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Natural phenomena, such as thermal soaring of birds, gravitational settling of

inertial particles in turbulent flows and acrobatic feats performed by flying in-

sects, can inspire interesting and sometimes useful solutions to the sensing and

control problems of micro aerial vehicles (MAVs). This dissertation covers novel

biologically inspired MAV sensing and control approaches that are efficient and

robust in the presence of unforeseen wind disturbances and modeling uncer-

tainties. At first, this dissertation presents a new feedback control approach

inspired by experimental studies on particle transport that have recently illu-

minated particles’ ability to traverse homogeneous turbulence through the so-

called fast-tracking effect. While in nature fast-tracking is observed only in par-

ticles with inertial characteristics that match the flow parameters, the new fast-

tracking feedback control approach employs available propulsion and actuation

to allow the vehicle to respond to the surrounding flow in the same manner as

ideal fast-tracking particles would. The resulting fast-tracking closed-loop con-

trolled vehicle is then able to leverage turbulent flow structures, such as sweep-

ing eddies, to reduce travel time and energy consumption. The fast-tracking

approach is shown to significantly outperform existing optimal control solu-

tions, such as linear quadratic regulator and bang-bang control, and to be robust

to changes in the vehicle characteristics and/or turbulent flow parameters. Fur-

thermore, since this fast-tracking control design requires prior knowledge of the



turbulent flow parameters, this dissertation presents a novel approach of using

noisy on-board measurements to estimate the flow parameters via the sparse

identification of nonlinear dynamics (SINDy) method.

In addition to particle transport theory, MAV sensing and control strategies

can be extracted from biological neural systems. Since spiking neural networks

(SNNs) encode information in sequences of spike times, spike train decoding

is considered one of the grand challenges in reverse-engineering neural control

systems as well as in the development of neuromorphic controllers. Therefore,

this dissertation presents a novel relative-time-kernel-based spike train decod-

ing approach that accounts for not only individual spike train patterns, but also

the relative spike timing between neuron pairs in the population. Using the data

collected in hawk moth’s flower tracking experiments, the new spike train de-

coding method allows us to uncover the precise mapping from the spike trains

of ten primary flight muscles to the resulting forces and torques on the moth

body. The new relative-time-kernel-based spike train decoder significantly im-

proves the prediction of the resulting forces and torques when compared to the

existing instantaneous-kernel-based and rate-based decoders.

Finally, inspired by the insect’s flapping flight control strategies, this dis-

sertation presents a novel two-phase adaptive full-envelope SNN control de-

sign for flapping-wing micro aerial vehicles (FWMAVs) that is able to learn and

adapt to unmodeled uncertainties online. During the offline learning phase,

populations of spiking neurons are trained by supervised learning to approx-

imate a gain-scheduled proportional-integral-filter (PIF) compensator devel-

oped to stabilize the ideal vehicle dynamic model. The online learning phase

improves the performance subject to actual vehicle dynamics by incremen-

tally updating the neural connection weights via policy gradient reinforcement



learning (PGRL). This two-phase adaptive SNN control design is then imple-

mented for the control of a simulated insect-scale flapping-wing robot known

as RoboBee over its full flight envelope. The adaptive SNN controller is shown

to outperform a benchmark non-adaptive SNN controller when the RoboBee is

commanded to conduct a full range of maneuvers in the presence of significant

uncertainties, such as parameter variations, unmodeled dynamics and measure-

ment errors, as well as actuator failures. The bio-inspired sensing and control

approaches presented in this dissertation can be potentially implemented on the

next generation of smart, agile and highly adaptive MAVs.
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CHAPTER 1

INTRODUCTION

Sensor-laden micro aerial vehicles (MAVs) have been widely used to assist

humans to gather information about targets autonomously in hazardous envi-

ronments [109, 166, 82]. Due to their small size and light weight, MAVs are not

only safe enough to operate near humans, but also extremely agile to avoid ob-

stacles and visit confined spaces inaccessible to vehicles of larger sizes [136, 24].

In particular, bio-inspired flapping-wing micro aerial vehicles (FWMAVs) gen-

erate lift much more efficiently than typical aerial vehicles such as fixed-wing

aircraft and rotorcraft at micro scale [119, 49, 28]. However, these micro-scale

aerial vehicles are extremely sensitive to external disturbances, such as wind

gusts, and unmodeled uncertainties, such as parameter variations, measure-

ment errors and control failures, and therefore can easily become unstable or

even undergo damage on the fly [218, 78, 144]. Consequently, robust and effi-

cient sensing and control approaches that can achieve desired performance over

the full flight envelope in the presence of unforeseen wind disturbances and un-

modeled uncertainties have yet to be developed for MAVs.

There is significant precedent for tackling air-vehicle navigation and con-

trol problems in constant winds [127, 38], Dryden wind turbulence [202, 197]

and thermals [158]. However, most existing approaches rely on accurate mod-

eling of aerodynamic effects, whereas the influences of wind on the vehicle are

treated as disturbances. These control designs focus on rejecting such distur-

bances in the closed loop, but will fail when the wind disturbance exceeds cer-

tain physical threshold limit especially during aggressive and rapid air-vehicle

maneuvers. In addition to wind disturbance compensation, air vehicles, such
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as gliders and fixed-wing aircraft, have been demonstrated to be capable of har-

vesting energy from surrounding air flows and navigating in highly turbulent

environments using less time and energy [158, 7, 68]. However, these existing

energy-harvesting flight control designs focus primarily on developing optimal

and adaptive flight policies in the presence of different flow regimes, which not

only rely heavily on the precise prior prediction of turbulent flow structures,

but also require large computational cost [105].

At first, this dissertation presents a new feedback control approach inspired

by turbulent particle transport theory [18] that allows the air vehicle to follow

the ideal response prescribed by the fast-tracking effect in the closed loop via

implicit model following (IMF) in Chapter 2 [223]. The fast-tracking control

(FTC) approach has the distinct advantage of enabling the vehicle to fly within

advantageous tailwinds more often than with existing control methods and

avoid adverse headwinds automatically, thus reducing the cost of time and en-

ergy to traverse the turbulent flow. The energy-harvesting potential of this new

control design is demonstrated by considering two benchmark control problems

known as minimum-energy and minimum-time problems. The FTC approach

is shown to outperform two classic optimal control solutions obtained using lin-

ear quadratic regulator (LQR) and bang-bang control (BBC) theory. The novelty

of this fast-tracking-particle-inspired flow-aided control approach is that it only

requires prior knowledge of a few key flow parameters, including the mean ve-

locity, vortex length scale and vortex time scale, that characterize the turbulent

flows instead of relying on the global knowledge of the entire wind velocity

field [160, 8].

As an essential further step, this dissertation presents a new approach to

2



estimate the flow parameters that the aforementioned FTC approach requires

prior knowledge of using the onboard measurement data obtained from the

aerial vehicle traversing turbulent flows in Chapter 3 [224]. Estimating the flow

structures and velocity profiles of wind and ocean currents helps to guarantee

the safety, robustness and efficiency of vehicle navigation and control in highly

turbulent environments [217, 106, 66, 156]. People have already successfully

estimated the velocity profiles of wind and ocean currents based on vehicle’s

corresponding dynamic responses [106, 156]. Without prior information of the

exact flow parametric model, the novelty of our computationally efficient flow

parameter estimation method is to only estimate the key flow parameters by

determining and analyzing the weights that represent which user-defined can-

didate functions are active in the unknown nonlinear vehicle dynamic equations

via the so-called sparse identification of nonlinear dynamics (SINDy) method.

In addition to wind disturbances, bio-inspired MAVs especially those with

fragile flapping wings are highly sensitive to unexpected variations in their

physical parameters, dynamic characteristics and actuator effectiveness [38, 35,

34]. Even though all these uncertainties make the control design extremely

challenging, many intelligent flight control algorithms have been developed

for FWMAVs in recent years [38, 36, 117, 40, 30, 29, 31, 131, 81]. For exam-

ple, an adaptive control design consisting of a position feedback controller and

a neural-network-based attitude controller is proposed via a hierarchical frame-

work, and allows the controlled FWMAV to accomplish longitudinal trajectory

tracking [81]. However, most existing FWMAV control approaches either rely

on accurate modeling of the vehicle dynamics or apply to a limited set of ma-

neuvers such as hovering, longitudinal and lateral flight, and therefore are not

applicable to the full-envelope control of FWMAVs in the presence of unmod-

3



eled uncertainties. Significantly, people have already developed reconfigurable

fault-tolerant flight control systems for fixed-wing aircraft that can adapt to un-

certainties, and achieve desired control performance over the full flight enve-

lope [186, 142, 116, 6]. Neural networks are found to be particularly useful

for the reconfiguration of adaptive control systems, because their connection

weights can be reflexively updated online according to the observed difference

between desired and actual system responses [187, 186, 52, 56, 58, 113]. Spik-

ing neural networks (SNNs) closely mimic natural neural systems by transmit-

ting discrete pulses of information only when the spiking neuron’s membrane

potential reaches a threshold [72, 198, 114]. Therefore, SNN-based controllers

can be potentially implemented on power-efficient, biologically inspired neuro-

morphic chips that FWMAVs can be easily equipped with, and tend to substi-

tute classical neural-network-based design approach in modern FWMAV con-

trol [36, 38, 89, 90, 60].

However, since SNNs encode information in sequences of spike times, the

output from the spiking neurons must be decoded to be useful in representing

continuous-time functions for the control input [38, 231]. Various spike train

decoding approaches, such as rate coding [2, 88], temporal coding [102, 172, 84]

and kernel-based algorithms [137, 140, 169, 170, 139], have been proposed in

recent years. However, most existing approaches only capture the information

encoded in firing rate, spike counts or exact spike timings, and therefore will

not perform well when neurons correlate with each other [153]. In Chapter 4,

this dissertation presents a novel relative-time kernel design that considers not

only the precise spike timing information from individual neurons, but also the

relative spike timing information between neuron pairs [226]. Using the data

collected in the moth’s flower tracking experiment, we demonstrate the impor-
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tance of relative spike timing information for neural control, and uncover the

precise mapping from the spike trains of ten primary flight muscles to the result-

ing forces and torques on the moth body. The new relative-time-kernel-based

neural decoder is shown to significantly outperform existing instantaneous-

kernel-based and rate-based decoders in force and torque predictions.

Finally, inspired by insect’s flapping flight control strategies, this dissertation

presents a novel two-phase adaptive SNN controller for FWMAV full-envelope

flight that can learn and adapt to unmodeled uncertainties in real time via of-

fline supervised learning (SL) and online policy gradient reinforcement learning

(PGRL) methods in Chapter 5 [205, 219, 120, 196, 9, 101, 13, 225]. In the of-

fline learning phase, SNNs are trained by SL to approximate a gain-scheduled

proportional-integral-filter (PIF) compensator designed to stabilize the ideal

FWMAV dynamic model. In the online learning phase, the SNN connection

weights are incrementally updated by PGRL in the direction that minimizes the

state deviation from desired set points. The distinct advantage of this PGRL-

based online adaptation is that it relies on the state measurement rather than

prior uncertainty detection or identification, which brings computational effi-

ciency and allows the adaptive SNN controller to account for a wide variety of

unexpected circumstances. The performance of this novel adaptive SNN con-

trol design is benchmarked by a non-adaptive SNN controller, which is simply a

fixed offline SNN approximation of the gain-scheduled PIF compensator. In nu-

merical simulations, both controllers are implemented to control an insect-scale

flapping-wing robot known as RoboBee [118]. The adaptive SNN controller

is shown to significantly outperform the non-adaptive one when the RoboBee

is commanded to hover with wing damage, track a moving flower with wing

asymmetry, follow a square trajectory with state measurement errors and con-

5



duct a coordinated turn with actuator failure. The bio-inspired sensing and

control approaches presented in this dissertation can be potentially applied to

develop the next generation of MAVs that are highly efficient and robust in the

presence of wind disturbances and modeling uncertainties.
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CHAPTER 2

FLOW-AIDED CONTROL OF AERIAL VEHICLES IN TURBULENT FLOW

2.1 Introduction

Animals such as soaring birds, migrating insects and swimming fish can tra-

verse turbulent flows efficiently by taking advantage of approximately station-

ary flow structures [4, 143, 145, 41, 138, 180]. Birds like eagles and storks with

large wing span and surface area are able to detect and exploit rising thermals

or shear flows to generate lift and therefore save energy for long-distance flight

[75, 3, 67]. Migrating insects can adaptively change their headings to harvest

energy from atmospheric structures and motions based on their real-time mea-

surements from wind-sensitive hairs and antennas [44, 129, 46, 27]. Fish are

found to be capable of detecting their surrounding flow features using the lat-

eral line flow sensory system, and learn to adjust their swimming speed and

body undulation while traversing turbulent water currents [94, 22, 17, 181].

Many of these energy-harvesting features discovered in animal flyers and swim-

mers have also been observed in the characteristic motions of particles and bub-

bles carried by turbulent flows [126, 132, 108, 18], which have inspired the new

flow-aided air-vehicle feedback control design presented in this chapter.

There is significant precedent for tackling air-vehicle navigation and control

problems in strong but constant winds [127, 202, 197] and thermals [158]. De-

spite the prevalence of turbulence, its impact on locomotion, and the potential

inherent in its energetic yet organized internal structure [100, 108], most exist-

ing approaches either treat wind effects as disturbances to be rejected or require

global knowledge of the entire wind velocity field [160, 8]. This global knowl-
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edge may be acquired through learning [216, 157, 15, 76] or with environmental

prediction, modeling and forecasting [12]. For instance, in [158] global knowl-

edge is acquired by simulating turbulent thermals similar to those arising in the

atmospheric boundary layer, and by using model-free reinforcement-learning

algorithms to train gliders to soar. Besides requiring prior training, this ap-

proach generates more conservative policies than those observed in piloted glid-

ers, and requires gathering information about the fluctuating flow while simul-

taneously ascending in it. Another approach is to exploit globally known flow

structures produced by environmental prediction and forecasting algorithms

to generate optimal vehicle trajectories using methods such as mathematical

programming, differential evolution, or Lagrangian coherent structures (LCSs)

[12, 54, 229]. While this approach is useful for underwater vehicles because

ocean currents may be predicted to some extent using oceanographic modeling

and prediction tools [162, 164, 163, 83, 178, 21], it is less suited to air vehicles that

must navigate rapidly changing winds without knowledge of global turbulent

structures [105, 7, 68].

The process of particle transport in turbulence demonstrates that under cer-

tain conditions inertial particulates and droplets move quickly through turbu-

lent flows such as turbulent air, water, or flames, without global knowledge of

the velocity field [98, 93, 104, 18]. The fast-tracking effect is the phenomenon by

which inertial particles in turbulent flows exhibit an average settling velocity

that is larger in turbulence than in still air [126, 5]. Fast tracking of particles and

droplets has been observed and verified in both physical experiments [5, 73],

and direct numerical simulations (DNS) of the gravitational settling of inertial

particles in complex flow fields, including cellular flow fields [126], Gaussian

random flow fields [124], and homogeneous isotropic turbulence [204, 73]. To-
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ward exploitation of this phenomenon, [18] analyzes theoretically the energet-

ics of idealized fast-tracking flight vehicles that make only local, instantaneous

measurements, revealing an extended parameter regime in which turbulence

can decrease flight time or energy consumption in principle.

This chapter presents a new feedback control approach inspired by turbu-

lent particle transport theory [18] that is able to reproduce fast-tracking in air

vehicles traversing turbulent flow fields. By viewing the particle dynamics as

the ideal response to the surrounding flow, implicit-model following (IMF) can

be used to design a fast-tracking control (FTC) system that, by virtue of the

onboard propulsion and actuation, induces the vehicle to behave like a parti-

cle in the closed loop. As a result, the vehicle flies within advantageous tail

winds more often than with existing control methods. The vehicle also avoids

adverse headwinds automatically, thereby reducing the energy and time re-

quired to traverse a turbulent flow, and it does so without access to global

flow information. The energy-harvesting potential of the new FTC control ap-

proach is demonstrated through two benchmark control problems known as

the minimum-energy and minimum-time problems. The FTC-controlled vehi-

cle performance is compared to two optimal control solutions obtained using

linear-quadratic regulator (LQR) and bang-bang control (BBC) theory. The LQR

solution to the minimum-energy problem is derived by using information about

the flow field to make the vehicle reach and maintain a desired steady-state ve-

locity using minimum control effort. The BBC solution to the minimum-time

problem is derived by making the vehicle reach the final desired position in

minimum time in still fluid.

Although the FTC approach only requires instantaneous knowledge of vehi-
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cle state and local flow, which are easily obtained onboard, it significantly out-

performs both LQR and BBC designs. This general approach to flow-aided feed-

back control can also be applied to other vehicles including fixed- or flapping-

wing aircraft [135, 177], rotorcraft, and neutrally-buoyant vehicles such as sub-

marines or balloons, and to non-stationary flow structures such as thermal up-

drafts or mean shear [4, 201]. The primary advantage of the fast-tracking ap-

proach over existing methods is that unsteady turbulent structures can be lever-

aged without relying on any prediction of the velocity field. In fact, by draw-

ing inspiration from nature, the FTC design only requires approximate knowl-

edge of a few key flow parameters, such as the mean velocity, the typical vortex

length scale, and the typical vortex timescale, which can be easily estimated

onboard, as shown in [224]. Extensive numerical simulations show that an air

vehicle using FTC follows the ideal response of the fast-tracking particle with

zero tracking error, regardless of its true inertial characteristics. As a result, the

FTC system increases the average horizontal velocity of the vehicle, maintains

the desired steady-state velocity with less control effort than the LQR solution,

and reaches a desired horizontal position before the BBC solution.

This chapter is organized as follows. Section 2.2 reviews relevant back-

ground from transport theory on the fast-tracking effect and cellular flows used

here for illustrative purposes. The fast-tracking feedback-control design prob-

lem is formulated in Section 2.3, along with its basic assumptions. The FTC

control design solution derived using implicit model following is presented in

Section 2.4. In Section 2.5, the FTC energy-harvesting ability is demonstrated by

comparing its performance to that of the optimal LQR solution on a benchmark

minimum-energy control problem. In Section 2.6, the FTC time-saving ability is

demonstrated by comparing its performance to that of the optimal BBC solution

10



on a benchmark minimum-time control problem. Finally, the FTC performance

robustness with respect to the vehicle inertial characteristics and turbulent flow

parameters is demonstrated through dozens of representative case studies, in

Sections 2.5-2.6.

2.2 Background on Transport Theory and the Fast-Tracking Ef-

fect

Natural phenomena such as soaring birds exploiting thermal convection [143]

and particles or bubbles in steady vortices [132] demonstrate that turbulent

air flows can be traversed rapidly and efficiently by leveraging local knowl-

edge of approximately stationary flow structures. In particular, the mechanism

known as ”fast-tracking effect” has been shown to govern the fast and intelli-

gent motion of inertial particles in homogeneous turbulence [143, 73, 200, 124].

This chapter presents an approach for using the fast-tracking particle dynamic

model, known from transport theory, in order to develop high-performance

feedback control laws that can be implemented on autonomous vehicles in

turbulent flow using local wind measurements and classic state estimation al-

gorithms. The approach is demonstrated for a cellular-flow homogeneous-

turbulence model, described in Section 2.2.2, which has been shown effective

at capturing vortical structures in natural flows relevant to autonomous vehi-

cles, such as atmospheric circulation [192] and ocean currents [107, 125].
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2.2.1 Fast-Tracking Effect

Experimental studies have shown that fast-tracking particles in a turbulent flow

field are preferably thrown out of vortices, toward their downward-sweeping

sides (Fig. 2.1a), through a mechanism that increases the average speed of par-

ticles toward the bottom of the flow [73]. More precisely, the fast-tracking effect

causes the mean settling velocity of an inertial particle traversing a turbulent

flow to be increased with respect to the still-fluid settling velocity [73]. The par-

ticle’s mean settling velocity, denoted by v, is the average falling speed of par-

ticles subject to drag and gravitational forces when reaching an average force

balance in a turbulent flow, or,

v “
1

t f ´ ts

ż t f

ts

vpptq dt, (2.1)

where vp is the particle’s instantaneous velocity, ts is the settling time required

for the velocity to reach and remain within a given error band, and t f is the

terminal time [159]. The still-fluid settling velocity, denoted by vg, is the termi-

nal falling speed of a particle through still fluid. Therefore, when fast tracking

prevails, it can be observed that v ą vg.

As shown in [73], fast-tracking particles are characterized by physical char-

acteristics, such as response time and settling velocity, that ”resonate” with

those of the turbulent flow, as reviewed in the remainder of this subsection.

Let m and D denote the mass and diameter of the particle, respectively. Then,

when the particle is surrounded by a fluid with dynamic viscosity µ, its motion

is characterized by the inertial response time,

τ ≜
m

3πDµ
(2.2)

as shown in [123]. In particular, the inertial response time represents the time re-
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quired to reach equilibrium in response to perturbations in surrounding flows.

The nature of the interaction between the particle and the flow depends on τ

as well as on the characteristics of the turbulent flow, namely, the root-mean-

square fluid velocity u1, the vortex length scale l, and the vortex time scale

τw ” l{u1 [73]. The root-mean-square velocity, u1, is defined as the standard

deviation of the instantaneous flow velocity, u, such that [146]

u1
“

d

1
T

ż T

0
ruptq ´ ūs2 dt, (2.3)

where ū is the mean flow velocity over the time interval T .

When the particle’s inertial response time (τ) and the still-fluid settling veloc-

ity (vg) approach the turbulent flow’s vortex time scale (τw) and the root-mean-

square velocity (u1), respectively, the particle’s settling velocity is significantly

increased compared to its still-fluid settling velocity. Recently, this fast-tracking

effect has been demonstrated experimentally by co-author Bewley using water

droplets settling in air turbulence, as shown by the data plotted in Fig. 2.1b and

taken from [73]. In particular, this study showed that the (normalized) increase

in settling velocity,

△v̂ ≜ pv ´ vgq{u1 (2.4)

is positive whenever the particle undergoes the fast-tracking effect.

Consider the dimensionless particle-settling parameter, ηv ≜ vg{u1, which

governs the onset of fast tracking observed when ηv is of order one. When

ηv ăă 1 or ηv ąą 1, the particle’s mean turbulent settling velocity (v) is not

enhanced compared to vg. In fact, a sharp decline of the settling velocity is ob-

served for large particle settling parameter, ηv, due to the development of non-

linearity in drag forces on quickly settling particles. Importantly, the normalized
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(a) (b)

Figure 2.1: (a) Particles are swept and, thus, readily accelerated into the down-
ward sweeping sides of eddies (blue trajectory) rather than falling straight
through turbulence (red trajectory). As a result, (b) water droplets in turbulent
air experience increased settling velocity (△v̂) when the particle settling param-
eter (ηv) is of order one (experimental data taken from [73]).

increase in settling velocity, △v̂, is maximum when ηv is of order one and, there-

fore, this parameter value can be used as guiding principle in the development

of a feedback controller that leverages turbulent flow to accelerate the vehicle

similarly to the fast-tracking particle in Fig. 2.1a.

This chapter develops a new control approach by viewing the autonomous

air vehicle in a turbulent flow as an inertial point-mass particle driven by

constant horizontal thrust that can be adjusted so as to match the desired

fast-tracking characteristics of the given turbulent flow. There is consider-

able precedent for treating vehicles as point masses for navigation and con-

trol purposes, whenever their size is small relative to the vortex length scale

[68, 59, 141, 207, 32, 79, 148, 147]. Hence, our hypothesis is that by producing

a controlled thrust that modifies the vehicle’s inertial response time to match

the vortex time scale, the vehicle may be accelerated through the turbulent flow

similarly to the fast-tracking effect (Fig. 2.1a). Under these conditions, we ex-
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pect the vehicle to be preferentially swept toward the sides of vortices pushing

in the direction of motion, and to be accelerated along a fast-tracking trajectory,

as shown by the simulated comparison in the next section. By taking advantage

of beneficial flow structures, the vehicle may achieve a larger average terminal

horizontal velocity and travel a longer distance over the same amount of time

when compared to other (inefficient) trajectories.

2.2.2 Cellular Flow Fields

For illustration purposes, the control approach presented in this chapter is

demonstrated for vehicles traversing a two-dimensional cellular flow field

with known characteristic parameters. However, the approach can be ex-

tended to other flow structures for which fast-tracking results are also avail-

able [124, 204, 73]. Cellular flow is an idealized model of homogeneous tur-

bulent flow that contains a periodic array of eddies described by the vortex

length scale [126]. As shown in Fig. 2.2, vortices located in adjacent cells swirl

in opposite directions. The cellular flow field is chosen here because it captures

essential features of fast-tracking phenomena observed in fully turbulent flows,

with some important exceptions described in [124, 73, 18]. Furthermore, cel-

lular flow represents the best-case scenario for a vehicle in turbulence in the

sense that there exist paths for which the flow always provides a tailwind and

never a headwind. Finally, by demonstrating the novel fast-tracking control ap-

proach in cellular flow, the results may be applicable to a broad range of natural

flow phenomena, including but not limited to Langmuir cells in water bodies

[107, 125] and convective cellular motions in clouds [192].
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Figure 2.2: The trajectories of two particles with different inertial response
times (τ) are compared by allowing them to travel for the same amount of time
through a cellular flow field with vortex time scale (τw) after they are both re-
leased at the dashed black line (see [220] for animation).

Given a characteristic flow velocity U0, the horizontal and vertical compo-

nents of the two-dimensional cellular flow velocity (yellow vectors in Fig. 2.2)

can be modeled as,

wx “ U0 sinp
πx
Lw

q cosp
πy
Lw

q (2.5a)

wy “ ´U0 cosp
πx
Lw

q sinp
πy
Lw

q (2.5b)

respectively, where x and y are the coordinates in the plane, and Lw is a char-

acteristic parameter that represents the distance between two adjacent vortices

and is known as vortex length scale. Together with the U0, the vortex length

scale, Lw, determines the vortex time scale,

τw ”
Lw

U0
. (2.6)

which represents the vortex turnover time.

According to the fast-tracking phenomenon, a particle traversing a cellular

flow field makes use of the flow structure to travel faster when its inertial re-

sponse time, τ, is approximately equal to the vortex time scale defined in (2.6).
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As illustrated by the simulated blue trajectory in Fig. 2.2, a fast-tracking parti-

cle reaches a higher mean settling velocity. Hence, when compared to particles

characterized by very different mass and diameter (e.g., red dashed line in Fig.

2.2), a fast-tracking particle travels a much greater (horizontal) distance over the

same period of time.

Inspired by these natural phenomenon, this chapter develops a feedback

control approach devised to allow air vehicles to make use of the eddies to

traverse the cellular flow efficiently. By using an implicit model following ap-

proach, knowledge of the vortex time scale is used to develop a feedback control

law that leverages the fast-tracking effect, irrespective of the vehicle’s mass and

size. In the proposed approach, the gravitational force acting on the particle is

replaced by a controllable horizontal thrust force (Fig. 2.2) acting on the vehi-

cle by virtue of an onboard propulsion mechanism, such as a propeller or jet

engine.

2.3 Problem Formulation and Assumptions

Although the problems of guidance and control in turbulence have been inves-

tigated extensively to date [211, 92, 1, 61, 151, 152, 193], previous approaches

have focused on attenuating the influence of external wind forces and moments

by methods known as disturbance rejection. Besides being applicable only for

small disturbances with known and well-posed statistics, such as zero mean

and Gaussian characteristics, previous approaches sought to eliminate wind ef-

fects, rather than to exploit them as do natural flyers [143, 132, 4]. As in the

extensive literature on trajectory planning for fixed-wing aircraft [68, 32, 79]
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and quadcopters [148, 147], let the air vehicle be approximated by a point mass

and denote its mass by mv and its diameter by Dv. The point-mass assumption is

effective in practice when the vehicle geometry can be ignored in obstacle avoid-

ance problems, and the vehicle size is much smaller than the vortex length scale,

or Dv ăă Lw. Typically, the size of small unmanned aerial vehicles (UAVs) spans

from around 15 centimeters to 2 meters, and the length scale of the energetic tur-

bulent eddies in the atmosphere is about 100 meters [50, 150, 146]. Furthermore,

as illustrated in Fig. 2.2, the vehicle propelled by a thrust force must traverse

a cellular-flow wind field with vortex length scale, Lw, and time scale, τw. For

simplicity, the lift force is assumed appropriate for maintaining the vehicle aloft

or, alternatively, the vehicle may be assumed neutrally buoyant [18]. Also, it is

assumed by the same rationale that the effects of the vehicle on the surrounding

flow are negligible.

Because the vehicle may encounter different flow fields during its operations

and its physical characteristics (mass and diameter) are fixed a priori, its inertial

response time, τv, may not always be approximately equal to τw. Therefore, in

general, the vehicle may not experience the fast-tracking effect. The problem

considered in this chapter is to develop a feedback control law that modifies the

vehicle’s inertial response time in the closed loop, so as to achieve fast tracking

by virtue of the controllable thrust forces. It is assumed that the fluid flow dy-

namic viscosity, µ, and time scale, τw, are either known a priori or estimated from

wind measurements online, for example, using the sparse identification of non-

linear dynamics (SINDy) [224, 20]. The vehicle physical parameters are lumped

into a constant vector, θ “ rmv Dvs
T , and the onboard propulsion produces a

constant horizontal thrust, Tx “ mvax, as well as acceleration-based control in-

puts, u “ rux uys
T . The vehicle acceleration produced by the constant horizontal
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thrust is denoted by a “ rax 0sT . Then, from transport theory [124], the two-

dimensional vehicle dynamics subject to a cellular flow can be modeled by a

linear parameter-dependent system,

9xptq “ Apθ, µqxptq ` Bpθ, µquptq ` Lpθ, µqwptq ` a, xpt0q “ x0, (2.7)

where the state vector, x “ rvx vys
T , consists of the x- and y-components of the

vehicle velocity in inertial frame, and the wind flow velocity vector, denoted

by w “ rwx wys
T , is assumed known from onboard measurements. The initial

conditions, x0, are known from the vehicle.

The state-space matrices are given by,

Apθ, µq “

»

—

–

´
3πDvµ

mv
0

0 ´
3πDvµ

mv

fi

ffi

fl
; Bpθ, µq “ I2ˆ2; Lpθ, µq “

»

—

–

3πDvµ

mv
0

0 3πDvµ

mv

fi

ffi

fl
(2.8)

where it is assumed that the vehicle is subject to a linear Stokes drag force [191].

This assumption is justified when the flow is incompressible and Dv ăă Lw, and

holds approximately for air vehicles such as fixed-wing aircraft and rotorcraft

in high Reynolds number regimes under certain conditions [179, 108, 91, 171].

A state-feedback controller is developed, assuming that the vehicle state is fully

observable and estimated with zero error for simplicity [57]. Furthermore, a

constant horizontal thrust is provided to obey (2.2), such that

Tx “ mvax “ 3πµDvτvax (2.9)

This chapter seeks to develop a feedback control system inspired by the nat-

ural transport phenomena described in Section 2.2.1, such that, in the closed

loop, the vehicle behaves like a particle undergoing the fast-tracking effect. The

desired automatic feedback control law must provide the vehicle inputs uptq, in
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(2.7), continuously over time, so as to exploit the energy and organized structure

of the eddies in the cellular flow field. This novel control approach is demon-

strated by solving the following benchmark control problems:

1) Minimum energy problem: determine control inputs, uptq, so as to reach and

maintain a desired steady-state velocity through the cellular flow with mini-

mum control effort.

2) Minimum time problem: determine control inputs, uptq, so as to travel a de-

sired distance in the horizontal direction through the cellular flow in minimum

time.

The new FTC control approach is derived using implicit model following

in the next section. Subsequently, its performance is demonstrated in Section

2.5 and 2.6, and compared to two classic optimal solutions obtained via lin-

ear quadratic regulation and bang-bang control, respectively. Although the ap-

proach is demonstrated on the simplified air vehicle model in (2.7), the meth-

ods proposed in this chapter can be easily extended to more detailed vehicle

dynamic models, provided they too may be approximated by linear parameter

dependent systems.

2.4 FTC Control Design via Implicit Model Following (IMF)

The FTC feedback control design is developed by specifying an implicit model

based on the ideal response of an efficient fast-tracking particle in the loop.

While most of the existing control methods seek to compensate for, or reject,

wind effects, the FTC control approach seeks to make use of organized cellu-
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lar flow structures in order to benefit from them in terms of speed and energy

consumption. Because the real geometry and location of the eddies is unknown

to the vehicle, it may not be utilized for trajectory optimization. Rather, in an

effort to mimic natural transport phenomena, the dynamic model of an ideal

fast-tracking particle is first obtained from the known parameters of the cellular

flow (Lw and τw), as described in Section 2.2.2. Subsequently, a state-feedback

control law is obtained using implicit model following (IMF) [188], such that the

closed-loop vehicle dynamics may follow the ideal fast-tracking particle model

as closely as possible.

The IMF approach, originally proposed in [188], leverages an implicit dy-

namic model to obtain a control system that conforms to an ideal behavior. Once

an ideal dynamic model with state, xm P Rn, is formulated, the IMF control law

is obtained by minimizing the error between the time derivatives of the vehicle

state, x P Rn, and those of the model, i.e.:

J “
1
2

ż t f

t0
r 9xptq ´ 9xmptqs

T Qmr 9xptq ´ 9xmptqs dt, (2.10)

where the subscript m refers to ”model”. The positive definite weighting matrix

Qm P Rnˆn can be utilized to specify a desired trade-off between state variables,

for example, in order to account for states’ range and units. The IMF equations

and control law are derived in Section 2.4.2, based on the fast-tracking particle

model presented in the next section.

2.4.1 Ideal Fast-Tracking Particle Model

As a first step, let us reinterpret the gravitational force acting on an inertial par-

ticle as a constant thrust in the horizontal direction, Txm . With a simple coor-
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dinate transformation, assuming the air flow is incompressible and the parti-

cle diameter, Dm, is significantly smaller than the vortex length scale, Lw, the

two-dimensional governing equation for a spherical inertial particle of mass m

subject to a drag force Fd and traveling in a cellular flow field is

m 9xm “ Fd ` Tm (2.11)

where xm “ rvxm vymsT contains the particle velocity in inertial frame, and Tm “

rTxm 0sT denotes constant external thrust. In this ideal model, the inertial particle

is subject to a linear Stokes drag force,

Fd “ ´3πDmµpxm ´ wmq (2.12)

where wm “ rwxm wymsT is the flow velocity in inertial frame [191, 16]. As ex-

plained in Section 2.3, the above assumption holds, once again, because it can

be assumed that the flow is incompressible and Dm ăă Lw [179, 108, 91, 171].

In spite of all these assumptions, the ideal particle model presented in this sec-

tion can well explain many natural particle transport phenomena, such as water

droplets settling in air turbulence [149] and soot formation in turbulent flames

[209].

When the inertial response time of the ideal particle, τm, is approximately

equal to τw, the particle exhibits the fast-tracking effect and naturally follows

the most efficient trajectories inside the cellular flow. From the equations of the

particle’s inertial response time (2.2) and the particle model (2.11), the particle

dynamics can be expressed as a linear parameter-dependent system,

9xmptq “ Ampτmqxmptq ` Lmpτmqwmptq ` am, xmpt0q “ x0m , (2.13)

where am “ 1
mTm “ raxm 0sT is the particle acceleration produced by the constant

horizontal thrust, x0m are the particle’s initial conditions, and model state-space
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matrices, Am and Lm, depend only on the ideal particle’s inertial response time,

τm, which is chosen to match the vortex time scale. The state-space matrices are

given by

Ampτmq “

»

—

–

´ 1
τm

0

0 ´ 1
τm

fi

ffi

fl
; Lmpτmq “

»

—

–

1
τm

0

0 1
τm

fi

ffi

fl
(2.14)

2.4.2 Fast-Tracking Controller (FTC) Design

Unlike the ideal particle described in the previous section, in general, the vehi-

cle has an inertial response time that is not approximately equal to the vortex

time scale. Therefore, a feedback control law can be derived to change the ve-

hicle response in the closed loop and make it follow the behavior of the ideal

particle model, that is implicit in the law itself. Choose w “ wm, and construct a

quadratic cost function in the form (2.10),

J “
1
2

ż t f

t0
r 9xptq ´ 9xmptqs

T Qmr 9xptq ´ 9xmptqs dt

“
1
2

ż t f

t0
rxT

ptqQxptq ` 2xT
ptqMũptq ` ũT

ptqRũptqs dt,
(2.15)

where ũ “ u ` p 1
τv

´ 1
τm

qw ` a ´ am, Qm “ I2ˆ2, and the weighing matrices are

designed as follows,

Q “ pA ´ Amq
T QmpA ´ Amq

M “ pA ´ Amq
T QmB

R “ BT QmB

(2.16)

in order to minimize (2.15).

For the vehicle model shown in Section 2.3, perfect model following can be

achieved (with zero state error) because the following perfect-model-following
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criterion is satisfied,

pBBL
´ InqpA ´ Amq “ 0, (2.17)

where BL “ pBT Bq´1BT is the left pseudo-inverse [188]. When the FTC ap-

proach is extended to other vehicle dynamics, the above criterion may not be

always satisfied and, hence, the optimal IMF control law described in [53] can

be adopted to minimize the model-following error. In particular, letting t f ap-

proach infinity in (2.15), the optimal control law can be obtained in terms of a

steady-state gain matrix Cp0q such that,

ũptq “ ´Cp0qxptq “ ´R´1
rBT Sp0q ` MT

sxptq (2.18)

where Sp0q is the solution of the algebraic Riccati equation (ARE),

rSp0qB ` MsR´1
rBT Sp0q ` MT

s ´ AT Sp0q ´ Sp0qA ´ Q “ 0 (2.19)

In this case, the Riccati matrix solution that guarantees closed-loop asymp-

totic stability is Sp0q “ 02ˆ2, and the corresponding steady-state gain matrix is

Cp0q “ R´1
rBT Sp0q ` MT

s “

ˆ

1
τm

´
1
τv

˙

I2ˆ2 (2.20)

Hence, under the aforementioned assumptions, the FTC IMF feedback con-

trol law is

ũptq “ ´Cp0qxptq “ ´

ˆ

1
τm

´
1
τv

˙

xptq (2.21)

which is implemented as the following acceleration-based control inputs on-

board the air vehicle,

uptq “ ũptq ´

ˆ

1
τv

´
1
τm

˙

wptq ´ a ` am “

ˆ

1
τv

´
1
τm

˙

rxptq ´ wptqs ´ a ` am (2.22)

It can be seen that the FTC control law requires only online measurements

of the vehicle state, x, and of the local wind flow field, w, both of which may
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be estimated with excellent accuracy onboard many vehicles. As a result, with-

out knowledge of the global wind profile (or of the precise eddies’ positions

and geometries), the FTC-controlled vehicle finds the most efficient trajectories

achievable by the vehicle based on its dynamic constraints (2.7).

2.5 Minimum-Energy Solutions and Results

The utilization of aerial vehicles, especially small ones, is often limited by the

allowed on-board battery capacity and duration of flight, particularly during

rapid and aggressive maneuvers in extreme windy conditions [18, 215, 64].

Therefore, energy consumption has become an essential performance metric for

small UAV control design. In this benchmark minimum-energy control prob-

lem, a feedback control law is desired to make the vehicle reach and maintain

a desired steady-state velocity, xr “ rvxr vyr s
T , through the cellular flow with

minimum control effort. For comparison, the desired steady-state velocity xr is

chosen to be the mean settling velocity of the ideal fast-tracking particle. The

classic optimal solution to this problem obtained by linear quadratic regula-

tion will be proposed in Section 2.5.1. Then, the performance of FTC will be

demonstrated by comparing with the classic LQR in two different case studies.

In practice, the vehicle’s inertial response time, τv, is not approximately equal to

that of the ideal fast-tracking particle, τm. Therefore, FTC and LQR are imple-

mented and compared for the control of an air vehicle with τv greater than τm in

Section 2.5.2, and an air vehicle with τv smaller than τm in Section 2.5.3, respec-

tively. In the end, based on multiple numerical simulations, the dependence of

the minimum-energy simulation results on the choice of τv with respect to τm is

discussed.
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2.5.1 Comparison with Linear Quadratic Regulator (LQR)

LQR provides an optimal solution to the minimum-energy problem, in which

the control objective is to reach and maintain a desired steady state velocity.

The flow disturbances perpendicular to the desired steady state velocity are

compensated by state feedback control. We first rewrite the two-dimensional

vehicle dynamics (2.7) in the standard state-space form,

9xptq “ Axptq ` Būptq, (2.23)

where ū “ u ` a ` 1
τv

w. Whereas, in the previous section, the cost function

(2.15) was an integral of the difference between the state derivatives of the air

vehicle and the fast-tracking particle, we construct the cost function as a differ-

ent integral here that penalizes both state excursions and control effort for this

particular problem,

J “
1
2

ż t f

t0
rxT

ptqQxptq ` ūT
ptqRūptqs dt (2.24)

where Q “ R “ I2ˆ2. With perfect knowledge of the vehicle state, the desired

feedback control law, ū, can be expressed in terms of the steady-state gain matrix

Cp0q as t f approaches infinity such that,

ūptq “ ´Cp0qxptq ` Krxr

“ ´R´1BT Sp0qxptq ` Krxr

(2.25)

where Sp0q is a solution to the algebraic Riccati equation (ARE),

AT Sp0q ` Sp0qA ´ Sp0qBR´1BT Sp0q ` Q “ 0 (2.26)

and Kr can be chosen to track the reference xr with zero steady-state error [130],

Kr “ ´trA ´ BCp0qs
´1Bu

´1 (2.27)
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In this case, the Riccati matrix solution that guarantees closed-loop asymp-

totic stability is

Sp0q “ ´

˜

´
1
τv

`

d

1
τ2

v
` 1

¸

I2ˆ2 (2.28)

Combining (2.25), (2.27) and (2.28), we can obtain the following acceleration-

based LQR feedback control law,

uptq “ ūptq ´ a ´
1
τv

wptq “ ´

˜

´
1
τv

`

d

1
τ2

v
` 1

¸

xptq `

d

1
τ2

v
` 1 xr ´ a ´

1
τv

wptq

(2.29)

2.5.2 FTC Minimum-Energy Case Study 1

In this case study, FTC and LQR are implemented and compared for the control

of a thrust-driven vehicle with τv ą τm. In simulation, the controlled vehicle

with τv “ 0.21 s traverses the cellular flow with τw “ 0.15 s for 20 seconds.

Additionally, another purely forward-thrust-driven vehicle with the same τv as

the controlled vehicles and an ideal fast-tracking particle with τm “ τw are simu-

lated for comparison. As previously explained in Section 2.3, to keep the control

cost comparable among different control designs and case studies, the horizon-

tal thrust in (2.9) remains unchanged when the vehicle’s inertial response time

changes in different simulations. Therefore, τvax stays the same at 1.5 m/s here.

In this FTC minimum-energy simulation, the fast-tracking particle, the vehicle

purely driven by forward thrust, and FTC-controlled and LQR-controlled vehi-

cles all start from the origin, and their initial velocities are assumed to be zero.

FTC aims to make the air vehicle follow the ideal response of the fast-tracking

particle. The control objective is to make the air vehicle reach and maintain a

desired steady-state velocity, xr “ rvxr vyr s
T , where vxr “ 15.41 m/s and vyr “ 0
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m/s, through the cellular flow with minimum control effort.

Trajectories of the fast-tracking particle with τm “ 0.15 s, and purely thrust-

driven, FTC-controlled and LQR-controlled vehicles with τv “ 0.21 s are com-

pared in Fig. 2.3. They all start from the origin at the same time, go through

a transitional period in the cellular flow, and travel horizontally in the end.

Nevertheless, the LQR-controlled vehicle travels horizontally without any os-

cillations, because its vertical velocity maintains zero all the time to meet the

control objective. The trajectory of the FTC-controlled air vehicle identically

overlaps that of the fast-tracking particle, which demonstrates that the FTC-

controlled air vehicle can perfectly follow the fast-tracking particle with zero

tracking error. They both go through a short transitional period at first, and are

then swept and, thus, readily accelerated into the downward sweeping sides of

eddies. However, the air vehicle purely driven by constant horizontal forward

thrust deviates a little from the desired horizontal direction at first, and takes a

longer transitional time to adapt to the cellular flow conditions.

Figure 2.3: Case study 1: the trajectory comparison of the ideal fast-tracking
particle with τm “ 0.15 s, and purely thrust-driven, FTC-controlled and LQR-
controlled vehicles with τv “ 0.21 s traversing a cellular flow with τw “ 0.15
s demonstrates that the FTC-controlled vehicle can perfectly follow the fast-
tracking particle with zero tracking error.

In Fig. 2.4, the velocity time histories of the fast-tracking particle, and
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the purely thrust-driven, FTC-controlled and LQR-controlled vehicles are com-

pared. The FTC-controlled and LQR-controlled air vehicles both meet the

control objective of reaching and maintaining a desired steady-state velocity,

xr “ rvxr vyr s
T , where vxr “ 15.41 m/s and vyr “ 0 m/s. With the flow distur-

bance compensated, the LQR-controlled air vehicle achieves and maintains the

desired steady-state velocity perfectly with zero tracking error, while the hori-

zontal velocity component, vx, of the FTC-controlled air vehicle oscillates a little

around the desired horizontal steady-state velocity, vxr , due to the periodically

changing flow conditions. At the expense of sacrificing the vehicle’s riding com-

fort, the FTC-controlled vehicle exploits beneficial flow structures and harvests

energy from cellular flows. Additionally, the LQR-controlled air vehicle reaches

vxr faster than the FTC-controlled one. However, the vehicle purely driven by

forward thrust takes a longer transitional time to adapt to the fluctuating flow

conditions. According to Fig. 2.4, the average horizontal velocities of the LQR-

controlled and FTC-controlled air vehicles over the entire period of simulation

are both significantly greater than the vehicle purely driven by forward thrust.

Consequently, both LQR-controlled and FTC-controlled vehicles travel a longer

distance horizontally than the purely thrust-driven vehicle within the same pe-

riod of time.

The objective of this benchmark minimum-energy problem is to use min-

imum control effort. Therefore, the quadratic control usage, given by uT u “

u2
x ` u2

y , of FTC is compared to that of LQR in Fig. 2.5. The total control effort of

a controller is commonly quantified by the integral quadratic control usage C,

which takes the form,

C “

ż t f

t0
uT

ptquptq dt. (2.30)
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Figure 2.4: Case study 1: the comparison of the velocity time histories of FTC-
controlled and LQR-controlled vehicles shows that they both achieve and main-
tain the desired steady-state velocities (vxr and vyr ).

In this case study, over the same period from time t0 “ 0 s to time t f “ 20 s,

the integral quadratic control usage of FTC is C f “ 6.71 ˆ 103 m2/s3, while that

of LQR is Cl “ 1.33 ˆ 105 m2/s3. LQR has much larger control cost than FTC.

To represent the difference of inertial response time between the controlled

air vehicle and the ideal fast-tracking particle, the ratio of inertial response time

is defined as

ητ “
τv

τm
(2.31)

Similarly, to quantify the relative control savings of FTC compared to LQR,

the ratio of total control cost is defined as

ηc “
Cl

C f
(2.32)
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Figure 2.5: Case study 1: the comparison of the FTC and LQR control cost shows
that the FTC-controlled vehicle meets the control objective with much less con-
trol effort than the LQR-controlled one.

Therefore, we can obtain that, in case study 1, the ratio of inertial response

time is ητ “ 1.40, and the ratio of total control cost is ηc “ 19.83.

2.5.3 FTC Minimum-Energy Case Study 2

In this case study, FTC and LQR are implemented for the control of a thrust-

driven vehicle with τv “ 0.075 s ă τm. The cellular flow parameters, control

objective and simulation conditions are all the same as in case study 1. Another

purely forward-thrust-driven vehicle with τv “ 0.075 s and an ideal particle

are also simulated for comparison. To keep the control cost comparable among

different cases, the horizontal thrust Tx, or τvax equivalently, remains the same
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as in case study 1. Trajectories of the ideal particle and purely thrust-driven,

FTC-controlled and LQR-controlled vehicles are compared in Fig. 2.6. Similar

to case study 1, the FTC-controlled vehicle can perfectly follow the ideal particle

with zero tracking error.

Figure 2.6: Case study 2: the trajectory comparison of the ideal fast-tracking
particle with τm “ 0.15 s, and purely thrust-driven, FTC-controlled and LQR-
controlled vehicles with τv “ 0.075 s traversing a cellular flow with τw “ 0.15 s.

In Fig. 2.7, the horizontal velocity and quadratic control usage of the two

controlled vehicles are compared, which shows that both vehicles meet the

velocity tracking control objective. Additionally, the LQR-controlled vehicle

reaches vxr faster than the FTC-controlled one, and its settling time is less than

half of the settling time in case study 1. The purely forward-thrust-driven ve-

hicle behaves similarly in each case study with a much longer settling time and

smaller average settling velocity compared to the controlled vehicles. Over

the same period of simulation, the integral quadratic control usage of FTC is

C f “ 8.22 ˆ 104 m2/s3, while that of LQR is Cl “ 1.04 ˆ 106 m2/s3. Therefore,

LQR has larger control cost than FTC. Accordingly, the ratio of inertial response

time is ητ “ 0.5, and the ratio of total control cost is ηc “ 12.69 in this case.

Through multiple numerical simulations with the ratio of inertial response

time ητ ranging from 0.01 to 500, we find that there is a trade-off between the
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Figure 2.7: Case study 2: the comparison of the horizontal velocity of the ideal
particle and purely thrust-driven, FTC-controlled and LQR-controlled vehicles
and the comparison of the FTC and LQR control cost show that the two con-
trolled vehicles both achieve and maintain the desired horizontal steady-state
velocity, but the FTC-controlled vehicle costs much less control effort.

control savings of FTC and the difference of inertial response time between the

controlled vehicle and the fast-tracking particle. The greater the difference in

the inertial response time, the more control effort will be made by the FTC con-

troller to follow the ideal response of the fast-tracking particle. In Fig. 2.8, the

polynomial fits to the circular and cross data points illustrate how the relative

total control cost, ηc “ Cl{C f , changes as a function of the normalized inertial

response time of the vehicle, ητ “ τv{τm. The relative total control cost, ηc, ap-

proaches infinity when ητ “ 1, because the total control cost of FTC is zero when

the inertial response time of the vehicle is equal to that of the fast-tracking parti-

cle. On the left side of the vertical asymptote at ητ “ 1, all the red cross markers
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correspond with simulations where τv ă τm, and the yellow one represents case

study 2. In this area, the relative total control cost, ηc, is enhanced as the normal-

ized inertial response time, ητ, grows. On the right side of the vertical asymp-

tote at ητ “ 1, all the blue circular markers correspond with simulations where

τv ą τm, and the yellow one represents case study 1. Conversely, in this area, ηc

decreases as ητ grows. Moreover, there exists two horizontal asymptotes for the

polynomial fits: ηc approaches 1.50ˆ10´3 as ητ increases, and approaches 3.19 as

ητ decreases. In addition, the logarithms of the two ratios, ηc and ητ, are approxi-

mately first-order linearly dependent with each other when ητ is roughly within

the range of 2 to 10. All the data points located in the grey shaded area above

the horizontal dashed line at ηc “ 1 correspond with simulations in which the

FTC-controlled air vehicle achieves the control objective with less control effort

than the LQR-controlled one, while those below the dashed line at ηc “ 1 cor-

respond with simulations where FTC costs more control effort than LQR. The

critical point where ηc “ 1 locates approximately at η˚
τ « 2.80. Therefore, be-

low this critical inertial response time ratio, the FTC-controlled vehicle uses less

energy to traverse the cellular flow compared with the LQR-controlled one.

2.6 Minimum-Time Solutions and Results

As UAVs have been widely used, there is an increasing need to extend the range

and endurance of UAV flight in many applications with extremely strict time

limitations, including autonomous medical delivery and emergency response

[23, 173]. In addition to the energy consumption, the cost of time has become

another essential factor to consider for UAV path planning and control. In this

benchmark minimum-time control problem, we aim to find an optimal con-
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Figure 2.8: Log-log plot showing the relative total control cost (ηc) as a function
of the normalized inertial response time of the vehicle (ητ) for τm “ τw. Circular
and cross markers represent simulations corresponding with different ητ, and
the black lines are polynomial fits to these data points. Yellow markers represent
the two simulations chosen as case studies in this section. Data points located
in the grey shaded area correspond with simulations in which FTC costs less
control effort than LQR.

trol law for the air vehicle with τv, such that the controlled vehicle can travel

a desired distance in the horizontal direction, xd, through the cellular flow with

τw “ τm within a minimum time. The optimal solution to this problem, a BBC

control law, will be proposed in Section 2.6.1. Subsequently, the performance of

FTC will be demonstrated by comparing with the optimal BBC solution in Sec-

tion 2.6.2. In the end, based on multiple numerical simulations, the dependence

of the minimum-time simulation results on the choice of τv with respect to τm is

discussed.
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2.6.1 Comparison with Bang-Bang Controller (BBC)

In still fluid, bang-bang control, which requires full use of available control

effort, is the optimal solution to minimum-time problem when the control is

bounded [188]. In this chapter, since the horizontal and vertical motions of the

vehicle are decoupled, we first consider the horizontal vehicle dynamics and

ignore the flow disturbance for simplicity. Additionally, the vertical control in-

put, uy, is assumed to be zero. Assuming that the vehicle state is represented by

x “ rx vxs
T , the horizontal vehicle dynamics can be expressed as

»

—

–

9x

9vx

fi

ffi

fl
“

»

—

–

0 1

0 ´1{τ

fi

ffi

fl

»

—

–

x

vx

fi

ffi

fl
`

»

—

–

0

1

fi

ffi

fl
ûx (2.33)

where ûx “ ux ` ax, and the horizontal control input is assumed to be bounded,

ux “ uxptq, ´u0 ⩽ ux ⩽ u0. (2.34)

To minimize the time to reach the desired horizontal position, xd, the cost

function can be constructed as,

J “

ż t f

t0
1 dt (2.35)

subject to the horizontal vehicle dynamics in (2.33) and boundary conditions,

xpt0q “ vxpt0q “ 0, xpt f q “ xd, vxpt f q “ vxr , (2.36)

where vxr is the horizontal steady-state velocity achieved by the ideal fast-

tracking particle. In general, the optimal control history for this type of

minimum-time problem takes the form [214],

uxptq “

$

’

&

’

%

u0 t0 ⩽ t ⩽ tw

´u0 tw ă t ⩽ t f

(2.37)
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where tw is the switching time, and t f is the terminal time. The control switches

at time tw and only takes the boundary value. Then, the switching time tw and

the terminal time t f can be obtained by solving the constrained optimization

problem formulated above.

2.6.2 FTC Minimum-Time Case Study 3

In this case study, FTC and BBC are implemented and compared for the control

of a thrust-driven vehicle with τv “ 0.225 s traversing a cellular flow with τw “

0.15 s. In the simulation, the FTC-controlled and BBC-controlled vehicles both

start from the origin with zero initial velocity, and the control is assumed to

be bounded: ´u0 ⩽ ux ⩽ u0, where u0 “ 8 m/s2. The control objective is to

make the air vehicle travel a desired distance in the horizontal direction, xd “

15m, through the cellular flow using minimum time. FTC-controlled air vehicle

achieves this objective by following the ideal response of a fast-tracking particle

with τm “ τw.

By solving the constrained optimization problem with the flow disturbance

ignored in Section 2.6.1, we find that, if the control switches at time tw “ 6.54 s,

the BBC-controlled air vehicle can reach the desired horizontal position at time

t f “ 6.55 s in still fluid. Although we neglect the flow disturbance for simplicity

when deriving the optimal bang-bang control law, the flow effects on the air

vehicle are still considered in the simulation. As shown in Fig. 2.9, both the FTC-

controlled and BBC-controlled air vehicles start at the same time from the origin,

go through a transitional period in the cellular flow, and travel horizontally in

the end. However, compared to the FTC-controlled one, the BBC-controlled air
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vehicle significantly deviates from the desired horizontal direction at first, and

takes a longer transitional time to reach an approximate equilibrium state.

Figure 2.9: Case study 3: the trajectory comparison of the FTC-controlled and
BBC-controlled vehicles with τv “ 0.225 s traversing a cellular flow with τw “

0.15 s demonstrates that both vehicles achieve the control objective of reaching
a desired horizontal position, xd “ 15 m.

Fig. 2.10 shows the horizontal velocity and position time histories of the

FTC-controlled and BBC-controlled air vehicles. The time-average horizon-

tal velocity of the BBC-controlled air vehicle is smaller than that of the FTC-

controlled one. Consequently, in the simulation, the FTC-controlled air vehicle

reaches the desired position, xd “ 15 m, at time ta “ 2.47 s, while the BBC-

controlled one reaches the desired position at time tb “ 5.09 s. Even though

bang-bang control law is the optimal solution to the benchmark minimum-time

problem for bounded control inputs, the FTC-controlled air vehicle achieves the

control objective of reaching a desired horizontal position through the cellular

flow using less time compared to the BBC-controlled one.

The comparison of the quadratic control usage, uT u “ u2
x ` u2

y , of FTC and

BBC is shown in Fig. 2.11. Given that the FTC-controlled and BBC-controlled

vehicles travel the same desired horizontal distance, the integral quadratic con-

trol usage of FTC over the entire period from time t0 “ 0 s to time ta “ 2.47 s
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Figure 2.10: Case study 3: the comparison of horizontal velocity and position
time histories of the FTC-controlled and BBC-controlled vehicles shows that the
FTC-controlled vehicle reaches the desired horizontal position much faster than
the BBC-controlled one.

is C f “ 266.73 m2/s3, while the integral quadratic control usage of BBC over

the entire period from time t0 “ 0 s to time tb “ 5.09 s is Cb “ 325.89 m2/s3.

The comparison of FTC and BBC performance is shown in Table 2.1. Compared

to the BBC-controlled one, the FTC-controlled air vehicle achieves the control

objective of reaching a desired horizontal position through the cellular flow not

only within a smaller period of time, but also with less control effort.

Table 2.1: Case study 3: the comparison of FTC and BBC performance.

Controller t f (s) x(t f ) (m) C (m2/s3)
FTC 2.47 15.00 266.73
BBC 5.09 15.00 325.89

In this case study, the ratio of inertial response time is ητ “ 1.5. Similarly,
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Figure 2.11: Case study 3: the comparison of the FTC and BBC quadratic control
usage.

to quantify the relative time savings of FTC compared to BBC, the ratio of total

time is defined as

ηt “
tb

ta
“ 2.06 (2.38)

where ta denotes the total time spent by the FTC-controlled vehicle to reach the

desired horizontal position, and tb denotes that of the BBC-controlled vehicle.

To analyze how the ratio of total time, ηt, changes as a function of the normal-

ized inertial response time of the vehicle, ητ, we perform multiple numerical

simulations with ητ ranging from 0.1 to 10. As shown in Fig. 2.12, all the data

points located in the grey shaded area above the horizontal dashed line at ηt “ 1

correspond with simulations in which the FTC-controlled vehicle spends less

time traversing the flow compared with the BBC-controlled one. The critical

point where ηt “ 1 locates approximately at η˚
τ « 6. The yellow circular marker

represents the simulation chosen as the case study in this section. As ητ in-

creases, ηt grows at first, reaches a maximum, and then starts to decrease when

ητ « 3.5. Moreover, there exists a horizontal asymptote for the polynomial fit: ηt

approaches 0.8 as ητ keeps increasing.
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Figure 2.12: The ratio of total time (ηt) as a function of the normalized inertial
response time of the vehicle (ητ) for τm “ τw is shown by performing many
simulations (circular markers) corresponding to different values of ητ, and by
performing a polynomial fit (black line) demarking case studies in which FTC
uses less time than BBC (grey shaded area).
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CHAPTER 3

FLOW PARAMETER ESTIMATION

3.1 Introduction

Inspired by particle transport theory [5] and related experiments with water

droplets settling in air turbulence [73], we have recently developed a new fast-

tracking-particle-inspired flow-aided control approach for air vehicles travers-

ing turbulent flows [223, 18]. As presented in Chapter 2, this FTC control design

allows the vehicle to exploit beneficial flow structures, thereby reducing the cost

of time and energy to traverse turbulent flows. However, the method requires

prior knowledge of the vortex timescale of the turbulent flow. In this chapter,

techniques to estimate the turbulent flow parameters, including the mean veloc-

ity and vortex length scale and timescale, using noisy on-board measurements

obtained from air vehicles traversing turbulent flows will be presented.

Estimating the flow structures of wind and ocean currents helps to guaran-

tee the safety, robustness and efficiency of vehicle navigation in highly turbu-

lent environments [217, 66]. Researchers have already successfully estimated

the velocity profiles of wind and water fields using the vehicle’s correspond-

ing dynamic responses [106, 156]. Based on the measured flow velocity data,

a flow-aided path planning algorithm is developed for unmanned underwater

vehicle (UUV) navigation in turbulent ocean currents [182]. To minimize the

time or energy consumption of a path planner, beneficial flow structures are of-

ten intentionally taken advantage of, while disadvantageous flow structures are

usually evaded by autonomous vehicles [121]. In addition, a wind disturbance

estimation algorithm is developed for quadcopters, and the estimated data is
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then used to optimize the position control and wind disturbance compensation

systems [208]. However, most of these existing flow estimation approaches for

wind and ocean currents focus primarily on computing the precise flow velocity

components, which have large measurement errors and require high computa-

tional cost [80, 110].

Turbulent flow structures can be characterized by some key flow parame-

ters, including the mean velocity, the vortex timescale and the vortex length

scale [146]. In this chapter, we focus on developing a method to estimate these

turbulent flow parameters, and validating it on a two-dimensional cellular flow

model. However, this method can be potentially extended to other complex tur-

bulence models. Without prior information of the exact flow parametric model,

the novelty of this work is to only estimate the key flow parameters by deter-

mining the weights that represent which candidate functions are active in the

nonlinear dynamical equations via SINDy. To approximate an unknown dy-

namic model, SINDy is a computationally efficient approach that considers the

unknown nonlinear function as a sparsely weighted combination of all poten-

tial user-defined candidate functions, such as constant, polynomial and trigono-

metric terms [97]. The weights are then determined by solving separate opti-

mization problems [20]. Until now, SINDy has been demonstrated to perform

extremely well in identifying various classical ordinary differential equation

(ODE) and partial differential equation (PDE) models in fluid dynamics, such

as the Lorenz deterministic nonperiodic flow model [115] and the PDE model

for the cylinder wake [134].

This chapter is organized as follows. In Section 3.2, relevant background

knowledge on SINDy is introduced. The problem of estimating the flow pa-
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rameters based on noisy on-board measurements of an air vehicle traversing

cellular flows without prior knowledge of the exact flow parametric model is

formulated in Section 3.3. Section 3.4 illustrates an approach to estimate the

flow parameters via SINDy. In Section 3.5, the proposed method is validated

on different measurement data sets with various initial conditions and flow pa-

rameters, and numerical simulation results are correspondingly presented.

3.2 Background on Sparse Identification of Nonlinear Dynam-

ics (SINDy)

In this chapter, the SINDy-based flow parameter estimation algorithms are vali-

dated on a two-dimensional cellular flow model as introduced in 2.2.2. SINDy is

a method that identifies an unknown nonlinear dynamical equation as a sparse

combination of all potential user-defined candidate functions [20]. In general,

we first consider a nonlinear dynamical equation of the form,

9xptq “ frxptqs, xpt0q “ x0 (3.1)

where x P Rn is the state of the dynamical system, f is a nonlinear function, and

x0 is the initial condition. To sparsely identify the function f based on noisy

on-board measurements, the state x and the state derivative 9x are sampled at

times t1, t2, ¨ ¨ ¨ , tm, and then arranged into matrices, X P Rmˆn and 9X P Rmˆn,

respectively,

X “ rxpt1q xpt2q ¨ ¨ ¨ xptmqs
T (3.2a)

9X “ r 9xpt1q 9xpt2q ¨ ¨ ¨ 9xptmqs
T (3.2b)
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We then construct a set of candidates ΘpXq P Rmˆk containing k user-defined

candidate functions, each column of which represents the sampled values of the

corresponding candidate function at times t1, t2, ¨ ¨ ¨ , tm:

ΘpXq “

„

f1pXq f2pXq ¨ ¨ ¨ fkpXq

ȷ

(3.3)

where the potential candidate functions are denoted as fi, i “ 1, 2, ¨ ¨ ¨ , k. After

that, separate optimization problems can be formulated to identify the relative

importance of these candidate functions by determining the sparse coefficients

in the weight matrix W:

9X “ ΘpXqW (3.4)

where W P Rkˆn is the weight matrix representing the active level of candidate

functions in the unknown nonlinear dynamics [97]. Therefore, SINDy can deter-

mine the weight matrix W by solving optimization problems via linear regres-

sion, and approximate the nonlinear function f that maps the state x to the state

derivative 9x as a sparsely weighted linear combination of candidate functions.

3.3 Problem Formulation

Given a thrust-driven air vehicle traversing a cellular flow with mean velocity

U0 and vortex length scale Lw, we consider the problem of estimating the flow

parameters p “ rU0 LwsT from noisy flight data, including the vehicle state x P Rn

and the vehicle state derivative 9x P Rn, collected at times t1, t2, ¨ ¨ ¨ , tm in the form,

9xptiq “ frxptiq; ps ` nptiq, i “ 1, 2, ¨ ¨ ¨ ,m (3.5)

where the nonlinear function f represents the vehicle dynamics, and the process

noise n P Rn is modeled as a vector of independent and identically distributed
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zero-mean Gaussian noise. In this chapter, the vehicle state x is assumed to be

fully measurable, and the state derivative 9x is then numerically estimated using

finite difference approximation. If this assumption is not met and derivatives

cannot be estimated using finite differences, an optimal on-board state estimator

can be used instead [56]. Sampled vehicle states x and state derivatives 9x at

times t1, t2, ¨ ¨ ¨ , tm are then arranged into matrices, X P Rmˆn and 9X P Rmˆn,

respectively.

Based on prior basic knowledge of the cellular flow characteristics, we con-

struct a set of candidatesΘpXq P Rmˆk containing k user-defined candidate func-

tions. The nonlinear vehicle dynamics f is then approximated as a sparsely

weighted linear combination of all potential user-defined candidate functions:

9X “ ΘpXqW ` N (3.6)

where W P Rkˆn is the weight matrix representing the active level of candidate

functions, and the noise N P Rmˆn is modeled as a matrix of independent and

identically distributed zero-mean Gaussian noise. After that, we set up n sep-

arate optimization problems to identify the relative importance of these candi-

date functions by determining the sparse column vectors of coefficients w j P Rk

in the weight matrix W:

w j “ argmin
w j

} 9x j ´Θpx jqw j}
2
2, j “ 1, 2, ¨ ¨ ¨ , n (3.7)

where x j and 9x j are the jth column of the sampled matrices X and 9X respec-

tively. The unknown vector of cellular flow parameters p “ rU0 LwsT can then

be identified by analyzing the weights statistically based on prior knowledge

of the cellular flow characteristics and vehicle dynamics. Here, we assume that

the cellular flow parameters U0 and Lw are both unknown bounded constants,

so there exist a lower bound and an upper bound for both flow parameters.
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3.4 SINDy-Based Flow Parameter Estimation

The flow parameter estimation algorithms presented in this chapter contain four

essential steps: collecting the flight data from numerical simulations, construct-

ing a set of potential candidate functions, solving sparse optimization problems

to identify the active candidate functions in the nonlinear dynamics, and esti-

mating the flow parameters statistically. In this chapter, the parameter estima-

tion algorithms are developed and validated on a point-mass thrust-driven air

vehicle model, as described in Subsection 3.4.1. The flight data is simulated ac-

cording to this air vehicle model. Then, the procedure for constructing a set of

potential candidate functions based on prior knowledge of the target problem

is presented in Subsection 3.4.2. Finally, in Subsection 3.4.3, sparse optimiza-

tion problems are formulated in order to determine the active level of candidate

functions, followed by the corresponding statistical analysis and parameter es-

timation.

3.4.1 Aerial Vehicle Model and Flight Data Simulation

There is a significant precedent for treating autonomous vehicles, such as fixed-

wing aircraft [32, 79], quadcopters [148, 147] and unmanned ground robots [10,

176], as point masses. In this chapter, the assumption of treating an air vehicle

traversing a cellular flow as a point mass holds when the order of magnitude

of the vehicle size L is much smaller than that of the vortex length scale Lw of

the cellular flow. Inspired by the dynamics of spherical inertial particles [124],

the two-dimensional governing equation for the dynamics of a thrust-driven
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point-mass air vehicle of mass m and size L takes the form,

m 9vptq “ ´3πLµrvptq ´ wptqs ` T (3.8)

where v P R2 is the velocity of the air vehicle, µ is the dynamic viscosity of sur-

rounding fluid, w P R2 is the flow velocity, and T P R2 is a constant thrust. In this

model, the air vehicle is subject to a linear Stokes drag force. This assumption

holds when the flow is incompressible and the vehicle size is sufficiently small

so that the Reynolds number for the vehicle traversing the flow is smaller than

one. The inertial response time τ of the vehicle to changes in surrounding flow

conditions is given by

τ ”
m

3πLµ
(3.9)

Therefore, combining (3.8) and (3.9), the ideal two-dimensional dynamic

model of the point-mass air vehicle driven by a constant thrust can be rear-

ranged as

9vptq “
1
τ

rwptq ´ vptqs ` at (3.10)

where at “ 1
mT “ rax ays

T is the acceleration produced by the constant thrust T.

Based on the cellular flow model in (2.5), the flow velocity can be written as a

periodic function Φ of the vehicle’s position x and y, given the flow parameters

p “ rU0 LwsT :

Φpx, y; pq “

»

—

–

wx

wy

fi

ffi

fl
“ U0

»

—

–

f1px, y; Lwq

f2px, y; Lwq

fi

ffi

fl
(3.11)

where Φ is an unknown sparse function in the space of all potential candidate

functions, and f1 and f2 are unknown periodic functions. Given that the max-

imum magnitude of the flow velocity cannot exceed U0, the maximum ampli-

tudes of f1 and f2 are both
?

2{2. Combining (3.10) and (3.11), the dynamic
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model of a point-mass thrust-driven air vehicle with the inertial response time

τ traversing a cellular flow with the mean velocity U0 and vortex length scale Lw

can be written in standard state-space form,

9x “

»

—

—

—

—

—

—

—

–

0 0 1 0

0 0 0 1

´1
τ

0 0 0

0 ´1
τ

0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

x `
U0

τ

»

—

—

—

—

—

—

—

–

0

0

f1px, y; Lwq

f2px, y; Lwq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

—

—

–

0

0

ax

ay

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(3.12)

where x “ rx y vx vys
T P R4 is the state vector, and ax and ay are the horizontal

and vertical components of the acceleration produced by constant thrust. In

numerical simulations, the vehicle state x is collected at times t1, t2, ¨ ¨ ¨ , tm`1,

and the state derivative 9x is then numerically estimated using finite difference

approximation:

9xptiq “
xpti`1q ´ xptiq

ti`1 ´ ti
, i “ 1, 2, ¨ ¨ ¨ ,m (3.13)

A more accurate alternative is to use an optimal estimator for the state deriva-

tive estimation, but this is also more computationally expensive. The vehicle

states x and state derivatives 9x collected at times t1, t2, ¨ ¨ ¨ , tm are then arranged

into matrices, X P Rmˆ4 and 9X P Rmˆ4, respectively:

X “

„

X1 X2 X3 X4

ȷ

“

»

—

—

—

—

—

—

—

–

x1pt1q x2pt1q x3pt1q x4pt1q

x1pt2q x2pt2q x3pt2q x4pt2q

...
...

...
...

x1ptmq x2ptmq x3ptmq x4ptmq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(3.14a)

9X “

„

9X1 9X2 9X3 9X4

ȷ

“

»

—

—

—

—

—

—

—

–

9x1pt1q 9x2pt1q 9x3pt1q 9x4pt1q

9x1pt2q 9x2pt2q 9x3pt2q 9x4pt2q

...
...

...
...

9x1ptmq 9x2ptmq 9x3ptmq 9x4ptmq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(3.14b)
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where Xi P Rm and 9Xi P Rm, i “ 1, 2, 3, 4, are the sampled time histories of the

four states and state derivatives respectively.

3.4.2 Candidate Functions

SINDy approximates the nonlinear equation as a sparsely weighted linear com-

bination of user-defined candidate functions. As a fist step, we construct a

group of candidate functionsΘpXq based on prior basic knowledge of the target

problem. As introduced in Section III, the vortex length scale Lw is defined as the

vortex’s turnover time in the cellular flow. Since the unknown equations f1 and

f2 in (3.11) are both periodic functions of position x and y in the world frame,

the ultimate candidate function fcand should be in the set of functions containing

trigonometric terms with a period of 2Lw or the product of them:

fcand P tsin
πx
Lw
, sin

πy
Lw
, cos

πx
Lw
, cos

πy
Lw
, sin

πx
Lw

sin
πy
Lw
,

sin
πx
Lw

cos
πy
Lw
, cos

πx
Lw

sin
πy
Lw
, cos

πx
Lw

cos
πy
Lw

u

(3.15)

Given that the vortex length scale Lw is a constant within the range from a

lower bound Llb to an upper bound Lub, the ultimate candidate length scale Lcand

should be in the following set containing all potential discretized length scales:

Lcand P tLlb, Llb ` dL, Llb ` 2dL, ¨ ¨ ¨ , Lubu (3.16)

where dL is the incremental length scale. After choosing candidate trigonomet-

ric functions and length scales, we can obtain the complete library of candidate
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functions ΘpXq containing all potential candidates:

ΘpXq “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

sin p π
Lcand

X1q
T

sin p π
Lcand

X2q
T

cosp π
Lcand

X1qT

cosp π
Lcand

X2qT

rsinp π
Lcand

X1q b sinp π
Lcand

X2qsT

rsinp π
Lcand

X1q b cosp π
Lcand

X2qsT

rcosp π
Lcand

X1q b sinp π
Lcand

X2qsT

rcosp π
Lcand

X1q b cosp π
Lcand

X2qsT

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

T

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

sinp π
Llb

X1qT

sinp π
Llb`dLX1qT

...

sinp π
Lub

X1qT

...

rcosp π
Llb

X1q b cosp π
Llb

X2qsT

rcosp π
Llb`dLX1q b cosp π

Llb`dLX2qsT

...

rcosp π
Lub

X1q b cosp π
Lub

X2qsT

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

T

(3.17)

where X1 P Rm and X2 P Rm are the sampled time histories of the vehicle po-

sition x and y at times t1, t2, ¨ ¨ ¨ , tm respectively, and the symbol b represents

element-wise multiplication. Each column of ΘpXq represents the sampled val-

ues of the corresponding candidate function at times t1, t2, ¨ ¨ ¨ , tm. In (3.17), each

type of trigonometric candidate functions corresponds with the same number of

elements as the set of all potential discretized length scales. For convenience, in

the next subsection, the ith trigonometric candidate function in (3.15) is denoted

as fcandi , and the jth candidate length scale in (3.16) is denoted as Lcand j . It should

be noted that choosing the range of Lcand and the incremental length scale dL

is essential, because the size of candidate function set ΘpXq cannot exceed the

length of measurement data set in order to make the formulated optimization

problems solvable.
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3.4.3 Optimization and Parameter Estimation

Given the user-defined candidate function set ΘpXq, we set up n separate opti-

mization problems to identify the relative importance of these candidate func-

tions by determining the sparse column vectors of coefficients w j in the weight

matrix W via least squares [20]:

w j “ argmin
w j

} 9x j ´Θpx jqw j}
2
2, j “ 1, 2, ¨ ¨ ¨ , n (3.18)

where x j and 9x j are the jth column of the sampled matrices X and 9X respec-

tively. Each element of W, denoted as wp fcandi , Lcand jq, corresponds with the ith

candidate function and the jth candidate length scale. Then, all weights corre-

sponding to a certain Lcand j are summed up, and the estimated length scale L̂w is

the candidate length scale with the highest weight sum:

L̂w “ argmax
Lcand j

ÿ

i

wp fcandi , Lcand jq (3.19)

Given the ultimate goal to estimate the flow parameters U0 and Lw, it is not

necessary to identify the exact form of periodic functions f1 and f2. After ob-

taining the estimated length scale L̂w, we update the set of candidate functions

accordingly. The updated set of candidates, denoted asΘ˚, contains all periodic

candidate functions with L̂w only. Therefore, the size of the updated candidate

set Θ˚ is significantly smaller than that of the original Θ. Using SINDy, we can

obtain the expected periodic functions, denoted as f̄1 and f̄2, by calculating the

weighted sum of all periodic candidate functions with non-zero weights. Given

that the maximum magnitude of the flow velocity cannot exceed U0, the max-

imum amplitudes of identified f1 and f2 should both be
?

2{2. Hence, both

expected periodic functions f̄1 and f̄2 have to be normalized to meet this re-
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quirement:

f ˚
i “

?
2 ¨

f̄i ´ 1
2rmaxp f̄iq ` minp f̄iqs

maxp f̄iq ´ minp f̄iq
, i “ 1, 2 (3.20)

where f ˚ is the normalized periodic function, and f̄ is the expected periodic

function. Plugging the normalized periodic function f˚ “ r f ˚
1 f ˚

2 sT back in (3.11),

we can obtain the flow velocity components in the form,

ΦpXq “ U0f˚
pXq (3.21)

where X contains sampled vehicle states, and ΦpXq is obtained from sampled

vehicle state derivatives based on prior basic knowledge of the cellular flow

characteristics and the vehicle dynamics in (3.12). Then, U0 can be estimated by

averaging the coefficients in front of the normalized periodic function f˚pXq:

Û0 “ xΦpXqrf˚
pXqs

´1
y (3.22)

Given the estimated mean velocity Û0 and vortex length scale L̂w, the estimated

vortex timescale τ̂w can then be calculated as

τ̂w “
L̂w

Û0
(3.23)

3.5 Parameter Estimation Results

In numerical simulations, the capability of the presented method to estimate

the mean velocity U0, the vortex length scale Lw and the vortex timescale τw of

the cellular flow is demonstrated by testing the algorithms on different simu-

lated data sets with various flow parameters and initial conditions. First, the

performance of parameter estimation algorithms is validated on a simulated air

vehicle traversing a cellular flow with the mean velocity U˚
0 “ 15.43 m/s, the
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vortex length scale L˚
w “ 4.21 m and the vortex timescale τ˚

w “ L˚
w{U˚

0 “ 0.27 s

with a randomized initial position and zero initial velocity. It is assumed that

the vortex length scale L̂w to estimate is a constant within the range from a lower

bound Llb “ 1 m to an upper bound Lub “ 12 m. The incremental length scale

dL is chosen to be 0.2 m. As shown in Fig. 3.1, the estimated vortex length

scale with the highest weight is L̂w “ 4.20 m. The corresponding estimated

mean velocity is Û0 “ 15.95 m/s, and the resultant estimated vortex time scale

is τ̂w “ L̂w{Û0 “ 0.26 s. All three estimated cellular flow parameters are close

to their true values. Table 3.1 shows that, with reasonable restrictions on the

range of Lcand and careful choice of incremental length scale dL, the cellular flow

parameters U0, Lw and τw can be estimated accurately within a range of error

around ˘4% for this simulation.

Figure 3.1: Weights of the candidate length scales Lcand ranging from a lower
bound Llb “ 1 m to an upper bound Lub “ 12 m. The estimated vortex length
scale with the highest weight is L̂w “ 4.20 m.

To evaluate the overall performance, the parameter estimation algorithms

are then validated on simulated thrust-driven air vehicles with different initial

conditions traversing cellular flows with different parameters. Among 95 mea-

surement data sets, the vortex timescale τ˚
w of the cellular flow is equally spaced
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Table 3.1: Comparison of the true and estimated values of the cellular flow pa-
rameters.

U0 (m/s) Lw (m) τw (s)
True Value 15.43 4.21 0.27

Estimated Value 15.95 4.20 0.26
Percentage Error (%) 3.37 -0.24 -3.70

within the range from 0.05 s to 1 s, and the vortex length scale L˚
w is a random

number. Additionally, the vehicle’s initial position is randomized, and its initial

velocity is set to zero. The overall performance is shown in Fig. 3.2. At most

times, the vortex timescale τ̂w, the vortex length scale L̂w and the mean veloc-

ity Û0 can be estimated accurately with a few outliers arising possibly due to

measurement noise and inaccuracy caused by estimating the state derivatives

via finite difference approximation. Furthermore, when testing the algorithms

on simulated data sets with smaller vortex timescales τ˚
w, the deviations of the

estimated vortex length scales L̂w and mean velocities Û0 from their true values

increase. However, some data points in Fig. 3.2 show that deviated estima-

tions of the vortex length scale L̂w and mean velocity Û0 are correlated so that

their ratio yields relatively good estimations of the vortex timescale τ̂w. With 95

different simulations and validation tests, the average absolute errors and per-

centage errors of the three cellular flow parameters are listed in Table 3.2 below.

After comparing their average percentage errors, we draw the conclusion that

our new parameter estimation algorithms can estimate the vortex length scale

L̂w more accurately than the vortex timescale τ̂w and mean velocity Û0.

Table 3.2: Average absolute and percentage errors of cellular flow parameters.

U0 (m/s) Lw (m) τw (s)
Absolute Error -4.43 -0.17 0.10

Percentage Error (%) -18.80 -5.91 33.30
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Figure 3.2: Overall performance of the parameter estimation algorithms on dif-
ferent simulated data sets. In general, the vortex timescale τ̂w, the vortex length
scale L̂w and the mean velocity Û0 can be accurately estimated with only a few
outliers arising.
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CHAPTER 4

KERNEL-BASED NEURAL DECODING

4.1 Introduction

In addition to particle transport theory presented in Chapter 2, MAV sensing

and control strategies can be extracted from biological systems. Nervous sys-

tems of animals can integrate information from multiple sensory modalities,

and make rapid and coherent behavioral decisions in complex environments

[122, 11]. However, most existing artificial intelligence systems rely on rich

but separate modalities of sensory feedback. Typically, they are poorly inte-

grated and predetermined for particular tasks, such as object recognition, action

recognition and target tracking [185, 45, 228]. Therefore, there is a massive un-

tapped opportunity for us to reverse-engineer the neural control system that

bridges sensory perception and motor control of complex animal behaviors.

However, neural decoding has been considered one of the biggest challenges

in reverse-engineering the neuromorphic perception and control systems in na-

ture [95, 86], because sensory signals are encoded in low-dimensional neural

activities [62], and sparsity and compressive sensing are essential for biological

decision-making processes [63]. To extract nonlinear dynamic control strate-

gies from biological neural systems and approximate them via spiking neural

network (SNN), we need to decode useful continuous-time signals from spike

trains, and use them for downstream control inputs [38, 231].

Spike train decoding is a mathematical problem of inferring external stim-

uli or biological control signals encoded in sequences of spike timings [19, 103].

It is fundamental and essential for determining the complete biological neural
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control system that bridges sparse sensory codes and motor control [203, 26].

However, there is still a debate in the neuroscience community on how sensori-

motor information is encoded in spike trains. The traditional rate coding scheme,

where information is encoded in average firing rate, is well-accepted and has

been shown in many different sensory and motor circuits [2, 88]. However, it

assumes that most information is encoded in average firing rate, and does not

take into account any precise spike timing information [37]. As demonstrated

in [153, 155], spike timing encodes more information of a hawk moth’s turning

behavior than spike count in tethered flight, and is essential for the coordination

of muscle pairs. In addition to the rate coding, more recent studies have identi-

fied and shown evidence for temporal coding, which employs temporal features,

such as temporal difference, time to the first spike and phase of firing, to un-

cover the mapping from temporal patterns of spikes to continuous representa-

tions [195, 102, 172, 84]. There is growing evidence that relative spike timing

information is essential for uncovering the whole biological motor program,

including the correlation between neuron pairs. These traditional approaches

mentioned above do not actually capture the extra information encoded in the

relative spike timings between correlated spike trains [153, 133].

In recent years, kernel tricks have been borrowed from the machine learn-

ing community and widely used by neuroscientists to represent spike trains as

objects in Hilbert space, and decode the neural signals using well-developed

regression methods [137, 140, 111]. In [137], the author proposed a reproducing

kernel Hilbert space (RKHS) framework that uses an instantaneous kernel to de-

termine similarities between single spike trains directly. This RKHS framework

can be formulated by many types of spike train kernel designs, including count

kernels [140], linear functional kernels [169], and nonlinear functional kernels
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[139]. Gaussian process regression, which assumes a prior Gaussian distribu-

tion with its covariance given by the kernel, has also been widely used for spike

train decoding [170, 212]. One distinct disadvantage of these kernel-based spike

train decoding methods is that they only capture the difference of either spike

counts or exact spike timings between spike trains from different motor units,

and will not perform well especially when the spike trains correlate with each

other.

A hawk moth is an ideal small insect to test the importance of relative spike

timing information for neural control, due to unprecedented access through

electromyography (EMG) recordings to all the neural signals that control their

flight muscles. These insect fliers use only 10 muscles, 5 per wing, to execute

robust and agile flight in unsteady environments, which likely put extreme de-

mands on their neural control systems. More importantly, relative spike timing

is coordinated across every muscle in the moth’s flight control [153]. Hawk

moths also integrate multiple sensory modalities to execute this control [165].

In this chapter, we aim to discover the neural control policy for the flight of

a tethered hawk moth visually tracking a moving robotic flower as shown in

Fig. 4.1, which is an ecologically relevant behavior that moths can execute in-

nately without learning. Unlike the traditional kernel-based approaches sum-

marized above, the new RKHS framework proposed in this chapter is based on

the kernel evaluation between every pair of correlated spike trains across the

population. The novelty of this new relative-time kernel design is that it allows

to take into account both single spike train patterns and relative spike timing

information among multiple neurons for the first time.

This chapter is organized as follows. Section 4.2 first introduces how we col-
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Figure 4.1: Picture of a hawk moth visually tracking a moving robotic flower
while tethered to a custom 6-axis F/T transducer.

lect the spike train and control signal data in flower tracking experiments. The

spike train decoding problem is then formulated in this section, along with its

basic assumptions. The new relative-time kernel design that considers the extra

information encoded in relative spike timings among multiple neurons is pre-

sented in Section 4.3. In Section 4.4, the performance of the relative-time-kernel-

based spike train decoder is demonstrated by comparing to that of benchmark

instantaneous-kernel-based and rate-based decoders.

4.2 Problem Formulation

In our experiments, hawk moths (N “ 7) visually track a robotic flower that

oscillates horizontally with a 1-Hz sinusoidal trajectory while tethered to a cus-

tom 6-axis F/T transducer. The sampling rate for the experiments is 104 Hz,

and hawk moths in tethered flight have wing strokes of approximately 50 ms in

length. This flower tracking experiment creates a variety of turning forces and

torques, because there are about 20 wing strokes per flower oscillation. In this

chapter, we aim to uncover the precise mapping from the recorded spike trains
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of the 10 primary muscles actuating the moth wings to the resulting forces and

torques on the body. More details on the experimental platform and data collec-

tion can be found in [153]. The forces and torques, y P R6, are collected at times

t1, t2, ¨ ¨ ¨ , tn, and then arranged into a matrix, Y P Rnˆ6, such that

Y “ rypt1q ypt2q ¨ ¨ ¨ yptnqs
T (4.1)

To map a spike train containing a sequence of spike times to a continuous

variable that can be used for regression, we represent the sequence of spike

times as a binned spike train that is changing over time as an user-defined slid-

ing window moves [33, 74, 167]. The larger the bin size, the more information

will be stored in the binned spike trains. However, the regression algorithm will

also become more computationally expensive. For muscle i, the spike times ti
k

within a certain bin size T before time t are stored in a binned spike train,

Xi
ptq “ tti

k P pt ´ T, tsu, i “ 1, 2, ¨ ¨ ¨ , 10 and k P N˚ (4.2)

where k represents spike indices. Similar to the forces and torques in (4.1), the

binned spike trains of 10 primary flight muscles are then collected at times t1, t2,

¨ ¨ ¨ , tn, and arranged into a matrix, X P Rnˆ10, such that

X “

»

—

—

—

—

—

—

—

–

xT pt1q

xT pt2q

...

xT ptnq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

–

X1pt1q X2pt1q ¨ ¨ ¨ X10pt1q

X1pt2q X2pt2q ¨ ¨ ¨ X10pt2q

...
...

. . .
...

X1ptnq X2ptnq ¨ ¨ ¨ X10ptnq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(4.3)

where xptq “ rX1ptq X2ptq ¨ ¨ ¨ X10ptqsT denotes the output signal vector containing

10 binned spike trains at any given time t. In this chapter, we consider the

problem of determining the decoding function, f˚, that minimizes the difference
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between the predicted and true resulting forces and torques on the moth body,

f˚
“ argmin

fPH

t

n
ÿ

i“1

›

›yptiq ´ frX1
ptiq, X2

ptiq, ¨ ¨ ¨ , X10
ptiqs

›

›

2
2 ` λ}f}

2
H

u (4.4)

where H denotes the Hilbert space, and λ is a tuning parameter for penalized

regression.

4.3 Kernel Design

In general, a reproducing kernel Hilbert space (RKHS) can be defined by a sym-

metric and positive definite Mercer kernel. The input sample, X, is first mapped

to the RKHS as a function, KpX, ¨q, obtained by fixing the first coordinate. Then,

the inner product of two functions in the RKHS can be computed by a kernel

evaluation in the input space,

xX|X1
yH “ KpX, X1

q (4.5)

which brings computational simplicity. In our spike train decoding problem,

given a set of binned spike trains, Xi “ tti
k : k “ 1, 2, ¨ ¨ ¨ ,miu, i “ 1, 2, ¨ ¨ ¨ , 10,

from 10 different primary muscles respectively, every pair of binned spike

trains, Xi and X j, can be represented as a sum of two-dimensional Dirac delta

functions,

xi jpσ, τq “
ÿ

ki,k j

δpσ ´ ti
ki
, τ ´ t j

k j
q (4.6)

which can then be converted to a continuous multivariate function by convolv-

ing with a filter h,

fi jpσ, τq “ xi j ˚ h “
ÿ

ki,k j

hpσ ´ ti
ki
, τ ´ t j

k j
q (4.7)
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where i and j denote two different muscles, and k represents spike indices. In

this chapter, we choose a two-dimensional Gaussian filter h for the convolution

in (4.7),

hpvq “ expp´
1
2

vTΣ´1vq (4.8)

where v denotes the mean vector, and Σ denotes the covariance matrix. For

illustration purposes, Fig. 4.2 shows three binned spike trains, Xi “ tti
k : k “

1, 2, ¨ ¨ ¨ ,miu, i “ 1, 2, 3, collected in our flower tracking experiment. If we take

two binned spike trains, X1 and X3, for example, the continuous multivariate

function containing the information of relative spike times between these two

spike trains can be represented by a two-dimensional Gaussian distribution as

shown in Fig. 4.3.

Figure 4.2: An example of three binned spike trains containing the information
of exact spike times.

For RKHS regression, the kernel evaluation between two pairs of spike trains
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Figure 4.3: An example of the multivariate Gaussian distribution containing the
information of relative spike times between spike trains, X1 and X3.

can be defined as,

KpXi j, Xi j1
q “ x fi j| f 1

i jy “

ż T

0

ż T

0
fi jpσ, τq f 1

i jpσ, τqdσdτ (4.9)

where Xi j denotes the two-dimensional Gaussian distribution determined by

the pair of spike trains, Xi and X j, the superscript p¨q1 refers to another pair of

spike trains, and T represents the bin size. Then, the final kernel function across

the flight muscle population can be given by,

Kpx, x1
q “

ÿ

i, j

KpXi j, Xi j1
q (4.10)

Based on the representer theorem in [168], the evaluation of the decoding

function, f̂, at binned spike trains, Z P Rlˆ10, from 10 muscles in the test data set

can be obtained by taking linear combinations of the kernel evaluations,

f̂pZq “ KpZ,Xqα (4.11)

where X P Rnˆ10 denotes binned spike trains used for training, Krs “

K rzptrq, xptsqs P Rlˆn is the Gram matrix, and the coefficients, α P Rnˆ6, are given

by,

α “ rKpX,Xq ` σ2
nIs

´1Y (4.12)

64



where Kpq “ K rxptpq, xptqqs P Rnˆn is the Gram matrix, σ2
n denotes the variance of

observation noise, and Y P Rnˆ6 represents the corresponding forces and torques

used for training. Then, we can use this relative-time-kernel-based decoding

function to predict the output forces and torques by evaluating the function

at arbitrary binned spike trains from 10 flight muscles. This method can be

easily applied to much larger neural systems with more than 10 neurons by

combining kernel evaluations between more pairs of correlated spike trains in

(4.10) accordingly. However, it will become more computationally expensive as

the number of neurons increases.

To benchmark our new kernel design, we will compare the performance of

our relative-timing-kernel-based regression with that of the traditional rate cod-

ing [2, 88] and instantaneous-kernel-based regression [170]. The rate coding

method is based on the assumption that average firing rate encodes most in-

formation. The instantaneous kernel directly determines similarities between

single spike trains, and does not capture relative timing information [137, 140].

For the instantaneous kernel, the binned spike train from muscle i is represented

as a combination of Dirac delta functions,

xiptq “
ÿ

ki

δpt ´ ti
ki

q (4.13)

which can then be converted to a continuous function by convolving with a

one-dimensional Gaussian filter g,

fiptq “ xi ˚ g “
ÿ

ki

gpt ´ ti
ki

q (4.14)

The kernel evaluation between two binned spike trains can be defined as,

KpXi, Xi1
q “ x fi| f 1

i y “

ż T

0
fiptq f 1

i ptqdt (4.15)
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Then, the instantaneous kernel function across the flight muscle population can

be given by,

Kpx, x1
q “

ÿ

i

KpXi, Xi1
q (4.16)

In the following section, we will show the prediction results of relative-time-

kernel-based, instantaneous-kernel-based and rate-based regressions.

4.4 Regression Results

For the hawk moth motor program, we choose the size of the sliding window for

spike train binning to be 50 ms, which is about the length of each wing stroke.

To capture the stroke-to-stroke modulation in one complete flower oscillation

cycle, the training data used for RKHS regression should cover at least one sec-

ond. Therefore, given that the sampling rate of moth experiments is 104 Hz, we

need to use 105 binned spike trains from 10 primary muscles and 6 ˆ 104 output

forces and torques collected during the hawk moth’s flapping flight for training.

Given that the resulting forces and torques do not change dramatically in train-

ing and test data sets, we decrease the resolution of training data to reduce the

computational complexity by collecting the training data every 20 time steps.

Then, we obtain a sequence of binned spike trains from 10 primary muscles at

times t1, t2, ¨ ¨ ¨ , t500, arrange them into a matrix, X P R500ˆ10, and correspond-

ingly collect the output forces and torques, Y P R500ˆ6, within one second as the

training data for RKHS regression. Finally, we test our new regression-based

decoder on a test data set, Z P R500ˆ10.

Fig. 4.4 shows the resulting forces and torques predicted by relative-time-

kernel-based, instantaneous-kernel-based and rate-based regressions along
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with the true values measured in the moth experiment. The resulting forces

and torques have been predicted accurately within a permissible range of er-

ror by the relative-time-kernel based method. The instantaneous kernel directly

determines similarities between single spike trains, and does not capture rel-

ative timing information [137, 140]. The rate coding method is based on the

assumption that average firing rate encodes most information. Unlike these

two traditional methods, our relative-time kernel compares every pair of cor-

related spike trains across the population, and considers the extra informa-

tion encoded in relative spike times among different spike trains. As shown

in Fig. 4.4, both the relative-time-kernel-based and instantaneous-kernel-based

decoders outperform the rate-based decoder significantly. More importantly,

the relative-time-kernel-based decoder can capture small changes in forces and

moments better than the other two traditional methods, particularly for torque

components, Tx and Ty.

In Fig. 4.5, we compare the absolute prediction errors of relative-time-kernel-

based, instantaneous-kernel-based and rate-based regressions. The absolute

prediction error, e, is defined as,

e “ |y ´ ŷ| (4.17)

where y denotes the true value, and ŷ denotes the predicted value. It can be

observed that the relative-time-kernel-based decoder can predict the resulting

forces and torques more accurately than the other two traditional decoders, es-

pecially for the torque prediction. Predicting torques is much harder and more

critical than forces as the rotational modes are less stable in moth flapping flight.

To determine how well the decoder captures the variance in data, we use the

standard deviation of the absolute prediction error, σe, and R-squared score, R2.
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Figure 4.4: Comparison of relative-time-kernel-based, instantaneous-kernel-
based and rate-based predictions of resulting forces and torques.

The standard deviation of the absolute error, σe, is given by,

σe “

g

f

f

e

n
ÿ

i“1

pei ´ ēq2 (4.18)

where ē “ 1
n

n
ř

i“1
ei. The lower the standard deviation of the absolute error is, the

better the model captures the data variance. The R-squared score, R2, is given
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by,

R2
py, ŷq “ 1 ´

n
ř

i“1
pyi ´ ŷiq

2

n
ř

i“1
pyi ´ ȳq2

(4.19)

where ȳ “ 1
n

n
ř

i“1
yi. The higher the R-squared score is, the better the model

captures the data variance. In Table 4.1, these two performance metrics are

used to quantitatively determine the accuracy of relative-time-kernel-based,

instantaneous-kernel-based and rate-based regressions. The percentage im-

provement of relative-time kernel over instantaneous kernel is highlighted in

yellow, and the average magnitudes of percentage improvement for perfor-

mance metrics, σe and R2, are 14.3% and 16.0%, respectively. It can be observed

that the standard deviation of the absolute error of relative-time-kernel-based

regression is smaller than that of instantaneous-kernel-based regression except

for the force component, Fz. Furthermore, the R-squared scores of relative-time-

kernel-based regression for the predictions of Fx, Fy, Tx, Ty and Tz are all higher

than those of instantaneous-kernel-based regression. The slightly worse per-

formance of the relative-time kernel for the prediction of Fz is possibly due to

measurement noise and inaccuracy caused by unstable vertical motions of the

flapping insect in the experiment.

Compared to force prediction, our proposed relative-time kernel has a much

higher percentage improvement of up to 52.1% over the instantaneous kernel in

torque prediction. This significant difference between force and torque predic-

tions is due to the fact that the performance of traditional kernel-based decoders

in force prediction is already good enough, but predicting within-wingstroke

torque is much more challenging and needs to be improved especially for indi-

vidual wingstrokes [183]. In our experiments, to visually track a horizontally
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moving robotic flower, the moth is responding to a rotating stimulus. The moth

behavior we elicit generates large variation in torques, but was not designed to

produce large systematic variations in forces. Consequently, the torques espe-

cially yaw torque Tz is the most relevant and challenging to predict. Having

taken the extra information of relative spike times into account, the relative-

time-kernel-based decoder significantly improves the torque prediction com-

pared to the traditional instantaneous-kernel-based and rate-based decoders.

Figure 4.5: Comparison of the absolute prediction errors of the relative-time-
kernel-based, instantaneous-kernel-based and rate-based regressions.
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Table 4.1: Regression performance comparison.

Fx Fy Fz

Relative-time 0.0054 0.0071 0.0042
Instantaneous 0.0056 0.0076 0.0040
Rate coding 0.0065 0.0181 0.0087σe Ó

% Improvement 3.6% 6.6% -5.0%
Tx Ty Tz

Relative-time 0.4350 0.3542 0.0397
Instantaneous 0.6193 0.4535 0.0558
Rate coding 0.9270 0.5506 0.0742σe Ó

% Improvement 29.8% 21.9% 28.9%
Fx Fy Fz

Relative-time 0.6477 0.9203 0.9133
Instantaneous 0.6369 0.9037 0.9477
Rate coding 0.4690 0.5924 0.7230R2 Ò

% Improvement 1.7% 1.8% -3.6%
Tx Ty Tz

Relative-time 0.8869 0.6609 0.8555
Instantaneous 0.7151 0.4345 0.7133
Rate coding 0.5481 0.1839 0.4760R2 Ò

% Improvement 24.0% 52.1% 19.9%
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CHAPTER 5

ADAPTIVE SPIKING NEURAL NETWORK CONTROL

5.1 Introduction

Due to their extremely light weight and small size, MAVs especially those with

flapping wings have been widely used for assisting humans to access confined

spaces inaccessible to vehicles of larger scales and gather information about

targets in hazardous environments [109, 166, 82, 136, 24]. Inspired by the in-

telligent flight strategies of many animal flyers, FWMAVs are much more ef-

ficient in generating lift than fixed-wing aircraft and rotorcraft at this micro

scale [119, 49, 28]. However, these micro-scale vehicles typically have limited

power budgets, and significant variations in physical parameters and dynamic

characteristics usually arise from their complex fabrication process. [218, 78].

FWMAVs are extremely sensitive to these manufacturing variations, and there-

fore may easily become unstable or even damaged [144]. Moreover, the dy-

namic timescale of flapping flight requires onboard sensors and controllers to

operate at high frequency [71, 230]. In spite of all these physical constraints

and control design challenges, many flight control algorithms have been de-

veloped for FWMAVs in recent years [38, 36, 117, 40, 30, 29, 31, 131, 81]. For

instance, a model-predictive high-level controller and a data-driven low-level

inverse dynamics controller are combined and implemented for the control of

an insect-scale flapping-wing robot to conduct hovering and waypoint tracking

maneuvers [40]. An adaptive control scheme consisting of a position feedback

controller and a neural-network-based attitude controller is proposed in terms

of a hierarchical framework, and allows the controlled flapping-wing vehicle to
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accomplish trajectory tracking in the longitudinal plane [81]. However, most of

these existing FWMAV control approaches either rely on accurate modeling of

the vehicle dynamics or apply to a limited set of maneuvers such as hovering,

longitudinal and lateral flight. Therefore, full-envelope flapping flight control

design that is robust to unmodeled uncertainties has yet to be developed at this

micro scale.

However, for fixed-wing aircraft, people have already developed failure-

tolerant flight control systems that can adapt to significant variations in physical

parameters, dynamic characteristics and actuator effectiveness, and achieve de-

sired control performance over the full flight envelope in the presence of these

uncertainties [186, 142, 116, 6]. The reconfiguration of adaptive control systems

can be achieved by either restructuring the control loop or changing the param-

eters of the control systems [187, 77]. Particularly, artificial neural networks are

found to be useful for reconfigurable control design, because they can reflex-

ively change their own connection weights online based on the observed dif-

ference between desired and actual system response [187, 186, 52, 56, 58, 113].

For instance, a neural-network-based adaptive controller is trained by the use

of a two-phase learning procedure, which contains an offline training phase to

approximate a gain-scheduled controller and an online training phase guided

by a dual heuristic programming (DHP) adaptive critic, and is demonstrated

to be tolerate of significant uncertainties, such as unmodeled dynamics, actua-

tor failures and parameter variations [56]. The light weight, small size and fast

dynamics of FWMAVs make them highly sensitive to these uncertainties and

therefore easy to go unstable rapidly, so online adaptation and failure tolerance

are critical for real-time FWMAV control [38, 34].
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Spiking neural networks (SNNs) closely mimic biological brains by commu-

nicating via discrete pulses of information only when the neuron’s membrane

potential reaches the threshold [72, 198, 114]. Therefore, SNN controllers have

the potential to be implemented in power-efficient, biologically inspired neuro-

morphic chips that FWMAVs can be equipped with, and therefore tend to take

the place of traditional neural-network-based controllers in modern robot con-

trol [36, 38, 89, 90, 60]. Based on offline supervised learning (SL) and online

policy gradient reinforcement learning (PGRL) [205, 219, 120, 196, 9, 101, 13],

this chapter presents a novel adaptive SNN controller that can learn and adapt

to unmodeled uncertainties and actuator failures online. The two-phase adap-

tive SNN control design contains an offline learning phase, in which SNNs

are trained offline by supervised learning to approximate a gain-scheduled

proportional-integral-filter (PIF) compensator designed to stabilize the ideal

FWMAV dynamic model, and an online learning phase, in which the connec-

tion weights of spiking neurons are incrementally updated online in the direc-

tion that maximizes the reward function according to the PGRL learning rule.

The novelty of this adaptive SNN control design is that the policy gradient on-

line learning rule is biologically plausible and therefore potentially applicable

to the next generation of FWMAVs equipped with bio-inspired power-efficient

neuromorphic chips [120]. In the online learning phase, only the state error

measurement is required by the adaptive control policy, and the spiking neural

connection weights will be adjusted accordingly to generate the instantaneous

adaptive control signal, which will be then added to the baseline gain-scheduled

PIF control signal. Therefore, prior detection and identification of the uncer-

tainty or failure is not needed, which brings computational efficiency and al-

lows the adaptive SNN controller to account for a wide variety of unexpected
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circumstances. To benchmark its performance, we compare our novel adaptive

SNN control design with a classical non-adaptive SNN controller, which is sim-

ply a fixed offline SNN approximation of the gain-scheduled PIF compensator.

Both the adaptive and non-adaptive SNN controllers are implemented for the

control of a simulated insect-scale flapping-wing robot known as RoboBee [118].

In four different case studies, the RoboBee controlled by the adaptive SNN con-

troller is shown to be able to hover with wing damage, track a moving flower

with wing asymmetry, follow a square trajectory with state measurement errors,

and conduct a coordinated turn with actuator failure, while the non-adaptive

SNN controller fails to accomplish all of these missions.

This chapter is organized as follows. The problem of determining an SNN

control law that adapts to unmodeled uncertainties and actuator failures is for-

mulated in Section 5.2. Background knowledge on the PIF compensation and

gain scheduling control design is then introduced in Section 5.3. After that, the

two-phase adaptive SNN control design is proposed in Section 5.4. In particular,

the offline learning phase during which SNNs are trained offline to approximate

the gain-scheduled PIF compensator is introduced in Subsection 5.4.1. The on-

line PGRL learning rule to incrementally update the SNN connection weights is

described in Subsection 5.4.2. In Section 5.5, the new adaptive SNN control de-

sign is implemented for the full-envelope flight control of a simulated flapping-

wing robot in the presence of four different uncertainties in four case studies,

respectively. The performance of the adaptive SNN controller is demonstrated

by comparing with a benchmark non-adaptive SNN controller.
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5.2 Problem Formulation

The real-time sensing and control of FWMAVs must operate at a high frequency

due to their fast dynamics, and the computation needs to be energy-efficient

enough to fit within the tightly limited power budgets [71, 230]. Moreover,

their small size and light weight make these vehicles not only highly sensi-

tive to manufacturing variations, but also extremely easy to undergo damage

[218, 78, 144]. Therefore, FWMAV control has become a challenging problem

nowadays. This chapter focuses on the problem of developing an adaptive

full-envelope SNN control law that is robust to significant uncertainties, such

as physical parameter variations, unmodeled dynamics and measurement er-

rors, as well as actuator failures. This new adaptive SNN control design is de-

veloped for and then validated on an insect-scale flapping-wing robot known

as RoboBee (Fig. 5.1) [118], whose high-fidelity dynamic model has been pre-

sented and experimentally validated in [35]. In general, FWMAV dynamics can

be modeled by a nonlinear parameter-dependent system in standard form,

9xptq “ frxptq,uptq,p, ts, xpt0q “ x0 (5.1)

where x P Rn is the vehicle state vector, u P Rm is the control input, p P Rl

is a vector of physical parameters such as the wing shape and drag and lift

coefficients, and the initial conditions x0 are assumed to be known from the

vehicle [35, 118, 128, 38, 34]. The control design presented in this chapter can be

easily extended to other flapping-wing vehicle dynamic models, provided that

they can be approximated by a nonlinear parameter-dependent system in (5.1)

as well.

The onboard measurement, z P Rs, can be represented as a nonlinear func-
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(a) (b)

Figure 5.1: Pictures of (a) the insect-scale flapping-wing robot known as
RoboBee and (b) high-fidelity 3D Blender® model of the RoboBee used in sim-
ulation.

tion of the vehicle state x with additive measurement noise,

zptq “ mrxptqs ` nptq (5.2)

where the vector function mr¨s represents the ideal measurement model, and the

measurement noise, n P Rs, is modeled as a vector of independent and identi-

cally distributed zero-mean Gaussian noise. For simplicity, we assume that the

vehicle state is fully observable, and all elements of the state can be measured

with additive measurement noise, that is, z “ x̂ “ x ` n. If this assumption does

not stand, an onboard state estimator can be used instead [56, 210, 194]. The

vehicle motions are sensed by the system’s output vector, y P Rr, which can be

modeled as a nonlinear function of the vehicle state x and control input u,

yptq “ hrxptq,uptqs (5.3)

The command input, y˚ P Rr, is used to specify a desired maneuver such as

longitudinal flight and coordinated turn for the vehicle. This desired command

value can be provided by external path planning algorithms or human opera-

tors [55].

The control law is assumed to be dependent on the onboard state measure-
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ment x̂ and desired command value y˚,

uptq “ crx̂ptq, y˚
ptqs (5.4)

which may contain derivatives or integrals of its arguments, as described in the

following section. Given the ideal FWMAV dynamic model in (5.1), onboard

state measurement x̂, output vector y and desired command input y˚, our con-

trol design objective is to determine a bounded control history uptq that allows

the controlled vehicle to accomplish the maneuver specified by the desired com-

mand value, assuring that the output tracking error, eptq “ }yptq ´ y˚ptq}, caused

by uncertainties or actuator failures is acceptably small and converges to zero

as time t approaches infinity. In general, the desired adaptive control law needs

to minimize the cost function below consisting of a scalar terminal cost ϕ de-

pendent on the final state xpt f q and time t f , and a scalar integral function of the

vehicle state x, control input u, system output y and time t:

J “ ϕrxpt f q, t f s `

ż t f

t0
Lrxptq,uptq, yptq, tsdt (5.5)

subject to the vehicle dynamics in (5.1). To meet the control objective of follow-

ing a desired command, we can define an augmented state in the Lagrangian

L by including additional error terms that are functions of the state x, control

input u and system output y, as illustrated in the following background section

on gain-scheduled PIF compensation.

In this chapter, the performance of this new adaptive SNN control design

is demonstrated by considering the following four significant uncertainties that

FWMAVs may commonly encounter on the fly:

1) Parameter variation: the actual vehicle physical parameters p are different

from those parameters in the ideal vehicle dynamic model due to manufactur-

ing variations or system identification errors.
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2) Unmodeled dynamics: manufacturing or modeling inaccuracy causes varia-

tions in dynamic characteristics, such as wing asymmetry and coupling effects,

that have not been considered in the ideal vehicle dynamic model.

3) Measurement error: the vehicle state x is measured onboard with additive

measurement noise n.

4) Actuator failure: partial loss of effectiveness is experienced by the actua-

tors at time ta, and the actual control input u generated by the partially failed

actuators is given by,

uptq “ εptq d u˚
ptq, t ⩾ ta (5.6)

where ε P Rm is a vector of effective factors, the symbol d denotes component-

wise multiplication, u˚ P Rm is the desired control input, and ta is the failure

time [87, 199].

This chapter presents a new adaptive full-envelope SNN control design com-

prised of offline and online learning phases that integrate classical multivariable

control knowledge with supervised and reinforcement learning. In the offline

learning phase, a gain-scheduled controller is developed to stabilize the ideal

FWMAV dynamic model in (5.1) using PIF compensation, as reviewed in the

next section. Feed-forward SNNs are then trained offline by supervised learn-

ing to approximate this classical gain-scheduled PIF compensator in Subsec-

tion 5.4.1. In the online learning phase, spiking neuron populations are trained

by reinforcement learning to minimize the system’s output error and adapt to

unmodeled uncertainties, as introduced in Subsection 5.4.2. This new adap-

tive SNN controller is then implemented for the full-envelope control of the

RoboBee in the presence of the four aforementioned uncertainties, and its per-

formance is compared with a benchmark non-adaptive SNN controller in Sec-
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tion 5.5.

5.3 Background on Gain-Scheduled PIF Compensation

Classical feedback control theory has provided many useful insights into the in-

herent flight control strategies of natural flapping-wing flyers such as fruit flies

[43, 112] and moths [39, 184]. For example, the yaw and speed control models of

Drosophila have been found to conform to a classical proportional-integral (PI)

feedback control architecture [43]. Inspired by these experimental studies on

animal flyers, we choose to use a classical gain-scheduled PIF compensator to

stabilize the ideal FWMAV dynamic model. Gain scheduling is a common de-

sign approach to control nonlinear dynamic systems by interpolating a family of

locally optimal linear control designs, such as linear quadratic regulator (LQR)

and PIF compensator, throughout the entire operating regions of the nonlinear

systems [174]. Moreover, PIF compensation not only provides good noise re-

jection at high frequency, but also tolerates parameter variations to some extent

[189]. Therefore, the gain-scheduled PIF compensator is a great initialization

point for the subsequent online adaptation phase [52].

As a first step in the gain scheduling design, a family of equilibrium points

can be obtained by letting the state derivatives be zero in (5.1),

0 “ frx˚
paq,u˚

paq,ppaqs (5.7)

where a denotes a vector of dynamically significant scheduling parameters,

and the arguments of the vector function f are assumed to be dependent on

these scheduling parameters. As shown in the block diagram in Fig. 5.2, the

scheduling variables a are provided by a scheduling variable generator (SVG)
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containing algebraic functions that take the desired command input y˚ as input.

More details on the computation of quasi-steady set points for FWMAVs can

be found in [35]. These equilibrium points obtained in (5.7) specify a set of op-

erating conditions spanning the full FWMAV flight envelope, and are indexed

by κ “ 1, 2, ¨ ¨ ¨ ,M. Linearizing the nonlinear dynamics around these operat-

ing points and keeping a fixed for each operating point, we can obtain a set of

linearized models,

9̃xptq “ Ax̃ptq ` Bũptq (5.8)

where x̃ptq “ xptq ´ x˚ P Rn is the state deviation, ũptq “ uptq ´ u˚ P Rm is the

control deviation, and the state space matrices are given by,

A “
Bf
Bx

ˇ

ˇ

ˇ

ˇ

x“x˚,u“u˚

, B “
Bf
Bu

ˇ

ˇ

ˇ

ˇ

x“x˚,u“u˚

(5.9)

Figure 5.2: Adaptive SNN control architecture containing offline trained SNNs
that approximates a gain-scheduled PIF compensator and online adaptive
SNNs that learn to account for uncertainties, where five clusters of circles rep-
resent separate populations of spiking neurons.

After obtaining a family of linearized models, the PIF compensation ap-

proach augments the vehicle state deviation x̃ with the control deviation ũ and
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the integral of the output error, ξptq “ ξp0q `
şt

0rypτq ´ y˚sdτ P Rr, which is de-

signed to reduce the steady-state error, and therefore uses the augmented state

vector, χ “ rx̃T ũT ξT
sT P Rn`m`r [189]. The PIF feedback control gains are chosen

to minimize the quadratic cost function,

J “ lim
t f Ñ8

1
2t f

ż t f

t0
rχT

ptqQχptq ` 9uT
ptqR 9uptqsdt (5.10)

where Q and R are weighing matrices for the augmented state and control

derivative, respectively. This cost function is subject to the augmented state

equation, which can be written as,

9χptq “ A1
ptqχptq ` B1

ptq 9uptq (5.11)

where the state-space matrices are given by,

A1
ptq “

»

—

—

—

—

–

Aptq Bptq 0

0 0 0

Hxptq Huptq 0

fi

ffi

ffi

ffi

ffi

fl

, B1
ptq “

»

—

—

—

—

–

0

Im

0

fi

ffi

ffi

ffi

ffi

fl

(5.12)

and the matrices, Hx and Hu, relate the state x and the control u to the sys-

tem’s output. It is computationally expensive and difficult to obtain the solu-

tion to the periodic Riccati equation based on the time-varying dynamic model

in (5.11). Therefore, we choose to average the time-varying linear dynamics

over a flapping period T and ignore the wing motions based on the so-called

stroke-averaging technique [34, 161, 206]. Based on the time-varying linearized

model in (5.11), the stroke-averaged dynamic model can be obtained as,

9χptq “ Ā1χptq ` B̄1 9uptq (5.13)

where the stroke-averaged state-space matrices are given by,

Ā1
“

1
T

ż T

0
A1

ptqdt, B̄1
“

1
T

ż T

0
B1

ptqdt (5.14)
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Our numerical simulation results show that the settling time of the RoboBee’s

wing stroke angle for a step reference input is more than five times greater

than an entire flapping period, so the stroke-averaged dynamic model in (5.13)

will obtain good enough performance compared to the actual periodically time-

varying dynamic model in (5.11).

The optimal linear control law minimizing the quadratic cost function in

(5.10) with a steady-state feedback gain matrix, K P Rmˆpn`m`rq, as t f approaches

infinity is

9uptq “ ´Kχptq “ ´R´1B̄1T Sp0qχptq (5.15)

where Sp0q is a solution to the algebraic Riccati equation of the form,

Sp0qB̄1R´1B̄1T Sp0q ´ Ā1T Sp0q ´ Sp0qĀ1
´ Q “ 0 (5.16)

We will then integrate the derivative of control input 9u obtained in (5.15) before

transmitting it to the plant. Assuming that the command vector is nonsingular,

the optimal PIF control law above can be rearranged as,

9uptq “ ´K1rxptq ´ x˚
s ´ K2ruptq ´ u˚

s ´ K3

"

ξp0q `

ż t

0
rypτq ´ y˚

sdτ
*

“ ´K1xptq ´ K2uptq ´ K3ξptq ´ K4y˚

(5.17)

where K1 P Rmˆn, K2 P Rmˆm and K3 P Rmˆr are all partitioned matrices obtained

from the full feedback gain matrix, and K4 P Rmˆr can be obtained from the

linearized output equation [189]. Performing Laplace transform on both sides

of the equation above and assuming zero initial conditions, we can obtain the

transfer function between the command vector and the control input,

Upsq

Y˚psq
“

1
s

psIm ` K2q
´1

psK4 ` K3q (5.18)

which consists of an integrator, a low-pass filter and a lead compensator.

This correspondingly provides the closed-loop system with excellent command
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tracking at low frequency, noise rejection at high frequency, and loop shaping

around the cross-over frequency.

Using the design approach described above, linear PIF control laws can

be developed for a family of stroke-averaged FWMAV dynamic models,

tĀ1, B̄1uκ“1,2,¨¨¨ ,M, linearized at a set of operating conditions spanning the full

flight envelope. Locally optimal feedback gain matrices and Riccati matrices,

tK,Suκ“1,2,¨¨¨ ,M, can be correspondingly obtained for all operating conditions in-

dexed by κ. In the following section, feedforward SNNs will be trained offline

by supervised learning to interpolate this family of locally optimal linear con-

trol designs, and obtain a global baseline controller that can be used to stabilize

the ideal nonlinear FWMAV dynamic model for full-envelope flight, and serve

as a good initialization point for the subsequent online adaptation phase.

5.4 Adaptive SNN Control Design

The onboard sensing and control loops of FWMAVs must operate not only at

high frequency due to their fast dynamics, but also efficiently enough to fit

within their tightly limited power budgets [71, 230, 36, 38]. Inspired by biologi-

cal brains, SNNs communicate using discrete pulses of information and can be

potentially implemented in energy-efficient neuromorphic processors and sen-

sors, which presents a promising solution to the challenging FWMAV control

problem [34, 72, 198, 114]. In this chapter, an adaptive SNN control framework

is developed using a two-phase design approach. Ultimately, the control input

u transmitted to the vehicle is a combination of an offline SNN approximation

of the gain-scheduled PIF control signal ûP as described in previous section and
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an additional online adaptive term uA,

uptq “ ûPptq ` uAptq (5.19)

During the offline learning phase, the SNN is trained by supervised learning

to interpolate a family of locally optimal PIF compensators designed to cor-

respondingly stabilize the ideal dynamic model linearized at a number of set

points over the full flight envelope. During the online learning phase, the addi-

tional online adaptive term is learned online by policy gradient reinforcement

learning framework to minimize the output error caused by uncertainties that

have not been considered in the ideal dynamic modeling and offline learning

phase. The offline and online learning phases will be described in the following

two subsections, respectively.

5.4.1 Offline Learning Phase

As a locally optimal control law guaranteed to stabilize the linearized FWMAV

dynamic model at all the achievable set points over the full flight envelope,

the gain-scheduled PIF compensator introduced in Section 5.3 can provide a

good initialization for the subsequent SNN online adaptation. As the first step

in the offline learning phase, feedforward SNNs are trained offline by super-

vised learning to interpolate the family of locally optimal PIF control solutions,

tK,Suκ“1,2,¨¨¨ ,M, and serve as a global controller to stabilize the ideal FWMAV dy-

namic model over the full flight envelope. As shown in the control architecture

in Fig. 5.2, one population of spiking neurons is trained to approximate the

steady-state PIF gain matrix as a function of scheduling variables, and a sepa-

rate population of spiking neurons is trained to interpolate the feedforward set

points, tx˚,u˚uκ“1,2,¨¨¨ ,M, as a function of scheduling variables.
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In this chapter, the spiking neuron model conforms to the Neural Engineer-

ing Framework (NEF), in which time-varying input signals are encoded in pop-

ulations of spiking neurons and continuous-time output signals are then de-

coded from the output current of these spiking neurons [48, 190]. The input

current Ji into the spiking neuron i is dependent on the scheduling variables a,

Jipaq “ ηivT
i aptq ` Jbi (5.20)

where ηi is a constant gain factor, vi is the encoding weight vector, and Jbi is a

fixed bias current of neuron i. Based on the leaky integrate-and-fire (LIF) neuron

model [70], the voltage Vi across the membrane of neuron i is modeled as,

9Viptq “ ´
1
τd

rViptq ´ RiJipaqs (5.21)

where τd is the decaying time constant, and Ri is the passive membrane resis-

tance of neuron i. If the voltage across the membrane exceeds a threshold, a

spike will be emitted by the neuron. After that, the membrane voltage will be

reset to the resting value for a while, and then follow the LIF model in (5.21)

again. Therefore, the spike response of neuron i to the input current Ji can be

modeled as a nonlinear function Gi, and the resulting spike train ri can be rep-

resented as a sum of Dirac delta functions,

riptq “ GirJipaqs “
ÿ

ki

δipt ´ ti
ki

q (5.22)

where ki denotes the spike index. The sum of Dirac delta functions can then be

converted to a continuous function via convolution with a filter hi,

sipaq “ GirJipaqs ˚ hiptq “
ÿ

ki

hipt ´ ti
ki

q (5.23)

where the filter hiptq “ 1
τp

e´ t
τp is an exponential decaying function with a post-

synaptic time constant τp. The post-synaptic current from a population of N

86



spiking neurons can then be decoded into a continuous-time signal gptq by,

gptq “

N
ÿ

i“1

siraptqswi “ wT sraptqs (5.24)

where s “ rs1 s2 ¨ ¨ ¨ sNsT is the post-synaptic current, and w “ rw1 w2 ¨ ¨ ¨ wNsT

is the output decoding weights that can be trimmed by supervised learning to

approximate time-varying signals, such as the steady state PIF matrices and

feedforward set points, as a function of scheduling variables.

As reviewed in Section 5.3, the locally optimal PIF control law is found to be

proportional to the augmented state vector χ, and can be written as,

9uptq “ ´Kpaqχptq “ ´K1paqx̃ptq ´ K2paqũptq ´ K3paqξptq (5.25)

where the gain matrices, K, K1, K2 and K3, are all calculated by feedforward

SNNs to vary as a function of scheduling parameters a. One of the main reasons

for introducing the integral term, K3ξ, in the PIF control law above is to reduce

the steady-state error caused by modeling uncertainties. Since an additional

PGRL-based adaptive term will later be included in the SNN control design to

learn and compensate for the same type of uncertainties online, we neglect this

integral term while training the SNN offline to approximate the steady-state

PIF gain matrix. Performing the Laplace transformation on (5.25), the transfer

function for the PIF compensator can be expressed as a low-pass filtered gain

matrix,

Gpsq ≜
Upsq

Xpsq
“ ´rsIm ` K2paqs

´1K1paq (5.26)

Based on the final value theorem, the approximate steady-state PIF gain matrix

can be given by,

Gp0q “ ´K´1
2 paqK1paq ≜ ´K̂paq (5.27)

Considering the scheduling variables a provided by the SVG as the input
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to the network and the steady-state PIF gain matrix, K̂ P Rmˆn, as the output,

we use a population of N1 spiking neurons to interpolate the family of PIF gain

matrices. The network output weighing vector, w˚
i j P RN1 , that gives the optimal

approximation of each element of the steady-state gain matrix, K̂i j P R, can be

computed by standard least squares optimization over M set points sampled

throughout the entire flight envelope,

w˚
i j “ argmin

wi j

M
ÿ

κ“1

rK̂i jpaκq ´ wT
i js1paκqs

2, i “ 1, 2, ¨ ¨ ¨ ,m, j “ 1, 2, ¨ ¨ ¨ , n (5.28)

where aκ is the scheduling variables corresponding with the κ-th sampled set

point, and s1 P RN1 is the post-synaptic current from this population of N1 spik-

ing neurons. Then, the SNN approximation of each element of the steady-state

PIF gain matrix is a linear transformation of the post-synaptic current s1,

K̂paq “

»

—

—

—

—

—

—

—

–

w˚T
11 s1paq w˚T

12 s1paq ¨ ¨ ¨ w˚T
1n s1paq

w˚T
21 s1paq w˚T

22 s1paq ¨ ¨ ¨ w˚T
2n s1paq

...
...

. . .
...

w˚T
m1s1paq w˚T

m2s1paq ¨ ¨ ¨ w˚T
mns1paq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.29)

In a separate population of N2 spiking neurons, we consider the scheduling

variables as the input to the network and the feedforward set-point vector, v̂ “

rx˚T u˚T sT P Rm`n, as the output. Similarly, the network output weighing matrix,

W˚
P P Rpm`nqˆN2 , that gives the optimal interpolation of the family of set points,

tx˚,u˚uκ“1,2,¨¨¨ ,M, can be computed by standard least squares optimization over

the entire flight envelope,

W˚
P “ argmin

W

M
ÿ

κ“1

}v̂paκq ´ Ws2paκq}
2 (5.30)

where s2 P RN2 is the post-synaptic current from this population of N2 spiking

neurons. Then, the SNN approximation of the feedforward set points is a linear
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transformation of the post-synaptic current s2,
»

—

–

x̂˚paq

û˚paq

fi

ffi

fl
“ W˚

Ps2paq (5.31)

The steady-state PIF gains (5.29) and set points (5.31) approximated by single-

layer feedforward SNNs can then be used to compute the PIF control input ûP

as a baseline for the subsequent online learning phase,

ûPptq “ ´K̂raptqsx̂˚
raptqs ` û˚

raptqs (5.32)

5.4.2 Online Learning Phase

The classical gain-scheduled PIF compensator design introduced in Section 5.3

is developed using a family of ideal linearized vehicle dynamic models, which

does not take into account significant uncertainties such as physical param-

eter variations, unmodeled dynamics, measurement errors and actuator fail-

ures. These unmodeled uncertainties that FWMAVs commonly encounter on

the fly will immediately destabilize the vehicle in roll, pitch and yaw [38, 34, 40].

A good adaptive controller for full-envelope flapping flight should be capa-

ble of learning to compensate for these unmodeled uncertainties in real time.

Therefore, apart from the SL-based SNN approximation of the baseline gain-

scheduled PIF control law described in the previous subsection, an additional

adaptive control input will be learned online by policy gradient reinforcement

learning (PGRL) method to stabilize the altitude and orientation of the vehicle

in the presence of unmodeled uncertainties in the online learning phase.

Given that the SNN connection weights will be adjusted incrementally by

reinforcement learning at every time step, we first discretize the plant dynamics
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in (5.1), and consider a discrete nonlinear parameter-dependent system with

time increments equally spaced in the time interval t0 ď tk ď t f , such that

xptk`1q “ grxptkq,uptkq,ps (5.33)

with the initial conditions x0 assumed to be known. For brevity, the abbreviated

form of the state and control input, xk ” xptkq and uk ” uptkq, will be used from

here on. The discrete dynamic system can be modeled as a Markov decision

process (MDP), in which the state, action and immediate reward of the learning

agent at time tk are given by xk, uk and rk, respectively [96]. The control policy

π is approximated by a population of spiking neurons with output connection

weights wk at time tk,

uk “ πpxk,wkq (5.34)

which is assumed to be differentiable with respect to the connection weights.

The performance of the control policy π is denoted by the long-term average

reward per step ρpπq that the learning agent aims to maximize,

ρpπq “
ÿ

x

lim
kÑ8

Ppxk “ x|x0,πq
ÿ

u

Ppuk “ u|xk “ x,wkqEprk`1|xk “ x,uk “ uq

(5.35)

where Pp¨q and Ep¨q denote the probability and expectation, respectively [196].

As shown in the adaptive SNN control architecture in Fig. 5.2, the state er-

ror, x̃k “ xk ´ x˚
k , at time tk is influenced by the closed-loop system dynamics and

therefore dependent on the choice of SNN connection weights wk. To conduct

a maneuver specified by the desired command input, the online learning rule

of the adaptive SNN controller needs to change the connection weights in a di-

rection that eliminates the error function ek representing the difference between

the actual and desired vehicle states,

ekpwkq “ λT
rx̃kpwkq ` α 9̃xkpwkqs (5.36)
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where λ P Rn is a user-defined weighing vector that specifies a desired trade-

off between state variables, and α P R is a constant scalar that weighs the state

error against its derivative. According to the characteristics of flapping flight

dynamics, it is reasonable to assume that x´, y´ and z´components of the vehi-

cle’s body velocity and their derivatives weigh more than other state variables

in the error function above for adaptive pitch, roll and amplitude control, re-

spectively. In addition, since FWMAV dynamics are neutrally stable in yaw, we

do not consider adaptive yaw control in this chapter for simplicity.

Since the SNN connection weights are typically adjusted online at a learning

rate much higher than the controller’s processing rate, the error function ek can

serve as a measure for the performance of the adaptive control policy at time tk

with larger errors mapping to smaller long-term rewards,

ρ̂rπpxk,wkqs “ ´
1
2

e2
kpwkq “ ´

1
2

␣

λT
rx̃kpwkq ` α 9̃xkpwkqs

(2
(5.37)

Then, we consider the typical reinforcement learning problem of finding the

optimal connection weights w˚ that maximize the reward function, such that

w˚
“ argmax

wk

ρ̂rπpxk,wkqs “ argmin
wk

␣

λT
rx̃kpwkq ` α 9̃xkpwkqs

(2
(5.38)

Based on the policy gradient reinforcement learning (PGRL) method, the

adaptive learning rule to update the SNN output connection weights at time tk

while moving towards the maximum of the reward function takes the form,

wk`1 “ wk ` γ

ˆ

Bρ̂

Bwk

˙T

(5.39)

where γ P R is a user-defined scalar learning rate [196, 9, 101, 13]. By differentiat-

ing the quadratic error function in (5.37) with respect to the connection weights

and substituting in the spiking neuron model, the gradient of the reward func-
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tion with respect to the connection weights can be obtained as follows,

Bρ̂

Bwk
“ ´ekpwkqsT

k (5.40)

where sk is the post-synaptic current from the spiking neuron population at time

tk. This leads to the PGRL-based adaptive SNN learning rule to adjust the con-

nection weights over time,

wk`1 “ wk ´ γekpwkqsk (5.41)

which is guaranteed to converge to the optimal connection weights w˚ [175,

196, 213, 101, 14]. Every element of the adaptive term, uA P Rm, is separately

computed by a population of N3 spiking neurons, so a set of m optimal weighing

vectors can be obtained and arranged into a weighing matrix, W˚
A P RmˆN3 . Then,

the adaptive term is a linear transformation of the post-synaptic current s,

uAptq “ W˚
Asptq (5.42)

When this PGRL-based adaptive SNN learning rule is applied in real time,

the learning rate at which the output connection weights are adjusted should be

at least ten times as high as the processing rate at which the controller computes

and transmits a new control signal in simulation. To demonstrate the online

learning performance of the adaptive SNN controller, we plot the mean-squared

error signal versus the number of epochs when the flapping-wing vehicle is

commanded to hover with an initial disturbance in Fig. 5.3 below as an example.

Here, the learning rate of the adaptive SNN is 10 kHz, and the processing rate of

the controller is 1 kHz. Both of them are much higher than the 120-Hz flapping

frequency of the vehicle, which is another solid support for our choice of using

stroke-averaged dynamic model to obtain the optimal offline PIF control law

as described in Section 5.3. We can observe from the SNN update over 500
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epochs below that the mean-squared error increases slightly at first, and is then

significantly reduced by half within only 300 epochs. This error history shows

that the adaptive SNN controller quickly adapts to the initial disturbance with

its connection weights converging to optimal values.

Figure 5.3: The mean-squared error signal versus the number of epochs when
the vehicle is commanded to hover with an initial disturbance.

5.5 Flight Control Simulation and Results

The adaptive two-phase SNN controller is implemented for the full-envelope

control of a simulated flapping-wing vehicle with eight degrees of freedom

known as RoboBee (Fig. 5.1) [117, 35]. However, it can be easily extended to

other FWMAV dynamic models, provided that they can be approximated by

the nonlinear parameter-dependent system described in (5.1) as well. The full

state of the RoboBee can be expressed as a combination of its wing state and

body state:

x “ rϕr ψr ϕl ψl 9ϕr 9ψr 9ϕl 9ψl x y z ϕ θ ψ u v w p q rs
T (5.43)

where ϕr and ϕl are the stroke angles of the right wing and left wing, ψr and ψl

are the passively controlled pitch angles of the right wing and left wing, x, y and

93



z represent the vehicle position, Euler angles, namely yaw ϕ, roll θ and pitch ψ,

represent the body orientation, u, v and w represent the vehicle’s body velocity,

and p, q and r represent the vehicle’s angular velocity in the body frame. The

right-wing and left-wing stroke angles, ϕr and ϕl, are entirely determined by the

control input u,

u “ rua ur up uys
T (5.44)

where ua, ur, up and uy represent amplitude, roll, pitch and yaw control input,

respectively. The command input y˚ is used to specify a desired maneuver for

the RoboBee, and is given by

y˚
“ rV γ 9ξ βs

T (5.45)

where V denotes the vehicle velocity, γ denotes the climb angle, 9ξ denotes the

turn rate, and β denotes the sideslip angle. More details on the derivation and

validation of the vehicle’s flight and actuator dynamics can be found in [35].

In numerical simulations, the RoboBee is commanded to conduct four dif-

ferent maneuvers over the full flight envelope in the presence of different uncer-

tainties. The four classes of uncertainties described in Section 5.2 are simulated

as follows:

1) Parameter variation: To simulate the damage of the left wing, we decrease

the aerodynamic forces and moments generated by the damaged wing by 20%,

and the wing mass by 10% with respect to the ideal model in case study 1.

2) Unmodeled dynamics: Static random bias of the stroke amplitude and mean

stroke angle of both wings is introduced to reflect the asymmetry between the

right-wing and left-wing aerodynamic characteristics in case study 2.

3) Measurement error: Zero-mean random noise is directly added to the on-
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board measurement of the vehicle’s roll, pitch and yaw angles and their rates in

case study 3.

4) Actuator failure: Partial loss of effectiveness of the actuator is introduced

by reducing the left-wing stroke angle amplitude by 10% with respect to the

ideal model in case study 4.

The capability of the adaptive SNN controller to account for these significant

uncertainties is demonstrated by comparing to a benchmark non-adaptive SNN

controller that is trained offline to simply approximate a gain-scheduled PIF

compensator. The flight control simulation results of the adaptive and non-

adaptive SNN controllers will be compared in the following four different case

studies.

5.5.1 Case Study 1: Hovering with Wing Damage

Due to their small size and fragile material, the flapping wings of FWMAVs

can be easily damaged by accidental collision with obstacles or external distur-

bances such as strong wind gusts [25, 34]. In this case study, the ability of the

adaptive SNN to learn and adapt to wing damage is demonstrated. To repli-

cate the unforeseen situation in which the RoboBee’s wing tip is damaged, we

decrease the aerodynamic forces and moments generated by the damaged left

wing by 20%, and the mass of the left wing by 10% with respect to the ideal

dynamic model used for offline SNN training in simulation. Removing 10%

of the mass from the tip of the wing will correspondingly reduce the aerody-

namic forces and moments by approximately 20%. The percentage decrease in

the aerodynamic forces and moments is greater than that in the mass of the
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wing, because the wing tip is the fastest moving part while the wing flaps, thus

contributing most to the aerodynamic force and moment generation [51, 99].

Then, we demonstrate the adaptive SNN controller’s ability to learn and adapt

to these unexpected variations caused by wing damage when the vehicle is com-

manded to hover with an initial disturbance.

The vehicle trajectories of the adaptive and non-adaptive SNN controllers

are compared in Fig. 5.4 below. We can observe that the adaptive SNN success-

fully adapts to the unexpected left wing damage, and stays hovering around

the starting point in the presence of an initial disturbance. However, the non-

adaptive SNN fails to stabilize the hovering flight. The vehicle controlled by

the non-adaptive SNN drifts dramatically in both y- and z-directions as shown

in the snapshots in Fig. 5.5. More information on the vehicle’s response can

be found in the velocity comparison of both controllers in Fig. 5.6. In spite

of the unexpected wing damage, the vehicle controlled by the adaptive SNN

controller settles down quickly within only 1 second, and its velocity keeps

maintained around zero until the end of the simulation. The high-frequency

oscillations of the velocity time histories especially in x-direction are due to the

flapping motions. The damage of the left wing results in an unexpected asym-

metry of aerodynamic forces and moments between the left and the right wings.

Therefore, the vehicle controlled by the non-adaptive SNN keeps drifting hori-

zontally in y-direction. Moreover, removing the wing tip will reduce the overall

thrust correspondingly, so the vehicle controlled by the non-adaptive SNN fails

to maintain a zero velocity in z-direction as well.

The adaptive SNN control history in Fig. 5.7a shows that the controlled ve-

hicle reaches and maintains the hovering equilibrium state in less than 1 second.
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Figure 5.4: Case study 1: vehicle trajectory comparison between the adaptive
and non-adaptive SNN controllers shows that the adaptive SNN successfully
stabilizes the hovering flight, while the non-adaptive SNN drifts dramatically
from the start point.

The amplitude control cost is much larger than the yaw, pitch and roll control

cost, because these other three control inputs are affecting the vehicle’s orien-

tation only by biasing the stroke amplitude and mean stroke angle [35]. Fur-

thermore, the online adaptive terms of amplitude, pitch and roll control input

can indicate the differences between the adaptive and non-adaptive SNN con-

trol histories, as plotted in Fig. 5.7b. Adaptive pitch, roll and amplitude control

histories represent how the adaptive terms are learned online by reinforcement

learning to eliminate the body velocity deviations in x-, y- and z-directions, re-

spectively. To stabilize the vertical motion of the flapping-wing vehicle, the

adaptive amplitude control input is learned online to make up for the over-

all thrust and mass deduction caused by the left wing damage. Moreover, to

keep the horizontal velocity component maintained around zero, the adaptive

roll control input is learned online to compensate for the asymmetry of aerody-
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(a)

(b)

Figure 5.5: Case study 1: visualization of controlled hovering flight in Blender®.
(a) The adaptive-SNN-controlled vehicle successfully adapts to the wing dam-
age and stays around the orange reference hovering point. (b) The non-
adaptive-SNN-controlled vehicle fails to adapt to the wing damage and drifts
dramatically from the orange reference hovering point (see [221] for animation).

namic forces and moments between right and left wings.

5.5.2 Case Study 2: Flower Tracking with Wing Asymmetry

Wing asymmetry is one of the most common and formidable manufacturing un-

certainties that FWMAVs may encounter, and can cause unmodeled variations

in aerodynamic characteristics that promptly destabilizes the vehicles [38]. To

demonstrate the ability of our new adaptive SNN controller to learn to compen-

sate for wing asymmetry online, we introduce static random bias of the stroke

amplitude and mean stroke angle of both wings in numerical simulations, and

compare the vehicle responses of the adaptive and non-adaptive SNN con-

trollers when the flapping-wing vehicle is commanded to track a robotic flower
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Figure 5.6: Case study 1: comparison of velocity time histories of the adaptive
and non-adaptive SNN controllers shows that the adaptive SNN rapidly reaches
and maintains zero velocity, while the non-adaptive SNN fails to keep vy and vz

maintained around zero.

that moves sideways sinusoidally. In this case study, the control objective of

tracking the sinusoidal velocity history of a moving robotic flower is inspired

by experimental studies on insect behaviors [154]. This flower tracking scenario

can be commonly seen when insects try to feed from flowers blown by wind.

In this chapter, the estimation of the flower’s velocity is accomplished using the

event-based object detection algorithm developed in [69]. As shown in Fig. 5.8,

the green bounding box is generated to include all the event-based optical flows

that exceed a user-defined threshold. The position of the moving robotic flower

is then assumed to be represented by the center of the identified bounding box.

Given the estimated position, the flower’s velocity is calculated using finite dif-

ference approximation. In numerical simulations, the flapping-wing vehicle is

first commanded to hover with initial disturbance from time t “ 0 to t “ 2 s,

99



(a)

(b)

Figure 5.7: Case study 1: (a) control history of the adaptive SNN controller; (b)
adaptive pitch, roll and amplitude control histories.

and then track the sinusoidal motion of the robotic flower after time t “ 2 s. Fig.

5.8b shows that the estimated velocity of the moving robotic flower is very close

to the true value. Then, we directly use the estimated flower velocity as a com-

mand velocity for the flapping-wing vehicle to follow. If the estimated velocity

is smaller than zero, the sideslip angle β in the desired command vector will be

set to be ´90 deg. Otherwise, the sideslip angle β is maintained at 90 deg in
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simulation.

(a)

(b)

Figure 5.8: Case study 2: (a) the green bounding box is generated by an object
detection algorithm using event-based optical flow (blue arrows); (b) the esti-
mated velocity history of the moving robotic flower.

It can be observed from the velocity time histories in Fig. 5.9 that the

flapping-wing vehicle controlled by the adaptive SNN controller quickly adapts

to the initial disturbance and then remains hovering. The settling time of the

adaptive SNN controller is less than 1 second. As soon as the flower-tracking

command starts at time t “ 2 s, the vehicle controlled by the adaptive SNN

follows the sinusoidal motion in y-direction with extremely small tracking er-

ror while approximately remaining stationary in both x- and z-directions. Ev-

ery time when the sideslip command changes its direction, the velocity deviates

slightly from its desired set point, but the adaptive SNN learns to alleviate these
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overshoots very quickly. However, the non-adaptive SNN fails to achieve the

control objective of tracking the sinusoidally moving robotic flower. We can

observe from the vehicle’s velocity response that vx and vz are not maintained

around zero as specified by the desired command. Due to the static roll torque

bias caused by the wing asymmetry, there is a large undesired velocity tracking

error for the horizontal velocity component vy when the sideslip command is in

the negative y-direction.

Figure 5.9: Case study 2: comparison of velocity time histories of the adaptive
and non-adaptive SNN controllers shows that the adaptive SNN tracks the ref-
erence body velocity better than the non-adaptive one.

The control histories of the adaptive and non-adaptive SNN controllers are

compared in Fig. 5.10. Both controlled flapping-wing vehicles reach a static

equilibrium state within only 1 second when they are first commanded to hover

with an initial disturbance. The roll control history of the adaptive SNN be-

comes approximately sinusoidal when the controlled vehicle starts to track the
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moving robotic flower. Small oscillations occur in its roll control history, be-

cause the desired roll torque is changing very frequently as the vehicle tries to

track the sinusoidal horizontal velocity of the flower. However, the roll con-

trol history of the non-adaptive SNN is not sinusoidal, which results in large

tracking error in vy as shown in Fig. 5.9. Furthermore, due to the static wing

stoke angle bias, the amplitude control input of the non-adaptive SNN deviates

dramatically from the desired set point.

(a)

(b)

Figure 5.10: Case study 2: (a) control history of the adaptive SNN controller; (b)
control history of the non-adaptive SNN controller.
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5.5.3 Case Study 3: Square Trajectory Following with State

Measurement Error

In addition to modeling uncertainties such as wing damage and wing asym-

metry introduced in previous case studies, a successful adaptive SNN con-

troller should be able to account for state measurement errors that are inevitably

caused by onboard sensor noise [47, 227, 85]. In this case study, we demonstrate

the ability of our adaptive SNN controller to learn and adapt to onboard state

measurement errors by comparing with a benchmark non-adaptive SNN con-

troller. In numerical simulations, the flapping-wing vehicle is first commanded

to hover with an initial disturbance from time t “ 0 to t “ 0.5 s, which is fol-

lowed by a command to fly forward with its body velocity V “ 0.5 m/s for 5

seconds and then a coordinated-turn command with the turning rate 9ξ “ 90

deg/s for 1 second at V “ 0.5 m/s. This sequence of forward and turning com-

mands is repeated three more times until a square trajectory is accomplished by

the vehicle. Every corner of the square trajectory is achieved by conducting a

90-degree coordinated turn. The desired trajectory specified by this sequence of

commands is plotted in a dashed line in Fig. 5.11 below. In the simulation, zero-

mean random noise is added to the onboard measurement of the vehicle’s roll,

pitch and yaw angles and their rates, which will then be used as an essential

information to compute the control signal.

The trajectories of the flapping-wing vehicle controlled by the adaptive and

non-adaptive SNNs are compared in Fig. 5.11. The adaptive-SNN-controlled

vehicle successfully follows the reference square trajectory with extremely small

tracking error, and returns to the start point eventually. However, the non-

adaptive-SNN-controlled vehicle dramatically deviates from the desired trajec-
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tory, and does not go back to where it begins in the end as shown in the snap-

shots in Fig. 5.12. More details can be found in the comparison of the position

time histories in Fig. 5.13. We can observe that the adaptive SNN controller

successfully tracks the desired position while maintaining a constant altitude in

spite of the initial disturbance and state measurement error. Nevertheless, the

non-adaptive SNN controller not only fails to track the desired position in both

x- and y-directions, but also cannot maintain the vehicle’s altitude in z-direction.

Figure 5.11: Case study 3: vehicle trajectory comparison between the adaptive
and non-adaptive SNN controllers shows that the adaptive SNN follows the de-
sired square trajectory with much smaller tracking error than the non-adaptive
one.

In Fig. 5.14a, the control history of the adaptive SNN controller shows that

the amplitude and pitch control cost is relatively larger than the yaw and roll

control cost for the flapping-wing vehicle to fly in a square trajectory. The con-

trol histories take less than 4 seconds to approximately settle down to the hover-

ing set-point values subject to the initial disturbance after the vehicle takes off.

The four step changes of the yaw control input are due to the command of four

90-degree coordinated turns at the corner of the square trajectory. The online
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(a)

(b)

Figure 5.12: Case study 3: visualization of controlled square trajectory follow-
ing flight in Blender®. (a) The adaptive-SNN-controlled vehicle (inside blue cir-
cle) successfully adapts to the state measurement error and follows the desired
square trajectory (black dashed line). (b) The non-adaptive-SNN-controlled ve-
hicle (inside red circle) fails to adapt to the state measurement error and deviates
dramatically from the desired square trajectory (see [222] for animation).

adaptive pitch, roll and amplitude control histories are plotted in Fig. 5.14b to

further indicate the difference of control usage between the adaptive and non-

adaptive SNN controllers. The results show that all three adaptive control in-

puts are relatively large at the beginning to compensate for the initial distur-

bance. When the vehicle starts to fly in a square trajectory, the adaptive SNN

controller continuously adjusts the offline learned control law to account for the
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Figure 5.13: Case study 3: comparison of position time histories of the adaptive
and non-adaptive SNN controllers shows that the adaptive SNN successfully
tracks the desired position while maintaining a constant altitude, but the non-
adaptive SNN fails to accomplish this control objective.

onboard state measurement error of velocity, Euler angles and angular rates that

we introduce in simulation. In particular, the adjustments to the offline learned

control law are increased every time when the vehicle is commanded to turn at

the corner of the square trajectory.

5.5.4 Case Study 4: Coordinated Turn with Actuator Failure

As one of the most detrimental mechanical limitations that actual FWMAVs may

be faced with, actuator failure will restrict the operational range of flapping

wings and therefore cause extremely unstable motions on the fly [65, 25, 42].

In this case study, the capability of our new adaptive SNN controller to learn
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(a)

(b)

Figure 5.14: Case study 3: (a) control history of the adaptive SNN controller; (b)
adaptive pitch, roll and amplitude control histories.

to account for sudden partial actuator failure is demonstrated by comparing

with a benchmark non-adaptive SNN controller. In numerical simulations, the

flapping-wing vehicle is first commanded to hover with an initial disturbance

from time t “ 0 s to t “ 0.5 s, which is followed by a command to ascend

with its climb angle γ “ 90 deg and body velocity V “ 0.5 m/s for another 2

seconds. During the ascending flight, partial loss of effectiveness of the actuator

is introduced by reducing the left-wing stroke angle amplitude by 10% since
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time t “ 1.5 s. The vehicle is then commanded to perform a coordinated turn

with its turn rate 9ξ “ 90 deg/s from time t “ 2.5 s to t “ 18.5 s, which is followed

by a command to descend with its climb angle γ “ ´90 deg for 2 seconds. The

reference trajectory specified by this sequence of commands contains four full

circles of coordinated turn, and is plotted in black dashed lines in Fig. 5.15.

(a)

(b)

Figure 5.15: Case study 4: (a) vehicle trajectory of the adaptive SNN controller;
(b) vehicle trajectory of the non-adaptive SNN controller. The vehicle con-
trolled by the adaptive SNN successfully accomplishes the coordinated turn
with small displacement from the desired trajectory, while the non-adaptive-
SNN-controlled vehicle goes completely out of control.

The trajectories of the vehicles controlled by the adaptive and non-adaptive
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SNNs are compared in Fig. 5.15. It can be observed that both SNN controllers

are able to track the reference trajectory until the moment when the actuator

partially fails. Even though its trajectory slightly deviates from the reference tra-

jectory during the ascending flight, the adaptive SNN controller quickly adapts

to the actuator failure on the fly. As shown in Fig. 5.15a, the adaptive-SNN-

controlled vehicle accomplishes the coordinated turn with small displacement

from the desired trajectory, and safely lands in the end. However, Fig. 5.15b

shows that the vehicle controlled by the non-adaptive SNN goes completely out

of control after the actuator partially fails, and does not accomplish the coordi-

nated turn and descending flight as specified by the desired command input.

As shown in the velocity comparison in Fig. 5.16, velocity responses of the

adaptive and non-adaptive SNNs both change dramatically at the moment of

actuator failure, but only the adaptive SNN successfully takes the body veloc-

ity back to the desired reference value. In particular, a large spike in the body

velocity vy can be observed in the velocity time history of the adaptive SNN con-

troller at time t “ 1.5 s when the actuator partially fails, which results in a small

displacement from the desired vertical ascending trajectory in Fig. 5.15a. How-

ever, the adaptive SNN controller is able to settle down the velocity in less than 3

seconds, which indicates that it can quickly learn to account for the unexpected

partial actuator failure. Nevertheless, the velocity response of the non-adaptive

SNN goes out of bound immediately after the actuator partially fails. The body

velocity of the vehicle even exceeds the velocity limit of our current FWMAV

dynamic model, thereby resulting in a terrible crash eventually. Therefore, as

shown in Fig. 5.17b, the control cost of the non-adaptive SNN controller re-

quired to stabilize the wild vehicle increases drastically approximately at time

t “ 4.5 s. On the contrary, the control history of the adaptive SNN in Fig. 5.17a

110



shows that the amplitude and pitch control inputs overshoot every time when

the command input changes, but they both reach and maintain the desired set-

point values rapidly in less than 2 seconds.

Figure 5.16: Case study 4: comparison of body velocity time histories of the
adaptive and non-adaptive SNN controllers shows that the adaptive SNN
brings the vehicle velocity back to the desired value quickly after the actua-
tor fails at time t “ 1.5 s, while the velocity response of the non-adaptive SNN
goes out of bound immediately.
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(a)

(b)

Figure 5.17: Case study 4: (a) control history of the adaptive SNN controller; (b)
control history of the non-adaptive SNN controller.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This dissertation covers biologically inspired sensing and control ap-

proaches for micro aerial vehicles. We first present a novel and general con-

trol design approach, referred to as fast-tracking controller or FTC in short,

applicable to air vehicles flying through cellular flows. The new design phi-

losophy only requires approximate knowledge of a few key flow parameters,

such as the mean velocity, the typical vortex length scale, and the typical vor-

tex timescale, and allows the vehicle, with a feedback controller in the loop, to

behave like an ideal fast-tracking particle by means of implicit model follow-

ing. The simulation results show that, indeed, FTC control allows the vehicle

to take advantage of beneficial tailwinds by means of onboard propulsion and

local wind measurements, ultimately reducing the travel time and energy con-

sumption required to traverse the cellular flow. The energy-harvesting poten-

tial of FTC is demonstrated by considering two benchmark control problems:

minimum-energy problem and minimum-time problem. The comparison with

classic optimal solutions obtained via LQR and BBC control theory shows that,

by following the ideal response of the fast-tracking particle, the FTC-controlled

air vehicle achieves larger average horizontal velocity than the purely thrust-

driven one. Furthermore, the FTC-controlled vehicle can reach and maintain a

desired steady-state velocity through the cellular flow with less control effort

than the LQR-controlled vehicle, and reach a desired horizontal position faster

than the BBC-controlled vehicle.

Furthermore, with reasonable restrictions on the range of vortex length scale

and an appropriate choice of incremental length scale, the vortex timescale, of
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which the aforementioned FTC control design requires prior knowledge, can be

estimated onboard accurately within a permissible range of error by a SINDy-

based flow parameter estimation algorithm. However, when testing the esti-

mation algorithm on different simulated data sets, we observe that small er-

rors in the estimated vortex length scale make the algorithm unable to distin-

guish one ultimate candidate function from others, thus resulting in dispersed

weights and a large deviation when estimating the mean velocity and the vor-

tex timescale. Errors in the estimated vortex length scales may be caused by the

low resolution and inappropriate choice of the incremental length scale when

constructing the library of all potential candidate functions. Finally, the novel

FTC control design and corresponding flow parameter estimation algorithm

presented in this dissertation are also potentially applicable to other types of

vehicles, such as underwater vehicles in Langmuir-type water cells.

In addition to particle transport theory, inspirations on MAV sensing and

control can be drawn from natural flyers, such as hawk moth. As an essen-

tial step of reverse-engineering moth’s neural control systems, this dissertation

presents a novel regression-based spike train decoding method that uncovers

the precise mapping from the spike trains of ten primary flight muscles to the

resulting forces and torques on the moth body for the flight of a hawk moth vi-

sually tracking a robotic flower. The new relative-time kernel design considers

the extra relative spike timing information among multiple spike trains by com-

paring every pair of correlated spike trains across the flight muscle population.

The relative-time-kernel-based decoder captures the data variance better and

predicts the resulting forces and torques more accurately than the benchmark

instantaneous-kernel-based and rate-based decoders. Furthermore, compared

to force prediction, the proposed relative-time kernel has a much higher per-
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centage improvement over the instantaneous kernel in torque prediction. Re-

garding the future work beyond the relative-time kernel design approach de-

scribed in this dissertation, this new regression-based spike train decoder can

be used to train an SNN model of hawk moth sensorimotor control.

In the end, inspired by insect’s flapping flight control strategies, this disser-

tation presents a novel two-phase adaptive SNN control design approach that

allows the FWMAVs to conduct a full range of maneuvers, such as hovering,

flower tracking, square trajectory following and coordinated turn, in the pres-

ence of significant unmodeled uncertainties. The offline supervised learning

phase provides a fixed SNN approximation of a classical gain-scheduled PIF

compensator designed to stabilize the ideal FWMAV dynamic model. During

the online learning phase, SNNs are trained by policy gradient reinforcement

learning rule to minimize the state deviation and adapt to unmodeled uncer-

tainties. In numerical simulations, the adaptive SNN controller is shown to

outperform a benchmark non-adaptive SNN controller in controlling the full-

envelope flight of a flapping-wing robot known as RoboBee when unforeseen

situations, such as parameter variations, unmodeled dynamics, measurement

errors and actuator failures, are encountered on the fly. The bio-inspired sens-

ing and control strategies presented in this dissertation can be potentially ap-

plied to develop the next generation of smart, agile and adaptive MAVs that are

highly efficient and robust in the presence of wind disturbances and modeling

uncertainties.
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