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Active vision and perception for resource-constrained autonomous vehicles, such

as small ground robots and quadrotors, are limited in their allowable algorithmic

complexity and slow reaction times. For an autonomous mobile robot to safely

and reliably perform a useful task or behavior, real-time visual perception that

informs a controller with a fast reaction time is needed. This dissertation cov-

ers new research developments in the areas of active vision, planning, and control

for directional sensors with a focus on event-cameras and RGB cameras. Event-

cameras, also known as neuromorphic cameras, are biologically inspired visual sen-

sors that measure local changes in light intensity, mitigating latency and redundant

data. Several high-level active vision algorithms, interfaced with autonomous ve-

hicle controllers, are developed for event-cameras and quantitatively compared to

analogous RGB camera algorithms, in terms of both accuracy and computational

cost. In particular, motion-based perception algorithms for object recognition and

tracking, action recognition, and depth estimation are developed for use on a mov-

ing quadrotor tasked with reacting to the perceived environment. Novel active

vision algorithms for RGB cameras are also developed in which an autonomous

ground vehicle or quadrotor interact with a human target of interest using novel

action recognition and tracking perception capabilities paralleled with new con-

trol methods for target following. Furthermore, a novel occlusion-avoiding path

planning algorithm that is applicable to both event-cameras and RGB cameras is

developed. The proposed method computes a closed-form collection of subsets of



the sensor’s configuration space, referred to as visibility regions, that quantify the

visibility of targets subject to the sensor field of view geometry and line of sigh

visibility. This method is quantitatively compared to several existing sensor path

planning methods in terms of analytical computational complexity, experimental

path performance, and experimental computational cost analysis. The results of

this work enable active vision, perception, and planning for resource-constrained

mobile robots equipped with directional sensors such as an event-camera or RGB

camera.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Active vision for autonomous systems involves integrating several areas of research

including computer vision and machine learning, as well as dynamical systems,

control theory, and information-driven path planning [33]. In particular, an au-

tonomous system with active vision capabilities is equipped with one or more vision

sensors, and possibly many other sensors, that are used to perceive its surrounding

environment and, based on those perceptions, react in some way. A reaction may

include modifying the camera’s field-of-view (FOV) such that the amount of valu-

able perception information is maximized, for example, when tracking a moving

target. Examples of active perception tasks that are investigated in this disserta-

tion include object recognition and tracking, scene depth estimation, and human

action recognition.

The term vision sensor in this dissertation refers, primarily, to directional sen-

sors that have a bounded FOV and are subject to line-of-sight (LOS) visibility;

That is, the sensor cannot obtain measurements through opaque objects that cause

occlusions. The most well-studied vision sensor is a digital camera that measures

red-green-blue (RGB) color light intensity at each pixel in the sensor array, re-

ferred to as an RGB camera. An RGB camera is exactly the type of camera used

on mobile devices, web-cameras, closed-circuit TV (CCTV) security cameras, and

many more daily real-world applications. RGB cameras have recently been shown

to be capable of providing incredibly valuable information that can be processed

to produce high-level autonomous perception results for tasks such as scene depth

1



estimation, object recognition and tracking, and human action recognition. How-

ever, to employ many of these algorithms, especially those based on deep learning

convolutional neural networks (CNN), an incredible amount of processing power is

required. For this reason, this dissertation focuses on two types of vision sensors

for active vision: (i) RGB cameras, and (ii) event-cameras, which are discussed in

further detail later.

Active perception refers to the autonomous capability of a robotic system to

perceive its surroundings using onboard sensors and react or make decisions based

on those perceptions. With significant strides in computer vision capabilities re-

cently coupled with well-developed theory of control systems and robotics, active

perception is at the frontier of robotics research. Recent state of the art active

perception autonomous systems are equipped with one or often multiple standard

RGB cameras that record sequential images, or frames, based on light detect-

ing sensors such as a charge-coupled device (CCD) or active pixel complementary

metal-oxide semiconductor (CMOS) sensors, at a fixed frequency, or frame rate.

Examples of such systems are autonomous quadrotors capable of navigating an en-

vironment to identify targets [40] or track and follow a human of interest [38, 39],

and even understand and react to the actions or gestures that the human gives

to the quadrotor [37]. However, even with these impressive capabilities, these au-

tonomous systems are significantly less capable than even simple biological active

perception systems, such as birds and insects. This restriction often requires mul-

tiple processors (CPU) and graphical processors (GPU) that consume incredible

amounts of energy and are not suitable for small or even most medium-sized robotic

platforms, such as quadrotors and micro-aerial vehicles (MAVs) due to payload and

energy constraints. Part of this shortcoming is due to the computational cost of

today’s active perception algorithms as well as the temporally-discrete underlying
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Figure 1.1: RGB camera (a) and event camera (b) measurement signals for a
camera onboard a moving quadrotor. The standard camera measuremnt signal
results in a sequence of RGB images and the event camera signal results in a
collection of events with positive (white) and negative (black) polarities

framework of CCD and CMOS video cameras. Throughout this dissertation, we

implement a standard CMOS vision sensor and refer to this sensor as the RGB

camera, for the red-green-blue (RGB) data representation of every pixel in each

frame, and this class of cameras applies to all traditional digital RGB camera

methodologies that the algorithms discussed in this dissertation can be applied to.

This dissertation proposes the use of event cameras, also known as neuromor-

phic sensors, to alleviate the aforementioned shortcomings of RGB cameras for

active perception. Event cameras are biologically inspired sensors that are fun-

damentally different than RGB cameras, in that they asynchronously measure

per-pixel brightness changes over time with micro-second temporal resolution [87].

Event cameras themselves are new hardware developments that have only recently

had perception algorithms developed for simple tasks such as collision avoidance

and motion detection for fast-moving objects [31, 32]. This article provides the

novel development and application of several active perception techniques for event
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cameras, and furthermore compares each of these methods to the analogous RGB

camera algorithm, in terms of both accuracy and computational cost. This sig-

nificant research contribution not only provides several novel active perception

algorithms for event cameras, but will also allow for clear and concise decisions

to be made for future active perception research in terms of the tradeoff between

event camera benefits and limitations when compared to RGB camera capabilities.

In addition to active vision, which encompasses visual perception and control,

this dissertations furthermore develops path planning techniques that applies to all

directional sensors. More precisely, presents a novel and systematic methodology

for planning the trajectory of a mobile robotic sensor deployed to classify mul-

tiple fixed targets located in an obstacle-populated workspace. Existing robotic

sensor path planning methods are not directly applicable to robots whose pri-

mary objective is to gather sensor measurements using a sensor with a bounded

field of view and subject to line of sight visibility. The method developed in this

dissertation is a novel path planning development in which the obstacles, sensor

field of view, and robotic platform, are represented as closed and bounded subsets

of an Euclidean workspace. The proposed method computes a collection of sub-

sets of the directional sensor’s configuration space, referred to as visibility regions,

that quantify the visibility of every subset of targets subject to the sensor field

of view geometry and line of sigh visibility. The visibility regions are then used

to construct a connectivity graph that represents the connectivity of the sensor’s

configuration space. The computational performance of the algorithm is analyzed

and an approximation algorithm with significantly improved efficiency is also pre-

sented which leverages visibility regions in which multiple targets are visible. The

effectiveness of the sensing strategies computed by this method are demonstrated

through multiple simulation and physical experiments, in which the method devel-
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oped in this dissertation is compared to traditional Traveling Salesman Problem

approaches, as well as cell decomposition, and coverage methods. The proposed

algorithm outperforms the comparison algorithms in both physical and simulated

experiments.

1.2 Literature Review

A significant amount of work has become recently available in the literature with

respect to event-based perception. Event cameras are a biologically inspired sen-

sor, and it has been shown that several small insects and other biological systems

perceive their environment based on changes in their FOV rather than raw inten-

sity [36]. Biologically inspired collision avoidance is a subject of significant study,

in particular. Many flying animals use event-like sensing to navigate at incredibly

high speeds in very cluttered environments, in such a manner that is impossible

for RGB cameras, but has been shown to be achievable for event cameras [31,32].

Other collision avoidance studies show how nocturnal flying insects use alternative

sensing modalities outside of vision to navigate in the dark, when vision is not

an option [73]. Some basic studies have been performed showing the control of

a quadrotor using event cameras [28], but few of these studies look at high-level

tasks such as object recognition, action recognition, and human interaction with

event-driven perception algorithms onboard active robotic systems. The efficiency

of event cameras has been widely speculated in the literature and the importance

of temporal information has also been explored [50, 60] leading to the hypothesis

in this dissertation. Based on the current available studies, event cameras are ex-

pected to be highly more computationally efficient than RGB cameras and capable

of performing many navigational tasks and potentially even high-level active per-
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ception tasks at a similar performance to RGB cameras. This dissertation explores

both the computational cost and accuracy between event and RGB cameras in a

rigorous methodology making use of both perfectly repeatable and controllable

simulations and physical experiments on multiple vehicle platforms.

Recent advancements in computer vision, particularly video-based object detec-

tion and classification, pave the way for future autonomous systems comprised of

camera-equipped mobile robots that can decide how to obtain and process images

or videos without human intervention [98]. The development of autonomous mobile

cameras have recently been shown to impact a variety of applications that include

automated surveillance, [4], intelligent cinematography [72], and autonomous social

navigation [19]. The challenge of detecting, tracking, and following a mobile hu-

man target of interest is critical to all of the aforementioned applications. As a re-

sult, several human tracking algorithms have been developed, some of which make

use of carefully designed hand-crafted features, such as Histograms of Oriented

Gradients (HoG) for detection with simultaneous KLT (Kanade-Lucas-Tomasi)

feature-tracking [4], and optical flow-based human tracking methods using multi-

ple cameras [94]. More recent human tracking algorithms take advantage of the

advancements of deep convolutional networks, and instead use convolutional fea-

tures for tracking human appearance in videos [71]. Human tracking in video has

become one of the challenging problems at the forefront of computer vision, lead-

ing to the development of benchmark datasets [56]. The state-of-the-art methods

according to such benchmarks base their hypotheses on multiple cues, such as

appearance, kinematics, and interactions [83].

Although the problem of human detection and tracking has been studied exten-

sively over recent years, almost all of the tracking algorithms do not incorporate
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any type of control over the camera FOV, and instead assume the video sequence

is recorded a priori. The few works that do actively control the camera FOV sim-

plify the detection and tracking of the human target [42], [72]. This dissertation

considers the problem of controlling a mobile camera with a bounded FOV that

is rigidly attached to a mobile robot capable of onboard computing for real-time

video processing. The camera is controlled such that a target (human) of interest

is detected, tracked, and followed while moving through a complex, unstructured

environment. The novel approach in this disseration leverages a state-of-the-art

deep learning algorithm for detecting a human target in the video ( [61], whose

output is processed to compute a control input command for the mobile robot

without requiring a 3-dimensional position estimate or kinematic model of the tar-

get. This is advantageous since human motion is generally very difficult, if not

impossible, to accurately predict.

Another active perception task investigated in this dissertation is that of Hu-

man pose estimation (HPE) and human action recognition (HAR), which are are

two closely related tasks for computer vision and robotics applications, and until

very recently, have been treated separately in the literature [21,66]. HPE refers to

the task of estimating the positions of human joints (e.g., wrist, elbow, etc.) in the

image plane (2D HPE, [16,51]), or in the 3D scene that the camera is embedded in

(3D HPE, [18,66]), given a single image or video sequence. HAR refers to the task

of localizing and classifying actions performed by a particular human of interest

(e.g., idling, walking, running, bike riding, etc.) [59]. HPE and HAR are closely re-

lated since both tasks are influenced by the relative positions and trajectories of the

human joints. However, only a small number of recent works have addressed these

problems simultaneously [58,66,77]. Unlike previous HAR algorithms, the method

developed in this dissertation produces a 3D pose representation for action features
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that are, by definition, independent of the camera viewpoint, or viewpoint invari-

ant. Viewpoint invariant HAR for real-time autonomous systems is motivated by

myriad applications such as autonomous driving [44], video surveillance [82], person

tracking and following [39], and virtual/augmented reality [67], for example. In-

variant features have been developed for computer vision tasks for several decades

in order to create robust perception systems that are reliable in unconstrained

video sequences. Scale invariant feature transforms (SIFT), histograms of oriented

gradients (HOG), are a few examples of invariant features for early computer vi-

sion tasks, such as image classification and object recognition [25]. Other related

works attempt to generate viewpoint invariant features for action recognition us-

ing ad-hoc and purely data driven approaches [58]. The method proposed in this

dissertation presents a systematic approach to viewpoint invariance by assuming

known body proportions of the target human and a rotation-based representation

of human pose that is derived analytically and is inherently independent of the

camera viewpoint. Several authors have concluded that although 2D HPE in the

image plane performs very well, 3D HPE has proven to be challenging and remains

an open problem, particularly when deep end-to-end frameworks attempt to learn

depth information directly from raw pixel data [18,69]. Unlike purely data-driven

deep learning methods, the proposed method leverages kinematics and geometry

in order to accurately estimate the human’s 3D pose without the need for massive

amounts of 3D pose data, which is extremely difficult to obtain without expensive

equipment, and is still less precise than 2D pose data. Additionally, HAR has

been widely studied in the literature, but many of the approaches are only appli-

cable in the case of multiple sensors [58], or the performance degrades with camera

motion [8].

The second portion of the dissertation relates to occlusion avoidance in path
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planning for directional sensors. Directional sensor planning refers to the prob-

lem of developing a sensing strategy for a mobile robot tasked with perceiving

multiple targets that are distributed in a workspace. A directional sensor is char-

acterized by a bounded field of view (FOV) whose measurements are subject to

line of sight (LOS) visibility, or occlusions caused by opaque obstacles in the

workspace. Recent work in the area of robot and sensor planning has focused

on motion-planning [20, 54, 55, 85, 93], trajectory optimization [5, 34, 46, 84], trea-

sure hunt [14, 63, 92, 100, 101], and next-best view planning [27, 76, 89]. However,

robot motion-planning and trajectory optimization methods do not typically focus

on the sensor performance, and instead are concerned with collision avoidance and

planning acceptable robot paths regardless of the sensing objective. In addition,

while treasure hunt and next-best view planning methods emphasize a sensing

objective, LOS visibility is often ignored in these formulations. This dissertation

presents a novel method that augments these developed research areas to include

a planning methodology for the general and widely applicable directional sensor

planning problem. Because many of the sensors being used today for active per-

ception, such as monocular cameras [39, 98], stereo cameras [23, 35], radar [91],

sonar [105], neuromorphic cameras [15, 104], all fall within the definition of direc-

tional sensors, the methods presented in this dissertation are widely applicable and

valuable to the field of active perception. Some applications that will benefit from

the new directional sensor planning methods presented in this dissertation include

autonomous vehicle safety [74], digital agriculture [45], person/target tracking and

following [39, 99], mine counter measure planning [105], and fugitive gas leak de-

tection and estimation [1, 41].

A similar class of path planning problems is the Traveling Salesman Prob-

lem (TSP) [2] which refers to the problem of determining the minimum distance
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path that visits multiple point targets and returns to the starting point. How-

ever, the original TSP formulation cannot account for the sensor FOV geometry

and may produce highly undesirable solutions and possibly fail in the presence

of large FOV geometries and obstacles in the workspace. The formulation of the

TSP has been extended to include non-overlapping Euclidean neighborhoods in the

augmented problem referred to as the Traveling Salesman Problem with Neighbor-

hoods (TSPN) [29]. The TSPN refers to the problem of finding the minimum-

length path that passes through at least one point of each continuous Euclidean

target neighborhood and returns to the original starting point. The TSPN, how-

ever, is only applicable to a special case of the directional sensor planning problem

in which a maximum of only one target is visible from any sensor configuration.

Furthermore, the TSP formulation has been extended to the Group Traveling Sales-

man Problem (GTSP) [29], in which the path is required to only visit at least one

target of each target group, which contains a finite set of targets. The GTSP and

TSPN have also been combined in the literature, to produce the Group Traveling

Salesman Problem with Neighborhoods (GTSPN) [29]. The proposed approach

for directional sensor path planning is formulated more generally in this disserta-

tion than any variation of the TSP problems, and thus each of the TSP variations

could be derived as a special case of the method proposed in this dissertation.

Additionally, the TSP literature is focused on the optimization step rather than

the construction of the geometry from a practical sensing challenge. In contrast,

this dissertation formulates a general optimization framework that stems from a

common problem in directional sensor planning.

The path planning method in this dissertation focuses on planning in the pres-

ence of occlusions induced by opaque obstacles in the workspace. Similar works

in the literature that are relevant for visibility planning include coverage-based

10



planning algorithms with visibility constraints, such as the Art Gallery Problem

(AGP) [96] and the Watchman’s Route Problem (WRP) [43]. The AGP refers

to the problem of determining the minimum number of stationary and omnidi-

rectional sensors required to completely cover a polygonal workspace with no ob-

stacles. Although the AGP is one of the few problem formulations that includes

the geometrical notion of occlusions, the solution approaches are not applicable

to sensors with a bounded FOV or sensors that are onboard a mobile robot. The

WRP refers to the problem of determining the optimal closed path of a mobile

omnidirectional sensor tasked with completely covering a workspace that may be

populated with obstacles. However, solutions to the WRP are also not applicable

to bounded sensor FOVs. Additionally, both the AGP and WRP are coverage

problems, while the directional sensor planning problem in this work only requires

the sensor can view a finite set of target positions.

1.3 Overview of Research Contributions

This dissertation describes new methods that enable event cameras to perform the

following active perception tasks: (i) Depth Estimation, (ii) Object Recognition,

(iii) Object Tracking, and (iv) Action Recognition. Although this dissertation

presents these tasks as four separate problem formulations, many autonomous sys-

tems requiring active perception capabilities rely on some or all of these capabilities

simultaneously to accomplish a high-level objective, such as autonomous driving,

or human robot interaction. For example, a robot may be tasked with maintaining

a person in its field of view and must follow the person as they walk an unknown

path, while simultaneously analyzing the human’s actions such that the robot can

obey the human’s commands all while using depth estimation for collision avoid-
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Figure 13. The quadrotor is initially tracking and following a human on a bicycle (a), and upon perceiving 

the human pointing action (b), the quadrotor flies in the specified direction (c), until another human 

takes control of the quadrotor by waving (d) and commanding the quadrotor to land safely (e). 

 

Figure 1.2: A demonstration of the event-based active perception algorithms per-
formed on an autonomous quadrotor. The quadrotor is initially tracking and
following a human on a bicycle (a), and upon perceiving the action of the hu-
man pointing (b), the quadrotor quickly flies in the prescribed direction (c). The
quadrotor continues autonomously until in that direction over complex terrain that
many vehicles cannot traverse until another human takes control of the quadrotor
by waving in the sensor’s field of view (d), and commanding the quadrotor to land
safely (e).

ance and perceiving the distance to the person of interest. Multiple of these types

of demonstrations are presented in this dissertation, both in physical experiments

and controlled simulations. Figure 1.2 demonstrates such an experiment that high-

lights the capabilities of the active perception methods developed for event cameras

in this dissertation. In addition, the raw sensor data for an RGB camera and event

camera are show in correspondence in Figure 1.3 and Figure 1.4, respectively.
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Figure 1.3: RGB camera FOV images corresponding to the active perception ex-
periments on an autonomous quadrotor
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Figure 1.4: Event camera output corresponding to the active perception experi-
ments on an autonomous quadrotor.
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1.3.1 List of Research Contributions

This dissertation presents novel contributions on several fronts of active percep-

tion for robotics. To summarize these findings, a list of research developments is

presented here and each of the contributions is discussed in detail throughout the

remainder of the dissertation.

� Event-camera optical flow algorithm development and comparison to an RGB

camera optical flow algorithm

� Event-camera depth estimation algorithm development and comparison to

an RGB camera depth estimation algorithm

� Event-camera object recognition algorithm development and comparison to

an RGB camera object recognition method

� Event-camera object tracking algorithm development and comparison to an

RGB camera object tracking algorithm

� Event-camera human action recognition algorithm development and compar-

ison to an RGB camera human action recognition algorithm

� Real-time 3D human pose estimation based on perspective geometry

� Person following Controller design for nonholonomic ground vehicles

� Person following controller design for quadrotors

� Human-directed flight control from pointing recognition

� Occlusion avoidance in directional sensor path planning
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1.4 Thesis Organization

This thesis is divided into two primary components: Active vision, and occlusion

avoidance. The first part on active vision is presented in Chapter 2, which en-

compasses new active vision research and algorithms for RGB cameras and event

cameras. The chapter is broken down by the active vision tasks that include optical

flow, depth estimation, object recognition, object tracking and following, and ac-

tion recognition. Each of these tasks have a new event-camera algorithm proposed

and many of them also have new developments for RGB cameras. Physical experi-

ments are presented at the end of the chapter along with quantitative performance

results that showcase the algorithm accuracy as well as the computational cost.

Chapter 3 provides detailed theoretical work on the development of occlusion

avoiding path planning for directional sensors. A closed form representation of

a directional sensor’s configuration space is developed and a highly accurate path

planning method is developed. Furthermore, alternative approximation path plan-

ning algorithms are developed based on the theoretical developments of the visi-

bility regions in configuration space. The various methods are qualitatively and

quantitatively compared amongst themselves as well as approaches inspired by

existing algorithms such as the travelling salesman problem (TSP) and coverage

algorithm. The dissertation then ends with a concluding chapter that summarizes

the findings and provides recommendations for future work.
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CHAPTER 2

ACTIVE VISION

2.1 Visual Perception and Control Design Interface

Active perception encompasses both visual perception and active control by cou-

pling the perceived environment with a desired autonomous vehicle behavior that is

achieved through controller design. The developments in this thesis are exclusively

designed with active perception tasks in mind such that each perception algorithm

is designed to be achievable on a real-time embedded system whose behavior in

an environment is driven by the coupled perception and control methodologies.

Figure 2.1 illustrates the integration of the perception algorithms with control and

planning algorithms. A desired behavior is input to an active vision system and

using the resulting perceived scene from the perception algorithms a high-level

control behavior is computed, such as to ’take-off’, ’land’, or ’track and follow an

object of interest’. The high-level controller outputs this desired behavior into a

classical controller that is capable of achieving the desired behavior. Then, the

control input is provided to the autonomous vehicle dynamical system which in

turn adjusts the camera state and sensor FOV. By adjusting the sensor FOV and

vehicle state, the sensor perception algorithm is altered by physically changing the

position an possibly the geometry of the sensor FOV to improve the sensor’s scene

awareness and understanding. An example of such a system is shown in Figure

2.2 in which a micro-aerial vehicle (MAV) performs high-level perception tasks in-

cluding action and object recognition which is input to a high-level controller that

determines the vehicle behavior to be ’object follow mode’. The low-level controller

then provides the input signals to the MAV, which follows the person-of-interest.
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Figure 2.1: Active perception block diagram.

Figure 2.2: Integrated MAV perception and control. High-level perception includ-
ing action and object recognition (a) is put into action by a switched controller
shown in ’object following mode’ (b) that reacts to the actions of the person-of-
interest identified earlier as the ’human’ ’waving’ who is presently biking.
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2.2 Event-camera and RGB Camera Physics

Cameras are visual directional sensors with a bounded field of view, denoted by

S ⊂ R3 (FOV) defined as a subset of the robot workspace W ⊂ R3 [1]. Opaque

objects in S are projected onto the sensor image plane I ⊂ S, defined as a 2D plane

that is orthogonal to the sensor’s optical axis and is located at a distance from the

sensor’s focal point, known as the focal length. For an RGB camera, the signal

recorded from the image plane is a discrete synchronous sequence of 3-channel

8-bit integer (h× w) image arrays, or frames, each denoted by the matrix,

I(tk) =



L11(tk) L12(tk) · · · L1w(tk)

L21(tk) L22(tk) · · · L2w(tk)

...
...

. . .
...

Lh1(tk) Lh2(tk) · · · Lhw(tk)


(2.1)

recorded at time tk = t0 + k∆t, where each element of the RGB camera frame is a

3-channel 8-bit light intensity value for the red, green, and blue color components,

Lij(tk) = [r(tk) g(tk) b(tk)]
T , and r(tk), g(tk), b(tk) ∈ {0, 1, ..., 255} candelas.

The RGB camera frames are sampled at a constant frequency, known as the frame

rate, measured in frames-per-second (fps). The time interval between sampled

frames, also known as the inverse of the frame rate, is denoted by ∆t > 0. An event

camera, sometimes referred to as a neuromorphic camera or dynamic vision sensor,

is an imaging sensor that records events characterized by significant local changes

in brightness. Each pixel in the event camera sensor array operates independently

and asynchronously from the others, storing a reference intensity level at time

t ∈ [t0, tf ], denoted by L̃ij(t), such that the internal reference intensities recorded
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by the full sensor array can be represented by the matrix,

E(t) =



L̃11(t) L̃11(t) · · · L̃11(t)

L̃11(t) L̃11(t) · · · L̃11(t)

...
...

. . .
...

L̃11(t) L̃11(t) · · · L̃11(t)


(2.2)

At time t, where the subscripts (·)ij denote the pixel coordinate (i, j). Over time,

the reference intensity level L̃ij(t) is continuously compared to the intensity level

observed at the pixel coordinate denoted by Lij(t) and an event is fired at (i, j) if

and only if the change in the log intensity exceeds a user-defined threshold θ > 0,

i.e.,

‖ lnLij(t)− ln L̃ij(t)‖ ≥ θ (2.3)

Then, the event polarity is defined as,

pij =

 1 if [lnLij(t)− ln L̃ij(t)] ≥ θ

−1 if [lnLij(t)− ln L̃ij(t)] < θ
(2.4)

As the event-camera moves in W and operates over a period of time [t0, tf ] a

stream of asynchronous events is recorded and organized into the set of events,

E = {e(t1), e(t2), ...} (2.5)

where,

e(tk) , [i j tk pk]
T , i ∈ {0, ..., w}, j ∈ {0, ..., h}, tk ∈ [t0, tf ], pk ∈ {−1, 1}

(2.6)

Similarly, as the RGB camera moves inW and operates over the same time period

[t0, tf ] a stream of synchronous RGB frames is recorded and organized in the set

array,

V = {I(t0), I(t0 + ∆t), I(t0 + 2∆t), ...} (2.7)
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A fundamental and important difference between the stream of events E and the

video stream V is that each frame I(t0 + k∆t) ∈ V is collected synchronously

with a frequency that depends on the video frame rate, while each event e(tk) ∈

E fires asynchronously at time tk ∈ [t0, tf ]. The following sections describe the

new methods for active perception with event cameras with analogous high-level

capabilities as standard RGB cameras.

2.3 Optical Flow

The event-camera depth estimation method takes advantage of a new event-camera

optical flow algorithm that uses the sensor firing rate to capture the spatial-

temporal image gradient information with respect to events in the image plane.

The computation of the firing rate is discussed in the Materials and Methods sec-

tion. The event-camera optical flow is computed from the velocity vector of every

pixel in the image plane. In the case where there is no event at a given pixel, the

optical flow there is zero since the lack of events firing is indicative of a lack of

motion. For stationary objects and a static environment, the optical flow vector

of a pixel at (i, j) ∈ I is defined as,

ṗij(t) =
1

zij(t)
Gijv(t) + Hijω(t) (2.8)

where zij(t) is the depth at pixel coordinate (i, j) at time t, and Gij,Hij ∈ R2×3

are matrices that depend on (i, j) and on constant physical camera parameters that

are discussed in further detail in the Materials and Methods section. The optical

flow is a vector field comprised of all optical flow vectors obtained from the pixel
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in I, and organized in the matrix,

F(t) =



ṗ11(t) ṗ11(t) · · · ṗ11(t)

ṗ11(t) ṗ11(t) · · · ṗ11(t)

...
...

. . .
...

ṗ11(t) ṗ11(t) · · · ṗ11(t)


(2.9)

The event-camera optical flow algorithm relies on a quantity known as the event

firing rate, denoted by f(ξ, η, t), where ξ ∈ R and η ∈ R denote the horizontal and

vertical spatial position on the image plane, respectively. The positions ξ and η

are related to the pixel coordinates i and j through the physical camera parameter

known as pixels per inch (PPI). The event firing rate is a smooth and differentiable

function over a spatial-temporal volume that represents the event density in that

volume. The event firing rate is used to construct the event-camera optical flow

equation,

∂f(ξ, η, t)

∂t
= −∂f(ξ, η, t)

∂ξ
ṗξ(t)−

∂f(ξ, η, t)

∂η
ṗη(t) (2.10)

where the horizontal and vertical optical flow vector components at the spatial

position (ξ, η) are denoted by ṗξ(t) and ṗη(t), respectively, and together with the

camera PPI can be used to compute the optical flow vector ṗij(t) = [ṗi(t) ṗj(t)]
T

at a pixel coordinate (i, j). The algorithm then computes the optical flow vector

for each pixel coordinate (i, j) that have a corresponding position (ξi, ηj), using

an optimization derived from the event-camera optical flow equation. Because

the event-camera optical flow equation is a scalar with two unknown optical flow

variables, the additional assumption is made that the spatial gradient of the firing

rate remains constant along the trajectory of moving points through the image

plane. Then, the event-camera optical flow optimization problem is given as,

F(t) = arg min
F(t)

(
w∑
i=0

h∑
j=0

(
∆ψ2

ij(t) + ∆f 2
ij(t)

))
(2.11)
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Figure 2.3: Optical flow comparison for a translating circle between RGB frame
algorithm and event-camera algorithm

where

∆ψij(t) , ψ(ξi + ṗi(t)∆τ, ηj + ṗj(t)∆τ, t+ ∆τ)− ψ(ξi, ηj, t) (2.12)

∆fij(t) , f(ξi + ṗi(t)∆τ, ηj + ṗj(t)∆τ, t+ ∆τ)− f(ξi, ηj, t) (2.13)

where the orientation of the spatial gradient of the event firing rate is defined as,

ψ , arctan

(
fη
fξ

)
(2.14)

and the shorthand notation fξ = ∂f/∂ξ, fη = ∂f/∂η is used for brevity. The

optical flow function is updated every ∆τ seconds, where ∆τ depends on the

available computing resources. The complete derivation and linearization of the

event-camera optical flow algorithm is described in the Materials and Methods

section.
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2.4 Depth Estimation

The problem of depth estimation consists of determining the distance between

the moving camera and opaque objects in the scene, based on their projection

onto the image plane for every pixel location. All cameras measure the three-

dimensional workspace by relying on perspective projection onto a two-dimensional

image plane, resulting in the loss of depth information that cannot be reconstructed

from the signals recorded at a single time instant. Although stereoscopic depth

estimation algorithms exist for RGB and event cameras [3,64,65,68], the methods

presented this dissertation are developed to solve the more parsimonious problem

of monocular depth estimation. It is assumed that knowledge of the robot ve-

locity v ∈ R3 and angular rate ω ∈ R3 is available either from GPS and IMU

data or from an onboard localization and mapping algorithm [13]. Then the robot

kinematics can be used to perform depth estimation based only on two subse-

quent RGB camera frames using structure from motion [95] or optical flow [106]

algorithms. For comparison, in this dissertation an optical-flow depth estimation

algorithm is implemented on the moving RGB camera in stationary environments.

This RGB algorithm is chosen for comparison to the event camera because of its

high computational efficiency. Taking inspiration from motion-based biological

navigation [7,64], a new event-camera depth estimation algorithm is developed in

this dissertation. In particular, an event-camera optical flow algorithm is devel-

oped that is computationally efficient and enables real-time event-camera depth

estimation.

From the event-camera optical flow, the depth zij(t) for each pixel coordinate

(i, j) is calculated using the matrix pseudo-inverse,

zij(t) =
(
(vTGT

ijGijv)−1(vT (t)GT
ij)(ṗij(t)−Hijω(t))

)−1
(2.15)
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2.5 Object Recognition

Autonomous robots require reliable object-recognition capabilities. Object recog-

nition consists of classifying objects in the scene by estimating a categorical variable

with a range comprised of a countable and finite set of semantic labels, e.g.:

Performing object recognition requires first detecting relevant objects in the

camera FOV, and then classifying their semantic label. Although many meth-

ods for object detection and recognition have been developed for RGB cameras to

date, including convolutional neural networks (CNN) [80] and Histogram of Ori-

ented Gradient (HOG) [25], to the authors’ knowledge, there currently exist no

object recognition algorithms for event-cameras. The event-camera object recog-

nition algorithm presented in this dissertation is composed of two steps: object

detection, and object classification. The object detection in this dissertation is

done using the optical flow output and detecting individual objects in the image

by clustering regions that have a large optical flow magnitude. Then, the image

around the detected moving object is cropped and the optical flow in the cropped

image is used to compute the HOF features that are used in the SVM for object

classification, thereby completing the object recognition. The approach developed

in this dissertation computes the same dense event-based optical flow field de-

scribed in the previous subsection, and then computes the Histogram of Optical

Flow (HOF) to extract a feature vector for image classification. HOF has been

originally proposed in the literature for performing object and action recognition

with RGB cameras [26], among other tasks [17]. The HOF features extracted from

the event-camera image of a moving person are shown in Figure 2.4. Following

the step of HOF feature extraction, a trained SVM is used to classify the object,

as explained in the Materials and Methods section. However, object recognition

24



(a) (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: HOF features for object recognition. A moving person in the event-
camera FOV (a) produces HOF features (b) that are used in a linear SVM for
person recognition.

alone is often not enough for active perception, and a particular object must be

tracked and even followed by a mobile robot over time for a monitoring task.

2.6 Object Tracking and Active Following

Having recognized objects in their surroundings, autonomous robotics may be re-

quired to track and follow an object of interest over time. The example used

throughout this dissertataion is that of detecting, recognizing, and tracking a hu-

man in an environment populated with natural or man-built objects, vehicles, and

animals. Once a human is recognized within the camera FOV, the robot is tasked

with taking off and following the human within a specified distance. In order for

the target to be consistently recognized over time, the target must first be detected

and recognized within the sensor FOV.
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2.6.1 Event-camera Object Tracking and Quadrotor Con-

trol for Active Target Following

The object detection algorithm for event-cameras is motion based, and the set of

pixel coordinates where motion occurs at time , referred to as a motion mask, is

computed from the optical flow as,

ID(t) , {(i, j) ∈ I|‖ṗij > µ‖} (2.16)

where µ > 0 is a user-defined threshold that controls the detection sensitivity.

Then, a density-based clustering algorithm [30] is employed to distinguish be-

tween multiple objects in ID(t). The output of the clustering algorithm pro-

vides a collection of N mutually disjoint moving object masks, denoted by

D(t) = {D1(t), ..., DN(t)}, such that the union of the object masks is a subset

of the motion mask,
N⋃
i=1

Di(t) ⊆ ID(t),
N⋂
i=1

Di(t) = ∅ (2.17)

Each object mask can then be classified using the event-camera object recognition

algorithm and furthermore, the events associated with the detected human must be

tracked and properly associated with the same person, in the presence of multiple

objects appearing in the sensor FOV. A data association algorithm based on the

Hungarian algorithm [6, 53] is used to solve the following optimization problem.

Given a set of N > 0 detections at time t1 and M > 0 detections at time t2, find

the Boolean matrix X whose elements xij = 1 if and only if the i-th detection at
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t1 is associated with the j-th detection at t2, such that

min
X

N∑
i=1

M∑
j=1

dijxij (2.18)

s.t.
N∑
i=1

xij ≤ 1, ∀j (2.19)

s.t.
M∑
j=1

xij ≤ 1, ∀i (2.20)

where dij is the Euclidean distance between the i-th detection at time t1 and

the j-th detection at time t2. While many tracking algorithms have been developed

to date for RGB cameras, this dissertation presents the first event-based tracking

algorithm. Let the target human’s geometric center position be denoted by a

vector rT (t) ∈ W , and the event-camera position be denoted by a vector r(t) ∈ W

in inertial frame at time t, and let the constant specified distance be denoted by

δ > 0. Then, an onboard controller can be used to ensure that ‖rT (t)− r(t)‖ → δ.

The relative distance between the event-camera and the target is estimated using

the depth estimation result for the pixel (i, j) that best aligns with the target

detection geometric center, such that ‖rT (t)− r(t)‖ ≈ zij(t). This approximation

is most accurate when the sensor heading is such that the human is centered in the

camera FOV. Therefore, two proportional-integral-derivative (PID) controllers are

used to maintain the target at the specified distance and centered in the camera

FOV,

u1(t) = kp1(zij(t)− δ) + ki1

∫ t

t0

(zij(τ)− δ)dτ + kd1
d

dt
(zij(t)− δ) (2.21)

u2(t) = kp2(j(t)− w

2
) + ki2

∫ t

t0

(j(τ)− w

2
)dτ + kd2

d

dt
(j(t)− w

2
) (2.22)

where the gains kp1, kp2, ki1, ki2, kd1, kd2 ≥ 0 control the weight of each term in the

PID controllers, and u1(t) maintains the specified distance to the human and u2(t)
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Figure 2.5: MAV active perception controller. The depth estimate is used for
obstacle avoidance (a) while the camera feed and optical flow (yellow arrows) in
(b) are used for object and action recognition, as well as for following the person-
of-interest using the real-time onboard switched controller (c) shown in ’object
following’ mode at the present time.

maintains the human in the center of the FOV. An example of this system is shown

in Figure 2.5.

2.6.2 Ground Vehicle Control for Active Target Following

This dissertation considers the problem of controlling a nonholonomic mobile

ground robot equipped with an onboard camera characterized by a bounded field-

of-view, tasked with detecting and following a potentially moving human target

using onboard computing and video processing in real time. Computer vision

algorithms have been recently shown highly effective at object detection and clas-

sification in images obtained by vision sensors. Existing methods typically assume

a stationary camera and/or use pre-recorded image sequences that do not provide

a causal relationship with future images. The control method developed in this

dissertation seeks to improve the performance of the computer vision algorithms,

by planning the robot/camera trajectory relative to the moving target based on

the desired size and position of the target in the image plane, without the need to
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estimate the target’s range. The method is tested and validated using a highly re-

alistic and interactive game programming environment, known as Unreal Engine�,

that allows for closed-loop simulations of the robot-camera system. Results are

further validated through physical experiments using a Clearpath�Jackal robot

equipped with a camera which is capable of following a human target for long

time periods. Both simulation and experimental results show that the proposed

vision-based controller is capable of stabilizing the target object size and position

in the image plane for extended periods of time.

This dissertation also proposes the use of a game development software, known

as Unreal Engine�, for simulation of the vision-based control algorithm in a photo-

realistic virtual space. Most robot simulation and visualization software emphasize

physical accuracy and lack visual realism. Furthermore, simulation in a visually-

realistic environment provides the ability to quickly and efficiently recreate and

redefine an infinite set of testing conditions, while providing a deterministically

repeatable test environment. This work further validates the proposed controller

as well as the reliability of the Unreal Engine�as a control algorithm simulator

through physical experiments which demonstrate the proposed methods are capa-

ble of real-world implementation.

Problem Formulation

Consider a region of interest, W ⊂ R3, populated with human target T ⊂ W ,

and a mobile robot A ⊂ W . The robot is equipped with a camera which has a

bounded FoV, characterized by a focal length λ ∈ R, a half-angle α ∈ S1, and an

aspect ratio AR. The image plane, S = [0, w]× [0, h], is the perspective projection

of W as seen through the camera FoV, where w and h are the width and height of
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Figure 2.6: The inertial, body, and image reference frames are illustrated, along
with relative position vectors and dimensions. The target is shown in the 3-
dimensional world being transformed, via perspective projection, onto the image
plane.

the image, respectively, which may be computed from the camera parameters λ,

α, and AR, that is w = 2λ tanα, and h = w/AR Fig. 2.6.

A reference frame FA is embedded in A, such that the 1st axis is aligned with

the camera optical axis, the 3rd axis points vertically, and the 2nd axis completes

the right-hand rule. The origin of FA is known as the focal point of the camera,

whose position r(t) ∈ R3 is expressed relative to an inertial reference frame FW ,

as illustrated in Fig. 2.6. The coordinates of the focal point position, expressed in

FW are given as r(t) = [x(t), y(t), z]T , where z is the constant height of the focal

point. Assuming the z-axes of FW and FA remain parallel, the rotation matrix
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which maps vectors expressed in FW to FA is given as

RA
W =


cos θ(t) sin θ(t) 0

− sin θ(t) cos θ(t) 0

0 0 1

 , (2.23)

where θ(t) is the yaw angle of the robot.

The perspective projection PS
A maps vectors in R3 expressed with respect to

FA, whose origin is the focal point of the camera, to vectors in R2 expressed

with respect to FS . Fig. 2.6 shows the vector rt/A ∈ W being mapped to the

vector pt ∈ S via PS
A. p(t) = [xb(t), yb(t)]

T is the position vector to the center of

the bounding box in the image plane. The perspective projection can be written

as a scaled linear operation on rt/A using homogeneous coordinates ( [?]). The

perspective projection mapping of an arbitrary vector r ∈ W to the associated

image plane vector p ∈ S is

PS
A(r) =

1

2


w

b

0

− γ

λ 0 0

0 λ 0

0 0 1

 r =

 p

1

 , (2.24)

where γ ∈ R is a scaling parameter used to enforce the 3rd element to equal

unity. Therefore, all of the required transformations have been defined which take

the target position rt, and the robot position r, expressed in inertial frame, and

define a position vector on the image plane pt. This complete transformation is

illustrated in Fig. 2.6 and may be expressed as pt

1

 = PS
A

(
RA
W (rt − r)

)
. (2.25)

Assuming A is rigid, and the camera is rigidly attached to A, the robot configura-

tion (state) vector can be described as q(t) = [x(t) y(t) θ(t)]T , which is governed
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by the nonholonomic unicycle kinematic model,

q̇(t) =


cos θ(t) 0

sin θ(t) 0

0 1


 v(t)

ω(t)

 = G(q(t))u(t), (2.26)

where v(t) ∈ R is the forward velocity, and ω(t) ∈ R is the yaw rate. The control

input vector is defined as u(t) = [v(t) ω(t)]T ∈ U , and U ⊂ R2 is the set of

admissible control inputs.

A bounding box b(t) ∈ R4 associated with the target T is extracted

from the video and projected on S. The elements composing b(t) =

[xb(t), yb(t), wb(t), hb(t)]
T are the coordinates of the bounding box center pt(t) =

[xb(t), yb(t)]
T ∈ S, expressed in the image frame FS , and the width wb(t) ∈ [0, w]

and height hb(t) ∈ [0, h] of the bounding box. Several computer vision algorithms

exist which extract such a bounding box containing an object of interest from an

image, some of which will be reviewed in the following section.

Control Objective

In order to maintain the target within the camera FoV, a reliable target bound-

ing box must be consistently extracted from the video sequence. Therefore, it is

desirable to maintain the target not only within the FoV, but at a reliable range

for accurate image processing. The control objective is to drive the bounding box

b(t) to a desired set point b̃ by suitable choice of the control input vector u(t)

over some time interval of interest [t0, T ) ⊆ R. That is,

[xb, yb, wb, hb]
T → [x̃b, ỹb, w̃b, h̃b]

T . (2.27)

where x̃b, ỹb are the desired (constant) coordinates of the bounding box center, and

w̃b, h̃b are the desired (constant) width and height of the bounding box, respec-
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tively. Typically, the set point b̃ is chosen such that the bounding box remains in

the center of the image at a sufficient scale for reliable image processing. However,

since there is no control over the pitch of the camera or the relative height of the

camera focal point and the target center, yb(t) is not controllable. As long as the

target and robot both remain on a level surface with a reasonable relative height

between the camera focal point and the target center, this uncontrollable variable

will not affect the proposed algorithm’s performance. A more complex model may

assume the camera is mounted on a gimbal, enabling the camera to rotate with

respect to the robot, which would provide a means to control yb(t), but such a

model is not considered in this work.

Similarly, the width wb(t) and height hb(t) of the bounding box provide some

redundant information since the robot cannot control the orientation of the tar-

get. Therefore, the width and height are combined into a single size metric

∆b(t) of the bounding box, which is a measure of the length of the bounding

box diagonal, ∆b(t) = ‖[wb(t), hb(t)]T‖2. Therefore, after post-processing the ex-

tracted bounding box b(t) = [xb(t), yb(t), wb(t), hb(t)]
T into a useful output vector

y(t) = [∆b(t), xb(t)]
T , the control objective is reduced to

y(t)→ ỹ, (2.28)

where ỹ = [∆̃b, x̃b]
T , and ∆̃b = ‖[w̃b, h̃b]T‖2.

Methodology

This dissertation presents a novel unified video processing and control approach for

detecting and pursuing a human target in a complex unstructured environment,

which is accomplished by stabilizing the control objective defined in the previous
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section. Due to recent advancements of object recognition tasks in computer vision,

the presented methodology employs a state-of-the-art deep convolutional neural

network (CNN) [61] to detect and classify objects within the image plane. The

output of the CNN is then processed to extract a bounding box b(t) associated

with the target. This bounding box is then used to compute a control law designed

to maintain the target human in a desirable position within the image for reliable

future detections.

Target Detection and Identification

Over recent years algorithms for multi-class object detection in images have become

extremely accurate, mostly due to the use of deep CNNs [49]). Three recent well-

known architectures are Faster R-CNN proposed by [81], the Single Shot Multibox

Detector (SSD) developed by [61], and the Region-based Fully Convolutional Net-

work (R-FCN) by [24]. It is difficult to disambiguate the best architecture due

the use of interchangable feature extraction and classification techniques. Fur-

thermore, the work by [49] present a comprehensive study of the speed-accuracy

tradeoff between different CNN architectures and feature extractors. The object

detection algorithm used in this work is chosen to be as accurate as possible while

simultaneously being capable of real-time implementation on a physical robot with

onboard computing. This work uses a MobileNet ( [47]) implementation of the SSD

architecture ( [61]) in order to satisfy real-time resource constraints. The CNN is

pre-trained on the Microsoft COCO data set of [57].

The CNN takes as input an image S(t) at time t and outputs a set of detection-

confidence pairs B(t) = {(bi(t), ci(t))}Ndet(t)
i=1 , where bi(t) are bounding boxes con-

taining objects of the same class as the target (i.e., human), and ci(t) ∈ [0, 1) are
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the associated confidence scores of the bounding box, and Ndet(t) ∈ N is the num-

ber of detections. The target bounding box b(t) is then computed as the bounding

box with the highest associated confidence score, when multiple detections are ex-

tracted. If no detections are extracted, i.e., B(t) = ∅, the target bounding box

b(t) is set equal to the set point bounding box b̃ in order to stop the robot. This

processing step is expressed as

b(t) =

 arg maxbi
{ci : (bi, ci) ∈ B(t)} B(t) 6= ∅

b̃ B(t) = ∅
. (2.29)

This formulation guarantees that b(t) exists and is unique by construction. The

bounding box b(t) is then transformed into the output vector y(t) which is used

as the control variable in the controller to be designed in the following subsection.

Controller Design

The control law for tracking and following the target based on video frames ob-

tained by the robot camera, and processed according to the previous subsections,

is developed by considering properties of the perspective projection, and noting

how points in three dimensions move across an image in two-dimensions while the

camera is moving. Due to the properties of the perspective projection, objects

which are closer to the focal point appear larger, and objects that are farther from

the focal point appear smaller. This provides a natural method for controlling

the size of the bounding box ∆b(t) without requiring kinematic estimations in the

3-dimensional world. Similarly, the position of the bounding box xb(t) in the im-

age provides a natural error signal for the yaw rate ω(t) of the robot. Because

the target human may be moving, the use of integral compensation is proposed

in order to reduce steady state errors that would be present if the control input
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were simply proportional to these error signals. Then, the proposed video-guided

control input is designed using the following proportional-integral compensation

u(t) = −K1∆y(t)−K2

∫ t

0

∆y(τ)dτ, (2.30)

where K1,K2 � 0 are diagonal gain matrices of reasonable dimension, and ∆y(t) =

y(t) − ỹ. The proposed control law is validated using photo-realistic simulations

in highly complex environments, as well as through physical experiments in a

laboratory setting.

Simulation Experiments

The Unreal Engine�is a leading game development software capable of advanced

open-source environment development and manipulation. These capabilities have

recently been exploited by several industries outside of the game development

community, including architectural visualization, film-making, and virtual reality

training simulations. The use of Unreal Engine�for simulation of computer vision-

based automatic control algorithms makes no sacrifice to physical accuracy, but has

the advantage of a vast user community composed of artists and developers who

create visually realistic environments, characters, behaviors, and objects, which

may be used in simulations. This ease of access to a diverse set of environments

and scenarios helps test the robustness of proposed methods in ways not feasible

in real-world experiments or conventional robotics software.

Similar game development softwares have been used in previous works for gen-

erating synthetic data to train deep CNNs. Unreal Engine�has also been used

for similar computer vision tasks by several authors, such as semantic segmen-

tation by [79], and simulating stereo-vision applications by [102]. Furthermore,
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the work by [88] uses Unreal Engine�to develop realistic quadrotor and vehicle

simulations for autonomous vehicle simulations. This work, proposes the use of

Unreal Engine�for the novel task of simulating a fully autonomous robot using

visual feedback for tracking a target in the realistic virtual space.

Human Tracking and Following Simulation Results

The control law developed in the previous section is tested in the visually realistic

and complex subway environment using Unreal Engine�, in which a mobile robot

equipped with a camera tracks and follows a potentially moving human without

knowledge of the target dynamics or environment geometry. The subway environ-

ment consists of realistic lighting, a moving subway, and other moving objects.

A number of simulations are conducted in order to analyze the proposed control

algorithm: (1) a step response of the velocity input v(t), (2) a ramp response of

the velocity input v(t), (3) a step response of the yaw rate input ω(t), (4) a ramp

response of the yaw rate input ω(t). The set point used for all simulations is chosen

such that the bounding box stabilizes to a desired size for reliable image processing

at the center of the camera FoV. The single setting for the diagonal gain matrices

K1 and K2 is manually chosen and not changed between simulations.

The first simulation tests the controller response to a step input in the size error

of the target, i.e., ∆b(t) − ∆̃b. This is done by initially placing the target human

in the center of the camera FoV, such that xb(t0) = x̃b, and at a distance away

from the robot such that ∆b(t0) < ∆̃b. The bottom of Fig. 2.7 shows the initial

configuration of the robot and target in a geometrically simplified visualization

of the subway, along with the visual input to the robot at the initial time t0.

The set point bounding box b̃ is illustrated as the orange bounding box and the
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Figure 2.7: Simulated step response to an initial error in the size of the target,
eDelta = (∆b(t) − ∆̃b)/∆̃b. The bottom of the figure illustrates the initial config-
uration of the target and robot in a geometrically simplified visualization of the
subway, along with the initial visual input at the initial configuration.

estimated target bounding box b(t0) output from the CNN is illustrated as the

green bounding box. The top of Fig. 2.7 shows the resulting error signal e∆(t) =

(∆b(t)− ∆̃b)/∆̃b and control input v(t). The step response slightly overshoots the

desired position and stabilizes in roughly five seconds.

The second simulated experiment tests the controller response to a ramp input

in the size error of the target, ∆b(t)−∆̃b. This is done by initially placing the target

human in the center of the camera FoV, such that xb(t) = x̃b, and programming

the human target to walk at a constant velocity in the direction of the initial

camera optical axis. The human is programmed to walk at 1.3 m/s, which is

a typical walking speed of a human. Fig. 2.8 illustrates the controller response

as well as several snapshots throughout the simulation showing the robot-target

configuration and the associated visual input. The response of the controller to

such an input again stabilizes without any steady state error, due to the integral

term of the control law in 2.30.

The next simulated experiment tests the controller response to a step input in
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Figure 2.8: Simulated ramp response of the error in the size of the target, e∆ =
(∆b(t)−∆̃b)/∆̃b. The bottom of the figure illustrates the configuration of the target
and robot in a geometrically simplified visualization of the subway at a number of
snapshots throughout the simulation, along with the visual input at the time of
these snapshots.
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Figure 2.9: Simulated step response to an initial error in the position of the target,
exb = (xb(t)− x̃b)/x̃b. The bottom of the figure illustrates the initial configuration
of the target and robot in a geometrically simplified visualization of the subway,
along with the initial visual input at the initial configuration.
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Figure 2.10: Simulated ramp response of the error in the position of the target,
exb = (xb(t) − x̃b)/x̃b. The bottom of the figure illustrates the configuration of
the target and robot in a geometrically simplified visualization of the subway at
a number of snapshots throughout the simulation, along with the visual input at
the time of these snapshots.

the lateral position of the target, i.e., xb(t)−x̃b. This is done by initially placing the

target human at a distance from the robot such that ∆b(t0) = ∆̃b, but offset from

the optical axis such that xb(t0) < x̃b. The bottom of Fig. 2.9 shows the initial

configuration of the robot and target in a geometrically simplified visualization of

the subway, along with the visual input to the robot at the initial time t0. The

top of Fig. 2.7 shows the resulting error signal exb(t) = (xb(t)− x̃b)/x̃b and control

input ω(t). The step response slightly overshoots the desired position but quickly

stabilizes about the set point configuration.

The final simulated experiment tests the controller response to a ramp input

in the lateral position of the target, xb(t) − x̃b. This is done by programming

the human target to walk in a circular motion centered at the camera focal point

at a constant speed. The radius of the target’s circular path is chosen such that

∆b(t) = ∆̃b. Fig 2.10 illustrates the controller response as well as several snap-
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shots throughout the simulation showing the robot-target configuration and the

associated visual input. The response of the controller to this ramp input very

rapidly stabilizes without any steady state error. Some high frequency oscillations

in the error signal are visible, and are caused by the periodic nature of the human

walking as viewed from the side. That is, the bounding box slightly changes in

shape and position due to swinging arms and legs of a walking human. Two of the

spikes in the signal are caused by errors in the CNN detection algorithm, but are

only present at single frames, which does not affect performance.

The four simulations performed in this study all show the controller stabilizing

about the desired set point. Furthermore, the robot was programmed to follow the

human through the subway environment using the proposed controller, while the

target moved arbitrarily through the environment. Even in this case, where the

robot was subject to small disturbances such as brief/partial occlusions, lighting

variations, and change in the target motion the robot successfully stabilized about

the set point. In this case, the robot was able to follow the human through the

subway environment for several minutes, and possibly longer. Therefore, these

simulation results suggest that, as long as the human target does not intentionally

evade the robot, then the proposed controller will be capable of following the

human indefinitely under reasonable conditions.

Human Tracking and Following Experimental Results

The experimental validation of the proposed control algorithm is done using a

Clearpath�Jackal robot equipped with a camera and onboard computing capabil-

ities. The robot can be accurately modeled by the nonholonomic unicycle model

2.26. A Vicon motion capture system is used to provide ground truth measure-
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Figure 2.11: Simulated step response to an initial error in the size of the target,
eDelta = (∆b(t) − ∆̃b)/∆̃b. The bottom of the figure illustrates the initial visual
input.

ments of the robot and target states. It should be made clear that the Vicon data

is never made available to the robot, and is only used to collect accurate pose data

for results visualization. The four physical experiments presented here are exactly

the same as the four simulated experiments in the previous section. That is : (1) a

step response of the velocity input v(t), (2) a ramp response of the velocity input

v(t), (3) a step response of the yaw rate input ω(t), (4) a ramp response of the

yaw rate input ω(t)

The first physical experiments tests the controller response to a step input in

the size error of the target, i.e., ∆b(t) − ∆̃b. This is done by initially placing the

target human in the center of the camera FoV, such that xb(t0) = x̃b, and at a

distance away from the robot such that ∆b(t0) < ∆̃b. The bottom of Fig. 2.11

shows the visual input to the robot at the initial time t0. The set point bounding

box b̃ is illustrated as the orange bounding box and the estimated target bounding

box b(t0) output from the CNN is illustrated as the green bounding box. The top

of Fig. 2.11 shows the resulting error signal e∆(t) = (∆b(t)− ∆̃b)/∆̃b and control

input v(t). The step response slightly overshoots the desired position then quickly

stabilizes.
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Figure 2.12: Simulated ramp response of the error in the size of the target, e∆ =
(∆b(t) − ∆̃b)/∆̃b. The bottom of the figure illustrates the configuration of the
target and robot at a number of snapshots throughout the simulation, along with
the visual input at the time of these snapshots.

The second physical experiment tests the controller response to a ramp input in

the size error of the target, ∆b(t)− ∆̃b. This is done by initially placing the target

human in the center of the camera FoV, such that xb(t) = x̃b, and programming

the human target to walk at a constant velocity in the direction of the initial

camera optical axis. Fig. 2.12 illustrates the controller response as well as several

snapshots throughout the simulation showing the robot-target configuration and

the associated visual input. The response of the controller to such an input again

stabilizes. However, due to the physical limitations of the laboratory setup (i.e.,

Size of the Vicon area) the human cannot walk far enough to allow the robot to

fully reach steady state, but extrapolation of the available response is promising.

This further illustrates the power of visually-realistic simulation in Unreal Engine�.

The next physical experiment tests the controller response to a step input in
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Figure 2.13: Simulated step response to an initial error in the position of the target,
exb = (xb(t)− x̃b)/x̃b. The bottom of the figure illustrates the initial visual input.
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Figure 2.14: Simulated ramp response of the error in the position of the target,
exb = (xb(t)− x̃b)/x̃b. The bottom of the figure illustrates the configuration of the
target and robot at a number of snapshots throughout the simulation, along with
the visual input at the time of these snapshots.

the lateral position of the target, i.e., xb(t)− x̃b. This is done by initially placing

the target human at a distance from the robot such that ∆b(t0) = ∆̃b, but offset

from the optical axis such that xb(t0) < x̃b. The bottom of Fig. 2.13 shows the

initial visual input to the robot at t0. The top of Fig. 2.7 shows the resulting error

signal exb(t) = (xb(t) − x̃b)/x̃b and control input ω(t). The step response slightly
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has no overshoot and quickly stabilizes about the set point configuration.

The final physical experiment tests the controller response to a ramp input in

the lateral position of the target, xb(t) − x̃b. This is done by the human target

walking in a circular motion centered at the camera focal point at a constant speed.

Fig 2.14 illustrates the controller response as well as several snapshots throughout

the simulation showing the robot-target configuration and the associated visual

input. The response of the controller to this ramp input very rapidly stabilizes

without any steady state error. These results confirm that the proposed controller

as well as future computer vision-based controllers can be readily simulated in

Unreal Engine�and then successfully implemented on physical robotic platforms.

2.7 Action Recognition and Human-directed Quadrotor

Control

The previously discussed tasks enable an event-camera-equipped robot to navi-

gate and track a particular object using only event-driven algorithms. Action

recognition enables mobile robots to obey simple gestures and commands, such

as to move in a specified direction based on the direction of a human pointing.

Action recognition is incredibly useful for autonomous systems that share an envi-

ronment with humans. Many algorithms exist in the literature for human action

recognition, which is an active area of research for machine learning and deep

learning algorithms [90]. However, the majority of these algorithms require sig-

nificant computational resources or rely on RGB camera image intensity values.

This work employs a purely motion-based action recognition algorithm using Tem-

poral Templates [9], and more particularly the Motion Energy Image (MEI) and
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Motion History Image (MHI) representations of actions. The event-camera action

recognition algorithm constructs the MEI and MHI from event data. Given the set

of events collected from a motion sequence over the time interval [t − τ, t], where

τ > 0 is a temporal sliding window, the MEI and MHI are computed, respectively,

as,

Eτ (E) =
⋃

e(t)∈E

{(i, j)|e(t) = [i j t p]} (2.31)

hij = max
e(t)∈E

({0} ∪ {τ − t|e(t) = [i j t p]}) (2.32)

where hij represents a single element of the MHI matrix,

Hτ =



h11 h11 · · · h11

h11 h11 · · · h11

...
...

. . .
...

h11 h11 · · · h11


(2.33)

where the dependency on the event set is omitted for brevity. The resulting MHI

matrix has larger component values where more recent motion has occurred and

the values decay as the motion occurred longer ago. Figure 2.15 shows an example

of the temporal templates for a human pointing computed using an event-camera

and an RGB camera, for comparison. The temporal templates naturally lend

themselves to event data since they rely on image differences as a main part of the

method. The shape of MEI and MHI can effectively represent human motion and

they are used to extract a feature representation of actions. We use the first 7 Hu

moments [48] as a global shape descriptor of MEI and MHI that are invariant to

scale, translation, and rotation. Then, a recognition scheme matching the distance

between the moments of testing data and those of stored actions is developed.

The distance metric is Mahalanobis distance, denoted by DM . The distance DM
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Figure 2.15: Temporal Templates for a human pointing from event and RGB
camera. The action of a human pointing (a) results in the MHI computed from
RGB camera (b) and event camera (c).

between a test motion sequence and the combined distribution of training motion

sequences is given by:

DM = ((µ− µ̄)TK−1
s (µ− µ̄))1/2 (2.34)

where Ks and µ̄s are respectively the covariance matrix and mean of the Hu

moments of training motions, and µ is the Hu moments of testing motion. Using

distance DM , testing data can be matched to the closest training data to determine

the best matching action label.

The event-camera active perception algorithms presented in this dissertation

are compared to the analogous RGB camera algorithms that use standard algo-

rithms in the following sections. The event-camera is a biologically inspired sensor

that is expected to require significantly less computational resources while perform-

ing as good, if not better, than RGB camera methods for tasks that are heavily

influenced by motion in the camera image plane. This dissertation quantitatively

and qualitatively analyzes the comparison of event and RGB cameras in terms of

both accuracy and computational cost for each of the high-level active perception

tasks discussed in this section.

47



2.7.1 3D Human Pose and Action Recognition

This section develops a novel and systematic approach to real-time three-

dimensional human pose estimation for viewpoint invariant action recognition

from a monocular camera onboard a quadrotor tasked with actively tracking a hu-

man of interest. Leveraging recent advancements in two-dimensional human pose

estimation, a novel geometric approach developed here characterizes the three-

dimensional pose of each link in the human skeleton using rotations, and the

three-dimensional joint angles are derived analytically. A rotational representa-

tion of pose is invariant to the absolute scale of the human, depending only on

body proportion which is consistent for adult humans. Furthermore, the joint

angles can be expressed with respect to a human-fixed reference frame, thereby

making the pose representation invariant to the camera viewpoint. A human ac-

tion feature representation is also developed, taking advantage of the viewpoint

invariant pose and a weighted sliding temporal window, that is used for viewpoint

invariant human action recognition. Finally, a switched controller informed by the

target human action is developed enabling a quadrotor to maintain the human in

camera’s field of view. Results of the three-dimensional human pose estimation are

shown to accurately represent the true pose of a human. Additionally, the action-

based switched controller is shown to maintain the human in the camera’s field

of view while the human performs various actions that would otherwise require

controller tuning or re-design.

The 3D HPE results are shown to accurately compute the orientation of multi-

link human limbs and skeletons in real-time for use onboard a mobile robot. In

addition, the proposed viewpoint invariant feature representation is shown to be

capable of capturing temporal information and to be more robust than existing
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Figure 2.16: Two camera viewpoints of the same human walking sequence. The
viewpoint invariant pose angles developed in this dissertation are shown on the
right of both images for the human’s left arm. The invariant pose angles results
in the viewpoint invariant action recognition result of ‘walking’.

feature representations of the task of HAR. The switched controller developed in

this dissertation is also shown to perform well for a human performing several

different actions that would likely require re-tuning of control parameters of non-

action based controllers.

Problem Formulation

This dissertation considers the problem of a mobile quadrotor tasked with main-

taining a human target within the camera’s FOV by taking advantage of the per-

ceived actions of the human. The region of interest (ROI), or workspace W ⊂ R3,

contains a quadrotor that is equipped with a monocular RGB camera with FOV
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Figure 2.17: A quadrotor with an onboard camera with FOV S observes a human
target T . The target skeleton is shown projected from the workspace W onto the
image plane I using perspective projection. Additionally, the target root joint κ0,
which has position q0 relative to the camera frame FS , is projected to the position
p0 on the image plane. The camera focal point and target root joint have positions
x and xT , respectively, defined relative to the fixed coordinate frame FW .

S ⊂ W . The camera FOV S is modeled as a right-rectangular pyramid with apex

position rS ∈ W defined relative to a fixed coordinate frame FW . The apex rS of

the camera FOV S coincides with the camera’s focal point following the pinhole

camera model [98]. A camera-fixed reference frame FS is embedded in the sensor

FOV with its origin OS located at the camera focal point rS. The camera-fixed

frame FS can then be used to describe every point in the sensor FOV S relative to

the fixed reference frame FW . The image plane I ⊂ S is a planar manifold that is

normal to the camera’s optical axis and points in the camera FOV are projected

onto the camera image plane from perspective projection as shown in Fig. 2.17.

The quadrotor has a state vector x ∈ R12 that is composed of the quadrotor’s
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position rS ∈ R3, velocity ṙS ∈ R3, attitude (φS, θS, ψS), and angular rate ω ∈ R3.

Where the attitude of the quadrotor is characterized by the three Euler angles

composed of the aircraft’s roll φS ∈ S1, pitch θS ∈ S1 and yaw S1. These Euler

angles characterize the attitude of the reference frame FS with respect to the

inertial frame FW . The nonlinear quadcopter dynamics is modeled in general as,

ẋ = f(x,u) (2.35)

where u ∈ U is the quadcopter control input and U is the set of admissible control

inputs.

In addition to the quadrotor and sensor FOV, the ROI is also occupied by a

human target T ⊂ W whose pose is represented by 14 joint positions κi ∈ T , i =

0, ..., 13 as shown in Fig. 2.18. Any pair of two connected joints (κi, κj) is referred

to as a link. The vector from the camera focal point OS to the joint κi is defined

as qi = [xi yi zi]
T , expressed in terms of the camera-fixed reference frame FS . The

relative position of joint κj with respect to κi is defined as lij êij , qj − qi, where

the length of the link connecting κj to κi is lij = ‖qi − qj‖ and the unit vector

êij is in the direction from κi to κj. The vector that describes the position of

a joint κi projected onto the image plane I is denoted by pi = [ξi ηi λ]T , whose

coordinates are expressed in terms of the camera-fixed reference frame FS . λ > 0 is

the camera’s known focal length, and ξi, ηi are the horizontal and vertical positions

of κi projected onto the image plane, i.e., the pixel location in the image. From

perspective projection, pi can be expressed as a scaled vector of the position qi,

pi =
λ

zi
qi (2.36)

The joint κ0, which references the approximate neck position of the human, is

referred to as the root joint for the target human which is used to describe the

target’s position rT relative to FW , or q0 relative to FS, as shown in Fig. 2.17.
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Figure 2.18: A human target T ∈ W with skeleton represented by 14 joint positions
κi, i = 0, ..., 13. κ0 is referred to as the root joint and is used to define the target
position rT relative to the fixed reference frame FW .

Because the perspective projection is a mapping from R3 to R2, the depth

component cannot easily be computed from the camera measurements. However, in

this dissertation it is assumed that the human target is a reasonably proportioned

human, meaning that the ratio of any link’s length over the torso length, defined

as l = ‖q1−q0‖, can be accurately estimated. This assumption is commonly used

in many industries and dates back to the work of Leonardo Di Vinci’s Vitruvian

Man [86]. Mathematically, the following link ratios are assumed known,

γij ,
lij
l

(2.37)

for all i, j = 0, ..., 13 such that κi and κj are connected joints according to Fig.

2.18 and i 6= j.
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In this dissertation, the pose of a link (κi, κj) is defined using two Euler angles,

denoted by ϕij and ϑij. In order to ensure that the estimated pose is viewpoint

invariant, ϕij, ϑij are defined relative to a target-fixed reference frame FT . FT

has origin at κ0 and is composed of three unit vectors (êT1, êT2, êT3) as shown in

Fig. 2.19. The direction of the unit vector êT1 is defined to be normal to the plane

formed by the three joints κ1, κ2, κ5. This normal vector is computed using the

vector cross product,

êT1 = ê51 × ê21 (2.38)

The unit vector êT3 is in the direction from the root joint κ0 to the joint κ1

projected into the plane formed by κ1, κ2, κ5, or

êT3 ,
ê10 − (ê10 · êT1) êT1

‖ê10 − (ê10 · êT1) êT1‖
(2.39)

where (·) denotes the vector dot product. The final unit vector êT2 is defined using

the right hand rule and therefore the target reference frame is completely defined

as shown in Fig. 2.19.

Having defined the target reference frame FT , the Euler angles ϕij, ϑij that

define the pose of the link (κi, κj) may be defined in terms of two consecutive

rotations. The first rotation is about the êT3 axis followed by a rotation about

the intermediate êT2 axis, as shown in Fig. 2.20. By this convention, if both

ϕij = ϑij = 0, then the vector sji points in the direction of êT1. The full 3D

human pose can now be represented as a 26-dimensional viewpoint invariant vector

of Euler angles, composed of two angles for each of the 13 links,

pT , [ϕ01 ϑ01 ϕ02 ϑ02 ϕ23 ϑ23 ϕ34 ϑ34 . . . (2.40)

ϕ05 ϑ05 ϕ56 ϑ56 ϕ67 ϑ67 . . .

ϕ18 ϑ18 ϕ89 ϑ89 ϕ9,10 ϑ9,10 . . .

ϕ1,11 ϑ1,11 ϕ11,12 ϑ11,12 ϕ12,13 ϑ12,13]T
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Figure 2.19: The target reference frame composed of orthogonal unit vectors
êT1, êT2, êT3, where êT1 is defined normal to the plane of the three joints κ1, κ2, κ5,
êT3 is in the direction of the torso (κ0, κ1) projected into the same plane, and êT2

completes the right hand rule.

A novel contribution of this dissertation is that the pose vector pT is, by definition,

viewpoint invariant and human-scale invariant since all of the Euler angles in pT

are defined relative to the target-fixed reference frame, and the use of joint angles,

rather than joint positions, is implicitly scale invariant.

Although the Euler angles ϕij, ϑij are viewpoint invariant and therefore ex-

tremely valuable for action recognition, these angles are not directly measurable

from the camera after perspective projection onto the image plane. However, the

in-plane rotation of each link is measurable, and one of the contributions of this

dissertation is the derivation of the geometric constraints used to determine the

out of plane rotation of each link.

For a link (κi, κj) ∈ S projected onto the image plane I as shown in Fig.
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Figure 2.20: The azimuth elevation Euler angles defining the pose between two
connected joints in the target reference frame.

2.21, the projected positions pi, pj are estimated using a state of the art 2D HPE

systems, e.g., [16, 51]. The image-plane positions pi, pj are used to compute the

projected distance dij between the two joints and the rotation angle θij in the

image plane made by the link connecting the two joints, given by,

dij = ‖pj − pi‖, θij = arctan

(
ηj − ηi
ξj − ξi

)
(2.41)

The complete target human pose can be described relative to the camera ref-

erence frame FS , again using two Euler angles θij, φij to describe the pose of each

pair of connected joints κi, κj, as shown in Fig. 2.21. Note that the out of plane

angle φij is measured in the plane of the three points κi, κj, OS , where OS is the

origin of the camera reference frame. The camera reference frame FS is composed

of three unit vectors, namely êS1, êS2, êS3, where êS1, êS2 are aligned with the

horizontal (right-positive) and negative vertical (down-positive) directions of the

image plane I, respectively, and êS3 is aligned with the camera’s optical axis. The

first rotation used to describe the pose of (κi, κj) is a rotation of θij about the êS1

direction, which is directly measurable from the image using Eq. 2.41. This first
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rotation matrix Rθij ∈ SO(3) is defined as

Rθij ,


cos θij sin θij 0

− sin θij cos θij 0

0 0 1

 (2.42)

The second rotation is by a value ψij about the intermediate êS1 direction, where

ψij = arctan
(
η′i
λ

)
, and η′i is the second component of the rotated pixel positions

Rθpi = [ξ′i η
′
i λ]T , Rθpj = [ξ′j η

′
j λ]T , and η′i = η′j. This second rotation matrix

Rψij
∈ SO(3) is defined as,

Rψij
,


1 0 0

0 cosψij sinψij

0 − sinψij cosψij

 (2.43)

The reason this second rotation is necessary will become clear in the following

section, as it drastically simplifies analytic computations used to determine the out-

of-plane rotation angle. The final link rotation has value φij about the intermediate

êS2 direction as shown in Fig. 2.21. Unlike the first and second rotations θij, the

third rotation φij is not directly measurable from the image, but it will be shown in

Sec. ?? that a finite set of possible angles can be computed analytically using the

projected lengths dij and the known link ratios in Eq. 2.37. The rotation matrix

Rφij ∈ SO(3) is defined as

Rφij ,


cosφij 0 − sinφij

0 1 0

sinφij 0 cosφij

 (2.44)

A viewpoint invariant definition of the target human pose pT has already been

defined in Eq. 2.40, however a second description of the target pose, expressed
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Figure 2.21: The angles θij, φij used to describe the pose of connected joints κi, κj
with respect to the camera-fixed frame FS .

using rotations about the camera-fixed reference frame, is necessary for the esti-

mation method presented in the following subsection. Thus, the target human

pose with respect to the camera-fixed reference frame is defined as,

pS , [θ01 φ01 θ02 φ02 θ23 φ23 θ34 φ34 . . . (2.45)

θ05 φ05 θ56 φ56 θ67 φ67 . . .

θ18 φ18 θ89 φ89 θ9,10 φ9,10 . . .

θ1,11 φ1,11 θ11,12 φ11,12 θ12,13 φ12,13]T

Although this representation of the target human pose is expressed in terms

of angles about the camera-fixed reference frame FS , the angles that are rotated

out of the image plane, i.e., φij, are not directly measurable from the image plane

coordinates pij. In fact, the only useful measurements that are directly available
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from the image plane measurements are the in-plane rotation θij and projected link

lengths dij, as expressed in Eq. 2.41. Then, the measurement vector zT ∈ R28,

composed of the projected root joint position ξ0, η0, the projected torso length d0,

the in-plane link rotations θij, and the projected link lengths dij, that are directly

available from the image plane measurements is defined as,

zT , [ξ0 η0 d0 θ01 · · · d02 · · · ]T (2.46)

In order to make the estimation of the human pose pS geometrically possible, a

reasonable assumption used in this work is that the human target’s torso is parallel

to the image plane, i.e., φ01 = 0. Ideally, the torso is always vertical to avoid errors

but the proposed method is capable of handling non-vertical torso pose, as long

as the torso is parallel to the image plane. This assumption leads to the following

relationship,

d01 = l
λ

z0

(2.47)

Until this point, all quantities have been described for a fixed point in time

with no motion. However, this dissertation assumes the camera is onboard a

mobile quadrotor which may or may not be moving, and the human target may or

may not be moving as well and therefore the target human pose may be changing

in time. The camera is assumed fixed with respect to the quadrotor, and therefore

the position vector rS describes the position of the quadrotor and the camera focal

point with respect to the fixed reference frame FW . The camera begins taking

measurements at initial time t0 and a new measurement vector becomes available

at a fixed sampling interval ∆t > 0. Then, at each time step a measurement z(t)

is obtained and used to estimate a viewpoint invariant target human pose pT (t).

A viewpoint invariant pose history is then defined as the collection of estimated
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poses,

PTt0:t , {pT (t0), pT (t0 + ∆t), ...,pT (t)} (2.48)

In the following section a novel and systematic approach is developed that

develops novel feature vector v
(
PTt0:t

)
that is a function of the target human pose

history and is, by definition, viewpoint invariant. That is, the same human action

viewed from multiple camera viewpoints will yield the same feature vector, and

thus a consistent action classification. This property will inevitably improve action

classification results over previous methods that compute features relative to a

camera-fixed reference frame.

In this dissertation, the set of action classes considered for the task of action

recognition are given as,

Y , {idle, walking, running} (2.49)

where idle refers to any stationary action performed by the human, such as sitting,

standing, etc. The simple set of actions considered here are chosen since each

action would require a controller with slightly different gains in order to minimize

the tracking error.

The tracking error used in this dissertation is designed such that the human

target remains in the camera FOV at a reliable scale, as projected on the image

plane, in order to maintain reliable perception over long time horizons. These

specifications are captured by defining the desired set point of the projected root

joint, ξ∗0 , η
∗
0 and projected torso length, d∗01. Then, the tracking error at time

t ∈ [t0, tf ) is defined as,

eT (t) ,


ξ∗0 − ξ0(t)

η∗0 − η0(t)

d∗01 − d01(t)

 (2.50)
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The control problem addressed in this dissertation can now be expressed as a

sequence of control inputs u(t) ∈ U which minimizes the tracking error eT (t) over

the time interval [t0, tf ).

Methodology

The proposed method computes a finite set of possible out of plane link angles

φij for each link (κi, κj), given a measurement z. Then, an UKF is used to

estimate the kinematics of the human to determine the correct out of plane pose

from the finite analytical solutions. The resulting pose pS that is output from the

UKF is expressed in terms of angles relative to FS , which is then transformed to

the viewpoint invariant pT . A time history of viewpoint invariant human poses

PTt0:t, from initial time t0 to the current time t, is then used to define a feature

vector that captures temporal information about the human pose history that

characterizes actions. Finally, the proposed feature vector is used in a SVM to

recognize the current human action. A switched quadcopter controller is then

designed to maintain the human in the camera’s FOV by adaptively adjusting the

control parameters based on the human’s actions.

The human skeleton shown in Fig. 2.18 can be represented as a collection of

four sets of serially connected links {L1,L2,L3,L4}, each extending from the root

node κ0, defined as the ordered sets,

L1 , {κ0, κ2, κ3, κ4} (2.51)

L2 , {κ0, κ5, κ6, κ7} (2.52)

L3 , {κ0, κ1, κ8, κ9, κ10} (2.53)

L4 , {κ0, κ1, κ11, κ12, κ13} (2.54)
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Using this convention, the position of the k-th joint in any of the ordered sets can

be expressed as,

qk = q0 +
k∑

m=1

(qm − qm−1)

qk = q0 + l
k∑

m=1

γm(RφmRψmRθm)T [1 0 0]T (2.55)

where qk has coordinates expressed with respect to FS . Now, the out of plane

pose angles φk can be expressed analytically as shown in the following theorem.

Theorem 2.7.1 Given a measurement vector z, the out of plane pose angle φk of

the k-th serially connected link, originating at the root joint κ0, has at most 2k real

solutions.

In order to determine φk for every k > 0, consider the position vector of qk−1

expressed in the camera frame and rotated to be in the intermediate frame rotated

by θk and ψk, defined as 
xk−1

yk−1

zk−1

 , Rψk
Rθkqk−1 (2.56)

In this reference frame yk−1 = 0, and the projected length dk can be expressed as

the simple scalar equation,

dk = λ′
xk
zk
− λ′xk−1

zk−1

(2.57)

dk = λ′
xk−1 + lγk cosφk
zk−1 − lγk sinφk

− λ′xk−1

zk−1

(2.58)

where λ′ , λ
cosψk

. Then, define the following length ratios,

x̄k−1 ,
xk−1

l
, z̄k−1 ,

zk−1

l
, d̄k ,

dk
λ′

(2.59)
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which leads to the expression

d̄k =
x̄k−1 + γk cosφk
z̄k−1 − γk sinφk

− x̄k−1

z̄k−1

(2.60)

Solving for φk results in the analytical solution for the out of plane pose angle φk

in terms of measurement variables, for arbitrary k > 0,

φk = tan−1

(
x̄k−1

z̄k−1

+ d̄k

)
± cos−1

 d̄k
z̄k−1

γk√(
x̄k−1

z̄k−1
+ d̄k

)2

+ 1

 (2.61)

It is clear from Eq. 2.61 that each analytical solution for φk has at most two real

solutions given all previous link pose angles. Therefore, the k-th link has at most

2k possible out-of-plane pose angles. It is also clear that 2k solutions exist, however

some of these may be complex and are thus not of interest.

Fig. 2.22 shows an example of the analytical calculation for k = 2 consecutive

links. The first link displays two real solutions and the second link displays two

real and two partially complex solutions. The ground truth out of plane angles

are also shown in the figure and one of the solutions for both links perfectly aligns

with the true solution, validating the analytical solution.

This dissertation proposes the use of an UKF to determine which of the pos-

sible out-of-plane pose angle solutions is the correct, by taking into account the

kinematics of the human skeleton. The most likely analytical solution of Eq. 2.61

is used to initialize the UKF by taking into account typical human joint limits and

constraints.

Unscented Kalman Filter

The UKF proposed in this subsection requires a process model fT (·), and a mea-

surement model h(·), in order to estimate the unique out-of-plane angle for each
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Figure 2.22: k = 2 link example of the analytical solutions for the out of plane link
pose angles φ1(t), φ2(t). The first link (left) contains two analytical solutions and
the second link (right) contains four analytical solutions. One of the analytical
solutions for each link perfectly aligns with the true solution.

link, φk. The target state xT ∈ R31 is composed of the root joint position and

velocity over the torso length and the in-plane and out of plane link rotations,

defined as,

xT =

[
1

l
qT0

1

l
q̇T0 θ0 · · · θ̇0 · · · φ1 · · · φ̇1 · · ·

]T
(2.62)

The target measurement vector z is expressed in Eq. 2.46. The measurement

model h(·) maps the target state to a target measurement with additive Gaussian

noise, or,

z = h(xT ) + w (2.63)

where w ∼ N (0,R), and R ∈ R28×28 is the measurement noise covariance matrix.

The measurement model is defined using the pinhole camera model. In particular,

the projected root joint position is computed in terms of state variables as

ξ0 = λ
x̄0

z̄0

, η0 = λ
ȳ0

z̄0

, d0 = λ
1

z̄0

(2.64)

where the components of the root joint position vector expressed in the camera-

fixed reference frame are given as q0 = l[x̄0 ȳ0 z̄0]T . The in-plane link rotations
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θij are directly measurable since they are both members of the target state and

measurement vectors. The projected link lengths are computed by making use of

the ordered sets in Eq. 2.51 as

dk = ‖pk − pk−1‖ (2.65)

dk =

∥∥∥∥ λzkqk −
λ

zk−1

qk−1

∥∥∥∥ (2.66)

which can be expressed in terms of state variables using Eq. 2.55.

Finally, the process model fT (·) maps target states from one time step t to the

next time step t+ ∆t, or,

xT(t+ ∆t) = fT (xT (t)) + v(t), (2.67)

where v(t) ∼ N (0,Q(t)), and Q(t) ∈ R31×31 is the process model noise covariance

matrix. Because human motion is highly unpredictable, a simple kinematic model

for the human will not suffice for a reliable process model. Therefore, this work

proposes to model the human motion as a Gaussian Process (GP), such that fT (·)

and Q(t) are learned from data such that fT is the GP mean function and Q(t)

is the GP covariance. However, the proposed method does not require 3D pose

training data. Instead the training data is taken from 2D pose measurements

and the analytical function determined in the previous section is used to construct

training data directly. Fig. 2.23 shows the learned function from the GP for a two-

link example with the predicted out-of-plane pose angles as well as the resulting

UKF prediction that accurately tracks the ground truth out of plane angle. The

uncertainty in the prediction does not grow over time, which may be counter

intuitive, but this is because the time is not the feature used for prediction, and

only the previous state is needed.

The UKF enables the collection of the target state history xT (t) for t ∈ [t0, t)
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Figure 2.23: k = 2 link example of the GP prediction for the out of plane link
pose angles φ1(t), φ2(t). The shaded region around the predicted mean function
represents 2 standard deviations from the mean function.

and therefore the human target pose history pS(t) in the camera-fixed reference

frame. The following subsection explains the methodology for transforming the

target pose to a viewpoint invariant representation which is then used to construct

a viewpoint invariant feature vector for action recognition.

Action Recognition and Controller Design

In order to develop a viewpoint invariant feature vector, a viewpoint invariant

representation of the human pose vector pT (t) is computed from the estimated

human pose pS(t) in the camera-fixed reference frame output of the UKF. The

unit vector êij along the axis of the link from κi to κj can be expressed in terms

of the camera-frame pose angles as,

êij = (RφijRψij
Rθij)

T

[
1 0 0

]T
(2.68)

Then, the unit vectors composing the target-fixed reference frame, (êT1, êT2, êT3)

can be written in terms of the link unit vectors by making use of Eqs. 2.38 and

2.39. By taking the vector dot product of each of the target-frame unit vectors
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with each link-axis unit vector, the link-axis unit vectors can be expressed in the

target-fixed reference frame. Let the components of the link-axis unit vector be

denoted by êij = [xij yij zij]
T . The two rotation matrices defining the pose of any

link in the target-fixed reference frame are given by

Rϕij
=


cosϕij 0 − sinϕij

0 1 0

sinϕij 0 cosϕij

 (2.69)

Rϑij =


cosϑij sinϑij 0

− sinϑij cosϑij 0

0 0 1

 (2.70)

Therefore, the unit vector along the axis of any link expressed in the target-fixed

reference frame can be expressed as,

êij =


xij

yij

zij

 = (Rϕij
Rϑij)

T


1

0

0

 =


cosϑij cosϕij

sinϑij cosϕij

− sinϕij

 (2.71)

Therefore, the viewpoint invariant pose angles can be solved for, leading to the

expression,

ϑij = arctan

(
yij
xij

)
, ϕij = arcsin(−zij) (2.72)

From the viewpoint invariant pose angles that are computed at each time step

for each link in the human skeleton, the target human pose history PTt0:t is deter-

mined. The feature vector used in this dissertation for the task of action recognition

is computed using the viewpoint invariant human pose history and is defined as,

v(t) =
τ∑
i=0

wT
i pT (t− i∆t) (2.73)
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where τ > 0 is the number of frames used in the sliding temporal window such

that the temporal action information is captured in the feature representation.

The controller design proposed in this work uses a simple proportional-integral-

derivative (PID) control scheme with adaptive gains that depend on the human

target’s action. The control input u(t) described here is a high-level velocity com-

mand which is ultimately fed to a low-level stabilizing controller. The control

input is expressed as u(t) = [u v w r]T , where u, v, w are the forward, right, and

vertical velocities and r is the yaw rate about the vertical axis of the quadrotor.

The control input is expressed in terms of the error vector eT (t) as,

u(t) = Kpe(t) + Ki

∫ t

t0

e(τ)dτ + Kd
de(t)

dt
(2.74)

where the gain matrices Kp,Ki,Kd ∈ R4×3 are dependent on the action determined

from the perception algorithm presented in this dissertation. That is, the set of

gain matrices {Kp,Ki,Kd} is selected from an a priori collection of gain matrices

that depend on the action being performed by the human. In this dissertation, the

set of actions the human may be performing are Y = {idle,walking, running} as

discussed in a previous section. Then, if the action recognition results show that

the action is running, then a set of predefined gains {Kp,Ki,Kd} are used in Eq.

2.74 such that the controller accurately tracks a running human at a safe distance,

and similarly for the other action classes.

Physical Experiments and Demonstrations

Extensive experiments are conducted in this dissertation in both simulation and

on real autonomous robotic systems that prove the validity of the theoretical con-

tributions of this work. The quantitative results presented in the tables of this
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Figure 15. Physical experiments using a micro aerial vehicle (a) with an onboard camera for depth 

estimation. The sensor FOV is shown in (b) and the estimated depth is shown in (c). 

 

Figure 2.24: Physical experiments of MAV event-based collision avoidance. The
MAV onboard sensor (a) navigates an environment shown as a grayscale image
(b) and navigates by avoiding collisions using the event-based depth estimation
algorithm, visualized in (c).

dissertation have been prepared using visually and physically accurate simulation

environments in order to enable repeatability and perfect control of environmental

and sensor parameters. The validation of the proposed methods was done us-

ing physical experiments with multiple different quadrotors including a very small

micro-aerial vehicle and a somewhat larger quadrotor capable of higher speeds.

The outdoor physical experiments were performed on Campus at Cornell Uni-

versity in a complex garden area with small gorges that would be impassable for

humans. The garden area is also a high-traffic pedestrian area and many pedes-

trians are in the sensor FOV at a given time. The quadrotor used in the outdoor

experiments was a DJI Mavic Pro 2.0 and the algorithms were implemented us-

ing the DJI mobile software development kit. The DJI is equipped with a 1-inch

CMOS sensor that is used for computer vision and simulated event-camera data

and algorithms. The onboard camera’s FOV angle is approximately 77 degrees

and captures video at 1080p spatial resolution at 60 fps. The indoor experiments

are performed on a Crazyflie 2.0 quadrotor equipped with a small camera capable

of 720p video at 30 fps.

This section demonstrates the proposed algorithms on a physical quadrotor
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Figure 7. The quadrotor is initially stationary on the ground, having recognized the human (a), Then 

immediately upon waving, the quadrotor takes off and begins tracking and following the human of 

interest (b)-(d). 

Figure 2.25: Demonstration of the MAV performing high-level autonomous ative
perception using event-based algorithms. The MAV is initially stationary on the
ground, having recognized the human (a), then immediately after the human waves
in the sensor FOV, the quadrotor takes off and tracks the human of interest through
an indoor environment (b-d).

Figure 2.26: Perception in action MAV controller. While navigating an unknown
environment (a), the MAV recognizes the human’s waving action (b) and the on-
board controller switches from following the human to landing.
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interacting with one or more humans. The first set of experiments are performed

on a MAV, shown in Figure 2.24, where the quadrotor autonomously navigates

an environment while avoiding collisions with objects using the proposed depth

estimation algorithm for event sensors. In addition to simple collision avoidance

and navigation, the event-based algorithms are shown to perform as expected in

the active perception scenarios involving autonomous high-level behavior around

humans. For instance, the same MAV shown previously reacts to a human waving

and follows the human of interest in an indoor environment, as shown in Figure

2.25 and 2.26. In addition, a similar high-level autonomous active perception

demonstration is shown earlier on a larger drone capable of higher speeds. In

addition to the physical experiments that validate the feasibility of the proposed

event-based algorithms, a large number of simulation experiments are conducted

in order to quantitatively compare the event-based algorithms with the analogous

RGB camera algorithms. The simulations are conducted in a photo-realistic and

physically accurate simulator.

3D Human Pose Estimation Results

The results in this section are performed using a photo-realistic rendering en-

gine, Unreal EngineTM , with Microsoft AirSim [88] to simulate a quadrotor with

the onboard camera in real-time. The 2D pose measurements are obtained using

OpenPose [16] and the algorithms presented in this dissertation are implemented

using Python 3.6. The simulation uses a realistic city environment with variable

lighting and shadows, and the quadrotor has initial position and orientation chosen

such that the human is initially in the camera FOV.

The target human is programmed to walk following an arbitrary spline and the
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𝑡1 Action Class = Walking Action Class = Walking Action Class = Walking 𝑡2 𝑡3 

Figure 2.27: Resulting camera images at three times during an experiment where
the target human was walking. The algorithm consistently correctly recognized the
action and used the correct control settings to maintain the target in the camera
FOV.

quadrotor successfully maintains the target in the camera FOV for the duration of

the simulation. Additionally, the system developed in this dissertation correctly

recognizes the human action for nearly all of the frames when a complete sliding

temporal window is available. Fig. 2.27 shows a subset of representative images

where the target is maintained in the FOV and the action is correctly classified.

2.8 Perception-driven Controller Design and Experiments

To demonstrate a combined implementation of the active control methods devel-

oped in this dissertation, a logical control methodology is developed in this section

that combines the visual perception capabilities to inform the autonomous capabil-

ities of an autonomous mobile quadrotor. A switching control strategy is designed

to control the event-camera to execute different commands based on the percep-

tion inputs from the human target. In particular, the discrete set of high-level

quadrotor commands are given as,

C = {landing/take-off, object following, move in prescribed direction} (2.75)
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Other control laws can be similarly considered and integrated with the perception

feedback. The perception feedback is represented by a set of semantic labels ex-

tracted by the active perception algorithms after the object of interest is identified

by the object recognition algorithm. by this approach, the vehicle reacts to the

behavior of one human, recognized by the onboard camera, evein in the presence

of other moving objects and humans in its environment. The object recognition

algorithm first detects all humans present in the camera FOV and, subsequently,

assigns the ’object-of-interest’ label to the human ’waving’. Other methods of

identification tested in the experiments include appearance, e.g., wearing a pair of

colored glasses.

The actions of the person-of-interest are then classified by the action recognition

algorithm by selecting one semantic label in the perceived action set:

Z = {′walking′,′ biking′,′ pointing′,′waving′} (2.76)

The one-to-one mapping from the perception feedback label in Z to the corre-

sponding control law in C at any time t is defined a priori, as follows:

f(Zi(t)) ,


C1 if Zi(t) = ’walking’ or ’biking’

C2 if Zi(t) = ’waving’

C3 if Zi(t) = ’pointing’

(2.77)

where Zi(t) ∈ Z. Other actions, such as biking and sitting, have also been success-

fully tested and can be easily included by augmenting Z accordingly. Each vehicle

action is implemented by a control law by the same index that takes as inputs all

of the perception results as well as the vehicle state vector measure by onboard

sensors able to provide the robot attitude and angular velocities:

ui(t) = ui(t,x(t),Zi(t)), for f(Zi(t)) = Ci (2.78)
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The first control law, providing u1(t) , [u11(t) u12(t)]T , is designed to allow the

vehicle to maintain a desired distance from the person-of-interest while, simultane-

ously, keeping the human centered in the camera FOV. Two proportional-integral-

derivative (PID) controllers are used to achieve these objectives,

u11(t)kp1(d(t)− δ) + ki1

∫ t

t0

(d(τ)− δ)dτ + kd1
d

dt
(d(t)− δ) (2.79)

u12(t)kp2(j(t)− w/2) + ki2

∫ t

t0

(j(τ)− w/2)dτ + kd2
d

dt
(j(t)− w/2) (2.80)

where d(t) is the relative distance between the target and camera at time t, and δ

is the desired distance. Also, j(t) represents the coordinates in the width direction

of the centroid of the target in the image plane, w is the width of the image.

The second landing/take-off control law is designed as follows:

u2(t) =

 L(·) if dy(t) > 0

T (·) (if)dy(t) = 0
(2.81)

where L(·) denotes the landing function and T (·) denotes the launching function,

both of which are embedded vehicle functions. dy(t) is the relative vertical position

between the event-camera and the ground measured by onboard vehicle sensors.

The third control law is designed to allow the vehicle to follow a direction

specified by the human pointing, extracted by the active perception algorithm and

provided in the form of the desired Euler angle vector ζT (t) = [φT (t) θT (t) ψT (t)]T .

Let the attitude of the vehicle-based camera obtained by the onboard sensors be

represented by the Euler angle vector ζ(t) = [φ(t) θ(t) ψ(t)]T , where both vectors

are referenced with respect to an inertial frame. Then, the third control law is

obtained as follows:

u3(t) = kp‖ζ(t)− ζT (t)‖+ ki

∫ t

t0

‖ζ(t)− ζT (t)‖dt+ kd‖ζ̇(t)− ζ̇T (t)‖ (2.82)

where the gains kp, ki, kd ≥ 0 control the weight of each term in the PID controller.
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2.9 Algorithm Accuracy comparison

The accuracy of the event-camera- and RGB camera-based algorithms are com-

pared for the tasks of depth estimation, object recognition, object tracking, and

action recognition, in this section. For each task, a large dataset is collected from

a photo-realistic and physically accurate simulation environment in order to ob-

tain perfect ground truth information enabling a quantitative results analysis. The

simulation environment also allows for consistent and repeatable experiments in

complex and widely varying scenarios, such as a forest environment or a structured

city environment, while simultaneously allowing for experiments in which camera

parameters, such as spatial and temporal resolution are varied. Analogous physical

experiments would otherwise require many different sensors and prove infeasible.

For each task a quantitative accuracy measurement is defined and the results are

summarized in the set of tables in this section.

All event-based algorithms are implemented in Python 3 and optimized using

Pycharm Professional profiler. The Pycharm profiler is also used to record and

report computational efficiency results. The RGB camera and event-camera algo-

rithms have been implemented using Numpy and OpenCV libraries. The quadro-

tors in physical experiments communicate all information in real-time to a local

PC for analyzing performance using the DJI Mobile SDK for the outdoor experi-

ments, and using the Crazyflie development platform for the indoor experiments.

The simulation results are performed using Unreal Engine and Airsim for visual

and physical accuracy, respectively. The assets used in the Unreal Engine envi-

ronments have been obtained from the Unreal Engine marketplace and all of the

algorithms are implemented in Python using Airsim’s python API for communi-

cation with Unreal Engine.
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Figure 2.28: Demonstration of the event-camera active perception algorithms in a
high-fidelity simulation environment. The quadrotor is initially on the ground and
detects two objects that are classified as a person and a car using the event-based
HOF algorithm (a). The robot begins tracking and following the human of interest
as the car moves in a different direction (b). The quadrotor continues to track the
human while maintaining a desired distance using the depth perception and object
tracking algorithms (c). The quadrotor recognizes the human pointing and flies in
the direction specified by the human (d).

2.9.1 Depth Estimation Accuracy

The accuracy of an algorithm estimating the scene depth for each pixel in the

sensor image plane over a time interval is best represented using the structural

similarity index that is a common performance metric for depth estimation [97].

In this article, the structural similarity index measures the similarity between the

ground truth depth matrix D(t) and the estimated depth matrix D̂(t) at time t,

in terms of the multiplicative luminance, contrast, and structural similarity terms,
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respectively.

s(D(t), D̂(t)) =

(
2µ(t)µ̂(t) + c

µ2(t) + µ̂2(t) + c

)(
2σ(t)σ̂(t) + c

σ2(t) + σ̂2(t) + c

)(
σ̃(t) + c

σ(t)σ̂(t)

)
(2.83)

where depth estimate means, standard deviations, and cross covariance are defined

as

µ(t) =
1

hw

∑
d∈D(t)

d, µ̂(t) =
1

hw

∑
d∈D̂(t)

d (2.84)

σ(t) =

 1

hw

∑
d∈D(t)

(d− µ(t))2

1/2

, σ̂(t) =

 1

hw

∑
d∈D̂(t)

(d− µ̂(t))2

1/2

(2.85)

σ̃(t) =
1

hw

∑
d∈D(t),d̂∈D(t)

(d− µ(t))(d̂− µ̂(t)) (2.86)

The data used to quantify the accuracy of the depth estimation algorithms for both

types of cameras is composed of five video sequences captured from a front-facing

camera fixed onboard a mobile quadrotor. The difference between the various

sequences is the position and orientation history of the quadrotor is varied such

that some of the sequences the rotation or translational part of the total motion

dominates the net motion and thus the net optical flow in the sequence. Because

the depth estimation in this dissertation is primarily based on optical flow, the

accuracy of the optical flow is reported as well, in order to quantify what proportion

of the error in the depth estimation is caused by the optical flow algorithm rather

than the depth estimation algorithm that operates on the optical flow. The optical

flow accuracy is defined using the separate magnitude error and orientation error in

the optical flow vector associated with each pixel over the time interval. The error

in the optical flow orientation is computed using the structural similarity index.

The error in the optical flow magnitude is computed as the average L2 norm of

the magnitude difference between the estimated and ground truth flow magnitude
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Table 2.1: Optical flow and depth estimation accuracy for event and RGB camera
algorithms.

Sensor Type Depth
Estimation
Accuracy

Optical
Flow
Accuracy

Optical Flow
Magnitude
Accuracy

Optical Flow
Orientation
Accuracy

Event-Camera 56.7% 52.8% 50.6% 55.0%

RGB Camera 65.% 70.3% 67.1% 73.5%

over all pixels in the image plane,

1

hw

∑
p∈I

‖ˆ̇p(t)− ṗ(t)‖ (2.87)

Table 1 shows the accuracy of the optical flow and depth estimation algorithms

computed using the aforementioned performance metrics. The measures of accu-

racy that are derived from the structural similarity index are linearly transformed

to be in the range from zero to one, to be shown as a percentage.

2.9.2 Object Recognition Accuracy

The object recognition algorithm is analyzed using a large and diverse simulated

dataset to enable perfect environmental and sensor control and allow for perfect ex-

periment repeatability. The object recognition task considered in this dissertation

uses three classes of moving objects,

Y = {person, car, bicycle} (2.88)

where each class is represented as a string of characters in the algorithm’s imple-

mentation. To evaluate the object recognition accuracy, this dissertation uses the

well-known classification accuracy metric known as the F1 score. To understand

the F1 score, one must first understand precision and recall classification metrics.
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Table 2.2: Object recognition accuracy for event and RGB camera algorithms.
The classification accuracy for each moving object class is reported from a dataset
composed of 18 videos composed of 4459 images.

Sensor Type Object
Recog-
nition
Accuracy

Person
Recog-
nition
Accuracy

Car Recog-
nition Accu-
racy

Bicycle
Recognition
Accuracy

Event-Camera 87.0% 91.0% 88.0% 66.0%

RGB Camera 85.0% 89.0% 80.0% 81.0%

A classifiers precision is the ratio of the number of true positives over the sum of

true positives and false positives, or,

P =
TP

TP + FP
(2.89)

where TP is the number of true positives classified by the model on the test data

set, FP is the number of false positives classified by the model on the test data,

and P is the model’s precision. Precision can be thought of as the ability of a

classifier to not incorrectly label a particular class. Recall, on the other hand is

the ratio of true positives over the sum of true positives and false negatives, or

R =
TP

TP + Fn
(2.90)

where Fn is the number of false negatives classified by the model on the test data

set, and R is the recall. Then, the F1 score, referred to as the object recognition

accuracy in this dissertation, is the harmonic mean of the precision and recall,

F1 = 2
PR

P +R
(2.91)

Table 2 shows the results for the object recognition algorithm and the F1 score

for each class and the overall accuracy. In addition, the confusion matrices for the

event and RGB cameras are shown in Figure 11.
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2.9.3 Object Tracking Accuracy

Object tracking consists of combined object detection and data association. The

object detection method presented in this dissertation is used for both object

tracking and object classification in the previous section. At time t the collection

of detections D(t) becomes available through the detection algorithm and at time

t+ τ , where τ > 0, the set of detections D(t+ τ) becomes available. The detection

accuracy at time t is computed using the intersection-over-union (IoU) metric that

is commonly used in semantic segmentation algorithm evaluation. Denote the

estimated detection of an object as the set of pixels D̂i(t) ∈ D(t) and denote the

ground truth detection of an object as the set of pixels Di(t) ∈ D(t), then the IoU

performance metric is cardinality of the intersection of the estimated and ground

truth detection over the cardinality of the union of the estimated and ground truth

detection,

IoU(t) =
|D̂i(t) ∩Di(t)|
|D̂i(t) ∪Di(t)|

(2.92)

Then, the IoU averaged over each true object in the FOV at every time instant

when new detections become available determines the average object detection

accuracy reported in Table 3. The average data association accuracy is simply

the ratio of the number of times an object’s identity was incorrectly associate over

the total number of objects in the sensor FOV for each time instant when new

detections become available. The overall tracking accuracy is then the average

of the object detection and data association accuracies. Table 3 summarizes the

object tracking accuracy for the event and RGB cameras.

79



Table 2.3: Object tracking accuracy for event and RGB camera algorithms. The
detection accuracy is measured using the intersection over union metric. The data
association measures the number of times the correct ID label is associated between
consecutive time instants.

Sensor Type Overall Object
Tracking Accuracy

Average Data As-
sociation Accuracy

Average Object De-
tection Accuracy

Event-Camera 77.1% 99.0% 55.2%

RGB Camera 70.4% 97.0% 43.8%

2.9.4 Action Recognition Accuracy

The action recognition algorithms presented in this dissertation are evaluated in a

similar fashion to the object classification method using the F1 score. The set of

action classes investigated in this dissertation are,

Z = {pointing, waving, walking, running} (2.93)

where each action is represented as a string in the algorithm implementation.

The tests are conducted using simulated data in order to obtain perfect ground

truth while simultaneously having perfect control over all environmental and sensor

parameters and resolutions. The action recognition model is trained using 10

training videos for each action containing the simulated human subject at variable

scales and viewpoint angles. The trained model is then tested on 5 different testing

videos for each action. The action recognition accuracy represented as the F1 score

for each class are averaged to determine the overall action recognition accuracy is

shown in Table 4.

80



Table 2.4: Action recognition accuracy for event and RGB cameras.

Sensor Type Action
Recognition
Accuracy

Pointing
Recognition
Accuracy

Waving
Recognition
Accuracy

Walking
Recognition
Accuracy

Running
Recognition
Accuracy

Event-Camera 62.5% 80.0% 60.0% 30.0% 80.0%

RGB Camera 72.5% 50.0% 90.0% 50.0% 100.0%

2.10 Algorithm computational cost comparison

One of the main hypotheses for event-camera value to active perception systems

is that they will provide significant computational savings, given their biologically

inspired design and processing techniques. This section quantitatively analyzes the

computational cost associated with each active perception algorithm in a rigorous

manner to enable realization of the true benefits and limitations of event-cameras

over RGB cameras for active perception tasks.

2.10.1 Depth Estimation Computational Cost

The depth estimation computational cost is evaluated on multiple video sequences

with a stationary environment and a moving sensor onboard a mobile quadrotor.

The event-camera sensor measurement is simulated using a video collected at 300

fps resulting in very high temporal resolution of the event sensor. The RGB camera

temporal resolution is 30 fps by sampling every 10th image of the 300 fps data.

In addition to the temporal resolution, the spatial resolution of each sensor type

is varied in this task, which would not be feasible for a physical experiment. For

depth estimation, a low spatial resolution may meet the requirements for active

perception purposes, such as navigation and collision avoidance, although the high
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Table 2.5: Depth estimation computational efficiency for event and RGB cameras.

Sensor Type Mean Run
Time (ms)

STD Run
Time (ms)

Mean Mem-
ory Usage
(Mb)

STD Memory
Usage (Mb)

Event-Camera 171.6 1.6 5.3 0.1

RGB Camera 3050.1 26.0 398.1 0.0

resolution may be beneficial and provide some benefits. The computational tradeoff

of the different resolutions is also investigated for this purpose and the results of

both high and low spatial resolution for both sensors is shown in Table 5.

2.10.2 Object Recognition Computational Cost

The object recognition computational cost is evaluated on the same dataset used for

the accuracy performance comparison of 18 videos and over 4000 images sampled

at 300 fps. The RGB camera is simulated at 30 fps by only sampling every 10th

image in a sequence, while the event-camera uses the full 300 fps resolution video

to simulate high temporal frequency events with a sampling resolution that is ac-

tually more resolved than 300 fps. Although the event-camera has a high temporal

frequency, the algorithm requires a significant amount of time to generate a qual-

ity optical flow estimate to construct an object representation using HOF features.

Although, a significant amount of time is required for the event-camera, there is

actually less memory usage since the event data structure is generally smaller than

a RGB camera data structure, since the memory requirement is dependent on the

number of events, or how active the visual scene is. Table 6 summarizes the run

time and memory requirements for both sensor type algorithms.
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Table 2.6: Object recognition computational efficiency for event and RGB cameras.

Sensor Type Mean Run
Time (ms)

STD Run
Time (ms)

Mean Mem-
ory Usage
(Mb)

STD Memory
Usage (Mb)

Event-Camera 139.5 11.9 1.3 0.7

RGB Camera 104.6 12.3 16.6 0.0

Table 2.7: Object tracking computational efficiency for event and RGB cameras.

Sensor Type Mean Run
Time (ms)

STD Run
Time (ms)

Mean Mem-
ory Usage
(Mb)

STD Memory
Usage (Mb)

Event-Camera 150.4 60.1 4.5 0.8

RGB Camera 845.1 29.0 398.1 0.0

2.10.3 Object Tracking Computational Cost

The computational cost for the object tracking task is evaluated on a set of sce-

narios where a quadrotor is tasked with following a person of interest. The com-

putation time and memory required for each sensor type to correctly detect and

associate the detection accurately is shown in Table 7. The event-camera receives

events at a much higher frequency than the RGB camera samples images and can

therefore achieve similar performance to the RGB camera in significantly less time

and memory. This advantage is caused by the high temporal resolution of the

event-camera.

2.10.4 Action Recognition Computational Cost

The computational cost for the action recognition task is evaluated on a video

clip that is 3.2 seconds in length and the RGB camera frame rate is 30 fps. The
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Table 2.8: Action recognition computational efficiency for event and RGB cameras.

Sensor Type Mean Run
Time (ms)

STD Run
Time (ms)

Mean Mem-
ory Usage
(Mb)

STD Memory
Usage (Mb)

Event-Camera 81.1 27.1 16.7 4.2

RGB Camera 234.6 1.7 134.1 60.3

event-camera uses simulated events from a high-speed version of the same video

sequence collected at 300 fps, although the simulated events can have finer temporal

resolution than 300 fps, which leads to similar performance to real event-camera

hardware. The RGB camera image resolution is 1080p, which is typical for modern

cameras onboard mobile robots, while the event-camera’s image resolution is much

lower at 328x512, which is a common value among current event-cameras. Table

8 shows the computational performance of the two algorithms over the same time

horizon required to accurately determine the action in the sequence with action

recognition accuracy of very similar performance between the two sensors.

2.11 Discussion

Overall, the accuracy of the event-camera and RGB camera are comparable, with

only small differences in the overall performance of each task. However, we ac-

knowledge that more sophisticated RGB camera algorithms exist can increase the

RGB camera performance significantly at the cost of adding computational ex-

pense. The RGB camera algorithms chosen for comparison in this dissertation are

designed to be computationally efficient and, even so, the event-camera algorithms

are often more computationally efficient. The cases in which the event-camera al-

gorithm performs slower than the RGB camera algorithm is often due to the lack
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of availability of sophisticated and optimized implementations of various low-level

operations. We acknowledge also that RGB cameras are capable of significantly

higher spatial resolution and can therefore infer more information at small scales,

such as objects that are far away from the sensor and small motions in the FOV.

In the end, the main tradeoff between RGB and event-cameras is dependent on the

task at hand. That is, if the event would benefit from high spatial resolution, such

as object recognition or action recognition, a RGB camera may be preferable over

an event-camera, and for tasks that would benefit from high temporal resolution,

such as depth estimation and object tracking, an event-camera may be prefer-

able. In addition, for extremely resource constrained platforms an event-camera

will likely be beneficial, especially with the increase of interest in development

of event-camera software and optimized algorithms become widely available as is

currently the case for RGB cameras.

This article has presented an active perception framework for event-cameras

and compared the accuracy and computational efficiency performance quantita-

tively and qualitatively between the event-camera sensor with RGB camera sensor

methods. A main difference between the RGB camera and event-camera methods

is the temporal resolution of the event-camera is significantly higher while using

significantly less computational resources. The RGB camera algorithms executed

in this article are tested at a 30 fps sampling rate and the effective frame rate used

to simulate the event-camera algorithms is 300 fps. Despite this, the event-camera

uses significantly less computational resources than the RGB camera. If a RGB

camera were to increase it’s sampling frequency to 300 fps, the amount of runtime

and memory required would be prohibitive, while the event-camera can maintain

performance around that of the RGB camera at the high sampling rates. How-

ever, the event-camera does not have the spatial resolution of a RGB camera and
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therefore cannot perform well for objects that cannot be resolved in the low spatial

resolution of the event-cameras. In addition, the lack of readily available intensity

information from the event-camera results in poor performance on some recog-

nition tasks when compared to the RGB camera. In the end, the event-camera

tends to outperform the RGB camera at tasks in which a high temporal resolution

is valuable such as object tracking and depth estimation.
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CHAPTER 3

OCCLUSION AVOIDANCE

3.1 Background and Problem Formulation

This dissertation presents a novel and systematic approach to planning the

minimum-length path for a mobile robot equipped with a directional sensor

tasked with viewing multiple targets in an obstacle-populated workspace. Pre-

vious sensor path planning methods developed for information-driven sensor strat-

egy planning make use of the sensor configuration space by developing C-targets

[14, 62, 63, 75, 92, 100, 101, 103]. These methods have been proven to be incredibly

effective for applications in which the sensor measurement process is the primary

concern of the path planning method. Therefore, this work extends these works

to incorporate the bounded directional sensor FOV and LOS visibility constraint

in the presence of opaque obstacles. This dissertation extends the notion of the

C-target to include the LOS visibility constraint as well as multiple target visibility

from a single configuration. The new subsets of the sensor configuration that are

derived analytically are coined visibility regions. The visibility regions are used to

construct a connectivity graph that approximates the connectivity of the sensor’s

free configuration space. The connectivity graph contains nodes that are system-

atically chosen using the visibility regions to avoid an unnecessary large number of

nodes required to determine a high quality path. In addition, a pruning approach

is developed to further reduce the computational complexity of the method while

maintaining the high quality node selection and ultimately a high quality path to

be produced.

The directional sensor planning method developed in the Methodology sec-
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tion is demonstrated through myriad simulations as well as physical experiments.

The proposed method and the computationally improved version of the proposed

method are compared to a cell decomposition approach [14, 62, 103], an ad-hoc

TSP approach [2], and a coverage approach [22]. The results show the proposed

method is capable of generating shorter paths than all of the comparison methods

while always viewing at least all of the targets viewed by the comparison methods.

In some cases a target is impossible to view in which all cases fail, however, in

other cases the comparison methods may miss some targets, while the proposed

method will always view all of the targets that are possible to view from the given

initial configuration and workspace geometry.

3.2 Problem Formulation and Assumptions

This dissertation considers the problem of planning an efficient and effective path

for a mobile robotic sensor deployed to classify multiple targets in an obstacle-

populated environment. The sensor workspace is a closed and compact subset

of a two-dimensional Euclidean space, W ⊂ R2, populated with M known and

stationary convex polygonal obstacles Bj ⊂ W , indexed by j ∈ J , where J =

{1, ...,M} is the index set used to enumerate the obstacles. The sensor is tasked

with observing N targets at known positions, xi ∈ W , assumed stationary and

modeled by a point, where i ∈ I, and I = {1, ..., N} is the index set used to

enumerate the targets. Each target position may represent the centroid or similar

representative point in the target geometry.

In this dissertation, the sensor is assumed to be installed on a mobile robotic

platform, such as a ground, aerial, or underwater robot. As in robot path planning

88



 

 

  

      

Figure 3.1: The robot geometry A and sensor FOV S in a 3-dimensional workspace
with body reference frame FA that is embedded in A and whose origin is at the
apex of S.

methods, this dissertation assumes the robot is a rigid object with geometry A that

is a compact subset of the workspace W , i.e., A ⊂ W . Then, the position and

relative orientation of every point in A can be represented by the position and

orientation of a Cartesian body-frame FA that is embedded in A with origin OA,

relative to a fixed Cartesian frame FW that is embedded in W with origin OW .

Fig. 3.1 shows the robot geometry A with embedded reference frame FA relative

to the inertial frame FW .

For simplicity, the sensor is assumed fixed with respect to the robot such that

the sensor position s ∈ W and orientation θ ∈ S1 are represented by the robot

body-frame FA. Throughout the remainder of this dissertation, the robot configu-

ration q is defined as the augmented vector of the sensor position s and orientation

θ, i.e., q , [sT θ]T . The sensor is directional and, therefore it has a preferred

sensing direction and is characterized by line-of-sight visibility (LOS). Examples

of robots that use directional sensors are ground or aerial robots equipped with

monocular or stereo cameras, or an underwater robot equipped with an onboard

synthetic aperture sonar.
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Figure 3.2: 2-dimensional parameterization of the sensor FOV S, with apex s ∈ W ,
characterized by the opening angle α ∈ S1 and maximum sensing range r > 0.

Definition 3.2.1 (Field of View) For a sensor characterized by configuration,

q = [sT θ]T , the sensor FOV is a rigid object that can be described by a closed

and bounded subset S(q) ⊂ W in which the sensor can obtain a measurement of

any target, x, such that x ∈ S(q).

In this dissertation the sensor FOV S is modeled by a sector with opening

angle α ∈ [0, 2π) and radius r > 0 which correspond to the sensor’s aperture angle

and maximum sensing range, respectively, and the sector apex coincides with the

sensor position, s ∈ W , as shown in Fig. 3.2.

Target visibility requires LOS visibility, in addition to the target being within

the sensor FOV, to prevent occlusions induced by opaque obstacles Bj. A target,

xi is in a directional sensor’s LOS if the straight line segment between s and xi

does not intersect any obstacle regions. Fig. 3.3 illustrates an example of target

that is occluded by an obstacle.
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Definition 3.2.2 (Line of Sight) Given obstacles Bj ⊂ W , j = 1, ...,M , a

target at x ∈ W is in the line-of-sight of a sensor at s ∈ W if and only if

L(s,x) ∩ Bj = ∅, ∀j ∈ J (3.1)

where L(s,x) , {(1− γ)s + γx | γ ∈ [0, 1]} is a line segment from the sensor po-

sition s to the target position x.

 

j  

x   

s   

( ),L s x  

( ), jL   s x  
Figure 3.3: Example of an obstacle Bj occluding a directional sensor’s LOS to a
target at position xi from the sensor’s position s.

A target x is said to be visible if and only if x ∈ S and L(s,x) ∩ Bj = ∅ for

all j ∈ J . That is, the target must be in the sensor FOV and the sensor LOS,

simultaneously. Fig. 3.4 shows a target that is visible by satisfying both the FOV

and LOS conditions.

The configuration space for the robot A and sensor S is the space C ∼= SE(2) of

all configurations q ∈ C of A and S with respect to FW . As a result, the subsets of

W occupied by A and S are both functions of the configuration vector q, and are

denoted byA(q) and S(q), respectively. This representation enables path planning

for simultaneous robot collision avoidance and obtaining sensor measurements.

The sensor’s configuration space C is homeomorphic to the Special Euclidean group,

SE(2), meaning the configuration space can be represented as any space with
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Figure 3.4: Example of a visible target, x, in the presence of an obstacle Bj that
occludes a portion of the sensor FOV S.

the same topological properties as SE(2) [55]. Thus, the configuration space is

equivalently represented as C ∼=W×S1, and because S1 is 2π-periodic and multiply

connected, the configuration space is also 2π-periodic and multiply connected in

the direction of the sensor rotation angle.

The set of all configurations that induce a collision between the robot A and

an obstacle Bj is referred to as a C-obstacle, denoted by CBj, [54], [55]. Obstacles

in the workspace, Bj ⊂ W , are mapped to C-obstacles in the robot’s configuration

space CBj ⊂ C, defined as CBj , {q ∈ C | Bj ∩ A(q) 6= ∅}. Then, the union of

all C-obstacles is used to define the free configuration space, Cfree , C\
⋃M
j=1 CBj,

which represents the subset of C comprised of collision-free configurations. The

dual representation of the C-obstacle is the C-target which represents the set of all

configurations where a measurement of target xi is available, denoted by CT i [14]

[92]. A target in the workspace xi ∈ W is mapped to a C-target in the sensor’s

configuration space, CT i ⊂ C, defined as CT i = {q ∈ C | xi ∈ S(q)}.
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The topology of C can be induced by the distance metric

D(q,q′) ,
(
(q− q′)TW(q− q′)

)1/2
(3.2)

where

W ,


wt 0 0

0 wt 0

0 0 wr


and wt > 0, wr ≥ 0 is a translational and rotational weight, respectively. Note that

when wt = wr = 1, the distance metric in (3.2) reduces to the Euclidian metric in

R3. Having defined the topology of C the collision-free sensor path from an initial

to a final configuration, denoted by q0 and qf , respectively, is obtained from the

classic definition of a path in a topological space [11], as follows:

Definition 3.2.3 (Path) A path from q0 to qf is a continuous map,

τ : [0, 1]→ Cfree

with τ(0) = q0 and τ(1) = qf .

In general, the sensor motion is governed by an ordinary differential equation

which models the robot kinematics as,

q̇(t) = f [q(t),u(t), t], q(t0) = q0, (3.3)

where u(t) ∈ U is the control vector, and U ⊂ Rm is the m-dimensional space of

admissible control inputs. The vector function f(·) is an accurate model of the

robotic platform kinematics over time interval t ∈ [t0, tf ], where q0 is the initial

configuration at time t0, and qf = q(tf ) is the final configuration at time tf . For

simplicity, the kinematic model is chosen to be equal to the control vector, i.e.,

f [q(t),u(t), t] = u(t).
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In this dissertation, all paths produced by the proposed and comparison algo-

rithms can be described as a continuous piecewise-linear path, also known as a

polygonal chain, with vertices (q0,q1, ...,qn), such that qn = qf . The length of a

path τ that can be described as a polygonal chain is computed using the distance

metric (3.2) as:

J(τ) ,
n−1∑
k=0

D(qk,qk+1) (3.4)

Therefore, the problem of determining minimum distance path that obtains

measurements of every target at at least one point along the path while simulta-

neously avoiding collisions between the robot and obstacles can be written as,

min
τ

J(τ) =
n−1∑
k=0

D(qn,qn+1) (3.5)

subject to ∀i ∈ I ∃γ ∈ [0, 1]

such that xi ∈ S(τ(γ)) and L(τ(γ),xi) ∩ Bj = ∅, ∀j ∈ J

∀γ ∈ [0, 1] τ(γ) ∈ Cfree

The following section proposes a systematic approach to determine a sensor

path τ that solves the optimization problem (3.5). This dissertation extends the

existing robot-sensor path planning methods by taking into account occlusions

induced by obstacles and developing new subsets of the sensor’s configuration

space, called visibility regions. Moreover, this work quantifies the sets of all robot-

sensor configurations where individual, and sets of multiple targets are visible,

leading to high-quality paths that are guaranteed to avoid occlusions in target

measurements.
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3.3 Directional visibility region theory

This dissertation presents a novel and systematic approach to mobile sensor path

planning, where the sensor is subject to LOS visibility constraints and the robot in

which the sensor is embedded must simultaneously avoid collisions with obstacles in

the workspace. The first contribution of this dissertation is the closed-form deriva-

tion of the novel visibility regions, which are the sets of all configurations where

a target, or collection of targets, is visible according to the sensor FOV geometry

and LOS visibility. In particular, two types of visibility regions are presented: first,

the target visibility regions, which are the set of all sensor configurations where a

target is visible; and second, the set visibility regions, which are the sets of all con-

figurations in which a particular set of multiple targets are visible. Additionally,

this dissertation uses the visibility regions to develop an approximate solution to

the sensor path planning problem in Eq. (3.5) by determining a graphical repre-

sentation of the sensor configuration space that is feasible to search using a state

of the art graph search algorithm.

Visibility regions are sets of sensor configurations that enable target observation

by avoiding occlusions. As a first step, target visibility regions, which account for

LOS visibility for a particular target, are determined by removing configurations

from the C-target where the target is occluded by one or more obstacles. Then,

the set visibility regions, or subsets of the configuration space from which multi-

ple targets are visible, are computed by intersecting appropriate target visibility

regions.

Definition 3.3.1 (Target Visibility Region) Given a target at xi ∈ W, a sen-

sor at s ∈ W with FOV geometry S, and occluding obstacles Bj, j = 1, ...,M ,
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and define the line segment L(s,x) , {(1− γ)s + γx | γ ∈ [0, 1]}, then, the target

visibility region, PV i, is the subset of Cfree that simultaneously satisfies the FOV

and LOS target visibility conditions for one target xi,

PV i ,{q ∈ Cfree | xi ∈ S(q), (3.6)

L(s,xi) ∩ Bj = ∅, ∀j ∈ J }

The collection of target visibility regions may not be mutually disjoint, and there

may be regions in Cfree that enable observations from multiple targets. Let the

index set P ⊆ I denote the indices of one or more targets. Set visibility regions

are used to describe configurations associated with a set of targets, as follows:

Definition 3.3.2 (Set Visibility Region) Given a set of targets at xi1 ,xi2 , ...,xin,

where i1, ..., in ∈ P and P ⊆ I, along with a sensor at s ∈ W with FOV geom-

etry S, and occluding obstacles Bj, j = 1, ...,M , and define the line segment

L(s,x) , {(1− γ)s + γx | γ ∈ [0, 1]}, then, the set visibility region UVP is the set

of all configurations in Cfree where each target with index in P is visible, and any

target with index not in P is not visible, defined as:

UVP ,{q ∈ Cfree | xi ∈ S(q), (3.7)

L(s,xi) ∩ Bj = ∅, ∀i ∈ P, P ∈ P , ∀j ∈ J }

The closed form expressions for the target visibility and set visibility regions

are obtained in terms of the convex hull and coverage cone operations. A general

coverage cone is defined with respect to a point a ∈ W\B and an arbitrary obstacle

Bj ⊂ B,

K(a,B) , {αx + (1− α)a|α ∈ R+,x ∈ Bj} (3.8)
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In this dissertation, all obstacles are assumed to be convex polyhedron, which can

be represented as a finite set of vertices making up the obstacle geometry. Then,

for a finite set of points in W , denoted by A = {z1, ..., zK}, the convex hull and

coverage cones are defined as,

conv(A) ,

{
K∑
k=1

akzk

∣∣∣∣∣ zk ∈ A, ak ≥ 0,
K∑
k=1

ak = 1

}
(3.9)

cone(A, a) ,

{
a +

K∑
k=1

ak(zk − a)

∣∣∣∣∣ zk ∈ A, ak ≥ 0

}
(3.10)

respectively, where a ∈ W is the cone vertex.

As a first step, the shadow region Di ⊂ W associated with a target

xi ∈ W is constructed, which is the set of all positions in W where the

target is occluded according to the LOS visibility definition (3.2.2), defined

as Di ,
{

s ∈ W | L(s,xi) ∩
⋃M
j=1 Bj 6= ∅

}
, where the line segment L(s,xi) ,

{(1− γ)s + γxi | γ ∈ [0, 1]}. The shadow region is derived in closed form using

the operations (3.9) and (3.10) as:

Di =
⋃
j∈J

(cone(Bj,xi) \ conv(Bj ∪ {xi})) (3.11)

Fig. 3.5 shows the shadow region computed relative to the sensor position

leading to the visible portion of the sensor FOV.

The shadow region, Di ⊂ W , is independent of the sensor rotation, and can

thus be mapped fromW to C simply as D̂i , {q = [sT θ]T ∈ C | s ∈ Di, θ ∈ S1}.

Then, the target visibility region with respect to xi can be written in terms of the

C-target CT i and shadow region D̂i as,

PV i = CT i \ D̂i (3.12)

In practice, the rotational component of the configuration space θ ∈ [0, 2π)
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Figure 3.5: Sets used to define the shadow region and visible region of the sensor
FOV with respect a single obstacle.

is discretized into κ > 0 linearly spaced intervals and the C-target and shadow

region are computed as planar geometries. The target visibility regions are shown

in Fig. 3.6 with a highlighted plane at a fixed rotation θ = θ̂ along with a top-down

view of the 2-D manifold at θ̂. By discretizing the rotational component of the

configuration space into a collection of κ 2-D manifolds in practice, many efficient

computational geometry tools can be taken advantage of, such as [70].

The set visibility region for a subset of target indices P ⊆ I is expressed in

terms of the target visibility regions, as

UVP =

(⋂
i∈P

PV i

)
\

(⋃
i/∈P

PV i

)
(3.13)

Because the set visibility regions are typically concave and possibly discon-
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Figure 3.6: Target visibility regions PV1, PV2 ⊂ C and the 2-dimensional mani-
folds of the target visibility regions with a fixed rotation θ = θ̂.

 

Figure 3.7: Example of a 2D manifold ÛVP of UVP defined as ÛVP ,{
q ∈ UVP | θ = θ̂

}
for P ⊂ {1, 2, 3}.

nected, existing sensor planning methods cannot be directly applied. The visibility

regions derived in this section are used in the following section to produce a graph-

ical representation of the configuration space, referred to as a connectivity graph,

that captures the connectivity of Cfree as well as target visibility. The connectivity

graph is then searched to for a minimum distance sensor path that avoids obsta-

cles and views all targets by guaranteeing occlusion avoidance using the visibility

regions. Fig. 3.7 shows the 2-dimensional manifold at θ = θ̂ of the set visibility

regions for three targets.
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3.4 Directional Visibility Graph

The connectivity graph seeks to capture the free space connectivity between vis-

ibility regions in the form of a graph G = (N , E), in which the set of nodes, N ,

represents a set of configuration-label pairs, N = (q, P ) ∈ N , where P ⊆ I is

the index set of all targets visible at configuration q ∈ C. The nodes are con-

nected by a set of undirected edges or arcs E where the arc (Nl, Np) ∈ E connects

nodes Nl, Np ∈ N . The set of nodes N is computed by representing each set

visibility region UVP with a collection of nP > 0 representative configurations,

QP , {q∗i ∈ UVP}
nP
i=1.

Because a visibility region may be concave, the region’s centroid may not be-

long to the visibility region, and therefore the Chebyshev center(s) [10] are chosen

to represent each set visibility region. Typically, the Chebyshev center is computed

by solving a linear program for convex shapes yielding a unique solution, but the

Chebyshev center for concave visibility region may have more than one local max-

ima. Therefore, the set of node configurations QP that represent UVP ⊂ C are the

set of all local maxima of the boundary-distance function z(q) , minξ∈∂UVP
‖ξ−q‖,

expressed as

QP = {q∗ ∈ UVP | (3.14)

z(q∗) = sup
q∈UVP

{z(q) | ‖q− q∗‖ ≤ R,R > 0}
}

For every P ⊆ I and every Chebyshev center in QP , a node N = (q, P ), with

q ∈ QP , is added to the collection of nodes, N . Additionally, the sensor’s initial

configuration q0 ∈ C and the index set P0 of visible targets at q0, is used to create

a node N0 which is added to the collection of nodes, N . An example of a concave

set visibility region with multiple Chebyshev centers is illustrated in Fig. 3.8.
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Figure 3.8: The boundary-distance function, z(q) : UVP → R, is illustrated for
the two-dimensional manifold ÛV1 of UV1, along with the Chebyshev centers that
occur at the local maxima of the boundary distance function.

The edge (Nl, Np) ∈ E that connects nodes Nl and Np exists if the straight-line

path between each node’s configuration ql, qp ∈ C is collision-free, that is

L(ql,qp) ∩
M⋃
j=1

Bj = ∅ ⇒ (Nl, Np) ∈ E (3.15)

where the line segment is defined as L(ql, qp) , {(1 − α)ql + αqp | α ∈ [0, 1]}.

However, Eq. 3.15 alone for connectivity will often lead to a graph that is not

connected. That is, a path may not exist that connects any node to any other

node in the graph. Therefore, a probabilistic roadmap method (PRM) is used to

connect each node to at least some large fraction δ ∈ (0, 1] of other nodes. This

connectivity methodology guarantees that every edge in the graph is collision-free,

and therefore any path produced from G must also be collision-free.

A piecewise continuous path τ can be characterized using the connectivity

graph G, as a sequence of adjacent nodes, referred to as a channel

C =N0, N1, ..., Nn, (3.16)

where (Nl, Nl+1) ∈ E ∀Nl, Nl+1 ∈ C

that starts at the initial node N0. Therefore, the cost associated with a channel

C = N0, N1, ..., Nn is the length of the associated piecewise linear path in C that
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is computed using (3.4), denoted by

J(C) ,
n−1∑
k=0

D(qk,qk+1) (3.17)

where the distance metric D is defined in (3.2), and Nk = (qk, Pk) ∀Nk ∈ C.

The set of targets that are visible in a channel C is computed as the union of the

node labels,
⋃n
k=0 Pk, where Pk ⊆ I. Then, the optimization problem in (3.5) is

reduced to finding the optimal channel C∗ in the connectivity graph G by solving

the following problem

min
C∈G

J(C) =
n−1∑
k=0

D(qn,qn+1) (3.18)

subject to
n⋃
k=0

Pk = I

In this dissertation, C∗ is determined using a meta-heuristic optimization ap-

proach that incorporates a tradeoff of local search and stochastic search in order

to search the most promising regions of G at a global scale [12]. The MCTS frame-

work presented here is applicable to any graph optimization and thus it is used

with fixed parameters for all comparison analyses in the following section in which

a graph is optimized.

The complete path planning algorithm is shown in Alg. 1. The inputs to the

algorithm are the obstacle geometries Bj, j ∈ J , the target positions xi, i ∈ I,

and the sensor initial configuration q0. The parameters of the proposed algorithm

are the number of rotational discretizations κ > 0, the number of samples η > 0

used in the PRM approach for connecting graph nodes, and the number of Monte

Carlo simulations µ > 0 used in the MCTS optimization. In the following section,

the complexity of the proposed algorithm is investigated.
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Algorithm 1 Exact Visibility Planner

1: Require: Bj ⊂ W ∀j ∈ J , xi ∀i ∈ I, q0

2: Parameters: κ > 0, η > 0, µ > 0
3: Initialize: N ← ∅, E ← ∅
4: for i ∈ I do
5: PV i ← getTargetVisibility(∪jBj, xi; κ)
6: end for
7: for P ⊆ I do
8: UVP ← getSetVisibility({PV i}i∈I , P )
9: QP ← getChebyshevCenters(UVP )
10: for q ∈ QP do
11: N ← N ∪ (q, P )
12: end for
13: end for
14: E ← connectNodes(N , ∪j Bj; η)
15: G = (N , E)
16: C∗ ← MonteCarloTreeSearch(G; µ)
17: return C∗

3.5 Monte-Carlo tree search graph optimization

The meta-heuristic optimization approach used in this work is based on the Monte-

Carlo Tree Search (MCTS) [78]. In the MCTS approach, the connectivity graph G

is adaptively searched starting from the root node N0 = (q0, P0) which coincides

with the sensor initial configuration. Then, for every node Np that is connected to

N0, such that (N0, Np) ∈ E , a number of Monte Carlo simulations µ > 0 are per-

formed. Each simulation consists of iteratively and randomly selecting a connected

node until all of the targets have been visited or there are no unvisited connected

nodes. After each simulation, the total cost of the path taken during the simula-

tion is back-propagated back to the root node. Therefore, after µ simulations for

each Np where (N0, Np) ∈ E , the node Nl that has the minimum length successful

path is selected, then Nl is taken to be the root node and all unvisited connected

nodes Np where (N0, Np) ∈ E are simulated again. This process continues until the

path has visited all targets. The value function Q(Np) used in this dissertation to
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select node values during Monte Carlo simulation is given as

Q(Np) ,
1

J̄
+ γ

√
log nl
np

(3.19)

where, nl and np are the number of times the node Nl and it’s child Np have been

visited during all simulation, respectively, and γ is a pre-defined parameter that

controls the exploration-exploitation tradeoff. J̄ represents the minimum-length

successful path that has been observed over all simulations that have traversed the

edge (Nl, Np) ∈ E .

3.6 Comparison algorithms and performance metrics

The visibility-based path planning problem addressed in this dissertation does not

exist in the literature. However, several methods in the literature address problems

that vary slightly from the problem presented here and can be modified slightly

to address this problem. In addition, The closed-form visibility regions presented

in this dissertation are highly valuable for directional sensor planning and the

previously discussed Exact Visibility algorithm is just one possibly algorithm that

takes advantage of the visibility regions. For these reasons, this section presents

alternative algorithms that address the visibility planning problem presented in

this dissertation.

3.7 Comparison Algorithms

Prior to this work, the visibility path planning problem addressed in this disserta-

tion has not been solved, although several algorithms address problems that share
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some characteristics with the visibility problem presented here, which are imple-

mented with slight modifications for comparison in this dissertation. In addition,

two alternative approximation methods are presented that make use of the closed-

form visibility regions in this section that will be compared to the exact visibility

algorithm developed in the previous section.

Pruned Visibility Algorithm The first comparison algorithm is referred to as

the pruned visibility algorithm. This method makes a number of simplifications to

the exact visibility method in order to reduce the configuration space dimensional-

ity and reduce the size of the connectivity graph in order to reduce computational

cost. First, the target visibility region PV i ⊂ Cfree is computed for each target

index i ∈ I, which are then used to compute reduced-dimensionality translational

target visibility regions,

PVTi ,
⋃
θ∈S1

{
x ∈ W | [x θ]T ∈ PV i

}
⊆ W (3.20)

The translational target visibility regions characterize the set of positions from

which a particular target is visible from at least one sensor orientation. Similarly,

the translational set visibility regions UVTP are computed using Eq. 3.13, where

P ⊆ I. Then, redundant translational set visibility regions with a low index set

cardinality are pruned. That is, if the set visibility regions UVTP1
and UVTP2

are such

that P1 ⊂ P2 and UVP2 6= ∅, then UVTP1
is pruned since all of the targets are visible

from a different position. The remaining collection of pruned translational set visi-

bility regions are used to construct connectivity graph GPruned = (NPruned, EPruned),

such that NPruned = {x0, c1, c2, ...}, where x0 ∈ W is the sensor’s initial position

and ck ∈ W is a representative point of the pruned translational set visibility re-

gions. ck is taken to be the geometric center of the k-th translational set visibility

region if ck is in the region, otherwise ck is sampled uniformly from the region.
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The nodes are then connected following the same procedure as that for the exact

visibility algorithm, in which a local planner is used to fully connect the graph with

collision-free paths. This pruning technique dramatically reduces the total number

of set visibility regions compared to the exact method, in turn also reducing the

resulting connectivity graph size.

Cell Decomposition Algorithm The cell decomposition approach is a com-

monly used technique for robot and sensor path planning. This method discretizes

the sensor rotation space into κ > 0 orientations, θ1, ..., θκ. For each θu, the method

computes the rectangloid approximations RT ui for the target visibility region PVui ,

such that RT ui ⊂ PVui , i ∈ I and PVui = {q ∈ PV i|θ = θu}. Then the method

computes rectangloid approximation RBj for the obstacle Bj, which satisfies

Bj ⊂ RBj, j ∈ J . Then for each θu the method computes the rectanguloid approx-

imation Kuvoid for the void configuration space Cuvoid = Cu
free\{

⋃
j∈J Bj∪

⋃
i∈I PV i}.

Then, for each rectangloid RT uk , the centroid of each rectangle ck represents a

node in a connectivity graph, [cTk , θ
u]T ∈ NCell, such that GCell = (NCell, ECell).

Two nodes that share the same θu are connected if and only if their corresponding

rectangloid cells share an edge. Two nodes N1, N2 that do not have the same θu are

connected if and only if the corresponding rectangloids have a nonzero intersection

and the corresponding orientation angles satisfy |θu1 − θu2| ≤ ε, where ε > 0 is a

user-defined threshold.

Ad-hoc Traveling Salesman Problem Algorithm The third method pre-

sented here, referred to as the Ad-hoc TSP, directly adapts the standard TSP

optimization problem [2] to the visibility problem presented in this dissertation.

The standard TSP problem does not account for obstacles in the workspace. For
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this reason, the Ad-hoc TSP solution adapts a visibility diagram along with a PRM

methodology to ensure the TSP graph is fully connected leading to a methodol-

ogy that most similar to a standard TSP solution while ensuring the algorithm

is capable of solving the more difficult visibility method presented in this dis-

sertation. In particular, the initial sensor configuration q0 and each target po-

sition xi for all i = 1, ..., N is treated as a node in the TSP graph, denoted by

GTSP = (NTSP , ETSP ), such that NTSP = {q0,x1, ...,xN}. The nodes are con-

nected by first constructing a visibility diagram, such that any two nodes that

satisfy line of sight with respect to C-obstacles are connected by a straight edge.

Then, the remaining nodes are connected using a PRM local planner that samples

a uniform distribution over the workspace in order to avoid collisions with obsta-

cles. Therefore, GTSP is a fully connected graph that can be optimized according

the same MCTS method presented in the appendix.

Coverage Algorithm The final algorithm used as a benchmark for comparison

is referred to as the Coverage algorithm, and is similar to the WRP [43]. The

coverage method employs a lawnmower path shape, such that the sensor moves

in a back-and-forth path across the workspace in an attempt to cover the entire

workspace with the sensor FOV geometry. Traditional WRP solutions do not

account for a bounded field of view geometry and thus perfect coverage is not

guaranteed by this method. The Coverage algorithm also uses a PRM local planner

to avoid collisions with obstacles along the lawnmower path.

Path Performance Metrics The following sections aim to compare the exact

visibility algorithm, which is the main contribution of this dissertation, with the

several methods presented in this section, including the pruned visibility and cell
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decomposition algorithms, which are also novel algorithms developed in this disser-

tation for the purpose of comparison with the exact visibility method. In order to

compare the overall quality of the path produced by the visibility-based planning

algorithms, as well as the travelling salesman and coverage algorithms, a set of

performance metrics are given here.

The first performance metric is the path length J(τ) ≥ 0, as defined in the

optimization problem statement in Eq. 3.4. Clearly, because the problem aims

to minimize the path length, a smaller value for the path length produced by an

algorithm is indicative of a higher quality path. In addition to the path length

J(τ) the goal of the algorithm as stated in the problem formulation, is to observe

each of the N target positions xi for all i = 1, ..., N from at least one configuration

along the path τ produced by the algorithm. The path performance metric used

to measure this objective is given by the number of targets observed along a path,

denoted by nT (τ) ∈ [0, N ]. Because several workspaces are investigated in the

following sections containing vastly different numbers of targets, the performance

metric nT (τ) is normalized by the number of targets in the workspace, or nT (τ)
N
∈

[0, 1]. A value of nT (τ)
N

= 1 indicates that all of the targets are observed at least

once along the path τ , and any value less than 1 indicates that some targets were

missed. The final metric used to quantify the quality of a path is referred to as

the path performance which is the ratio of the previously mentioned metrics. The

path performance is given as nT (τ)
J(τ)

≥ 0, such that larger values of path performance

indicate a higher quality path.
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3.8 Algorithm complexity analysis

The various algorithms presented above are all designed to address the visibility

path planning problem presented in Sec. ??. In this section, the computational

complexity is investigated for all of the algorithms that take advantage of the

closed-form visibility regions, which are the main contribution of this dissertation.

That is, the computational complexity analysis is performed for the (a) Exact

Visibility, (b) Pruned Visibility, and (c) Cell Decomposition algorithms.

Exact Visibility Computational Complexity The computational complex-

ity of computing the target visibility regions is O(κNMm logm+ κNMm) where

κ is the number of rotations used to discretize the rotational part of the sensor’s

configuration space, N is the number of targets, M is the number of obstacles, and

m , 1
M

∑M
j=1mj is the average number of vertices in a polygonal obstacle, and

mj is the number of vertices in obstacle Bj. The first term is induced by the con-

vex hull operation which has complexity O(m logm) [52] and is computed κNM

times, and the second term is from the coverage cone operation which has complex-

ity O(m) and is computed κNM times. The set visibility region requires the power

set of the targets, which has computational complexity O(2N) and is computed for

each κ. Thus, the set visibility region has complexity O(κ2N) which is computa-

tionally prohibitive for large N . To ensure the graph is connected, a probabilistic

roadmap is computed and solved using Dijkstra’s algorithm [55], which has com-

plexity O(η2), where η is the number of samples used to construct the roadmap.

Therefore, the complexity for connecting the graph is O(κNη2). The MCTS algo-

rithm that is used to find the best channel through G has complexity O(µbd) where

µ is the number of Monte Carlo simulations, b is the maximum breadth of the tree,
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and h is the maximum depth of the tree. Since the tree should never be searched

wider or deeper than the number of targets, the computational complexity of the

MCTS algorithm is O(µN2). Because each of these operations happens in series,

the total computational complexity of the exact visibility algorithm is

O(κNMm logm+ κNMm+ κ2N + κNη2 + µN2)

For even reasonably sized N , the κ2N term dominates and is the bottleneck of

the algorithm. This problem can be addressed by realizing that the set visibility

region does not exist for targets that are more than twice the maximum sensing

radius from each other, that is

‖xi − xj‖ > 2r ⇒ PV i ∩ PVj = ∅

where xi,xj ∈ W are target positions and PV i,PVj ⊂ C are the associated target

visibility regions, respectively. Therefore, it is necessary that for a set visibility

region to exist for a combination of targets, all positions are within a distance of

2r or less of each other. Therefore, the computational complexity is only bounded

from above by the exponential term and is typically significantly more efficient.

More precisely, the set visibility region computational complexity goes like O(2N
∗
),

where N∗ is the maximum number of targets that are within a ball of radius 2r, and

r is the maximum sensing range of the sensor. Then, if the targets are uniformly

distributed in a workspace that has area A(W),

N∗ ≈ πr2

A(W)
N (3.21)

Therefore, as long as the square of the sensor range is much less than the area

of the workspace, as is typically the case, the problem will remain computation-

ally tractable. Fig. 3.9 demonstrates how small values of a, which are typically

much less than 0.2, lead to computationally tractable set visibility region algorithm

complexity although the upper bound on the complexity is intractable.
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Figure 3.9: Set visibility region complexity for the exact visibility algorithm as the
ratio of a = N∗/N is varied.

Pruned Visibility Region Algorithm Complexity Because the pruned

visibility algorithm uses the target visibility regions, which has complexity

O(κNMm logm + κNMm), still applies with the same complexity as described

in the previous paragraph. However, the pruned visibility algorithm does not re-

quire that all set visibility regions be computed, and instead only requires the set

reduced-dimension visibility regions with large cardinality. More specifically, if a

set visibility region UVP1 is non-empty and the target index i ∈ P1, then all set

visibility regions UVP , such that i ∈ P and |P | < |P1|, are not computed and

only UVP1 is used to construct the directional visibility graph. By this approach,

the largest possible number of set visibility regions that need to be computed is

N . In addition, the pruned visibility region algorithm ignores the orientation of

the robot and thus, the set visibility construction does not depend on a rotational

discretization, κ. Therefore, the complexity of this step is linear with the number

of targets, O(N), and the remaining steps of the algorithm are the same as for the

exact visibility algorithm. Therefore, the computational complexity of the pruned
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visibility algorithm is,

O(κNMm logm+ κNMm+N +Nη2 + µN2)

Clearly, the pruned visibility algorithm provides significant savings as N increases

when compared to the exact visibility method by reducing the complexity from

exponential to linear. Furthermore, the resulting graph size for this algorithm

will inevitably be much smaller than that of the exact visibility method and will

therefore require less time to find a reasonable channel through the graph, as will

be shown in the numerical results in the following sections.

Cell Decomposition Algorithm Complexity The first step in the cell decom-

position algorithm has complexity that is similar to the rectangle decomposition

algorithm presented in [14]. However, the main difference being that the com-

plexity depends on the number of edges in the obstacles, denoted by b, and the

number of edges in the target visibility regions denoted by v. In addition, the

discretization in the rotational direction κ used in this dissertation is incorporated

linearly, such that the rectangle decomposition step has complexity O(κ(b + v)2).

Then, the graph construction step has complexity O(κ(b+ v)), from [14], and the

optimization routine complexity is the same as for the previous methods, except

the cell decomposition Monte Carlo Tree Search can lead to much wider and deeper

trees that are approximated as κ(b+ v) for the breadth and the width, leading to

O(µκ2(b + v)2) for the optimization algorithm complexity. Then, the complexity

of the cell decomposition algorithm is given as,

O(κ(b+ v)2 + κ(b+ v) + µκ2(b+ v)2)

Because the number of edges that make up the visibility regions can be very

large, the quadratic complexity of the cell decomposition algorithm can be pro-
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hibitive for large workspaces that contain many targets and/or many obstacles.

This quadratic complexity exists in both the graph construction and the optimiza-

tion part of the algorithm.

In summary, the exact visibility method scales exponentially in the number

of targets, the pruned visibility algorithm scales quadratically in the number of

targets, and the cell decomposition scales quadratically in the total number of edges

of obstacles and visibility regions. If computational efficiency were not an issue,

the exact visibility algorithm is expected to outperform the other two methods.

However, the pruned visibility algorithm provides a tradeoff to the computational

efficiency by throwing out the low cardinality set visibility regions and ignoring

the orientation of the robot in order to reduce the problem dimensionality. The

cell decomposition method provides a significantly different approach that scales in

terms of the obstacle geometries and the visibility region geometries. The following

results sections provide numerical and physical experiments that both validate the

computational complexity analyses presented here as well as the path performance

between the algorithms.

3.9 algorithm path performance comparison

This section presents the simulation and experimental results of the visibility based

planning algorithms developed in this dissertation. First, the simulation results

are presented for the exact visibility algorithm, the main contribution of this dis-

sertation, for the task of classifying multiple targets in a complex workspace, in

order to demonstrate the direct application of this algorithm in a realistic use case.

Then, the path performance of the exact visibility algorithm is quantitatively com-
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pared to multiple algorithms presented in the previous sections. In addition to the

path performance comparison, the algorithm computational efficiency is compared

numerically, validating the analytical results of Sec. ??.

This subsection presents simulation results for the exact visibility method pre-

sented in this dissertation. The exact visibility algorithm and all comparison al-

gorithms are implemented in MATLAB© 2019b on a Dell�Precision Tower 7910

equipped with two Intel�2.40 GHz Xeon CPU processors.

The functionality of the proposed exact visibility path planning algorithm is

employed for a multi-target classification task, which is implemented in a complex

3D and photo-realistic workspace, simulated using a rendering engine known as

Unreal Engine� [88]. The target classification is performed using an off-the-shelf

state of the art person detection algorithm [81], and the maximum sensing range

of the sensor FOV geometry is determined by estimating the scale of humans that

the algorithm is capable of recognizing consistently, given the camera resolution.

For this simulation, a high-resolution 1080p image resolution is simulated and the

maximum sensing range is determined to be 25 meters.

Fig. 3.10 shows the realistic and complex 3D workspace that is simulated

in Unreal Engine�. This complex 3D demonstration validates the assumptions

made throughout this dissertation in order to realize high-quality paths in complex

environments using reduced dimensionality representations of complex geometries

of the sensor FOV and polygonal obstacles. In addition, the simulations in Unreal

Engine allow for variable luminosity and fog conditions, for example that can be

controlled perfectly. The three-dimensional robot and sensor FOV used in the

simulations is shown in Fig. 3.11.
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Figure 3.10: Unreal Engine simulation environment. 

 

 

Robot Sensor FOV 

Figure 3.11: Robot and sensor FOV used in Unreal Engine simulation environment.

The workspace W in this simulation consists of M = 59 obstacles with several

narrow passages and N = 13 targets that lead to overlapping visibility regions.

The initial robot configuration is chosen such that no obvious path exists and no

targets are visible from the initial configuration. The polygonal representation of

the obstacles is obtained from the Unreal Engine mesh data for each obstacle and

taking the convex hull of the obstacle vertices and extruding the geometries to be

uniform in the vertical direction. Fig. 3.12 shows the simplified 3D representa-

tion of the complex workspace from Fig. 3.10. The geometrically approximated

workspace in Fig. 3.12 is used as an input to the exact visibility path planning
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Figure 3.12: The geometrically simplified simulation workspace used for path plan-
ning with the exact visibility algorithm, along with the generated path produced
by the algorithm that successfully visits all target positions.

algorithm and the resulting path produced is shown in blue on the figure.

The exact visibility path planning algorithm successfully observes all of the

targets along the proposed path, as shown in Fig. 3.12. In addition, the object

recognition algorithm successfully recognizes all of the targets in the images from

the proposed waypoints of the algorithm, and the resulting images with bounding

boxes are shown in Fig. 3.13.

An interesting observation of the path produced by the exact visibility algo-

rithm is shown in Fig. 3.14. In particular, the algorithm finds a configuration

that is capable of viewing two targets simultaneously due to their combined set

visibility region that has been used in the planner. One of the humans is only

visible through a narrow passage, but because the visibility regions have been de-

scribed using closed-form geometry, the exact visibility method exploits this sensor

configuration and likely saves several meters of robot travel. Fig. 3.14 shows the

complex environment, and the geometrically simplified environment, as well as the
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Figure 3.13: Resulting sensor FOV images taken from the proposed waypoints
generated by the Exact Visibility algorithm, shown with all target humans being
successfully recognized in green bounding boxes.

sensor FOV with correctly recognized targets.

In addition to the simulated target recognition results, further results are pro-

duced that demonstrate the capability of the exact visibility algorithm. Fig 3.15

shows the exact visibility method easily finds a high quality configuration capa-

ble of viewing multiple targets in the presence of occlusions while simultaneously

avoiding collisions with the obstacles. This example highlights the benefits of the

exact visibility method and the closed-form visibility regions that are developed in

this dissertation. Alternative planning approaches, such as purely sampling based

methods would likely not find such a valuable configuration without requiring hun-

dreds of samples, rather than the very small number of nodes required using the

exact visibility algorithm.

Algorithm Performance Comparison

This subsection presents a rigorous and quantitative comparison of the multiple

algorithms described in Sec. 3.7. The first comparison is between the Exact
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Figure 3.14: A configuration determined using the exact visibility algorithm where
two targets are visible simultaneously in the complex 3D environment (a), the
geometrically simplified environment (b), and the associated sensor FOV image
and successful human target recognition shown as bounding boxes (c).
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Figure 3.15: The exact visibility algorithm finds a high quality configuration at q1

capable of viewing two targets in the presence of occlusions while simultaneously
avoiding collisions to reach the desired configuration.

visibility and Pruned Visibility methods, which are very similar approaches with

the pruned visibility method making several simplifying assumptions in order to

save on efficiency. Fig. 3.16 demonstrates the loss in performance of the pruned

visibility method due to the dimensionality reduction by ignoring the rotational

component of the configuration space. In this simulation, three equally spaced

targets are placed just far enough so that there are no overlapping visibility regions,

which leads to each target requiring an individual configuration chosen by the

algorithm. The exact visibility algorithm is capable of taking advantage of the

robot yaw orientation in order to significantly reduce the path length, while the

pruned visibility method is required to travel much further due to the rotation

angle being ignored.

In order to quantitatively and fairly compare the path performance of the var-

ious algorithm, several workspaces with variable numbers of targets and obstacles

are randomly generated. More specifically, the number of targets N and number
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Figure 3.16: Comparison of the Exact Visibility (a) and Pruned Visibility (b),
which produce a path which have path lengths of J(τEV ) = 15.48 meters and
J(τPV ) = 24.33 meters respectively, demonstrating the exact visibility method
outperforming the pruned visibility method.

of obstacles M are chosen by the user and the initial sensor configuration, the po-

sition of the targets and obstacles, as well as the obstacle geometries are randomly

generated in MATLAB�. The random obstacles are generated by fist randomly

sampling a position from the workspace uniformly, then randomly selecting an in-

teger number of vertices to represent the obstacle uniformly between 3 and 8. The

position of individual obstacle vertices relative to the randomly sampled obstacle

location are chosen randomly between relatively small bounds with respect to the

size of the workspace. Then, the target positions are randomly sampled from the

free workspace. Fig. 3.17 shows a randomly generated workspace, with M = 25

obstacles and N = 8 targets, along with a path produced by the exact visibility

algorithm.

In the algorithm comparison several problem parameters are varied and the

path performance of each method is recorded for each simulation parameter set.

The parameters that are varied are the number of targets N , the number of ob-

stacles M , and the maximum sensing range of the sensor FOV r. For each set

of parameters, the path length J(τ) ≥ 0, normalized target coverage nT (τ)
N

, and

path performance nT (τ)
J(τ)

are recorded and compared as the parameters are varied.
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Figure 3.17: Example of the randomly generated workspace, withM = 25 obstacles
and N = 8 targets, used the in the algorithm comparison experiments with a path
produced by the exact visibility algorithm.

In addition, the MCTS optimization algorithm parameters are held constant for

every simulation in the performance comparison. In particular, it is noted that the

number of Monte Carlo simulations µ is not varied between algorithms.

The first experiment in the algorithm comparison demonstrates the algorithm

path performance as the number of targets N is increased from N = 1 to N = 15,

and is shown in Fig. 3.18. All of the simulations used in this experiment use

M = 25 obstacles and a maximum sensing range of r = 5 meters. For small N , it

can be seen that the path length of the various algorithms is quite similar, and all

of the algorithms view every target, except for one. The Ad-hoc TSP algorithm

fails to visit many of the targets because the targets are too close to the obsta-

cles for the simple TSP algorithm to visit the targets without causing a collision

between the obstacle and the robot. This phenomena further demonstrates the

value that is gained by taking advantage of the sensor FOV. Furthermore, as the
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Figure 3.18: Path length J(τ) (a), normalized target coverage nT (τ)
N

(b), and path

performance nT (τ)
J(τ)

(c), as the number of targets N in the workspace increases.

number of targets is increased the pruned visibility algorithm overtakes the exact

visibility algorithm. This makes perfect sense, given that the number of Monte

Carlo simulations µ in the MCTS graph optimization is held constant even as the

number of targets is increased. The pruned visibility method continues to have

high quality path performance as N increases since the size of the pruned visibility

graph does not grow as fast as the exact visibility algorithm graph. Thus, it is also

reasonable to assume that if the number of Monte Carlo iterations were increased

as the number of targets were increased, then the Exact Visibility algorithm would

continue to outperform the Pruned Visibility algorithm, as is the case for small N .

However, even as the number of targets becomes large, the exact visibility method

consistently outperforms all of the other comparison algorithms.
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Figure 3.19: Path length J(τ) (a), normalized target coverage nT (τ)
N

(b), and path

performance nT (τ)
J(τ)

(c), as the number of obstacles M in the workspace increases.

The second experiment designed to compare the path performance of the var-

ious algorithms investigates the performance as the number of obstacles in the

workspace M is increased, as shown in Fig.3.19. The number of targets used in

all simulations for this experiment are held constant at N = 10 and the maximum

sensing range is set to r = 5 meters. Because there is a large number of targets

the pruned visibility algorithm again slightly outperforms the exact visibility algo-

rithm due to the fixed number of MCTS iterations for these experiments. These

experiments show that none of the visibility-based algorithms (i.e., exact visibility,

pruned visibility, cell decomposition) miss any targets as the workspace becomes

populated with increasingly more and more obstacles, and the path performance

remains effectively constant for all of the methods.
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Figure 3.20: Path length J(τ) (a), normalized target coverage nT (τ)
N

(b), and path

performance nT (τ)
J(τ)

(c), as the maximum sensing range r of the directional sensor is
increased.

The third experiment is designed to investigate the path performance of the

various algorithms as the maximum sensing range r is increased as shown in Fig.

3.20. For these experiments, the number of targets is held constant at N = 3

and the number of obstacles is set to be M = 25. For these experiments, it is

clear that a coverage approach is not an effective method for small sensing radius,

which is caused by the fact that as the sensing radius approaches 0, the sensor

needs to visit every point in the workspace, and thus J(τ) for the coverage method

goes to infinity. In addition, as the sensing radius approaches zero, all of the

visibility-based algorithm performance approaches the performance of the TSP

algorithm. However, as the sensing radius increases, the exact visibility method

quickly outperforms all other methods, with the occasional close performance of

the pruned visibility method.
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3.10 Empirical algorithm computational cost comparison

The various algorithms are further analyzed in this subsection with respect to the

algorithm computational complexity gathered from numerical experiments. Be-

cause in the computational complexity section, Sec. ??, the number of targets

N was shown to be the limiting scaling parameter for the visibility-based algo-

rithms, the results in this section show the run time of various components of the

algorithms as N is increased. The first analysis shows the time required for each

algorithm to produce the graph that is to be optimized. Alternatively, this analy-

sis can be viewed as the total runtime not counting the time required to optimize

the graphs. This analysis is shown in Table 3.1. As expected from the analytical

complexity analysis, the exact visibility (EV) method grows exponentially and the

pruned visibility (PV) method grows significantly slower. The cell decomposition

(CD) algorithm graph construction time complexity does not grow as quickly as

the exact visibility algorithm, but the time does remain consistently large due to

the fact that this method requires a cell decomposition of the workspace to be per-

formed, regardless of the number of targets. The Ad-hoc TSP (TSP) and Coverage

(Cov) algorithms are significantly computationally simpler than the visibility-based

methods, although the pruned visibility method complexity is comparable to these

methods. Also, the Coverage algorithm does not require a graph optimization, so

the time reported for that algorithm is simply the entire time required to compute

the path.

Although the main contribution of this dissertation is encompassed in the

visibility-based method used to construct a graph for path planning, the size of

the graph produced, and the time required to optimize such a graph is of great im-

portance to most any real application of this work. Therefore, Table 3.2 shows the
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Table 3.1: Graph construction time (seconds) as N inreases.

Alg. N = 1 3 5 8 10 13 15

EV 1.6 347.3 4173.6 12388 16741 32141 51753

PV 0.4 16.4 1.4 137.6 244.9 410.6 474.5

CD 378.1 606.9 850.9 1085.2 1240.1 1436.1 1506.6

TSP 0.2 31.0 70.9 235.8 389.3 540.2 683.1

Cov 46.1 52.5 52.8 52.6 52.7 44.6 43.3

Table 3.2: Optimization time (seconds) as N inreases.

Alg. N = 1 3 5 8 10 13 15

EV 1.8 9.2 16.1 74.7 173.4 196.8 365.5

PV 0.3 0.8 0.9 5.4 7.1 12.0 15.3

CD 95.7 635.9 4837.2 21589 21101 62054 78421

TSP 0.3 0.3 1.7 4.0 6.1 11.0 15.1

Cov - - - - - - -

time required to optimize each of the graphs produced by the algorithms. The ex-

act visibility algorithm (EV) graph optimization time complexity scales at a much

slower rate than that of the graph construction, as expected since this part of the

algorithm scales quadratically rather than exponentially as shown in the analyt-

ical complexity analysis on Sec. ??. In addition, the pruned visibility algorithm

requires a negligible amount of time for path planning, even with the maximum of

N = 15 targets, the pruned visibility method is nearly as fast as the simple TSP

algorithm to optimize. The Cell Decomposition algorithm, however scales quickly

in this optimization step which is caused by the very large graph size associated

with the cell decomposition approach. The coverage algorithm does not require

optimization and therefore no time complexity is reported for that algorithm.

The total runtime, or the sum of Tables 3.1 and 3.2, is shown in Fig. 3.3. Over-

all, the cell decomposition approach is shown to be the most inefficient method as
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Table 3.3: Total run time (seconds) as N inreases.

Alg. N = 1 3 5 8 10 13 15

EV 3.4 356.5 4189.7 12463 16914 32338 52119

PV 0.7 17.2 2.3 143.0 252.0 422.6 489.8

CD 473.8 1242.8 5688.1 22674 22341 63490 79928

TSP 0.5 31.3 72.6 239.8 395.4 551.2 698.2

Cov 46.1 52.5 52.8 52.6 52.7 44.6 43.3

N is increased, followed by the exact visibility method. Interestingly, the pruned

visibility method is even more efficient than the simple TSP algorithm as the num-

ber of targets is increased. This phenomena occurs because the pruned visibility

method can require less nodes in the graph than the TSP algorithm by taking

advantage of overlapping visibility regions. The coverage algorithm is clearly the

most efficient being that it does not scale with the number of targets, although the

efficiency comes at the expense of the path performance as shown in the previous

subsection.

The graph size is another interesting measure of the computational require-

ments for the various algorithms. Tables 3.4 and 3.5 show the number of nodes and

the number of edges as N increases, respectively. This representation highlights

the reason for the high optimization time complexity for the cell decomposition al-

gorithm as it requires nearly 1000 nodes for 15 targets. the exact visibility method

also produces a significant amount of nodes and an incredible amount of edges for

a nearly fully connected graph. The pruned visibility method is very impressive

in the small graph size produces while maintaining competitive path performance.

In fact, the number of nodes required for the pruned visibility method is bounded

by the number of targets, i.e., |EPV | ≤ N + 1, where the (+1) is due to the added

node for the initial configuration. This is interesting because it is therefore always
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Table 3.4: Number of nodes as N increases

Alg. N = 1 3 5 8 10 13 15

EV 9 34 76 110 127 175 238

PV 2 3 3 7 9 13 14

CD 442 500 560 675 709 854 906

TSP 2 4 6 9 11 14 16

Cov - - - - - - -

Table 3.5: Number of edges as N increases

Alg. N = 1 3 5 8 10 13 15

EV 36 392 2267 4838 6505 12610 23380

PV 1 5 3 38 66 139 163

CD 2871 3991 5182 7217 7924 10400 11640

TSP 1 2 8 26 38 67 101

Cov - - - - - - -

at least as efficient, in terms of graph size, as the simple TSP algorithm.

3.11 Physical Experiments and Demonstrations

In addition to the various simulation results performed in the previous subsection,

experimental validation is also performed using a DJI�Mavic 2.0 quadrotor drone

as shown in Fig. 3.21. The workspaces used for the experiments are mapped and

the path is planned using the exact visibility method a priori. The robot then

starts at a known initial configuration and moves along a constant-altitude path

specified by the planning algorithm. The quadrotor is equipped with multiple

vision and time-of-flight depth sensors for highly accurate state estimation using

the built-in DJI�functionality. In addition, the quadrotor is equipped with a GPS

that works in most outdoor environments. The closed-loop trajectory following
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Figure 3.21: DJI Quadrotor used in physical experiments equipped with an on-
board camera.

controller is implemented in Java from a Dell Alienware mobile workstation with

an Intel�CPU. The state estimate is computed at a high frequency onboard the

quadrotor and communicated to the workstation over a Wifi connection, where the

corresponding motor control inputs are computed and communicated back to the

quadrotor in real-time. Similar to the Unreal Engine�simulations, the quadrotor

in this case study is tasked with classifying all of the targets in the workspace

correctly using an off-the-shelf object recognition software [81]. Two experimental

case studies are shown in which the quadrotor follows the exact visibility algorithm

path to visit multiple targets: The first case study is an (a) indoor environment,

and the second is a (b) outdoor environment.

Case Study 1: Indoor Workspace The first case study is that of an indoor

workspace performed at Cornell University’s Upson Hall as shown in Fig. 3.22.

This workspace is a GPS denied environment requiring the use of the onboard

state estimation for trajectory following by the quadrotor. The workspace involves

a hallway, sitting area, and an office space, requiring traversal through a narrow

passage to view all of the targets. The workspace is populated with N = 9 tar-

gets that are made up of various objects such as backpacks and computers. The
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Figure 3.22: Indoor workspace for physical environments computed from schemat-
ics of the 5th floor of Upson Hall at Cornell University (a), and the simplified
polygonal map used in the path planning algorithm (b).

obstacles in the workspace are modeled using M = 26 obstacles.

The exact visibility algorithm is employed and produces the path shown in Fig.

3.23 that successfully observes all of the targets in the workspace. The quadro-

tor also manages to avoid collision with all obstacles and navigate successfully

through the narrow passage of the propped doorway between the office space and

the hallway.

Case Study 2: Outdoor Workspace The second case study in the exper-

imental results is performed in an outdoor environment on Cornell University’s
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Figure 3.23: Path produced by the exact visibility algorithm on the indoor
workspace.

1 2 3 
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Figure 3.24: Sensor FOV images obtained from the onboard camera in the indoor
workspace with correctly recognized target objects in the sensor FOV at each
waypoint along the path produced by the exact visibility method shown as red
bounding boxes.
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Engineering Quadrangle. This workspace is a very large scale where the obstacles

are actually large buildings and trees, unlike the previous experiment. The out-

door workspace contains N = 11 targets and M = 21 obstacles as shown in Fig.

3.25. The exact visibility algorithm successfully produces an adequate path for

this workspace as shown in Fig. 3.26. The drone has access to GPS coordinates in

this outdoor environment and can therefore successfully and easily navigate along

the prescribed trajectory and correctly recognize all targets in the workspace.
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Figure 3.25: Outdoor workspace used for the physical experiments at Cornell Uni-
versity’s Engineering Quadrangle.
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Figure 3.26: Path produced by the exact visibility algorithm on the outdoor
workspace.
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CHAPTER 4

CONCLUSION

A novel and systematic methodology for planning the trajectory of a mobile

robotic sensor deployed to classify multiple fixed targets located in an obstacle-

populated workspace is presented in this dissertation. Unlike existing robotic sen-

sor path planning methods that are not directly applicable to robots whose primary

objective is to gather sensor measurements using a sensor with a bounded FOV

subject to LOS visibility, this dissertation develops a novel path planing method in

which the obstacles, sensor FOV, and robotic platform, are represented as closed

and bounded subsets of an Euclidean workspace. The visibility regions developed

in this dissertation represent a collection of subsets of the directional sensor’s con-

figuration space that quantify the visibility of every subset of targets subject to the

sensor FOV geometry and LOS visibility. The visibility regions are then used to

construct a connectivity graph that represents the visibility region connectivity of

the sensor’s configuration space. The computational performance of the algorithm

is analyzed and an approximation algorithm with significantly improved efficiency

is also presented which leverages visibility regions in which multiple targets are

visible. The effectiveness of the sensing strategies computed by this method are

demonstrated through multiple simulation and physical experiments, in which the

method developed in this dissertation is compared to traditional Traveling Sales-

man Problem approaches, as well as cell decomposition, and coverage methods.

The proposed algorithm outperforms the comparison algorithms in both physical

and simulated experiments.

This dissertation develops a novel and systematic approach to real-time three

dimensional human pose estimation for viewpoint invariant action recognition from
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a monocular camera onboard a quadrotor tasked with actively monitoring a human

of interest. Leveraging recent advancements in two-dimensional human pose esti-

mation, a novel geometric approach developed here computes a finite set of possible

three-dimensional human poses given the two-dimensional image plane measured

pose. This dissertation defines a three-dimensional human pose in terms of two

consecutive Euler angle rotations for each pair of connected human joints, thereby

eliminating the human’s scale from the human’s pose. The rotations used to de-

scribe the human pose are then transformed to a human-fixed coordinate reference

frame resulting in a viewpoint invariant representation of the human pose. The

time history of the estimated three-dimensional pose is used to construct a view-

point invariant feature vector that captures temporal action information, which is

employed for human action recognition using a Support Vector Machine. Finally,

a switched controller is developed that enables the quadrotor to maintain the hu-

man in the onboard camera’s field of view using the perceived action of the human.

Results of the three-dimensional human pose estimation are shown to accurately

represent the true pose of a human in a photo-realistic simulation environment.

Additionally, the action-based switched controller is shown to maintain the human

in the camera’s field of view while the human is performs various actions that

would typically require re-tuning of a controller’s gains.

This dissertation presents a method for mobile camera control using its video

feedback in real time, in order to detect and pursue a human target. Because

video frames are dependent on the camera position and orientation, the interac-

tive and highly realistic game programming environment Unreal Engine�is used

to perform virtual experiments in real time. The proposed approach relies on con-

sistent bounding box extraction to control the camera’s forward speed and yaw

rate to maintain the target within its FoV and at a specified distance for accurate
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image processing. The simulation results show the camera tracking the human

target, keeping the target within the FoV and at a reasonable distance for reliable

image processing. The same control algorithm is successfully implemented on the

Clearpath�Jackal robot, which also successfully follows the target and maintains

it in the camera FoV. Future work includes tracking a particular human target

using multiple cameras with different viewpoints in a crowded environment.
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