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Abstract

Bayesian nonparametric (BNP) models, such as Gaussian processes (GPs) and Dirich-

let processes (DPs), have been successively applied for modeling target behaviors or

kinematics in various applications including environmental monitoring, traffic plan-

ning, endangered species tracking, dynamic scene analysis, autonomous robot nav-

igation, and human motion modeling. The advantages of BNP models over the

other approaches are that they are able to adjust the model complexity adaptively

based on data, and increase their dimensionality as necessary, while avoiding both

overfitting and underfitting. However, most existing works assume that the sensor

measurements used to learn the BNP models are obtained a priori or that the target

kinematics can be measured by the sensor at any given time throughout the task.

Little work has been done for planning or controlling the sensors that obtain target

measurements of mobile targets such that the most informative data may be obtained

for reducing the uncertainty of the BNP models. This dissertation presents a system-

atic sensor planning approach for leaning BNP models from data, by deciding the

sensor motion and control inputs that bring about the greatest model improvement

over time. The approach is demonstrated by first considering the problem of learn-

ing a Gaussian process of a model from a time-invariant spatial phenomenon, such

as an ocean current, a temperature distribution or a wind velocity field. Then, the

approach is demonstrated by learning a Dirichlet process-Gaussian process (DPGP)

model of multiple mobile targets, such as robots in a bounded workspaces, and
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pedestrians motion patterns insider buildings.

The sensor planning and control approach involves the development of novel in-

formation theoretic functions applicable to BNP models and capable of representing

the expected utility of future sensor measurements as a function of sensor control

inputs and random environmental variables. A computationally efficient form of the

expected Kullback Leibler divergence for Gaussian processes is derived by taking the

expectation of the KL divergence between the current (prior) and posterior Gaus-

sian process models at a set of collocation points, marginalizing out future measure-

ments. Then, the approach is extended to develop a new information value function

for Dirichlet process-Gaussian process mixture models of multiple dynamic targets.

New theoretical results are presented to prove that the novel information theoretic

functions are bounded, and to derive efficient estimators of expected information

value that are proven to be unbiased, and characterized by an approximation error

with a variance that decreases linearly with the number of samples. This dissertation

analyzes the computational complexity of the proposed sensor planning and control

problem, showing that the optimization of the DPGP information theoretic function

subject to sensor dynamic constraints is NP -hard. A cumulative lower bound is then

presented to reduce the computation required to polynomial time.

The information theoretic approach presented in this dissertation is demonstrated

by developing three sensor planning methods for different target kinematics and sen-

sor dynamics. When the control space of the sensor is discrete, a greedy algorithm

that optimizes the information value of the next set of measurements can be used

to effectively plan the sensor mode and motion at every time step. The efficiency of

the greedy algorithm is demonstrated by a numerical experiment with data of ocean

currents obtained by moored buoys. A sweep line algorithm is developed for appli-

cations where the sensor control space is continuous and unconstrained. Synthetic

simulations as well as physical experiments with ground robots and a surveillance
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camera are conducted to evaluate the performance of the sweep line algorithm. When

the sensor is characterized by continuous control inputs and dynamic constraints, a

lexicographic algorithm can be utilized to optimize an additive lower bound on the

information value function, such that the sensor performance can be optimized over a

finite time interval. The effectiveness of the lexicographic algorithm is demonstrated

through numerical experiments involving measurements obtained from indoor pedes-

trians by a surveillance pan-tilt camera. Results from both numerical and physical

experiments show that the information theoretic approach presented in this disserta-

tion is highly effective at planning and controlling sensor measurements for learning

BNP models of dynamic target or processes, with little or no prior knowledge.
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1

Introduction

The problem of learning the kinematics of mobile targets by means of a mobile sensor

is relevant to a wide range of applications, including security and surveillance [1],

environmental monitoring [2, 3], and tracking of endangered species [4, 5]. There are

a huge body of works related to this topic in the control literature that investigate

various aspects of the sensor planning problem [6]. From a partial but extensive sur-

vey of existing works, it can be claimed that the sensor planning problem faces three

key challenges. The first challenge is often if not always the problem of determin-

ing the model that describes the system under study, which is referred to as system

modeling or system identification [7, 8, 9]. The answer to the first challenge can be

seen as the interface between the real world of applications and the mathematical

world of control theory and model abstractions [10]. Two lines of research can be

pursued by adopting different philosophies. One philosophy is to use as simple mod-

els as possible, and the extreme case is the linear and time-invariant model, which

has been successfully applied in a wide range of applications thanks to the rich set

of theories and algorithms [11, 12]. The other philosophy is to use complex models

that are adaptive for describing target kinematics from large amount of data. In this
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line of research, Bayesian nonparametric models have been extensively applied due

to their flexibility and resistance to overfitting or underfitting [13]. These properties

are critical to problems where little knowledge of the targets is available. To this

end, Bayesian nonparametric models are studied in this dissertation for developing

efficient and manageable models of the target kinematics.

The second challenge that the sensor planning problem faces after the class of

model is determined is how to design suitable reward functions to assess the sen-

sor performance that would result from the sensor decisions before obtaining the

future sensor measurements [14]. The reward function should truthfully represent

the objectives of the research, which is learning the target kinematics. This topic

is considered well studied for parametric models [15, 16]. One popular approach is

to evaluate the utility of future measurements by their expected information value

conditioned on the prior measurements and on the environmental variables [17]. In-

formation theoretic functions are a natural choice for representing the information

value because they measure the absolute or relative information content of probabil-

ity mass functions or probability density functions associated with random variables

in the stochastic model of the target kinematics [18]. A general approach is recently

presented for estimating the expected information value of future sensor measure-

ments in target classification problems [19]. However, not much work has been done

on developing suitable objective functions for using Bayesian nonparametric models

in control problems. To this end, this dissertation extends the approach in [19] to

Bayesian nonparametric models by using the Kullback Leibler divergence to quantify

the expected utility associated with future measurements in updating the Bayesian

nonparametric models. The efficiency of the proposed information theoretic func-

tions is demonstrated through a variety of examples where the target kinematics are

modeled by various Bayesian nonparametric models.

Finally, optimization strategies need to be examined for the purpose of maximiz-

2



ing or minimizing the objective functions under various constraints on the sensor

dynamics. The most suitable optimization approach often depends on the specific

assumptions and formulations of the sensor planning problem. To this end, sev-

eral scenarios where the proposed Bayesian nonparametric target kinematics models

and the novel information theoretic functions can be applied are discussed. Corre-

sponding control strategies are developed according to the assumptions in different

scenarios.

This dissertation is organized as follows. Chapter 2 presents a comprehensive

literature review on the Bayesian nonparametric models and primitive background

knowledge of the Gaussian process and the Dirichlet process. Detailed discussions

of the advantages and disadvantages of the Bayesian nonparametric models are also

provided in Chapter 2 as the motivation of adopting them for describing target

kinematics adaptive from data. Chapter 3 provides the assumptions and the math-

ematical formulations of the sensor planning problem and the research goals to be

achieved. Chapter 4 presents the Bayesian nonparametric target kinematics models,

and the corresponding inference, prediction and filtering algorithms. Chapter 5 pro-

poses novel information theoretic functions for the Bayesian nonparametric target

kinematics models and studies the properties of the proposed information theoretic

functions. Chapter 6 presents a variety of sensor planning algorithms to several sce-

narios where the Bayesian nonparametric target kinematics models and the novel

information theoretic functions can be applied. Chapter 7 provides examples of real-

world applications to demonstrate the efficiency of the proposed sensor planning

algorithms. Finally, conclusions are drawn in Chapter 8.
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2

Background Knowledge

Bayesian models have been applied for describing processes associated with uncer-

tainties arguably ever since the Bayes’ theorem is derived in 1763 [20]. However, they

are not widely used until the development of modern computers from about 1975,

due to the high computational complexity for obtaining the posterior distributions

[21]. The applicability of Bayesian models is widened significantly again in the 1990s

with the development of numerical methods and software packages for numerical in-

tegration and Markov chain Monte Carlo (MCMC) sampling algorithms [21, 22]. In

Bayesian statistics, observed data are assumed to be described by probability dis-

tributions with unknown parameters, where the observed data are treated as fixed

quantities and the parameters of the probability distributions are treated as random

variables [23]. In the Bayesian paradigm, current knowledge about the model param-

eters is expressed by a probability distribution on the parameters, referred to as the

prior distribution [24]. The conditional probability distribution of the observed data

given the model parameters is called the likelihood. The Bayes’ theorem shows that

the posterior probability density function of the model parameters is proportional

to the product of the prior density with the likelihood function, and can be obtained
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by proper normalization of the product. The whole process is referred to as the

Bayesian inference and the adopted probabilistic models are the Bayesian models.

The use of the prior distribution distinguishes the Bayesian inference from the fre-

quentist inference, which treats the model parameters as unknown fixed quantities

and learns the optimal parameter values by maximizing the likelihood functions [25].

Advantages of inferences with Bayesian models over frequentist inferences include the

existence of posterior distributions so that probabilities of the parameters belonging

to any set can be calculated. However, the biggest criticism about the Bayesian is

also the use of the prior distribution, since it brings subjective information to the

inference [26]. The argument between Bayesian and frequentist statistics has been

discussed in many works, and no unifying view has been accepted by all the re-

searchers [27]. Since Bayesian models are more straightforward and mathematically

rigourous to cope with infinite number of parameters, they are used in this disserta-

tion for the nonparametric target kinematics modeling when the number of classes

of target kinematics can not be determined a priori, which is discussed as follows.

In both the Bayesian inference and the frequentist inference discussed above, a

key question to be answered is model selection, that is how to choose a model at an

appropriate level of complexity [28]. For Bayesian (parametric) models, the model

complexity is determined by the number of model parameters specified by the prior

distributions. For example, the most prominently asked model selection question

is how to determine the proper number of components in a mixture model. If the

Dirichlet distribution is used as the prior of mixture weights, the model selection

question is simply to decide the dimension of the Dirichlet distribution. Working

with Bayesian parametric models, the model selection problems are often addressed

by first fitting several models, with different numbers of parameters, and then by

selecting the best one using model comparison metrics [29]. These metrics are usually

weighted summations of two parts. The first part evaluates the training error that
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measures how well the model fits the data [30]. The second part is a complexity

penalty that favors simpler models with less parameters according to the Occam’s

razor that can be interpreted as stating “Among competing hypotheses, the one

with the fewest assumptions should be selected” [31]. A few problems exist with the

parametric approach to model selection. The most dominating one is the difficulty

in choosing the “correct” number of parameters. If the number of parameters is

too large, Bayesian models are overfitted and tend to learn the noise of the training

data instead of the underlying relationship. Therefore, overfitted Bayesian models

have large predictive errors when given new test data. On the other hand, if the

number of parameters is too small, underfitting occurs as a result of the excessively

simple model. In this scenario, Bayesian models are not able to describe the training

data well enough and the predictive performance is also poor. Validation or cross-

validation using test data may alleviate the problems of overfitting and underfitting,

however, it is also argued that when training a model, no test data should be used.

In addition, high computational cost is also a disadvantage of such approaches, since

only one of all the trained models is selected and the computational resource spent

for the remaining models is wasted.

In contrast, Bayesian nonparametric (BNP) models provide a different approach

to the model selection problem by assuming that the number of parameters is infinite.

In fact, a commonly used definition of Bayesian nonparametric models is probability

models with infinitely many parameters [32]. Equivalently, Bayesian nonparametric

models are probability models on function spaces [33]. Rather than comparing mod-

els that vary in complexity, the BNP approach is to fit a single model that can adapt

its complexity to the data [34]. The adaptation of model complexities in Bayesian

nonparametric models is achieved by treating the number of parameters as part of

the posterior distribution [21]. The number of parameters is then determined by an-

alyzing the data and therefore only a finite subset of the available infinite parameters
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are invoked for any given finite data set [13]. The development of Bayesian nonpara-

metric models is made possible after the required mathematical tools for specifying

distributions on function spaces are discovered, such as the Kolmogorov consistency

theorem [35] and the de Finetti’s theorem [36, 37]. The first Bayesian nonparamet-

ric model is commonly considered as the Dirichlet process developed in the 1970s

from the study of distribution of random measures mainly for mathematical inter-

est [38, 36, 39]. Since MCMC sampling algorithms for Dirichlet process mixtures

become available in the 1990s and make latent variable models with Bayesian non-

parametric components applicable to practical problems, the development of BNPs

has experienced explosive growth [40, 41].

Comparing to parametric models that fixes the number of parameters in the prior

distribution, Bayesian nonparametric models have several advantages. First of all,

no assumptions on the number of parameters means that the burden of model se-

lection is not placed on the users [34]. In addition, in many contexts of statistical

modeling it is desirable to make fewer assumptions about the underlying popula-

tions from which the data are obtained [42]. Furthermore, Bayesian nonparametric

models are considered to be more robust and easier for model diagnostics and sen-

sitivity analysis [33]. The disadvantages of the Bayesian nonparametric models are

also apparent. The mathematical complexities are more demanding, since placing

well-defined probability distributions on potentially infinite-dimensional spaces is in-

herently harder than for Euclidean spaces [21]. In addition, posterior distributions in

Bayesian nonparametric methods are more complicated and are more challenging for

designing inference algorithms. However, the availability of powerful software pack-

ages have lessened the difficulty for using Bayesian nonparametric models [43]. More-

over, the increasing demand of flexible models in scientific works has been constantly

boosting the popularity of Bayesian models. Successful applications of Bayesian non-

parametric models include regression [44, 45, 46], classification [47, 48, 49, 50, 51],
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clustering [37, 52, 53, 39, 40, 54], latent factor modeling [55, 56, 57, 58, 59], sequen-

tial modeling [60, 61, 62, 63], image processing [64, 65, 66, 67], and topic modeling

[68, 69, 70, 71, 72], just to name a few.

Among all the successful applications of the Bayesian nonparametric models,

target kinematics modeling is the most pertinent to the sensor planning. The most

commonly utilized Bayesian nonparametric models for target kinematics modeling

in the literature are Gaussian processes (GPs) and Dirichlet processes (DPs), since

GPs provide a powerful technique for function regressions and DPs are useful for

clustering similar kinematic equations. Based on the models applied and the mod-

eling purpose, the Bayesian nonparametric models to target kinematics modeling

can be categorized as follows. A group of studies utilize GPs to represent state

transitions of dynamic systems and propose various filtering techniques based on

the measurement models and the different assumptions on the dynamic systems

[73, 74, 75, 76, 77, 78, 79, 80]. Applications of these filters include but not limited to

multiple targets tracking and human pose learning. Another group of applications

of GPs in target kinematics modeling assume that the target movements can be de-

scribed as trajectories consisting of histories of target positions and/or velocities. For

example, Ellis et al. proposed a non-parametric model for pedestrian motion based

on Gaussian process regression, in which trajectory data are modelled by regressing

relative motion against current position [81]. Mann et al. constructed and applied

the GP for flight trajectory generation of pigeons trained to return home from spe-

cific release sites [82]. In [44], recognitions of motions and activities of targets in

videos are performed by modeling target kinematics as a continuous dense flow field

from a sparse set of vector sequences using Gaussian process regression, allowing for

incrementally predicting possible paths and detecting anomalous events from online

trajectories. In [83], a navigation algorithm for a car-like robot moving in a dynamic,

uncertain environment populated with mobile obstacles is designed by representing
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typical motion patterns of the obstacles using pre-learned Gaussian processes. In

[84], the problem of safe navigation of a mobile robot through crowds of dynamic

agents with uncertain trajectories is solved by estimating crowd interaction from data

using a nonparametric statistical model based on dependent output Gaussian pro-

cesses. Later, the approach is extended in [85] and a probabilistic predictive model

of cooperative collision avoidance and goal-oriented behavior is developed by consid-

ering multiple goals and stochastic movement duration in the interacting Gaussian

processes. In [86], an autoregressive Gaussian process motion model is applied in the

problem of navigation through a partially observable dynamic environment. Besides

a single Gaussian process, finite mixtures of GPs are also applied for target kinemat-

ics modeling. For example, Aoude et al. presented an efficient trajectory prediction

algorithm for future collision avoidance by combining rapidly exploring random tree-

reach algorithm with a finite mixtures of Gaussian processes [87, 88]. Reece et al.

studied how groups of animals move collectively and how they effectively align their

movements by using a mixture of GPs, where one GP is applied to model the dis-

tribution of an individual movement path [89]. In [90], multiple goal trajectories are

modeled by a mixture of GPs over waypoints and the transition time between these

waypoints. Furthermore, DP mixtures are also adopted for modeling target kinemat-

ics. Fox et al. considered the problem of data association for multi-target tracking

in the presence of an unknown number of targets by using the Dirichlet process to

provide a prior on partitions of the observations among targets whose dynamics are

individually described by state space models [91]. In [92], a framework called Dual

Hierarchical Dirichlet Processes is proposed for unsupervised trajectory analysis and

semantic region modeling in surveillance settings. In [93], the Dirichlet process active

region framework is developed that learns motion patterns from data and is able to

group motion patterns with small planar shift in the same cluster. Finally, Joseph

et al. proposed the Dirichlet process-Gaussian process mixture model for modeling
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target kinematics, where the GPs provide a flexible representations for each individ-

ual motion pattern, while the DP assigns observed trajectories to particular motion

patterns. Both automatically adjust the complexity of the motion model based on

the available data [94, 95].

In summary, Bayesian nonparametric models have been extensively applied in

sensor planning problems for modeling target kinematics or dynamics, due to their

flexibility and resistance to over-fitting/under-fitting and ability to solve problems

where domain knowledge is unavailable. However, existing works often treat the

Bayesian nonparametric models simply as black boxes of target kinematics [73, 74,

75, 76, 77, 78, 79, 80, 83, 86, 94, 95]. Rather than being targeted at improving BNP

models, to date the measurements used for updating the Bayesian nonparametric

models are typically obtained while in pursuit of other objectives, such as tracking

or estimation of target states. Previous methods that consider the improvement

of Bayesian nonparametric models assumed targets are static or the sensor field-

of-view is unbounded, such that target measurements are always available [81, 82,

44, 84, 85, 89, 90, 91, 92, 93]. This dissertation relaxes these assumptions and

considers mobile targets observed by a sensor with a bounded field-of-view, such

that when measurements are available only when the sensor planning problem takes

into consideration both the field-of-view geometry and the target trajectory. In

addition, new information-based sensor planning algorithms are proposed such that

Bayesian nonparametric models can be utilized in applications where learning target

kinematics with little or no priori knowledge efficiently is of great importance.

2.1 Gaussian Process

Target kinematics modeling often involves determining the equations that govern the

motion of the target [96]. Traditionally, these kinematics equations can be derived

from physical laws or geometry properties of the target system, and can be expressed
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in the form of partial differential equations. This class of methods is accurate when

the underlying physical law is easy to understand. However, in complex systems,

simplifications are always required and, therefore, the model does not represent the

system kinematics or dynamics exactly. In many applications, the values of target

kinodynamic parameters are difficult to obtain a priori. In some cases, lookup ta-

bles from experimental data or empirical formulas are used, but this approach may

lessen the accuracy of the model, when the conditions of the application are different

from the ones considered by the lookup tables or the empirical formulas. Another

approach to target kinematics modeling is using parametric models, such as hidden

Markov models, to learn the parameters from data [93]. Markov models suffer from

several disadvantages, including the Markov separation property [97]. This may be

resolved by augmenting the system state, however, the state-space of the Markov

model increases exponentially with the dimension of the system state. Markov mod-

els usually represent the system state by discrete distributions, and thus cannot cope

well with continuous systems. Moreover, in some areas, the data available will be

insufficient to estimate reliable probability or transfer rates, especially for rare transi-

tions [98]. In contrast to the above methods, Bayesian nonparametric models provide

an approach to adaptively learning the model parameters and dimensionality from

data.

Among all Bayesian nonparametric models, the Gaussian process is arguably the

most popular for describing target kinematics. The Gaussian process can be seen

as an infinite-dimensional generalization of multivariate normal distributions. It can

also been seen as a distribution over the function space, therefore, it can be used as

the prior on the functions to be learned. The posteriors of the functions can be easily

obtained in simple analytical form by the Gaussian process regression technique,

provided the measurement noise is Gaussian distributed. Furthermore, properties of

the underlying function, such as stationary and smoothness, can be easily specified
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by the choice of the parameters of the GP. For the above three reasons, Gaussian

processes have been successfully applied in learning spatial or temporal phenomena

from noisy measurements, without a-priori specifications of model complexities [99,

100, 94, 101, 102]. One of the main drawbacks of Gaussian processes is the cubic

complexity dependence on the number of training data [78]. Sparse GP regression

approaches can be used to reduce the complexity by intelligently selecting a subset

of the training data [103, 104, 105, 106, 107]. A formal definition of the Gaussian

process is presented as follows,

Definition 1 (Gaussian process [43]). A Gaussian process defines a multivariate

Gaussian distribution over functions, P pfq, where f :W Ñ R. Let F “ tfpx1q, . . . ,

fpxnq | xi P Wu be a set of function values evaluated at n points in W. Then,

P pfq is a Gaussian process if for any finite set tx1, . . . ,xn | xi P Wu the marginal

distribution P pF q is a joint multivariate Gaussian distribution.

A Gaussian process is completely specified by its mean function and covariance

function [108]. Let υ denote the latent random variable that represents the function

evaluation at x, that is, υ fi fpxq. Then, the mean function, θ : W Ñ R, and the

the covariance function, φ :W ˆW Ñ R, of a GP are defined as follows:

θpxq fi Evrfpxqs, @x PW (2.1)

φpx,x1q fi Ev,v1 trfpxq ´ θpxqsrfpx1q ´ θpx1qsu , @x,x1 PW (2.2)

where Evr¨s denotes the expectation operator with respect to the random variable υ

[1]. In summary, the notation,

fpxq „ GP pθpxq, φpx,x1qq (2.3)

can be used to indicate that f is “distributed as” the Gaussian process with mean

function θp¨q and covariance function φp¨, ¨q. The existence of the Gaussian process

is proved by the Kolmogorov’s consistency theorem [35, 109].
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2.1.1 Gaussian Process Regression

A major advantage of working with GPs is the existence of simple analytic formulas

for mean and covariance of the posterior distribution, which allows easy implemen-

tation of algorithms [110]. Assume that k P Z` training input and output pairs,

txi, zi | i “ 1, . . . , ku, are available, where zi is a noisy measurement of fp¨q taken at

xi PW , such that,

zi “ fpxiq ` ν, i “ 1, . . . , k (2.4)

where ν is the measurement noise. If the measurement noise, ν, is zero mean Gaussian

distributed with standard deviation σn, the posterior distribution of fp¨q conditioned

on the training data is also a GP, with modified mean and covariance functions,

calculated as follows.

Without loss of generality, assume that the domain of fp¨q is a subspace of the

d-dimensional Euclidean space, such that W Ă Rd. For brevity, the d-dimensional

column vector inputs for all k cases can be organized in the dk ˆ 1 vector,

X fi rxT1 ¨ ¨ ¨ xTk s
T (2.5)

In addition, the measurements are collected in a k ˆ 1 vector,

z fi rz1 ¨ ¨ ¨ zks
T (2.6)

Assume that υi fi fpxiq is adopted to denote the function evaluation at xi, for

i “ 1, . . . , k. Then, the function evaluations at all the k inputs can be organized in

a k ˆ 1 vector,

υ fi rυ1 ¨ ¨ ¨ υks
T (2.7)

Consider any other set of m input vectors also in the domain of fp¨q, denoted by

tx11, . . . ,x
1
m | x1i P Wu. It follows that X1 and υ1 can be defined similarly as (2.5)

and (2.6), respectively. Then, the k ˆm cross-covariance matrix of random vectors
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υ and υ1 can be defined as,

ΦpX,X1
q fi Eυ,υ1

”

`

υ ´ Erυs
˘`

υ1 ´ Erυ1s
˘T
ı

“

»

—

–

φpx1,x
1
1q ¨ ¨ ¨ φpx1,x

1
mq

...
. . .

...
φpxk,x

1
1q ¨ ¨ ¨ φpxk,x

1
mq

fi

ffi

fl

(2.8)

where φp¨, ¨q is defined in (2.2). Then, from GP regression, the joint distribution of

y and υ1 is,
„

z
υ1



„ N
ˆ„

θpXq
θpX1q



,

„

Σ ΦpX,X1q

ΦpX1,Xq ΦpX1,X1q

˙

(2.9)

where

θpXq fi rθpx1q ¨ ¨ ¨ θpxkqs
T (2.10)

Σ fi ΦpX,Xq ` σ2
nIk (2.11)

N pµ,Kq denotes the multivariate Gaussian distribution with mean µ and covariance

K, and Ik is the k-dimensional identity matrix. The marginalization over y in

(2.9) shows that the posterior distribution of υ1 given the training data is still a

multivariate Gaussian distribution with mean µ1 and covariance Σ1, such that,

µ1 “ θpX1
q `Φ pX1,XqΣ´1

rz´ θpXqs (2.12)

Σ1
“ ΦpX1,X1

q ´ΦpX1,XqΣ´1ΦpX,X1
q (2.13)

Figure 2.1 shows two examples of Gaussian process regression with noisy training

data, where the posterior mean function is treated as the function prediction. The

ground-truth function in Fig. 2.1(b) is fpxq “ cospxq sinpyq, where x “ rx ysT .

2.1.2 Gaussian Process Hyper-Parameter Optimization

For Gaussian process regressions, the properties of fp¨q, such as smoothness and

periodicity, can be enforced by the choice of the covariance function [111]. For
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Figure 2.1: Gaussian process regression examples for (a) 1D domain and (b) 2D
domain.

example, if the dependence between fpxq and fpx1q are invariant when x and x1

are translated simultaneously, stationary covariance functions that depend on the

relative position of its two inputs, x ´ x1, should be used. The covariance function,

φp¨, ¨q, is then specified by a set of hyper-parameters, denoted by Θ [108]. A common

choice for a stationary covariance functions is the squared-exponential function,

φpx,x1q “ σ2
f exp

ˆ

´
1

2
px´ x1qTΛ´1

px´ x1q

˙

(2.14)

where σ2
f is the output variance that determines the average distance between fp¨q

and θp¨q, and Λ “ diagprλ1 ¨ ¨ ¨ λdsq is a diagonal matrix of length-scales in all

dimensions of x P Rd, which control the smoothness of the covariance function [112].

diagp¨q applied to a row vector denotes an operation that places elements of the

row vector on the diagonal of a zero matrix. In addition, the measurement noise

standard deviation, σn, can also be treated as a hyper-parameter. Therefore, the

set of hyper-parameters for the squared-exponential covariance function in (2.14) is

Θ “ tσf ,Λ, σnu.

In the Bayesian framework, the optimal hyper-parameters can be learned by
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maximizing the marginal likelihood function [113],

log ppz|X,Θq “ ´
1

2
zTΣ´1z´

1

2
log

“

p2πqk|Σ|
‰

´
k

2
log 2π (2.15)

where Σ is the covariance matrix of the noisy measurements z defined in (2.11), and

| ¨ | denotes the determinant of a matrix. The maximization of the marginal likeli-

hood function can be solved by gradient-based algorithms. The search directions are

defined by the partial derivatives of (2.15) with respect to the hyper-parameters Θ.

In case of the squared-exponential covariance function (2.14), the partial derivatives

can be found by matrix calculus, as follows,

B log ppz|X,Θq

Bσf
“

1

σf
tr
“

pααT ´Σ´1
qΦpX,Xq

‰

B log ppz|X,Θq

Bσn
“

1

σn
tr
`

ααT ´Σ´1
˘

(2.16)

B log ppz|X,Θq

Bλ`
“

1

4λ2`
tr
“

pααT´Σ´1
qpΦpX,Xq˝Dq

‰

for ` “ 1, . . . , d, where,

α fi Σ´1z (2.17)

Dpi,jq fi
`

eT` xi ´ eT` xj
˘2

(2.18)

e` fi
“

0 ¨ ¨ ¨ 0
looomooon

`´ 1

1 0 ¨ ¨ ¨ 0
looomooon

d´ `

‰T
(2.19)

trp¨q calculates the trace of a matrix, and ˝ denotes the Hadamard product (element-

wise product) of two matrices. Notice that the computational complexities for cal-

culating the derivatives of σf , σn and λ1 are Opk2q after Σ´1 is obtained for the k

training data pairs. In addition, the computational complexities for λ2, . . . , λd are

only Op1q. Therefore, all the partial derivatives of the marginal likelihood function in

(2.15) with respect to the hyper-parameters, Θ, can be calculated efficiently, which
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justifies the usage of gradient-based methods in the hyper-parameter optimization.

An example of the GP hyper-parameter optimization is shown in Fig. 2.2, demon-

strating that optimizing the hyper-parameters can greatly reduce the regression error.
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Figure 2.2: Example of Gaussian process hyper-parameter optimization with
squared-exponential covariance function (2.14). (a) Ground-truth of the function
fpxq; (b) Posterior mean function without hyper-parameter optimization; (c) Pos-
terior mean function with hyper-parameter optimization; (d) Error of GP regres-
sion without hyper-parameter optimization; (e) Error of GP regression with hyper-
parameter optimization.
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2.2 Dirichlet Process

For problems involved with mixture models, such as data clustering, Dirichlet pro-

cesses (DPs) have been successfully applied as priors of the mixture weights [94, 95].

DPs do not require the users to specify the number of clusters a priori, because they

allow the creation of new clusters when necessary as data are obtained over time

[114, 41, 115]. When the targets follow multiple classes of kinematics, a single Gaus-

sian process is not sufficient for describing all observed trajectories, and a mixture of

Gaussian process must be utilized. In this case, the Dirichlet process can be used to

learn the total number of target kinematics from noisy sensor measurements, when

this information is not available to the sensor a priori. Also, the target-kinematics

associations can also be learned by the employment of the Dirichlet process.

The Dirichlet process was first developed in the 1970s [38, 39] and remains one

of the most popular nonparametric model in the literature [33]. Its popularity de-

rives from the development of posterior inference algorithms for the Dirichlet process,

most of which are MCMC-based algorithms [114, 116, 41, 117, 118, 119], and vari-

ational inference methods [115, 120, 121, 122]. The Dirichlet process can be seen

as a infinite-dimensional generalization of the Dirichlet distribution. It is called a

Dirichlet process because it has Dirichlet distributed finite dimensional marginal dis-

tributions [123]. In the same way that the Dirichlet distribution is the conjugate

prior for the categorical distribution (discrete probability distribution), the Dirich-

let process is the conjugate prior for infinite discrete distributions. The Dirichlet

process is a distribution over distributions, that is, samples from a Dirichlet process

are distributions. In addition, the sampled distributions are discrete, but cannot be

described using a finite number of parameters, thus the Dirichlet process is catego-

rized as a nonparametric model. To this end, the most important application of the

Dirichlet process is the prior probability distribution in infinite mixture models [123].
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Since the Dirichlet process is the generalization of the Dirichlet distribution, it is

helpful to study the properties of the simpler Dirichlet distribution. The Dirichlet

distribution of order d ě 2 with parameters, α1, . . . , αd ą 0, has a probability density

function with respect to Lebesgue measure on the Euclidean space Rd´1 given by,

ppπq “
ΓpΣd

i“1αiq

Πd
i“1Γpαiq

Πd
i“1π

αi´1
i (2.20)

on the open pd ´ 1q-dimensional simplex:
!

π P Rd | π1, . . . , πd ą 0,
řd
i“1 πi “ 1

)

,

and zero otherwise, where π fi rπ1 ¨ ¨ ¨ πds
T , and Γp¨q is the gamma function [109].

In order to demonstrate the meaning of the parameters, tαiu
d
i“1 can be normalized,

such that,

α̂ fi
1

σ
rα1 ¨ ¨ ¨ αds

T , and σ fi

d
ÿ

i“1

αi (2.21)

The normalized parameter, α̂, also referred to as the base distribution, determines

the mean of the Dirichlet distribution, as illustrated in Fig. 2.3. The normalization

constant, σ, controls the variance of the Dirichlet distribution, therefore, it is also

known as the concentration parameter. Figure 2.4 shows that by increasing σ, the

mean of the Dirichlet distribution is not changed, however, distribution is more

concentrated around the mean.

The Dirichlet process generalizes the Dirichlet distribution to an infinite dimen-

sion. In order to present the formal definition of the Dirichlet process, the σ-algebra

and the measurable space need to be introduced first:

Definition 2 (σ-algebra [124]). The σ-algebra on a nonempty set A is a collection

B of subsets of A, which obeys the following properties:

1. H P B.

2. If E P B, then the complement of E, denoted by Ec fi AzB, is also in B.

19



Figure 2.3: Example of Dirichlet distributions with concentration parameter
σ “ 10, and (a) α̂ “ r1{3 1{3 1{3sT ; (b) α̂ “ r0.6 0.2 0.2sT ; (c) α̂ “

r0.2 0.4 0.4sT .

Figure 2.4: Example of Dirichlet distributions with base distribution α̂ “

r1{3 1{3 1{3sT , and (a) σ “ 5; (b) σ “ 10; (c) σ “ 50.

3. If E1, E2, . . . P B, then
Ť8

i“1Ei P B.

The pair pA,Bq of a set A together with the σ-algebra B is referred to as a

measurable space. In addition, a finite measurable partition of the set A is defined

as a collection of sets, tBi P B | i “ 1, . . . , nu, such that Bi

Ş

Bj “ H, if i ‰ j; and
Ťn
i“1Bi “ A. With the above definitions, a formal definition of the Dirichlet process

mixture model can be given as follows:

Definition 3 (Dirichlet process [38]). A Dirichlet process is a distribution over prob-

ability measures. Let pA,Bq be a measurable space. Let H be a finite non-zero mea-

sure on the measurable space pA,Bq, and let α be a positive real number. A Dirichlet

process p with parameters H and α, denoted by p „ DPrα,HpAqs, is a distribution
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of a random probability measure p, if for any finite measurable partition tBiu
n
i“1 of

A, the following holds,

rppB1q, . . . , ppBnqs
T
„ DirrαHpB1q, . . . , αHpBnqs (2.22)

where “Dir” denotes the Dirichlet distribution.

Just like the Dirichlet distribution, the Dirichlet process can also been seen as

a distribution of distributions. Because
řn
i“1 ppBiq “ 1, samples from a Dirichlet

process are discrete distributions that have the same support as H. The support

of a function f : Rd Ñ R is defined to be the set tx P Rd | fpxq ‰ 0u where f is

non-zero [125]. In addition, these discrete distributions are made up of countably

infinite number of weighted point masses [36]. Let tβiu
8
i“1 denote the point masses

and let tπiu
8
i“1 denote the corresponding weight, a sample from the Dirichlet process

can be expressed mathematically as,

p “
8
ÿ

i“1

πiδβi , where,
8
ÿ

i“1

πi “ 1, and πi ą 0, i “ 1, . . . ,8 (2.23)

where δβp¨q is the Dirac’s delta function defined by the following properties:

δβpxq “

$

&

%

0, x ‰ β

8, x “ β
, and

ż 8

´8

δβpxqdx “ 1 (2.24)

Examples of samples from the Dirichlet processes with various parameters are shown

in Fig. 2.5 and Fig. 2.6, where tβiu
8
i“1 are indicated by the positions of the vertical

bars and tπiu
8
i“1 are shown by the heights of the vertical bars.

The parameters of the Dirichlet process have the same meaning as the those

of the Dirichlet distribution. The base distribution, Hp¨q, determines the mean of

the Dirichlet process, as illustrated in Fig. 2.5. In Fig. 2.5, α is unchanged and the

variance of the base distribution is increased, which affects the distribution of tβiu
8
i“1.
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The strength parameter α of the Dirichlet process controls the concentration of the

sampled discrete distributions. For Dirichlet processes with large α, new clusters are

more likely to be generated. Therefore, in the limit of αÑ 0, the realizations are all

concentrated at a single value, while in the limit of α Ñ 8 the realizations become

continuous. The effect of α of the Dirichlet process is shown in Fig. 2.6.

 


 

 


 

 


 

Figure 2.5: Example of samples from DP(α,H), for α “ 1000 and (a) H “ N p0, 1q;
(b) H “ N p0, 10q; (c) H “ N p0, 100q.

 


 

 


 

 


 

Figure 2.6: Example of samples from DP(α,H), for H “ N p0, 1q and (a) α “ 10;
(b) α “ 100; (c) α “ 1000.

2.3 Dirichlet Process Gaussian Process Mixture Model

In applications where the dynamic process has a continuous domain, the Dirichlet

process can not be used directly, since the samples from DPs are discrete distri-

butions, as shown in (2.23). One popular solution to this problem is to convolve
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the DP with a smooth distribution, resulting in DP mixture models, which provide

an approach for estimating both the number of components in a mixture model

and the parameters of the individual mixture components simultaneously from data

[13, 63]. Therefore, the study for the DP mixture models, particularly the Dirichlet

process-Gaussian process mixture models (DPGP-MMs), have been of interest for

many years. Rasmussen et al. constructed a DPGP-MM through an extension to

the Mixture of Experts model, where the individual experts are Gaussian Processes.

Using an input-dependent adaptation of the Dirichlet Process, they implemented a

gating network for an infinite number of Experts. Inference in this model may be

done efficiently using a Markov Chain relying on Gibbs sampling. The model al-

lows the effective covariance function to vary with the inputs, and may handle large

data sets thus potentially overcoming two of the biggest hurdles with GP models,

that is the high computational complexity and the limitation of stationary covari-

ance function [54, 126]. Meeds et al. proposed an alternative infinite mixture Of

Gaussian process experts, in which each component comprises a multivariate Gaus-

sian distribution over an input space, and a Gaussian Process model over an output

space. The model is neatly able to deal with non-stationary covariance functions,

discontinuities, multi-modality and overlapping output signals. The work is similar

to [126]; however, they used a full generative model over input and output space

rather than just a conditional model, to deal with incomplete data, to perform in-

ference over inverse functional mappings as well as for regression, and also leads to a

more powerful and consistent Bayesian specification of the effective gating network

for the different experts [127]. Yuan et al. presented in their work a new generative

mixture of experts model. Each expert is still a Gaussian process but is reformulated

by a linear model, which breaks the dependency among training outputs and enables

them to use a much faster variational Bayesian algorithm for training. The result-

ing gating network is more flexible than previous generative approaches as inputs
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for each expert are modeled by a Gaussian mixture model. The number of experts

and number of Gaussian components for an expert are inferred automatically [128].

Jackson et al. presented a Bayesian technique aimed at classifying signals without

prior training (clustering). The approach consists of modelling the observed signals,

known only through a finite set of samples corrupted by noise, as Gaussian processes.

As in many other Bayesian clustering approaches, the clusters are defined thanks to

a mixture model. In order to estimate the number of clusters, they assumed a priori

a countably infinite number of clusters, thanks to a Dirichlet process model over the

Gaussian processes parameters. Computations are performed thanks to a dedicated

Monte Carlo Markov Chain algorithm [129]. Gorur et al. studied the effect of the

choice of base distributions in DPGP-MM, by compare computational efficiency and

modeling performance of DPGP-MM defined using a conjugate and a conditionally

conjugate base distribution. They showed that better density models can result

from using a wider class of priors with no or only a modest increase in computa-

tional effort [130]. Joseph et al. used the DPGP-MM in modeling motion patterns,

where the GP provides a flexible representation for each individual motion pattern,

while the DP assigns observed trajectories to particular motion patterns. Both au-

tomatically adjust the complexity of the motion model based on the available data.

They showed that DPGP-MM approach outperforms several parametric models on

a helicopter-based car-tracking task on data grouped from the greater Boston area

[95, 87].

The DPGP mixture is constructed by using a Dirichlet process as the prior of

the distribution of the Gaussian process mean function, (2.1), as shown in Fig. 2.7.

In order to ensure that the Dirichlet process prior is conjugate with the likelihood

function, which is assumed to be Gaussian as in (2.4), the base distribution, H,

of the Dirichlet process is chosen to be a known Gaussian process with zero mean,

GP0 “ GPr0, φp¨, ¨qs. For the purpose of learning the target kinematic models, F ,
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GP0 is defined for the measurable space pA,Bq, where A is chosen to be the function

space C1pWq, which is the space of continuously differentiable functions, f :W Ñ R,

where W is the workspace. Then, DP-GP mixture model is formulated as follows,

by adopting the infinite mixture model representation [41],

tθi,πu „ DPpα,GP0q, i “ 1, . . . ,8

Gj „ Catpπq, j “ 1, . . . , N

υj „ GPpθGj
, φq, j “ 1, . . . , N

(2.25)

where “Cat” denote the categorical distribution.

GP0 𝜃𝑖 

   Gj 
𝜃𝐺𝑗 

i = 1,..., 

j = 1,...,N 

𝜐𝑗 

Figure 2.7: Graphical representation of the Dirichlet process Gaussian process
mixture model.

2.4 Chapter Conclusion

Bayesian nonparametric models have recently become a popular choice for modeling

dynamic processes, due to their flexibility and resistance to over-fitting/under-fitting.

Rather than being targeted at improving BNP models, to date the measurements

used for updating the Bayesian nonparametric models are typically obtained while in

pursuit of other objectives, such as tracking or estimation of target states. Previous

methods that consider the improvement of Bayesian nonparametric models assumed

targets are static or the sensor field-of-view is unbounded, such that target measure-

ments are always available. As shown in the problem formulation in Chapter 3, this
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dissertation relaxes these assumptions and assumes the targets are mobile and the

sensor field-of-view is bounded. Methodologies that aim at improving the accuracy

of the BNP models by on-line measurements are presented in Chapters 4-6.
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3

Sensor Planning Problem Formulation

Sensor planning consists of managing or controlling a sensor for the purpose of ob-

taining the most informative measurements in terms of a desired sensing objective.

The problem class considered in this research focuses on the objective of learning the

unknown kinematic models of multiple targets in a predefined workspace. The sensor

planning problem formulation is described by first introducing all the necessary as-

sumptions on the workspace, the sensor system, and the targets. These assumptions

provide the link between the real-life applications and the abstract mathematical

world. Subsequently, a mathematical description that adopts the aforementioned

necessary assumptions is presented in order to rigorously define the sensor planing

problem. Finally, the research goals that this dissertation proclaims to achieve are

presented at the end of this chapter, which also serves as an outline of the following

methodology chapters.

The targets under observation are assumed to move within a bounded workspace,

W , which is the same space that the sensor operates in, as shown in Fig. 3.1. It is

assumed that the workspace is a connected and compact subset of the d-dimensional

Euclidean space, such that W Ă Rd, where d P Z` is usually 2 or 3. For example,
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Figure 3.1: Schematic Diagram of the Sensor Planning Problem.

for targets moving in a flat plane, d “ 2, and the workspace can be assumed to be

a convex polygon. From the knowledge of the energy constraints of the sensor and

the information about the region of interests, the workspace can be assumed known

a-priori to the sensor.

Targets are modeled as rigid points in W . The geometry of the target bodies

is neglected because targets are assumed to be small comparing to the scale of the

workspace. This assumption is valid for a wide range of real-life applications, such

as the study of pedestrian movements in an indoor environment and the study of

migrating animal trajectories in the wild environment. Let xj PW denote the state

of the jth target, for j “ 1, . . . , N , where N is the total number of targets in the

workspace. The targets’ kinematics are assumed to be modeled by a mixture of M

unknown ordinary differential equations (ODEs),

F fi tf1, . . . , fMu (3.1)

with unknown mixture weights,

π fi rπ1 ¨ ¨ ¨ πM s
T (3.2)
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where, πi P r0, 1s, for i “ 1, . . . ,M , and
řM
i“1 πi “ 1. It is worth noticing that the

number of parameters (i.e. the model complexity) and the types (such as, linear,

polynomial, radial basis functions) of the ODEs in F are also assumed unknown. The

only available information of F is the domain and image of fip¨q. Therefore, the set

of ODEs need to be learned from sensor measurements adaptively. Because different

targets may be described by the same ODE, the number of components, M , is also

unknown and does not necessary equal to N . Let a discrete random variable Gj P

t1, . . . ,Mu denote target-ODE association, such that the event tGj “ iu indicates

that the kinematics of the jth target can be described by fip¨q P F . Then, the

state-space model for the N targets can be represented by the following autonomous

systems,

9xjptq “ fGj
rxjptqs fi vjptq, j “ 1, . . . , N (3.3)

which are also known as velocity fields (VFs), since fi is a mapping from the target

position to the target velocity. The assumption in (3.3) is valid for various real-

life applications, including traffic motion pattern modeling [94, 95, 104], pedestrian

movement modeling [93, 77, 86, 131], semantic region modeling [92, 132], and aerial

or ground robot tracking [133, 78, 80, 74, 75]. Let G fi tG1, . . . , GNu denote the

set of target-ODE association indices for the N sensors. Then, the unknown target

kinematic models can be completely described by the following sufficient statistics,

P fi tF ,G,π,Mu (3.4)

Notice that, point estimates of π and M can be derived from F and G, such that,

πi “

řN
j“1 1tiupGjq

N
, i “ 1, . . . , N, and M “ cardpFq (3.5)

where 1Apxq “

$

&

%

1, if x P A

0, if x R A
, is the indicator function, tiu denotes a set with a

single component i, and cardp¨q calculates the cardinality of a set. However, in full
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Bayesian analysis, prior distributions can be placed on π and M , such that posterior

distributions of π and M can be obtained rather than the point estimates in (3.5).

For this reason, π and M are also included in the sufficient statistics P of the target

kinematic models in (3.4).

The sensor is also modeled as a volume-less point in the workspace,W . Let s P A

denote the state of the sensor, where A Ă Rq denote the admissible domain of the

sensor state, and q P Z` is the dimension of the sensor state. The sensor state and

its domain depend on the specific sensor dynamics model employed. For example, s

can consist of the sensor position, and, accordingly, the domain of the sensor state

equals to the workspace. Let u P U denote the control vector of the sensor, where

U Ă Rr is the admissible control space, and r P Z` is the dimension of the control

input. The sensor dynamics are assumed to be discrete, linear and time-invariant

(LTI). The state-space representation of the sensor dynamics is expressed as follows,

spk ` 1q “ Aspkq `Bupkq, spkq P A, upkq P U (3.6)

where k is the time-index. The matrices A P Rqˆq and B P Rrˆr depend on the

sensor dynamics model in consideration.

The sensor’s field-of-view (FOV), denoted by S Ă W , is the subset of the

workspace where the sensor is able to observe, as shown in Fig. 3.1. In other words,

the sensor is able to obtain a noisy measurement of the target if and only if the

target is in the FOV. For most real-life sensors, such as cameras, radars or lidars, the

sensor FOV is bounded and much larger than the sensor itself. Therefore, the sensor

FOV needs to be treated as a geometry object in the workspace, instead of a rigid

point. Moreover, the sensor FOV is assumed to be attached rigidly to the body of

the sensor, such that it is fully determined by the sensor state, spkq. To this end, the

FOV of the sensor is modeled by a compact set, Srspkqs ĂW , which is abbreviated

as Spkq. In addition, in real-life applications, sensors often require a small but finite
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constant time interval, ∆t, to obtain and process new target measurements, subject

to a finite sampling rate [134]. For simplicity, it is assumed that the sampling interval

is equivalent to that determined by the sensor actuator in the discrete LTI model

(3.6). It typically can be assumed that the sensor FOV is stationary during sampling

and, therefore, measurements can be obtained from target j, provided xjptq P S for

some t P rtk, tk `∆tq. Then, during the kth sampling time interval, the jth target

position can be approximated by xjpkq [134]. Therefore, the sensor measurement

model can be expressed as follows by considering the constant sampling interval,

mjpkq fi ry
T
j pkq zTj pkqs

T
“ hrxjpkq,vjpkqs ` ν, if xjpkq P Spkq (3.7)

where ν is an additive Gaussian distributed noise vector with zero mean and known

covariance matrix diag
`

σ2
xI2, σ

2
vI2

˘

. diagp¨q denotes the operator that places matrices

on the diagonal blocks of a zero matrix [135]. If xjpkq R Spkq, mjpkq belongs to an

empty set. It is worth noticing that mjpkq consists of both the target position mea-

surement, yjpkq P Rd, and the target velocity measurement, zjpkq P Rd. The specific

form of the observation function, hp¨q, depends on the type of sensor considered.

Discussions of hp¨q in a variety of real-world applications can be found in Chapter 7.

For conciseness, the history of measurements of the jth target from time step k1

to time step k2 can be grouped in a set, such that,

Mjpk1, k2q fi tmjp`q | k1 ď ` ď k2u (3.8)

Similarly, the measurements of all the targets can also be grouped in a set, such that,

Mpk1, k2q fi
N
ď

j“1

Mjpk1, k2q (3.9)

Notice that, Mjpkq fi Mjp1, kq and Mpkq fi Mp1, kq will be used as short nota-

tions of the measurement history from the initial time to the current time. Then,
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the posterior knowledge about the target kinematic models can be described by the

joint distribution of the random variables in P , which is prP |Mpkqs. Because the

sensor planning problem aims at learning the target kinematic models, the instant

reward, denoted by L rspkq,upkq|Mpkqs, should be defined as the amount of infor-

mation brought about by the sensor measurements for improving the accuracy of

the distribution of the statistics. In addition, the reward function, L , should be

non-myopic, which means that it considers all previous measurements, as indicated

by the conditioning of Mpkq. Since the true distribution of the sufficient statistics

of the target kinematics model is not known, no terminal cost or reward is consid-

ered. Then, the sensor planning problem can be formulated as the following optimal

control problem:

Problem 1 (Sensor Planning). Given the reward function, L rspkq,upkq|Mpkqs, that

evaluates the information value of the sensor state, spkq P A, and control vector,

upkq P U , for learning the sufficient statistics of the target kinematic models, P, find

the optimal control, u˚pkq, that maximizes the reward subject to the sensor dynamic

constraints for a finite control horizon K,

max
upkqPU

J “
K
ÿ

k“1

L rspkq,upkq|Mpkqs

s. t. spk ` 1q “ Aspkq `Bupkq

sp0q “ s0, spkq P A, upkq P U

(3.10)

where s0 is the initial sensor state.

3.1 Chapter Conclusion

From the sensor planning problem formulation summarized in Problem 1, it can be

seen that the research goals of the sensor planning problem are threefold: (i) Deter-

mine a highly flexible target kinematics model that is able to adjust its complexity
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and parameters according to the sensor measurements obtained over time adaptively;

(ii) Design a novel objective function that evaluates the information value brought

about by future sensor measurements for the purpose of reducing the uncertainties in

the flexible target model from step (i); (iii) Develop efficient algorithms that optimize

the novel objective functions derived in step (ii) subject to the sensor dynamics and

FOV constraints. The relationship between the aforementioned three research goals

are demonstrated in Fig. 3.2.

By following the flow of the research goals presented in Fig. 3.2, methodologies

to the sensor planning problem can be presented in steps. To this end, Fig. 3.2

can also be treated as the outline of the subsequent methodology chapters (Chap-

ters 4-6), where every methodology chapter addresses one research goal: Chapter

4 presents several novel flexible target kinematics models developed from Bayesian

nonparametric models. Then, Chapter 5 derives new information theoretic func-

tions for evaluating the utility of the sensor control in terms of improving the novel

Bayesian nonparametric target kinematics models. Finally, efficient sensor control

algorithms are presented in Chapter 6, that optimize the novel information value

functions subject to the sensor dynamics and FOV constraints. Simulations and

experimental results of real life applications of the sensor planning problem are dis-

cussed in Chapter 7, to demonstrate the efficiency of the proposed sensor planning

algorithms.
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Figure 3.2: Block diagram of sensor planning.
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4

Bayesian Nonparametric Target Modeling

Bayesian nonparametric models have been shown efficient at representing multiple

dynamic processes adaptively from data, such as clinical identification [136], and gene

expression time series analysis [137]. When data becomes available over time, param-

eters of Bayesian nonparametric models are expanded or compacted incrementally,

as needed, to avoid growing the model dimensionality indefinitely as the size of the

database increases. Due to the same reason, Bayesian nonparametric models, such

as the Dirichlet process Gaussian process (DPGP) mixtures, have been extensively

applied for modeling the kinematics of the mobile targets under surveillance, such as

the movements of pedestrians [87], the patterns of ground transportation [132], and

the trajectories of migrating animals [89]. Because of these characteristics, Bayesian

nonparametric target kinematics models are particularly useful in lifelong learning

and sensing problems, and present the opportunity for planning the measurement

sequence so as to optimize the value of future data

In order to utilize the proposed Bayesian nonparametric target kinematics models

for sensor planning, three problems need to be studied: inference, prediction and

filtering. In Bayesian analysis, inference refers to learning the posterior distributions
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or optimal values of model parameters. Prediction refers to the problem of deriving

information about the target states at some time in the future by using data measured

up to and including the current time [138]. Most prediction problems consider one-

step ahead estimations. However, multiple steps predictions are of interest for finite-

horizon sensor planning problems when the constraints of the sensor dynamics can

not be neglected. Last but not least, filtering is defined as the operation that involves

the estimation of target states at the current time by using data measured up to and

including the current time [139].

4.1 GP Target Kinematics Model

Because the Gaussian process can be treated as a distribution of functions, a single

GP can be used to model a class of target kinematics, fi :W Ñ Rd, for i “ 1, . . . ,M ,

where M is the total number of functions in F . Recall from (3.3) that the target

kinematics are assumed to be velocity fields (VFs), that map the target position to

the target velocity. Then, a natural choice of the training input and output for the

GP target kinematics model consists of the measurement of the target position, yj,

and the corresponding measurement of the target velocity at that position, zj, as

defined in (3.7). Since the velocity measurement, zj, is d-dimensional, a multioutput

Gaussian process should be applied, where the mean and covariance function are

generalized from the definition of the single-output Gaussian process defined in (2.1)-

(2.2), as follows,

θipxjq “ Evj
rfipxjqs, @xj PW (4.1)

φipxj,x
1
jq “ Evj

 

rfipxjq ´ θipxjqsrfipx
1
jq ´ θipx

1
jqs

T
(

, @xj,x
1
j PW (4.2)

for the ith velocity field, where Evj
r¨s denotes the expectation operator with re-

spect to the velocity vector vj. For simplicity, it is assumed that the elements of

vj are independent, such that φi is a diagonal and positive-definite matrix. It is
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worth noticing that, by adopting this assumption, the multioutput Gaussian process

formulation is equivalent to modeling every dimension of fip¨q by an independent

single-output Gaussian processes, as suggested by various works [94, 95, 93]. If this

assumption is violated, the following approach can be applied by carefully choosing

the off-diagonal terms to reflect the velocity elements’ correlation.

4.1.1 Inference with GP Target Kinematics Model

The GP regression introduced in Section 2.1.1 provides an effective technique for

predicting the output of a function conditioned on all previous measurements. The

target-VF associations, G, can be learned by the DPGP inference algorithm presented

in Section 4.2.1, and are considered as known information for the purpose of GP tar-

get kinematics modeling. Without loss of generality, it can be assumed that the target

kinematics can be modeled by the ith VF. Now, let Yipkq “ ry
T
1 p¨q yT2 p¨q ¨ ¨ ¨ s

T and

Zipkq “ rzT1 p¨q zT2 p¨q ¨ ¨ ¨ s
T denote two vectors containing all noisy measurements

of target position and velocity, respectively, that have been associated with the ith

velocity field up to time k. It follows that distribution of the target velocity at

any target position, xjpkq P W , conditioned on all previous measurements of the N

target, Mpkq, is a Gaussian distribution,

pV
`

vjpkq|Mpkq, Gj “ i
˘

“ fG
`

vjpkq; µ̃ipkq, Σ̃ipkq
˘

(4.3)

where

µ̃ipkq “ Φ rxjpkq,YipkqsA
´1Zipkq (4.4)

Σ̃ipkq “ Φrxjpkq,xjpkqs ´Φrxjpkq,YipkqsA
´1ΦrYipkq,xjpkqs (4.5)

A fi ΦrYipkq,Yipkqs ` σ
2
nI2k (4.6)

the cross-covariance matrix Φ is defined in (2.8), and fG denotes the probability

density function of a multivariate Gaussian distribution (see Appendix A.1).
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After the GP target kinematics model is learned by the inference algorithm in

(4.3), distributions of the target positions in the future time can be predicted by

using the learned model. The following section introduces an efficient approach

for the prediction with GP target kinematics model, which utilizes particle filter

techniques.

4.1.2 Prediction with GP Target Kinematics Model

Prediction of the target position in the future time is essential for sensor planning,

since the it allows the sensor to anticipate the movements of the targets to improve

the performance of the planning algorithm. To this end, an efficient recursive method

for the prediction with respect to the GP target kinematics model is proposed by

utilizing the particle filter technique, which approximates continuous probability den-

sity function by using large number of samples. The idea of the recursive prediction

method is to calculate the target position distribution at the next time step by the

convolution of the target velocity distribution with the current target position dis-

tribution,

pX
`

xjpk ` 1q|Mpkq, Gj “ i
˘

“ (4.7)

ż

R2

pV
`

vjpkq|Mpkq, Gj “ i
˘

pX
`

xjpk ` 1q ´ vjpkq∆t|Mpkq, Gj “ i
˘

dvjpkq

where ∆t is the interval between two time steps. Notice that (4.7) provides the

recursive relation between the target positions at consecutive time steps, and can

be applied iteratively to predict the target position distributions in all future time

steps. However, using (4.7) directly becomes computationally intractable in a few

steps due to the convolution, since the target velocity distribution, pV p¨q, depends on

the position of the target through (4.4)-(4.6). Therefore, approximation algorithms

need to developed in order to expedite the prediction. Since particle filters have been

shown effective at predicting target states described by non-linear, non-Gaussian

38



systems, they are utilized to as an efficient approximation to the recursive prediction

in (4.7) as follows.

The efficient prediction algorithm for the GP target kinematics model is developed

by using the special case when the convolution in (4.7) can be calculated analytically.

The special case assumes that the current target position is given, and the result is

another Gaussian distribution,

pX
`

xjpk ` 1q|Mpkq, Gj “ i
˘

“ fG
`

xjpk ` 1q; xjpkq ` µ̃ipkq∆t, Σ̃ipkq∆t
2
˘

(4.8)

where µ̃ipkq and Σ̃ipkq are the mean and covariance of the target velocity distribu-

tion, defined in (4.4) and (4.5). Based on the discover in (4.8), a novel Gaussian

process particle filter (GP-PF) can be developed to expedite the prediction of the

target position distributions in the future time. In addition, in order to avoid using

large number of particles, the GP-PF treats Gaussian distributions as “particles”,

and assumes that the distribution of the target position can be approximated by a

Gaussian mixture model,

pX
`

xjpkq|Mpkq, Gj “ i
˘

«

n
ÿ

ı“1

βıfG
`

xjpkq;ηıpkq,Λıpkq
˘

(4.9)

where n is the number of components in the Gaussian mixture model, {ηıpkq, Λıpkq}

are the mean and covariance matrix of the ıth Gaussian component, and tβıu
n
ı“1 are

the mixture weights that satisfy βı ą 0 and
řn
ı“1 βı “ 1 [140, 141]. The GP-GPF

prediction based on (4.9) first draws S independent and identically distributed (i.i.d.)

samples from every component of the Gaussian mixture model (4.9), such that,

χpsqı „ N
`

ηıpkq,Λıpkq
˘

, s “ 1, . . . , S, ı “ 1, . . . , n (4.10)

These samples are then propagated by one time step using (4.8),

χ̂psqı „ N
`

χpsqı ` µpsqı ∆t,Σpsq
ı ∆t2

˘

, s “ 1, . . . , S, ı “ 1, . . . , n (4.11)
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where µ
psq
ı and Σ

psq
ı are defined by substituting xjpkq with χ

psq
ı in (4.4) and (4.5),

respectively. The final step of the GP-GPF prediction obtains the predicted mean

and covariance matrix of every Gaussian component using the propagated samples

in (4.11), such that,

η̂ıpk ` 1q “
1

S

S
ÿ

s“1

χ̂psqı (4.12)

Λ̂ipk ` 1q “
1

S

S
ÿ

s“1

rχ̂psqı ´ η̂ıpk ` 1qsrχ̂psqı ´ η̂ıpk ` 1qsT (4.13)

for ı “ 1, . . . , n. The predicted target position distribution at the next time step is

then approximated by the Gaussian mixture model with the prorogated mean and

covariance matrices,

pX
`

xjpk ` 1q|Mpkq, Gj “ i
˘

«

n
ÿ

ı“1

β̂ıfG
`

xjpk ` 1q; η̂ıpk ` 1q, Λ̂ıpk ` 1q
˘

(4.14)

where the estimated mixture weights are not changed, such that β̂ı “ βı, for ı “

1, . . . , n. By repeating the steps from (4.9)-(4.14) multiple times, the prediction of

the target position can be obtained for a finite horizon in the future. To summarize,

the pseudocode of the GP-GPF prediction algorithm is compiled in Algorithm 1.

Algorithm 1 Gaussian process Particle Filter Time Update (GPPF-TU)

Input: Gaussian mixture model parameters, tβı,ηıpkq,Λıpkqu
n
ı“1; Prediction time

horizon, K.
Output: Predicted Gaussian mixture model parameters, tβ̂ı, η̂ıpk``q, Λ̂ıpk``qu

n
ı“1,

for ` “ 1, . . . , K.
1: for ` “ 1, . . . , K do

2: Draw S samples, tχ
psq
ı u

S
s“1, from (4.10), for ı “ 1, . . . , n.

3: Obtain the propagated samples, tχ̂
psq
ı u

S
s“1, by (4.11), for ı “ 1, . . . , n.

4: Update weights as β̂ı “ βı, for ı “ 1, . . . , n.
5: Obtain the predicted mean, η̂ıpk``q, and covariance Λ̂ıpk``q, by (4.12) and

(4.13), respectively, for ı “ 1, . . . , n.
6: end for
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4.1.3 Filtering with GP Target Kinematics Model

Bayesian filtering generally consists of an iterative time update-measurement update

process [138]. In the time update step, one-step ahead prediction of the target state is

calculated, and in the measurement update step, new measurements are incorporated

to correct the predicted target state. For the GP target kinematics model, the time

update step can be performed by the GP particle filter time update in Algorithm 1

with the length of the time horizon equal to one. Assuming the current time step

is k, after the time update step, the target position distribution is estimated by a

Gaussian mixture model with parameters, tβ̂ı, η̂ıpk ` 1q, Λ̂ıpk ` 1qunı“1.

The measurement update step of the GP-PF consists of two cases, depending on

whether the data vector mjpk ` 1q belongs to the empty set at time step pk ` 1q. If

the sensor successfully obtains a measurement of the jth target at time step pk` 1q,

S i.i.d. samples can be drawn from the Gaussian mixture model,

χpsqı „ N
`

η̂ıpk ` 1q, Λ̂ıpk ` 1q
˘

, s “ 1, . . . , S, ı “ 1, . . . , n (4.15)

After the samples are drawn, the measurement update step adjusts the weights and

parameters of the Gaussian components by incorporating the measurement proba-

bility,

γpsqı fi ppmjpk ` 1q|χpsqı q

“ fGpyjpk ` 1q;χpsqı , σ2
xI2q ˆ fGpzjpk ` 1q; µ̃ipk ` 1q, Σ̃ipk ` 1qq

(4.16)

for ı “ 1, . . . , n and s “ 1, . . . , S. Then, the mean vectors and covariance matrices of

the Gaussian components are updated as the weighted sample mean and covariance

matrices,

ηıpk ` 1q “
1

řS
s“1 γ

psq
ı

S
ÿ

s“1

γpsqı χ
psq
ı (4.17)
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Λıpk ` 1q “
1

řS
s“1 γ

psq
ı

S
ÿ

s“1

γpsqı rχ
psq
ı ´ ηıpk ` 1qsrχpsqı ´ ηıpk ` 1qsT (4.18)

for ı “ 1, . . . , n. The previous steps from (4.15) to (4.18) can be applied to both the

non-empty measurement case and the empty measurement case. However, cautious

distinction is needed for updating the mixture weights. When the sensor obtains the

measurement at time step pk ` 1q, the mixture weights can be updated by,

βı “
β̂ı
řS
s“1 γ

psq
ı

řn
ı“1

řS
s“1 β̂ıγ

psq
ı

, ı “ 1, . . . , n (4.19)

When no measurement is obtained, the calculation in (4.19) is not able to correctly

reflect the rejection rate during the rejection sampling in step (4.15). However,

the rejection rate is also related to the mixture weight in the sense that higher

rejection rate means that the target position is less likely to be described by that

Gaussian component. One solution is to numerically estimate the rejection rate

by counting the number of successful and rejected samples and multiply this rate

to every corresponding β̂ı. Large numerical errors exist if the number of required

samples, S, is small. On the other hand, if a large number of samples are required to

represent every Gaussian component, the rejection sampling may take a long time to

finish if the major part of the proposal density (4.15) overlaps with the sensor FOV,

Spk ` 1q. In order to avoid these problems in the case of empty measurement, the

mixture weights can be updated by calculating the probability of the target lying

out of the sensor FOV analytically, such that,

βı “
β̂ı
c
p
`

xj R Spk ` 1q|η̂ıpk ` 1q, Λ̂ıpk ` 1q
˘

“
β̂ı
c

ż

WzSpkq
fGpxj; η̂ıpk ` 1q, Λ̂ıpk ` 1qqdxj

(4.20)

for ı “ 1, . . . , n, where c is the normalizing constant that makes the summation of
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βı equal to one. Notice that the integral in (4.20) can be calculated by the error

function for rectangle-shaped sensor FOV with edges parallel to the x and y axes

of a two-dimensional workspace. To summarize this section, the GP particle filter

measurement update is summarized in Algorithm 2.

Algorithm 2 Gaussian Process Particle Filter Measurement Update (GPPF-MU)

Input: Predicted Gaussian mixture model parameters, tβ̂ı, η̂ıpk` 1q, Λ̂ıpk` 1qunı“1;
Sensor measurement, mjpk ` 1q; Sensor FOV, Spk ` 1q.

Output: Updated Gaussian mixture model parameters, tβı,ηıpk`1q,Λıpk`1qunı“1.

1: Draw S samples, tχ
psq
ı u

S
s“1, using rejection sampling with proposal density (4.15),

and reject the samples if χ
psq
ı P Spkq, for ı “ 1, . . . , n.

2: Compute measurement weights, γ
psq
ı , by (4.16), for ı “ 1, . . . , n, s “ 1, . . . , S.

3: Estimate the mean, ηıpk ` 1q, and covariance matrix, Λıpk ` 1q, by (4.17) and
(4.18), respectively, for ı “ 1, . . . , n.

4: if mpk ` 1q R H then
5: Update the mixture weights, tβıu

n
ı“1, by (4.19).

6: else
7: Update the mixture weights, tβıu

n
ı“1, by (4.20).

8: end if

4.2 Multiple Classes of Target Kinematics

When the targets’ movements display multiple patterns, one Gaussian process is not

enough for describing all the target kinematics. Therefore, a mixture model with GPs

as the components should be applied. In addition, when the appropriate number of

GPs can not be determined a priori, the use of infinite mixtures is appealing since

it bypasses the need to determine the “correct” number of components in a finite

mixture model. Among all the infinite mixture models, the Dirichlet process mixture

model is particularly suitable for modeling the target kinematics since it leads to a

few of the components dominating. Therefore, the Dirichlet process Gaussian process

mixture model introduced in Chapter 2.3 is utilized to model multiple classes of target

kinematics. The inference, prediction and filtering algorithms are also of interest

for applying the DPGP target kinematics model in the sensor planning problem.
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Therefore, this section first discusses the inference technique based on Markov Chain

Monte Carlo sampling in Section 4.2.1. The prediction and filtering algorithms are

then presented in 4.2.2.

4.2.1 Inference with DPGP Target Kinematics Model

Exact computation of the posterior DPGP mixture model can become infeasible

when there are more than a few measurements, even with numerical approximations,

since the joint distribution of the posterior DPGP mixture model does not have an

analytical form. However, Markov Chain Monte Carlo (MCMC) sampling algorithms

have been developed for sampling from the posterior distribution of the parameters of

the component distributions and/or of the associations of mixture components with

observations, by simulating a Markov chain that has the posterior as its equilibrium

distribution [41]. These MCMC algorithms, especially the methods based on Gibbs

sampling for conjugate priors, have made the implementation of Dirichlet process

mixture models computationally feasible for problems with moderate or large number

of measurements [118, 114, 116, 117, 40]. To this end, this section presents the

MCMC algorithm that is able to sample from the posterior DPGP mixture for the

modeling of multiple classes of target kinematics.

Since the measurement model is conjugate with the base distribution of the

Dirichlet process, Gibbs sampling (or Gibbs sampler) can be used to sample from the

posterior DPGP mixture model. The idea in Gibbs sampling is to generate posterior

samples by sweeping through each variable (or block of variables) to sample from

its conditional distribution with the remaining variables fixed to their current values

[22]. For example, consider the generic Gibbs samplers that draws samples from

the joint distribution of d random variables, tXiu
d
i“1, and let tx

psq
i u

d
i“1 denote the

samples drawn in the sth iteration. The Gibbs sampler starts by randomly setting

the initial values of the random variables, tx
p0q
i u

d
i“1. In every subsequent iteration,
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the values of the random variables are updated by sampling from their conditional

distributions. It is worth noticing that although the initial values of the samples are

chosen randomly, the Ergodic theorem guarantees that the stationary distribution of

the samples generated by the Gibbs sampler is the target joint posterior distribution

[142]. Since the samples at the beginning of the iterations may not represent the joint

posterior distribution truthfully, these samples are often discarded. This operation

is referred to as the burn-in of the Gibbs sampler, and the number of discarded sam-

ples, denoted by Lb P Z`, is referred to as the burn-in period. In addition, nearby

samples draw by the Gibbs sampler are correlated, since the conditional distribu-

tions depend on the values of other variables from the previous iteration. Therefore,

if independent samples are desired, the Gibbs sampler usually records the samples

by every Ls iterations, where Ls P Z` is referred to as the step size of the Gibbs

sampler. To summarize, the generic Gibbs samplers can be presented by Algorithm

3.

Algorithm 3 Generic Gibbs Sampler

Input: Conditional distributions, p
`

Xi | x1, . . . , xi´1, xi`1, . . . , xd
˘

; Burn-in period
length, Lb; Step size, Ls.

Output: Samples from the joint distribution, tx
psq
i u

d
i“1, for s “ 1, 2, . . .

1: Initialize tx
p0q
i u

d
i“1 randomly.

2: for s “ 1, 2, . . . , do
3: for i “ 1, . . . , d do

4: x
psq
i „ p

`

Xi | x
psq
1 , . . . , x

psq
i´1, x

ps´1q
i`1 , . . . , x

ps´1q
d

˘

5: end for
6: Record tx

psq
i u

d
i“1, if ps´ Lbq{Ls P Z`.

7: end for

The Gibbs sampler in Algorithm 3 can be used to draw samples from the posterior

DPGP mixture model (2.25) that describes multiple classes of target kinematics. It is

worth noticing that (2.25) is the infinite mixture representation of the DPGP mixture

model, that allows sampling of the target-VF association indices, tGju
N
j“1, directly

by integrating out the mixture weights, π. The advantage of sampling target-VF
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association indices directly is that tθiu
M
i“1 can be used to represent the GP mean

functions of the classes of target kinematics rather than those of every individual

target kinematics. Therefore, when a GP mean function, θi, is changed, all the target

kinematics associated with that class will be updated simultaneously, which expedites

the convergence of the Markov chain in the Gibbs sampler greatly [41]. In order to

calculate the posterior distributions of the target-VF association indices, the prior

distributions and the likelihood functions of tGju
N
j“1 need to be studied. Since the

number of GP mean functions in the DPGP mixture model is infinite, it is infeasible

to explicitly represent all the GP mean functions. Therefore, the Gibbs sampling is

only performed on the target-VF association indices corresponding to the GP mean

functions associated with some measurements. The remaining infinite number of

target-VF association indices can be grouped together to represent the case when

the target is associated with a new VF that has never been seen before. Following

this simplification, the prior distribution of the target-VF association indices is,

p
`

Gj “ i | tGju
c
˘

“

$

’

’

&

’

’

%

Ni

N ´ 1` α
, i “ 1, . . . ,M

α

N ´ 1` α
, i “M ` 1

(4.21)

where tGju
c fi GztGju denotes the complement of tGju, and Ni is the number of

targets assigned to the ith VF without considering the jth target.

The likelihood function can be obtained by the marginalization over the function

evaluations,

Vjpkq fi rv
T
j p1q ¨ ¨ ¨ vTj pkqs

T (4.22)

where vj fi fipxjq is defined in (3.3). The measurement history of a target, Mjpkq,

is treated as a group of data, since every target is assumed to be governed by

one kinematics model for its entire movement in the workspace. Let Ỹjpkq fi

ryTj p1q ¨ ¨ ¨ yTj pkqs
T and Z̃jpkq fi rzTj p1q ¨ ¨ ¨ zTj pkqs

T denote the aggregations
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of the position measurements and velocity measurements of the jth target. Notice

that Ỹjpkq and Z̃jpkq are defined with respect to the jth target, while Yipkq and

Zipkq are defined for the ith VF. From the measurement model (3.7) and Gaussian

process regression, it follows that,

p
`

Mj|θi
˘

“

ż

Vj

p
`

Mj|Vj

˘

p
`

Vj|θi
˘

dVj

“

ż

Vj

fGpZ̃j; 0, σ
2
vIqfGrVj;θipỸjq,ΦipỸj, ỸjqsdVj

“ fGrZ̃j;θipỸjq,ΦipỸj, Ỹjq ` σ
2
vIs

(4.23)

where Φi is defined by substituting φp¨, ¨q with φip¨, ¨q in (2.8). Notice that ppMj|θiq

is equivalent to ppMj|tθu
M
i“1, Gj “ iq, and is used as a short notation. The GP

covariance function, φip¨, ¨q, defined in (4.2), can also be adjusted adaptively to the

measurements. A point estimate of the GP covariance function is computed by

conditioning on the target measurements belonging to every class, such that,

φipx,x
1
q fi φpx,x1q ´Φrx,YipkqstΦrYipkq,Yipkqs ` σ

2
vIu

´1ΦrYipkq,x
1
s (4.24)

for@x,x1 P W . The likelihood function (4.23) is also well defined for i “ M ` 1,

when the target kinematics is assigned to a new group. In this scenario, θM`1 is

obtained by drawing a new sample from GP0 in (2.25), and φM`1 is initialized as

φ. Other types of likelihood functions can also be used for the purpose of learning

the target-VF associations. For example, the works in [94, 95, 87, 88, 93] assume

that the measurements are independent given the GP mean function θi, such that

the likelihood function is simplified to,

p
`

Mj|θi
˘

“ fG

´

Z̃j;θipỸjq, σ
2
vI
¯

(4.25)

The computational complexity of (4.25) is Opkq, which is less than the Opk3q com-

plexity of (4.23). Therefore, it is preferred when the number of measurements is large.
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Experiments show that both the likelihood functions in (4.23) and (4.25) work well

for real-world datasets. Since the likelihood function in (4.23) is more rigourous, it

is preferred when dealing with small to moderate datasets.

Based on the above prior and likelihood functions, the posterior distribution of

the target-VF association can be calculated,

p
`

Gj “ i|M, tGju
c, tθiu

M
i“1

˘

“

$

’

’

’

’

&

’

’

’

’

%

c

ˆ

Ni ¨ ppMj|θiq

N ´ 1` α

˙

, i “ 1, . . . ,M

c

ˆ

α
ş

ppMj|θiqdGP0pθiq

N ´ 1` α

˙

, i “M ` 1

(4.26)

where c is the normalizing constant that makes the summarization of (4.26) equal to

one. The integral in (4.26) can be approximated by Monte Carlo integration [113].

Sampling θi can be difficult. Since their posteriors are extremely peaked, some works

suggest the use of their maximum likelihood values [94]. To this end, the posterior GP

mean functions are calculated by conditioning on the target measurements belonging

to that class, such that,

θipxq “ Φrx,YipkqstΦrYipkq,Yipkqs ` σ
2
nIu

´1Zipkq, @x PW (4.27)

After the conditional posterior distributions of the target-VF association variables

are defined in (4.26), the Gibbs sampling algorithm in Algorithm 3 can be applied

to the DPGP mixture model. The idea of the algorithm is similar to the second

approach presented in [41], and is summarized by Algorithm 4 for convenience.
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Algorithm 4 DPGP Gibbs Sampler (DPGP-Gibbs)

Input: Measurements,Mpkq; DP parameters, tα,GP0u; Burn-in period length, Lb;
Step size, Ls.

Output: Samples of target-VF association indices, tG
psq
j u

N
j“1; Samples of GP pa-

rameters, tθ
psq
i ,φ

psq
i u

M
i“1.

1: Initialize tG
p0q
j u

N
j“1 randomly.

2: for s=1,2,. . . , do
3: for j=1,. . . ,N do
4: If θ

G
ps´1q
j

is associated with no other targets, remove it.

5: Draw a new value of G
psq
j by (4.26).

6: end for
7: for i=1,. . . ,M do

8: Update θ
psq
i and φ

psq
i according to (4.27) and (4.24), respectively.

9: end for
10: Record tG

psq
j u

N
j“1 and tθ

psq
i ,φ

psq
i u

M
i“1, if ps´ Lbq{Ls P Z`.

11: end for

4.2.2 Prediction and Filtering with DPGP Target Kinematics Model

Once the posterior DPGP target kinematics model is learned from the current avail-

able measurements, it can be used to predict or estimate the target states. During

the prediction or filtering phase, it can be assumed that the DP prior is not updated,

since the target-VF associations are unlikely to change without obtaining a signifi-

cant amount of more data. In addition, the high computational complexity of the

Gibbs sampler in Algorithm 4 also disapproves updating the DP prior too often.

To this end, for the prediction and filtering of target states, the DPGP mix-

ture model is treated as a finite Gaussian process mixture model, with parameters,

tπi,θi,φiu
M
i“1. The mixture weights, tπiu

M
i“1, can be assumed to be proportional to

the number of targets associated with a kinematics class, such that, πi “ Ni{N , for

i “ 1, . . . ,M . Then, the prediction and filtering by the DPGP target kinematics

model can be achieved by a bank of GP particle filters presented in Section 4.1.2 and

4.1.3. Let Pijpkq fi tβı,ηıpkq,Λıpkq | Gj “ iunı“1 denote the GP-PF parameters of
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the jth target corresponding to the ith VF, and let

wij fi ppGj “ iq, i “ 1, . . . ,M, j “ 1, . . . , N (4.28)

denote the probability that the jth target follows the ith VF. Then, the predic-

tion with respect to the DPGP target kinematics model can be performed by using

the GP-PF time update in Algorithm 1 as sub-routines. The resulting prediction

algorithm is presented as Algorithm 5.

Algorithm 5 DPGP Particle Filter Time Update (DPGP-PF-TU)

Input: Bank of Gaussian mixture model parameters, twij, Pijpkqu
M
i“1, for j “

1, . . . , N ; Prediction time horizon, K.
Output: Predicted Gaussian mixture model parameters, tŵij, P̂ijpk ` `quMi“1, for

j “ 1, . . . , N , ` “ 1, . . . , K.
1: P̂ijpkq “ Pijpkq, for i “ 1, . . . ,M .
2: for ` “ 1, . . . , K do
3: for i “ 1, . . . ,M do
4: Update GP-PF parameters by Algorithm 1,
5: P̂ijpk ` `` 1q “ GPPF-TU

`

P̂ijpk ` `q
˘

6: end for
7: end for

The filtering with respect to the DPGP target kinematics model can also be

achieved by using GP-PF as sub-routines. In the measurement update step, the

target-VF association probabilities also need to be modified according to the new

measurement. To this end, adjustments for the target-VF association probability

can be calculated by the intermediate weights in (4.19) or (4.20) depending on if the

new measurement is empty, such that,

wij “

$

’

’

’

’

’

&

’

’

’

’

’

%

1

c1
ŵij

n
ÿ

ı“1

S
ÿ

s“1

γpsqı , mjpk ` 1q R H

1

c2
ŵij

n
ÿ

ı“1

ż

WzSpkq
fGpxj; η̂ıpk ` 1q, Λ̂ıpk ` 1qqdxj, mjpk ` 1q P H

(4.29)

for i “ 1, . . . ,M , where c1 and c2 are the constants that make the resulting weights
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normalized, such that
řM
i“1wij “ 1, for j “ 1, . . . , N . In summary, the measurement

update of the DPGP target kinematics model can be described by Algorithm 6.

Algorithm 6 DPGP Particle Filter Measurement Update (DPGP-PF-MU)

Input: Bank of predicted Gaussian mixture model parameters, tŵij, P̂ijpk ` 1quMi“1,
for j “ 1, . . . , N ; Sensor measurement, mjpk ` 1q; Sensor FOV, Spk ` 1q.

Output: Bank of updated Gaussian mixture model parameters, twij, Pijpk`1quMi“1.

1: Update GMM parameters by Algorithm 2, Pijpk ` 1q “ GPPF-MU
`

P̂ijpk ` 1q
˘

.

2: Update target-VF association weights, twiju
M
i“1, by (4.29).

4.3 Chapter Conclusion

This chapter has proposed two flexible Bayesian nonparametric models that can de-

scribe target kinematics adaptive from sensor measurements: the GP target kinemat-

ics model and the DPGP target kinematics model. The proposed target kinematics

models can be treated as the ‘Target Model’ block in Fig. 3.2 to the sensor plan-

ning problem (Problem 1). Efficient inference, prediction, and filtering algorithms

are developed for the purpose of utilizing the proposed Bayesian nonparametric tar-

get kinematics models in the sensor planning problem. To be specific, a new GP

particle filter is developed for the prediction and filtering with the GP target kine-

matics model, consisting of the GP particle filter-time update algorithm (Algorithm

1) and the GP particle filter-measurement update algorithm (Algorithm 2). When

the target kinematics are described by the DPGP kinematics model, the novel DPGP

particle filter developed in this chapter can be used to solve the prediction and filter-

ing problem. The DPGP particle filter also consists two parts. The DPGP particle

fitler-time update algorithm is presented as Algorithm 5 and the DPGP particle

filter-measurement update algorithm is described as Algorithm 6.
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5

Information Value for Nonparametric Target
Models

Information theory addresses the quantities of the information in terms of the proba-

bility mass functions (PMFs) for discrete random variables or the probability density

functions (PDFs) for continuous random variables [143]. Information theoretic func-

tions are a natural choice for representing the information value because they measure

the absolute or relative information content of PMFs or PDFs. In sensor planning

problems, expected information values can be utilized to estimate the utilities of the

future measurements before they are actually obtained. The expected information

values can be treated as the rewards for the control inputs that lead to the acqui-

sitions of the future measurements. Therefore, optimal sensor planning algorithms

can be developed by maximizing the expected information theoretic functions. This

chapter proposes novel information theoretic functions for the Bayesian nonpara-

metric target kinematics model developed in Chapter 4, and can be treated as the

‘Information Value’ block in the diagram (Fig. 3.2) to the sensor planning algorithm

(Problem 1). This chapter is organized as follows. The information theoretic func-

tions for parametric models are first reviewed in Section 5.1. An approach to deriving
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the expected information value functions for the Gaussian process is subsequently

introduced in Section 5.2. Finally, the expected information value functions for the

DPGP mixture model is presented in Section 5.3.

5.1 Information Theoretic Functions

Information theoretic functions, such as mutual information and information diver-

gence, have been shown very useful in representing the information value in sensing

planning and other information gathering problems [18, 144, 145]. One of the most

widely applied information theoretic functions is the differential entropy (also known

as continuous entropy). The differential entropy can be seen as an extension of the

Shannon entropy for a continuous random variable, X, with PDF ppxq : X Ñ R`,

where ppxq fi ppX “ xq. The differential entropy is defined as,

HpXq “ ´

ż

X
ppxq log ppxqdx (5.1)

The definition of the differential entropy can be extended to multiple variables. For

a pair of random variables, X P X and Y P Y with a joint distribution ppx, yq :

X ˆ Y Ñ R, the joint entropy, HpX, Y q, is defined as,

HpX, Y q “ ´

ż

X

ż

Y
ppx, yq log ppx, yqdydx (5.2)

From the joint distribution of the random variables, ppx, yq, the conditional entropy

can be calculated as,

HpY |Xq “ ´

ż

X

ż

Y
ppx, yq log ppy|xqdydx (5.3)

The chain rule also applies to the differential entropy as long as all the terms are

finite, such that,

HpX, Y q “ HpXq `HpY |Xq (5.4)
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As shown in [143], the mutual information (MI) is a measure of the information

content of one random variable regarding another random variable. From the joint

density function, ppx, yq, the mutual information between random variables X and

Y is,

IpX;Y q “

ż

X

ż

Y
ppx, yq log

ppx, yq

ppxqppyq
dydx (5.5)

It is worth noticing that IpX;Y q ě 0 and the equality is achieved only if X and Y are

independent. In addition, the mutual information can be calculated from differential

entropies,

IpX;Y q “ ´HpX, Y q `HpXq `HpY q

“ HpXq ´HpX|Y q “ HpY q ´HpY |Xq
(5.6)

Since IpX;Y q ě 0, the ‘information never hurts’ principle can be derived,

HpX, Y q ď HpXq `HpY q (5.7)

and

HpX|Y q ď HpY q (5.8)

The equalities in both (5.7) and (5.8) are achieved when X and Y are independent.

The KullbackLeibler (KL) information divergence, also known as relative entropy,

can be viewed as a measure of the difference between two probability density (or

mass) functions. Let ppxq and qpxq denote two known probability density functions

of a continuous random variable X P R. Then, the KL divergence,

D
`

ppxq } qpxq
˘

“

ż 8

´8

ppxq ln
ppxq

qpxq
dx (5.9)

also known as relative entropy, can be used to represent the “distance” between

ppxq and qpxq. Although it does not constitute a true distance metric because it

is nonadditive, nonsymmetric, and does not obey the triangle inequality, the KL
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divergence as been shown useful at representing the change in a PDF brought about,

for example, by a new measurement or observation [146]. It is worth noticing that

the KL divergence also has the property to be always non-negative,

D
`

ppxq } qpxq
˘

ě 0 (5.10)

with equality if and only if ppxq “ qpxq almost everywhere (a.e.). The KL divergence

can also be related to the mutual information,

IpX;Y q “ D
`

ppx, yq } ppxqppyq
˘

“ Ey
“

D
`

ppx|yq } ppxq
˘‰

(5.11)

The information theoretic functions require the knowledge of the posterior distri-

bution of random variables, which is related to the measurement value in the sensor

planning problem. Therefore, they can not be applied directly. A general frame-

work for using the information theoretic function in the sensor planning problem

is proposed in [19, 146]. However, little work has been done in applying informa-

tion theoretic functions for Bayesian nonparametric models. To this end, approaches

to applying the theoretic functions with respect to the Gaussian process and the

Dirichlet process-Gaussian process are presented in the subsequent sections.

5.2 Information Value for Gaussian Process

In the control literature, information value functions have been used to estimate the

reward of the sensor control prior to obtaining the measurements and therefore be

used to determine the sensor control. This section presents an information value

function for the Gaussian processes based on the Kullback-Leibler (KL) divergence.

While the approach can be used to derive other information theoretic functions, the

KL divergence is chosen here because it was found to be effective for planning future

measurements. Due to the adoption of the KL divergence the information value

presented in this section is referred to as ‘Gaussian process-Expected KL divergence’

(GP-EKLD), denoted by D̂.
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Without loss of generality, it is assumed that the target kinematics are described

by the ith VF fi : W Ñ R, defined in (3.3). In order to extend the concept of

information theoretic functions, such as the KL divergence, to the Gaussian process

that models fi, the VF is evaluated at a finite number of collocation points in the

domain of integration W of the differential equations in (3.3). Let ξl P W denote

the lth collocation point chosen from a uniform grid of L points in W , as in basic

collocation methods [147], and group all points on the grid in the 2Lˆ 1 vector,

ξ “ rξT1 . . . ξTLs
T (5.12)

Then, the target kinematics can be discretized about every collocation point on the

grid by evaluating the velocity field fi at ξl for l “ 1, . . . , L, such that the 2L ˆ 1

vector,

υi fi rfipξ1q
T

¨ ¨ ¨ fipξLq
T
s
T
“ υipξq (5.13)

can be used to approximate the velocity field fi in W . Then, the KL divergence for

the Gaussian process can be calculated as,

D
`

υi; mpk ` 1q
˘

fi D
´

p
`

υi|Mpk ` 1q
˘

} p
`

υi|Mpkq
˘

¯

(5.14)

where Mpk ` 1q “Mpkq
Ť

tmjpk ` 1qu.

Since mjpk` 1q is not available before it is actually obtained, the KL divergence

defined in (5.14) can not be used in the sensor planning problem. One approach is to

take expectation of (5.14) with respect to the distribution of mjpk ` 1q. Therefore,

assumptions on the distribution of mjpk ` 1q are required for the calculation of the

expectation. It is assumed that the distribution of the future velocity measurement

of the target, zjpk ` 1q, is consistent with the GP regression result obtained by all

previous measurements. In addition, it is worth noticing that the position measure-

ment yjpk` 1q is determined by the sensor planning algorithm. Therefore, yjpk` 1q

can be treated as part of the control input to the sensor planning algorithm. In other
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words, the optimal value of yjpk`1q is determined by the sensor planning algorithm

and no expectation over yjpk ` 1q is needed. Then, the GP-EKLD for a sensing

action can be defined as follows:

D̂
`

υi; mpk ` 1q
˘

“

ż

R
D
´

p
`

υi|Mpk ` 1q
˘

} p
`

υi|Mpkq
˘

¯

(5.15)

ˆ p
`

zjpk ` 1q|Mpkq,yjpk ` 1q
˘

dzjpk ` 1q

From the Gaussian process regression, it can be shown that the marginal dis-

tribution of υi is a multivariate Gaussian distribution with the measurement mean

vector, denoted by µipkq, and measurement covariance matrix, denoted by Σipkq,

calculated from the measurements inMpkq. Recall that Yipkq “ ry
T
1 p¨q yT2 p¨q ¨ ¨ ¨ s

T

and Zipkq “ rzT1 p¨q zT2 p¨q ¨ ¨ ¨ s
T denote two vectors containing all noisy measure-

ments of target position and velocity, respectively, that have been associated with

the ith velocity field up to time k. Then, the measurement mean vector is,

µipkq “ Φ rξ,Yipkqs
 

ΦrYipkq,Yipkqs ` σ
2
vI2k

(´1
Zipkq (5.16)

and the measurement covariance matrix is,

Σipkq “ Φpξ, ξq ´Φrξ,Yipkqs
 

ΦrYipkq,Yipkqs ` σ
2
vI2k

(´1
ΦrYipkq, ξs (5.17)

where ξ is the vector of chosen collocation points in the target workspaceW defined

in (5.12).

Since the prior and posterior distributions of υi are both multivariate Gaussian

distributions, the computation of the GP-EKLD can be simplified according to the

following theorem:

Theorem 4. Consider a Gaussian process GPi with known covariance matrix func-

tion φ. The GP-EKLD defined in p5.15q affords the analytical solution,

D̂
`

υi; mpk ` 1q
˘

“
1

2

„

tr
`

Σ´1
i,kΣi,k`1 `Q´1RTΣ´1

i,kRQ´1σ2
v

˘

´ ln

ˆ

|Σi,k`1|

|Σi,k|

˙

´ 2L
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where Σi,k fi Σipkq, Σi,k`1 fi Σipk`1q, are the velocity covariance matrices at times

k and k ` 1, respectively, and,

Σ fi ΦrYipkq,Yipkqs ` σ
2
vI (5.18)

R fi Φrξ,yjpk ` 1qs ´Φrξ,YipkqsΣ
´1ΦrYipkq,yjpk ` 1qs (5.19)

Q fi Φryjpk ` 1q,yjpk ` 1qs ` σ2
v (5.20)

´Φryjpk ` 1q,YipkqsΣ
´1ΦrYipkq,yjpk ` 1qs

for any yjpk` 1q P Spk` 1q, where ξ is a vector of collocation points, Yi is a vector

of all past position measurements, and Φ is the cross-covariance matrix.

The proof is shown in Appendix A.2

5.3 Information Value for Dirichlet Process-Gaussian Process

Although the GP is effective at regression and posterior distribution prediction, one

GP is often not enough for modeling multiple targets, since it is often the case that

different groups of targets may display different behaviors. Therefore, the Dirichlet

process is proposed to represent the prior knowledge of the distribution of GPs, re-

sulting in a Dirichlet process-Gaussian process mixture model (DPGP-MM). Because

DPGP-MMs can be viewed as distributions over probability distributions [148, 54],

traditional information theoretic functions are not directly applicable. Therefore,

this section presents a new information theoretic function that represents the infor-

mation value of future measurements in closed form and, thus, can be optimized with

respect to sensor planning and decision algorithms. The information value is devel-

oped as an extension to the GP-EKLD presented in Section 5.2. In particular, this

section derives the DPGP KL divergence between measurements (Section 5.3.1), and

then obtains a compact analytical form of DPGP expected KL divergence (Section

5.3.3), under the assumption that position measurement errors are negligible. Fi-

nally, in Section 5.3.4, an approximation of the DPGP-EKLD is obtained via Monte
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Carlo integration, and the variance of the approximation error is shown to decrease

linearly with the inverse of the number of samples.

5.3.1 DPGP KL-Divergence

In order to calculate the KL divergence for the DPGP mixture model in (2.25),

all of the M velocity fields in F defined in (3.3) are evaluated at a finite number

of collocation points in the domain of integration W of the differential equations

in (3.3). Recall from (5.13) that υi is used to represent the ith velocity field, for

i “ 1, . . . ,M . Similarly, all M velocity fields in F can be discretized and grouped

into a 2LM ˆ 1 vector of random velocity variables associated with the collocation

points in ξ defined as

υ fi rυ1pξq
T

¨ ¨ ¨ υMpξq
T
s
T
“ υpξq (5.21)

Now, suppose ppυq and qpυq denote two joint PDFs of the 2LM elements of the

random velocity vector υ [149], where each PDF is obtained from the DPGP-MM of

target dynamics in (2.25). Then, the “distance” between the two parameterizations

of DPGP-MMs by collocation points can be represented by the DPGP KL divergence

defined as,

D
`

ppυq } qpυq
˘

“

ż 8

´8

¨ ¨ ¨

ż 8

´8

ppυq ln
ppυq

qpυq
dυ (5.22)

In order to evaluate (5.22), the joint PDF of ppυq needs to be expressed in terms of

the DPGP parameters in (2.25). Given tπ,θi,Φu, the random vector υi has a mixed

multivariate Gaussian distribution with mean and covariance matrix calculated from

θi and Φ. However, the number of components in the mixture model is infinite.

Therefore, computing the DPGP KL divergence from the above definition without

any assumption can be computationally very expensive due to the multiple integrals

of the joint PDFs in (5.22). The next subsections present several steps by which the

KL divergence can be simplified and, then, approximated by an information function
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that is computationally efficient, using conditional independence assumptions and

Monte Carlo integration.

5.3.2 DPGP Conditional KL-Divergence

When using information theoretic functions to plan sensor measurements over time,

the conditional probability densities must be taken into account because at any

moment in time, t, a set of measurements is typically already available or given.

Consider a DPGP-MM that is updated incrementally over time using a sensor that

requires a small but finite constant time interval, ∆t, to obtain and process new target

measurements, subject to a finite sampling rate [134]. At every discrete time instant

indexed by k, let mjpkq denote a sample of noisy measurements, in the form (3.7),

obtained from the jth target during the kth sampling time interval, rtk, tk `∆tq. It

typically can be assumed that the sensor field-of-view is stationary during sampling

and, therefore, measurements can be obtained from target j, provided xjptq P Sptq

for some t P rtk, tk`∆tq. Then, during the kth sampling time interval, the jth target

position can be approximated by xjpkq, and the sensor FOV can be represented by

Spkq [134].

For a non-myopic process, the information value of an additional measurement

mjpk ` 1q is to be conditioned on all prior measurements obtained from all the

targets, Mpkq, because the DPGP cluster learning process is dependent on all N

targets observed up to time k. By assuming that the DP prior is fixed during the

planning process, the VF clusters can be assumed to remain unchanged. Then, the

VF-target associations learned by the DPGP-MM at time step k, denoted by the set

Gpkq fi tGjpkq | 1 ď j ď Nu, can be considered part of the database used to learn

the target dynamics, denoted by Qpkq fi tMpkq,Gpkqu.

Under these assumptions, the change in the DPGP-MM brought about by a

measurement mjpk ` 1q can be represented by the conditional KL divergence (or
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relative entropy),

D
`

υ; mjpk ` 1q|Qpkq
˘

fi D
`

p
`

υ|mjpk ` 1q, Qpkq
˘

} p
`

υ|Qpkq
˘˘

(5.23)

in terms of the joint PDFs of the VF vector υ obtained from the DPGP-MM. Because

the VF vectors of two targets υi and υj, with i ‰ j, are conditionally independent

given the measurement database Qpkq, the joint PDF can be factorized as follows,

ppυ|Qpkqq“ppυ1, . . . ,υM |Qpkqq“
M
ź

i“1

ppυi|Qpkqq (5.24)

where, each joint PDF ppυi|Qpkqq can be obtained from the GP covariance and mean

as follows.

From GP regression [43], given the data Qpkq, υi is characterized by the multi-

variate joint Gaussian PDF,

ppυi|Qpkqq “ fG
`

υi;µipkq,Σipkq
˘

(5.25)

where µipkq and Σipkq are the measurement mean vector and covariance matrix of

the measurements associated with the ith velocity field, defined in (5.16) and (5.16),

respectively.

Suppose, without loss of generality, that a VF-target association is given asGjpk`

1q “ i. Then, since measurements obtained from one velocity field do not contain

information about other velocity fields, it follows that,

D
`

υ; mjpk ` 1q|Qpkq
˘

“ D
`

υi; mjpk ` 1q|Qpkq
˘

(5.26)

for Gjpk ` 1q “ i, as shown by the proof in Appendix A.3. Then, because when the

measurement mjpk ` 1q and the VF-target association Gjpk ` 1q are both given, υi

is characterized by the multivariate joint Gaussian PDF in (5.25), the DPGP KL
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divergence in (5.23) can be obtained in closed form as follows,

D
`

υ; mjpk ` 1q|Qpkq
˘

“
1

2

“

tr
`

Σ´1
i,kΣi,k`1

˘

´ ln
`
ˇ

ˇΣi,k`1Σ
´1
i,k

ˇ

ˇ

˘

´ 2L
‰

`
1

2
pµi,k`1 ´ µi,kq

T Σ´1
i,k pµi,k`1 ´ µi,kq

(5.27)

where trp¨q denotes the trace of a matrix, L is the number of collocation points, and

µi,k “ µipkq and Σi,k “ Σipkq are abbreviations of the mean and covariance matrix

defined in (5.16)-(5.17), respectively.

Because in active sensing and information gathering problems, the values of future

measurements, mjpk` 1q, are unavailable, the next section presents an approach for

estimating the DPGP KL divergence from an existing DPGP-MM and past sensor

measurements.

5.3.3 DPGP Expected KL-Divergence

Consider now the problem in which the DPGP KL divergence function derived in

the previous section is to be used to determine the information value of a future

measurement vector, mjpk ` 1q, such that, the sensor can be managed so as to

minimize the uncertainty associated with the next DPGP-MM learned from data.

When mjpk` 1q is unknown, the VF-target association Gjpk` 1q cannot be learned

from data. Thus, the closed analytic form of the conditional KL divergence in (5.27)

cannot be evaluated because the measurement mean vector and covariance matrix are

not known at time k`1. An estimate of this information theoretic function, however,

can be obtained by taking the expectation of the conditional KL divergence in (5.23)

with respect to the unknown random variables mjpk ` 1q and Gjpk ` 1q as follows,

D̂ pυ; mjpk ` 1q|Qpkqq “ Emjpk`1q

 

EGjpk`1q tD pυ; mjpk ` 1q|Qpkqqu
(

(5.28)

From the conditional independence property in (5.26) and the linearity of expec-

tation operator, the above DPGP expected KL divergence (EKLD) can be written
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as,

D̂ pυ; mjpk ` 1q|Qpkqq

“ Emjpk`1q

 

EGjpk`1q

 

D
`

υi; mjpk ` 1q
ˇ

ˇQpkq, Gjpk ` 1q “ i
˘((

“ Emjpk`1q

«

M
ÿ

i“1

D
`

υi; mjpk ` 1q
ˇ

ˇQpkq, Gjpk ` 1q “ i
˘

p
`

Gjpk ` 1q “ i
ˇ

ˇQpkq
˘

ff

“

M
ÿ

i“1

Emjpk`1q rD pυi; mjpk ` 1q|Qpkqqs ¨ p pGjpk ` 1q “ i|Qpkqq

“

M
ÿ

i“1

D̂ pυi; mjpk ` 1q|Qpkqq ¨ p pGjpk ` 1q “ i|Qpkqq (5.29)

Let Mc
j “ QzMj denote the complement set of Mj in Q. Then, the posterior

probability of event tGjpk ` 1q “ iu can be obtained from Bayes’ rule,

p pGjpk ` 1q “ i|Qpkqq “
πi ¨ ppMjpkq|Mc

jpkq, Gjpk ` 1q “ iq
řM
i“1 πi ¨ ppMjpkq|Mc

jpkq, Gjpk ` 1q “ iq
fi wij (5.30)

where πi “ ppGjpk ` 1q “ iq, defined in (3.2), is the prior probability that the jth

target follows the ith VF. The above posterior probability is obtained with respect

to the measurement set Mjpkq, defined in (3.8), because every target follows a VF

and, thus, all prior measurements influence the posterior of Gjpk ` 1q.

Recall that the likelihood, p
`

Mjpkq|Mc
jpkq, Gjpk`1q“ i

˘

, is calculated by (4.23).

Then, the expected KL divergence of the ith VF in (5.29) is obtained by marginalizing

the original KL divergence function over all possible values of mjpk ` 1q as follows,

D̂ pυi; mjpk ` 1qq (5.31)

“

ż 8

´8

¨ ¨ ¨

ż 8

´8

D pυi; mjpk ` 1qq ¨ p pmjpk ` 1q|Gjpk ` 1q “ iq dmjpk ` 1q

where Dp¨q is defined as in (5.27). For brevity, Qpkq is omitted above and in the

remainder of the dissertation, but all information functions and probabilities are

assumed to be conditioned on all past data, Qpkq.
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The measurement probability distribution in (5.31) can be derived from the mea-

surement model (3.7) by marginalizing over the estimates of target positions in the

sensor field-of-view S at time k ` 1,

p pmjpk ` 1q|Gjpk ` 1q “ iq “ (5.32)

ppzjpk ` 1q|xjpk ` 1qqp pxjpk ` 1q|Gjpk ` 1q “ iq

where ppzjpk ` 1q|xjpk ` 1qq can be calculated from (3.7). Using Euler integration

and the ODE (3.3), it follows that,

p pxjpk ` 1q|Gjpk ` 1q “ iq “ (5.33)

ż

R2

p pvjpkq|xjpkqq fX pxjpk ` 1q ´ vjpkq∆tq dvjpkq

where fXp¨q represents the PDF of xjpkq, and is computed via filtering techniques

[102]. The conditional joint probability distribution for the target speed, denoted

by p pvjpkq|xjpkqq in (5.33), is a multivariate Gaussian distribution with mean and

covariance calculated according to (5.16)-(5.17) by replacing the collocation point

vector ξ with the target position xjpkq.

In summary, the information value of a future measurement mjpk ` 1q can be

estimated using the DPGP EKLD function in (5.29), and equations (5.30)-(5.33).

When the sensor can obtain multiple target measurements during the same sampling

time interval rtk, tk ` ∆tq, the information value can be represented by the total

expected KL divergence of all measurements that may be obtained subject to the

sensor field-of-view Spk ` 1q. Let the vector mpkq “ rmT
j pkq mT

l pkq ¨ ¨ ¨ s
T denote

all measurements obtained from targets j, l, . . ., in Spkq during the time interval

rtk, tk ` ∆tq (Section 5.3.2). Then, the DPGP-EKLD of a measurement vector

mpk ` 1q that may be obtained subject to Spk ` 1q during a future time interval
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rtk`1, tk`1 `∆tq is given by,

D̂ pυ; mpk ` 1qq “
ÿ

j, xjPSpk`1q

D̂ pυ; mjpk ` 1qq “ (5.34)

ÿ

j,i

wij

ż

Spk`1q

ż

R2

D pυi; mjpk ` 1qq p pzjpk ` 1q|xjpk ` 1qq

ˆ p pxjpk ` 1q|Gjpk ` 1q “ iq dzjpk ` 1qdxjpk ` 1q

where all quantities are defined and calculated as shown in (5.30)-(5.33).

Because the total DPGP-EKLD function in (5.34) involves an 6th-order integral,

its computation is typically very burdensome and may become prohibitive particu-

larly when the information value of all possible sensor decisions needs to be computed

repeatedly over time. Using the methodology presented in the next subsection, it

is possible to obtain a DPGP-EKLD approximation that reduces the integration re-

quired to a double integral and, thus, can be efficiently computed and implemented

in real time for sensor planning.

5.3.4 Approximation to DPGP Expected KL-Divergence

By assuming that the noise in position measurements is negligible compared to the

noise in velocity measurements, an approximate KL divergence function can be de-

rived analytically with respect to a double integral of the velocity measurements.

Subsequently, through the use of three lemmas introduced in this subsection, it is

shown that the Monte Carlo integration of the remaining double integral provides

an unbiased estimator of the approximate KL divergence with an error variance that

decreases linearly with the number of samples in W . The computation required by

the resulting DPGP-EKLD approximation is far reduced compared to the original

DPGP-EKLD function in (5.34) and, thus, can be implemented to plan the measure-

ments of an active sensor in real time, as shown by the camera-planning application

presented in chapter 7.
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Since the probability p pxjpk ` 1q|Gjpk ` 1q “ iq is constant with respect to the

measurements mjpk`1q, the expected KL divergence of a measurement vector mpk`

1q in (5.34) can be written as,

D̂ pυ; mpk ` 1qq (5.35)

“
ÿ

j

ÿ

i

wij

ż

Spk`1q

!

hirxjpk ` 1qs ¨ p pxjpk ` 1q|Gjpk ` 1q “ iq
)

dxjpk ` 1q

where,

hirxjpk ` 1qs fi

ż

R2

D
`

υi; mjpk ` 1q
˘

p
`

zjpk ` 1q|xjpk ` 1q
˘

dzjpk ` 1q

“ D̂
`

υi; mjpk ` 1q
˘

(5.36)

From (5.36), it can be seen that the inner integral, hirxjpk ` 1qs, is equivalent to

the GP-EKLD, D̂
`

υi; mjpk ` 1q
˘

, defined in (5.15). Therefore, hirxjpk ` 1qs can be

calculated analytically using Theorem 4, such that,

hirxjpk ` 1qs “
1

2

„

tr
`

Σ´1
i,kΣi,k`1

˘

´ ln

ˆ

|Σi,k`1|

|Σi,k|

˙

´ 2L` trpQ´1RTΣ´1
i,kRQ´1

qσ2
v



Even with the above simplification, the computational complexity associated with

evaluating hirxjpk ` 1qs is OpL3 ` k3q, where L is the number of collocation points

and k is the time index. Therefore, it is often infeasible to compute the approximate

DPGP-EKLD in (5.35) for all possible sensor fields-of-view, Spk`1q, inW . Because

the integrand of (5.35) goes to zero when the probability p pxjpk ` 1q|Gjpk ` 1q “ iq

goes to zero and hirxjpk`1qs is finite, the computation of (5.35) can be significantly

reduced by the approach known as Monte Carlo integration [150]. Let χp1q, . . . ,χpSq

denote S values of xjpk ` 1q drawn identically and independently from the target

state distribution p pxjpk ` 1q|Gjpk ` 1q “ iq in (5.33). The samples can be obtained

from the DPGP particle filter described by Algorithm 5 and Algorithm 6 in Chapter
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4.2.2. Then, the integral in (5.35) can be computed numerically by evaluating its

integrand at each sample with nonzero probability, such that,

D̂ pυ; mpk ` 1qq «
M
ÿ

i“1

N
ÿ

j“1

wij
S

S
ÿ

s“1

hipχ
psq
q1Spk`1qpχ

psq
q (5.37)

where χpsq, s “ 1, . . . , S, denote S target-position samples drawn independently and

identically from the target state distribution (5.33), and the indicator function is

defined as:

1Spk`1qpχ
psq
q fi

$

&

%

1, χpsq P Spk ` 1q

0, χpsq R Spk ` 1q
(5.38)

Similarly to the collocation points used to discretize the DPGP information value

(Section 5.3.1), these samples represent points in W . But, unlike collocation points,

which are chosen from a uniform grid, the Monte Carlo integration samples are chosen

by sampling a known distribution.

The remainder of this subsection shows that, with the help of the three following

lemmas, the approximation in (5.37) is proven to be an unbiased estimator of the

approximate DPGP-EKLD in (5.35), and that the error variance for this approxima-

tion decreases linearly with S. The first lemma provides a bound for the covariance

matrix of the velocity at the predicted target position, Q, defined in (5.20). This

result is used in a second lemma to derive a matrix inequality between consecu-

tive covariance matrices Σi,k and Σi,k`1, defined in (5.17), such that trpΣ´1
i,kΣi,k`1q

and lnp|Σi,k`1Σ
´1
i,k |q in hirxjpk ` 1qs in (5.35) can be shown to be bounded. The

third and last lemma present a bound on the trace of the matrix RTR, such that

trpQ´1RTΣ´1
i,kRQ´1qσ2

v in hirxjpk ` 1qs can be shown finite-valued. Let A ĺ B

denote the element-wise inequality between matrices A and B. Then, the following

lemma provides a bound on the elements of Q that is later used to establish the

matrix inequality between Σi,k and Σi,k`1.
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Lemma 5. The velocity covariance matrix Q, defined in p5.20q, obeys the element-

wise inequality φ0`tσ
2
v{rk trpφ0q ` σ

2
vsu I2 ĺ Q ĺ φ0` σ

2
vI2, where φ0 “ φp0,0q is

a constant matrix obtained by evaluating the stationary covariance matrix function

at zero, σv P R is the standard deviation of the measurement noise of velocity, and

k P Z` is the time index.

Proof. From definition (5.18), the matrix Σ is symmetric and positive definite pΣ ą

0q because it is the sum of a symmetric, positive semi-definite matrix, ΦrYipkq,Yipkqs,

and a symmetric, positive definite matrix, σ2
vI2k. Then, the inverse Σ´1 also is posi-

tive definite and CTΣ´1C ľ 02ˆ2, for all C P Rkˆ2. Thus, from (5.20) the following

element-wise inequality holds,

Q ĺ φrxjpk ` 1q,xjpk ` 1qs ` σ2
vI2 (5.39)

Since the covariance matrix function is stationary, φrxjpk`1q,xjpk`1qs “ φp0,0q “

φ0 for any xj PW , and thus,

Q ĺ φ0 ` σ
2
vI2 (5.40)

Since ΦrYipkq,Yipkqs is real, symmetric, and positive semi-definite, there exists

an eigenvalue decomposition, ΦrYipkq,Yipkqs “ UΛU´1, with orthogonal eigenvec-

tors, where Λ is a diagonal matrix obtained by placing the k eigenvalues of Φr¨s on

the diagonal, and U is a k ˆ k matrix whose columns are the eigenvectors of Φr¨s,

i.e.,

Λ fi diagrλ1 ¨ ¨ ¨ λks and U fi ru1 ¨ ¨ ¨ uks
T . (5.41)

and, thus, UTU “ I. Since the kth column of Yipkq is equal to xjpkq, the matrix C

defined in (5.20) can be written as,

C “ UΛuk (5.42)

and, by substituting (5.42) into in (5.20), the matrix Q can be written as,

Q “ φ0 `

«

σ2
v ´

k
ÿ

`“1

λ`
λ` ` σ2

v

λ`pUp`,kqq
2

ff

I2 (5.43)
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where λ` is the `th eigenvalue of ΦrYipkq,Yipkqs, and Up`,kq denotes the element in

the `th row and kth column of U. Because Φr¨s is symmetric and positive semi-

definite λ` ě 0 for all `, and, since uTkΛuk “ 1, it follows that

k
ÿ

`“1

λ`pUp`,kqq
2
“ 1 (5.44)

Substituting (5.44) into (5.43), it follows that,

Q ľ φ0 `

ˆ

σ2
v ´max

`

"

λ`
λ` ` σ2

v

*˙

I2 “ φ0 `

ˆ

σ2
v ´

max`tλ`u

max`tλ`u ` σ2
v

˙

I2 (5.45)

providing a lower bound on the elements of Q that can be simplified as follows.

Because the trace of a real, symmetric matrix equals the sum of its eigenvalues,

tr tΦrYipkq,Yipkqsu “
k
ÿ

`“1

λ` (5.46)

and since the diagonal blocks of ΦrYipkq,Yipkqs are equal to φpyl,ylq “ φ0, then
řk
`“1 λ` “ k trpφ0q. Furthermore, max`tλ`u ď k trpφ0q, and thus,

Q ľ φ0 `

„

σ2
v

k trpφ0q ` σ2
v



I2 ľ φ0 ą 0 (5.47)

which completes the proof.

The above result is used in the following lemma to establish a matrix inequality

on consecutive covariance matrices Σi,k and Σi,k`1.

Lemma 6. Under the assumptions in Theorem 4, two consecutive covariance ma-

trices Σi,k and Σi,k`1, defined according to p5.17q, obey the element-wise inequality

0 ă Σi,k`1 ĺ Σi,k.

Proof. Under the assumptions in Theorem 4, Σi,k and Σi,k`1 are positive definite

matrices because they represent Gaussian covariance matrices. From the block ma-

trix inversion in (A.3) the difference between two consecutive covariance matrices
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can be written as

Σi,k ´Σi,k`1 “ RQ´1RT (5.48)

From Lemma 5, φ0 ĺ Q and, since Q is a diagonal positive-definite matrix, it follows

that Q´1 is diagonal and positive definite. Then, there exists a diagonal positive-

definite matrix, V, such that Q´1 “ VVT . Plugging V in (5.48) yields that

Σi,k ´Σi,k`1 “ RVVTRT
“ pRVqpRVqT ľ 0 (5.49)

The third and final lemma provides a bound on the trace of the quadratic form

RTR that is later used to show that the Monte Carlo integration (5.37) is an unbiased

estimator of the approximate DPGP-EKLD in (5.35).

Lemma 7. Under the assumptions in Theorem 4, the cross-covariance matrix R,

obtained from the target velocity and position estimates at the collocation points,

and defined in p5.19q, obeys the inequality 0 ď trpRRT q ď 4krpφ0q ` 2σ2
vs, where

φ0 “ φp0,0q is a constant matrix obtained by evaluating the stationary covariance

matrix function at zero, σv P R is the standard deviation of the measurement noise

of velocity, and k P Z` is the time index.

Proof. Since RTR is a positive semi-definite matrix (RTR ě 0), it has positive or

zero eigenvalues, and

trpRRT
q ě 0 (5.50)

From GP regression, the joint probability distribution of a vector rυTi vjpk `

1qT fipy1q
T fipy2q

T ¨ ¨ ¨ sT , comprised of target velocities at the collocation points

(5.13) and at the measured target positions, is a multivariate Gaussian distribution

with covariance matrix,

»

–

Φpξ, ξq ` σ2
vI2L Φrξ,xjpk ` 1qs Φrξ,Yipkqs

Φrxjpk ` 1q, ξs Φrxjpk ` 1q,xjpk ` 1qs ` σ2
vI2 Φrxjpk ` 1q,Yipkqs

ΦrYipkq, ξs ΦrYipkq,xjpk ` 1qs ΦrYipkq,Yipkqs ` σ
2
vI2k

fi

fl
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The conditional marginal distribution of the vector rυTi vjpk ` 1qT sT , given the

vector of target position measurements Yipkq, is a multivariate Gaussian distribution

with covariance matrix,
„

Φpξ, ξq ` σ2
vI2L Φrξ,xjpk ` 1qs

Φrxjpk ` 1q, ξs Φrxjpk ` 1q,xjpk ` 1qs ` σ2
vI2



´

„

Φrξ,Yipkqs
Φrxjpk ` 1q,Yipkqs



tΦrYipkq,Yipkqs ` σ
2
vI2ku

´1

„

Φrξ,Yipkqs
Φrxjpk ` 1q,Yipkqs

T

“

„

Σi,k R
RT Q



(5.51)

Because the covariance matrix in (5.51) is symmetric and positive definite, the off-

diagonal elements of R are smaller than the corresponding diagonal elements of Q,

or

Rpi,jq ă Qpj,jq ă trpQq, @i, j (5.52)

From Lemma 5, Q ĺ Φ0 ` σ
2
vI2, therefore, it follows that,

Rpi,jq ă trpφ0q ` 2σ2
v (5.53)

and from the properties of quadratic forms the following holds,

trpRRT
q “

M
ÿ

i“1

N
ÿ

j“1

rRpi,jqs
2
ă

M
ÿ

i“1

N
ÿ

j“1

rtrpφ0q ` 2σ2
vs “ 4krtrpφ0q ` 2σ2

vs (5.54)

completing the proof.

We are now ready to prove the following theorem on the properties of the DPGP-

EKLD approximation presented in this subsection:

Theorem 8. Under the assumptions in Theorem 4, the Monte Carlo integration

p5.37q is an unbiased estimator of the approximate DPGP-EKLD function in p5.35q,

and the variance of the difference between p5.35q and p5.37q decreases linearly with
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the number of samples, S, that are drawn independently and identically from the

target state distribution p5.33q.

Proof. From the linearity of the expectation operation, the expected value of the

DPGP-EKLD obtained via Monte Carlo integration in (5.37), is given by,

D̄ “ EtD̂ pυ; mpk ` 1qqu “E

#

M
ÿ

i“1

N
ÿ

j“1

wij
S

S
ÿ

s“1

“

hipχ
psq
q1Spk`1qpχ

psq
q
‰

+

“

M
ÿ

i“1

N
ÿ

j“1

wij
S

S
ÿ

s“1

E
 

hipχ
psq
q1Spk`1qpχ

psq
q
(

(5.55)

where Et¨u denotes the expectation with respect to χpsq. Since the Monte Carlo

integration samples, χpsq, s “ 1, . . . , S, are drawn identically and independently (iid)

from the target state distribution p pxjpk ` 1q|Gjpk ` 1q “ iq in (5.33), the following

equation holds,

E
 

hipχ
psq
q1Spk`1qpχ

psq
q
(

“ E
 

hi
“

xjpk ` 1q
‰

1Spk`1qrxjpk ` 1qs
(

(5.56)

for all s “ 1, . . . , S, where hi
“

xjpk ` 1q
‰

is defined in (5.36) for Gjpk ` 1q “ i, and

thus the estimator (5.37) is unbiased.

Now, let varp¨q denote the variance of a random variable. Because the samples
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χpsq, s “ 1, . . . , S, are drawn i.i.d., the following holds,

varpD̂q “ EtpD̂ ´ D̄q2u

“ E

#

N
ÿ

j“1

M
ÿ

i“1

wij

„

1

S

S
ÿ

s“1

hi
`

χpsq
˘

1Spk`1q
`

χpsq
˘

´ E
!

hi
“

xjpk ` 1q
‰

1Spk`1q
“

xjpk ` 1q
‰

)

2
+

“

N
ÿ

j“1

M
ÿ

i“1

wij
1

S2

S
ÿ

s“1

E

#

„

hi
`

χpsq
˘

1Spk`1q
`

χpsq
˘

´ E
!

hi
“

xjpk ` 1q
‰

1Spk`1q
“

xjpk ` 1q
‰

)

2
+

“
1

S

N
ÿ

j“1

M
ÿ

i“1

wijvar
!

hi
“

xjpk ` 1q
‰

1Spk`1q
“

xjpk ` 1q
‰

)

“
1

S
var

!

hi
“

xjpk ` 1q
‰

1Spk`1q
“

xjpk ` 1q
‰

)

(5.57)

where var
 

hi
“

xjpk ` 1q
‰

1Spk`1q
“

xjpk ` 1q
‰(

is a finite constant, and can be proved

by showing that hir¨s is finite-valued as follows. First, we prove that hir¨s is greater

than or equal to zero. From (5.36), hir¨s is the integral of the KL divergence weighted

by a Gaussian distribution. Since the KL divergence is always greater than or equal

to zero, and ppzjpk ` 1q|xjpk ` 1qq ě 0, it also follows that

hir¨s ě 0 (5.58)

Second, we prove that hir¨s is less than infinity, by showing that every term of hir¨s

is finite-valued. Recalling the second term in (5.36), the first term of hir¨s can be

shown finite-valued by following Lemma 6 as follows,

trpΣ´1
i,kΣi,k`1q “ trrΣ´1

i,k pΣi,k ´RQ´1RT
qs

“ trpI2L ´Σi,kRQ´1RT
q ď 2L

(5.59)
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where L is the number of collocation points in W . The second term of hir¨s can also

be shown finite-valued. From Lemma 6, it follows that |Σi,k| ą 0 and |Σi,k`1| ą 0,

since the two covariance matrices are both positive definite. Since Σi,k and Σi,k`1

are Hermitian and Σi,k ľ Σi,k`1, then |Σi,k| ą |Σi,k`1| and 0 ă |Σi,k`1|{|Σi,k| ă 1,

such that 0 ă ´ lnp|Σi,k`1|{|Σi,k|q ă 8. The last term of hir¨s in (5.36) can be shown

finite-valued from the property that the trace of a product of matrices is invariant

under cyclic permutations [151], such that

trpQ´1RTΣ´1
i,kRQ´1

qσ2
v “ trpΣ´1

i,kRQ´1Q´1RT
qσ2

v (5.60)

In addition, for positive semi-definite matrices of the same size, the trace of the

products is less than or equal to the product of traces [151], such that

trpΣ´1
i,kRQ´1Q´1RT

qσ2
v ď trpΣ´1

i,k qtrpRQ´1Q´1RT
qσ2

v

“ trpΣ´1
i,k qtrpQ

´1Q´1RTRqσ2
v

ď trpΣ´1
i,k qrtrpQ

´1
qs

2trpRTRqσ2
v

“ trpΣ´1
i,k qrtrpQ

´1
qs

2trpRRT
qσ2

v

ď 4trpΣ´1
i,k q

“

4ktrpΦ0q ` 2σ2
v

‰

σ2
v

(5.61)

where the last inequality is the result of Lemmas 5-7. Therefore, every term of

hir¨s has been proved to be finite-valued, which proves that hir¨s is also finite-

valued for all xjpk ` 1q P R2. Due to the indicator function 1Spk`1qr¨s, the variance

var
 

hi
“

xjpk ` 1q
‰

1Spk`1q
“

xjpk ` 1q
‰(

in (5.57) is a definite integral over Spk ` 1q of

finite-valued hir¨s, therefore, it is a finite constant. Thus the error variance of the

Monte Carlo estimator in (5.37) is proportional to 1{S [152].
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5.3.5 Cumulative Lower Bound of DPGP Expected KL-Divergence

The DPGP-EKLD discussed in Sections 5.3.1-5.3.4 only considers one future sensor

measurement, mjpk ` 1q, therefore, it can only be applied to develop greedy sensor

planning algorithms. The performance of the greedy sensor planning algorithms is

acceptable if no constraints on the sensor dynamics are imposed, and the sensor can

be treated as a free-flying object. However, when constraints of the sensor dynam-

ics, such as the linear dynamics with constrained input in (3.6), greedy algorithms

suffer from local minima and the performance is usually impaired greatly. Therefore,

DPGP-EKLD considering multiple future measurements needs to be examined.

Recall that Mjpk1, k2q fi tmjp`q | k1 ď ` ă k2u denote the measurements ob-

tained from the jth target between time steps k1 and k2, and that Mpk1, k2q fi

ŤN
j“1Mjpk1, k2q. Then, the DPGP-EKLD for K future measurements of the jth

target until time step k1 “ k ` K, Mjpk, k
1q, is defined by the prior and posterior

distributions of υ as follows,

D̂ pυ;Mjpk, k
1
qq fi EMjpk,k1q

 

EGj

 

D
`

υ;Mjpk, k
1
q
˘((

where,

D
`

υ;Mjpk, k
1
q
˘

fi D
´

p
`

υ|Mjpk, k
1
q
ď

Mp1, kq
˘

} p
`

υ|Mp1, kq
˘

¯

(5.62)

It is worth noticing that D̂ pυ;Mjpk, k
1qq can also be expressed in terms of the

mutual information (MI). Recall that IpX;Y q fi EY tDrpX|Y px|yq}pXpxqsu denote

the mutual information between two continuous random variables, X and Y . Then,

the DPGP-EKLD is equivalent to,

D̂ pυ;Mjpk, k
1
qq “

ÿM

i“1
wijI

`

υi;Mjpk, k
1
q
˘

(5.63)

where wij is the posterior probability of tGj “ iu. LetMc
jp1, kq “Mp1, kqzMjp1, kq

denote the complement set ofMjp1, kq inMp1, kq. The value of wij can be obtained
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from Bayes’ rule as follows,

wij “
πi ¨ ppMjp1, kq|Mc

jp1, kq, Gj “ iq
řM
i“1 πi ¨ ppMjp1, kq|Mc

jp1, kq, Gj “ iq
(5.64)

where πi “ ppGj “ iq, is the prior probability that the jth target follows the ith VF.

However, it can be proved as follows that optimizing the DPGP-EKLD (5.63)

is NP -hard under the constraints of the camera dynamics (3.6) and the bounded

FOV. Thus, using the DPGP-EKLD directly as the design objective for controlling

the sensor for a finite horizon is computationally intractable. In order to study the

complexity for optimizing the DPGP-EKLD, Lemma 17 is introduced in Appendix

A.4 for integrity [153]. Based on Lemma 17, Theorem 9 is proposed as follows.

Theorem 9. Given a rational number m and a rational covariance matrix Λ of a

set of Gaussian random variables V “ S
Ť

U , deciding whether there exists a subset

A Ă S of cardinality d such that IpA;Uq ě m is NP -complete.

Proof. Let Q1 and Q2 denote the problems studied in Lemma 17 and Theorem 9,

respectively. The NP -completeness of Q2 can be shown by the reduction from Q1

to Q2 as follows. Recall that S denotes the set of Gaussian random variables in Q1,

with rational covariance matrix Σ. Let σc denote a positive constant that is less

than the square root of the smallest eigenvalue of Σ. For any S, there exits a set U ,

such that the random variables in V “ S Y U are multivariate Gaussian distributed

with covariance matrix Λ “

„

Σ I
I pΣ´ σ2

cIq
´1



. Then, the conditional distribution

of S given U is a multivariate Gaussian distribution with covariance matrix σ2
cI.

Therefore, the random variables in S are conditionally independent given U .

The mutual information studied in Q2 can be decomposed into two parts, that is,

IpA;Uq “ HpAq´HpA|Uq, where Hp¨q denotes the entropy function. The first part,

HpAq, is the same quantity to be maximized in Q1. The second part, HpA|Uq, can
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be proven to be a constant as follows. Since A Ă S, the random variables in A are

also conditionally independent given U . Thus, HpA|Uq “ d logp2πeσ2q{2, which is

a constant since the cardinality of A is part of the question. Therefore, maximizing

IpA;Uq is equivalent to maximizing HpAq, which proves that the solution to Q2 can

be used as a black-box to solve Q1 in polynomial steps. Since Q1 is NP -complete, Q2

is NP -hard. In addition, calculating the mutual information given a set of Gaussian

random variables requires polynomial time. Therefore, Q2 is NP -complete.

Based on Theorem 9, the complexity of optimizing the DPGP-EKLD in (5.63)

can be addressed by Theorem 10 as follows.

Theorem 10. Determining the optimal control trajectory, u˚p`q, ` “ k, . . . , k1, that

maximizes the DPGP-EKLD, D̂ pυ;Mjpk, k
1qq, is NP -hard, under the constraints

of the sensor dynamics p3.6q and the bounded FOV.

Proof. An NP -hardness proof by restriction for a given problem consists of showing

that the given problem contains another known NP -complete problem as a special

case, by placing additional restrictions on the given problem [154]. Let Q3 denote the

problem studied in Theorem 10. Let Q2 denote the known NP -complete problem in

Theorem 9. In order to prove the NP -hardness of Q3 by restriction, the following

three additional restrictions are required for indicating that Q2 is a special case of

Q3. The first restriction is that the number of velocity fields equals one, that is,

M “ 1. Without loss of generality, let f1 denote the VF that all the N targets are

associated with. Then, tf1rxjp`qs | 1 ď j ď N, k ď ` ď k1u can be selected to be

equivalent to S. The second restriction is that the camera FOV is small enough such

that the camera can obtain only one target measurement at every time step. Then,

the cardinality ofMjpk, k
1q is K “ k1´ k, which can be chosen to be the cardinality

d in Q2. The last restriction is placed on ξl, such that tf1pξlq | 1 ď l ď Lu “ U .
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After the specification of the above restrictions, the resulting restricted problem of

Q3 is identical to Q2. Since Q2 is NP -complete, Q3 is NP -hard.

Since optimizing the DPGP-EKLD (5.63) is NP -hard as shown in Theorem 10,

approximation techniques are required in order to reduce the computational com-

plexity for determining the optimal control trajectory. One approach is to maximize

the lower bound of the DPGP-EKLD, which optimizes the worst-case performance,

as shown in the next section [155].

The complexity of optimizing the DPGP-EKLD stems from that D̂ pυ;Mjpk, k
1qq

is a function of the set of future measurements, Mjpk, k
1q. Therefore, maximizing

the DPGP-EKLD is a combinatorial optimization problem. The complexity can be

greatly reduced if the objective function can be written as a summation of the reward

at every time step. To this end, the cumulative lower bound of the DPGP-EKLD is

studied, and is presented in the following theorem.

Theorem 11. The DPGP-EKLD, D̂ pυ;Mjpk, k
1qq, is lower bounded by the dis-

counted summation of the mutual information between the random variables indexed

at the collocation points, υ, and the measurement at every time step, mj, such that,

D̂
`

υ;Mjpk, k
1
q
˘

ě

M,k1
ÿ

i“1,`“k

wijp1´ γqγ
`´kI

`

υi; mjp`q
˘

fi D̂L

`

υ;Mjpk, k
1
q
˘

(5.65)

where γ P p0, 1q is a user-defined discount factor.

Proof. Let V , A1, and A2 denote any three sets of random variables. Let A fi A1YA2

denote the union of A1 and A2. Since A1, A2 Ă A, it follows thatHpV |Aq ď HpV |A1q,

and that HpV |Aq ď HpV |A2q [143]. Thus, for any γ P p0, 1q, the following inequality

holds,

IpV ;Aq ě γIpV ;A1q ` p1´ γqIpV ;A2q (5.66)
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By applying the inequality (5.66) to I
`

υi;Mjpk, k
1q
˘

for K times, it follows that,

I
`

υi;Mjpk, k
1
q
˘

ě

k1
ÿ

`“k

p1´ γqγ`´kI
`

υi; mjp`q
˘

(5.67)

Finally, substituting (5.67) in (5.63) yields the cumulative lower bound of the DPGP-

EKLD,

D̂
`

υ;Mjpk, k
1
q
˘

ě

M,k1
ÿ

i“1,`“k

wijp1´ γqγ
`´kI

`

υi; mjp`q
˘

“ D̂L

`

υ;Mjpk, k
1
q
˘

(5.68)

which completes the proof.

5.4 Chapter Conclusion

Novel information theoretic functions for the GP target kinematics model and the

DPGP target kinematics model presented in Chapter 4 have been developed. The

GP expected KL divergence (5.15) is derived to evaluate the improvement of the GP

target kinematics model brought about by a single future measurement. The analyti-

cal expression of the GP expected KL divergence is derived and presented in Theorem

4. In addition, the DPGP expected KL divergence (5.28) is proposed for calculat-

ing the information value of a single future measurement for learning the DPGP

the DPGP target kinematics model. New theoretic results (Theory 8) are used to

obtain a computationally efficient approximation of DPGP expected KL divergence

via Monte Carlo integration. The new analysis proves that this approximation is an

unbiased estimator of the original DPGP value function, and is characterized by an

error covariance that decreases linearly with the number of samples. Moreover, the

DPGP expected KL divergence is extended to (5.62) that considers multiple future

measurements. A novel theorem (Theorem 10) shows that optimizing the DPGP

expected KL divergence for multiple sensor measurements in (5.62) subject to sen-

sor dynamics and FOV constraints is NP -hard. A new cumulative lower bound is
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then derived in Theorem 11 for the purpose of reducing the computational complex-

ity of the sensor planning problem. The novel Bayesian nonparametric information

theoretic functions and their bounds are used to develop efficient sensor planning

algorithms in subsequent chapters.
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6

Sensor Planning for Bayesian Nonparametric
Target Modeling

The problem of determining the optimal control sensor planning strategy often con-

sists of maximizing or minimizing an objective function subject to the constraints

on the sensor dynamics. In the case of sensor planning for Bayesian nonparamet-

ric target modeling, the objectives can be expressed by the novel information value

functions presented in Chapter 5. Specific forms of the assumptions on the targets

and the sensor dynamics also need to be considered for the purpose of developing the

most suitable control strategy. Moreover, these assumptions need to be the abstract

representations of a broad range of real-life applications, such that the theoretic

works can be applied in practice. In order to demonstrate that the sensor planning

algorithms with respect to the target kinematics models proposed in Chapter 4 and

the information values proposed in Chapter 5 can be broadly applied, a variety of

application scenarios are considered according to various practical assumptions on

the sensor dynamics and the target kinematics. First, when the target kinematics

can be described by a time-invariant velocity field, such as the ocean current in a

81



relative short period of time, a single GP can be applied. In this case, a novel greedy

algorithm is developed to determine the optimal sensing sequence, which is presented

in Section 6.1. Second, problems involving mobile targets are addressed by the sce-

nario in Section 6.2, where a sweep line algorithm is developed for unconstrained

sensor dynamics with continuous state space. Third, constrained sensor dynamics

are studied in Section 6.3, and a lexicographic algorithm is proposed.

6.1 Scenario 1: Always Observable Target and Discrete Control Space

In many applications, the measurement of the target kinematics can be assumed

available for any target state, x P W , and for any time step, k. This assumption is

valid for applications where the target kinematics are modeled by a steady velocity

field, fi : W Ñ Rd defined in (3.3), where d is the dimension of the target state.

For example, in problems of studying the kinematics of drifters in the ocean or the

kinematics of airborne robots (such as the “smart dust” particles [156]), the ocean

surface current and the wind velocity can be treated as time-invariant velocity fields

for a short period of time [157]. The measurement of the ocean surface current or the

wind velocity is available at any position in the workspace as long as the sensor is

deployed at that position. In these applications, the set of admissible sensor states A,

defined in (3.6), is often finite and known a-priori [101]. For example, measurements

of the ocean current or the wind velocity may be only available at a finite number

of moored buoys or climate stations. Comparing to the area of the workspace, the

size of the moored buoy or the climate station is negligible. Therefore, the sensor

FOV can be treated as a volume-less point overlapping with the sensor state, spkq,

and the measurement of the target state, ypkq, is noise-free. Nevertheless, noise of

the measurement of the target kinematics, zpkq, can be considered, and the general
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measurement model in (3.7) can be specialized to,

mpkq “ ryT pkq zT pkqsT “ rsT pkq vT pkqsT ` r0Td νTv s
T (6.1)

where 0d is a dˆ 1 vector of zeros, and νv P Rd is the Gaussian distributed velocity

measurement noise with zero mean and covariance matrix, σ2
vId. Notice that the

FOV constraint is implied by substituting x with spkq in (6.1).

No constraint on the sensor dynamics is considered, such that the sensor can

be treated as a free-flying object. In other words, the sensor is able to obtain one

measurement at any state in A at every time step, regardless of the history of the

sensor states. Then, the general state-space representation of the sensor dynamics

in (3.6) can be specialized to,

spk ` 1q “ upkq, and, upkq P U “ A (6.2)

where the admissible control space, U , defined in (3.6), is equivalent to A.

One Gaussian process is sufficient for describing the target kinematics for the

scenario discussed in this section. Therefore, the GP-EKLD presented in Section 5.2

can be utilized as the objective function in the sensor planning problem, that is,

L rspkq,upkq |Mpkqs “ D̂
`

υi; mpk ` 1q
˘

(6.3)

where υi is the vector define in (5.13) that represents the velocity field fi. The left

hand side and the right hand side of (6.3) are related by the sensor dynamics, (6.2),

and the measurement model, (6.1).

Sensor planning in the scenario characterized by (6.1)-(6.3). A greedy algorithm

can be developed. First, the GP-EKLDs (6.3) for all admissible sensor states in

A are calculated. Then, the optimal sensor state is selected by maximizing the

GP-EKLD (6.3). Thereafter, the estimation of the target kinematics f̂irx|Mpkqs is

calculated given the new measurement mpkq, and the previous estimation f̂irx|Mpk´
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1qs. Hyper-parameters of the GP, Θ, can be optimized after the new measurement

is obtained. The algorithm determines the measurement sequence one at a time,

and is referred to as the GP-EKLD-Greedy algorithm. Let K denote the maximum

number of observations, the GP-EKLD-Greedy algorithm is summarized as follows:

Algorithm 7 GP-EKLD-Greedy

Input: GP parameters, tθip¨q,φip¨, ¨qu; GP hyper-parameters, Θi; Set of admissible
sensor state, A; Collocation points, ξ; Control horizon, K

Output: Optimal control inputs, tu˚pkquKk“1
1: for k “ 1, . . . , K do
2: u˚pk ` 1q “ argmax

sPA
D̂
`

υi; mpk ` 1q
˘

3: spk ` 1q “ u˚pk ` 1q
4: Obtain mpk ` 1q according to (6.1)
5: Ypk ` 1q “ rYT pkq yT pk ` 1qsT

6: Zpk ` 1q “ rZT pkq zT pk ` 1qsT

7: Obtain optimal GP hyper-parameters, Θ˚
i , by (2.16)

8: end for

6.2 Scenario 2: Mobile Targets and Unconstrained Sensor Dynamics

Although the scenario considered in the previous section with target kinematics that

are always observable can be applied in certain problems such as ocean surface current

modeling, the assumption is too restricted and limits the applications of the Greedy-

GP-EKLD algorithm (Algorithm 7). For problems involving mobile targets, such as

pedestrians or ground vehicles, target tracking needs to be considered by the sensor

planning algorithm, since the sensor is only able to obtain non-empty measurement

of the target kinematics if the target is in the sensor FOV, as determined by the

measurement model (3.7). To cope with the mobile targets, a novel sweep line

algorithm is proposed as follows by using the GP particle filter or the DPGP particle

filter presented in Chapter 4.

The target kinematics are assumed to be the same as presented in the problem

formulation in (3.3), where the target kinematics are modeled by a mixture of M
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unknown ODEs, F fi tf1, . . . , fMu, with unknown mixture weights, π. Notice that

the following approach applies to the case where the target kinematics is modeled

by a single VF automatically by imposing the constraint that M “ 1.

The sensor is still assumed to be a free-flying object as in the previous section,

however, continuous sensor state is utilized, such that the sensor dynamics are,

spk ` 1q “ upkq, upkq P U “W (6.4)

Notice that the admissible control space is assumed equivalent to the admissible

state space, such that U “ W . The workspace is assumed to be two-dimensional,

and the sensor FOV is assumed to be an axis-parallel rectangle with fixed shape,

such that, Spkq Ă W , as shown in Fig. 6.3. This assumption is valid for a variety

of applications, such as autonomous driving vehicle with Lidar [158]. The sensor

is assumed to be able to take measurements of the target position and the target

velocity,

mjptq fi ry
T
j ptq zTj ptqs

T
“ rxTj ptq,v

T
j ptqs ` ν, if xjptq P Sptq (6.5)

where ν is an additive Gaussian distributed noise vector with zero mean and known

covariance matrix diag
`

σ2
xI2, σ

2
vI2

˘

.

According to the above formulation of the problem, the target kinematics can be

described by the DPGP mixture model (2.25). A general framework to the sensor

planning with the DPGP mixture model is presented in Fig. 6.1. Without loss of

generality the time index k is used to denote the time at which the DPGP-MM

update is complete, and the position of the sensor FoV is decided for the next time

step, k ` 1. With the DPGP-EKLD (5.37), the expected information value can be

maximized with respect to the next sensor FoV location, Spk ` 1q, such that the

utility of the next sensor measurements is maximized. After a sufficient number of

measurements Mjpkq is obtained from multiple targets, the DPGP-MM is updated
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Figure 6.1: Diagram of DPGP-EKLD sensor planning framework and algorithms.

based on the complete database Qpkq, and the position of the sensor FoV for future

time steps is decided according to the updated DPGP mixture model to further

improve the DPGP-MM.

The sensor planning algorithm in the general framework in Fig. 6.1 is also a

greedy algorithm, and can be developed by the reduction to a rectangle translation

problem in the field of computational geometry. Recall from (5.37) that the DPGP-

EKLD can be approximated by the weighted summation,

D̂ pυ; mpk ` 1qq «
N
ÿ

j“1

M
ÿ

i“1

S
ÿ

s“1

wij
S
hipχ

psq
q1Spk`1qpχ

psq
q (6.6)

where the samples, tχpsquSs“1, can be obtained from the DPGP particle filter (Al-

gorithm 5 and Algorithm 6). Since all the samples for different targets following

different VFs are summed together, do not need to be distinguished for the purpose

of sensor planning. From the indicator function in (6.6), the optimal control u˚pk`1q

can be obtained by the reduction to the following rectangle translation problem:

Problem 2 (Rectangle Translation [159]). Given a two-dimensional, finite workspace
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Figure 6.2: Example of segment a tree.

W Ă R2, and a set of points,
ŤN
j“1

ŤM
i“1

ŤS
s“1tχ

psqu Ă W, each associated with a

weight ωijhipχ
psqq{S, find the translation of a rectangle, S Ă W, with fixed shape,

such that the summation of the weights of the points covered by the rectangle is

maximum.

There exists an efficient algorithm to Problem 2, with OpMNS logMNSq time

complexity and OpMNS logMNSq space complexity, based on a data structure

known as segment tree [160]. Assume that the sensor FOV is a Lx ˆ Ly rectangle,

the segment tree is build for all vertical segments of length Ly with their bottom

ends at particles’ y coordinates. An example of the segment tree is shown in Fig.

6.2, with four samples, tχpsqu4s“1. The segment tree is used to efficiently query the

segments according to the following theorem:

Theorem 12 ([160]). A segment tree for a set of n intervals uses Opn log nq storage

can be built in Opn log nq time. Using the segment tree, all intervals that contain a

query point can be reported in Oplog n`mq time, where m is the number of reported

intervals.

The algorithm to solving Problem 2 a sweep-line algorithm, and is schematized

in Fig. 6.3. It consists of five steps: (i) sort x-coordinates of all the samples
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Figure 6.3: Schematic plot of the sweep-line algorithm.

ŤN
j“1

ŤM
l“1

ŤS
s“1tχ

psqu Ă W ; (ii) build a segment tree in for all vertical segments

of length Ly with their bottom end at samples’ y-coordinates, respectively, as shown

in Fig. 6.2; (iii) associate a value to each vertical segment and initialize it as zero;

(iv) sweep along sorted x-coordinates with two vertical lines, `1 and `2 with infinite

height, as shown in Fig 6.3. The horizon distance between the two vertical lines stays

as Lx throughout the sweeping. If a sample is swept by line `1, add the weight as-

sociated with the sample to all vertical segments containing it. If a sample is swept

by line `2, remove the weight associated with the sample to all vertical segments

containing it. (v) obtain the maximum value among all segments.

By using the sweep-line algorithm presented above as a sub-routine, the sensor

planning to the scenario described by (6.4)-(6.5) can be developed by following the

framework in 6.1. In order to present the sensor planning algorithm clearly, the

pseudocode is summarized in Algorithm 8 as follows,

6.3 Scenario 3: Mobile Targets and Constrained Sensor Dynamics

The scenarios discussed in the previous two sections do not consider consider con-

straints on the sensor dynamics and model the sensor as free-flying object in the

workspace either with a discrete or a continuous admissible control space. However,

in real world applications, the sensor dynamics are always constrained with limits of
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Algorithm 8 DPGP-EKLD-Greedy

Input: GP parameters, tθip¨q,φip¨, ¨qu
M
i“1; Collocation points, ξ; Control horizon, K

Output: Optimal control inputs, tu˚pkquKk“1
1: for k “ 1, . . . , K do
2: Obtain samples,

ŤN
j“1

ŤM
l“1

ŤS
s“1tχ

psqu, from DPGP Particle Filter Time Up-

date (Algorithm 5)
3: Calculate the DPGP-EKLD for every sample
4: Solve the Rectangle Translation problem by the sweep-line algorithm
5: Report the optimal FOV position, u˚pkq
6: DPGP Particle Filter Measurement Update (Algorithm 6)
7: end for

the state and/or limits of the control vector. Considering the constraints on the sen-

sor dynamics, the greedy algorithm is insufficient since it suffers from local optima.

The performance of the greedy algorithm is especially deficient when mobile targets

are under observation, since the local optima often result in empty measurements

that contain no information of the target kinematics as shown by the simulation

results in Chapter 7. To overcome the disadvantages of the greedy algorithm, this

section proposes a lexicographic method presented as follows.

As stated by the sensor planning formulation (Problem 1), the targets’ kinematics

are assumed to be modeled by the mixture of unknown VFs, F , with unknown

mixture weights, π, where M is also unknown. The DPGP mixture model (2.25) is

adopted to describe the VFs adaptively from noisy measurements, mjpkq, which are

only available when targets enter the bounded field-of-view (FOV) of the camera,

Spkq. The expected information value of mjpkq for improving the accuracy of the ith

VF in F is then accessed by the DPGP information theoretic function derived from

the cumulative lower bound of the DPGP-EKLD (see Section 6.3.1), denoted by Jij,

for i “ 1, . . . ,M , and j “ 1, . . . , N . The set of information theoretic functions is

denoted by J fi
ŤM
i“1

ŤN
j“1tJiju.

The sensor dynamics are modeled by the linear time-invariant difference equation

(3.6), with linear constraints on the sensor state, s P Rq, and the control vector,
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u P Rr, such that,

spk ` 1q “ Aspkq `Bupkq, b1 ď s ď b2, ´1r ď u ď 1r (6.7)

where A P Rqˆq,B P Rqˆr,b1,b2 P Rqˆ1 depend on the sensor dynamics in consider-

ation, and the physical scaling parameters of u are absorbed into B. It can be seen

from (6.7) that A “ ts P Rq | b1 ď s ď b2u, and U “ tu P Rr | ´ 1r ď u ď 1ru.

Examples of values of matrices A, B, and the constraints b1, b2 are presented in

Section 7.3 for a real-world application involving a pan-tilt camera.

From the above problem formulation and assumptions, the optimal control strat-

egy can be obtained by solving a multi-objective optimization (MOO) problem at

every time step, where the set of DPGP information theoretic functions, J , are opti-

mized simultaneously, such that camera obtains the most informative measurements

for learning the target kinematics, tF ,πu [161]. Assuming K “ k1 ´ k denotes the

length of the control horizon, the MOO problem to be solved at time step k can be

stated as follows,

maximize
up`q, kď`ďk1

“

J11 ¨ ¨ ¨ JMN

‰T

subject to spkq “ s0

sp`` 1q “ Asp`q `Bup`q, ` “ k, . . . , k1

b1 ď sp`q ď b2, ` “ k, . . . , k1

´ 1r ď up`q ď 1r, ` “ k, . . . , k1

(6.8)

where s0 is the state of the camera at time step k.

A lexicographic method solution to the MOO problem (6.8) is presented in the

following sections by assigning relative importance to the information theoretic func-

tions and by exploiting the geometry properties of the camera FOV. The lexico-

graphic method belongs to the methods with a priori articulation of preference,
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which assume that the objectives, Jij, can be ranked in order of importance [161].

The lexicographic method is claimed to be the most suitable solution to (6.8) for

the following reasons. First, compared to other methods also with a priori articula-

tion of preference, such as weighted global criterion methods, lexicographic methods

avoid the unfavorable local optima [162]. In addition, compared to methods with

a posteriori articulation of preference, lexicographic methods are computationally

more efficient [163]. Furthermore, unlike methods without articulation of preference,

such as compromise solutions, lexicographic methods do not require the definition of

closeness between solutions [164].

6.3.1 Lexicographic Approach to Sensor Planning

Since it is computationally intractable to optimize the DPGP-EKLD, the cumula-

tive lower bound (5.65) proposed in Theorem 11 is optimized to obtain sub-optimal

control trajectories. In addition, the camera FOV constraint is treated as a potential

function, P ps,xjq [165]. An example of P ps,xjq for an omnidirectional sensor FOV

is shown in Fig. 6.4. One type of widely used potential function is the quadratic

function, with a shape parameter σg ą 0, such that,

P ps,xjq fi 1´ }Gs´ gpxjq}
2
{σ2

g (6.9)

where G P Rd1ˆq transforms the sensor state, s P Rq into another coordinate system

of dimension d1. If no coordinate transformation is required, d1 “ q and G “ Id1 .

The vector function gp¨q : Rd Ñ Rd1 maps the target state, xj P Rd, to the new

coordinate system. The matrix G and the function g are adopted to resolve the

dimensional mismatch between the sensor state and the target state, if there is any,

for the potential function. From the cumulative lower bound (5.65) and the potential

function (6.9) the objective function that evaluates the improvement of the ith VF
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Figure 6.4: Example of potential function, P ps,xjq.

by measurements of the jth target can be formulated as follows,

Jij fi wij

k1
ÿ

`“k

p1´ γqγ`´kI
`

υi; mjp`q
˘

P
`

sp`q,xjp`q
˘

(6.10)

for i “ 1, . . . ,M , and j “ 1, . . . , N .

In order to describe the lexicographic algorithm, it is assumed that the objective

functions in J can be rearranged in order of decreasing importance (Section 6.3.2)

into tJ 11, . . . , J
1
MNu. In other words, J 1ı is more important than J 1 if ı ă , for

@ı,  P t1, . . . ,MNu. For brevity, let

ρ fi rsT pkq ¨ ¨ ¨ sT pk1q uT pkq ¨ ¨ ¨ uT pk1qsT (6.11)

denote the vector consisting of the camera states and control inputs between time

steps k and k1. By adopting ρ, the constraints on the camera states and control

inputs in (6.8) can be expressed as,

V fi tρ P Rpq`rqK | Cρ “ d1, Dρ ď d2u (6.12)
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where,

C fi

»

—

—

—

—

–

Iq 0 0 ¨ ¨ ¨ 0
´A Iq 0 ¨ ¨ ¨ 0

0 ´A Iq
. . .

...
...

. . . . . . . . . 0
0 ¨ ¨ ¨ 0 ´A Iq
loooooooooooomoooooooooooon

qK

0 ¨ ¨ ¨ ¨ ¨ ¨ 0
B 0 ¨ ¨ ¨ 0

0 B
. . .

...
...

. . . . . . 0
0 ¨ ¨ ¨ 0 B
loooooomoooooon

rK

fi

ffi

ffi

ffi

ffi

fl

(6.13)

D fi

„

´IqK IqK 0qKˆrK 0qKˆrK
0rKˆqK 0rKˆqK ´IrK IrK

T

(6.14)

d1 fi rs
T
0 01ˆqpK´1qs

T (6.15)

d2 fi
“

bT1 ¨ ¨ ¨ bT1
looooomooooon

qK

bT2 ¨ ¨ ¨ bT2
looooomooooon

rK

11ˆqK

‰T
(6.16)

and 0mˆn denotes a mˆ n matrix of zeros. Then, the lexicographic method obtains

the solution to (6.8) by solving a sequence of single-objective optimization problems,

max
ρ

J 1ıpρq

s. t. J 1pρq ě pJ
1
q
˚,  “ 1, . . . , ı´ 1

ρ P V

(6.17)

for ı “ 1, . . . ,MN , where pJ 1q
˚ is the optimum of the th objective function, found

in the th iteration [161].

6.3.2 Order of Importance of Objectives

This section presents the approach for determining the order of importance of the

objective functions in J . The notation Jij ą Ji1j1 (Jij ă Ji1j1) is adopted to denote

that Jij is more (less) important than Ji1j1 . First, it is assumed that, for the same

target, objective functions corresponding to higher target-VF association weights are

more important, such that,

Jij ľ Ji1j ô wij ě wi1j, 1 ď i ‰ i1 ďM (6.18)
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for j “ 1, . . . , N . Without loss of generality, the objective functions for the same

target can be rearranged in order of decreasing importance according to (6.18), such

that,

J1j ľ J2j ľ ¨ ¨ ¨ ľ JMj, j “ 1, . . . , N (6.19)

Second, after the rearrangement of objective functions according to (6.19), objective

functions with smaller VF association indices for different targets are assumed to be

more important, such that,

Jij ľ Ji1j1 , 1 ď i ă i1 ďM, 1 ď j ‰ j1 ď N (6.20)

Notice that (6.19) and (6.20) can be combined into,

Jij ľ Ji1j1 , 1 ď i ă i1 ďM, 1 ď j, j1 ď N (6.21)

The last assumption copes with the case where i “ i1. Let J Iij denote the ideal value

of the objective function Jij, obtained by optimizing Jij alone, such that [166],

J Iij fi max
ρ

 

Jijpρq | ρ P V
(

(6.22)

Then, it is assumed that, when i “ i1, objective functions corresponding to larger

ideal values are more important,

Jij ľ Jij1 ô J Iij ě J Iij1 , 1 ď j, j1 ď N (6.23)

for i “ 1, . . . ,M . In summary, (6.21) and (6.23) together determine the order of

importance of the objectives, Jij, completely, as required by the lexicographic method

(6.17).

The following two sections present how the sequence of the single-objective op-

timization problems in (6.17) can be solved after the order of importance of the

objective functions, Jij, is determined.
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6.3.3 Optimization for the First Iteration

This section presents the solution to the first iteration of the lexicographic method

(6.17). Since the mutual information values, I
`

υi; mjp`q
˘

, ` “ k, . . . , k1, are inde-

pendent of ρ, the single-objective optimization problem in every iteration of (6.17) is

equivalent to maximizing a weighted summation of the potential functions, P ps,xjq

[102]. Let

βp`q fi wijp1´ γqγ
`´kI

`

υi; mjp`q
˘

(6.24)

denote the weight multiplied to the `th potential function in Jij, for ` “ k, . . . , k1.

Then, Jij can be written as a quadratic function of ρ,

Jij “
k1
ÿ

`“k

βp`q ´
k1
ÿ

`“k

βp`q

σ2
g

›

›Gsp`q ´ grxjp`qs
›

›

2
(6.25)

“

ˆ k1
ÿ

`“k

βp`q ´ cTc

˙

´

ˆ

ρTQTQρ´ cTQρ

˙

where,

Q fi

»

—

—

—

—

—

—

–

b

βpkq
σ2
g

G 0 ¨ ¨ ¨ 0

0
b

βpk`1q
σ2
g

G
. . .

...

...
. . . . . . 0

0 ¨ ¨ ¨ 0
b

βpk1q
σ2
g

G

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0rKˆrK

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(6.26)

c fi

”b

βpkq
σ2
g

gT rxjpkqs ¨ ¨ ¨

b

βpk1q
σ2
g

gT rxjpk
1qs

ıT

(6.27)

In the first iteration of the lexicographic method (6.17), the camera states and con-

trol inputs are only subject to linear constraints, ρ P V (6.12). Therefore, the first

iteration of the lexicographic method (6.17) can be solved by convex quadratic pro-

gramming algorithms, such as the interior-point algorithm, in polynomial time [167].
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6.3.4 Optimization for the Remaining Iterations

The remaining iterations in (6.17) require solving the same quadratic programming

problem (6.25)-(6.27), but are subject to additional constraints. For the pı ą 1qth

iteration, the additional constraints are,

J 1pρq ě pJ
1
q
˚,  “ 1, . . . , ı´ 1 (6.28)

The additional constraints in (6.28) are nonlinear, however, they can be simplified

to linear constraints that are only slightly more constricted.

Consider the th additional constraint in (6.28) for example, that is, J 1pρq ě pJ
1
q
˚.

Recalling the measurement model (3.7), the camera obtains the same measurements,

independent of ρ, for targets in the camera FOV. In addition, the cumulative lower

bound (5.65) is also independent of ρ. Let S˚p`q, ` “ k, . . . , k1 denote the optimal

camera FOV trajectory determined in the th iteration. Then, the th additional

constraint in (6.28) can be relaxed without decreasing the cumulative lower bound

(5.65) to the set of the following K geometric constraints,

$

&

%

xjp`q P Sp`q, if xjp`q P S˚p`q

no constraint, if xjp`q R S˚p`q
(6.29)

for ` “ k, . . . , k1. Examples of geometric constraints (6.29) and their properties can

be found in Chapter 7.3 for a real-world application involving a pan-tilt camera.

The general lexicographic method (6.17) to the MOO formulation (6.8) of the sensor

planning problem can be summarized by Algorithm 9.

6.4 Chapter Conclusion

Various scenarios where the target kinematics models developed in Chapter 4 and

the information values developed in Chapter 5 can be utilized are discussed and
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Algorithm 9 Lexicographic Algorithm

Input: Predicted Gaussian mixture model parameters, tŵij, P̂ijp`qu
M
i“1, for j “

1, . . . , N , ` “ k, . . . , k1; Current sensor state, spkq; Sensor dynamics parameters,
tC,D,d1,d2u.

Output: Optimal sensor states and control inputs for K future steps, ρ˚.
1: for j “ 1, . . . , N do
2: Sort twiju such that w1j ě w2j ě ¨ ¨ ¨ ě wMj

3: Rearrange J according to sorted twiju
4: end for
5: V Ð tρ P Rpq`rqK | Cρ “ d1, Dρ ď d2u

6: for i “ 1, . . . ,M do
7: Sort tJ Iiju, such that J Ii1 ě J Ii2 ě ¨ ¨ ¨ ě J IiN
8: Rearrange tJiju according to sorted tJ Iiju
9: for j “ 1, . . . , N do
10: ρ˚ Ð arg max

ρ
tJijpρq | ρ P Vu

11: for ` “ k, . . . , k1 do
12: if xjp`q P Srs˚p`qs then
13: V Ð V

Ş

tρ P Rpq`rqK | xjp`q P Srs˚p`qsu
14: end if
15: end for
16: end for
17: end for

corresponding optimal sensor planning algorithms are developed. The algorithms

developed can be treated as the ‘Optimal Planner’ block in the diagram (Fig. 3.2)

to the sensor planning problem (Problem 1). First, when the target kinematics

can be described by a time-invariant velocity field modeled by a single GP, a novel

greedy algorithm (GP-EKLD-Greedy) is developed and is presented as Algorithm 7

in Section 6.1. For the scenario involving multiple mobile targets and unconstrained

sensor dynamics in Section 6.2, the DPGP-EKLD Rectangle Translation algorithm

is developed in Algorithm 8. For the scenario where sensor dynamics are constrained

in Section 6.3, the lexicographic algorithm is developed as Algorithm 9. Efficiency

of the proposed algorithms are demonstrated by the applications and results in the

next section with synthetic and real data sets.
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7

Applications, Results, and Extensions

In order to evaluate the efficiency of the novel sensor planning algorithms developed

in Chapter 6 to the sensor planning problem, synthetic simulations and physical ex-

periments are considered for three real-world applications that obey the formulation

and assumptions in Problem 1. Comparisons are made between the proposed sensor

planning algorithms (Algorithms 7, 8, 9) and other applicable algorithms available

in the literature on GP and DPGP target kinematics modeling, based on entropy,

mutual information algorithm, and tracking. Related topics and extensions of the

proposed algorithms are discussed in section 7.4.

7.1 Application of Scenario 1

The effectiveness of the new greedy algorithm (Algorithm 7) proposed for Scenario

1, characterized by time-invariant target kinematics and discrete control space (Sec-

tion 6.1), a real-world application is considered, in which the sensor measurement

sequence is to be decided for the purpose of monitoring a time-invariant velocity

field, f : W Ñ R2, in a two-dimensional workspace, W Ă R2. The VF maps the

longitude-latitude coordinates to the velocity of the ocean current, and adopts the
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data of the monthly mean ocean surface currents of the Pacific Ocean centered on

June 5th, 2016 in the region to the west coast of the North America Continent. The

corresponding ocean current data (latitude and longitude resolutions: 1/3 Decimal

degree), are provided by [168], and are illustrated in Fig. 7.1. The state of the sensor,

s, is two-dimensional and consists of the longitude-latitude coordinates. The acces-

sible set of the sensor state, A, consists of 100 randomly selected longitude-latitude

coordinates, which are utilized to simulate the positions of the moored buoys that

are deployed to measure the ocean current. The collocation points, tξlu
L
l“1, defined

in (5.12), are populated on a regular grid in the workspace also shown in Fig. 7.1.

At every accessible sensor position, the sensor is able to take a noisy measurement of

the ocean current, z, according to the measurement model (6.1). The standard devi-

ation of the measurement noise is assumed to be 10% of the maximum ocean current

velocity, such that σv “ 0.1(m/s). The covariance function of the GP is assumed

to be the squared-exponential covariance function (2.14), and the mean function is

assumed to be zero. The set of hyper-parameters of the GP is Θ “ tσf ,Λ, σnu, as

defined in (2.14), and are optimized by the technique in Section 2.1.2.

 

Figure 7.1: Example of workspace for Scenario 1 with experimental data of monthly
mean ocean surface currents centered on June 5th, 20161.
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Two sensor planning algorithms are studied for the comparison of performance.

The first algorithm is a random algorithm that selects the sensor positions uniformly

at random for every time step. The second algorithm is a greedy algorithm that

selects the sensor position at the highest entropy,

s˚pk ` 1q “ arg max
sPA

H
`

fpsq |Mpkq
˘

(7.1)

where Hp¨q is the differential entropy defined in (5.1). Due to the optimization of

entropy, the algorithm (7.1) is referred to as the ‘entropy’ algorithm.

To evaluate the performance of the aforementioned sensor planning algorithms,

the prediction error, εpkq, is adopted, and is defined as the root mean square error

(RMSE) as follows,

εpkq “

g

f

f

e

1

L

L
ÿ

l“1

}vl ´ v̂lpkq}22 (7.2)

where vl fi fpξlq, and v̂lpkq is the prediction of vl by the GP regression technique

(Section 2.1.1) at the kth time step. The prediction errors, εpkq, obtained by the GP-

EKLD algorithm (Algorithm 7) and the two comparing algorithms are plotted in Fig.

7.2. As seen in the plot, at the beginning of the simulation, the initial estimations of

the ocean currents vary greatly with the actual temperatures. Both the GP-EKLD

algorithm and the comparing methods result in decreasing εpkq. However, the GP-

EKLD algorithm outperforms the comparing algorithms in that it leads to the fastest

and, overall, greatest decrease in εpkq. The simulations for this scenario, although

simple, exhibit the effectiveness of the information function based on KL divergence

in estimating a velocity field, such as the ocean currents over an area. To illustrate

the performance of the GP-EKLD visually, the prediction of the ocean currents and

the prediction errors are plotted in Fig. 7.3 and Fig. 7.4, respectively.

1 ESR. 2009. OSCAR third degree resolution ocean surface currents. Ver. 1. PO.DAAC, CA,
USA. Dataset accessed [2016-06-01].
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Figure 7.2: Prediction error, εpkq, by the GP-EKLD algorithm (Algorithm 7), by
the random algorithm, and by the entropy algorithm in (7.1) for the scenario in Fig.
7.1.

Figure 7.3: Prediction of the ocean currents by the GP-EKLD algorithm (Algo-
rithm 7).

7.2 Application of Scenario 2

This section presents the application results obtained for the problem of control-

ling an indoor surveillance camera with a bounded field-of-view (FOV) under the
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Figure 7.4: Prediction error of the ocean currents by the GP-EKLD algorithm
(Algorithm 7).

assumptions described in Section 6.2, and as illustrated in Fig. 7.5. The camera

(sensor) is utilized to learn the kinematics equations of N unknown and independent

mobile targets in a two-dimensional workspace W , described by the set of ordinary

differential equations (3.3).

The sensor has two possible FOV zoom levels, L “ t1, 2u, where the first zoom

level enables measurements from a smaller FOV, but with better resolution (less

noise), and the second zoom level enables measurements from a larger FOV but

lower resolution (more noise), that is σx1 ă σx2 and σv1 ă σv2 . The sensor FOV

is assumed to translate in W without rotation or constraints, i.e. as a free-flying

rectangle. Therefore, the sensor state consists of the xy-coordinates of the center of

the FOV and the zoom level, ι P L, such that,

spkq fi rxpkq ypkq ιpkqsT (7.3)

Three algorithms are considered for comparison to demonstrate the efficiency of

the DPGP-EKLD-Greedy algorithm (Algorithm 8) presented in Section 6.2. The first

algorithm is a tracking algorithm that maximizes the expected entropy reduction of

the target position distribution, which is equivalent to the mutual information (MI)
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Figure 7.5: Illustration of the sensor planning problem in Scenario 2 with a camera
and two zoom levels.

of target position estimation and the future measurement. Therefore, the second

algorithm is labelled by ‘MI’, and is described in detail in Appendix A.5. The second

algorithm heuristically determines the position of the sensor FOV at the next time

step by tracking the nearest target that is not observed at the current time step, and

its result is labeled as ‘Heuristic’ [77]. The last algorithm randomly chooses the FOV

position and its result is referred to as ‘Random’ [83]. The DPGP-EKLD-Greedy

algorithm is labeled by ‘DPGP-EKLD’.

Algorithm performance is evaluated by the RMSE of velocity between the learned

DPGP-MM and the real underlying velocity fields, denoted by εpkq. To obtain the

RMS error of velocity, NA “ 500 test trajectories (independent from those observed

by the camera), tTjuNA
j“1, are generated according to the motion patterns, F and π.

Tj “ txjpkq,vjpkqu
Tj
k“1, represents the jth new trajectory and Tj is the length of

the jth trajectory. These trajectories are compared to the evolving DPGP-MM. If

v̂jpkq is utilized to denote the predicted velocity at xjpkq by the ith Gaussian process

component in the DPGP-MM, εpkq can be obtained as follows,

εpkq “ 1
NA

NA
ř

j“1

M
ř

i“1

wij

b

1
Tj

řTj
k“1 }vjpkq ´ v̂jpkq}22 (7.4)
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where M is the estimated number of Gaussian process components in the DPGP-

MM and wij is calculated according to (5.30). The performance is evaluated once the

DPGP-MM is updated, in order to generate a trend of algorithm performance against

time. Fifty runs of the simulation are conducted in order to obtain statistics of the

results. Two types of data are studied: the synthetic simulations are first examined in

Section 7.2.1 to demonstrate the properties of the DPGP-EKLD-Greedy algorithm,

and the physical experiments are conducted in Section 7.2.2 to further verify the

efficiency of the DPGP-EKLD-Greedy algorithm.

7.2.1 Synthetic Simulations

In the synthetical simulations, the workspace is assumed to be a square, such that

W “ r0, 10s ˆ r0, 10s pm2q. In zoom level ι “ 1, the sensor has a FOV of size

0.5 ˆ 0.5 pm2q, and the standard derivation of the measurements are assumed to

be σx “ 0.1 (m), σv “ 0.1 (m/s). In zoom level ι “ 2, the sensor FOV is of size

1 ˆ 1 pm2q, and the standard derivation of the measurements are σx “ 0.5 (m) and

σv “ 0.5 (m/s). The sensor takes measurements at every ∆t “ 0.3 second in order

to learn the target dynamics. The targets dynamics are described by a set of four

velocity fields, F “ tf1, f2, f3, f4u, as follows,

f1pxjq “
“

´ sin pr0.1 π{20sxjq sin prπ{12 1sxj ` π{4q
‰T

f2pxjq “
“

´ cos pr0 π{8sxjq sin prπ{4 0sxjq
‰T

f3pxjq “ r´0.5 sin prπ{4 0.3sxjqs
T

f4pxjq “ r´ cos prπ{8 ´ 0.5sxjq 1sT

(7.5)

It is assumed that every target chooses one velocity field from the set uniformly

at random, such that π “ r1{4 1{4 1{4 1{4sT . Plots of the velocity fields at

regular grids in the workspace are shown in Fig. 7.6 for the purpose of visualization,

superimposed with sampled trajectories.
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Figure 7.6: Visualization of the velocity fields: (a) f1, (b) f2, (c) f3, (d) f4, by
plotting velocity vectors (black arrows) on a regular grid, superimposed with sampled
target trajectories (red curves) starting from random initial positions (blue dots).

In order to represent the velocity fields, the parameters for the Gaussian process

are selected as follows. Due to the assumption that fi is continuously differentiable,

the covariance function is chosen to be the squared exponential function (2.14), with

hyper-parameters, Λ “
?

10I2 (m), and σf “ 1 (m/s), based on the size of the

workspace. Optimizations of the GP hyper-parameters during the simulations are

performed by the gradient-based technique in Section 2.1.2. At the beginning of

the simulation, the concentration parameter for the Dirichlet process is assumed to

be α “ 1, and the base distribution is assumed to be the GP with zero mean and

covariance function (2.14) with the same hyper-parameters, tΛ, σfu. The DPGP-

MM is updated once the sensor collects 5 new target trajectories. Since the prior and

the likelihood function are conjugate in the DPGP-MM, the DPGP Gibbs Sampler

(DPGP-Gibbs in Algorithm 4) is used to sample from the posterior DPGP-MM given

measurement histories, where 200 samples are ignored at the beginning, the number

of samples is 50, and the sampling interval is set to be every five samples.

Three testing cases with different prior information about the velocity fields are

used to examine four strategies. The first case is referred to as ‘more informative

prior’ (MIP), where a large number (15) of training trajectories from the first velocity

field and a small number (3 or 4) of training trajectories from the rest velocity

fields are utilized for training the prior DPGP-MM. Figure 7.8 shows the training
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trajectories in the MIP case and the variance of every Gaussian process at the initial

time. It is clear that the prior DPGP-MM provides an estimation of the first velocity

field with lower uncertainty. Figure 7.7 shows two snapshots of the simulation in MIP

case, which shows that the DPGP-EKLD-Greedy algorithm optimizes the zoom level,

ι, automatically. When the groups of samples are close as in Fig. 7.7a, the DPGP-

EKLD-Greedy algorithm chooses zoom level ι “ 2 to cover all the samples. Although

measurement noise at this zoom level is higher, covering most of the samples return

higher potential reward. When the distance between the groups of samples is large,

the DPGP-EKLD-Greedy algorithm selects zoom level ι “ 1 such that the noise is

lower.

  

Figure 7.7: Simulation snapshots.

The RMS error of velocity obtained by the four algorithms over time is shown

in Fig. 7.9. As can be seen, the ‘DPGP-EKLD’ algorithm outperforms the other

algorithms since the error decreases faster and is the lowest at the end of the simu-

lation. In addition, the smaller error bar by the ‘DPGP-EKLD’ algorithm indicates

that its performance is more stable compared to the other methods. The faster de-

creasing rate of the RMS error by the ‘DPGP-EKLD’ algorithm can be explained by
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the selection of target trajectories. Because the sensor FOV is bounded and there

are multiple targets in the workspace, the sensor cannot observe all the targets at

the same time. In this case, it is preferable to obtain measurements from targets

displaying a motion pattern with higher uncertainty in the current DPGP-MM. Let

Oi denote the number of observed target trajectories belonging to the ith velocity

field, and βi “ Oi{
řM
i“1Oi denote the observed trajectory percentage. Figure 7.10

plots the observed trajectory percentage by the four algorithms, and it is clear that

the ‘DPGP-EKLD’ algorithm is able to obtain more observations from the second to

the fourth velocity fields, which are more informative for updating the DPGP-MM

in the MIP case. Finally, the results in Fig. 7.11 show that the posterior proba-

bilities of target-VF association defined in (5.30), and obtained from the DPGP-PF

(Algorithms 5 and 6 ), converge to their true values (dash-dotted lines) over time.

The snapshots in Fig. 7.11a-c show that, by planning the camera movements via

EKLD, the FOV is able to intersect PF clusters with high information value and,

thus, rapidly improve their posterior probability distributions.

Figure 7.8: Training trajectories (red curves) for every velocity field in the MIP
case, superimposed with variance of the velocity fields at the initial time and the
points of interests (yellow points).

The second case is referred to as ‘intermediate informative prior’ (IIP), where

three trajectories from each velocity field are used to train the prior DPGP-MM.

The prior DPGP-MM has an estimation of all the velocity fields with high uncer-

tainty, as shown in Fig. 7.12. Figure 7.14a shows the trend of the RMS errors in
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Figure 7.9: The mean and variance of RMS error of velocity, ε, obtained by ‘DPGP-
EKLD’ (blue, cross line), by ‘MI’ (red, circle line), by ‘Heuristic’ (green, triangle line),
and by ‘Random’ (yellow, square line) algorithms, in the MIP case.
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Figure 7.10: The distribution of observed trajectory percentage, β, averaged on
the 50 runs of simulations, in the MIP case.

the IIP case. Note that the performance of the ‘DPGP-EKLD’ algorithm and the

‘MI’ algorithm are close at the beginning of the simulations. This is because IIP

contains approximately the same amount of prior knowledge about the four velocity

fields, therefore, observing any velocity field is not apparently superior than observ-

ing the other velocity fields at the beginning of the simulations. However, when the

sensor has collected some information about the target motion patterns, the ‘DPGP-

EKLD’ has the advantage of observing target trajectories from velocity fields with
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Figure 7.11: Time history of target-VF posterior probabilities updated over time
by the DPGP-PF (Algorithms 5 and 6).

high uncertainty, which decreases the error at a faster rate. Figure 7.15a shows that

‘DPGP-EKLD’ algorithm observes approximately the same amount of new trajecto-

ries from each velocity field on average, which is preferable since the prior DPGP-MM

contains approximately the same amount of information about every velocity field.

Figure 7.12: Training trajectories (red curves) for every velocity field in the IIP
case, superimposed with variance of the velocity fields at the initial time and the
points of interests (yellow points).

The third case is referred to as ‘less informative prior’ (LIP), where no training

trajectory from the first velocity field is utilized to obtain the prior DPGP-MM. As a

result, the trained DPGP-MM has no knowledge of the first velocity and only has an

estimation of other three velocity fields with high uncertainty. The training trajec-
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tories and variances of velocity fields at the initial time are show in Fig. 7.13. Figure

7.14b shows the trend of the RMS error obtained by the four algorithms in this case.

The ‘DPGP-EKLD’ outperforms other three algorithms since it enables the sensor to

observe the target trajectories from the velocity field with higher uncertainty. Figure

7.15b shows that the ‘DPGP-EKLD’ algorithm is able to obtain more observations

of the targets following the first type of velocity field, of which the information is

missing in LIP, resulting in a better performance.

Figure 7.13: Training trajectories (red curves) for every velocity field in the LIP
case, superimposed with variance of the velocity fields at the initial time and the
points of interests (yellow points).
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Figure 7.14: The mean and variance of RMS error of velocity, ε, obtained by
‘DPGP-EKLD’ (blue, cross line), by ‘MI’ (red, circle line), by ‘Heuristic’ (green,
triangle line), and by ‘Random’ (yellow, square line) algorithms, in the IIP case
(left) and the LIP case (right).
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Figure 7.15: The percentage of trajectories belonging to the first velocity type
observed by the sensor during the simulation in the IIP case (left) and the LIP case
(right).

By examining all results from three scenarios, it is clear that for all different

priors, the ‘DPGP-EKLD’ algorithm is more effective at evaluating the expected

utility of a future measurement, and thus leads to more informative measurements

and more accuracy of target model estimation than ‘MI’, ‘Heuristic’, and ‘Random’

algorithms.

7.2.2 Physical Experiments

The proposed approach was also implemented in hardware using the Real-time in-

door Autonomous Vehicle test Environment (RAVEN) at MIT. The domain was

constrained to a 16m2 square region, with two AXIS P5512 PTZ cameras perform-

ing target-tracking. Camera intrinsics were utilized to obtain desired square FoVs

with correct zoom levels (0.16m2 and 0.36m2, respectively) across the domain.

Three iRobot Create ground robots were used as targets, each assigned to one of

three underlying velocity fields. A given velocity field may be assigned to multiple

targets, and re-assignment was performed upon completion of each vehicle’s trajec-

tory (marked by the vehicle departing the domain). Figure 7.16 shows a snapshot of

the camera FOV and the corresponding position estimates for the above hardware
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setup.

 

Figure 7.16: A snapshot of the moving targets (ground robots) and the optimal
camera FOVs (blue squares).

Figure 7.17 illustrates the prediction error εpkq, of the DPGP mixture model in

predicting vehicle trajectories using each of the four algorithms described above. As

in results from the simulated experiments, this plot illustrates the increasing predic-

tive accuracy of the DPGP using the DPGP-EKLD-Greedy algorithm. Specifically,

optimizing the DPGP-EKLD results in fast and significant reduction in model error,

owing to more sufficient surveillance of targets exhibiting behaviors with little prior

information.

7.3 Application of Scenario 3

The application of Scenario 3 in Section 6.3 considers the problem of developing the

optimal control strategy of a pan-tilt (PT) camera for learning the kinematics of N

mobile targets traversing a workspace, W Ă R2, as illustrated in Fig. 7.18. Recall

that the targets’ kinematics are modeled by F and π defined in (3.1) and (3.2),

respectively, according to the sensor planning problem formulation (Problem 1). In

this application, the unknown VFs in F are assumed to map the target position

xj PW to the target velocity vj, for j “ 1, . . . , N .

The control strategy also needs to account for the camera dynamics, which are
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Figure 7.17: Prediction error, εpkq, of DPGP mixture models in hardware experi-
ments.
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Figure 7.18: Illustration of the camera control problem.

modeled by linear time-invariant difference equations, and are taken from [169]. The

state of the PT camera, s, consists of the pan angle, ψ P r0, 2πq, and the tilt angle,

φ P rπ{2, πs. The pan and tilt angles represent the ordered set of sequential rotations

from the inertial coordinate frame, FW , to the body fixed coordinate frame, Fb, as

illustrated in Fig. 7.19 [170, 149]. Taking also the pan and tilt angular velocities

of the camera into consideration, the state of the PT camera can be expressed as

s “ rψ φ 9ψ 9φsT . It is assumed that the control vector, u “ ru1 u2s
T , consists
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Figure 7.19: Sequence of pan-tilt angle rotations. (a) Pan rotation ψ from inertial
frame to Intermediate Frame 1. (b) Tilt rotation φ from Intermediate Frame 1 to
body axes.

of the voltage levels applied to the two motors that independently adjust ψ and φ,

respectively [171]. Then, the state-space representation of the camera dynamics is,

spk ` 1q “ Aspkq `Bupkq (7.6)

where,

A “

»

–

1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

fi

fl , and B “

»

–

0 0
0 0
b1 0
0 b2

fi

fl (7.7)

In (7.7), ∆t is the interval between discrete times, and b1, b2 are the physical pa-

rameters of the two motors [8]. Assuming that 9ψm and 9φm are the maximum pan

and tilt angular velocities of the camera, respectively, the linear constraints on the

camera dynamics can be expressed as,

$

&

%

b1 ď s ď b2

|u| ď 12

, where

$

’

&

’

%

b1 fi
“

0 π{2 ´ 9ψm ´ 9φm
‰T

b2 fi
“

2π π 9ψm 9φm
‰T

(7.8)

and 1n denotes a n ˆ 1 vector of ones. The physical scaling parameters of u are

absorbed into B.

By changing spkq according to (7.6)-(7.8), the camera can adjust its FOV, and

obtain noisy measurements of the target position and velocity if xjpkq P Spkq. The
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Figure 7.20: Pinhole camera model.

measurements are assumed to be characterized by the pinhole camera model, as

illustrated in Fig. 7.20 [172]. In this model, the optical axis is defined as the line

that the camera lens is symmetric about. The virtual image plane is the 2D plane

perpendicular to the optical axis [170]. The distance between the virtual image plane

and the origin of Fb is the focal length λ. If pj is the projection of xj in the virtual

image plane, the camera measurement model can be expressed as,

mjpkq “

$

&

%

rpTj pkq 9pTj pkqs
T
` npkq, xjpkq P Spkq

H, xjpkq R Spkq
(7.9)

for j “ 1, . . . , N , where n P R4 is an additive Gaussian noise vector, with zero mean

and known covariance matrix diag
`

σ2
xI2, σ

2
vI2

˘

. The analytical expressions of pj and

9pj are given in Appendix A.6.

7.3.1 Lexicographic Approach Revisit

The lexicographic approach (Algorithm 9) presented in Section 6.3 provides a gen-

eral framework for solving the sensor planning problem with dynamic and FOV

constraints. However, Algorithm 9 does not provide details of the algorithm imple-

mentation. To this end, the lexicographic approach is revisited, and applied to the

PT camera control application subject to the dynamic constraints in (9)-(7.8) and

the measurement model in (7.9).
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First, matrix G and the projection function gp¨q in the potential function (6.9)

for the PT camera control application are defined as follows. Matrix G extracts the

pan and tilt angles of the sensor state, such that,

G fi

„

1 0 0 0
0 1 0 0



(7.10)

The projection function, gp¨q : R2 Ñ r0, 2πq ˆ rπ{2, πs maps the target position, xj,

to the corresponding pan-tilt angles, denoted by rψj φjs
T , such that,

gpxjq fi

«

ψj

φj

ff

“

«

tan´1 rpyj ´ ycq{pxj ´ xcqs

´ tan´1
“a

pyj ´ ycq2 ` pxj ´ ycq2{zc
‰

` π

ff

(7.11)

where xc “ rxc yc zcs
T is the position of the origin of Fb in FW , as illustrated in

Fig. 7.20.

From the matrix G and the projection function gp¨q, the analytical form of the

geometric constraint in (6.29) can be expressed as follows. Consider the `th geometric

constraint in (6.29), that is xjp`q P Sp`q, as an example. Consider the case where

xjp`q P S˚p`q. Since the shape of Sp`q changes with respect to the camera state,

it is easier to derive the analytical form of the geometric constraints in (6.29) by

projecting xjp`q and Sp`q into the virtual image plane, as illustrated in Fig. 7.20.

Recalling (A.12)-(A.13), the projection of xjp`q in the virtual image plane, denoted

by pj “ rpx pys
T , is obtained by the pinhole camera model. In addition, the

projection of Sp`q in the virtual image plane is a rectangle with the same size as

the image sensor. Let a and b denote the width and height of the image sensor,

respectively. It follows that the target lies in the camera FOV in the workspace if

and only if pj is in the image sensor, that is,

xjp`q P Sp`q ô pj P r´a{2, a{2s ˆ r´b{2, b{2s (7.12)

Recall that the pan-tilt coordinates of the target, rψj φjs
T , have been obtained by

(7.11). Substituting (A.12)-(A.13) in (7.11) yields the relationship between rψ φsT
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and rψj φjs
T ,

$

&

%

φ´ φj “ ´ tan´1ppy{λq

ψ ´ ψj “ ´ tan´1 rpx secpφjq cospφ´ φjq{λs
(7.13)

Then, the analytical form of xjp`q P Sp`q in terms of the pan-tilt coordinates of the

camera can be obtained by substituting (7.12) in (7.13),

$

’

&

’

%

|φ´ φj| ď tan´1rb{p2λqs fi φa

|ψ ´ ψj| ď tan´1
” a

2λ
| secpφjq| cospφ´ φjq

ı

fi gpφ´ φjq
(7.14)

An example of the constraint (7.14), where rψj φjs
T “ rπ{2 π{4sT , is illustrated

in Fig. 7.21.

The constraint (7.14) is nonlinear, however, it can be proven to be convex by the

following theorem:
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Theorem 13. The constraint p7.14q defines a convex set of the camera pan-tilt co-

ordinates, rψ φsT , given any camera parameters, a, b, λ ą 0, and target pan-tilt

coordinates, rψj φjs
T .

Proof. As a first step, let us adopt the coordinate transformations φ1 fi φ ´ φj and

ψ1 fi ψ ´ ψj, such that (7.14) can be simplified to,

|φ1| ď φa and |ψ1| ď gpφ1q (7.15)

In convex analysis, the epigraph of a function is defined as the set of points lying on

or above its graph [173]. Similarly, the hypograph of a function refers to the set of

points lying on or below its graph. Since φa is independent of the variables ψ1 and φ1,

(7.15) is equivalent to the intersection of the epigraph of ´gpφ1q and the hypograph

of gpφ1q, for φ1 P r´φa, φas, as illustrated in Fig. 7.21. Let g0 fi gp0q, the second

derivative of gpφ1q is,

d2gpφ1q

dφ12
“ ´

g0 cospφ1qr1` g20 ` g
2
0 sin2pφ1qs

r1` g20 cos2pφ1qs2
(7.16)

Since g0 is a positive constant, (7.16) is less than or equal to zero for φ1 P r´π{2, π{2s.

In addition, since b, λ ą 0, it follows that 0 ă φa ă π{2. Therefore, gpφ1q and ´gpφ1q

are concave and convex functions for φ1 P r´φa, φas, respectively. The epigraph

(hypograph) of a function is a convex set, if the function is a convex (concave)

function [173]. Therefore, the epigraph of ´gpφ1q and the hypograph of gpφ1q are

both convex sets. Since the intersection of two convex sets is a convex set, the

intersection of the epigraph of ´gpφ1q and the hypograph of gpφ1q is a convex set,

which completes the proof.

Theorem 13 shows that (7.14) is convex, which retains the polynomial time com-

plexity of the ıth iteration in (6.17), for ı “ 2, . . . ,MN . In order to further reduce

the computational complexity, a set of linear constraints that are only slightly more
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restricted than (7.14) are proposed, as illustrated in Fig. 7.21. Recall that g0 fi gp0q,

and let ga fi gpφaq. The linear constraints can be expressed as,

$

’

&

’

%

|φ´ φj| ď φa

|ψ ´ ψj| ď g0 ˘
g0 ´ ga
φa

pφ´ φjq
(7.17)

where φa and gp¨q are defined in (7.14). Notice that φa is half of the vertical angle of

view with respect to focal length λ. Assuming that λmin ą 0 denotes the minimum

focal length, the upper bound of φa is,

φa ď tan´1rb{p2λminqs fi φu (7.18)

Then, the following theorem states that (7.17) is a close approximation of (7.14):

Theorem 14. The ratio of the area of the convex set defined by the linear constraints

p7.17q over the area of the convex set defined by the nonlinear constraints p7.14q is

lower bounded by,

rpφuq fi 1`
1´ cosφu

cosφu

π ´ 2φu
4φu

´
1´ cosφu

4φu
π (7.19)

Proof. In order to keep the proof concise, the coordinate transformations in (7.15)

are also adopted here. Since (7.15) and (7.17) are symmetric about both the φ1 and

ψ1 axes, the ratio of the area of (7.17) over the area of (7.15) remains the same in

the first quadrant, where φ1 ě 0 and ψ1 ě 0, as illustrated in Fig. 7.22.

Let S1 denote the area of the convex set specified by the nonlinear constraint

(7.15) in the first quadrant. Let line l0 denote the horizontal line that passes through

point A, as illustrated in Fig. 7.22. The first derivative of gpφ1q is,

dgpφ1q{dφ1 “ ´g0 sinφ1{pg20 cos2 φ1 ` 1q ď 0, for φ1 P r0, π{2s (7.20)

Therefore, gpφ1q is monotonically decreasing for φ1 P r0, π{2s, and is upper bounded

by line l0. Let line l1 denote the line that passes through point E and point F in
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Figure 7.22: Linear approximation (7.17) of the nonlinear constraint (7.14) in the
first quadrant when (a) φa ď φd and (b) φa ą φd.

Fig. 7.22. Since gpφ1q is a concave function for φ1 P r0, π{2s (see proof of Theorem

13), gpφ1q is also upper bounded by line l1 for φ1 P r0, φus. Let point D denote the

intersection of line l0 and line l1, and let φd denote the φ1-axis coordinate of point D.

It follows that, when φa ď φd, S1 is upper bounded by the area of polygon OAB1C,

as illustrated in Fig. 7.22a. When φa ą φd, S1 is upper bounded by the area of

polygon OADB1C. In other words,

S1 ď

$

’

&

’

%

g0φa, if φa ď φd

g0φd `
1

2
pga ` g0qpφa ´ φdq, if φa ą φd

(7.21)

where g0 fi gp0q, and ga fi gpφaq.

Let S2 denote the area of the convex set specified by the linear constraints (7.17)

in the first quadrant. Let line l2 denote the line passing through point A and point

E, as illustrated in Fig. 7.22. Since gpφ1q is a concave function in r0, π{2s, it is lower

bounded by line l2 for φ1 P r0, φus. Therefore, S2 is greater than the area of polygon

OAB2C,

S2 ě
pga ` g0q

2
φa “

ˆ

gu ´ g0
2φu

φa ` g0

˙

φa (7.22)

where gu fi gpφuq.
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Substituting (7.22) in (7.21) yields that, when φa ď φd,

S2

S1

ě 1´
g0 ´ gu
2g0φu

φa ě 1´
g0 ´ gu
2g0φu

φd

“ 1`
1´ gu

g0
gu
g0

π ´ 2φu
4φu

´
1´ gu

g0

4φu
π

ě 1`
1´ cosφu

cosφu

π ´ 2φu
4φu

´
1´ cosφu

4φu
π

(7.23)

where the last inequality comes from that gu ě g0 cosφu. In addition, when φa ą φd,

it follows that,

S2

S1

ě
1

2g0φd
pga`g0qφa

` p1´ φd
φa
q
ě 1´

g0 ´ gu
2g0φu

φd

ě 1`
1´ cosφu

cosφu

π ´ 2φu
4φu

´
1´ cosφu

4φu
π

(7.24)

where the second inequality is true since gpφ1q is monotonically decreasing for φ1 P

r0, π{2s. The equalities in both (7.23) and (7.24) are achieved when φa “ φd, and

λÑ 8.

Remark 15. rpφuq is a monotonically decreasing function for φu P r0, π{2s, as

illustrated in Fig. 7.23.

Remark 16. For most surveillance cameras, the upper bound of the vertical angle

of view is less than 90˝ [174], which means that the lower bound in Theorem 14 is

greater than rpπ{4q “ 1´ p
?
2´1q2

2
« 91.4%.

From Theorem 14 and Remark 16, it can be seen that the optimization problems

in the remaining iterations of the lexicographic method (6.17) can be formulated

as quadratic programming problems with objective function (6.25) and linear con-

straints (7.17). Therefore, they can also be solved by convex quadratic programming

algorithms in polynomial time [167]. The performance of the lexicographic approach
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Figure 7.23: rpφuq for φu P r0, π{2s.

using the simplified linear constraints (7.17) is demonstrated by the simulation and

results in the next section.

7.3.2 Simulation and Results

In this section, the cumulative lower bound of the DPGP-EKLD, D̂L, derived in

closed form in (5.65), and used to obtain the objective functions (6.10), is first

demonstrated for a variety of target kinematics. Then, the efficiency of the lexico-

graphic method (Algorithm 9) is demonstrated by comparing to the optimal solution

[175], entropy reduction [176], greedy [102], potential field [145], patrol [177] and

random [83] algorithms. Finally, the computation complexities of the lexicographic

method and the six comparing algorithms are analysed theoretically and tested by

experiments.

The simulations are performed using two experimental datasets collected from

pedestrian movements, as shown in Fig. 7.24 [93]. For both of the experimen-

tal datasets, 75% of the pedestrians are selected at random as the targets in the

simulations, and the remaining pedestrian measurements are used to evaluate the

performance of the camera control algorithms. One PT camera is assumed to be

located at the center of the workspace. Parameters of the camera are adopted from

commercial pan-tilt cameras, such as the AXIS R© M5013 Dome Network camera [174].

The parameters of the PT camera are summarized in Table I, and are representative

of all simulations conducted with other parameters.
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Figure 7.24: Two experimental datasets consisting of time-stamped sequences of
position and velocity measurements of pedestrians at a frequency of 2Hz. Initial
positions are denoted by diamonds. (a) Dataset I: 88 pedestrians measured at the
intersection of two corridors. (b) Dataset II: 61 pedestrians measured in a lobby
area.

Table 7.1: Parameters of PT Camera

Description Variable Value

Horizontal angle of view g0 45˝

Vertical angle of view φu 32˝

Maximum pan angular velocity 9ψm 100˝{s

Maximum tilt angular velocity 9φm 100˝{s

Motor coefficients b1, b2 100˝{(Vs2)

Standard deviation of position
σx 0.1 (m)

measurement noise
Standard deviation of velocity

σv 0.1 (m/s)
measurement noise

A. Cumulative Lower Bound Simulation Results

The distance between the cumulative lower bound (5.65), and the DPGP-EKLD

(5.23) is demonstrated by considering four examples of targets as shown in Fig.

7.25. Both the cumulative lower bound and the DPGP-EKLD are calculated using

the squared-exponential covariance function (2.14) with Λ “ I2 and σf “ 1. The
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Figure 7.25: Four examples of targets from Dataset I in Fig. 7.24a superimposed
with the collocation points.

collocation points are selected as the evenly distributed grid points in the workspace.

The discount factor in (5.65) is chosen to be γ “ 0.9 for all the simulations. It can be

seen from Fig. 7.26 that the cumulative lower bound (5.65) is approximately lower

than the DPGP-EKLD (5.23) by a constant distance in the logarithm-scale plots for

all the targets in Fig. 7.25. Therefore, the cumulative lower bound approximately

equals to the DPGP-EKLD multiplied by a constant factor (close to 1 ´ γ), which

validates the claim that the cumulative lower bound (5.65) can be used in lieu of the

DPGP-EKLD (5.23) for deriving the objective functions Jij in (6.10).

B. Camera Control Optimization Results

The DPGP KL divergence, D
`

υ;Mp1, kq
˘

, derived in closed form in (5.23), repre-

sents the information value of obtained measurements for improving the DPGP-MM

[175]. Therefore, the DPGP KL divergence can be used to evaluate the perfor-

mance of camera control algorithms. The effectiveness of the lexicographic method
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Figure 7.26: Comparison between the cumulative lower bound (5.65) (red line
with triangles), and the DPGP-EKLD (5.23) (black line with circles). Panels (a)-(d)
correspond to targets 1-4 in Fig. 7.25, respectively.

is compared to that of six existing camera control algorithms known as the optimal

solution [175], entropy reduction algorithm [176], greedy algorithm [102], potential

field [145], patrol algorithm [177] and random algorithm [83]. The optimal solution

obtains the control inputs by solving a nonlinear programming problem with the

DPGP-EKLD (5.23) as the objective function. Results are obtained using an SQP

algorithm implemented by the MATLAB R© Optimization Toolbox fmincon function

[178]. The entropy reduction algorithm decides the next camera state by maximiz-

ing the entropy reduction in the DPGP-MM. The greedy algorithm maximizes the

DPGP-EKLD (5.23) for one time step by a computationally efficient particle filter

based search method. The potential field algorithm controls the camera movement

by building attracting fields centered at predicted target states in the pan-tilt space.

The patrol algorithm adopts a sliding mode based method to predefine a fixed route

for the camera. The random algorithm generates multiple number of random con-
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Figure 7.27: DPGP KL divergence obtained by the seven camera control algo-
rithms for (a) pedestrian dataset I as shown in Fig. 7.24a, and (b) pedestrian dataset
II as shown in Fig. 7.24b.

trol trajectories based on an extension of the Rapidly-exploring Random Tree, and

chooses the control trajectory with the highest DPGP-EKLD.

The performance of the lexicographic method and the six comparing algorithms

in terms of maximizing the information value are plotted in Fig. 7.27, using the

datasets in Fig. 7.24, and the camera parameters in Table 7.1. It can be seen from

Fig. 7.27 that the lexicographic method is superior to all the other algorithms except

the optimal solution. In addition, the performance of the lexicographic method is

close to that of the optimal solution. It is worth noticing that the computational

complexity of the optimal solution approach is too high to be used in real time

applications, as shown in Section 7.3.2.

In order to evaluate the accuracy of the target kinematics learned by the camera

control algorithms at the final time of the simulations, the relative root-mean-square

error (RMSE) of the DPGP-MM, denoted by εpkq, is adopted. Recall that Tj denotes

the number of measurements of the jth pedestrian in the test datasets, and that v̂j

represents the predicted target velocity by the DPGP-MM. Then, the relative RMSE
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is defined as follows,

εpkq fi
1

NT

NT
ÿ

j“1

M
ÿ

i“1

wij

g

f

f

e

1

Tj

Tj
ÿ

k“1

}vjpkq ´ v̂jpkq}2

}vjpkq}2
(7.25)

where NT is the number of targets in the test datasets. The relative RMSEs for all

the camera control algorithms using the pedestrian datasets I and II shown in Fig.

7.24 are summarized in Table 7.2. The ‘all data’ cases use all the measurements of the

pedestrian movements in the training datasets for learning the DPGP-MMs, which

correspond to the minimum errors that can be achieved by any algorithm. They are

included in Table 7.2 to help demonstrate the performance of the camera control al-

gorithms. The relative RMSEs in Table 7.2 show that the DPGP-MMs learned from

the measurements obtained by the optimal solution and the lexicographic algorithm

are the most accurate. In addition, the VFs learned by the lexicographic method at

the final time of the simulation for dataset I are plotted in Fig. 7.28, superimposed

with the movements of the test targets. Therefore, Fig. 7.28 is a visual demonstra-

tion that the target kinematics learned from the measurements by the lexicographic

method are close to the ground truth.

Table 7.2: Relative RMSEs of DPGP-MMs

Algorithms Dataset I Dataset II

All data 8.97% 9.03%
Optimal solution 9.12% 9.58%

Lexicographic 9.15% 10.88%
Entropy reduction 16.25% 18.52%

Greedy 15.68% 17.89%
Potential field 29.72% 30.21%

Patrol 27.47% 40.17%
Random 92.81% 93.51%
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Figure 7.28: Target kinematic models learned by the lexicographic algorithm at
the final time of the simulation superimposed with the movements of the test targets
from the pedestrian dataset I in Fig. 7.24a. Targets are superimposed with the VF
with the highest likelihood.

C. Computational Complexity

Because the camera control algorithms are designed for real-time applications, it is

essential to analyse their computational complexity. The optimal solution algorithm

was proven NP -hard in Section 5.3.5. The complexity of the lexicographic method

is dominated by the calculations of the cumulative lower bounds (5.65), which take
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OpL2Kq time for every target and every VF, where L is the number of collocation

points, and K is the control horizon. In addition, the single-objective quadratic

optimization (6.17) takes OpK3q time. Therefore, the computational complexity of

the lexicographic method is OppL2`K2qMNKq, where M is the number of VFs and

the N is the number of targets in the workspace.

The theoretical computational complexities of all the algorithms are summarized

in Table 7.3, which shows that the computational complexity of the lexicographic

method is much lower than that of the optimal solution. The experimental com-

putation time results in Table 7.3 are obtained on the same Dell Precision T7400

workstation, with a 3.20 GHz Intel(R) Xeon(R) CPU, and 16.0 GB installed mem-

ory. The experimental results show that the lexicographic algorithm is fast enough

to be utilized in real time applications.

Table 7.3: Computational Complexity

Algorithms Theoretical complexity
Experimental complexity (s)

Dataset I Dataset II

Optimal solution NP -hard 16.014 15.092

Lexicographic O
`

pL2 `K2qMNK
˘

0.081 0.073

Entropy reduction O
`

pL2 `K2qMNK
˘

0.077 0.072

Greedy O
`

rL2 ` logpMNqsMN
˘

0.044 0.044

Potential field O
`

L2MN
˘

0.003 0.003

Patrol Op1q ă 0.001 ă 0.001

Random O
`

L2MNKq 0.002 0.002

7.4 Related Topics and Extensions

Three real-life applications where the DPGP information value can be applied for

controlling a single sensor have been discussed in Section 7.1-Section 7.3. The DPGP

information value function can also be used to represent the utilities of future mea-

surements in decentralized sensor planning problems, where multiple sensors are con-
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trolled to collaboratively collect the most informative measurements. A key problem

in decentralized sensor planning is to determine the communication times, such that

necessary information obtained by individual sensors can be shared by the minimal

number of communications for stealth requirements or saving energy. In Section

7.4.1, an intermittent communication control policy is derived based on the expected

average information value of the Gaussian process. In addition, decentralized opti-

mization of the DPGP information value function is discussed in Section 7.4.2, and

three decentralized sensor planning algorithms and their applications are presented.

7.4.1 Extension of Scenario 1 to Intermittent Communication

The application Scenario 1 considers a single sensor. However, it can be extended to

decentralized Gaussian process learning with intermittent communications. Consider

M sensors deployed in the workspace to collaboratively observe the ocean currents

as shown in Fig. 7.29. The learning process of the ocean current is decentralized,

with only intermittent communications among the sensors. During the decentralized

learning phase, the sensors are not allowed to communicate any information. In

addition, the sensors can only observe their own states and get access to their own

measurements of fp¨q. In other words, the local information available to the ith

sensor consists of only the history of its own positions and measurements, Mipkq fi

tsip`q, zip`q | ` “ 1, . . . , ku. Therefore, without communication, every sensor in the

network can only update its estimation of the spatial phenomenon by the new data

in Mipkq. In addition, the sensor planning policy of every sensor is assumed to be

the GP-EKLD algorithm (Algorithm 7).

However, every sensor is able to initiate the communication among all the sensors

in the network. Let uipkq P t0, 1u denote the binary communication control signal

of the ith sensor, such that the event tuipkq “ 1u represents the communication is

required by the ith sensor at the kth time step. For simplicity, it is assumed that
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the sensors communicate when if any individual sensor initiates the communication,

such that
ŽM

i“1 uipkq “ 1, where
Ž

denotes the logical disjunction. At the time of

communication, the sensors can construct a connected graph, where the nodes are

the sensors and the edges are the communication channels between the sensors, to

share obtained measurements by all the sensors, Mpkq fi
ŤM
i“1Mipkq. Since the

communication consumes energy, it should only be performed when necessary. To

this end, the communication control is to design a communication control algorithm

that determines uipkq based on the locally available sensor measurements and the

globally shared Gaussian process model.

 

Figure 7.29: Example of workspace for extension of Scenario 1 with decentralized
accessible sensor positions.

The prediction error, εpkq, defined in (7.2) provides a natural way of designing the

communication criterion. Although (7.2) can not be applied to the intermittent com-

munication control problem directly before measurements are taken, the expectation

of εpkq can be utilized,

Erεpkqs fi
1

L

L
ÿ

l“1

Evl
}vl ´ v̂lpkq}

2
2 “

1

L
trrΣipkqs (7.26)

131



where Σipkq is defined in (5.17) [179]. The GP prediction performance over the entire

workspace is then evaluated by the expected average generalization error (EAGE),

ε̄pkq fi EMpkq tErεpkqsu (7.27)

Since ε̄pkq only depends on the time step k, it is also referred to as the learning curve

in the literature [180, 181, 182].

The exact calculation of ε̄pkq is computationally intractable in most cases, since it

requires the marginalization over the joint distribution of the sensor positions and the

collocation points [183]. To this end, an efficient recursive algorithm to approximat-

ing ε̄pkq is proposed by exploiting the property thatAi are discrete and time-invariant

sets. Let φkp¨, ¨q denote the GP posterior covariance matrix conditioned on Mpkq.

Given a new sensor position of the ith sensor, sipk ` 1q, the posterior covariance

function can be updated as follows,

φk`1pξı, ξq “ φkpξı, ξq ´
φk

“

ξı, sipk ` 1q
‰

φk
“

sipk ` 1q, ξ
‰

φk
“

sipk ` 1q, sipk ` 1q
‰

` σ2
nI2

(7.28)

for ı,  “ 1, . . . , L, and i “ 1, . . . ,M . Therefore, the expected GP posterior covariance

function can be obtained by taking expectation of (7.28) with respect to the sensor

positions. Assuming that the sensor measurements are independent, the expected

GP posterior covariance can be approximated as follows,

φ̂k`1pξı, ξq “ φ̂kpξı, ξq ´
M
ÿ

i“1

ÿ

slPAi

φ̂kpξı, slqφ̂kpsl, ξq

φ̂kpsl, slq ` σ2
nI2

ppslq (7.29)

for ı,  “ 1, . . . , L, where ppslq denotes the probability that the sensor takes measure-

ment at sl P Ai, which is determined by the sensor planning algorithm. Then, the

EAGE can be approximated as follows,

ε̄pkq « ε̂pkq “
L
ÿ

ı“1

1

L
φ̂kpξı, ξıq (7.30)
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The nominal GP prediction performance, denoted by ε̄upkq, is defined with respect

to the uniform planning algorithm that draws the sensor position from Ai uniformly

at random, such that,

ppslq “

$

’

&

’

%

1

CardpAiq
, sl P Ai

0, sl R Ai

i “ 1, . . . ,M (7.31)

where Cardp¨q denotes the cardinality of a set. In order to apply the approximation

technique in (7.30), it is necessary to verify that the approximation, ε̂upkq, truthfully

represents the nominal EAGE, ε̄upkq. Monte Carlo simulations are performed to

obtain the nominal EAGE, ε̄upkq, for the spatial phenomenon in Fig. 7.29. The

collocation points and the accessible sensor positions are also the same as shown in

Fig. 7.29. Comparisons between ε̂upkq and ε̄upkq are conducted for various length-

scales, λi, of the covariance function (2.14), since the length-scales are believed to

be the most importance parameters. Figure 7.30 shows that ε̂upkq is close to ε̄upkq

for both small and large length-scales. Therefore, ε̂upkq can be used in stead of

ε̄upkq for developing the communication control algorithm to bypass the need of

time-consuming Monte Carlo simulations.

Based on the nominal GP prediction performance, ε̂upkq, a heuristic policy de-

termines the communication control signals, uipkq, can be developed. The idea of

the heuristic communication control policy is that an individual sensor requests the

measurements from other sensors in the network when the sensor believes the in-

quired measurements can help to decrease the generalization error of its model over

a predefined threshold, γ ą 0. The mathematical presentation of the heuristic com-

munication control policy is as follows. Assuming k1 denotes the last communication
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Figure 7.30: Example of nominal expected average generalization error, ε̄upkq,
obtained by Monte Carlo experiments (red dashed line), compared with the approx-
imation, ε̂upkq, (blue solid line) for various GP length-scales, λi.

time, the sensors communicate at time step k if
ŽN

i“1 uipkq “ 1, where,

uipkq “

$

’

’

’

&

’

’

’

%

1, if
k
ÿ

`“k1

|εpkq ´ ε̂up`q| ě γ

0, otherwise

, i “ 1, . . . ,M (7.32)

A schematic plot of the communication control algorithm is illustrated by Fig. 7.31.

The integrated sensor planning and communication control algorithm is then pre-

sented as Algorithm 10.

The effect of the communication control policy in (7.32) on the generalization

error of an individual sensor is shown in Fig. 7.32. The simulation is conducted

by assuming λ1 “ λ2 “ 10 in the covariance function (2.14). The threshold in the

communication policy (7.32) is chosen to be γ “ 0.4. It can be seen that at the time

of communications, the AGE calculated from the measurements taken by a single

sensor, ε1pkq, can be reduced to the AGE calculated from the measurements taken
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Figure 7.31: Schematic plot of the communication control policy.

Algorithm 10 Communication Control Algorithm for GP-EKLD Sensor Planning

Input: Accessible sensor positions tAiuMi“1; Collocation points ξ; Communication
threshold γ

Output: Communication control signal uipk ` 1q P t0, 1u
1: Obtain s˚i pk ` 1q by the GP-EKLD algorithm (Algorithm 7).
2: Update GP covariance matrix, φk`1p¨, ¨q, with s˚i pk ` 1q by (7.28).

3: Update expected GP covariance matrix φ̂k`1p¨, ¨q by (7.29)
4: Obtain the nominal EAGE of the sensor network, ε̂upk ` 1q, by (7.30)
5: Determine the communication control signal, uipk ` 1q, by (7.32).

by all the sensors, εpkq. In addition, the communication control policy (7.32) is able

to automatically adjust the communication frequency based on the generalization

errors. At the beginning of the simulation when the generalization error decreases

fast, more frequent communications are performed. This is preferable, since com-

municating at this time can help reduce the uncertainty of the spatial phenomenon

more efficiently. In contrast, towards the end of the simulation, when the new mea-

surements become less informative, the communication control policy decreases the

communication frequency and consumes less energy.

The spatial phenomenon under observation can also affect the communication

control policy. Figure 7.33 shows that the frequency of the communication decreases

as the length-scales of the GP increase. This behavior is preferable since smaller GP

length-scale means the underlying spatial phenomenon is more complex and mea-
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Figure 7.32: Prediction errors obtained by the GP-EKLD algorithm (Algorithm 7)
for a single sensor, ε1pkq (red solid line), and all the sensors, εpkq (green dash-dotted
line), compared with the approximated EAGE, ε̂upkq (black dashed line).

surements of the spatial phenomenon by different sensors are less correlated. In

other words, when GP length-scales are small, individual sensors can not predict

the spatial phenomenon in the entire workspace by their own measurements, there-

fore, more frequent communications are needed as determined by the communication

control algorithm (7.32).

Finally, the effect of the sensor planning policy on the intermittent communication

control policy is studied. Figure 7.34 shows the communication control signals for the

GP-EKLD algorithm (Algorithm 7) and the entropy algorithm (7.1). Recall that the

GP-EKLD outperforms the entropy algorithm as shown in Section 7.1. By comparing

the communication control signals, it can be concluded that less efficient sensor

planning algorithms result in more frequent communications, which is preferable in

practice.
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Figure 7.34: Communication control policy history for (a) GP-EKLD (Algorithm
7) and (b) the entropy algorithm (7.1).

7.4.2 Extension of Scenario 2 in Decentralized Sensor Planning

When multiple sensors are involved to surveil a common workspace, a decentral-

ized controller for each sensor to cooperatively track moving targets is required to

scale up the solution. To this end, the DPGP-EKLD-Greedy algorithm (Algorithm

7) discussed in Scenario 2 is extended to decentralized sensor planning, and three

strategies are developed. The first two strategies transform the multiple sensor plan-

ning problem into a number of independent single sensor control problems. The

first strategy groups targets based on the estimation of their positions by k-means
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algorithm [184]. The number of target groups is equal to the number of sensors.

Then each target group is assigned to one sensor. After the assignment, each sensor

is controlled by the DPGP-EKLD-Greedy algorithm (Algorithm 8) to observe the

targets assigned to it. Sensors communicate periodically and re-assign targets based

on new information. In this algorithm the re-assigning period is pre-fixed. Figure

7.35a shows a snap shot of one simulation in which sensors are controlled by the first

strategy to monitor up to six targets. Samples of different targets are marked by

colors in Fig. 7.35a, and groups of targets are indicated by the dashed ellipse. The

performance of the decentralized sensor planning algorithm is summarized in Fig.

7.35b and it can be seen that the performance of two decentralized sensors is close

to the performance of a single sensor with half the number of targets. Therefore, the

decentralized DPGP-EKLD algorithm is able scale up the solution without impairing

the performance when the number of targets is increased.

 

(a) 

0 100 200 300

k

0

0.1

0.2

0.3

ǫ
(k
)

(b)

1 sensor, 5 targets

2 sensors, 10 targets

Figure 7.35: Snapshot (a) and performance comparisons (b) of decentralized
DPGP-EKLD sensor planning algorithm by target assignment.

The second strategy is developed for the case when the movement of the NS sen-

sors’ FOVs are constrained in sub-workspaces, Wi ĂW , for i “ 1, . . . , NS, as shown

by the green areas in Fig. 7.36. It is assumed that the union of the sub-workspaces
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covers the entire workspace, such that W Ă
ŤNS

i“1Wi. Each sensor only consid-

ers the targets present in its corresponding sub-workspace, and the sensor planning

is determined by the DPGP-EKLD-Greedy algorithm (Algorithm 8). Figure 7.36a

shows a snapshot of the decentralized sensor planning strategy with sub-workspace

constraints. The performance of the decentralized sensor planning algorithm with

sub-workspace constraints is summarized in Fig. 7.36b, where the ‘centralized’ re-

sult is obtained by a single sensor with two targets, and the ‘decentralized’ result

is obtained by four sensors with eight targets. It can be seen from Fig. 7.36b that

the DPGP-EKLD algorithm can be applied to decentralized sensor planning without

impairing the performance when the sensors are deployed in sub-workspaces.
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Figure 7.36: Snapshot (a) and performance comparisons (b) of decentralized
DPGP-EKLD sensor planning algorithm with workspace constraints.

The last decentralized (or distributed) algorithm computes the local optimal con-

trol inputs for all sensors by decomposing the DPGP-EKLD into a set of reward func-

tions, which are simultaneously optimized by the accelerated distributed augmented

Lagrangian (ADAL) method [185]. Each reward is a function of one target and the

sensors in the vicinity of the target. The decomposition of the DPGP-EKLD is per-

formed by constructing a bipartite graph, where the two disjoint sets of nodes consist
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of the sensors and the targets, respectively. The edges of the bipartite graph repre-

sents the decomposition of the DPGP-EKLD, and can be determined by algorithms,

such as k-means, based on the estimated states of the targets and the states of the

sensors. Figure. 7.37a, shows an example consisting of four targets, tTju
4
j“1, and five

sensors, tSiu
5
i“1. The edges of the bipartite are determined by the distance between

the target samples and the center of the sensor FOV. The corresponding bipartite

graph is show in Fig. 7.37b. To utilize the ADAL method, the DPGP-EKLD is aug-

mented with the constraints that the control inputs for the same sensor obtained by

maximizing different reward functions should be the same. By optimizing the reward

functions with respect to the sensor control inputs and the Lagrangian multipliers,

the DPGP-EKLD is maximized, and thus, local optimal control inputs for multiple

sensors are obtained. Pseudocode of the augmented Lagrangian decentralized sensor

planning algorithm is summarized in Algorithm 7.4.2.
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Figure 7.37: Snapshot (a) and bipartite graph (b) of decentralized DPGP-EKLD
sensor planning algorithm by augmented Lagrangian.
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Algorithm 11 Decentralized DPGP-EKLD Augmented Lagrangian

Input: Current sensor states, tsipkqu
NS
i“1; Estimations of target states, tx̂jpkqu

N
j“1

Output: Sensor control inputs, tu˚i pkqu
NS
i“1

1: Initialize Lagrange multipliers, tλiu
NS
i“1

2: while tuipkqu
NS
i“1 does not converge do

3: Augment the DPGP-EKLD (5.37) by the Lagrange multipliers
4: Update tuipkqu

NS
i“1 and tλiu

NS
i“1 by the ADAL algorithm [185]

5: end while

7.5 Chapter Conclusion

Three real-world applications of the proposed sensor planning algorithms (Algorithms

7, 8, 9) are discussed. The performance of the GP-EKLD-Greedy algorithm (Algo-

rithm 7) is evaluated by an example of monitoring ocean currents in Section 7.1. The

efficiency of the DPGP-EKLD-Greedy algorithm (Algorithm 8) is demonstrated by a

pan-tilt camera surveillance task without considering the camera dynamics in Section

7.2. Finally, the lexicographic method (Algorithm 9) is applied when the dynamics of

the pan-tilt camera are linear and time-invariant with constrained states and control

inputs, as shown in Section 7.3. By comparing to existing algorithms, such as the

entropy algorithm, the mutual information algorithm and the heuristic algorithms,

it can be seen that the proposed algorithms are superior at obtaining informative

measurements for improving the GP or DPGP target kinematics models.
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Conclusions

Sensor planning problems for Bayesian nonparametric modeling are of interest for

applications where no or little prior knowledge of the target or processes of interest is

available, and, thus, the sensors must be automatically controlled to obtain the best

measurements over time. Bayesian nonparametric models provide a systematic way

of adapting the model parameters and dimensionality to data, and have been success-

fully applied to learn target kinematics in the form of velocity fields. The resulting

models are the GP target kinematics model and the DPGP target kinematics model.

Inference, prediction and filtering approaches have been developed to utilize the pro-

posed GP and DPGP target kinematics models in the sensor planning problem, as

described in Chapter 4. The GP particle filter (Algorithm 1 and 2) is presented for

the prediction and filtering for a given GP target kinematics model. Similarly, the

DPGP particle filter (Algorithm 5 and 6) is developed for the prediction and filtering

for a given DPGP target kinematics model. The DPGP-Gibbs algorithm (Algorithm

4) is proposed for inference using a given DPGP target kinematics model.

Novel information theoretic functions are presented an analyzed to evaluate the

utility of future measurements in closed form. For the GP target kinematics model
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and single future measurement, the GP-EKLD has been derived in Theorem 4. For

the DPGP target kinematics model and single future measurement, the DPGP-

EKLD was derived and used to obtain an unbiased estimator of the DPGP-EKLD

in Theorem 8. Then, the DPGP-EKLD was extended to multiple future measure-

ments and a cumulative lower bound of the DPGP-EKLD was developed in Theorem

11 in order to develop efficient sensor planning algorithm with low computational

complexity.

Three scenarios where the Bayesian nonparametric target kinematics models and

the novel information values can be utilized were discussed, and three sensor planning

algorithms were developed correspondingly. The GP-EKLD-Greedy algorithm (Al-

gorithm 7) was developed for the least-constrained scenario with always observable

target kinematics modeled by a single GP and discrete control space. The perfor-

mance of the GP-EKLD-Greedy algorithm was evaluated by an example of moni-

toring ocean currents with data collected from moored buoys. The DPGP-EKLD-

Greedy algorithm (Algorithm 8) was developed for the scenario involving multiple

mobile targets and unconstrained sensor dynamics, and was applied in a PT cam-

era surveillance task without considering the camera dynamics. The lexicographic

algorithm (Algorithm 9) was developed for the scenario where sensor dynamics are

linear and time-invariant with constrained sensor state and control inputs.

By comparing to existing algorithms in the literature, such as the entropy al-

gorithm, the mutual information algorithm and the heuristic algorithms, it can be

seen that the proposed informative-driven sensor planning algorithms are superior at

obtaining informative measurements for improving the Bayesian nonparametric tar-

get kinematics models. Therefore, the proposed algorithms are preferable when the

target kinematics under observation are complex with little or no prior information,

and when learning the target kinematics is key to the success of the sensor planning

tasks.

143



Appendix A

Supplement Materials

A.1 Probability Density Function of Multivariate Gaussian Distribu-
tion

The probability density function of a multivariate Gaussian distribution with mean

µ and covariance matrix Σ, denoted by fGpx;µ,Σq, is defined as follows,

fGpx;µ,Σq fi
1

a

p2πqd|Σ|
exp

ˆ

´
1

2
px´ µqTΣ´1

px´ µq

˙

(A.1)

where d is the dimension of x.

A.2 Proof of Theorem 4

Proof. From the KL divergence of multivariate Gaussian distributions, the KL di-

vergence in (5.15) can be calculated analytically as follows:

D “
1

2

 

trrΣipkq
´1Σipk ` 1qs ´ ln

 

detrΣipk ` 1qΣipkq
´1
s
(

´ 2L
(

`
1

2
rµipk ` 1q ´ µipkqs

TΣipkq
´1
rµipk ` 1q ´ µipkqs (A.2)
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To simplify the integral in (5.15), we use the matrix inversion lemma for Σi,k`1,

such that,

Σipk ` 1q´1 “

„

ΦrYipkq,Yipkqs ` σ
2
vI ΦrYipkq,yjpk ` 1qs

Φryjpk ` 1q,Yipkqs Φryjpk ` 1q,yjpk ` 1qs ` σ2
vI

´1

(A.3)

fi

„

Σ C
CT D

´1

“

„

Σ´1pI`CQ´1CTΣ´1q ´Σ´1CQ´1

Q´1CTΣ´1 Q´1



where Q “ D ´ CTΣ´1C is defined in (5.20). Substituting (A.3) into (5.16) gives

that,

µipk ` 1q ´ µipkq “ RQ´1
tzjpk ` 1q ´ Erzjpk ` 1qsu fi RQ´1z̄ (A.4)

where z̄ is Gaussian distributed with zero mean and covariance σ2
vI. Substituting

(A.4) into (A.2) yields that

D̂ “
1

2

„

tr
`

Σ´1
i,kΣi,k`1

˘

´ ln

ˆ

|Σi,k`1|

|Σi,k|

˙

´ 2L



`
1

2

ż

R
Q´1RTΣ´1

i,kRQ´1z̄2ppz̄qdz̄

“
1

2

„

tr
`

Σ´1
i,kΣi,k`1

˘

´ ln

ˆ

|Σi,k`1|

|Σi,k|

˙

´ 2L` trpQ´1RTΣ´1
i,kRQ´1

qσ2
v



(A.5)

A.3 Proof of Equation (5.26)

Proof. When Gjpk ` 1q “ i,

ppυ|Qpk ` 1qq “ ppυi|Qpk ` 1qq
ź

1ďlďM, l‰i

ppυl|Qpkqq (A.6)
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since υi “ υipξq and υj “ υjpξq are conditional independent given Qpk ` 1q. Sub-

stituting (A.6) into (5.23), the conditional KL divergence can be written as

D pυ; mjpk ` 1q|Qpkqq “

ż

R2LM

ln

$

’

&

’

%

ppυi|Qpk ` 1qq
ś

1ďlďM, l‰i

ppυlpξq|Qpkqq

ś2M
`“1 ppυ`pξq|Qpkqq

,

/

.

/

-

¨ p
`

υ|Qpk ` 1q
˘

dυ

“

ż

R2M

ln

#

p
`

υi|Qpk ` 1q
˘

p
`

υi|Qpkq
˘

+

p
`

υi|Qpk ` 1q
˘

dυi

¨
ź

1ďlďM
l‰i

ż

R2M

ppυlpξq|Qpkqq dυlpξq

“ D pυi; mjpk ` 1q|Qpkqq (A.7)

A.4 Lemma on Complexity of Optimizing Entropy

For the completeness of the dissertation, Theorem 1 in [153] is introduced, which

adopts the notation in this dissertation.

Lemma 17. Given rational number n and rational covariance matrix Σ over a set

of Gaussian random variables S, deciding whether there exits a subset A Ă S of

cardinality d such that HpAq ě n is NP -complete, where Hp¨q denotes the entropy

function.

A.5 Mutual Information

This section shows the equivalence between the expected entropy reduction and the

mutual information, and presents the details about the MI criterion.

Proof. Recall that Hp¨q denotes the differential entropy of a continuous random vari-

able. Let the random variable, x̂jpk` 1q, denote the predicted target position at the
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next time step givenMpkq. Recalling that the random variable, mjpk ` 1q, denotes

the measurement at the pk`1qth time step, from the property of mutual information,

it is true that,

Hrx̂jpk ` 1qs ´Hrx̂jpk ` 1q | mjpk ` 1qs “ Irx̂jpk ` 1q | mjpk ` 1qs (A.8)

where Ip¨|¨q denotes the mutual information between two random variables.

To evaluate the mutual information, (A.8), we use the assumption that the posi-

tion measurement noise is zero. Therefore, when the target is in the sensor FOV at

the next time step, the expected entropy reduction is Hrx̂jpk` 1qs ˆPd, where Pd is

the probability of detection:

Pd fi

ż

Spk`1q
prx̂jpk ` 1qsdx̂jpk ` 1q (A.9)

When the sensor fails to observe the target at the next time step, there is still positive

expected entropy reduction, since the target position distribution is refined to

prx̂jpk ` 1qs1WzSpk`1qrx̂jpk ` 1qs
ş

W prx̂jpk ` 1qs1WzSpk`1qrx̂jpk ` 1qsdx̂jpk ` 1q
fi qrxjpk ` 1qs (A.10)

Therefore, the mutual information considering the two cases is,

Irx̂jpk ` 1q | mjpk ` 1qs “ p1´ Pdq

ż

W
qrxjpk ` 1qs log qrxjpk ` 1qsdxj

`Hrx̂jpk ` 1qs

(A.11)

A.6 Pinhole Camera Model

From the pinhole camera model, it follows that,

pj “ λrqx{qz qy{qzs
T (A.12)

where

rqx qy qzs
T
“ RT

φRT
ψ

`

rxTj 0sT ´ xc
˘

(A.13)
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Rφ fi

»

–

1 0 0
0 cosφ sinφ
0 ´ sinφ cosφ

fi

fl , Rψ fi

»

–

cosψ sinψ 0
´ sinψ cosψ 0

0 0 1

fi

fl

and xc “ rxc yc zcs
T is the position of the origin of Fb with respect to FW .

Taking the time derivatives of both sides of (A.12), it follows that,

9pj “ F

„

RT
φRT

ψ 0
0 ´RT

φ



r 9xj 9yj 0 9φ 0 9ψsT (A.14)

where F is the image Jacobian matrix [172],

F fi

«

´ λ
qz

0 px
qz

pxpy
λ

´
λ2`p2x
λ

py

0 ´ λ
qz

py
qz

λ2`p2x
λ

´
pxpy
λ

´px

ff

(A.15)
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[32] José M Bernardo and Adrian FM Smith. Bayesian Theory, volume 405. John
Wiley & Sons, 2009.

[33] Peter Müller and Fernando A. Quintana. Nonparametric Bayesian data anal-
ysis. Statistical science, pages 95–110, 2004.

[34] Robert Henry Klein. Planning Under Uncertainty with Bayesian Nonparamet-
ric Models. PhD thesis, Massachusetts Institute of Technology, 2014.
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[141] Jayesh H Kotecha and Petar M Djurić. Gaussian sum particle filtering. Signal
Processing, IEEE Transactions on, 51(10):2602–2612, 2003.

[142] David JC MacKay. Introduction to Monte carlo methods. In Learning in
graphical models, pages 175–204. Springer, 1998.

[143] T. Cover and J. Thomas. Elements of Information Theory. Wiley-Interscience,
New York, NY, 1991.

[144] W. Lu, G. Zhang, S. Ferrari, R. Fierro, and I. Palunko. An information poten-
tial approach for tracking and surveilling multiple moving targets using mobile
sensor agents. In SPIE Defense, Security, and Sensing, pages 80450T–80450T.
International Society for Optics and Photonics, 2011.

[145] W. Lu, G. Zhang, and S. Ferrari. An information potential approach to in-
tegrated sensor path planning and control. Robotics, IEEE Transactions on,
30(4):919–934, 2014.

[146] K. Kastella. Discrimination gain to optimize detection and classification. IEEE
Transactions on Systems, Man, and Cybernetics-Part A, 27(1):112–116, 1997.

[147] F. Nobile, R. Tempone, and C. G. Webster. A sparse grid stochastic colloca-
tion method for partial differential equations with random input data. SIAM
Journal on Numerical Analysis, 46(5):2309–2345, 2008.

[148] Alan E. Gelfand, Athanasios. Kottas, and Steven N. MacEachern. Bayesian
nonparametric spatial modeling with Dirichlet process mixing. Journal of the
American Statistical Association, 100(471):1021–1035, 2005.

[149] Robert F. Stengel. Flight Dynamics. Princeton University Press, 2015.

160



[150] W. H. Press. Numerical Recipes 3rd Edition: The Art of Scientific Computing.
Cambridge university press, 2007.

[151] D. S. Bernstein. Matrix Mathematics. Princeton University Press, Princeton,
NJ, 2005.

[152] R. E. Caflisch. Monte Carlo and Quasi-Monte Carlo methods. Acta numerica,
7:1–49, 1998.

[153] Chun-Wa Ko, Jon Lee, and Maurice Queyranne. An exact algorithm for max-
imum entropy sampling. Operations Research, 43(4):684–691, 1995.

[154] Michael R. Garey and David S. Johnson. Computers and Intractability, vol-
ume 29. wh freeman, 2002.

[155] Seapahn Megerian, Farinaz Koushanfar, Miodrag Potkonjak, and Mani B. Sri-
vastava. Worst and best-case coverage in sensor networks. IEEE Transactions
on Mobile Computing, 4(2):84–92, 2005.

[156] Joseph M Kahn, Randy H Katz, and Kristofer SJ Pister. Next century chal-
lenges: Mobile networking for “Smart Dust”. In Proceedings of the 5th an-
nual ACM/IEEE international conference on Mobile computing and network-
ing, pages 271–278. ACM, 1999.

[157] Fabrice Bonjean and Gary SE Lagerloef. Diagnostic model and analysis of the
surface currents in the tropical Pacific Ocean. Journal of Physical Oceanogra-
phy, 32(10):2938–2954, 2002.

[158] Chris Urmson, Joshua Anhalt, Drew Bagnell, Christopher Baker, Robert Bit-
tner, MN Clark, John Dolan, Dave Duggins, Tugrul Galatali, Chris Geyer,
et al. Autonomous driving in urban environments: Boss and the urban chal-
lenge. Journal of Field Robotics, 25(8):425–466, 2008.

[159] Gill Barequet, Matthew Dickerson, and Petru Pau. Translating a convex
polygon to contain a maximum number of points. Computational Geometry,
8(4):167–179, 1997.

[160] M. Berg, M. Kreveld, M. Overmars, and O. Schwarzkopf. Computational Ge-
ometry. Springer, 2000.

[161] R Timothy Marler and Jasbir S. Arora. Survey of multi-objective optimiza-
tion methods for engineering. Structural and multidisciplinary optimization,
26(6):369–395, 2004.

[162] Achille Messac. From dubious construction of objective functions to the appli-
cation of physical programming. AIAA journal, 38(1):155–163, 2000.

161



[163] Achille Messac and Christopher A Mattson. Generating well-distributed sets of
pareto points for engineering design using physical programming. Optimization
and Engineering, 3(4):431–450, 2002.

[164] K. A. Proos, G.P. Steven, O.M. Querin, and Y.M. Xie. Multicriterion evo-
lutionary structural optimization using the weighting and the global criterion
methods. AIAA journal, 39(10):2006–2012, 2001.

[165] Brad Nelson and Pradeep K. Khosla. Integrating sensor placement and visual
tracking strategies. In Experimental Robotics III, pages 167–181. Springer,
1994.

[166] Thomas Lange Vincent and Walter Jervis Grantham. Optimality in Parametric
Systems. John Wiley & Sons, 1981.

[167] Yu E. Nesterov and Michael J. Todd. Primal-dual interior-point methods for
self-scaled cones. SIAM Journal on optimization, 8(2):324–364, 1998.

[168] Fabrice Bonjean and Gary SE Lagerloef. Diagnostic model and analysis of the
surface currents in the tropical Pacific Ocean. Journal of Physical Oceanogra-
phy, 32(10):2938–2954, 2002.

[169] Ofir Avni, Francesco Borrelli, Gadi Katzir, Ehud Rivlin, and Hector Rotstein.
Scanning and tracking with independent cameras: A biologically motivated
approach based on model predictive control. Autonomous Robots, 24(3):285–
302, 2008.
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