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By utilizing onboard sensors such as side-scan or forward-looking sonar, au-

tonomous underwater robots can perform many useful tasks, such as exploring

and searching for targets in underwater environments. In order to recognize and

classify objects with high confidence, however, these mobile sensors must obtain

multiple looks or “views” for each target using different positions and orientations

that allow for a different interpretation based on local occlusions and environmen-

tal conditions. As a result, when tasked with classifying many targets, the mobile

sensor must find the most efficient path through multiple configurations in an effort

to reduce the cost and time required by each underwater mission. This disserta-

tion presents a novel and general approach, referred to as informative multi-view

planning (IMVP), that simultaneously determines the most informative sequence

of views and the shortest path between them. The approach is demonstrated

both in simulations and sea tests using an unmanned underwater vehicle (UUV)

equipped with a side-scan sonar (SSS) and engaged in underwater multi-target

classification. Both simulation and experimental results show that IMVP achieves

excellent classification performance while reducing the total time required by the

mission by up to half the time required by state-of-the-art multi-view path plan-

ning methods. One reason is that IMVP utilizes knowledge of the automatic target

recognition (ATR) algorithm, as well as prior measurements, in order to determine

the most informative views. Additionally, by using knowledge of the target location



and field-of-view (FOV) geometry, IMVP is able to find the shortest path between

them by solving a traveling salesman problem with neighborhoods (TSPN). In this

dissertation, a novel physics-inspired algorithm based on Lin-Kernighan heuristic

(LKH) is developed for searching for the optimal TSPN path for multiple non-

disjoint neighborhoods. It is shown that the LKH algorithm is able to decrease

the computational complexity of TSPN solutions by leveraging the intersections of

valuable neighborhoods using computational geometry constructs known as cov-

erage cones. When compared to state-of-the-art TSPN algorithms, the proposed

method is able to find shorter paths with either comparable or reduced computa-

tion. The advantages of the LKH algorithm are found to become more significant

as the number of intersecting neighborhoods increases, thus also allowing the mo-

bile sensor to observe multiple targets from a single configuration.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

Many modern imaging sensors, such as underwater sonar or cameras, require mul-

tiple looks or “views” of the target before they are able to classify it with a high

level of confidence. By changing the sensor position and orientation relative to each

target, different information about target features, such as shape and size, may be

obtained and fused in order to better infer the target class. Mobile platforms,

such as uncrewed vehicles, are often utilized to allow the sensor to travel around

an object and record multiple images from different viewpoints. When a sensor

must classify multiple targets distributed over a large region, obtaining multiple

views may require traveling over a long distance in order to visit multiple positions

and orientations relative to each target, resulting in costly and time-consuming

operations that may potentially outlive the battery life of the vehicle.

Multiple aspect coverage (MAC) and adaptive MAC (AMAC) algorithms have

been developed to solve multi-view path planning problems by first generating a

star-like path around every target and, then, computing the shortest route between

them [7,70]. MAC-type algorithms rely on the user choosing the number of views

required for every target, and, subsequently, picking a subset of vehicle heading

angles by sampling uniformly the 180-degree range of all possible angles. Another

solution approach proposed in [20] connects multiple viewing angles decided a

priori by means of Dubins curves that are reachable based on the vehicle kinematic

constraints. The sensor’s next viewing angle is chosen based on experimental

results and, then, the path is planned such that every target is visited again with

the same viewing angle. All of these existing algorithms seek to reduce the task-

completion time by finding the shortest path between multiple views decided a
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priori. Because they do not take into account individual target characteristics,

they may obtain too-many or too-few images resulting in paths that are too time

consuming or have low classification accuracy, respectively. Moreover, because

they rely on user intervention, they may be difficult to automate and adapt to

evolving classification and environmental conditions.

Along a different line of research, next-best-view approaches have been devel-

oped to determine what is the next most informative view for a target, based

on information gain [40, 63], or partially observable Markov decision processes

(POMDPs) [60]. Information-driven path-planning approaches, reviewed compre-

hensively in [32], take into account both the sensing objective and the vehicle kin-

odynamic constraints in order to simultaneously optimize the sensor performance

and the energy consumption. Finding the most efficient sensor path is especially

critical in many underwater applications because, due to limited communications

and rapidly changing sea conditions, the vehicles must travel back to the host

ship or surface up to update their information state and complete each opera-

tion as quickly as possible. Although existing information-driven path-planning

methods have been shown highly effective at optimizing the performance of mo-

bile sensors [5,14,32,34,78,83], these existing methods are not directly applicable

to multi-view planning because they assume the information gain is independent

of target-relative position and orientation. Many imaging sensors, such as cam-

eras, active sonar, and radar, interpret a return signal (e.g. acoustic or optical

wave) that bounces off an object of interest and, thus, the quality of their mea-

surements heavily depends on their aspect angle. Furthermore, the image quality

and the ability to recognize the object also depend on the object’s shadow and

self-occlusions, which vary with both sensor position and orientation, as well as

the location of the illumination source.
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This dissertation develops a novel and general approach for informative multi-

view planning (IMVP) that simultaneously determines the best sensor views for

each individual target, based on prior information, and plans the optimal path

between them. The IMVP approach developed in this dissertation takes into ac-

count the sensor’s field-of-view (FOV) and Bayesian measurement model, as well

as the target’s position and orientation, and constructs novel C-target regions and

information gain functions applicable to imaging sensors. It is shown that, for a

continuous and bounded sensor FOV, the optimal path can be found by solving

a generalized traveling salesman problem (TSP) [3, 54]. Due to its high complex-

ity, many approximate and ad-hoc solutions have been proposed for generalized

TSPs [10, 24, 25, 57]. One of the most common simplifications is to assume that

the regions of interest are pairwise disjoint [16, 26, 56]. However, in informative

multi-view path planning, intersecting regions are often the most valuable because

they allow the sensor to obtain images from multiple targets in a single pass.

The IMVP approach builds on several novel contributions that allow to first

formulate and, then, solve the generalized TSP based on all available sensor and

target information (Chapter 3). Novel contributions in computational geometry

(Chapter 4) allow for the efficient construction of helicoidal C-targets and tran-

scription of the path planning problem into a new generalized traveling salesman

problem with intersecting neighborhoods (Sections 4.1-4.2). A new GTSPN so-

lution algorithm is also developed (Section 4.3) that exploits all neighborhood

intersections corresponding to sensor configurations able to view multiple targets

at once (in the same image), while reducing computational complexity (Section

4.4). This dissertation also investigates the influence of self-localization errors and

uncertainty in the target location by modifying the GTSPN solution to increase

performance robustness (Section 7). The novel IMVP approach is demonstrated
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both on a simulated and a real underwater vehicle equipped with a simulated

side-scan imaging sonar and tasked with classifying multiple underwater objects

previously detected during surveying.

The new GTSPN solution algorithm developed in Chapter 4 is shown to com-

pute time-efficient paths that outperform existing state-of-the-art methods for un-

derwater multi-target recognition by explicitly considering the intersection of mul-

tiple neighborhoods that each correspond to a different C-target. Because comput-

ing neighborhood intersections is an expensive operation, the GTSPN solution may

require implementing further approximations and heuristics in order to be applica-

ble to problems in which the number of targets and looks required are both large.

This dissertation develops a novel physics-inspired TSPN solution algorithm that

is based on computational geometry constructs known as coverage cones (Chapter

5). Inspired by Fermat’s principle, the proposed TSPN solution computes a light

ray-like path using a coverage cone that contains all line transversals to each neigh-

borhood. Assuming the neighborhoods can be approximated by circles, the ray-like

path allows to determine an ideal sequence of circles and waypoint positions that

form a TSPN tour. Unlike existing methods such as unsupervised learning [28]

or evolutionary algorithms [82], the proposed research does not require any prior

data. Also, while the solution approach is developed for uniform circles, the con-

cept can be potentially extended to other neighborhood geometries, such as ovals

or convex polygons.
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CHAPTER 2

PROBLEM FORMULATION

This dissertation considers the problem of planning a time-optimal path for an

underwater imaging sensor deployed onboard a UUV tasked with underwater tar-

get recognition. This problem is relevant to many other robotics applications in-

volving mobile directional sensors tasked with observing multiple complex targets

distributed over a large region of interest (ROI). Because acoustic measurements

are greatly influenced by the relative sensor position and orientation, most un-

derwater targets require many views before they can be accurately analysed and

classified, resulting in time-consuming and costly operations. Prior to deploying

an expensive short-range directional sonar, such as a forward-looking or side-scan

sonar, the ROI is typically surveyed using long-range sensors that detect targets of

interest and provide a rudimentary estimate of their position and orientation. Sub-

sequently, the UUV-mounted directional sensor is used to obtain multiple images

or “looks” for every object or target of interest in order to achieve classifications

accompanied by high confidence levels [6, 7]. As a result, the time and power re-

quired to properly classify multiple targets is highly dependent on the UUV path.

Furthermore, the optimal number of views and corresponding aspect angles, as

well as the classification confidence levels, all depend on the ATR algorithm and

target characteristics that may also be estimated during surveying. By the ap-

proach developed in this dissertation, the number of sensor views, aspect angles,

and UUV path are simultaneously optimized based on prior measurements, target

characteristics, and ATR properties.

While applicable to other problem formulations, the directional sensor planning

approach presented in this dissertation is demonstrated on a minimum-time bench-
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mark problem in which multiple underwater targets are to be classified within a

desired confidence level. For example, the methods developed here are also applica-

ble to online adaptive path planning and to optimal planning for other directional

sensors, such as cameras or synthetic aperture radar. The benchmark minimum-

time problem consists of planning the motion of a UUV equipped with a side-scan

sonar in a three-dimensional ROI, W ⊂ R3. For simplicity, it is assumed all n

underwater targets detected and localized during surveying are distributed on a

flat seabed, such that the effects of sloped and uneven bathymetry, e.g. layover,

on the sonar imagery are negligible. Let an inertial frame FW with origin OW be

embedded in W such that the xIyI-plane contains the seabed of interest denoted

by a plane P ⊂ R3 (Fig. 2.1).

Every target in P is characterized by unknown geometries T1, ..., Tn, where

Ti ⊂ W is a compact set, and i = 1, ..., n, and its inertial position, estimated during

pre-surveying, is denoted by xTi = [xTi yTi ]
T . Letting FTi denote a local reference

frame embedded in Ti, the target orientation, θTi , can be defined as the rotation

angle from the xTi-axis to the xI-axis, about zI-axis (Fig. 2.2). Due to the nature

of acoustic measurements, the image constructed by the sensor is highly dependent

on the so-called aspect angle, defined as the off-normal angle between the target

and the sensor orientations, measured relative to the sonar centerline and denoted

by ϕ (Fig. 2.2). Therefore, the target state or configuration, qTi = [xTTi θTi ]
T , must

be estimated for i = 1, ..., n, in order to optimize the quality of the sonar imagery

for all n targets of interest.

Using a chosen ATR algorithm, the UUV-based sonar must classify all n targets

with a desired confidence level, based on f target features, such as target geometry,

size, and texture. Every target feature can be represented by a categorical random

6
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Figure 2.1: Region of interest (ROI) and key geometrical constructs

Figure 2.2: Definition of target orientation and aspect angle for a UUV-based
sonar (ROI top view, UUV projected on the seabed)
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variable Xi ∈ X, where X is the discrete and finite range of the th feature ( =

1, ..., f). Then, the feature set of the ith target is denoted by Xi = {Xi1, ..., Xif}.

The target classification is denoted by another categorical variable, Yi ∈ Y , with

discrete and finite range Y = {y1, ..., yc}. Both target features and classification

variables are viewed as discrete random variables. But while the features may

be estimated from the target sonar image, the classification variable is hidden

and must be inferred from the target features (Chapter 3). Therefore, the ATR

algorithm must carry out feature estimation and target classification for every new

sonar image obtained by the UUV. By optimizing the sonar viewing angle and

by taking into account the geometry of the field-of-view, the approach presented

in this dissertation not only minimizes classification time but also minimizes the

number of images required, thus minimizing computing and power requirements.

Although the approach is demonstrated for a side-scan sonar accompanied by

a convolutional neural network ATR algorithm, it can be easily extended to other

underwater imaging sensors systems such as sector-scan sonar and synthetic aper-

ture sonar and feature-extraction ATR [38]. Consider the case in which a pair of

side-scan sonar sensors is installed on each port and starboard side of the UUV.

The sensor field-of-view (FOV) is defined as the region in which target measure-

ments can be obtained [15,32]. Each sensor transmits a narrow fan-shape acoustic

pulse, whose geometry is denoted by S ′ ⊂ W . As the UUV moves forward, S ′

sweeps the seabed, and a sonar image matrix is constructed by stacking the inter-

preted data from successive scan lines on the seabed (Fig. 2.3). Because all the

targets live in P , the sonar FOV can be reduced to the two-dimensional region

S = S ′ ∩ P , as shown in Fig. 2.3. By considering the FOV position and geometry

relative to the UUV and the targets, the sensor path and viewpoints are optimized

subject to prior measurements and chosen ATR.
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Figure 2.3: Side-scan sonar image construction and sensor FOV.

As shown in [15,17,32,34,53,83–85], the sonar ATR and measurement process

can be modeled by a probabilistic sensor model in the form of a joint probability

mass function (PMF) learned from data (Chapter 3). Without loss of generality,

let the set Zi(k) denote the sensor measurements obtained from target i at time

instant tk. The sensor mode and relevant environmental conditions at tk are de-

noted by Λi(k). In this dissertation, Λi(k) consists of the sonar viewing angle and

relative target position, both of which can be estimated by an onboard localization

algorithm. Then, with the evidence at tk denoted by Ei(k) = {Zi(k),Λi(k)}, the

learned PMF model can be factorized as follows,

p(Zi, Xi, Yi,Λi) = p(Zi|Λi, Xi)p(Xi|Yi)p(Yi)p(Λi) (2.1)

where the PMF notation fY (y) = P ({Y = y}) is abbreviated by p(Y ) (Chapter

9



3).

From the evidence Ei(k), the target classification can be obtained by one of

several approaches, including the maximum a-posteriori (MAP) rule, the maxi-

mum likelihood estimate (MLE), or the Neyman-Pearson rule [32]. In order to

allow for Bayesian updates, the approach presented in this dissertation adopts

MAP classification, and the posterior PMF is used to estimate the classification

confidence level. In particular, given the set of all evidence obtained up to time

step tk, denoted by Mi(k) = {Ei(1), ..., Ei(k)}, the confidence level (CL) of the

ith-target’s classification at time tk is given by

c(Yi;Mi(k)) , max
y∈Y

[P ({Yi = y}|Mi(k))] (2.2)

Then, the desired classification performance can be specified via a CL threshold,

εCL ∈ (0, 1), chosen by the user based on the application and the acceptable rate

of false alarms. Let T denote the total UUV travel time, corresponding to the final

discrete time step index K. Then, the goal of the path planning algorithm is to

achieve a satisfactory CL for all targets in the ROI, or

c(Yi;Mi(K)) ≥ εCL, ∀i, i = 1, . . . , n (2.3)

A higher CL threshold results in lower classification uncertainty and in a larger

travel time required to obtain more images of the targets.

In addition to meeting sensing requirements, the path planning approach must

also take into account UUV motion constraints. For example, in order to minimize

the geometric distortions of sonar images, the UUV must be held at a constant

speed, altitude, and heading angle with zero roll and pitch angles during every

time interval while sonar data is being recorded [11, 18]. The UUV kinodynamic

constraints may be similarly accounted for, e.g. in order to minimize energy con-

sumption subject to ocean current velocity fields as shown in [32]. For simplicity,

10



the sonar is assumed to operate at a constant frequency so that the UUV altitude

is maintained at a constant value, h, chosen based on the sensor mode. Then, the

UUV configuration can be represented by q = [x ψ]T , where x = [x y]T , x and y

denote the position of the UUV in xI and yI , respectively, and ψ denotes UUV’s

heading angle. Then, the target aspect angle is given by ϕ = ψ − θTi (Fig. 2.2),

and the space of all possible UUV configurations is denoted by C. The UUV path

is defined as a continuous mapping, denoted by τ : [0, 1] → C with τ(0) = q(0)

and τ(1) = qf , where q(0) is the given initial configuration and qf is a final con-

figuration to be determined. Finally, the minimum-time benchmark problem can

be summarized as follows:

Problem 1 (Sensor path planning) Given n target positions and orientations,

qT1 , . . . ,qTn, the sensor ATR model in (2.1), the sensor FOV S, and the sensor

initial configuration q(0), find a path τ that minimizes the travel time T such that

the CL constraints (2.3) are met for all n targets.

11



CHAPTER 3

BACKGROUND ON AUTOMATIC TARGET RECOGNITION

(ATR) AND IMAGING SONAR

Imaging sonar is a powerful tool that is utilized in a variety of underwater

tasks ranging from commercial applications, such as ship hull inspection, to envi-

ronmental research, such as bathymetric mapping, biomass estimation, and dem-

ining [12, 65, 66, 68, 76]. Therefore, many sonar automatic target detection (ATR)

and classification algorithms have been developed to date in the literature using

convolutional neural networks (CNNs), feature extraction, and other image pro-

cessing methods described in [32]. From a labeled measurement database and the

chosen ATR algorithm, it is possible to learn correlations between characteristic

highlight-shadow patterns and physical object features such as shape, size, and

orientation in the form of a graphical model [42, 43, 47, 59, 80]. Because sonar im-

ages are highly dependent on environmental conditions and sensor-target aspect

angle [74], high-quality classification requires fusing multiple images obtained by

different viewpoints [30,79,81].

In this dissertation, the UUV-mounted side-scan sonar system is simulated us-

ing a high-fidelity physics-based closed-loop software developed by Dr. Isaacs at

Naval Surface Warfare Center (NSWC). The mobile side-scan sonar is simulated

by generating images obtained from the sonar FOV, integrated with a dynamic

model of a REMUS 100 vehicle, and by ω − k beamforming of the time-domain

signals [42–45] (Section 6). The results in Section 6.1 show that the IMVP ap-

proach significantly outperforms existing methods by achieving the desired classifi-

cation performance in some cases in half the travel time. In addition to improving

classification efficiency and confidence gain by up to 88% and 91%, respectively,

12



IMVP also provides much higher performance robustness than existing algorithms

for different classification databases, target layouts, and environmental conditions.

By determining the number of views and aspect angles based on their information

value and, simultaneously, considering the problem geometry, the sensor paths ob-

tained by IMVP are not only shorter but also produce sonar images that contain

on average many more contacts and provide better quality automatic target recog-

nition. Autonomous Vehicle Architecture (AVA) simulations (Section 6.2) and sea

tests were conducted by Dr. Weaver on the NSWC unmanned underwater vehicle

(UUV) swimming in the Saint Andrew Bay area near Panama City, FL (Sections

6.1-6.3). The sea tests showed that the real REMUS 100 not only was able to ex-

ecute the IMVP optimal path, but also outperformed the AVA simulation results

under all performance metrics.

For the purpose of coupling the ATR and sensing process with the UUV path

planning problem, the relationships between target characteristics, sonar measure-

ments and ATR are modeled by a probabilistic sensor model in the form of a joint

probability mass function (PMF) learned from labeled data [15,17,32,34,53,83–85].

The method adopted here and developed in [17,85] is reviewed here for complete-

ness. Other Bayesian classification methods, such as [40, 63], can be similarly

implemented to learn the joint PMF.

A sonar image may contain from zero to multiple targets (Fig. 3.1(a)). In this

dissertation, each raw sonar image matrix is first processed to locate all possible

targets and, then, it is segmented to obtain smaller image matrices that each

contain only one target, e.g. using a matched filter. Let tk represent the time at

which a target i is detected in the sonar image and, thus, inside the sensor FOV.

From its sonar image segmentation (Fig. 3.1(b)), a measurement set Zi may be
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obtained as follows. First, raw target features are extracted from each sonar image

segmentation using a pre-trained convolution neural network (CNN), AlexNet [48].

Subsequently, the set of estimated features, X̂i1, ..., X̂if , and inferred classification,

Ŷi, are obtained using the support vector machine (SVM) proposed in [85], such

that Zi = {X̂i1, ..., X̂if , Ŷi} (Fig. 3.1(b)).
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Figure 3.1: (a) Example of raw sonar image matrix, where each red box
indicates a detected object, and (b) examples of sonar image
segmentations and corresponding features extracted via CNN-
SVM (adapted from [85], with permission).
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Estimating the confidence level in consecutive sensor measurement processes re-

quires a probabilistic Bayesian model that captures the influence of sensor mode,

environmental conditions, and target features on the hidden target class and ob-

servable sensor measurements. The probabilistic sensor model can be defined as a

joint PMF, and from the chain rule of probability,

p(Zi, Xi, Yi,Λi) = p(Zi|Λi, Xi, Yi)p(Xi|Λi, Yi)p(Yi|Λi)p(Λi) (3.1)

Because Λi is independent of Xi and Yi, and p(Zi|Λi, Xi, Yi) = p(Zi|Λi, Xi),

the probabilistic sensor model is represented by (2.1). The conditional PMF,

p(Zi | Λi, Xi), is also referred to as a sensor measurement model. The prior PMFs,

p(Xi, Yi), p(Yi), and p(Λi), can be computed either from the first principle, exper-

iments, or simulation data; if this information is not available, the PMF can be

assumed to be uniformly distributed. In this dissertation, the joint PMF is learned

from sonar image data and represented by a Bayesian network (BN) model using

a directed graph (Fig. 3.2) and a set of conditional probability tables (CPTs) that

can be learned from the labeled data or constructed from the first principle. Target

classification is performed based on the MAP rule using the posterior PMF, which

can be computed recursively as follows

p(Yi|Mi(k)) =
p(Ei(k)|Yi)p(Yi|Mi(k − 1))∑
Yi
p(Ei(k)|Yi)p(Yi|Mi(k − 1))

(3.2)

The posterior probability of the chosen classification value provides the classifica-

tion CL as a measure from zero to one of how probable the value is to be correct

(where higher probability denotes higher confidence, with one representing cer-

tainty).

Because the CL can only be obtained after the image has been processed by

the ATR algorithm, this dissertation utilizes the expected confidence level (ECL),

defined as the one-step conditional expectation of the CL with respect to the
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Figure 3.2: Probabilistic measurement model for a sonar imaging sensor.
Dashed lines represent the ATR algorithms.

next (future) measurement that would be obtained at a possible sensor config-

uration. Assuming for simplicity that the environment is homogeneous and the

sensor mode is fixed, Λi represents all possible UUV viewpoints. Then, based

on the evidence set at the present time tk, i.e. Mi(k) = {Ei(1), ..., Ei(k)} where

Ei(k) = {Zi(k),Λi(k)}, the ECL can be obtained as follows:

ĉ(Λi(k + 1);Mi(k)) = EZi(k+1)

[
max
y∈Y

P (Yi = y | Mi(k), Ei(k + 1))
]

(3.3)

Note that Λi is a decision variable, while Zi(k) is assumed unknown.

The ECL defined in (3.3) can be computed using the joint conditional proba-

bility, which corresponds to the sensor measurement model. By taking the expec-

tation with respect to Zi, the equation (3.3) can be written by

ĉ(Λi(k + 1);Mi(k)) =
∑

Zi(k+1)

c(Yi;Mi(k), Ei(k + 1))p(Zi(k + 1)|Mi(k),Λi(k + 1))

(3.4)

The conditional PMF, p(Zi(k+ 1)|mi(k),Λi(k+ 1)), is calculated by marginalizing

the joint probability from the sensor measurement model over the unknown target

class Yi,

p(Zi(k + 1)|Mi(k),Λi(k + 1)) =
∑
Yi

p(Zi(k + 1)|Yi,Λi(k + 1))p(Yi|Mi(k)) (3.5)
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where p(Zi(k+1)|Yi,Λi(k+1)) and p(Yi|Mi(k)) can be obtained from the graphical

model CPTs. Because multiple measurements are necessary for successful target

classifications, a set of viewpoints must be planned for each target. Let the number

of viewpoints required to meet the desired confidence level for the ith target be

denoted by an unknown variable ni. The ECL of the sensor, after visiting (k+ni)

viewpoints, is given by

ĉ({Λi(k + 1), ...,Λi(k + ni)};Mi(k))

= EZi(k+1),...,Zi(k+ni)

[
c(Yi;mi(k), Ei(k + 1), ..., Ei(k + ni))

]
(3.6)

Then, the expectation with respect to the next ni images can be computed by

recursively updating the ECL at each time step, immediately after updating the

actual CL (recursively) from (3.2) based on the ATR output. The expectation

with respect to future measurements is computed as shown in (3.4).

17



CHAPTER 4

INFORMATIVE MULTI-VIEW PLANNING (IMVP)

The nature of acoustic wave propagation processes is such that the sonar po-

sition and orientation relative to the target of interest greatly influence the image

quality, as well as the information value of the ATR algorithm’s output. Other

directional sensors, such as synthetic aperture radar (SAR) and cameras, are sim-

ilarly influenced by their position and aspect angle relative to the target. Further-

more, analysing and classifying complex targets requires obtaining multiple images

using different positions and aspect angles. The IMVP approach presented in this

chapter optimizes the sensor path in terms of the classification confidence, based on

prior feature estimation, by both determining and planning the path that enables

the best viewpoints. By this approach, it is possible to maximize the number of

targets captured in each image based on their location and on the FOV geometry,

while also minimizing the number of sensor viewpoints and images as well as the

distance traveled by the UUV.

The IMVP approach developed in this dissertation utilizes the geometry of the

sensor FOV and prior estimates of target positions and orientations to map targets

onto UUV configuration space, obtaining the so-called C-targets (Section 4.1).

The most valuable viewpoints and corresponding C-target regions are determined

from the expected confidence level, using the probabilistic measurement model

described in Chapter 3 (taken from [17]). Finally, the IMVP approach determines

the shortest path that visits the C-target regions required to achieve the desired

(expected) CL for each target by solving a generalized traveling salesman problem

with neighborhoods, as shown in Section 4.2.
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4.1 C-target Definition and Construction

A C-target region represents the subset of all UUV configurations that enable

intersections between the target geometry and the sensor FOV, thus allowing sensor

observations [15,32,53]. In this dissertation, each target is approximated as a point

for simplicity and its position is used to construct the corresponding C-target,

defined as:

Definition 1 (C-Target) The C-target region of the ith point target located at

xTi is the set of all UUV configurations for which the sensor FOV contains the

target position, i.e.:

CT i , {q ∈ C | xTi ∈ S(q)} (4.1)

For the side-scan sonar FOV geometry in Fig. 2.3, the C-target can be derived

in closed form as follows. Let rmin ∈ R≥0 and rmax ∈ R>0 denote the minimum

and maximum distances at which a measurement can be obtained, for a known

sensor range D = (rmin, rmax). Because the sonar is installed on a mobile UUV,

the FOV geometry is a function of the UUV configuration, q = [x y θ]T , and for

a side-scan sonar can be approximated by two line segments perpendicular to the

vehicle heading:

S(q) =

p ∈ W

∣∣∣∣∣∣∣∣∣∣
p =


x

y

0

±

r cos(ψ + π

2
)

r sin(ψ + π
2
)

0

 , r ∈ D
 (4.2)
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From Definition 1, the C-target corresponding to target i is given by,

CT i =

q ∈ C

∣∣∣∣∣∣∣∣∣∣
q = qTi ±


r cos(ϕ+ θTi + π

2
)

r sin(ϕ+ θTi + π
2
)

ϕ

 , r ∈ D, ϕ ∈ S1

 (4.3)

where S1 is a 1-dimensional manifold or circle,

S1 = {(x, y) | x2 + y2 = 1} (4.4)

For easier visualization and algorithmic implementation, [0, 2π) can replace S1

using a quotient space, [0, 2π]/ ∼ , in which the identification declares that 0 and

2π are equivalent, denoted by 0 ∼ 2π. This quotient space homeomorphic to S1

“glues” 0 and 2π of [0, 2π], i.e., the value of ϕ ∈ S runs from 0 up to 2π and then

“wrap around” to 0 [51]. This manifold definition allows to represent the distance

between two vehicle orientations by means of the minimum angle between them,

avoiding the discontinuity at 0 and 2π. An example C-target geometry is shown in

Fig. 4.1, where parameters r and ϕ represent the sonar distance from the target

and the aspect angle, respectively.
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Figure 4.1: The C-target geometry of a target at qi = [0 0 0]T observed by
a side-scan sonar with ranges rmin = 15 and rmax = 150.
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Because the aspect angle ψ ∈ S1 wraps around every 2π, the geometry of CT i

in C ⊂ R2 × S1 can be considered as a generalized helicoid in R3, defined in [1] as

follows:

Definition 2 (Generalized helicoid) Let Π be a plane in R3, l be a line in Π,

and C be a point set in Π. Suppose C is rotated in R3 about l and simultaneously

displaced parallel to l so that the speed of displacement is proportional to the speed

of rotation, also called screw motion. Then, the resulting point set M(C , c) is

called the generalized helicoid generated by C , also called the profile curve of M.

The line l is called the axis of M. The ratio of the speed of displacement to the

speed of rotation is called slant of M and is denoted by c.

Now, adopting Definition 2, the geometry of the ith C-target, CT i, corresponds

to a generalized helicoid M(Ci, 1), which is generated by the point set,

Ci =
{
q ∈ C

∣∣ q = qTi ± [0 r 0]T , r ∈ D
}

(4.5)

on the plane,

Πi = {[x y ψ]T ∈ C | cos(x− xTi) + sin(y − yTi) = 0, ψ ∈ S} (4.6)

by applying the screw motion to the line (axis),

li = {[x y ψ]T ∈ C | x = xTi , y = yTi , ψ ∈ S} (4.7)

with slant c = 1.

In order to transcribe the sensor planning problem (Problem 1) into a traveling-

salesman problem, the relative UUV configuration is first discretized and, then,

treated as the sensor operating condition (Λi) in the sensor measurement model

(Chapter 3). This is accomplished by partitioning each C-target, CT i (i =
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1, . . . , n), into M regions by uniformly discretizing the heading angle interval,

[0, 2π), and the sensor range, D, as exemplified in Fig. 4.2. This approximation is

useful because it reduces the computational complexity of the planning problem

while maintaining sensing efficiency (since similar values of r and ϕ yield simi-

lar measurements). Other helicoid partitioning methods can also be applied, as

explained in [9]. Now, a partition of CT i is a pariwise disjoint family,

Vi = {Ri,j | j ∈ {1, ...,M}} (4.8)

such that, ⋃
j∈{1,...M}

Ri,j = CT i (4.9)

and, throughout this dissertation, each element Ri,j is referred to a viewpoint re-

gion. The viewpoint region Ri,j ⊂ CT i represents a set of points that comprises

two disjoint and congruent annular sectors on CT i (Fig. 4.2). Since CT i is periodic

with a period ψ = π, one annular sector can be defined as translating another one

with a distance ψ = π.
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Figure 4.2: (a) Top view and (b) Isometric view of a partitioned C-target
and corresponding viewpoint-regions geometries.
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4.2 Generalized Traveling Salesman Problem with Neigh-

borhoods (GTSPN) Formulation of IMVP Problem

A traditional approach to classifying multiple targets with high confidence is to con-

tinue obtaining measurements until the classification CL exceeds a desired thresh-

old, εCL, for every target. Since the true target classification (ground truth) is

unknown, this approach allows the user to reduce errors and uncertainty below

an acceptable level decided based on the application of interest. In a similar vein,

suppose an ECL threshold, ε̂CL, is chosen by the user a priori based on the desired

level of confidence. After the ECL of every target is computed using the approach

in Section 3, the ECL threshold is used to select a minimum number of viewpoint

regions required to exceed ε̂CL. Because the actual CL may be lower than the

ECL, a conservative choice typically assumes ε̂CL > εCL. Assuming the n targets

are independent (i.e., the features and classification of one target are independent

of those of the other targets in the ROI), the minimum set of viewpoint regions

or neighborhoods to be visited, denoted hereon by Ri ⊂ Vi, may be obtained in-

dependently and in any order. Then, a UUV path that visits every region Ri

(i = 1, . . . , n), guarantees that the images required to achieve the desired ECL will

be obtained from every target or

ĉ(Ri;M(k)) > ε̂CL, ∀i, i = 1, . . . , n (4.10)

Then, the solution to the informative path planning Problem 1 can be found by

computing the shortest path between the n regions.

The geometry of each neighborhood consists of the two congruent annular sec-

tors defined in Section 4.1. Multiple neighborhoods intersect at UUV configura-

tions that enable measurements from multiple targets. Under these properties and
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assumptions, the shortest UUV path visiting all of the target neighborhoods can

be found by solving the following generalized traveling salesman problem:

Problem 2 (GTSPN) Given a set of m neighborhoods,

R =

{
Rι : Rι ∈

n⋃
i=1

Vi, ι = 1, ...,m

}
(4.11)

find the minimum-time path that visits each neighborhood starting from the initial

UUV configuration q(0) ∈ C.

The solution of Problem 2 provides a time-optimal sensor path which is able to

classify all n targets in the ROI within a required expected classification confidence

level, in minimum time (assuming for simplicity that the UUV travels at a constant

speed). This generalized TSP problem seeks to find the shortest path that is

guaranteed to visit every neighborhood in a possibly disjoint set at least once.

Because an exact GTSPN solution is not available, the next section presents an

algorithm for finding an approximate solution to Problem 2.

4.3 Approximate Solution of GTSPN with Intersecting

Neighborhoods

Generalized forms of TSPs arise in many robot path planning and sensor coverage

problems requiring the minimization of time and energy consumption (e.g. [3, 54]

and references therein). Unlike traditional TSP formulations, in which an agent

must visit every node in a graph or every point in a Euclidian space, in generalized

TSPs (Fig. 4.3) the agent must visit any point in each (continuous) neighborhood

or in each discrete set of points at least once [13,73]. In generalized TSP (GTSP),
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also known as group TSP [26] or One-of-a-Set TSP [58], one seeks to find the

shortest tour that visits all of the predefined subsets of points at least once. In

TSP with neighborhoods (TSPN) one seeks the shortest tour that intersects every

continuous region at least once.

Figure 4.3: Graphical representations for the GTSP, TSPN, and GTSPN

As formulated in Problem 2, the UUV-based sonar path planning problem

corresponds to a GTSPN, because one seeks to find the shortest tour that visits

every neighborhood at least once, but each neighborhood consists of multiple (non-

Euclidean) regions [75]. In particular, the neighborhoods in Problem 2 are each

comprised of two disjoint continuous regions in the UUV configuration space:

Problem 3 (GTSPN in Configuration Space) Find the shortest tour that

visits every neighborhood in the set R = {R1, ..., Rm}, comprised of nι disjoint

continuous regions, i.e.,

Rι = {Sι,ξ : Sι,ξ ⊂ C, ξ = 1, ..., nι} , ι = 1, ...,m (4.12)

Furthermore, the UUV configuration space is a smooth manifold that is locally

like R3 but globally different. [49]. Nevertheless, the topology of C is the subset

topology derived from the Euclidean metric [50, pg. 85].

Then, the minimum-time path can be approximated by the shortest path given

the assumption on the constant UUV speed, and a distance metric can be defined as
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weighting the translating and rotating motions in the quotient space. GTSPN was

first introduced in a Euclidean space in [75] and solved using a Hybrid Random-Key

Genetic Algorithm (HRKGA). The high computational complexity of HRKGA was

later reduced using a decoupled algorithm transcribing the GTSPN into a GTSP by

first sampling a centroid of each region of every neighborhood set and, then, locally

adjusting the waypoint locations toward the neighborhood boundaries to improve

the solution [29]. A Growing Self-Organizing Array (GSOA) algorithm originally

proposed in [28] was also applied to GTSPN in [29]. These existing algorithms are

not ideally suited to solving Problem 3 because, when selecting waypoints, they do

not take into account intersecting neighborhoods, which contain the most valuable

configurations because they enable observations from multiple targets. Also, since

the UUV path does not necessarily require returning to the initial configuration

(tour), it is possible to first sample waypoints and, then, to compute their optimal

ordering.

This dissertation presents a new GTSPN solution approach, referred to as

IMVP, that is tailored to multi-view path planning and, thus, provides a more

efficient solution to Problem 3 than existing GTSPN methods. Unlike previous

methods, after constructing the m neighborhoods from the C-targets (as shown

in Section 4.1), the IMVP samples the neighborhood intersections using an ap-

proximate TSPN algorithm referred to as TSPN-Intersecting [27]. The TSPN-

Intersecting algorithm uses the hitting point set, defined as a set of waypoints from

each neighborhood, obtained such that a path connecting the hitting points inter-

sects every neighborhood. Then, the IMVP approach seeks to sample a minimal

number of hitting points by preferentially sampling the neighborhood intersections

of highest degree, as follows. A collection of subsets, referred to as minimal disjoint

coverage set, is defined such that the points sampled from each subset maximize
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the number of hitting points sampled from the intersection of neighborhoods (Fig.

4.4).

Figure 4.4: A minimal disjoint coverage set Q = {Q1, Q2, Q3} of the set of
neighborhoods R = {R1, ..., R5}.

Definition 3 (Minimal Disjoint Coverage Set) A set comprised of a mini-

mum number of regions,

Q = {Q1, ..., Qm′} (4.13)

is a minimal disjoint coverage set of R = {R1, ..., Rm} if the regions in Q are

pairwise disjoint, and there exists ζ ∈ {1, ...,m′} such that Qζ ⊂ Rι for ι = 1, ...,m.

Then, the number of the disjoint regions satisfies m′ ≤ m, and the equality

holds if the neighborhoods in R are disjoint, and Q = R. The greedy algorithm

summarized in Algorithm 1 is developed in order to compute the minimal disjoint

coverage set for a given IMVP neighborhood set, R. The greedy search replaces

any two intersecting regions with their mutual intersection for sampling. Each

element Qζ ∈ Q may consist of multiple disjoint continuous regions depending

on the geometry, position, and orientation of the neighborhoods in R. Thus, the

hitting pointset is extended to a collection of node sets, P = {P1, ..., Pm′}, such
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that each node set Pζ ⊂ Qζ , for ζ = 1, ...,m′, consists of points sampled from each

disjoint region in Qζ (Fig. 4.5). Different rules can be applied for sampling a point

from each disjoint region in Qζ : sampling a centroid if each region in Qζ is convex;

sampling a pole of inaccessibility [35] if regions in Qζ are not convex; sampling a

point on the boundary of each region in Qζ in order to obtain a shorter path. As a

result, Problem 3 is reduced to a GTSP that seeks the shortest path visiting every

node set in a collection P = {P1, ..., Pm′}, and, thus, can be solved efficiently as a

classical asymmetric TSP using Noon and Bean transformation [62].

Figure 4.5: A collection of nodesets P = {P1, P2, P3} from the minimal dis-
joint coverage set Q in Fig. 4.4. The shortest TSP tour is repre-
sented by a red line.

The previous sections show how, by considering the constraints and characteris-

tics of the UUV-based imaging sensor, the sensor path planning problem defined in

Problem 2 can be reduced to the general GTSPN in Problem 3 and, then, solved as

an asymmetric TSP. Now, the geometry of the sensor FOV can be used to further

simplify the computation required, as follows. In the case of a side-scan sonar (Fig.

2.1), each neighborhood consists of two congruent annular sectors (orange sectors

in Fig. 4.6) translated by an angle ψ = π, because of the periodic geometry of

the C-target. It can be easily shown that each element Qζ of the minimal disjoint
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Algorithm 1: Greedy Search for Minimal Disjoint Coverage Set

Require: R = {R1, ..., Rm}

Ensure: Minimal disjoint neighborhood set of R

initialize Q ← R

while every element in Q is not pairwise disjoint do

for all pairs of elements Qi ∈ Q and Qj ∈ Q do

if Qi ∩Qj 6= ∅ then

replace Qi and Qj with Qi ∩Qj

end if

end for

end while

return Q

coverage set Q (obtained by Algorithm 1) also consists of a pair of disjoint regions

that are congruent and translated by ψ = π. Thus, the projection of Qζ onto the

ROI is comprised of annular sectors, as shown in Fig. 4.6. In order to capture

not only acoustic highlights but also shadows of targets inside sonar images for

the purpose of classification, waypoints are chosen from the centroids (rather than

from the boundary) of each region in Qζ , as illustrated by the blue dots in Fig.

4.6, providing the node set Pζ ∈ P (ζ = 1, ...,m′). Robustness to navigation errors

and target uncertainty may be increased by choosing the waypoints directly using

the swath planning approach developed in MAC algorithm [7]. By this approach,

a waypoint characterized by the highest detection probability is chosen by consid-

ering the target field as a 2-dimensional Gaussian distribution and by modeling

the sensor profile as a function of its range. This sensor profile function allows to

model the degradation of sonar image quality as a function of range.
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Figure 4.6: Illustrative example of shortest path (green solid line) in UUV
configuration space obtained by IMVP algorithm for an initial
condition symbolized by a black cross, through sampled way-
points symbolized by blue dots.

A symmetric TSP is obtained based on the following observations. From the

neighborhood geometry, each node set Pζ consists of two UUV configurations char-

acterized by the same position but opposite headings, i.e.,

Pζ = {[xT(ζ) ψ(ζ,1)]
T , [xT(ζ) ψ(ψ,2)]

T}, ζ = 1, ...,m′ (4.14)

such that

|θ(ζ,1) − θ(ζ,2)| = π (4.15)

Then, the GTSP can be reduced to a symmetric TSP on a Euclidean plane which

seeks the shortest path visiting every waypoint position x(1), ...,x(m′) starting from

the given initial UUV configuration, q(0). From the waypoint positions, the short-

est path can be computed using an existing TSP solver, such as Lin-Kernighan

heuristic [52], by adding two dummy points: (1) xd,1, whose distances to all the

other points are zero; (2) xd,2, which is only connected to xd,1 and q(0) with zero dis-

tance. Adopting the LKH algorithm, in this dissertation, the path is obtained and,
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then, modified in order to take account for sensor’s heading angles and geometric

distortions of sonar images. This is accomplished by converting each waypoint q(ζ)

(ζ = 1, ...,m′) to a line segment of length d, i.e.,

τ(ζ) =

{
x ∈ R2 | x = xζ + t [cos θζ sin θζ ]

T , t ∈
[
−d

2
,
d

2

]}
(4.16)

where d is chosen by the user based on the sensor application. Visiting each

waypoint through this line segment path ensures that the UUV-based sonar is

able to observe targets while traveling along a straight path with constant heading

angle, as required for high image quality. Finally, the UUV path can be constructed

by choosing the heading angle as θ(ζ,1) or θ(ζ,2), based on which node sequence

results in the shortest path.

4.4 Computational Complexity Analysis

The IMVP solution algorithm is comprised of two steps: the first step is to obtain

a set Q of downselect discretized C-target regions characterized by satisfactory

ECL for every object in the ROI; the second step is to solve a TSPN problem

and produce the shortest path that visits all regions in Q at least once. Then,

the computational complexity of the first step is lower than O(n · 2M), because

checking every possible combinations of C-target regions takes
∑M

k=1

(
M
k

)
= 2M

steps, where M is the number of partitioned viewpoint regions in every C-target.

In this dissertation, the value M = 8 was found to provide a good approximation

to the C-target region for the chosen sensor FOV. Let L denote the number of

regions selected to meet the desired ECL (assumed equal for all targets for the

purpose of analysis only). Then, the next step of the TSPN solution (considering

intersecting neighborhoods) has at worse a complexity O(L2). The relative values
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of M and L, which depend on the target positions and characteristics, determine

which of the terms O(n·2M) and O(L2) dominates the complexity of the algorithm.

It can be seen that the leading term in the computational complexity is O(2M),

a term which derives from evaluating the ECL of every possible combination of

discretized C-target regions. When the maximum number of viewpoint regions

selected is fixed a priori, as in CMAC algorithms, this computation is reduced to

O(M), but the sensor may obtain more views than necessary in this case. Also,

computing neighborhood intersections requires computation O(L2), dictating the

computational complexity of the TSPN solution. The complexity of this com-

putation too may be reduced, in this case, by adopting a greedy TSPN solution

algorithm that does not consider neighborhood intersections. However, in this

case, the sensor path may suboptimal and, in particular, and require longer travel

times and more energy than the IMVP path solutions.
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CHAPTER 5

PHYSICS-INSPIRED SOLUTION TO TRAVELING SALESMAN

PROBLEM WITH UNIFORM CIRCLE NEIGHBORHOODS

5.1 Introduction and Overview

This chapter presents a new solution approach to GTSPN that exploits the in-

tersections of C-targets, or viewpoint regions, known to be critical to sensor path

planning because they enable sensors to observe multiple objects simultaneously,

thus reducing the operation time. The new GTSPN solution described in Chapter

4 employs heuristics that consider the intersection explicitly to obtain a shorter

path. However, computing the intersecting regions is computationally expensive

(Section 4.4) because all the possible pairs of neighborhoods must be considered

as described in Algorithm 1. The expense of this computation may prevent robots

with a limited onboard central processing units (CPUs), for example, to optimize

the path online and, potentially, account for new information such as images ob-

tained by other sensors or changed environmental conditions. Therefore, this chap-

ter introduces a new TSPN numerical solution approach that obtains neighborhood

intersections efficiently by means of recent computational geometry results [4,31].

For simplicity, the approach is described for TSPN, and is developed for uniform

circular neighborhoods. In future research, the approach will be extended to other

neighborhood geometries, as well as, potentially to GTSPN solutions.

Due to its high problem complexity, most of the existing TSPN solution meth-

ods employ simplifying assumptions on the neighborhoods, such as convexity, fat-

ness, and disjointness. For example, exact solution algorithm proposed in [36] for-

mulates the TSPN as a mixed-integer nonlinear programming (MINLP) for convex

33



polyhedral or ellipsoidal neighborhoods. The resulting global non-convex MINLP

solver was shown to be computationally feasible up to the 15 neighborhoods. An-

other heuristic algorithm for neighborhoods with arbitrary shapes characterized by

reasonable computational complexity was proposed in [2] and successfully demon-

strated for problems comprised of up to 17 neighborhoods. Other heuristic meth-

ods have been developed by focusing on proving their approximation factors, e.g.:

a constant-factor approximation for the neighborhoods with comparable diame-

ters [23], a constant-factor approximation for convex, fat, and disjoint neighbor-

hoods [22], and a O(log n)-approximation for arbitrary neighborhoods [27] (where

n is the number of neighborhoods). Also, evolutionary algorithms are proposed

in [19,82] to solve TSPN for neighborhoods comprised of disjoint circles.

Even with the above simplifying assumptions, existing algorithms remain ap-

plicable to small ses of neighborhoods, thus preventing onboard path computation

and adaptation for ROIs with many targets. Both space and time complexities

are critical to planning paths, thus the geometric approach developed in this chap-

ter seeks to closed-form representations of neighborhood intersections by means of

coverage cones that can be computed with low time and space complexities. Cov-

erage cones were originally developed and successfully applied to track coverage

problems in [4,31]. The novel geometric approach developed here adopts coverage

cones to efficiently compute a minimum hitting sets, which is a set of minimal

number of points such that all the given neighborhoods intersect with at least one

of the points in the set [26]. Then, a TSPN tour is constructed by shooting a light

ray that travels the shortest path based on Fermat’s principle (also known as the

principle of least time).

Assume the TSPN formulated in Problem 4 is characterized by n viewpoint
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regions (or neighborhoods) that equal n circles of equal circles that are not nec-

essarily disjoint. This chapter develops an efficient approximate solution to the

following problem:

Figure 5.1: Example problem and notations of TSPN with two unit circles.

Problem 4 (TSPN with Unit Circles) The traveling salesman problem with

neighborhoods (TSPN) with unit circles seeks to find the shortest tour that visits

n known unit circles in a Euclidean plane starting from and returning to point

p0 ∈ R2. For every circle Ci, the center xi ∈ R2 is known such that,

Ci , {x ∈ R2 | ‖x− xi‖ ≤ r2}, i = 1, . . . , n (5.1)

where r = 1.

Because p0 is given, it can be considered as another circular neighborhood with

zero radius. A hitting pointset, or set of waypoints, is defined as P ⊂
⋃n
i=1Ci, such

that P ∩ Ci 6= ∅ for i = 1, ..., n, as shown in Fig. 5.1 [26]. Then, the hitting point

set is defined as P = {p1, ...,pn}, where pi ∈ Ci for i = 1, ..., n. The sequence of

circles to visit is described as a permutation of the indices, Σ = (σ1, ..., σn), such
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that 1 ≤ σi ≤ n, for any pair σi, σj ∈ {1, ..., n}, where σi 6= σj. Then, the shortest

tour is computed by finding P and Σ such that the length of the tour,

L(P,Σ) ,
n∑
i=1

‖pi − pi−1‖+ ‖p0 − pn‖ (5.2)

is minimized.

5.2 Exact Solutions of TSPN with Two Unit Circles

As a first stpe, the exact solutions of TSPNs with two intersecting unit circles is

considered to understand how the shortest TSPN tour changes depending on the

circle’s positions. Intuitively, it can be seen that the shortest tour depends only on

the relative positions and on p0. The configuration of two circles is uniquely defined

as their angle of intersection [46]. The angle of intersection of two intersecting

circles, denoted by ϕ, is defined as the angle between their tangents at either

of the intersection points, as shown in Fig. 5.2(a). Two circles are said to be

orthogonal if and only if ϕ = π
2
, as shown in Fig. 5.2(b), and described in [21].

(a) (b)

Figure 5.2: (a) Angle of intersection definition, and (b) example of orthogo-
nal circles

In order to find the exact solution, x1 and x2 are considered in a Cartesian

coordinate. Without loss of generality, let x1 and x2 be located at A(−p, 0) and
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B(p, 0), where 0 ≤ p ≤ r. Then, the two intersecting points of the two circle’s

boundaries on the y-axis are denoted by C(p,
√
r2 − p2) and C ′(p,−

√
r2 − p2) as

shown in Fig. 5.3. The starting point p0 is located at D(k sinψ, k cosψ), where

−π ≤ ψ ≤ π and k > 0. Let θ1 and θ2 denote the angles of (p1−x1) and (p2−x2)

with respect to the x-axis counterclockwise and clockwise, respectively. Then, p1

is located at E(−p+ r cos θ1, r sin θ1), and p2 is located at F (p− r cos θ1, r sin θ1),

0 ≤ θ1, θ2 ≤ 2π. Note that the relationship between the angle of intersection and

Figure 5.3: TSPN with two intersecting unit circles specified in terms of pa-
rameters p, k, θ1, θ2, and ψ

the the distance between two centers is,

ϕ

2
= arccos (

p

r
) (5.3)

where 0 ≤ ϕ ≤ π and 0 ≤ p
r
≤ 1. Based on the relative values of the above TSPN

parameters, the optimal solution falls into one of the special cases described in the

following subsections.
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5.2.1 Case Study: Symmetric Configurations

First case study is performed to identify the circle configurations that the exact

TSPN solutions visit the neighborhoods intersections. For simplicity, the case in

which C, C ′, and D are collinear, i.e., the starting point is on the y-axis, as shown

in Fig. 5.4, is considered. It can be seen that E and F are symmetric about the

y-axis, thus let θ1 = θ2 = θ, such that ϕ
2
≤ θ ≤ π

2
and k >

√
r2 − p2. Now, let

θ∗ denote the optimal value of θ. Then, the following result provides the optimal

TSPN solutions for n = 2.

Figure 5.4: Symmetric configuration in TSPN on two unit circles

Proposition 1 If 0 ≤ ϕ ≤ π
2
, the optimal angle θ∗ = ϕ

2
provides the shortest

TSPN tour in terms of the waypoints {D,C,D} C.

Proof: Based on the configuration in Fig. 5.4,

CD = k −
√
r2 − p2 (5.4)

DE =
√

(k − r sin θ)2 + (r cos θ − p)2 (5.5)
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1

2
EF = p− r cos θ (5.6)

Then, the half of the TSPN tour length is

f(θ) = DE +
1

2
EF (5.7)

=
√

(k − r sin θ)2 + (r cos θ − p)2 + p− r cos θ (5.8)

Since f(θ) is convex, θ∗ = ϕ
2

if and only if df(θ)
dθ

∣∣∣
θ=ϕ

2

≥ 0.

df(θ)

dθ
=

−kr cos θ + pr sin θ√
(k − r sin θ).2 + (p− r cos θ).2

+ r sin θ (5.9)

Because cosϕ = p
r
, sinϕ =

√
r2−p2
r

, and k >
√
r2 − p2

d

dθ

∣∣∣
θ=ϕ

2

=
−kr cosϕ+ pr sinϕ√

(k − r sinϕ).2 + (p− r cosϕ).2
+ r sinϕ (5.10)

=
−kp+ p

√
r2 − p2√

(k −
√
r2 − p2).2 + (p− p).2

+
√
r2 − p2 (5.11)

=
p(−k +

√
r2 − p2)

k −
√
r2 − p2

+
√
r2 − p2 (5.12)

= −p+
√
r2 − p2 (5.13)

Then, −p +
√
r2 − p2 ≥ 0 if and only if 0 ≤ p ≤ 1√

2
r. Therefore, from (5.3),

θ∗ =≤ ϕ
2

if and only if 0 ≤ ϕ ≤ π
2
. �

Proposition 2 If π
2
< ϕ ≤ π, the optimal angle satisfies θ∗ > π

2
, and the shortest

tour does not visit the intersection of two circles, and, instead, visits two different

waypoints in each circle.

Proof: Similarly to Proposition 1, θ∗ > ϕ
2

if and only if df(θ)
dθ

∣∣∣
θ=ϕ

2

< 0. Also,

−p +
√
r2 − p2 < 0 if and only if p > 1√

2
r. Therefore, from (5.3), θ∗ > ϕ

2
if and

only if π
2
< ϕ ≤ π

2
. �
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Figure 5.5: Exact TSPN solution when (a) ϕ = 5π
6

(b) ϕ = 2π
3

(c) ϕ = π
2
,

starting from a black cross.
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Figure 5.6: (a) Exact TSPN solutions when ϕ = π
3

starting from a black
cross; (b) a zoomed view of (a)
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Note that whether the shortest tour visits the intersection is independent of the

k value of the initial position, parameterized by k. In other words, the shortest tour

may or may not visit the circles’ intersection depending on the angle of intersection,

regardless of the position of the starting point. Numerical examples illustrating

Propositions 1 and 2 are shown in Figs . 5.5 and 5.6, respectively.

5.2.2 General Case: Asymmetric Configurations

The symmetric circles results in the previous subsection motivate the theoretical

results on the angle of intersection of the two circles in the TSPN solution. This

section considers the general cases when ψ is not necessarily zero but in which the

angle of intersection can take any value, or, more precisely, ψ ∈ [−π, π]. The results

proven in this section are utilized to develop efficient TSPN solutions for n > 2

in the remainder of the chapter. The numerical results in Section 5.4 demonstrate

the efficiency of the proposed solution for TSPNs commonly arising in directional

sensor planning problems and IMVP solutions.

Two Intersecting Circles with Angle of Intersection ϕ, where ψ
2
< ϕ ≤ π

When the two intersecting circles satisfy π
2
< ϕ ≤ π, the initial position deter-

mines the optimal tour. In particular, whether the starting point is included in

two intersection cones decides the exact TSPN solution. The intersection cones,

denoted by K+ and K−, are defined as a set of transversals that are in between

the two line transversals that passes each circle center and the intersection of two

circles’ boundaries, as shown in Fig. 5.7.

Let x+ and x− denote the two intersecting points of the two circles’ boundaries.
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Figure 5.7: Intersection cones constructed by two intersecting unit circles

Then, the unit vectors from x1 and x2 to x+ are denoted by t+1 and t+2 , respectively,

and defined as

t+1 =
x+ − x1

‖x+ − x1‖
; t+2 =

x+ − x2

‖x+ − x2‖
(5.14)

These two unit vectors with respect to x+ are referred to as the lower and upper

vectors of the intersection cone K+. The intersecting point x+ corresponds to the

apex of the intersection cone K+. Similarly, let unit vectors t−1 and t−2 with respect

to x− be defined as

t−1 =
x− − x1

‖x− − x1‖
; t−2 =

x− − x2

‖x− − x2‖
(5.15)

Then, the two unit vectors t−1 and t−2 are referred to as the lower and upper vectors

of the intersection cone K−. The intersecting point x− corresponds to the apex of

the intersection cone K−. The intersection cones for the two intersecting TSPN

circles are defined as

K+ = cone(t+1 , t
+
2 ,x

+) , {α1t
+
1 + α2t

+
2 + x+ | α1, α2 ∈ R+} (5.16)

K− = cone(t−1 , t
−
2 ,x

−) , {α1t
−
1 + α2t

−
2 + x− | α1, α2 ∈ R+} (5.17)
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The exact TSPN solution is then found based on the position of p0 relative to

K+ ∪ K−, which is summarized in the following Propositions 3 and 4. Example

simulation results for Propositions 3 and 4 are included in Fig. 5.8 and 5.9, re-

spectively. To summarize, the exact TSPN solution visits the intersection of two

circle’s boundaries, x+ or x− , if p0 ∈ K+ ∪K−. Otherwise, the exact TSPN solu-

tion aligns with the line segment that connects p0 and either of x1 or x2, whichever

is farther from p0.

Proposition 3 If the starting point p0 satisfies p0 ∈ K+∪K−, the shortest TSPN

tour visits x+ or x−, and thus, simply finding the closest point inside C1∩C2 from

p0 results in the exact TSPN solution.

Proposition 4 If the starting point p0 satisfies p0 /∈ K+∪K−, the shortest TSPN

tour visits the waypoints p1 ∈ C1 and p2 ∈ C2 such that either p0,p1,p2 and x1 are

collinear or p0,p1,p2 and x2 are collinear. In other words, the exact TSPN tour

can be computed by finding the closest point from p0 to either C1 or C1, whichever

is farther from p0.

Two Intersecting Circles with Angle of Intersection ϕ, where 0 ≤ ϕ ≤ π
2

When the two intersecting circles satisfy 0 ≤ ϕ ≤ π
2
, the initial position determines

the optimal tour. In particular, whether the starting point is included in two

tangential cones decides the exact TSPN solution. The tangential cones, denoted

by T + and T −, are defined as a set of transversals that are in between the two

tangential lines from x1 to C2 and from x2 to C1, as shown in Fig. 5.10.

Let u+ and u− denote the intersections of the two tangent lines to each circle
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Figure 5.8: Simulation results of Proposition 3 (a) ϕ = π
6

and (b) ϕ = π
3
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Figure 5.9: Simulation results of Proposition 4 when (a) ϕ = π
6

and (b) ϕ = π
3
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Figure 5.10: Tangential cones constructed by two intersecting unit circles

C1 and C2 from x2 and x1 on the two sides of the circles. Then, two unit vectors,

denoted by u+
1 and u+

2 , are defined as the unit vectors representing lower and upper

bounds of the tangential cones.

u+
1 =

u+ − x1

‖u+ − x1‖
; u+

2 =
u+ − x2

‖u+ − x2‖
(5.18)

These two unit vectors with respect to u+ are referred to as lower and upper vectors

for the tangential cone T +. Similarly, unit vectors u−1 and u−2 are defined as

u−1 =
u− − x1

‖u− − x1‖
; u−2 =

u− − x2

‖u− − x2‖
(5.19)

These two unit vectors with respect to u− are referred to as lower and upper vectors

for the tangential cone T −. Two tangential cones T + and T − are defined as

T + = cone(u+
1 ,u

+
2 ,u

+) , {α1t
+
1 + α2u

+
2 + u+ | α1, α2 ∈ R+} (5.20)

T − = cone(u−1 ,u
−
2 ,u

−) , {α1u
−
1 + α2u

−
2 + u− | α1, α2 ∈ R+} (5.21)

The exact TSPN solution is then found based on the position of p0 relative to

T + ∪ T −, which is summarized in the following Propositions 5 and 6. Example

simulation results for Propositions 5 and 6 are shown in Fig. 5.11 and 5.12, re-

spectively. To summarize, the exact TSPN solution does not visit the intersection

45



of two circles but visits each circle via two different waypoints if p0 ∈ T + ∪ T −.

Otherwise, the exact TSPN solution aligns with the line segment that connects p0

and either of x1 or x2, whichever is farther from p0.

Proposition 5 If the starting point p0 satisfies p0 ∈ T +∪T −, the shortest TSPN

tour visits two different waypoints p1 ∈ C1 and p2 ∈ C2 such taht p1,p2 /∈ C1∩C2.

Proposition 6 If the starting point p0 satisfies p0 /∈ T +∪T −, the shortest TSPN

tour visits the waypoints p1 ∈ C1 and p2 ∈ C2 such that either p0,p1,p2 and x1 are

collinear or p0,p1,p2 and x2 are collinear. In other words, the exact TSPN tour

can be computed by finding the closest point from p0 to either C1 or C1, whichever

is farther from p0.
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Figure 5.11: Simulation results of Proposition 5 when ϕ = π
6
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Figure 5.12: Simulation results of Proposition 6 when ϕ = π
6

5.2.3 Fermat’s Principle Application to TSPN Solution

This subsection introduces the proof of Proposition 3 and 5 based on Fermat’s

principle. In the proof of Proposition 3 and 5, it is necessary to show whether

the shortest TSPN tour visits the intersection of two circles. Based on Fermat’s

principle, which says the light takes the path of least time, if the TSPN tour does

not visits the intersection of the two circle’s boundaries, the exact TSPN solution

corresponds to the light ray path that travels from p0, reflects at p1 ∈ C1 and

p2 ∈ C2 such that p1,p2 /∈ C1 ∩C2, and then travels back to p0, following the law

of reflection (Fig. 5.13). Thus, if such light ray-like TSPN tour does not exist, the

exact TSPN solution visits the intersecting point of the two circle’s boundaries.

Proposition 4 and 6 are skipped as the proof is intuitive.

In the following proofs, the TSPN circles, starting point, and waypoints are

represented in a Cartesian coordinate system, as shown in Fig. 5.3. Without loss

of generality, the circle centers x1 and x2 are located at A(−p, 0) and B(p, 0),
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Figure 5.13: Fermat’s principle used to prove Propositions 3 and 5.

where 0 ≤ p ≤ r and r is the circle radius. The starting point is represented

by D(k sinψ, k cosψ), where −π ≤ ψ ≤ π and k > 0, similarly to Fig. 5.3. Let

θ1 and θ2 denote the angles of (p1 − x1) and (p2 − x2) with respect to the x-

axis defined in counterclockwise and clockwise, respectively. Then, p1 is located

at E(−p + r cos θ1, r sin θ1), and p2 is located at F (p − r cos θ1, r sin θ1), and 0 ≤

θ1, θ2 ≤ 2π.

Proof of Proposition 3

The proposition 3 is proven by showing that there does not exist a TSPN tour

that corresponds to the light ray path that travels from p0, reflects at p1 ∈ C1

and p2 ∈ C2 such that p1,p2 /∈ C1 ∩ C2, and then travels back to p0. Assume

that p1,p2 /∈ C1 ∩ C2. Then, there exist θ1, θ2 ∈ (ϕ
2
, π
2
) such that the TSPN tour

consisting of DE,EF and FD follows the law of reflection at E and F . Without

loss of generality, let θ1 ≤ θ2. Let
−−→
EE ′ and

−−→
FF ′ represent the reflected light rays

at E and F , respectively.
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Figure 5.14: TSPN on two intersecting unit circles denoted in Cartesian co-
ordinate for the case in Proposition 3

Because E(−p + r cos θ1, r sin θ1) and F (p − r cos θ2, r sin θ2), the slope of EF

is

tanα =
2p− r cos θ1 − r cos θ2
r sin θ2 − r sin θ1

(5.22)

and 0 ≤ α < π
2

since θ1 ≤ θ2. This angle is illustrated by red sector in Fig. 5.14.

Then,

∠E ′EF = 2(θ1 − α) (5.23)

∠F ′FE = 2(θ2 + α) (5.24)

by the law of reflection.

The starting point of the shortest TSPN tour is the intersection of two rays

−−→
EE ′ and

−−→
FF ′. Therefore,

∠E ′EF + ∠F ′FE < π (5.25)
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by triangle postulate. Equation (5.25) is equivalent to

θ1 + θ2 <
π

2
(5.26)

However, by the assumption at the beginning, ϕ
2
< θ1 <

π
2

and ϕ
2
< θ2 <

π
2
.

Thus,

π

2
< ϕ < θ1 + θ2 (5.27)

Thus, by contradiction in equations (5.26) and (5.27), we prove that p1,p2 ∈

C1 ∩ C2. Then it is obvious that the shortest TSPN tour satisfies p1 = p2 ∈

∂C1 ∩ ∂C2.

�

Proof of Proposition 4

Proposition 4 is proven by showing that the waypoints of the shortest TSPN tour,

p0, p1, and p2, are collinear with x1 or x2. Let

f(θ1, θ2) = DE + EF + FD (5.28)

denote the length of one TSPN tour, not necessarily the shortest. Then,

DE ≥ ‖x1 − p0‖ − r (5.29)

and the equality holds when x1, p0, and p1 are collinear. From triangle inequality,

DE ≤ EF + FD (5.30)

and the equality holds when p0, p1, and p2 are collinear. Therefore,

f(θ1, θ2) ≥ 2DE ≥ 2(‖x1 − p0‖ − r) (5.31)
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The equality holds when x1, p0, p1, and p2 are collinear. Therefore, the shortest

TSPN tour satisfies that x1, p0, p1, and p2 are collinear.

�

Note that the proof of Proposition 6 is omitted as the proof is identical to the

one of Proposition 4. The proof of Proposition 5 is omitted as the proposition

corresponds to the Fermat’s principle.

5.3 Physics-Inspired Solution: LKH-Geometric Algorithm

The theoretical results in this section are inspired by the observation that the

shortest TSPN tour resembles the light ray path that, traveling from a starting

point, reflects on circular mirrors corresponding to the TSPN unit circles and,

then, travels back to the starting point. Figure 5.15(a) includes some illustrative

examples of exact TSPN solutions with starting points at (−3, 0.5) and (−1, 1)

corresponds to the light rays reflected by a circular mirror corresponding to the

unit circle centered at (2.7, 0) (red circle). The other exact TSPN solutions in

Fig. 5.15(a) corresponds to the light rays that is reflected by two circles centered

at (2.7, 0) and (0, 0) (red and green circles). Note that the exact solution that

resembles a light ray path is reflected to a subset of the given circles as circular

mirrors, while the light ray passes through the other circles. It is also observed

that, when such a light ray path does not exist, the exact TSPN solution visits at

least one intersection of the given circles’ boundaries. The examples to support

this conjecture are shown in Figures 5.9 and 5.15(b).

Unfortunately, computing a light ray path that starts from a given point, re-
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Figure 5.15: Exact TSPN solutions from various initial points (denoted by
black crosses) are shown in two different circle configurations
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flects to some circular mirrors, and then travels back to the exact starting point

is computationally intractable due to the characteristics of chaotic scattering [72].

Therefore, this dissertation develops a computational geometry approach that com-

putes a light like path by means of coverage cones proven to contain the line

transversals of family of intersecting circles. In the context of this dissertation,

a coverage cone can be interpreted as a set of light ray from its apex, and the

intersection of a light ray and circle’s boundary can be regarded as the point of re-

flection. While this coverage concept can find the exact position inside each given

circle that the TSPN visits, the order of visiting circles can be found using existing

TSP algorithms. In this dissertation, LKH algorithm [52] is used to compute the

TSP tour of visiting each circle center from the given starting point because of its

robustness and performance on computing (near-)optimal solution.

5.3.1 k-Coverage Cone

A coverage cone is defined for each circular neighborhood with respect to a given

apex such that any line that is a subset of the coverage cone transverses the

neighborhood [4]. When multiple non-disjoint circles exist, the lines that traverse

their intersections can be proven to lie inside a so-called k-coverage cone obtained

by simple manipulations of unit vectors [4, 31]. When multiple Given an apex

p0 ∈ R2, let K(Ci,p0) denote the coverage for a circle Ci centered at xi ∈ R2 with

a radius ri = 1, for i = 1, ..., n. The position of the center of the Circle Ci relative

to the apex p0 can be expressed by

vi = xi − p0 (5.32)

as illustrated in Fig. 5.16. Let θi denote the half of the apex angle of K(Ci,p0).
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Figure 5.16: Definition of the coverage cone for a given circle Ci centered at
xi and an apex p0

Based on the trigonometric relationships,

sin θi =
ri
‖vi‖

(5.33)

cos θi =

√
‖vi‖2−r2i
‖vi‖

(5.34)

The two unit vectors that define the boundary of K(Ci,p0), denoted by ĥi and l̂i,

can be expressed using vi and θi

ĥi =

cosλi

sinλi

 =

cos θi − sin θi

sin θi cos θi

 vi
‖vi‖

(5.35)

l̂i =

cos γi

sin γi

 =

 cos θi sin θi

− sin θi cos θi

 vi
‖vi‖

(5.36)

Therefore, the coverage cone of Ci with respect to the apex p0 can be defined as

K(Ci,p0) = cone(̂li, ĥi)

= {x ∈ R2 | x = c1l̂i + c2ĥi, c1, c2 ≥ 0}
(5.37)

For k circles, namely S = {C1, ..., Ck}, if there exists a region such that all

coverage cones intersect, i.e., ∩ki=1K(Ci,p0) 6= ∅, the k-coverage cone can be defined
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Figure 5.17: A k-coverage cone (k = 4) of four circles and an apex p0

such that any line in the k-coverage cone transverses all k circles in S. The k-

coverage cone can be defined as ordering vectors. Taken from [4], the order of

two vectors, ui ∈ R2 and uj ∈ R2, can be defined as follows. The two vectors are

said to be ordered according to the xy-frame (denoted by ui � uj) when these

vectors are translated to make their origins coincide and ui is rotated through the

smallest angle possible to meet uj, where this rotation is in the same direction as

the orientation of the xy-frame. Based on this notation, let us define two vectors,

ĥ∗ = ĥι and l̂∗ = l̂, with ι,  ∈ {1, ..., k} such that ĥι � ĥi and l̂ � l̂i for

∀i ∈ {1, ..., k}. Then, the k-coverage cone for S = {C1, ..., Ck} exists if and only if

l̂∗ � ĥ∗. Provided that l̂∗ � ĥ∗, the k-coverage cone for a set of neighborhoods S

with an apex p0 is defined as

Kk(S,p0) = cone(̂l∗, ĥ∗) (5.38)

as illustrated in Fig. 5.17. Any line in the k-coverage cone is a line transversal to

the k neighborhoods and defined as follows. Defining a unit vector

t̂(θ) =

cos θ

sin θ

 (5.39)
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a line transversal in Kk(S,p0) is defined as

l(p0, θ) = {x ∈ R2 | x = p0 + dt̂(θ), d ≥ 0} (5.40)

where θ ∈ (γ∗, λ∗), such that l̂∗ = [cosλ∗ sinλ∗]T and ĥ∗ = [cos γ∗ sin γ∗]T .

5.3.2 LKH-Geometric Algorithm

This dissertation proposes a novel solution to TSPN on uniform circles, namely

LKH-Geometric, which computes the shortest TSPN tour using LKH algorithm

and k-coverage cone. In a nutshell, the proposed LKH-Geometric finds the order

of circles to visit using the existing LKH algorithm, and then, computes the exact

waypoint inside each circle using k-coverage cone. The detailed description on the

LKH-Geometric follows in this subsection.

As a first step, the LKH algorithm is used to compute a TSP tour of visiting all

circle centers, x1, ...,xn, from the given starting point p0. The computed sequence

of circles to visit is denoted by ΣLKH = (σ1, ..., σn), where σi ∈ {1, ..., n}, σi 6= σj

for i 6= j, and xσi ∈ {x1, ...,xn}. In Fig. 5.18(a), for the given four circles centered

at x1, ...,x4, the TSP tour computed by LKH algorithm is illustrated in blue color,

and the sequence is ΣLKH = (1, 2, 3, 4).

After computing the sequence of visiting circles, ΣLKH , the exact waypoint

inside each circle is computed using k-coverage cone. The resulting TSPN tour is

represented by a sequence of waypoints denoted by P = (p0,pσ1 , ...,pσn ,p0). Note

that it is possible to have pσi = pσj for some σi and σj when that waypoint lets the

TSPN tour to visit both Cσi and Cσj . After initializing the sequence of waypoints

by P = (p0), the LKH-Geometric repeats the following steps until all the circles

are visited.
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Figure 5.18: Diagrams illustrating detailed steps in LKH-Geometric algo-
rithm: blue line indicates TSP tour computed by LKH; shaded
cones illustrate k-coverage cone computation; thick red line and
dots denote TSPN tour and chosen waypoints, respectively
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First, from the current waypoint pσi , k-coverage cone is computed for

{Cσi+1
, ..., Cσi+k

} with the maximum k value such that k-coverage cone exists.

This k-coverage cone is denoted by Kk({Cσi+1
, ..., Cσi+k

},pσi) following the nota-

tion (5.38). In Fig. 5.18(a), the k-coverage cone is constructed with k = 3 for

{C1, C2, C3} from the current waypoint p0. In Fig. 5.18(b), the k-coverage cone is

constructed with k = 1 for {C4} from the current waypoint p1 = p2 = p3 on ∂C2.

Next, Once the k-coverage is computed, a line transversal defined in

(5.40) is used to compute the next waypoint. A line transversal l(pσi , θ) in

Kk({Cσi+1
, ..., Cσi+k

},pσi) is chosen such that |pσi − p∗| + |p∗ − xσi+k+1
| is min-

imized, where p∗ is a point on l(pσi , θ) such that a line segment from pσi to p∗ is

the minimum-length segment to visit all the circles in {Cσi+1
, ..., Cσi+k

}. Following

the definition of P , xσn+1 is considered as p0. In Fig. 5.18(a), several line transver-

als are illustrated in thin ornage lines, and the one with p∗ is illustrated in a thicker

red line. This step of finding the next waypoint is inspired by physics, although

the resultant TSPN tour is not identical to the light ray path. Then, the next

waypoints become pσi+1
= ... = pσi+k

= p∗. The description of LKH-Geometric is

summarized in Algorithm 2.

5.4 Numerical Experiment Results on LKH-Geometric

The LKH-Geometric algorithm is tested for comparison on the benchmark dataset

from TSPLIB [67], which a library of TSP instances. The TSPN instances are

generated based on the dataset from TSPLIB, by considering the given TSP points

as circle centers and choosing a uniform radius based on the overlap ratio similarly

to [28]. A starting point is chosen from the given circle centers in each TSP instance
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Algorithm 2: LKH-Geometric

Require: circle centers x1, ...,xn, uniform radius r, starting point p0

Ensure: a sequence of waypoints consisting a TSPN tour P

(1) Compute a sequence of a TSP tour ΣLKH = (σ1, ..., σn) that visits the circle

centers x1, ...,xn from p0

(2) Initialize P ← p0 and i← 0; Set pσ0 = pσn+1 = p0

while i < n do

(3-a) Find a k-coverage cone for circles Cσi+1
, ..., Cσi+k

with maximum k such

that Kk({Cσi+1
, ..., Cσi+k

},pσi) exists

(3-b) Find a waypoint p∗ on a line transversal l(pσi , θ) inside

Kk({Cσi+1
, ..., Cσi+k

},pσi) such that |pσi − p∗| + |p∗ − xσi+k+1
| is minimized

with respect to θ.

(3-c) P ← pσi+1
, ...,pσi+k

, where pσi+1
= ... = pσi+k

= p∗; i← i+ k

end while

return P

and defined as a circle with a zero radius.

The overlap ratio, denoted by R, is defined as the ratio of the uniform radius

to the length of the smallest square containing all n disks [55]. A set of circles

with a smaller overlap ratio tends to have less intersection of circles compared to

the one with a larger overlap ratio. In Fig. 5.19, the TSPN solution computed

by LKH-Geometric is compared with the TSP tour computed by LKH. When the

overlap ratio is small, R = 0.02 (Fig. 5.19(a)), the TSPN solution doest not

deviate significantly from the TSP solution computed for circle centers, because

there is not significant room to choose a waypoint that can visit multiple circles

at once. However, as the overlap ratio increases to R = 0.1 and R = 0.3 (Figures
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5.19(b) and 5.19(c)), the TSPN solution from LKH-Geometric reduces the tour

length from TSP solution from LKH by visitng multiple circles though a single

pass, which is computed from a transversal inside k-coverage cone.
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Figure 5.19: The TSPN solution from LKH-Geometric and TSP solution
from LKH algorithms for the dataset ‘kroD100’ with (a) small
overlap ratio R = 0.02 (b) moderate overlap ratio R = 0.1 and
(c) high overlap ratio R = 0.3

The performance of the proposed LKH-Geometric algorithm, in terms of TSP

tour length, is analyzed by comparing the length of the TSP tour that visits all

of the circle centers obtained by LKH. Since the TSP tour computed by LKH is

used as a reference, its length is denoted by Lref . Let L denote the length of
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the TSPN tour computed by LKH-Geometric approach. Then, by L, the percent

improvement of LKH-Geometric over LKH is given by, can be defined as

γ =
(Lref − L)

Lref
× 100[%] (5.41)

The percent improvement is computed for three overlap ratios using the datasets

‘kroD100’, ‘rat195’, ‘lin318’, ‘rd400’, ‘pcb442’, ‘d493’, in which the total number

of circles is equal to n = 100, n = 195, n = 318, n = 400, n = 442, n = 493,

respectively. For every test case consisting of different dataset from TSPLIB and

overlap ratio, the improvement was computed by taking average of 100 simulation

results. However, the standard deviation was not plotted because of the low order

of mangitude, which was smaller than 10−15. The standard deviation is small due to

the high robustness of LKH algorithm, because the steps (2) to (3-c) in Algorithm

2, which computes the waypoints using k-coverage cone is deterministic.

 

𝛾𝛾 

Figure 5.20: The percent improvement γ of LKH-Geometric over LKH plot-
ted for different overlap ratio, R, and number of neighborhoods,
n.

In Fig. 5.20, the percent improvement of LKH-Geometric over LKH tends to
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increase as the overlap ratio increases. This is because, as illustrated in Fig. 5.19,

LKH-Geometric can choose waypoints such taht the TSPN tour can visit multiple

circles via single pass. The percent improvement is less dependent on the number

of circles, because LKH-Geometric chooses the waypoints using k-coverage cone,

which varies depending on the circle’s configuration, especially on how much the

circles overlap.

Finally, the computation time afforded by the LKH-Geometric algorithm is

compared with the state-of-the-art solver known as Growing Self-Organizing Array

(GSOA) [28]. The computational complexity of GSOA is bounded by O(n2), and

the time complexity of LKH is also O(n2), as also illustrated in Fig. 5.21 [28, 39].

The steps (2) to (3-c) in Algorithm 2 are characterized by a time complexity

of order of O(n log n), because the coverage cone has to be sorted in waypoint

planning. Although the dominant term is O(n2), the total computation time of

LKH-Geometric remains lower than that of GSOA. The advantage of the LKH-

Geometric over GSOA is that, by using the coverage cones, a TSPN solution similar

to GSOA can be obtained without the use of any prior data, also is required by

TSPN methods based on unsupervised learning or evolutionary algorithms.

In future work, the LKH-Geometric solution will be further improved and, then,

extended to non-uniform circular neighborhoods that are either equal to or are

contained by the neighborhoods. By solving the TSPN path planning formulation

in Problem 2, the most efficient directional sensor path solution to the IMVP

Problem 2 is found. The effectiveness of the IMVP solutions compared to state-

of-the-art planners is demonstrated in the next chapter using both simulated and

real UUVs engaged in underwater target classification.
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Figure 5.21: Computation time complexity of LKH-Geometric compared
with GSOA and LKH.
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CHAPTER 6

SIMULATION RESULTS AND SEA TEST DEMONSTRATION

The novel IMVP approach presented in this dissertation is first demonstrated

on an integrated physics-based simulation dataset of a UUV-based side-scan sonar

developed by Dr. Isaacs at NSWC. In this simulation, the dynamics of the UUV

are modeled based on the REMUS 100 autonomous underwater vehicle using six

degrees-of-freedom nonlinear equations of motion [33]. A pair of side-scan sonar

sensors mounted on the UUV are simulated by generating images obtained from the

sensor FOV by beamforming the time domain signals using ω−k beamforming [41].

Other beamforming techniques, such as time-delay and chirp scaling, can also

potentially be utilized [37]. As can be seen in Fig. 6.2, objects of interest exhibit

strong highlights with varying shadows depths that, while not necessarily unique

to objects of interest, provide information about the object features and class.

After the image is generated by traveling along a straight line, l = 3 m, the ATR

algorithm described in Chapter 3, taken from [85], is used to classify objects that

have been detected in sonar imagery and to distinguish them from clutter and

sea-floor ripples.

The simulated sonar FOV geometry is characterized by the minimum and max-

imum ranges rmin = 15 m and rmax = 150 m, respectively. Once the UUV tra-

jectory is planned by the IMVP approach, the UUV motion is controlled by a

proportional-integral-derivative (PID) controller that determines the UUV stern

angle, rudder angle, and propeller revolution per minute (RPM) for accurate tra-

jectory following. For simplicity, in this dissertation it is assumed that the UUV

position and the target information are provided relative to the inertial frame FW ,

inside an ROI W = [−L,L] × [−L,L] × [0, H], where L = 1200 m and H = 50
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Table 6.1: Integrated UUV-based sonar simulation variables and respective
ranges.

Symbol Nodes Domain

Yi Target classification Y = {0, 1}

Xi1 Target shape feature X1 = {sphere, cylinder}

Xi2 Target volume feature defined as the

cube root of target volume [m]

X2 =

{[0, 0.16), [0.16, 0.30), [0.30, 1.1), [1.1, 1.7]}

qTi Target state R2 × S1

q UUV configuration C

Λi Relative UUV configuration at time

with respect to the ith target

Vi

Ŷi Estimated target classification Y

X̂i1 Estimated target shape features X1

X̂i2 Estimated target volume feature X2

m. A target field is generated by sampling a database of underwater objects with

the characteristics summarized in Table 6.1 and by distributing the objects in the

ROI randomly and uniformly, or in random clusters that replicate real-world ob-

ject fields. Each underwater object may be classified as a target of interest (TOI),

yi = 1, or clutter, yi = 0, based on its features. As shown in Table 6.1, target

features available in the sonar simulation are shape (Xi1) and volume (Xi2), i.e.,

Xi = {Xi1, Xi2}.

From the target features estimated from the sonar imagery, denoted by Zi =

{X̂i1, X̂i2}, the class of the ith object, Ŷi, is inferred using the measurement model

provided by the joint PMF in Section 2, learned from a training database of 260

objects using the ATR approach in [85]. A different database comprised of 260
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objects, randomly sampled from the simulation database and not included in the

training database, is then used to generate the target fields for the simulated ROI

and, subsequently, for testing the path planning algorithms presented in this disser-

tation. Three classification sets of increasing difficulty are used in this dissertation.

The first classification set, labeled as Set A, contains objects that can be classified

as TOIs based solely on their volume. The second classification set, labeled as

Set B, contains objects that can be classified as TOIs based on both their volume

and their shape. The third classification set, labeled as Set C, consists of the

same objects as Set B but is characterized by harsher simulated environmental

conditions.

The IMVP solutions are first demonstrated using two high-fidelity simulation

environments and, then, tested on a real UUV swimming in the Saint Andrew Bay

area in Panama City, FL, as explained in the following sections.

6.1 IMVP Results

The IMVP approach developed in this dissertation is tested on a variety of target

fields and compared to the state-of-the-art multi-view planning methods known as

multiple aspect coverage (MAC) and clustered MAC (CMAC) [6–8, 61, 70]. Be-

cause the objects’ locations and features used for classification all influence the

UUV-based sensor performance, the IMVP approach is demonstrated first by con-

sidering different object layouts (Section 6.1.1) and, then, different classification

sets (Section 6.1.2) using the simulation environment described in Section 6. The

computational complexity of the IMVP solution algorithm proposed in Section 4.3

is analyzed in Section 4.4.

The IMVP performance is evaluated based on the following metrics: (i) the
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travel time (T ) required to classify all targets with a minimum confidence level

εCL; (ii) the total number of contacts (N) per travel time; and, (iii) the average

confidence level of the targets of interest classified along the path. Unlike existing

multi-view planning methods, which take into account only the location of the

targets, IMVP seeks to minimize the travel time and images processed by the

sensor by selecting only the most informative views. In order to demonstrate that

the desired classification confidence is met by the IMVP planner, the actual CL of

all TOIs (yi = 1) in the ROI is evaluated by the ATR algorithm (Chapter 3) and,

then, averaged obtaining the following performance metric

c̄T =
1

n′

∑
{i | yi=1}

c(Yi;Mi(K)) (6.1)

Because the CL threshold (εCL) is only required for TOIs, the average is taken

over the total number of TOIs in the region (n′), not including clutter.

The IMVP classification performance is also evaluated by assessing classifica-

tion accuracy (CA), false alarm ratio (FA), and missed detection ratio (MD). CA,

also known as true positive rate, is defined as the ratio of the number of correctly

classified TOIs over total number of TOIs (n′). FA or false alarm ratio is defined

as the total number of objects incorrectly classified as TOI over the total number

of objects (n), and the MD or false negative rate is defined as the total number of

TOIs incorrectly classified as clutter over n. The classification accuracy per travel

time, referred to here as classification efficiency, is also evaluated and denoted by

η = CA/T .

In the following subsections, the IMVP performance is demonstrated for a

variety of target fields characterized by different layouts (Section 6.1.1) and clas-

sification features (Section 6.1.2). In every case study, the IMVP performance

is compared to the MAC algorithm, which plans the shortest multi-view path to
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cover every object using a fixed pre-planned number of aspect angles, such that

every object is detected at least once from each aspect angle [6–8, 61]. The MAC

path may be inefficient for sparse object layouts, requiring the UUV-based sensor

to travel long times without observing any objects [6–8,61]. The modification pro-

posed in [70], known as CMAC, overcomes this limitation by designing the path

based on the size of object clusters that may occur in applications with man-made

TOIs [64, 71]. Objects are first grouped in clusters by using density-based spatial

clustering of applications with noise (DBSCAN) method and, then, the shortest

path between clusters is found, typically reducing travel time compared to MAC

solutions.

6.1.1 Influence of Object Location on IMVP Performance

Previous multi-view planning studies showed that path performance depends

strongly on the object layout [6–8, 61, 70]. In particular, algorithms that per-

form well for objects uniformly distributed spatially, at random, over the ROI may

not perform adequately when objects that are laid out into clusters, and viceversa.

In this subsection, the features of the IMVP algorithm are demonstrated using

two case studies with relatively small target fields obtained by sampling the same

classification Set B to obtain n = 12 underwater objects, with n′ = 4 TOIs. The

integrated UUV-based sonar and ATR simulation (Section 6) is then used to eval-

uate all performance metrics after the UUV’s trajectory is executed. The paths

computed by the IMVP algorithm are simulated using high-fidelity AVA simulator

to demonstrate that the path is executable under the UUV dynamics constraints

for the sea test (Section 6.3).

In the first case study, the target field is generated by placing objects in the ROI
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Table 6.2: Path Planning and Classification Performance Comparison for a
Uniformly Sampled Object Distribution

Performance Metric
Algorithm

Improvement1

IMVP MAC CMAC

Travel time, T [hr] 1.56 2.50 2.49 37.4 [%]

Contacts per unit time, N/T [min−1] 0.47 0.22 0.28 68 [%]

Classification efficiency, η [hr−1] 0.48 0.20 0.29 66 [%]

Average TOIs CL 0.98 0.97 0.98 0.11 [%]

by randomly sampling underwater objects from the classification Set B (Section 6)

and, then, by placing them inW at a position and orientation obtained by sampling

a uniform distribution defined over W × S1. A representative example of IMVP

sensor path is plotted in Fig. 6.1(a). By leveraging prior sensor measurements, or

evidence Ei(0) (i = 1, . . . , n), the IMVP path is able to minimize distance traveled

between multiple swaths per target, as well as to decide and plan the number of

swaths based on the target examined. When the MAC and CMAC algorithms are

applied to the same target field, the resulting paths are as shown in Figs. 6.1(b) and

6.1(c), respectively. It can be seen that these existing algorithms plan the number

of swaths a priori and equally for all targets, only based on their locations. As

a result, the IMVP approach developed in this dissertation significantly reduces

the travel time, while achieving the same required CL for the TOIs (Table 6.2)

and the same classification performance in terms of CA, MD, and FA. This is

because, while reducing the travel time by approximately 37% compared to the

best existing algorithm, the IMVP approach uses prior target information to obtain

a large number of high-quality object images (Fig 6.2), as demonstrated by the

number of contacts and classification accuracy per unit time (Table 6.2).

1Percent improvement over best existing algorithm
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Figure 6.1: Path planning results obtained by the (a) IMVP, (b) MAC, and
(c) CMAC algorithms for a representative example of target field
with classification features drawn from Set B and object locations
sampled from a uniform distribution (red stars), where the initial
condition (I.C.) of the UUV-based sonar is denoted by the black
cross.

In the second case study, the target field is generated by placing objects in

clusters, after randomly sampling underwater objects from the classification Set

B (Section 6), using a uniformly sampled object orientation. Object clusters typ-

ically present themselves in applications with man-made TOIs [64, 71] and offer

the opportunity to view many objects in a single swatch, provided the optimal

aspect angle is planned for the UUV-based sonar. A representative target field

with 3 clusters, shown in Fig. 6.3, is used to compare the trajectories generated by

the IMVP, MAC, and CMAC algorithms. As shown by the performance metrics
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Figure 6.2: Sonar images obtained by the (a) IMVP, (b) MAC, and (c)
CMAC algorithms around the coordinate x = −400 (m) and
y = −350 (m) from the uniform distribution in Fig. 6.1 and
afforded total gain in CL.
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Table 6.3: Path Planning and Classification Performance Comparison for a
Clustered Object Distribution

Performance Metric
Algorithm

Improvement2

IMVP MAC CMAC

Travel time, T [hr] 0.990 3.03 1.84 46.2 [%]

Contacts per unit time, N/T [min−1] 0.71 0.19 0.34 110 [%]

Classification efficiency, η [hr−1] 0.93 0.31 0.52 79 [%]

Average TOIs CL 0.97 0.95 0.96 1.0 [%]

summarized in Table 6.3, the IMVP algorithm obtain images more efficiently by

observing multiple targets through a single pass, thus achieving the required TOI

CL in less travel time. The CMAC algorithm also exploits the cluster configu-

ration to reduce travel time. However, the IMVP approach is significantly more

effective at planning the sensor path that both enables multiple detections and

utilizes the most informative aspect angles, as demonstrated both by the number

of object contacts and classification performance per unit time (Table 6.3). This

is because the IMVP aspect angles take into consideration the geometry of the

C-targets as well as the object features to determine the most informative views

and, thus, obtain the most informative sonar images (Fig. 6.4). As evidenced by

these two representative case studies, the IMVP approach is similarly able to de-

termine the optimal path for different object configurations (uniformly distributed

or clustered) because of the systematic geometric construction of the C-targets

obtained from the sonar FOV geometry and object locations.

2Percent improvement over best existing algorithm
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Figure 6.3: Path planning results obtained by the (a) IMVP, (b) MAC, and
(c) CMAC algorithms for a representative example of target field
with classification features drawn from Set B and clustered object
locations (red stars), where the initial condition (I.C.) of the
UUV-based sonar is denoted by the black cross.

6.1.2 Influence of Classification Features on IMVP Perfor-

mance

In addition to accounting for the sonar FOV geometry and object location, the

IMVP approach also provides a systematic methodology for determining the most

valuable views based on prior information about the target features and ATR

characteristics. The IMVP ability to adapt the path to the complexity of the
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Figure 6.4: Sonar images obtained by the (a) IMVP, (b) MAC, and (c)
CMAC algorithms around the coordinate x = 700 (m) and
y = −800(m) from the clustered distribution in Fig. 6.3 and
afforded total gain in CL.
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classification task is demonstrated by using three object classification databases

of increasing complexity, referred to as Sets A, B, and C, described in Section 6.

Using the same set of target locations (Fig. 6.5), three target fields are generated

by sampling n = 19 underwater objects from Sets A, B, and C. The corresponding

IMVP trajectories, respectively plotted in Fig. 6.5(a), 6.5(b), 6.5(c), show that

the optimal number of views and the shortest path between them highly depend

on the target characteristics.

On the other hand, the MAC and CMAC algorithms produce the same identical

path for all the three target fields because they only account for the object location

(trajectories omitted for brevity). The result is not only a reduced travel time

by IMVP but also improved classification efficiency (Table 6.4), particularly for

challenging classification features (Set B) and environmental conditions (Set C).

This is because the IMVP algorithm determines the minimum number of views

and the most informative aspect angles required per object, based on its ECL and

estimated features, and then determines the shortest path between them.

Finally, a statistically significant analysis of the performance improvement

brought about by the IMVP approach compared to existing algorithms is con-

ducted by generating ten target fields for every classification set (Set A, B, and

C). Every classification performance metric is then evaluated by averaging 1,000

trials to obtain both its mean value and standard deviation. In addition to classi-

fication efficiency, the actual gain in confidence level per unit time is computed as

follows,

β =
1

nT

n∑
i=1

c(Yi;Mi(K)) (6.2)

to determine how informative are the sonar images obtained by the IMVP ap-

3Percent improvement over best existing algorithm
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Figure 6.5: IMVP path planning results obtained for a fixed set of object
locations (red stars) and different object features sampled from
classification Sets A (a), B (b), and C (c), where the initial con-
dition (I.C.) of the UUV-based sonar is denoted by the black
cross.

proach. The mean value and standard deviation of the classification efficiency (η)

and of the CL gain per unit time (β) are plotted in Fig. 6.6 and Fig. 6.7, respec-

tively, for the IMVP approach, as well as for the MAC and CMAC algorithms.

The results in Fig. 6.6 show not only that the IMVP approach achieves a

much higher classification efficiency – namely 88% improvement for set A, 49%

improvement for set B, and 13% improvement improvement for set C – but also

a much smaller standard deviation than that of MAC and CMAC algorithms,

indicating that the IMVP performance is not only better but also more robust.

Furthermore, the classification results obtained by the IMVP approach also have
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Figure 6.6: Classification efficiency mean value and standard deviation (ver-
tical bars) for IMVP, MAC, and CMAC algorithms.

 

0

0.2

0.4

0.6

0.8

A 

 [hr1]  

B C 

Classification Set 

Figure 6.7: Confidence-level gain per unit time and standard deviation (ver-
tical bars) for IMVP, MAC, and CMAC algorithms.
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Table 6.4: Path Planning and Classification Performance Comparison for
Different Classification Sets

Performance Metric
IMVP Performance (Improvement3)

Set A Set B Set C

Travel time, T [hr] 1.67 (47.7%) 2.51 (21.6%) 3.14 (2.10%)

Contacts per unit time, N/T [min−1] 0.59 (59.0%) 0.80 (64.2%) 0.67 (79.8%)

Average CL of TOIs 1.0 (0%) 0.97 (3.7%) 0.96 (6.0%)

Classification efficiency, η [hr−1] 0.60 (91%) 0.37 (32%) 0.23 (12%)

Classification Accuracy (CA) 1.0 (0%) 0.93 (3.7%) 0.71 (9.7%)

False Alarm Ratio (FA) 0.0 (0%) 0.038 (9.4%) 0.27 (1.3%)

Missed Detection Ratio (MD) 0.0 (0%) 0.071 (30%) 0.29 (18%)

higher confidence than those provided by the MAC and CMAC algorithms. In fact,

the results in Fig. 6.7 show that the IMVP approach results in a much higher CL

gain per unit time – namely 91% improvement for set A, 43% improvement for set

B, and 18% improvement for set C – as well as in a much smaller standard deviation

than that of MAC and CMAC algorithms, indicating that the CL improvement

also is more robust.

6.2 Autonomous Vehicle Architecture (AVA)

As part of the sea-test preparation, the IMVP algorithm was implemented as a

standalone C++ library and integrated within the Autonomous Vehicle Architec-

ture known as AVA. AVA is a software framework initially developed at the Naval

Surface Warfare Center Panama City Division (NSWC PCD) in order to simplify

S&T development and reduce the recreation of software year by year for research
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projects [77]. AVA is structured in three layers to provide a balanced level of indi-

vidual control: High-level mission and sortie management, intermediate task layer

with deliberative planning capabilities, and low-level behavior planner for reactive

capabilities. Additionally, AVA has functions that provide replanning through lev-

els of monitors and solvers while also interacting with perception modules such as

world models or automated target recognition software. A layout of the framework

for AVA is provided in Fig. 6.8.

 

Figure 6.8: Framework for the Autonomous Vehicle Architecture (AVA).

AVA was originally built using the Mission Oriented Operating Suite Interval

Programming (MOOS-IvP) environment as a base communication layer while also

taking advantage of the low-level behavior components of IvPHelm. Over the past

few years, all components of AVA have moved to the Robot Operating System

(ROS) 2.0 for the myriad of advantages the new environment provides. Addi-

tionally, IvPHelm and other relevant components of MOOS-IvP have also been
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converted to ROS 2.0 environment under a similarly named ROS-IvP [69]. These

components have greatly been improved since their first iteration into the ROS 1.0

environment.

Using the above tools as well as other opens source tools, AVA works to follow

the Modular Open System Approach (MOSA) for components by providing a gen-

eral framework for communicating between components and multiple base classes

that will provide general functionality for new components (tasks, behaviors, etc.).

Software is made to simplify the addition of new components and have minimal

impact to the architecture. The architecture is created to be platform agnostic

and has been demonstrated on several unmanned vehicles across multiple domains

(undersea, surface, and ground). AVA is also configured to be third party behav-

ior agnostic, having developed multiple interfaces in the past to collaborate and

work with software environment such as operating in parallel with other autonomy

architectures, such as SeeByte’s Neptune, International Partners, etc.

6.3 IMVP Sea Test Demonstration

Sea tests were conducted in collaboration with NSWC PCD to demonstrate the

feasibility and effectiveness of the IMVP algorithm. The sea trials were performed

at Saint Andrew Bay area near Panama City (FL) (Fig. 6.9(a) ). The IMVP

planner was first integrated within the AVA architecture (Fig. 6.8) and, then,

executed onboard a REMUS 100 for the test case described in Fig. 6.3(a). The

REMUS trajectory executed during the sea trial is shown in Fig. 6.9, and the

corresponding ATR performance is evaluated using the sonar simulation described

in Section 6. The results in Table 6.5 show that the sea-test REMUS trajectory and
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Table 6.5: IMVP Algorithm Path Planning and Classification Performance
Comparison for the Sea Test and AVA Simulation

Performance Metric
IMVP Algorithm

Sea Test AVA Simulation

Travel time, T [hr] 1.15 1.20

Contacts per unit time, N/T [min−1] 0.59 0.68

Classification efficiency, η [hr−1] 0.53 0.56

Average TOIs CL 0.98 0.99

classification performance are similar or better than those obtained by the AVA

simulation. The REMUS speed was maintained at approximately 3 m/s, as in the

simulation environment (Section 6). The number of target contacts was, however,

reduced from 49 (in AVA simulation) to 40 in the sea test due to disturbance

in the yawing motion caused by the sea waves. These missing target contacts

result in lower classification accuracy and lower confidence level on some objects.

Nevertheless, the target contacts are obtained from all the C-target viewpoint

regions that were planned from the IMVP planner. For the targets acquired, the

results in Table 6.5 show that the REMUS was able to execute the IMVP path

with good accuracy in real undersea environments, thus resulting in similar target

classification performance.
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(a)

 

(b)

Figure 6.9: (a) Bird-eye view of the sea tests in the Saint Andrew Bay area
in Panama City, FL, and (b) close view of the REMUS IMVP
trajectory executed at sea for the target field described in Fig.
13(a), and a vehicle initial condition (I.C.) denoted by the black
cross.
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CHAPTER 7

EXTENSIONS

7.1 IMVP Robustness to Navigation Error

The proposed IMVP approach is extended to take into account navigation error in

a real-world setting, such as a sea trial. Because the navigation error significantly

increases at each turn of a UUV, the IMVP planner is extended to minimize the

number of turns of the UUV to attain robustness. Originally, the proposed IMVP

algorithm plans a path by sampling waypoints from the neighborhoods intersec-

tions. Then, a traveling salesman problem (TSP) solution is used to connect all

the sampled waypoints. The final path is constructed by replacing each waypoint

with a line segment in order to minimize the sonar image distortion. Thus, the

number of turns can increase as the number of waypoints increases. Thus, the

IMVP algorithm can miss connecting some collinear waypoints if the waypoints

are from the viewpoint regions that are not intersecting.

The IMVP algorithm is modified to find a path that can visit multiple neighbor-

hoods through as many single passes as possible, even when the neighborhoods are

disjoint. Intersection of neighborhoods is re-defined such that, if there is any swath

that can connect two neighborhoods, two neighborhoods are considered intersect-

ing. The intersection is also re-defined as a set of the line segments that connect

two points in each neighborhood at the same vehicle heading angle in configuration

space. Then, the same greedy algorithm in the IMVP approach (Algorithm 1) is

used to compute the minimal disjoint coverage set by looking at every pair of neigh-

borhoods. An example of this modified IMVP algorithm, namely IMVP-Robust,

is described in Fig. 7.1. It is noted that the figure is illustrating each viewpoint
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region, which is a section of C-targets, from a top-view of the configuration space.

Then, with the new-definition of neighborhoods intersections, IMVP-Robust sam-

ples swaths from each neighborhoods intersection as shown in Fig. 7.1(b). The

path is computed by connecting the sampled swath using greedy TSP algorithm

as shown in Fig. 7.1(c).

(a) (b) (c)

Figure 7.1: IMVP-Robust algorithm applied to an example set of neigh-
borhoods (viewpoint regions): (a) minimal disjoint coverage set
(shaded regions); (b) sampled swaths; (c) resultant path

This extended IMVP algorithm, or IMVP-Robust, is implemented and com-

pared with existing IMVP approach in two test target fields. In the first test target

field, the targets are distributed by forming clusters as shown in Fig. 7.2. The

planned paths are then demonstrated through a simulation described in Section 6,

and the UUV trajectories are plotted in Fig. 7.2. The number of turns is reduced

from 70 in IMVP (Fig. 7.2(a)) to 41 in IMVP-Robust (Fig. 7.2(b)) after applying

the modification in neighborhoods intersections, which amounts to a 41% reduc-

tion. The classification performance of IMVP-Robust is summarized and compared

in Table 7.1. The classification results show that IMVP-Robust results in similar

classification performance with IMVP because the same viewpoint regions planned

using ECL are visited.

The second test target field consists of underwater objects whose positions are
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Figure 7.2: Simulated UUV trajectories of (a) IMVP and (b) IMVP-Robust
for the objects (red starts) distributed with clusters and the given
the initial condition (black cross)

Table 7.1: Path Planning and Classification Performances Comparison of
IMVP-Robust for the target field in Fig. 7.2

Metric
Algorithm

Modified IMVP IMVP

Travel Time [hr] 1.33 1.71

Num. of Images per Time [/min] 0.69 0.67

Num. of Images per Target 4.58 5.75

Average CL of TOIs 0.94 0.95

Classification Accuracy 0.62 0.62

False Alarm Ratio 0.34 0.34

Missed Detection Ratio 0.38 0.38
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uniformly distributed over the region of interest. The resultant UUV trajectories

from IMVP and IMVP-Robust are compared in Fig. 7.3. The number of turns

is reduced from 51 in IMVP (Fig. 7.3(a)) to 43 in IMVP-Robust (Fig. 7.3(a)),

which amounts to a 16% reduction. This reduction is smaller than the reduction

from the first test target field because there is fewer swaths that can connect two

waypoints from disjoint neighborhoods. The classification performance of IMVP-

Robust is summarized and compared in Table 7.2. The classification results show

that IMVP-Robust can also achieve similar classification performance with IMVP.
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Figure 7.3: Simulated UUV trajectories of (a) IMVP and (b) IMVP-Robust
for the objects (red starts) distributed uniformly and the given
the initial condition (black cross)

7.2 IMVP Robustness to Uncertainty in Target Position

The IMVP planner proposed in this dissertation can also be extended to handle

the target and localization uncertainty, which is a very common practical issues

in real-world setting. The target position uncertainty is considered by utilizing
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Table 7.2: Path Planning and Classification Performances Comparison of
IMVP-Robust for the target field in Fig. 7.3

Metric
Algorithm

IMVP-Robust IMVP

Travel Time [hr] 1.77 1.87

Num. of Images per Time [/min] 0.39 0.42

Num. of Images per Target 3.73 4.27

Average CL of TOIs 0.97 0.95

Classification Accuracy 0.94 0.93

False Alarm Ratio 0.22 0.20

Missed Detection Ratio 0.06 0.07

the target position probability distribution model in MAC algorithm [6–8], which

assumes that the target position has Gaussian noise in 2-dimensional space (xy-

plane). This extended IMVP planner that takes into account target position un-

certainty is referred to as IMVP-Uncertainty. In IMVP-Uncertainty, the target

position uncertainty is taken into account by sampling the swaths that passes with

the maximum probability of detection, which is defined in [6–8]. The probability

of detection is defined as a convolution of sensor profile and target positions’ prob-

ability distribution over the axis coincides with the side-scan sonar field-of-view

geometry, i.e., perpendicular to the UUV heading angle. Therefore, the swath

with the highest probability of detection is chosen by considering both sensor pro-

file and the probability distribution of target positions. The length of the swath

is also computed based on the probability of detection, which is referred to as

swath trimming in MAC algorithm [6–8]. For each chosen swath, the probability

of detection is computed with respect to the axis coincides with the swath. The

swath is trimmed from its both ends until the integrated probability of detection
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between the two ends of the swath is larger than the user-chosen threshold.

This extended IMVP algorithm, or IMVP-Uncertainty, is implemented and

compared with the IMVP algorithm for a sample target field illustrated in Fig.

7.4. In this comparison, it is assumed that the target position uncertainty is

represented by a 2-dimensional Gaussian noise, where the mean values are the

actual target positions and standard deviations are set to be 20 (meters) equally

with even weighting. The same estimated target positions are input to both IMVP-

Uncertainty and the IMVP algorithms in the path planning stage. Then, the actual

target position is used in the UUV-sonar simulation (Section 6) to compare how

many measurements are still obtained in IMVP-Uncertainty and missed in IMVP

algorithm.

Figure 7.4: Comparison of IMVP-Uncertainty and IMVP: (Left) the whole
target field; (Right) Zoomed-in view of the black dotted box.

The paths planned by IMVP-Uncertainty and IMVP are compared in Fig.

7.4. This test case shows that some targets are detected by following the IMVP-

Uncertainty path, yet not detected by IMVP path. This result is illustrated in

detail in the right subfigure of Fig. 7.4. The number of obtained target contacts
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and classification performance are compared in Table 7.3 and 7.4, respectively.

In both Tables, each value is obtained by averaging 100 trials, and the standard

deviation (Std.) is shown in parenthesis. The path planning results show that

the IMVP-Uncertainty miss fewer target contacts because the path is planned

considering target position distribution. As a result, the results show that this

fewer missing target contacts in IMVP-Uncertainty leads to a less reduction of

classification performance.

Algorithm Expected
Number of

Contacts

Actual Number of
Contacts (Std.)

Difference Difference in
Percentage

IMVP-Uncertainty 44 39.4 (3.09) 4.6 10.5%
IMVP 48 34.1 (4.57) 13.9 30.0%

Table 7.3: Comparison of IMVP and IMVP-Uncertainty on the number of
target contacts.

Metric Algorithm Expected
Value (Std.)

Actual
Value (Std.)

Difference in
Percentage

TPR
IMVP-Uncertainty 0.88 (0.015) 0.85 (0.048) 3.4
IMVP 0.88 (0.016) 0.78 (0.11) 11

False Alarm
IMVP-Uncertainty 0.099

(0.0084)
0.097

(0.025)
2.0

IMVP 0.070
(0.0070)

0.11 (0.041) 57

Missed Detection
IMVP-Uncertainty 0.12 (0.015) 0.14 (0.033) 17
IMVP 0.12 (0.016) 0.22 (0.051) 83

Table 7.4: Comparison of IMVP and IMVP-Robust algorithms on classifica-
tion performance
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CHAPTER 8

CONCLUSION

This dissertation presents a novel approach to planning sensor measurements and

motions in applications that require multiple looks or views per target, such as un-

derwater imaging. The approach, referred to as informative multi-view planning or

IMVP, takes into account the sensor field-of-view geometry and the target position

and orientation by constructing a so-called C-target in the mobile sensor’s config-

uration space. By this approach, the expected information value of every possible

sensor look (or view) of the target can be quantified systematically as a function of

the sensor configuration. The IMVP approach is demonstrated on a UUV-based

side-scan sonar that must classify multiple targets with a minimum required con-

fidence level. As a result, the information value of C-target regions is represented

by the expected confidence level derived from prior sensor measurements and ATR

model.

An approximate algorithm for solving the multi-view planning problem, re-

duced to a generalized traveling salesman problem with neighborhoods, is also

presented to leverage intersecting C-target regions and maximize the number of

targets detected in sonar images. While the proposed GTSPN solution requires

high computation time on computing the neighborhoods intersection, the novel

physics-inspired TSPN solution proposed in this dissertation can successfully find

a reasonable TSPN tour by considering the neighborhoods intersection using cover-

age cone. The proposed TSPN solution only adds a computation time complexity

of O(n log n) to existing TSP solvers to find a TSPN tour. The main advantage of

this geometric TSPN solution is that no prior data is required to find a solution

unlike existing methods based on supervised learning and evolutionary algorithms.
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The results obtained from a high-fidelity closed-loop imaging sonar simula-

tion show that IMVP significantly outperforms existing state-of-the-art multi-view

planning methods, known as MAC and CMAC algorithms. In fact, IMVP-guided

sonar are able to complete multi-target classification tasks with equal or superior

classification performance in approximately half the time of existing algorithms.

Also, the IMVP approach is shown to adapt the UUV path based on individual

target features, the difficulty of classification task, and the configuration of the

target field. In real operations, the IMVP method can be reformulated to have

a time constraint and to maximize the expected confidence level or information

gain on target classification. In this formulation, the IMVP method will vary the

number of views for each target to limit the operation time while choosing the

most informative viewpoints. When an additional total time constraint is given,

the IMVP approach can be modified to limit the number of views by removing the

least informative viewpoint. Also, when there is a constant ocean current applied

to the vehicle, the IMVP approach can be extended such that the planned view-

point regions are connected through a minimum-time trajectory that optimizes

the operation time considering vehicle dynamics. When there is a significant nav-

igation error or target position uncertainty due to the environmental condition,

the IMVP approach can also extended to include some waypoints that the UUV

can surface up and update its information or integrate the localization methods

that utilizes some known underwater structures. The proposed IMVP approach

can also be extended to operate in the online configuration, where the contact

reinspection is performed right after the detection. This online approach will plan

an additional view based on the expected confidence level until the confidence

level reaches a user-chosen threshold. Therefore, the IMVP approach is not only

promising for other multi-view sensor applications but also for the development of
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adaptive planning algorithms.

Future work includes finding an approximation factor of LKH-Geometric solu-

tion, sensor path planning under significant target uncertainty, and incorporating

vehicle dynamics to sensor path planning. Firstly, the approximation factor of the

current LKH-Geometric solution depends on the TSP solution from LKH algo-

rithm. Replacing this LKH with a new geometric TSP solution that can provide

the sequence of circles to visit in LKH-Geometric will enable the whole algorithm

to have an approximation factor that can be proven geometrically. Secondly, when

the target position uncertainty becomes significant, future work on updating the

knowledge on the target positions based on the obtained measurements may im-

prove the robustness of current IMVP approach. This future work may incorporate

some prior knowledge on the sensor system that collected the target positions in

pre-surveying in order to efficiently update and correct the target positions.

Finally, possible next steps include developing an underwater sensor path plan-

ning approach that incorporates vehicle dynamics. Depending on the vehicle types

(UUV, uncrewed surface vehicle, remotely operated underwater vehicle, etc.) and

operation environment (shallow or deep water), the hydrodynamic forces apply-

ing to the vehicle can affect on-board sensor performance. This integration may

require prediction of ocean environment in for a certain future time horizon and

optimize the path in a receding-horizon fashion. By incorporating vehicle’s dynam-

ics and external forces from surrounding underwater environment, the sensor path

planning approach will enable the system to maintain desired sensor performance

in a harsh and dynamic environment.
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