rate of false alarms

of all information functions, for all values of �i.

Therefore, for the classical sensor model, the IS strategy is implemented using

'̂R2 , and is compared to the DS, AS, TS, and LLRS strategies in Figs. 3.19-3.21. It

can be seen that, in the presence of low noise, the IS strategy achieves the highest
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Figure 3.16: False-alarm rate with informative prior.

correct-classification rate for high-risk targets (Fig. 3.19), as well as for all cells

(results omitted for brevity), and the lowest false-alarm rate (Fig. 3.20). As the

noise level in the sensor model is increased, the IS strategy outperforms the other

strategies even more significantly with respect to Fc and Fr (Fig. 3.21), but is then

outperformed by TS and LLRS with respect to Ffa. It can be concluded that, for the

classical sensor model, the IS strategy leads to the best classification performance

but, in the presence of high noise, the TS and LLRS strategies lead to lower rates of

false alarms.

3.7 Summary

Many sensing tasks can be formulated as estimation problems involving partial or

imperfect measurements. Therefore, the utility of the sensor decisions can be repre-

sented by the information value associated with the targets and sensor measurements.

Information theoretic functions are a natural choice for representing the value of in-

formation but, typically, require knowledge of the belief state before and after the

measurements arrive. This chapter has presented a general and systematic approach
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Figure 3.17: Correct-classification rate for high-risk state targets, with informative
prior.
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Figure 3.18: False-alarm rate with informative prior.
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Figure 3.19: Correct-classification rate for high-risk targets, with informative prior
and �i = 1.
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Figure 3.20: False-alarm rate with informative prior, and �i = 1.
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Figure 3.21: Correct-classification rate for high-risk targets, with informative prior
and �i = 5.

for deriving information value functions that represent the expected utility of the

sensor decisions in a canonical sensor planning problem. The resulting information

functions can then be implemented by an information-driven search (IS) strategy

that selects the measurement sequence with the highest expected information value.

The IS strategy is compared to other search strategies previously presented in the

literature by means of extensive numerical simulations involving several sensor mod-

els, priors, and decision rules. Consequently, the comparative performance results

can be generalized beyond a particular sensor type or application. It was found

that quadratic entropy leads to the most e↵ective information function, and that the

corresponding IS strategy outperforms all others with respect to classification perfor-

mance. In the presence of prior information, IS also displays the lowest rate of false

alarms. However, when prior information is absent or very noisy, the task-driven

and log-likelihood-ratio strategies achieve the lowest false-alarm rates for Bernoulli,

mixture-of-binomials, and classical sensor models.
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4

Information Roadmap Method for Robotic Sensor
Path Planning

PRM algorithms have been shown very e↵ective at planning a collision-free path for

robots with many degrees of freedom for the purpose of moving from an initial to a

final configuration in a workspace by a minimum distance [38–41]. Along a separate

line of research, several information-driven sensor planning algorithms have been

developed to plan a sensor measurement process based on the expected value of in-

formation of the measurements. The information roadmap method (IRM) presented

in this section combines these two lines of research, by using a value-of-information

metric to generate a new hybrid sampling strategy that increases the milestone den-

sity near targets with high information value, while also covering wide-open regions

and narrow passages. As a result, IRM presents several advantages over existing sen-

sor path planning approaches, such as, coverage path-planning [3, 37], random [3],

grid [35], and probabilistic search strategies [2,35,36,61,79]. By extending the concept

of a roadmap to the sensor planning problem, IRM can account for the geometries of

the targets and of a moving sensor’s field of view, and can be applied to robotic sen-
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sors with a finite platform geometry, moving in obstacle-populated workspaces. Also,

thanks to the information-value metric presented in Chapter 3, IRM accounts for the

influence of operating and environmental conditions on the measurements that can

be obtained along the path, prior to determining the features or classification of the

targets that can be measured by following it.

In this chapter we assume that only one robotic sensor is deployed in the workspace.

The purpose for deploying the robotic sensor in W is to obtain additional measure-

ments to properly classify a subset of targets in T . It is assumed that to each

target Ti 2 T there is associated a discrete and, possibly, random variable, yi, with

finite range Y = {y1
i , . . . , y

p
i }, representing its classification. Due to limited sen-

sor measurements or to targets being buried underground, yi is non-observable or

hidden, and must be inferred from a set of measurements, Mi = {mi1, . . . ,mif}. Ev-

ery measurement mi` 2 Mi also is a discrete and random variable, with finite range

Mi` = {m1
i`, . . . ,m

N`
i` }, where mk

i` denotes the kth value of mi`. After the robotic sen-

sor obtains the set of measurements Mi from Ti, yi can be inferred from an available

sensor model, which is typically given by a known joint probability mass function,

P (yi, Mi).

While the platform A must avoid collisions with the obstacles B, in order to

obtain the measurements Mi from a target Ti the sensor’s field of view S must

intersect Ti. Since S is mounted on A, the platform motion must be planned in

concert with the sensor measurements, and the path ⌧ must simultaneously avoid

obstacles while searching for targets. Let the measurement set of a robotic sensor

along a path ⌧ be defined as M(⌧) = {Mi | Ti\S(q) 6= ;, ⌧(s) = q, s 2 [0, 1], i 2 IT},

where S(q) is the subset of W occupied by S at a configuration q, along ⌧ . Then,

the robotic sensor path ⌧ between q0 and qf must achieve multiple, simultaneous

objectives:
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1. Avoid all obstacles in W

2. Minimize the distance traveled from q0 to qf

3. Maximize the information value of M(⌧)

In order to meet objectives (2)-(3), the robotic sensor performance is defined by an

additive reward function that represents the profit of the information obtained along

the path ⌧ :

R(⌧) = wV · V (⌧)� wD ·D(⌧) (4.1)

Where, V (⌧) is the information value of M(⌧), and D(⌧) is the distance traveled

along ⌧ , as defined in Section 4.3. Then, a robotic sensor path that meets objectives

(1)-(3) is obtained by solving the following problem:

Problem 1 (Sensor Path-Planning Problem). Given a layout W and a joint prob-

ability mass function, P (yi, Mi), 8i 2 IT , find a path ⌧ ⇤ for a robotic sensor with

platform A and field-of-view S that connects q0 to qf in Cfree, and maximizes the

profit of information in (4.1).

4.1 Measurement Information Value

A basic di�culty in sensor planning consists of assessing the value or utility of the

sensor measurements prior to obtaining them from the targets. Several information-

theoretic metrics have been proposed for this purpose in Chapter 3. Cross entropy

was used in [20] to solve a multisensor-multitarget assignment problem, and in [21,22]

to manage agile sensors with Gaussian models for target detection and classification.

Entropy and the Mahalanobis distance measure were used in [18] for sensor selection

in ad-hoc sensor networks. In this chapter, the expected entropy reduction (EER)

described in Chapter 3 is used to represent the value of information, V , in terms

of the joint PMF P (yi, Mi), known from the sensor model (Section 2.2). Other
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information-theoretic functions can be similarly applied, as shown in Section 4.2, to

construct information roadmaps for other sensor applications, e.g., [18, 20,22].

Recall that the entropy reduction is formulated in terms of conditional entropy,

which can be used to represent the uncertainty in a discrete and random variable Y ,

given the value of another discrete and random variable Z, based on their joint and

conditional PMFs,

H(Y |Z) = �
X

z

X

y

P (y, z) log2 P (y|z) (4.2)

where,
P

y denotes marginalization over the range of Y [63]. Although information

entropy is not additive, it can be shown [80] that the entropy reduction

�Ĥ(Y ; Zj | Zi) ⌘ H(Y | Zi)�H(Y | Zi, Zj) (4.3)

is additive, and represents the reduction in uncertainty brought about by Zj, given

prior information or evidence about Zi.

Since sensor measurements from a target Ti are sought to reduce the uncertainty

in the classification variable yi, entropy reduction is used here to represent the value

of a new (posterior) set of measurements Mi, given an a-priori evidence set E0
i ,

which may include known environmental conditions, as well as the measurements

and mode of a previously-deployed sensor. The superscript (·)0 denotes a set of ran-

dom variables whose values are known a priori. Since the actual entropy reduction,

�Ĥ(yi; Mi | E0
i ), cannot be determined prior to measuring Mi, the expected entropy

reduction (EER), defined as,

�H(yi; Mi | E0
i ) ⌘ H(yi | E0

i )�
fX

`=1

NX̀

k=1

⇥
H(yi |mi` = mk

i`)P (mi` = mk
i` | E0

i )
⇤
, 8i

(4.4)

is used to represent the expected reduction in uncertainty in yi that would be brought

about by Mi, given E0
i .
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In (4.4), the conditional entropy H(yi | E0
i ) is computed from the definition, and

from the posterior PMF P (yi | E0
i ) computed by a junction-tree BN inference algo-

rithm [67]. The conditional entropy H(yi |mi` = mk
i`) is computed by using the

posterior PMF,

P (yi |mk
i`) =

P (yi)P (mk
i` | yi)

P (mk
i`)

=
P (yi)

P
j

P
l P (mk

i` | fij = f l
ij)P (fij = f l

ij | yi)P
j

P
l P (mk

i` | fij = f l
ij)
P

| P (fij = f l
ij | yi = y|

i)P (yi = y|
i)

, 8`, k

(4.5)

where
P

j and
P

l denote marginalization over the range of all features fij 2 Fi, and
P

| denotes marginalization over the range of yi (i.e., Y). Now, all of the probabil-

ities in (4.5) are known from the BN CPTs P (yi), P (Fi | yi), and P (Mi | Si, Ei, Fi).

Because, the latter can be used to compute P (Mi | Fi), either by marginalization

or by using the evidence E0
i , when available. Equation (4.5) is derived using the

simplification,

P (Mi | yi) =
X

j

X

l

P (Mi | f l
ij, yi)P (f l

ij, yi) =
X

j

X

l

P (Mi | f l
ij)P (f l

ij, yi), 8i

(4.6)

obtained by noting that yi and Mi are d-separated given Fi, because of the serial

connection between the respective nodes (Fig. 2.1). Finally, the last term in (4.4) is

computed as P (Mi | E0
i ) =

P
j

P
l P (Mi | fij = f l

ij)P (fij = f l
ij | E0

i ), where P (Fi | E0
i )

is obtained using a junction-tree BN inference algorithm [67].

In the presence of multiple targets, the value of a set of measurements M(⌧) along

the path ⌧ is the cumulative EER,

V (⌧) = V [M(⌧)] ⌘
X

Mi2M(⌧)

�H(yi; Mi | E0
i ) (4.7)
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where, yi, Mi, and E0
i are the classification variable, measurements, and a-priori

evidence set corresponding to target Ti, respectively, and M(⌧) is defined at the

beginning of this chapter. Since the BN sensor model holds for any target in W ,

every term in the summation in (4.7) can be computed from the corresponding a-

priori evidence set E0
i using eqs. (4.2)-(4.6). The methodology presented in the

next section presents a new sampling strategy that is based on a probability density

function obtained from the EER in (4.4). By combining this information-based

sampling distribution with ⇡H in (2.12), a roadmap is constructed that captures the

information value of the targets as well as the connectivity of Cfree.

4.2 Learning Phase: Analysis of the Sampling Distribution

As shown in Chapter 3, various information metrics can be used to estimate the

expected information value of the measurements from a target Ti, prior to obtaining

the measurements, and prior to determining the target’s features and classification.

In this chapter we choose EER as the information metric. In order for a sensor with

a bounded field of view S to obtain the measurements Mi from the ith target, S must

intersect the target geometry Ti. Therefore, the subsets of W where the sensor can

make target measurements can be defined similarly to C-obstacles, as follows:

Definition 1 (C-Target). The target Ti in W maps in the robot’s configuration space,

Cfree, to the C-target region CT i = {q 2 Cfree | S(q) \ Ti 6= ?}.

The union of all the C-targets in Cfree is the C-target region CT , and the union

of all C-targets corresponding to a robot configuration q is the set of C-targets

CT (q) = {CT i | i 2 IT , S(q) \ Ti 6= ?}. The measurement set that can be

obtained in q is the set of measurements corresponding to these C-targets, i.e.,

M(q) = {Mi | i 2 IT , CT i 2 CT (q)}. Therefore, the information value of the

measurements that can be obtained in a robotic sensor configuration q 2 Cfree is the
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cumulative EER,

V (q) = V [M(q)] ⌘
X

Mi2M(q)

�H(yi; Mi | E0
i ) (4.8)

It follows that a high density of milestones with high information value can be ob-

tained by sampling the probability density function defined as,

⇡V (q) =
V (q)R

CT V (q)dq
(4.9)

which is proportional to the EER function V (q), and is normalized by the total EER

of the C-target region.

The above PDF is combined with a uniform PDF ⇡U and a Gaussian PDF ⇡G

obtained by the bridge test in order to construct a roadmap that also captures the

connectivity of Cfree by covering narrow passages and wide-open regions. A new

hybrid strategy is obtained from the sampling strategy, (2.12),

⇡ = v2⇡V + (1� v2)⇡H

= v2⇡V + v1(1� v2)⇡G + (1� v1)(1� v2)⇡U (4.10)

where, 0  v1  1 and 0  v2  1 are user-defined parameters that are chosen to

emphasize the narrow passages versus wide-open areas, and to emphasize information

value versus connectivity, respectively. In the actual implementation, the PDF ⇡

is discretized into a PMF over W 2 <2, as shown in Appendix B. The sampling

distribution ⇡ obtained by the algorithm in Appendix B is plotted in Fig. 4.1 for a

simple example involving a robotic sensor that can translate freely but cannot rotate,

and has a square platform geometry A (grey), and a larger square filed-of-view S

(white). This robotic sensor navigates the workspace shown in Fig. 4.1.a, where

the obstacles’ geometry are shown in black, and the target geometries are shown

in color patterns that are representative of their information value. The sampling
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distribution over C, which in this simple example is equal to W because q = [x y]T , is

plotted in Fig. 4.1.b, where C-obstacles (black) have zero sampling probability, and

C-targets have sampling probability proportional to their information value (EER).

As shown in Sections 4.4-4.5, the same approach is applicable to robotic sensors

with more degrees of freedom, such as robots that are capable of rotating, for which

C ⇢ <3, as well as to any other geometries for W , A, and S.
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Figure 4.1: Example of sampling probability distribution ⇡ (b) for the non-rotating
robotic sensor with platform A and field of view S, navigating the workspace W in
(a).

After the sampling distribution ⇡ is computed by the algorithm in Appendix

B, it is sampled Nm times to obtain the set of milestones L that constitute the

nodes of the roadmap G = (L, A). Subsequently, the set of arcs A is obtained by

a local planner that connects every milestone ci 2 L to every other milestones with

a straight line segment. The lengths of these straight-line segments are used to

sort the milestones, such that only the k nearest milestones to ci are elected as its

candidate neighbors. Where, k is a used-defined parameter that is chosen based on

Nm and on the complexity of W . For each candidate neighbor of ci, the collision-

check algorithm presented in [41] is implemented to check whether a simple path

between them (typically a straight line segment) is collision free, by discretizing the

63



path into a sequence of configurations. Then, the candidate neighbors with collision-

free paths are connected to ci to construct G. After G is completed, it can be used

to find the path with maximum information profit (4.1) between any pair of q0 and

qf , as explained in the next section.

4.3 Information-driven Query Phase

After the informational roadmap G is constructed by the method presented in the

previous section, the query phase seeks a path ⌧ ⇤ from q0 to qf of maximum informa-

tion profit (Problem 1). A query consists of connecting q0 and qf to G by searching

for two milestones c0, cf 2 G that have the shortest collision-free distance to q0 and

qf , respectively, and then finding the path from c0 to cf of maximum information

profit. A path from c0 to cf in G is a sequence of adjacent cells that are pairwise

connected by a simple collision-free path represented by the arc between them, e.g.,

⌧ = {c0, ci, cj, . . . , cf}, with (ci, cj) 2 A ⇢ G, for any consecutive pair of indices in

the index set I⌧ of ⌧ . Since every milestone represents a robot configuration, an ad-

ditive distance metric can be defined for every pair (ci, cj) 2 A, and used to compute

the total path distance D(⌧) in (4.1). A comparative study of distance metrics for

PRM algorithms was performed in [39], indicating that the scaled Euclidian met-

ric is generally a good choice in terms of performance and computational e�ciency.

Therefore, in this chapter, a scaled Euclidian distance is adopted that changes the

relative importance of position and orientation components of q through a set of

weights organized in a diagonal and positive-definite matrix W 2 <3⇥3. Then, the

total path distance is given by the sum of all weighted Euclidian norms along ⌧ , i.e.,

D(⌧) =
f�1X

i=0

kW · [q(ci+1)� q(ci)]k (4.11)
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where, q(ci) denotes the robot configuration represented by ci, (·) represents matrix

multiplication, and k · k represents the Euclidian norm [19].

As shown in [39], planners based on the A⇤ algorithm are the most e↵ective at

searching for the path of minimum total distance in G. The A⇤ algorithm explores G

iteratively, starting at c0 and visiting every neighbor node ci, to which a cost function

is assigned by estimating the minimum-cost path from c0 to cf , through ci [81, 82].

Based on the principle of optimality [83], this cost can be estimated as the sum of

the actual cost of a path from c0 to ci, g(ci), plus an estimate of the minimum-cost

path from ci to cf obtained from a heuristic function, h(ci). If the heuristic function

is chosen such that h(ci) is always less than the actual cost of the (same) path from

ci to cf , then the A⇤ algorithm is guaranteed to return a path of minimum cost

whenever such a path exists in G [81, 82]. After a node is visited, the algorithm

stores only the path of minimum cost, and labels the node as visited, assigning it

a pointer to its parent node. This process forms a spanning tree Ts of the subset

of G that has already been explored, and brings about considerable computational

savings compared to other graph-searching algorithms [14,50].

Since the goal of the robotic-sensor path is to maximize the measurement infor-

mation profit, after connecting q0 and qf to G, the information-driven query phase

presented in this chapter seeks the path ⌧ ⇤ with the maximum value of R(⌧) in (4.1),

with V (⌧) defined in (4.7), and D(⌧) defined in (4.11). Thus, the A⇤ algorithm is

applied by defining the actual cost of a path ⌧ s
0,i connecting c0 to ci in the current

spanning tree Ts as

g(ci) ⌘ �R(⌧ s
0,i) = �wV · V (⌧ s

0,i) + wD ·D(⌧ s
0,i). (4.12)

In order to guarantee that the cost estimated by the heuristic function is less than

the actual cost, h(ci) is based on the cumulative EER of all measurements remaining

after ⌧ s
0,i, M̄(⌧ s

0,i), and on the length of a straight line segment si,f connecting q(ci)
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to q(cf ) in C:

h(ci) = �
X

M̄(⌧s
0,i)

wV ·�H(yi; Mi | E0
i ) + wD ·D(si,f ) (4.13)

Where, the complement measurement set of a path is defined as M̄(⌧ s
0,i) = {Mi | i 2

IT , Mi 62 M(⌧ s
0,i)}. The estimated total cost for a path from c0 to cf through ci is

f(ci) = g(ci) + h(ci). Thus, it includes the (negative) cumulative EER of all targets

in W . The actual set of measurements M(⌧i,f ) obtained along a path ⌧i,f from ci to

cf in G is a subset of M̄(⌧ s
0,i), because the EER is conditioned upon the evidence E0

i ,

thereby preventing repetition of the same set of measurements Mi. The inequality,

X

M̄(⌧s
0,i)

�H(yi; Mi | E0
i ) >

X

M(⌧i,f )

�H(yi; Mi | E0
i ) (4.14)

then holds for any path ⌧i,f that is concatenated with ⌧ s
0,i to connect c0 to cf through

ci, because �H(·) � 0 by the properties of mutual information [63]. Since the length

of si,f is always less than or equal to the shortest path between ci and cf in G, it also

follows that h(ci) < �R(⌧i,f ). Therefore, the A⇤-type search shown in Appendix C

always returns the path ⌧ ⇤ of minimum cost or maximum information profit in G.

4.4 Information Roadmap Implementation for Robotic Demining

The IRM methodology presented in the previous section is demonstrated through a

demining system application, in which the path of a robot with an on-board ground-

penetrating radar (GPR) is planned based on prior infrared (IR) sensor measure-

ments and environmental information available from a minefield W ⇢ <2. The

purpose for deploying a GPR robotic sensor in W ⇢ <2 is to infer the classification

of targets that are either mines or clutter objects, and are buried in heterogeneous

soils, under non-uniform environmental conditions [84]. The classification variable
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of every target, yi, is non-observable and has two possible values Y = {y1
i , y2

i }.

yi can be inferred from a set of measurements Mi = {dmi , zmi , smi} that pertain

to the target features, namely, depth (di), size (zi), and shape (si). The measured

target features are typically extracted from raw sensor measurements through sig-

nal processing techniques, and thus contain random measurement errors and errors

caused by unfavorable environmental conditions [85]. The actual target features

Fi = {di, zi, si}, together with yi, can be inferred from Mi and any prior evidence E0
i

using a GPR sensor model (Section 4.4.1). It is assumed that an IR sensor previously

deployed on an airborne platform, such as an unmanned air vehicle (UAV), is used to

obtain cursory measurements that together with other geospatial data (e.g., topog-

raphy, land cover, and satellite imagery) provide E0
i for 8i 2 IT , as well as estimated

targets’ and obstacles’ geometries, T and B, in W . The GPR robotic sensor, on the

other hand, makes more accurate measurements on the ground, but can only visit a

subset of the targets in W due to energy and time limitations.

The simulation of a demining sensor system developed in [1] is used to generate

a rectangular minefield of chosen dimensions, or workspace, that includes several

buried mines, clutter objects, obstacles, and heterogenous environmental conditions.

A two-dimensional grid is superimposed on the minefield dividing it into square

bins that are assigned a squared unit distance. Soil characteristics, vegetation, and

time-varying meteorological conditions are modeled according to [86, 87], as shown

in Table 4.1. The simulation assigns a set of environmental conditions to each bin,

either at random or at user-specified positions. The targets are comprised of anti-

tank mines (ATM), anti-personnel mines (APM), unexploded ordnance (UXO), and

clutter objects (CLUT) that are sampled and reproduced using the Ordata Database

[88], which contains over 5,000 explosive items and 3,000 metallic and plastic objects

that resemble anti-personnel mines. Each target occupies one or more bins in the

minefield depending on its size (zi), and is characterized by a depth (di) and a shape
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(si) that may take any of the values shown in Table 4.1. Thus, Ti ⇢W represents the

geometry of the set of bins from which prior IR measurements are obtained for the

ith target detected in W , with features zi, di, and si. The ground robot is simulated

using the nonholonomic unicycle model in FW [89, 90], with a platform geometry

A ⇢ W specified by the user. On-board the ground robot is a GPR sensor with a

field of view geometry S ⇢W , also specified by the user, that moves with the robot

in FW and remains fixed with respect to A. In the simulation, as soon as S intersects

a bin containing a target, measurements are reproduced and deteriorated based on

the target features, the sensor mode and working principles, and the environmental

conditions in the bin [1, 91].

Table 4.1: Simulated minefield, sensor, and target characteristics [1].

Symbol: Nodes: Range:

y Target classification {clutter, mine, empty bin}
S GPR mode: mGPR {depth search, resolution search, anti

ground-bounce-e↵ect search }
IR mode: mIR {surface-mine search, shallow-buried-mine

search}
E Soil moisture (%): sr {dry [0, 10], wet (10, 40], saturated (> 40)}

Soil composition: sc {very-sandy, sandy, high-clay, clay, silt}
Soil uniformity: su {yes, no}
Vegetation: g {no-vegetation, sparse, dense}
Weather: w {clear, overcast, raining}
Illumination: i {low (7-10 a.m. and 6-9 p.m.), medium (10-1

p.m.), high (1-6 p.m.)}
F Depth (cm): d {surface [0], shallow-buried (0, 12], buried

(12, 60], deep-buried (> 60)}
Size (cm): z {small (2, 13], medium (13, 24], large (24,

40], extra-large (> 40)}
Shape: s {cylinder, box, sphere, long-slender,

irregular}

4.4.1 GPR and IR Bayesian Network Models

The BN models of a GPR sensor (Fig. 4.2.a) and of the Agema Thermovision 900

IR [1] are implemented in this dissertation to compute the expected information
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value of a path, (4.7), or a robot configuration, (4.8), and to fuse the sensors’ mea-

surements after they are obtained. These BN models are learned from a database of

sensor measurements produced by the demining simulation described in the previous

section, using the approach presented in [1] and reviewed in Section 2.2. Because

they rely on di↵erent operating principles and may function in di↵erent modes, these

demining sensors are more or less e↵ective depending on the environmental condi-

tions. IR sensors, for example, detect anomalies in infrared radiation that is either

emitted by mines, soil, or vegetation. Based on the location of the sensor, the radi-

ation data can be processed to build an image of an horizontal area and to estimate

the depth of the object therein for depths up to 12 cm. The mode mIR influences the

measured target features and is uniquely determined by its height above the ground.

Therefore, airborne IR sensors typically obtain only cursory measurements of size z

and shape s for shallow-buried objects. Because they rely on temperature variations,

their performance also is highly influenced by illumination (time of day) i, weather

w, vegetation g, and soil properties sr, sc, and su, with ranges described in Table

4.1.

GPR sensors emit radio waves that penetrate the ground and process their re-

flections at the boundaries of materials characterized by di↵erent refraction indexes.

Images of underground vertical slices and of any objects buried within are obtained

over the field of view, S, by sensing discontinuities in electrical properties. The mea-

sured size zm, shape sm, and depth dm of an underground object can be obtained

from these images through signal processing techniques [85], such as edge extrac-

tion. The frequency of the radio wave and its bandwidth determine the search mode

mGPR. Since penetration depth increases at lower frequencies and image resolution

improves at higher frequencies, the optimal GPR mode depends on target features F ,

and on the environmental conditions E shown in Table 4.1. For example, very high

frequencies may be required in the presence of ground discontinuities to overcome
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the so-called ground-bounce e↵ect (GBE) [86]. By providing complementary infor-

mation about the targets, the GPR measurements can significantly improve target

classification through feature-level fusion with prior IR data [1,86]. Thus, after ⌧ ⇤ is

planned and executed, the GPR and IR BN models are used to estimate Fi and yi

for each target intersected by S along ⌧ ⇤ from the a-posteriori evidence set Ei com-

prised of fused GPR and IR measurements, and of the operating and environmental

conditions, mGPRi , mIRi , and Ei, as explained in Section 2.2 and [1].
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Figure 4.2: Example of BN model (a), adapted from [1], and geometric character-
istics (b) of a GPR robotic sensor.

4.4.2 GPR Information Roadmap Method

Since the GPR sensor has limited field of view S and is installed on a ground robot,

its measurements depend on the robot path in W . The robot has a finite geometry

A that must be taken into account in order to avoid natural or man-made obstacles

(e.g., water bodies, trees, buildings) in W . An example of robotic sensor geometry is

shown in Fig. 4.2.b. As explained in Chapter 1, the position and orientation of every

point in S and A can be specified using one configuration vector, q, containing the

coordinates and orientation of FA with respect to FW . Airborne IR measurements

are processed to obtain a map of the geometries and locations of potential obstacles

B and targets T in W . Together with the environmental information and the GPR

BN model in Fig. 4.2.a, the IR measurements are also used to compute the sampling
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PDF in (4.9), and to generate a set of Nm milestones by means of the hybrid sampling

strategy in (4.10). Nm is defined by the user based on the size and complexity of

W , CB, and CT . The number of configurations N
q

used to discretize C (algorithm

in Appendix B) depends on the size of W , and on the ranges of other degrees-of-

freedom. In this chapter, the range ✓ 2 [0, 7⇡/4] is discretized in eight intervals, and

x and y are discretized in bins. For example, for the workspace in Fig. 4.6, N
q

=

56.68·103 and Nm = 900.

The multivariate Gaussian �b can be generated using the Matlabr function mvn-

rnd [92], as follows: �b = mvnrnd(µ, �), where the mean is µ = (x, y), and � is

a diagonal covariance matrix whose elements are chosen based on the width of the

narrow passages from the interval [0.5, 2]. The user-defined parameters v1 and v2

in the sampling strategy, (4.10), determine the relative frequency of milestones sam-

pled from narrow passages and from high information-valued targets, respectively.

For example, the values used for minefields with a high density of obstacles and

narrow passages (e.g., Fig. 4.8.a) are v1 = 0.1 and v2 = 0.3. Similarly, the weights

wV and wD in the reward function, (4.1), represent a trade-o↵ between the value of

the measurements and the distance traveled, which typically is to be minimized to

conserve time and energy. Thus, they depend on the application and on the units

of V and D. Values of wV and wD in the intervals [0.5, 1] and [0, 0.5], respectively,

were investigated in this chapter, ultimately selecting wV = 0.9 and wD = 0.1 for

the demining application.

The weighting matrix W in (4.11) is chosen to scale the Eucledian distance based

on the relative importance of the translational versus the rotational distance which,

in turn, depends on the complexity of CB [39]. In this chapter, W is a diagonal

matrix with elements (0.9, 0.9, 0.1). Together with computational requirements,

CB also determines the number of candidate neighbor nodes k considered by the

local planner, which in this chapter takes integer values in the interval [5, 20]. In
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most of the simulations shown in Section 4.5, k = 6. However, for high-density

obstacles minefields (Fig. 4.8.a) the best value is found to be k = 15. For these

parameters and the large workspace in Fig. 4.6, the maximum running time of the

IRM algorithms was 1.5·104 sec for the learning phase, and 155 sec for the query

phase, on an Intel T2060 1.6 GHz CPU computer, with 1.00 GB of RAM.

4.5 Results

The information roadmap method of a robotic GPR is tested on a variety of mine-

fields exhibiting low-to-high densities of targets, obstacles, and narrow passages, as

well as non-uniform soils, weather, and other environmental conditions. In Sec-

tion 4.5.1, simple examples are used to illustrate and motivate the IRM approach,

demonstrating the influence of the target geometries and prior information on the

sensor path. In Section 4.5.2, the performance of IRM is compared to that of classi-

cal shortest-path solutions, complete-coverage paths, and randomized searches. Let

�Ny(⌧) denote the number of targets that are correctly classified after fusing GPR

and IR measurements along ⌧ , minus the number of targets that were correctly

classified based solely on IR measurements. Then the classification e�ciency of a

path ⌧ is defined as the number of correctly-classified targets per distance traveled,

⌘y(⌧) ⌘ �Ny(⌧)/D(⌧). After the path is executed and M(⌧) becomes available,

the actual entropy reduction, denoted by V̂ (⌧), can be computed, and the metric

V̂ (⌧)/D(⌧) can be used to assess the actual information value per distance traveled

along a path ⌧ . The results in Section 4.5.2 indicate that IRM outperforms existing

approaches by up to one order of magnitude. Also, as shown in Section 4.5.2, IRM

can be applied to plan the path of non-overpass capable GPR platform, which must

avoid collisions with mines as well as obstacles in order to prevent loss of the robotic

sensor.
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4.5.1 Influence of Prior information and Workspace Geometry on the Sensor Path

In this section, a series of simple examples are used to demonstrate why the geometric

characteristics of the problem, together with prior information, must be taken into

account in planning the sensor path. In every example, the IRM sensor path ⌧ ⇤

is illustrated by plotting sample sensor configurations on the workspace. Other

hypothetical paths are schematized by dashed lines for comparison. The first example

in Fig. 4.3 illustrates that both the location and geometry of targets and obstacles in

W must be accounted for in planning the path of a robotic sensor. Suppose the sensor

must travel from q0 to qf , and W contains two obstacles (black) and four equally-

important targets (diagonal pattern) (Fig. 4.3). Although two obstacle-free paths ⌧ 1

and ⌧ ⇤ of approximately the same distance can be found from q0 to qf , the path ⌧ 1

(dashed line in Fig. 4.3) allows the GPR sensor to only make measurements of one

target. Whereas, the IRM path ⌧ ⇤ allows the GPR sensor to make measurements of

three of the targets in W . 
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Figure 4.3: Influence of target presence on ⌧ ⇤.

Besides accounting for targets’ geometries and locations, IRM also accounts for

the expected information value of the measurements that can be obtained from them,
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(4.4). Consider another simple example (Fig. 4.4) in which there exist three paths,

⌧ 1, ⌧ 2, and ⌧ ⇤, that all allow the sensor to visit two targets by traveling approximately

the same distance. Based on prior IR measurements, however, the information value

of individual targets is either medium (diagonal pattern) or low (horizontal lines),

as shown in Fig. 4.4. The information value is discretized only for illustration

purposes. If only the targets’ locations and geometries were taken into account, these

three paths would be considered equivalent. Instead, by maximizing the information

profit, ⌧ ⇤ obtains a much higher classification e�ciency than ⌧ 1 or ⌧ 2.
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 Figure 4.4: Influence of prior sensor measurements on ⌧ ⇤.
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The influence of the environmental conditions surrounding a target, Ei, on the

sensor measurements is also accounted for by the value of information, (4.4). For

example, the same targets buried in di↵erent soils lead to very di↵erent reduction

of the uncertainty (or entropy) in yi, depending on how favorable the conditions are

to the IR and GPR sensors. In the example in Fig. 4.5, two types of targets are

buried in three di↵erent soil, for a total of six targets. In this workspace, there are

three paths from q0 to qf of approximately equal distance, that each visit the same

two targets buried in soils with di↵erent moisture. One target has high information

value in saturated soil, and two targets have high information value in dry soil. As

shown in Fig. 4.5, by visiting targets with high information value, the GPR sensor

obtains much higher classification e�ciency along ⌧ ⇤ (Fig. 4.5). Therefore, the

environmental conditions influence the sensor path by making targets more or less

valuable to the GPR, and IRM finds the path that enables the most valuable GPR

measurements.

4.5.2 IRM E�ciency Comparison and Results

This section summarizes the results obtained by testing the IRM approach on a

variety of minefields with various sizes, geometries, and environmental conditions. A

representative example of GPR path computed by IRM is shown in Fig. 4.6 for a 64⇥

108 (bin) minefield with 755 buried objects that include mines and clutter, polygonal

obstacles, several narrow passages, and heterogeneous environmental conditions (not

shown for simplicity). The bins measured by the GPR along ⌧ ⇤ (solid black line) are

show in grey, and the resulting path e�ciency is ⌘y = 0.0913. These results show

that the robotic GPR is capable of navigating in an obstacle-populated workspace,

and through narrow passages, in order to make measurements from targets with high

information value (plotted in red and magenta in Fig. 4.6) with minimium distance.

The average e�ciency of IRM paths is compared to that of existing sensor path-
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 Figure 4.6: Robotic GPR sensor path obtained by information roadmap method

(IRM).

planning methods, namely, shortest-path, complete-coverage, and randomized-search

strategies, that are implemented here for the same robotic GPR sensor. The shortest-

path search is a classical robot path-planning strategy that is applied in the query

phase (Section 4.3) in order to determine the value of the e�ciency metric ⌘y when

the presence of targets is not taken into account. By this approach, the roadmap

G, obtained in Section 4.2, is searched for the path of minimum distance, ⌧short,

with an A⇤-type algorithm that uses the straight-line distance as heuristic function,

and does not consider the expected information value. Then, the GPR is turned

on in a fixed mode along the path, and known environmental conditions are used as

evidence in the GPR BN model to infer the targets’ classification from fused GPR-IR

measurements.

Coverage path-planning algorithms play an important role in robotic sensing,

because they emphasize the space swept by the robot’s sensor [37]. As pointed

out in [37], one of the most significant sensor path planning results is a planner that
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generates a path that completely covers the obstacle-free space (e.g., see [2,3,93,94]).

For comparison, in this chapter a complete-coverage path ⌧cover is obtained for the

robotic GPR in Fig. 4.2 by computing a lawn-mower-type path. This path consists

of back-and-forth motions that avoid collisions between A and the obstacles B, while

making measurements from the entire free-configuration space Cfree with S. Since

computing the shortest complete-coverage path is known to be NP-hard [37], an

ad-hoc solution to ⌧cover is sought by placing milestones inside narrow passages, and

near the boundaries of the C-obstacles and of the configuration space C, denoted

by @CBi and @C, respectively. The milestones inside narrow passages are obtained

by the bridge test [38], and those near @CBi, i 2 IT , are obtained by a Gaussian

sampler [40]. The milestones near @C are placed regularly spaced at a distance dl

that is based on the projection of S onto @C. The set of milestones is ordered by

increasing x and y coordinates, as to reproduce a lawn-mower path in an obstacle-free

workspace. Then, the local planner described in Section 4.2 is used to connect the

ordered milestones by collision-free straight-line segments. When the local planner

fails (say in the x-direction), a milestone is inserted in the ordered list by increasing

the other coordinate (say y) by a distance dl. The new milestone is then connected

to the nearest milestone in the list in the �x direction, and so on. The result is

a complete-coverage path, such as the one shown in Fig. 4.7.b, which covers Cfree,

as illustrated by the grey bins measured by the GPR. The average e�ciency of

complete-coverage paths is shown in Table 4.2.

A popular approach in robotic demining and UXO clearance is to drive the robot

in the minefield using a randomized search [3]. By this approach, a robot moves along

a simple path, such as a straight line, until an obstacle is met, and then rotates a

random amount before continuing along another simple path, while the on-board

sensor is on at all times to detect targets along the path [3]. Using the roadmap G

developed in Section 4.2, a random-search path, ⌧rand, can be obtained by randomly
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Figure 4.7: Robotic GPR sensor path obtained by complete coverage (a), and
random search (b).

selecting a node from the list of neighbors of c0 in G, and then repeating the process

for every new node, until a pre-defined number of adjacent milestones connected by

collision-free paths (arcs in G) is obtained, and the path executed. Although this

approach does not optimize distance or information value in the query phase, it uses

the information roadmap developed in Section 4.2. Therefore, the resulting path

⌧rand guarantees obstacle avoidance by A, and S is more likely to measure important

targets than if deployed by a completely random strategy [3]. The four deployment

strategies are applied to various minefields, for di↵erent values of q0 and qf , to obtain

a representative average path e�ciency ⌘y. The results are summarized in Table 4.2,

and illustrate that IRM clearly outperforms the other methods leading, for example,

to an average path e�ciency three times greater than that of complete coverage, and

one order-of-magnitude greater than that of shortest-path deployment. Additionally,

by utilizing the information roadmap developed in Section 4.2, the other methods, in

particular complete coverage, can be potentially very useful when measurements are

required from the entire minefield or when the final configuration, q0, is not specified.

Since the sensor path e�ciency depends on the characteristics of the workspace,
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Table 4.2: Average sensor path e�ciency.

Deployment Method
Metric:

IRM Shortest Path Random Search Complete Coverage
D(⌧) 77 58 280 1491

V̂ (⌧)/D(⌧) 0.119 0.0463 0.0243 0.0432
⌘y(⌧) 0.2093 0.0175 0.0504 0.0693

extensive numerical simulations were performed to obtain average e�ciency metrics

for di↵erent environmental conditions, and densities of obstacles and targets. Fig-

ure 4.8 illustrates two representative examples of workspaces that are considered to

have high (a) or low (b) obstacle density. The target density is held constant in this

study. As shown in Fig. 4.9, the path e�ciency of IRM is significantly higher than

that of shortest-path, random search, or complete coverage deployments, for both

levels of obstacle density. The influence of environmental conditions on the method’s

e�ciency is investigated by considering a minefield with the same geometric charac-

teristics as the high obstacle-density example (Fig. 4.8.a), but with two typologies

of environmental conditions, shown in Fig. 4.10. The soil composition, moisture,

and vegetation are plotted over the workspace in Fig. 4.10.a for mild conditions, and

in Fig. 4.10.b for harsh conditions. As shown in Fig. 4.11, IRM achieves the best

performance under both types of conditions, but its improvement compared to other

methods is smaller for harsh environments, because the accuracy of the GPR mea-

surements decreases regardless of the path. In fact, the shortest-path performance

improves under harsh environmental conditions because, when all targets have low

information value, the e�ciency metric can still be optimized by minimizing distance.

In another study, the average path e�ciency is evaluated for low, medium, and

high target densities (Fig. 4.12), using a constant obstacle density. As shown in

Fig. 4.13, the IRM e�ciency is significantly higher than that of complete coverage

and random search methods, for all levels of target density. The most significant
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Figure 4.8: Examples of workspace with high (a) and low (b) obstacle density.
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Figure 4.9: Influence of obstacle density on GPR sensor path e�ciency.

improvement is obtained in minefields with high target density, because the sensor

is able to visit more targets, taking full advantage of the proposed method. On the

other hand, when the targets’ density is low, their influence on the sensor path is

considerably reduced, and therefore the e�ciency of the IRM path approaches that of

the shortest path. Conversely, the higher the target density, the closer the complete

coverage e�ciency will be to the IRM path, because the robotic sensor deployed by

IRM will attempt to visit more targets within its reach.
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Figure 4.10: Example of mild (a) and harsh (b) environmental conditions for W .

Based on the results in Figs. 4.9-4.13, it can be concluded that the e�ciency

of IRM is significantly higher than that of existing robotic sensor planning ap-

proaches applicable to geometric sensing, for a wide range of workspace conditions

and characteristics. Another important application of the proposed method is plan-

ning the path of non-overpass capable robotic sensors that can be seriously damaged

or even destroyed when driving over landmines [8]. For this type of robotic plat-

forms, the set of targets T in W must be treated as an additional set of obstacles,
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Figure 4.11: Influence of environmental conditions on GPR sensor path e�ciency.
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Figure 4.12: Example of low (a), medium (b), and high (c) target density.

B := {B1, . . . ,Bn} [ T , to be avoided by A in case they are landmines. As shown

by the examples in Fig. 4.14, the robotic GPR can still obtain measurements from

the targets by navigating near them, such that they may be intersected by S but

not by A. By implementing the information roadmap developed in Section 4.2, both

IRM and complete coverage methods allow a non-overpass capable GPR sensor to

navigate the workspace and make measurements from targets in W , including those

inside narrow passages which further restrict the free configuration space (Fig. 4.14).

As can be expected, the average e�ciencies (Fig. 4.15) are lower than those obtained
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Figure 4.13: Influence of target density on GPR sensor path e�ciency.

by overpass-capable platforms (Table 4.2), because the sensor may need to travel a

longer distance in order to avoid platform collisions with the targets. However, com-

pared to shortest path, random search, and complete coverage, IRM still improves

the number of targets that are properly classified per unit distance (⌘y) by up to one

order of magnitude (Fig. 4.15).
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Figure 4.14: Examples of IRM (b) and complete-coverage (c) paths for a non-
overpass capable robotic platform A, equipped with an on-board GPR sensor with
field of view S (a).
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sensor in Fig. 4.14.a.
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5

Online Information Potential Method for Robotic
Sensor Networks

In the previous chapter, the information roadmap is utilized to generate the path

for a single robotic sensor in a two-dimensional workspace. In this chapter, we

extend this problem in the following aspects. Firstly, multiple robotic sensors are

employed to detect and classify targets in a three-dimensional workspace populated

by multiple obstacles. Secondly, prior information on targets and obstacles may

be either available or unavailable a priori, and can become available online during

the process. Finally the robotic sensor dynamics are taken into account, and the

feedback control designed is integrated with the sensor path planning problem.

85



5.1 Robotic Sensor Model and Workspace

In this dissertation, we assume that the kinematics of the robotic sensor platform

can be approximated by the unicycle model,

ẋ =v cos(✓)

ẏ =v sin(✓)

✓̇ =w

v̇ =a (5.1)

where [x y]T is the position of the robot centroid, ✓ is its orientation, v is the linear

velocity, w is the angular velocity, a is the linear acceleration, and u = [a w]T 2 U

is the control vector. U represents the control space. The sensor can either be

mounted at the center of the platform or any other point with arbitrary orientation.

As an underactuated and nonholonomic system, it is di�cult to convert (5.1) into

an equation with a three-dimensional vector of double integrators [95]. However,

with the analysis in [96], it is possible to define the control and convert it into

two-dimensional space. The control law of the robotic sensor model is described in

Section 5.5.

The workspace W is assumed to be a three-dimensional compact, bounded subset

of a Euclidian space populated with obstacles and targets that are assumed to be

convex right prisms where the base faces are parallel to the x-y plane. The vertical

position of a target Ti, is defined by a vector [h1 h2]T representing the heights of its

base faces and is illustrated in Fig. 5.1. The base shape of Ti and the values of h1

and h2 will decide the CT i for a specific robotic sensor FOV. The obstacles can be

defined in the similar way.

The robotic sensor platform A is also assumed to be a convex right prism with the

same property as the target, and h1 ⌘ 0 since the robotic sensor always contacts the
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Figure 5.1: An example of target geometry and height.

ground. In this chapter, the geometry of the sensor FOV S is represented by a three-

dimensional cone as shown in Fig. 5.2(a). The sensor FOV could be represented by

a two-dimensional polygon that varies based on the target height. An example of

the sensor FOV for a target is shown in Fig. 5.2(b). In this figure, the sensor FOV

apex position in FA is (0, 0, 5), and the target is assumed to be float in the air with

minimal height h1 = 6.5. The floating targets may have various applications, such

as monitoring urban environment and underwater objects. The technical challenges

lie in that the region in which the sensor can measure the target is not only decided

by the robotic sensor configuration but also the height of the target.

An example of a bird view of the workspace is shown in Fig. 5.3. Let Ai and Si

represent the platform and FOV of the ith robotic sensor. A = {A1,A2, . . . ,Ar} and

S = {S1,S2, . . . ,Sr} indicate the set of robotic sensor platforms and sensor FOVs in

the workspace respectively. FAi is a moving Cartesian frame embedded in Ai. Then,

every point of Si has a fixed position with respect to FAi, and the configuration

qi = [xi yi ✓i]T 2 SE(2) is used to specify the position [xi yi]T and orientation ✓i of
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Figure 5.2: The FOV of a sensor with taper shape: (a) sensor FOV in three-
dimensional space; (b) reduced sensor FOV in two-dimensional space.
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Figure 5.3: Relevant problem geometries and notation.

all Ai and Si with respect to a fixed inertial frame FW , embedded in W . Obstacles

and targets are also assumed to be fixed and rigid in W , such that every point of

Bi, for 8i 2 IB, and every point of Tj, 8j 2 IT , have a fixed position with respect

to FW . Let C denote the space of all possible robot configurations. Then, the path

of the ith robotic platform’s centroid is defined as a continuous map ⌧i : [0, 1] ! C,

with qi0 = ⌧i(0) and qif = ⌧i(1). qi0 is the initial configuration, and qif is the final

configuration which is decided by the stopping time tf . Since Si is mounted on Ai,

the path ⌧i determines the targets in W that can be measured by this robotic sensor,

while traveling from qi0 to qif . Then, the set of paths � = {⌧1, . . . , ⌧r} determines

the targets in W that can be measured and classified by the robotic sensor network

starting at {q10 , . . . ,qr0}.

The robotic sensor network is deployed to measure and classify multiple fixed

targets in W , based on new (posterior) and prior sensor measurements, and environ-

mental information. This information can either be obtained by global sensors such

as an airborne sensor, or by a sensor mounted on a mobile platform that has been
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previous deployed. Therefore, to optimize performance, the path planning algorithm

must take into account the prior information, for correctly classifying targets in the

workspace. Once a target i 2 IT is detected, we assume that its location and geom-

etry Ti become known, but its state Xi remains uncertain due to the random nature

of the measurement process. Therefore, the information value of the ith target can

be computed by one of the information functions in Chapter 3. Let Vi denote the

expected utility of making additional measurements from Ti, and it can be repre-

sented by the expected reduction in uncertainty associated with Zi, conditioned on

the sensor mode and prior information.

Let the measurement set obtained by the r robotic sensors along their respective

paths � = {⌧1, . . . , ⌧r} be defined as Z = {Zj | Tj \ Si(qi) 6= ;, ⌧i(s) = qi, s 2

[0, 1], 8j 2 IT , 8i 2 IA}, where Si(qi) is the ith sensor FOV at configuration q in

W , and IA is the index set for the sensor platforms. The detected obstacles and

targets are referred to obstacles and targets that are detected by a global sensor or

a robotic sensor up to the present time. For each detected obstacle and target, its

geometry and location is assumed to be known. Then, the robotic sensors paths

should be computed to achieve the following objectives: (i) explore the workspace

to detect new targets and obstacles, (ii) assign targets to sensors based on the latest

information on the workspace, (iii) maximize the information value of Z, (iv) avoid

all obstacles and (v) robots inW , while traveling the minimum total distance starting

at {q10 , . . . ,qr0}. Thus, while every platform in the set A must avoid intersections

(collisions) with other platforms and all obstacles in B, the sensor FOVs in the set S

must intersect the geometries of the targets with high value of information in order

to obtain additional measurements and improve the classification of the targets.
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5.2 Information Potential Method

In this section, the potential field is generated by first assuming that only one robotic

sensor is deployed in the workspace. When multiple robotic sensors are deployed in

the workspace, the targets are assigned to these robotic sensors and the path of each

robotic sensor is generated.

Let U(q)rep represent the repulsive potential to avoid collision between the robotic

sensor and obstacles, and U(q)att represent the attractive potential to attract the

robotic sensor to measure the targets. The sensor’s potential function is sum of

U(q)rep and U(q)att and is defined in (5.2),

U(q) = U(q)rep + U(q)att (5.2)

for q 2 C. Since the target geometries are considered, ⇢t
i(q), which is the distance

between the ith target and q, needs to be first computed to generate Ui(q)att. The

concept of C-targets, defined in Section 4.2, is utilized to describe the set of config-

urations in Cfree for which the robotic sensor can take measurement on at least one

target. ⇢t
i(q) is computed as,

⇢t
i(q) = min

qi2CT i

||W · (qi � q)|| (5.3)

where || · || represents the Euclidian norm, and W is a diagonal and positive definite

matrix representing the relative importance of changes in position and orientation.

W is chosen by the user based on the trade o↵ on the cost of translation and rotation.

The information value of each target can be measured by various information metrics

based on prior information. In this chapter we utilize mutual information as the

information metric. As described in Chapter 3 the uncertainty of the hidden variable

for the ith target, denoted by X
i

, given the prior information e, can be represented

91



by the conditional entropy defined as,

H(X
i

|e) =
X

xi2X

P (x
i

|e) log2 P (x
i

|e) (5.4)

Hence, the expected decrease of uncertainty in Xi by a posterior measurement Zk

i

can be measured by the mutual information

I(X
i

;Zk

i

|e) = H(X
i

|e)� EH(X
i

|Zk

i

, e)

= H(X
i

|e)�
X

z

k
i 2Z

P (zk

i

|e)H(X
i

|zk

i

, e)
(5.5)

In this chapter, the information value Vi of the ith target, estimated by I(X
i

;Zk

i

|e)

in (5.5), is used to construct the potential function, such that the sensor path takes

into account the expected utility of making measurement from Ti prior to visiting

the target. The attractive potential function has the following properties.

1. Ui(q)att is an increasing function of the distance ⇢t
i(q). When ⇢t

i(q) goes to

infinity, the potential converges to a finite value.

2. The potential generated by the target with the higher information value has

the bigger distance of influence, where the distance of influence is defined by

the inflexion point of the potential value as a function of ⇢t
i(q).

To achieve these objectives, we propose an attractive function for the ith target that

is defined as,

Ui(q)att , ⌘2�V a
i (1� e

� ⇢t
i(q)2

2�V a
i ) (5.6)

where ⌘2 is a scaling parameter representing the influence of targets, Vi is the in-

formation value of the ith target, and � is the influence parameter which together

with Vi and parameter a decides the influence distance of the ith target. It can be
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shown that (5.6) satisfies the above properties. Let ⇢i = ⇢t
i(q), Ui(⇢i)att can also be

regarded as a function of ⇢i. The first order derivative of Ui(⇢i)att is,

g(⇢i) =
dUi(⇢i)att

d⇢i

= ⌘2⇢ie
� ⇢2

i
2�V a

i (5.7)

g is positive for all ⇢i > 0, which shows that Ui(⇢)att is an increasing function of ⇢i.

Also from (5.6),

lim
⇢i!1

Ui(⇢i)att = ⌘2V
a
i (5.8)

so property 1 is satisfied. To demonstrate property 2, we compute the inflection

point of Ui(⇢i)att. The second derivative of Ui(⇢i)att,

dg(⇢i)

d⇢i

= ⌘2(1�
⇢2

i

�V a
i

)e
� ⇢2

i
2�V a

i (5.9)

is a monotonically decreasing function of ⇢i and setting it to zero will give us the

influence distance of the ith target ⇢i =
p

�V a
i , which is an increasing function for

Vi.

To guarantee that the value of the potential function in every C-target is a local

minimum of Uatt, we consider the total attractive potential at a configuration q,

defined as,

U(q)att , ⇧m
i=1Ui(q)att (5.10)

which is characterized by the gradient,

rUatt(q) = N1n
T
1 + . . . + NmnT

m (5.11)

where

Ni = ⇧m
j=1,j 6=iUj(q)att⌘2e

� ⇢t
i(q)2

2�V a
i ⇢t

i(q) i = 1, . . . ,m (5.12)

and nT
i = r⇢t

i(q). nT
i is a unit vector pointing from the closest configuration on CT i

toward q.
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The repulsive potential for the ith obstacle is defined as,

Ui(q)rep ,
(

1
2⌘1(

1
⇢b

i (q)
� 1

⇢0
)2Uatt(q) if ⇢b

i(q)  ⇢0

0 if ⇢b
i(q) > ⇢0

(5.13)

where ⌘1 is a scaling parameter showing the influence of obstacles, ⇢0 is the influence

distance of obstacles, and ⇢b
i(q) is the distance between q and the ith obstacle. Then

the total repulsive potential is defined as,

U(q)rep ,
nX

i=1

Ui(q)rep (5.14)

In order to make sure that the C-target inside an obstacle’s influence distance is

measurable by the robotic sensor, the term Uatt(q) is added in (5.13).

Let I⇢0 be the index set for the obstacles that have configuration q inside their

influence distance. Then the gradient of Urep(q) is

rUrep(q) =
X

i2I⇢0

MB
i nB

i +
mX

j=1

MT
j nT

j (5.15)

where,

MB
i = ⌘1

✓
1

⇢b
i(q)

� 1

⇢0

◆
U(q)att

(⇢b
i(q))2

i 2 Bin

MT
i =

0

@
X

i2I⇢0

1

2
⌘1(

1

⇢b
i(q)

� 1

⇢0
)2

1

A⇧m
i=1,i6=jUi(q)att⌘2e

� ⇢t
i(q)2

2�V a
i ⇢t

i(q) i = 1, . . . ,m

(5.16)

and nB
i = r⇢b

i(q). nB
i is a unit vector pointing from q toward the closest configura-

tion on CBi. The gradient of the total potential function is

rU(q) =
mX

i=1

Nin
T
i +

X

i2I⇢0

MB
i nB

i +
mX

j=1

MT
j nT

i

=
X

i2I⇢0

MB
i nB

i +
mX

i=1

(Ni + MT
i )nT

i

(5.17)
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and can be used to control the robotic sensor’s movement in the configuration space

as shown in Section 5.5.

5.3 Multiple-sensor Path Planning Problem

In the online sensor path problem, multiple robotic sensors are working together to

measure a subset of targets deployed in a partially-known workspace. Unlike the

robotic sensor in Chapter 4, we assume that each robotic sensor may be equipped

two sensors, so that it can be used to detect unknown obstacles and targets. One

sensor has a large FOV and obtains accurate obstacle information but cursory target

measurement. Another sensor has a small FOV and obtain additional measurements

from the targets to improve their classification.

The process of this sensor path planning problem is divided into a sequence of

sub-processes, which begin when a new target or obstacle is detected or an additional

measurement on a detected target becomes available. Each sub-process involves the

following key steps. Firstly, each detected target is assigned to the robotic sensor

with smallest distance. Then the robotic sensors are set into two di↵erent modes

based on the results of target assignment. The robotic sensors with at least one

target assigned to are set in classification mode to take additional measurements

form these targets to improve their classification. The robotic sensors without any

target assigned to are set in exploration mode to detect unknown obstacles and

targets in the workspace. A switched feedback control is integrated in this path

planning problem to control each robotic sensor based on the distance between the

robotic sensor and its closest target.

It is assumed that all targets detected up to the present time are assigned to

sensors based on distance as follows. Let ⇢ij represent the distance between the ith

target and the jth robotic sensor. N(j) be the set containing targets assigned to the
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jth robotic sensor

N(j) = {Ti | ⇢ij < ⇢ik, i 2 IT ,8k 6= j} (5.18)

When N(j) = ; the jth robotic sensor is in exploration mode. A potential field

is constructed for the robotic sensor based on a virtual goal which is generated as

follows. Let Cdet be the region in C that has been detected by the robotic sensor net-

work, then the undetected region is Cudet = C \ Cdet. Based on a uniform distribution

on Cudet, k congratulations are randomly sampled in Cudet, denoted by {s1, . . . , sk},

where k is a positive constant determined by the user. The distance between the

virtual goal and the jth robotic sensor is computed by

⇢v(q) = min
i=1,...,k

kW · (si � qj)| (5.19)

where || · || represents the Euclidian norm, and W is a diagonal and positive definite

matrix representing the relative importance of changes in position and orientation.

W is chosen by the user based on the trade o↵ on the cost of translation and rotation.

A new attractive potential U v
att generated by this virtual goal is

U j(q)att =
1

2
⌘4⇢

v(q)2 (5.20)

where ⌘4 is scaling parameter. Then the total potential function for the jth robotic

sensor in the exploration mode is

U(q) = U(q)rep + U j(q)att (5.21)

where U(q)rep is the repulsive potential function defined in (5.14).

When N(j) 6= ;, the jth robotic sensor is set in the classification mode. Detected

targets in N(j) is utilized to construct the attractive potential function, denoted by

U j(q)att, for the jth robotic sensor, and the all the detected obstacles are used to

construct the repulsive potential function by obstacles.
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Since multiple robotic sensors are moving simultaneously, the robotic sensor also

needs to avoid collision with other robotic sensors. A potential value U j
r generated

by all the other robotic sensors is added to the potential field of jth robotic sensor

to avoid collision between robotic sensors.

U j
r (q) =

X

k 6=j

U j
rk(q) (5.22)

where,

U j
rk(q) =

(
1
2⌘3(

1
⇢r

jk(q) �
1
⇢0

)2 if ⇢r
jk(q)  ⇢0

0 if ⇢r
jk(q) > ⇢0

(5.23)

⌘3 is a scaling parameter, and ⇢r
jk(q) is the distance between the jth and kth robotic

sensor. The total potential value for the jth robotic sensor is

U j(q) = U(q)rep + U j(q)att + U j
r (q) (5.24)

This proposed potential field is not free of local minima, therefore an algorithm

needs to be provided to help the robotic sensor escape from the local minimum. Vari-

ous methods have been proposed to overcome this limitation of potential field. When

the workspace dimension is low, such as two or three dimensions, robots can escape

a local minimum by filling the well. However, when the workspace dimension is high,

this method is no longer feasible due to its computational complexity. Then other

methods, usually random methods, are used to help the robots escape the local min-

ima, for instance randomized path planning [50]. In this chapter, the potential func-

tion is utilized to generate a local information roadmap around the local minimum

to move the robotic sensor away from the local minimum. Unlike normal random-

ized path planning, information roadmap in our method considers the probability

of measuring targets after escaping the local minima during milestones sampling.

This makes it more applicable in problems with multiple targets. Since PRM has
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also been proved applicable to high-dimensional workspaces, IPM combines potential

field and information roadmap to sensor navigation in high-dimensional workspaces.

Suppose the jth robotic sensor arrives at a local minimum, called uloc. The

probability density function for sampling milestones at q is defined as,

fj(q) =

8
<

:

e�Uj(q)
R
E e�Uj(q)dq

q 2 E

0 q /2 E
(5.25)

where E ⇢ Cdet is a randomly generated subspace around uloc. By defining fj(q) as

shown in (5.25), configurations in E which are close to targets with high information

value and far away from obstacles have high probability to be sampled. Then a

specific number of milestones {c1, c2, . . . , ck} can be sampled by Direct Methods [97].

Call uloc as c0, the set C = {c0, c1, c2, . . . , ck} together with a local planner is used

to construct the roadmap. While the normal roadmap construction method first

constructs the roadmap with sampled milestones and then tries to connect the initial

configuration into the roadmap, this method first puts the initial configuration into

roadmap and then extends it with the set of sampled milestones. The reason is that

in IPM the purpose is to escape the local minimum, so we have to first guarantee

uloc is in this roadmap. After uloc is included in the roadmap, milestones that can

be connected to uloc are used to help the robotic sensor escape the local minimum.

Since the roadmap is used for online sensor path planning and the robotic sensor is

approximated to be a unicycle model, the local planer no longer uses a straight line

between two milestones to check the existence of a path. For each milestone in the

roadmap, a set Ti stores all the milestones that the robotic sensor will visit from c0 to

ci. Meanwhile, Wi stores [vp
i wp

i ]
T which are the expected linear velocity and angular

velocity when the robotic sensor visits ci. Then when check whether a new milestone

cj can be connected to ci, the local planer considers ci as the initial configuration

and cj as the virtual goal, and a potential field based on (5.21) is utilized to predict
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the path of the robotic sensor. If the robotic sensor is predicted to be able to arrive

at cj, then cj is added to the roadmap and its predicted vp
j and wp

j are stored in

Wj. The process of constructing the roadmap is shown in Fig. 5.4. The roadmap

is initialized as G0 = c0. At the first step, the milestones, which can be connected

to uloc by the local planner, construct the first step roadmap G1, and the remaining

milestones form a set C1 to construct the roadmap at the next step; then at step i,

the milestones in Ci�1 which can be connected to Gi�1 are added to form Gi. The

process stops when Gi�1 = Gi, and then sets G = Gi. If G = G0 the construction

fails and new milestones need to be regenerated to construct the roadmap.

 

Figure 5.4: Process to construct the roadmap: (a) initial milestones; (b) first step;
(c) second step; (d) final step. dash circle: local minimum; white circle: milestones;
black area: C-obstacles

After the roadmap is constructed, it is utilized to move the robotic sensor away

from the local minimum by checking whether a milestone in the roadmap can lead

to a configuration with lower potential. The process is as follows:

Step I : A local information roadmap is constructed based on the local minimum

at uloc where the samples are generated with (5.25). Let the set Gleft = G.
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Step II : If Gleft is empty, go to step IV; otherwise randomly choose a milestone

ci 2 Gleft and predict the robotic sensor path starting from ci based on the robotic

sensor’s potential field and achieve a new local minimum u
0
loc.

Step III : If u
0
loc < uloc, let M = Ti, and go to step V; otherwise, delete ci from

Gleft and go back to step II.

Step IV : Randomly choose one set Ti from the roadmap, and let M = Ti.

Step V : Navigate the robotic sensor to visit all the milestones contained in M in

order. If the robotic sensor gets stuck when visiting these milestones, it implies the

workspace has changed. Then disregard the current roadmap and construct a new

local PRM with this new local minimum.

In our simulation, we assume that, along the path, the robotic sensor can generate

at most m local information roadmaps, where m is a constant parameter chosen by

the user. If the robotic sensor fails to measure a target by generating no more than

m local information roadmaps, then the robotic sensor changes to a temporary idle

state and wait for a a new target assignment in the process. For a robotic sensor

in exploration mode that is stuck by a local minimum, a similar strategy to the one

proposed for the robotic sensor in the classification mode is used to construct its

local roadmap. The di↵erence lies in that the probability of generating a milestone

are assumed to be equal around the robotic sensor in the exploration mode.

5.4 Complexity Analysis of Information Potential Method

In this section, some properties of the proposed method, such as complexity of tar-

get assignment problem, the expected time for reaching a target, and the average

time to call the local planer in probabilistic roadmap construction, are analyzed and

discussed.
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5.4.1 Target Assignment Problem

Assume all the targets in T and robotic sensors in A can be represented as convex

right prisms obeying the assumptions described in Section 5.1. The m targets are

assigned to the r robotic sensors based on the distances between every robotic sensor

and every target, where n � 1 and r � 1. Every detected target is assigned to

one and only one robotic sensor. Since the distance between each pair of target

and robotic sensor is computed, in the worst case the computational complexity of

assigning the targets to the robotic sensors are O(mr). It can be seen that the

computational burden is high when the robotic sensor number and targets number

are large. In this case, the entire workspace may be divided into a set of subspaces

first, then targets are only assigned to robotic sensors in the same subspace.

5.4.2 Expected Time for Reaching a Target

Hereon we assume that the targets assigned to a robotic sensor are denoted by

T = {T1, T2, . . . , Tm}. A potential field is generated for the robotic sensor with the

assigned targets and detected obstacles. Under proper assumptions, it can be shown

that (1) starting at any initial configuration, the robotic sensor will converge to a

C-target with finite number of calls to construct the local probabilistic roadmaps. (2)

The target with a higher information value has a larger probability to be measured

by the robotic sensor.

From the discussion of IPM, we know that all C-targets, CT 1, CT 2, . . . , CT m, are

global minima for the potential field. Furthermore, assume that there are finite local

minima l1, l2, . . . , lk rather than C-targets in the potential field. With the proposed

control strategy as described in Section 5.5, starting at any q 2 Cfree, the robotic

sensor will stop at a local minimum. If the local minimum is a C-target, the robotic

sensor will stop moving and take measurement on the corresponding target. After

that the target is classified and the left targets are assigned again to the robotic
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sensors. If the local minimum is not a C-target, a local probabilistic roadmap is

generated for the robotic senor in order to escape from the local minimum. Recall

the PDF of the milestones generation

f(q) =

(
e�U(q)

R
E e�U(q)dq

q 2 E
0 q /2 E

(5.26)

where U(q) is the potential value at q, and E is a randomly generated subspace

around the local minimum. E may also be chosen as an area with a deterministic

size by the user based on the size of potential field. It can be seen that f(q) is always

nonnegative.

The potential field can be partitioned into (m + n) regions, R1,R2, . . . ,Rm,

L1,L2, . . . ,Ln where starting at 8q 2 Ri, the robotic sensor will converge to CT i,

and starting at 8q 2 Li, the robotic sensor will converge to li. For simplicity’s sake,

we represent the regions by r1, r2, . . . , rm, t1, t2, . . . , tn, where ri corresponds to Ri,

and ti corresponds to Li. Assume that the robotic sensor current configuration is

q = li, then the probability to sample a milestone s in the region ri and tj is

p(s 2 ri|q = li) =

Z

q

02Ri

f(q0)dq0 (5.27)

p(s 2 tj|q = li) =

Z

q

02Lj

f(q0)dq0 (5.28)

Furthermore, assume that all milestones are connected to the roadmap, then at li,

p(s 2 ri|q = li) is the probability that the robotic sensor will travel from li to

CT j. Denote this probability as p(ti, rj) = p(s 2 ri|q = li). If the jth target has

higher information value, from previous discussion in Section 5.2, we know that Rj

is larger, which provides a higher p(ti, rj). Assume at step k, the robotic sensor is at

li, then p(ti, rj) is independent to the local minimum that the robotic sensor stands

in previous steps. Therefore, the movement of the robotic sensor can be modeled as
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a Markov chain, similar to the case in [98]. The transition matrix can be presented

as

P =

0

BB@

p(r1, r1) p(r1, r2) . . . p(r1, t1) . . . , p(r1, tn)
p(r2, r1) p(r2, r2) . . . p(r2, t1) . . . , p(r2, tn)

. . .
p(tn, r1) p(tn, r2) . . . p(tn, t1) . . . , p(tn, tn)

1

CCA (5.29)

Write P as

P =

✓
I R
S Q

◆
(5.30)

where I is a m⇥m identity matrix, R is a m⇥ n zero vector, S is a n⇥m matrix,

and Q is a n ⇥ n matrix. Since Q is a matrix with nonnegative entries and the

sum of its each row is not bigger than one, we have limn!1Qn ! 0. Starting at ti,

denote the expected number of visiting tj before the robotic sensor arrives at any

rk as T (tj|ti), where k = 1, 2, . . . ,m. T (tj|ti) equals the ith row jth column of the

matrix C = (I �Q)�1 [99]. Then the expected steps for the robotic sensor to arrive

at rk, where k = 1, 2, . . . ,m, starting at ti is

T (ti) =
nX

j=1

cij (5.31)

where cij is the ith row jth column of the matrix C. (5.31) shows that for every start

position, the robotic sensor can converge to a target with finite calls of constructing

the local probabilistic roadmap.

Now compute the probability for the robotic sensor to converge to rj from ti,

denoted by q(ti, rj).

q(ti, rj) =
X

x2tk,k=1,...,n

p(ti, x)q(x, rj) + p(ti, rj) (5.32)

Write matrix A as the matrix with aij = q(ti, rj), then from (5.32)

A = QA + S (5.33)
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which gives

A = (I �Q)�1S = CS (5.34)

from the definition of S, we know

S =

0

BB@

p(t1, r1) p(t1, r2) . . . p(t1, rm)
p(t2, r1) p(t2, r2) . . . p(t2, rm)

. . .
p(tn, r1) p(tn, r2) . . . p(tn, rm)

1

CCA (5.35)

From previous discussion it can be seen that for a target j with higher information

value than target h, p(ti, rj) tends to be larger than p(ti, rh) for each ti. Then the

probability

q(ti, rj) =
nX

k=1

cikp(tk, rj) >
nX

k=1

cikp(tk, rh) = q(ti, rh) (5.36)

Therefore, the target with higher information value is more likely to be measured by

the robotic sensor.

When E only covers a portion of the potential field around the robotic sensor’s

current configuration li, some regions of C-target, rj, that are outside E is impossible

to be achieved at one step, i.e. p(ti, rj) = 0. In this case, not only the size of Rj, but

also the position of the target will e↵ect the probability of the corresponding target

to be measured by the robotic sensor. More specifically, the high informative targets

with large number of local minima adjacent to it usually has high probability to be

measured.

5.4.3 Computational Complexity of Local Probabilistic Roadmaps

When the local probabilistic roadmap is constructed, a local planer is utilized to

check whether there exists a free path connecting a pair of milestones. Let the total

number of calls of the local planer be t. If all pairs of milestones including the robotic

sensor’s initial configuration, are checked by the local planer, then t = n(n+1)
2 , where
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n is the number of milestones. However, in IPM, the average number to call the

local planer is less. Assume at the ith step, the number of milestones added to the

roadmap is mi. Let q be the largest step that some milestones are added to the

roadmap, we have q  n, mi � 0, and
Pq

i=1 mi  n. In the worst case,

t =
n(n + 1)

2
�

qX

i=1

C2
mi
� C2

n�
Pq

i=1 mi
(5.37)

When all the milestones can be connected to the local minimum at the first step,

i.e. q = 1 and m1 = n, we have t = n which gives a computational complexity

O(n). When q = 1 and m1 = kn, where k is a positive constant less than one,

t = n+n2(k�k2) which give a computational complexity O(n2). Similarly for q > 1,

the computational complexity is still O(n2). Although the worst computational

complexity has the same order as the upper bound, the average number of t should

be less than the upper bound. Assume that for each pair of milestones or a milestone

and the local minimum, the probability for them to have a free path is p. Theoretic

analysis for (5.37) is di�cult, so we use an simulation example to show the average

value of t for di↵erent values of p and n. All simulation results are averaged with

1000 runs. The results are shown in Figure 5.5 and Figure 5.6.

From the results we can see that for all chosen n, t achieves the highest value when

p is less than 0.1. For p > 0.2 the highest value of t is about half of its corresponding

upper bound and achieves at about p = 0.5. This shows that the time to call the

local planer can be reduced at least 50% for most connected probabilities. Since the

computational complexity is O(n2), for large n, t may also be too large. One way to

further decrease t is to check only a certain number of milestones that are closest to

the current node when call the local planer.
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Figure 5.5: The average number to call the local planer when the connection
probability changes under di↵erent n. The Upper Bound is n(n+1)

2 and is written as
UB in the legend.

5.5 Switched Control of the Robotic Sensor

Since the robotic sensor is assumed to be a unicycle system, its control only has two

dimensions which is less than the dimension of rU(q). Rewrite (5.1) in a matrix

form
0

BB@

ẋ
ẏ
✓̇
v̇

1

CCA =

0

BB@

cos(✓)
sin(✓)

0
0

1

CCA v +

0

BB@

0 0
0 0
0 1
1 0

1

CCA

✓
a
w

◆
(5.38)

Inspired by [96], a control algorithm is proposed to control the robotic sensor’s

movement. Assume that the potential field for the jth robotic sensor located at q is

U j(q) = U(q)rep + U j(q)att + U j
r (q) (5.39)

where

U j(q)att = ⇧i2N(j)Ui(q)att (5.40)
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Figure 5.6: The average number to call the local planer when the number of
milestones increases under di↵erent p. The Upper Bound is n(n+1)

2 .

In order to achieve a stable control strategy, ⇢t
i(q) is computed in the following

way instead. Let r = [x y]T be the position vector of q in the workspace. Before the

targets are assigned to the robotic sensor network, a vector pointing to each target

form the robotic sensor is computed by

hi = lim
h

{h | h = kr2 � r1k, r2 2 Ti, r1 2 Aj} i = 1, 2, . . . ,m (5.41)

And the orientation of target j to the robotic sensor, denoted by ✓i
f , is set by the

heading of hi. Then the C-target associated with ✓i
f is computed and denoted by

CT i. The position of CT i to the robotic sensor is represented by its geometric center

ri
c = [xi

c yi
c]

T . Let qi
f = [xi

c yi
c ✓i

f ]
T , ⇢t

i(q) is computed by,

⇢t
i(q) = kri

c � rk (5.42)
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where k · k represents the Euclidian norm.

The width of the CT i is described by the radius of the biggest circle centered at

ri
c and contained by the closure of CT i denoted as ri and shown in Fig. 5.7.

 

CTi 

ir  

ric 

Figure 5.7: The inscribed circle of the ith C-target and its center ri
c and radius ri

The control of the robotic sensor is divided into two steps based on the robotic

sensor’s distance to its closest C-target. Let h = limi hi, and ✏ < ri be a positive

constant. When h > ✏, ✓f is not considered in the control, in which case, the goal is a

vertical line in the three-dimensional configuration space with the length 2⇡, denoted

by Qf , and the set of configurations with distance no more than a specified distance

✏ to Qf is a cylinder as shown in Fig. 5.8. The robotic sensor is first navigated into

the cylinder, and then ✓f is considered to change the robotic sensor’s orientation.

Let

S(q) =

0

@
cos(✓)
sin(✓)

0

1

A (5.43)

When h > ✏, define the control law as

u1 = �S(q)TrU(q)� k1v (5.44)
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Figure 5.8: An example path from q0 to qf

where k1 is a constant parameter.

u2 = ↵̇(U(q)) + k0(↵(U(q))� ✓) (5.45)

where ↵(U(q)) is the orientation angle of the vector [@U(q)
@x

, @U(q)
@y

]T , and k0 is a pos-

itive constant. When U(q) is second di↵erentiable, and @U(q)
@x

6= 0, ↵(U(q)) can be

computed as

↵(U(q)) = arctan

 
@U(q)

@y

@U(q)
@x

!
(5.46)

↵̇(U(q)) =
@U(q)

@x

(@U(q)
@x

)2 + (@U(q)
@y

)2
(
@2U(q)

@x@y
ẋ +

@2U(q)

@y2
ẏ)

�
@U(q)

@y

(@U(q)
@x

)2 + (@U(q)
@y

)2
(
@2U(q)

@x@y
ẏ +

@2U(q)

@x2
ẋ) (5.47)

After the robotic sensor is within ✏ distance to a C-target’s center, the control

law of the system changes to

u1 = �KpS(q)TrU(q)� k1v (5.48)
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where k1 and Kp are constant parameters.

u2 = k0(✓f � ✓) (5.49)

The stability of the control algorithm can be proved under the following as-

sumption. (i) The robotic sensor is approaching one target and its movement is

dominated by this C-target, i.e. the distance of the robotic sensor to other C-targets

is big enough to eliminate other targets’ force. Without loss of generality, we assume

the robotic sensor’s movement is governed by CT 1. (ii) There is no other robotic

sensor in the influence distance of the robotic sensor. (iii) The robotic sensor is

not in the influence distance of any obstacle. Based on assumption (ii) in (5.39)

U j
r (q) = 0. Then (5.17) is written as

rU(q) =
X

i2I⇢0

MB
i nB

i +
mX

i=1

(Ni + MT
i )nT

i (5.50)

With assumption (iii), I⇢0 = ; and MT
i = 0 for all i. Finally with assumption (i),

Ni = 0 for all i 6= 1. Therefore (5.50) is simplified to

rU(q) = N1n
T
i

= ⇧m
j=2Uj(q)att⌘2e

� ⇢t
i(q)2

2�V a
i ⇢t

i(q)r⇢t
1(q)

(5.51)

When q is outside the cylinder with a radius 0 < ✏ < r as shown in Fig. 5.8,

⇢t
1(q) is replaced as the distance between q and Qf . Assume q = [x y ✓]T and the

position of Qf is [xf yf ]T , we have

⇢t
1(q) = k(xf , yf )� (x, y))k (5.52)

r⇢t
1(q) =

⇣
(xf�x)
⇢t
1(q)

(yf�y)
⇢t
1(q) 0

⌘T

(5.53)

Substitute into (5.51)

rU(q) =
�
�K(xf � x) �K(yf � y) 0

�T
(5.54)
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where K = ⇧m
j=2Uj(q)att⌘2e

� ⇢t
1(q)2

2�V a
1 .

The Lyapunov function candidate is

V = U(q) +
1

2
v2 +

1

2
(↵(U(q))� ✓)2 (5.55)

Then

V̇ = rU(q)T q̇ + vv̇ + (↵(U(q))� ✓)(↵̇(U(q))� w)

= rU(q)T

0

@
cos(✓) 0
sin(✓) 0

0 1

1

A
✓

v
w

◆
+ v

�
�S(q)TrU(q)� k1v

�
� k0 (↵(U(q))� ✓)2

= �k1v
2 � k0(↵(U(q))� ✓)2  0 (5.56)

Since U(q) is bounded below, the LaSalle’s invariance principle [100] implies that the

system converges to v = 0 and ✓ = ↵(U(q)). Furthermore, when v = 0, the control

u1 which is the acceleration of the robotic sensor also needs to be zero; otherwise,

the non-zero input will change v to a non-zero value. Then from (5.44) we have

@U(q)

@x
cos(✓) +

@U(q)

@y
sin(✓) = 0 (5.57)

Since ✓ = ↵(U(q)), we have @U(q)
@x

= krU(q)kcos(✓) and @U(q)
@y

= krU(q)ksin(✓),

then from (5.57)

krU(q)kcos(✓)2 + krU(q)ksin(✓)2 = 0 (5.58)

which results in rU(q) = 0. From (5.54), we have

x = xf

y = yf (5.59)

Since the robotic sensor asymptotically converges to (xf , yf ), there is no guarantee

that the robotic sensor can achieve the goal in finite time. Therefore, this robotic
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control law switches to the ones in (5.48) and (5.49) when k(x, y) � (xf , yf )k < ✏.

This is guaranteed to be achieved in finite time [95].

When k(x, y)� (xf , yf )k < ✏, the Lyapunov function candidate is

V = KpU(q) +
1

2
v2 +

1

2
(✓f � ✓)2 (5.60)

V̇ = �k1v
2 � k0(✓f � ✓)2  0 (5.61)

which shows that ✓ converges to ✓f , and v converges to zero. Furthermore, since

the potential function with k(x, y) � (xf , yf )k < r is an increase function to ⇢t
1(q),

assume the infimum of the potential function with ⇢t
1(q) = r is bounded below by a

constant M , then

KpU(q) +
1

2
v2 +

1

2
(✓f � ✓)2  KpU(q) +

1

2
(v2

max + 4⇡2) < MKp (5.62)

If we set

Kp >
v2

max + 4⇡2

2(M � U(q))
(5.63)

the movement of the robotic sensor is constrained into the cylinder that has distance

to (xf , yf ) less than r. Then when ✓ = ✓f and v = 0, the distance between the

robotic sensor and qf is less than r, i.e. the robotic sensor is within CT 1, and the

target can be measured by the robotic sensor.

5.6 Simulations and Results

In this section, the information potential method is tested in a demining system and

workspace similar to Sections 4.4.2 and 4.5 with the following change.

(i) The workspace is in three-dimensional space. The robotic sensor platform

is assumed to be a right prism. The geometry of the GPR sensor FOV is

assumed as a cone, and the targets and obstacles are assumed to be right

prisms as discussed in Section 5.1.
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(ii) The IR measurement of a target can be either available a priori from a

global sensor or needs to be measured by an IR sensor mounted on the robotic

sensor.

(iii)In the workspace it is assumed to have N targets deployed with their prior

IR measurements either known or unknown a priori. The robotic sensor net-

work is asked to measured M targets with the onboard GPR sensor.

In Section 5.6.1, simple examples are given to explain how the IPM moves the robotic

sensor in the workspace. In Section 5.6.2 the e�ciency of the IPM is compared to

that of the other sensor path planning methods such as rapidly-exploring random

trees [101] and the classical potential method without taking the target information

value into account when constructing the potential field.

5.6.1 Properties of the Information Potential Method

In this section, a series of simple examples are used to demonstrate why the prior

measurements on targets and obstacles need to be taken into account in planning

the sensor path. The examples also show how the potential field escape the local

minimum and the e�ciency of utilizing multiple robotic sensors. Fig. 5.9 and Fig.

5.10 illustrate that the e↵ect of information value on the value of potential function.

The workspace contains one obstacle (black) and two unequally-important target,

T1 with information value 0.2 and T2 with information value 0.1. In this example

M = 1. Although the two targets are symmetrically deployed above and below the

obstacle and have the same geometry, the potential field tends to have a larger area

with low potential value around T1 since it has a bigger information value. This

example also shows that the IPM can successfully escape from the local minimum

and measure the target.

Besides the information value of targets, the information potential method also
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Figure 5.9: An example path generated by the information potential method.
Target information value V1 = 0.2, V2 = 0.1.

takes into account the online obtained information such as new detected targets and

obstacles. In Fig. 5.11 four targets are deployed in the workspace with T1, T2 and

T4 undetected a priori (gray area with dash boundary). In this example, besides

the GPR sensor, an IR sensor is also mounted on the robotic sensor (half circle

with blue boundary) to detect new targets, M is set to be 2. It can be seen that

at the beginning the robotic sensor moves toward the detected sensor T3. As soon

as it detects T2, the high information value from T2 attracts the robotic sensor to

change its direction and move toward T2. After T2 is measured by the GPR sensor,

the robotic sensor continues to move to measure another new detected high value

target T1. In Fig. 5.12 seven obstacles are deployed in the workspace with B1 and

B5 undetected a priori (dark gray area with dash boundary). An IR sensor is also

mounted on the robotic sensor to detect the obstacles and in this example M = 1.

From the results we can see that the robotic sensor first moves toward T1, however,
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Figure 5.10: The potential field when ✓ = 3⇡
2 . q0: initial configuration; qf : final

configuration; ql: local minimum; m1, m2: milestones in the local PRM chosen by
the robotic sensor (The potential value is pruned above at 5).

when B5 is detected by the robotic sensor, its repulsive potential prevents the robotic

sensor moving toward T1. The robotic sensor then changes its direction and moves

toward T2.

The following example shows why the target height is taken into account in the

sensor path planning. In Fig. 5.13 the robotic sensor is asked to measure one target

in the workspace. Target T1 and T2 have the same geometry and information value,

and are deployed into the workspace at symmetrical position to the robotic sensor’s

initial configuration. However, the robotic sensor chooses to move toward T1 which

has a lower height. The reason is that the di↵erence of target height a↵ects the shape

and location of the two-dimensional sensor FOV for each target. As a result, T1 has

a smaller distance to the robotic sensor although the two targets’ positions on the
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Figure 5.11: The path generated with a single robotic sensor to illustrate the
influence of online target detection. Target information value V1 = 0.2, V2 = 0.2,
V3 = 0.1, V4 = 0.1.

horizontal plane are the same.

Since to have small travel distance is one of the objective for the sensor path

planing problem, the following example shows how multiple robotic sensors are uti-

lized in IPM to reduce the travel distance by the robotic sensor network. From the

example in Fig. 5.14 and Fig. 5.15 we can see how IPM plans the sensor path for

both a single robotic sensor and a sensor network including two robotic sensors. The

total travel distance of the sensor network decreased to 33.69 comparing to 43.50 of

the single robotic sensor.

In previous section, the stability of the control strategy on the robotic sensor is

proven under certain assumptions. However, there is no assumption on the bound

of the linear acceleration a, linear velocity v, and angular velocity w. The following
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Figure 5.12: The path generated with a single robotic sensor to illustrate the
influence of online obstacle detection. Target information value V1 = 0.2, V2 = 0.2.

example shows that the control of the robotic sensor may still be stable when there is

a bound on a, v and w. In Fig. 5.16 the robotic sensor is asked to measure one target

in the workspace. The robotic sensor’s movement has these constraints: |a| < 5m/s2,

|v| < 2m/s, and |w| < ⇡
10rad/s2. The goal of the robotic sensor (xf , yf ) is marked

as a star in Fig. 5.17 while the final position of the robotic sensor (xr, yr) is marked

as a cross. Together with Fig. 5.18, Fig. 5.19, and Fig. 5.20 we can see that the

robotic sensor converges to a position within the inscribed circle of the C-target and

has the same heading as the goal.

5.6.2 E�ciency Comparison and Results

This section summary the results of the information potential field method on a large

minefield. The workspace is shown in Fig. 5.21. Three robotic sensors are utilized

in this workspace to measure M = 7 targets. Three methods, information potential

117



 

 

T1 

T2 

(a) 

(b) 

T2 

T1 

Figure 5.13: The path generated with a single robotic sensor to illustrate the
influence of target height. Target information value V1 = 0.2, V2 = 0.2.

method, rapidly-exploring random trees [101], and a classical potential field that

does not take into account the target information value are used to plan the robotic

sensors’ paths.

Similar to Chapter 4, the robotic sensor e�ciency is computed as

⌘ =
NIRGPR �NIR

D
⇥ 100% (5.64)

where NIRGPR is the number of correctly classified targets with the fused measure-
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Figure 5.14: The path generated with a single robotic sensor to illustrate the
influence of robotic sensor number. Target information value V1 = 0.15, V2 = 0.15,
V3 = 0.15, V4 = 0.15.

ments from GPR sensor and IR sensor, NIR is the number of correctly classified

targets with only IR sensor measurement, and D is the total travel distance by the

robotic sensor network. The results of these methods are shown in Table 5.1. From

the results we can see that the IPM outperforms the other two methods both when

IR measurements on obstacles and targets are available a priori or not. One inter-

esting outcome is that the classical potential field method performs slightly better

than the RRT method. The reason is that when prior information on some targets

becomes available, the potential field method can help the robotic sensor avoid un-

necessary path in exploring the workspace while RRT method still needs to sample in

the workspace which may cause extra travel distance. An example path generated by

the information potential method is shown in Fig. 5.22, and that by RRT is shown

in 5.23. From the results we can see that when the prior information on targets is
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Figure 5.15: The path generated with two robotic sensors to illustrate the influence
of robotic sensor number. Target information value V1 = 0.15, V2 = 0.15, V3 = 0.15,
V4 = 0.15.

available, the IPM tends to measure the target with higher information value. For

example, robotic sensors measure T6 instead of T10, and T12 instead of T5 when each

pair of targets have similar distance to the assigned robotic sensor. As a sampled

based method with sensor dynamics considered, the path generated by RRT tends

to be very curved. For classical potential method path as shown in Fig 5.24, the first

robotic sensor measures T5 instead of T12 since T5 has a smaller distance to T4.

Another workspace as shown in Fig. 5.25 is also utilized to test how the IPM

takes advantage of the online target information. The workspace includes 18 targets

and 9 obstacles, and four robotic sensors are required to measure M = 10 targets

with its onboard GPR sensor. Some of the properties of the IPM such as online
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Figure 5.16: The path generated with a robotic sensor. Target information value
V1 = 0.2, V2 = 0.2, V3 = 0.2.

update of target assignment or utilization of target information value are tested.

The results are included in Table 5.2.

From the results we can see that all the properties play an important role in the

e�ciency of IPM. Turn o↵ any of the property may cause a decrease on the path

e�ciency.
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Figure 5.17: The final configuration and the goal configuration of the robotic
sensor.
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Figure 5.18: The change of distance between the robotic sensor and the goal.
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Figure 5.19: The change of linear velocity of the robotic sensor.
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Figure 5.20: The change of di↵erence between the robotic sensor heading and the
goal orientation.
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Figure 5.21: The workspace with 12 targets and 10 obstacles. Targets with infor-
mation value bigger than 0.15: T3, T4, T6, T7, T9, T10, T12; Targets with information
value between 0.10 and 0.15: T1, T2 , T8; Targets with information value less than
0.10: T5, T10.

Table 5.1: The e�ciency of three methods under di↵erent conditions. The results
are averaged by 30 runs.

Method Performance
Prior measurements
on all obstacles and
targets are available

No prior measurement
on target or obstacle is
available

IPM 0.0622 0.0333
RRT 0.0187 0.0142
Classical potential method 0.0209 0.0160
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Figure 5.22: A path generated by the information potential method.
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Figure 5.23: A path generated by the rapidly-exploring random trees method.
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Figure 5.24: A path generated by the classical potential method.
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Figure 5.25: The workspace with 18 targets and 9 obstacles. Targets with infor-
mation value bigger than 0.15: T1, T2, T4, T5, T6, T7, T8, T10, T13, T15; Targets with
information value between 0.10 and 0.15: T9, T12, T14, T17; Targets with information
value less than 0.10: T3, T11, T16, T18.

Table 5.2: The e�ciency of IPM with di↵erent properties turned o↵. The results are
averaged by 30 runs (The result of RRT is also included for comparison).

Condition E�ciency
All properties included 0.0898
Turn o↵ online target assignment 0.0475
Turn o↵ target assignment all the time 0.0099
Turn o↵ utilization of target information, as well as tar-
get and obstacle geometries obtained a priori (Equiv-
alent to the case that all targets and obstacles are un-
known a priori)

0.0346

Turn o↵ utilization of target information all the time
(Equivalent to the method of classical potential method)

0.0470

Single robotic sensor 0.0088
RRT 0.0235
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6

Conclusions

The objective of the information-driven robotic sensor path planning is to plan the

path for gathering sensor measurements for a sensing objective. This dissertation

presents a general and systematic approach for deriving information value functions

that represent the expected utility of the sensor decisions in a canonical sensor plan-

ning problem. The resulting information functions can then be implemented by an

IS strategy that selects the measurement sequence with the highest expected in-

formation value. The IS strategy is compared to other search strategies previously

presented in the literature by means of extensive numerical simulations involving

several sensor models, priors, and decision rules. Consequently, the comparative

performance results can be generalized beyond a particular sensor type or applica-

tion.

A novel IRM approach that combines information theory with probabilistic roadmap

methods is then presented and implemented in a simulated demining system. IRM

computes a robotic sensor path that accounts for the geometry of the sensor’s plat-

form and field of view, and for the geometric characteristics of a workspace that

is populated with multiple fixed targets and obstacles. The novel learning- and
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query-phase algorithms use the targets’ information value to generate a roadmap

with a high density of high information-value milestones, and a path that optimizes

a desired trade-o↵ between sensing performance and distance traveled. The value

of information is quantified by the expected entropy reduction metric. By imple-

menting an existing BN approach to model the sensor measurements, the expected

entropy reduction can be computed from the BN CPTs and from prior information,

such as, prior sensor measurements and environmental conditions. The IRM method

is demonstrated by planning the path of a GPR sensor installed on a ground robot,

based on prior measurements obtained by an airborne IR sensor, and environmental

information, such as, soil characteristics, vegetation, and weather (Section 4.4). The

results, obtained from the simulations in Section 4.5, show that IRM outperforms

existing sensor path-planning methods applicable to geometric sensing, such as, com-

plete coverage and random search, under a wide range of workspace conditions and

geometric characteristics, increasing the average path e�ciency by up to one order

of magnitude. Also, the novel learning phase presented in Section 4.2 can be used

to plan the path of non-overpass capable robotic sensors that can be seriously dam-

aged or even destroyed when driving over landmines. As a result, IRM displays a

classification e�ciency several times greater than that of other methods, and the

robotic sensor can make measurements even from targets located inside narrow pas-

sages which, in this case, further restrict the configuration space, as they constitute

potential obstacles.

When information of the workspace such as targets and obstacles geometries, and

cursory measurements on targets, may become available online, an novel information

potential method is proposed to take into account this online information in potential

field construction for multiple sensor path planning. The targets are assigned to the

robotic sensors based on the distances between every target and every robot. And a

switch control strategy is integrated into the sensor path planning problem to control
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the robotic sensor in the workspace. The potential function is also used to generate

a local PRM to help the robotic sensor escape its local minimum. Experiments show

that paths obtained from the information potential method takes advantages of the

online information and coordination among robotic sensors, and the results show

that the IPM outperforms other strategies such as rapidly-exploring random trees

and classical potential field method without considering the information value.

Future work are recommended as follows. Extend the approach to consider mov-

ing targets and obstacles which may be intelligent to escape from the measurements

of the sensors. Consider the movement of onboard sensors with respect to the robotic

platforms since in this dissertation, all sensors are assumed to be fixed on the robotic

platforms. Implement this method in a more general three-dimensional workspace

in which assumption of prisms on the shape of targets and obstacles can be released.

Apply this system to real outdoor applications, such as demining and cleaning.
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Appendix A

Sensor Model Parameters

The sensor model parameters were chosen to simulate the environmental parameters’

influence on the accuracy of the sensor measurements, while guaranteeing ✓ 2 [0, 1].

In the Bernoulli, Poisson, and binomial sensor models, ⌘1 = 0.1
3 , ⌘2 = 1

3 , ⌘3 = 2
3 , and

⌘4 = 1. For the Bernoulli sensor model,

A =

0

BB@

0.1 0.11 0.12
0.1 0.11 0.12
�0.1 0.11 �0.12
�0.1 �0.11 �0.12

1

CCA (A.1)

and for the Poisson and binomial sensor models:

A =

0

BB@

0.1 0.11 �0.12
0.1 0.11 �0.12
0.1 0.11 �0.12
0.1 0.11 �0.12

1

CCA . (A.2)
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Appendix B

Algorithm for Information Roadmap Milestone
Distribution

Sampling Distribution Generation

given W ,A,S, P (yi, Mi), and E0
i for 8i 2 IT

discretize C into Nq configurations C = {q1, . . . ,qNq}

create an empty set of sample configurations, Q = ;

initialize variables, and let I(q) = 0, UQ = 0 and VQ = 0

for 8qi 2 C

if qi 2 Cfree

U(qi) = 1 I(qi) = 0

compute V (qi) from (4.8)

else

U(qi) = 0 V (qi) = 0 I(qi) = 1
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end

for 8qi
0 2 C

compute f(b0 = qi|b = qi
0) from (2.10)

end

end

UQ =
P

q

i2C U(qi) VQ =
P

q

i2C V (qi)

for 8qi 2 C

⇡U(qi) = U(qi)
UQ

⇡V (qi) = V (qi)
VQ

⇡G(qi) =
P

q

i
02C

f(2qi � qi
0|qi

0)I(2qi � qi
0)I(qi

0)

⇡(qi) = v2⇡V (qi) + v1(1� v2)⇡G(qi) + (1� v1)(1� v2)⇡U(qi)

end
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Appendix C

Algorithm for Information Roadmap Path Search

Pseudocode of A⇤ search for ⌧ ⇤ in G

procedure A⇤(G, c0, cf , R, h)

initialize Ts and OPEN as empty

install c0 into Ts

OPEN := (c0,OPEN); label c0 as visited

while OPEN 6= ;

find c := arg minc(f(c)) in OPEN

if c = cf

exit loop

end

for every neighbor c0 of c in G
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if c0 is not visited

OPEN := (c0,OPEN); mark c0 as visited, and label it with a pointer to c

elseif g(c0) > g(c) + R(c, c0)

modify Ts by redirecting the pointer of c0 toward c

remove c0 from OPEN

OPEN := (c0,OPEN)

end

end

end

if OPEN 6= ;

return the minimum-cost path by tracing the pointers in Ts from cf to c0

else

return failure

end
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