
RANDOM FINITE SET INFORMATION-THEORETIC
SENSOR CONTROL FOR AUTONOMOUS

MULTI-SENSOR MULTI-OBJECT SURVEILLANCE

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Keith Allen LeGrand

August 2022



© 2022 Keith Allen LeGrand

ALL RIGHTS RESERVED



RANDOM FINITE SET INFORMATION-THEORETIC SENSOR CONTROL

FOR AUTONOMOUS MULTI-SENSOR MULTI-OBJECT SURVEILLANCE

Keith Allen LeGrand, Ph.D.

Cornell University 2022

Tracking multiple moving objects in complex environments is a key objective of

many robotic and aerospace surveillance systems. In the Bayesian multi-object

tracking framework, noisy sensor measurements are assimilated over time to form

probabilistic beliefs, namely probability densities, of the multi-object state by

virtue of Bayes’ rule. This dissertation shows that, using probabilistic beliefs and

environmental feedback, intelligent sensors can also optimize the value of informa-

tion gathered in real time by means of information-driven control. In particular,

it is shown that in object tracking applications, sensor actions can be optimized

based on the expected reduction in uncertainty or information gain estimated

from probabilistic beliefs for future sensor measurements. When compared to tra-

ditional estimation problems, the problem of estimating the information value for

multi-object surveillance is more challenging due to unknown object-measurement

association and unknown object existence. The advent of random finite set (RFS)

theory has provided a formalism for quantifying and estimating information gain

in multi-object tracking problems. However, direct computation of many relevant

RFS functions, including posterior density functions and predicted information

gain functions, is often intractable and requires principled approximation.

This dissertation presents new theory, approximations, and algorithms related

to autonomous multi-sensor multi-object surveillance. A new approach is presented

for systematically incorporating ambiguous inclusion/exclusion type evidence, such



as the non-detection of an object within a known sensor field-of-view (FoV). The

resulting state estimation problem is nonlinear and solved using a new Gaussian

mixture approximation achieved through recursive component splitting. Based on

this approximation, a novel Gaussian mixture Bernoulli filter for imprecise mea-

surements is derived. The filter can accommodate “soft” data from human sources

and is demonstrated in a tracking problem using only natural language statements

as inputs. This dissertation further investigates the relationship between bounded

FoVs and cardinality distributions for a representative selection of multi-object

distributions. These new FoV cardinality distributions can be used for sensor

planning, as is demonstrated through a problem involving a multi-Bernoulli pro-

cess with up to one hundred potential objects.

Finally, a new tractable approximation is presented for RFS expected informa-

tion gain that is applicable to sensor control in multi-sensor multi-object search-

while-tracking problems. Unlike existing RFS approaches, the approximation pre-

sented in this dissertation accounts for multiple measurement outcomes due to

noise, missed detections, false alarms, and object appearance/disappearance. The

effectiveness of the information-driven sensor control is demonstrated through a

multi-vehicle search-while-tracking experiment using real video data from a remote

optical sensor.
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CHAPTER 1

INTRODUCTION

Beginning with the seminal work of Rudolf Kalman in 1960 [59], state esti-

mation theory has enabled the development of algorithms that are now ubiq-

uitous in modern robotic and aerospace systems. In particular, the state es-

timation problem known as object tracking [7] is characterized by the estima-

tion of the motion of remote objects that are subject to unknown random in-

puts. Many tracking applications also require the simultaneous estimation of

multiple objects’ states. Such problems are the subject of multi-object (a.k.a.

multitarget) tracking theory [88, 15, 16, 9], as pioneered by Bar-Shalom in the

1970s [8, 9]. Multi-object tracking problems arise in a broad range of important

and timely applications, including but not limited to space situational awareness

(SSA) [26, 46, 45, 38, 39, 98, 66, 64, 63, 20], ground vehicle tracking [29, 69, 68, 13],

terrain navigation [77, 78], simultaneous localization and mapping (SLAM) [44, 31],

cell microscopy [52], anti-submarine warfare [30], maritime ship tracking [27],

swarm control [28, 35], pedestrian tracking [87, 82, 53], audio processing [22],

and cyber-security [36]. While intimately linked, multi-object tracking theory is

a nontrivial generalization of traditional tracking and estimation theory. This ad-

ditional complexity is partly due to the unknown origin of measurements that is

fundamental to multi-object problems, and which generally requires combinatorial

optimization over measurement/track assignments.

Modern surveillance systems increasingly employ autonomous and reconfig-

urable sensors that are able to control the quality of future measurements by

deciding sensor mode and motion variables, such as translation, rotation, zoom,

beam-forming, and frequency selection. In principle, a so-called intelligent sensor
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can automate the selection of measurements through feedback control such that it

collects the most relevant and informative measurements based on the underlying

estimation objective. In information-theoretic planning and control [48, 75, 34],

sensing actions are determined based on theoretically rigorous objectives that quan-

tify the information value of measurements under each possible sensor state. In

contrast, task-driven control policies are developed to be tailored to a specific sen-

sor and application and often do not generalize beyond the original scope for which

they were designed.

Recently, random finite set (RFS) theory has emerged as a powerful and

unifying Bayesian framework for solving multi-sensor multi-object tracking and

information-driven control problems [41, 74, 75]. Central to RFS theory is the

representation of state and measurement as finite sets, whose elements and size

are random quantities. By this representation, the uncertainties associated with

dynamic disturbances, object appearance/disappearance, measurement noise, spu-

rious detections, and missed detections are all captured by set-based multi-object

density functions. Equipped with the RFS, multi-object density, and the appro-

priate set calculus, the concepts of divergence and information gain are then ele-

gantly lifted from traditional estimation theory to the complex multi-sensor multi-

object setting, enabling, in principle, theoretically rigorous multi-sensor multi-

object information-driven control [92, 11].

Despite the power of the RFS information-driven control formulation, signif-

icant challenges arise its application to real-world search-while-tracking (SWT)

problems. RFS tracking algorithms are predominantly implemented in either par-

ticle [111] or Gaussian mixture (GM) form. GM implementations offer distinct

advantages over the former. GM representations are not as severely limited by

2



the curse of dimensionality, are generally more computationally efficient, and are

conducive to meaningful multi-sensor fusion. Yet existing GM RFS multi-object

trackers lack the ability to account for bounded sensor field-of-view (FoV) geom-

etry and are ill-suited for incorporating soft data from human sources or other

forms of imprecise information. Furthermore, while RFS information gain func-

tions are symbolically simple expressions, no computationally practical approaches

exist for accurately approximating the expected information gain, which is the foun-

dation of information-driven control objectives [49, 34]. The intractability of RFS

information gain expectations is further exacerbated when considering the joint

information value from multiple sensors, particularly when sensor FoVs overlap.

Thus, principled and accurate approximations of the expected information gain

are needed to enable real-time information-driven control.

Chapter 3 presents new methods for incorporating imprecise and negative infor-

mation in GM based RFS filtering. The approach recursively splits GM probability

density function (pdf) components near sensor FoV boundaries such that the in-

formation content of non-detections can be leveraged in a Bayesian framework.

The developed approach is more generally applicable to broad categories of in-

clusion/exclusion type evidence in GM RFS filtering. To demonstrate this fact,

a novel GM Bernoulli filter for imprecise measurements is derived and demon-

strated in a tracking problem where measurements take the form of natural lan-

guage statements from human observers. The role of bounded FoV geometry is

also considered in the context of object cardinality distributions. Using finite set

statistics (FISST), expressions are derived for describing object cardinality proba-

bilities within bounded FoVs, which may be used as general figures of merit or as

a principled basis for sensor placement.
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Chapter 4 presents a novel information-theoretic approach to single-sensor

multi-object autonomous SWT. Existing RFS sensor control research has largely

focused on the development of information gain functions for a variety of prior dis-

tribution classes. Yet, little attention has been given to computationally tractable

techniques for accurately forecasting information gain in these settings. As such,

this work presents a new principled approximation of the multi-object information

gain expectation, which is shown to lead to improved tracking performance in an

experiment using real video data. A new joint probabilistic representation for dis-

covered and undiscovered objects is proposed within this framework that enables

efficient SWT and more readily scales to large geographic regions compared to

existing representations.

Building on the theory developed in Chapter 4, Chapter 5 presents a derivation

of information gain functions and approximate expectations for autonomous multi-

sensor multi-object SWT. The multi-sensor control problem is shown to be a

nontrivial extension of the single-sensor problem, particularly when sensor FoVs

are not restricted to be disjoint. Thus, additional constraints and optimization

techniques are required to enable computationally practical solutions. The multi-

sensor control approach is demonstrated in an SWT problem, and the performance

is compared for different numbers of sensors. An analysis shows the importance

of allowing dynamic sensor FoV overlap, which in many instances provides higher

information value than disjoint sensor coverage.
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CHAPTER 2

BACKGROUND

2.1 Notation

Throughout this dissertation, single-object states are represented by lowercase let-

ters (e.g. x, x̊), while multi-object states are represented by italic uppercase let-

ters (e.g. X, X̊). Bold lowercase letters are used to denote vectors (e.g. x, y), and

bold uppercase letters are used to denote matrices (e.g. P, Λ). The accent “̊ ” is

used to distinguish labeled states and functions (e.g. f̊ , x̊, X̊) from their unlabeled

equivalents. Spaces are represented by blackboard bold symbols (e.g. X, L).

For brevity, the multi-object exponential notation,

hA ,
∏
a∈A

h(a) (2.1)

where h∅ , 1, is adopted throughout. For multivariate functions, the dot “ · ”

denotes the argument of the multi-object exponential, e.g.:

[g(a, ·, c)]B ,
∏
b∈B

g(a, b, c) (2.2)

The exponential notation is used to denote the product space, Xn =
∏n(X×).

Exponents of finite sets are used to denote finite sets of a given cardinality, e.g.

|Xn| = n, where n is the cardinality. The set of natural numbers less than or equal

to n is denoted by

Nn , {1, . . . , n} (2.3)

The operator diag(·) places its input on the diagonal of the zero matrix. The

5



Kronecker delta function is defined as

δa(b) ,

 1, if b = a

0, otherwise
(2.4)

for any two arbitrary vectors a, b ∈ Rn. The inner product of two integrable

functions f(·) and g(·) is denoted by

〈f, g〉 =
∫
f(x)g(x)dx (2.5)

2.2 Bayesian State Estimation

The Bayesian approach to state estimation is distinct from central-moment-based

approaches such as the Kalman filter, extended Kalman filter (EKF), and un-

scented Kalman filter (UKF), in that it constructs the full posterior pdf at each

time step given all available measurement information up to the present time. In

the Bayesian approach, both the state xk ∈ Rnx and measurement zk ∈ Rnz evolve

stochastically according to a sequence of conditional probability distributions [96]

xk ∼ pk−1(xk|xk−1) (2.6)

zk ∼ gk(zk|xk) (2.7)

for k = 1, 2, . . ., where pk−1(xk|xk−1) denotes the Markov state transition density

and gk(zk|xk) is the measurement likelihood function.

2.2.1 Bayes Filter Recursion

Under the standard model (2.6)-(2.7), the Bayes filtering equations presented in

this subsection are the general equations for computing Bayesian prior and pos-

terior distributions for both linear/nonlinear and Gaussian/non-Gaussian state

6



space models [96]. Assume that the initial pdf p0(x0) is known. Denote the

prior density at time k by pk|k−1(xk, z0:k−1), the posterior density at time k − 1

by pk−1|k−1(xk−1|z0:k−1). The forward prediction is given by the Chapman-

Kolmogorov equation [56]

pk|k−1(xk|z0:k−1) =

∫
pk−1(xk|xk−1)pk−1|k−1(xk−1|z0:k−1)dxk−1 (2.8)

where the subscript “k|k′” denotes a density at time k conditioned on information

up to and including time k′.

Assume that the measurement noise is white, such that

gk(zk |xk, z0:k−1) = gk(zk |xk) (2.9)

Then, given a noisy measurement zk at time k, the posterior density is given by

Bayes’ rule:

pk|k(x|zk, z0:k−1) =
gk(zk|xk)pk|k−1(xk|z0:k−1)∫
gk(zk|x′)pk|k−1(x′|z0:k−1)dx′ (2.10)

Throughout this dissertation, the abbreviation pk(·) = pk|k(·) is frequently used

when possible to do so without ambiguity. Remarkably, when both the transition

density (2.6) and measurement likelihood (2.7) are linear-Gaussian, the optimal

Bayes filter is algorithmically equivalent to the Kalman filter.

2.2.2 Gaussian Mixture Filters

In the general case where p0(x0) is non-Gaussian, or where the state transition or

measurement are nonlinear or non-Gaussian, the resulting filtering densities will

be non-Gaussian. One effective approach to non-Gaussian, nonlinear filtering is

GM filtering [2]. The key principle of GM filtering is the approximation of a pdf

7



as a weighted sum of L Gaussian mixands:

p(x) ≈
L∑

`=1

w(`)N (x; m(`),P(`)) (2.11)

where w(`), m(`), and P(`) denote the weight, mean, and covariance, respectively

of the `th component (mixand), and

N (x; m, P) , |2πP|−1/2 exp

{
−1

2
(x−m)TP−1(x−m)

}
(2.12)

GMs are exceptionally versatile, as they are universal function approximators for

valid pdfs with a finite number of discontinuities [102]. By this representation,

closed-form approximate solutions of the Bayes filter can be expressed in terms of

component-level filter recursions, such as the Kalman filter [102], EKF [2, 4], and

sigma point filters [108].

2.2.3 Information Divergence

Many important concepts in information-driven control – namely information, en-

tropy, and divergence – are rooted in early problems in communication theory.

For instance, given a sequence of random events whose discrete outcomes are to

be transmitted via digital messages, the average message length can be reduced

by assigning shorter-length descriptions to higher-probability outcomes. By this

approach, the average number of bits needed to describe a random event is equal

to the entropy of the random variable distribution. The entropy is a measure of

the average uncertainty of a discrete random variable and can also be extended to

continuous random variables [23]. Given a continuous random variable distribu-

tion with density p(x), its uncertainty can be quantified in terms of its differential
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entropy

H[p(x)] , −
∫
p(x) log p(x)dx (2.13)

where the integral is taken over the distribution support. The relative en-

tropy–also known as the Kullback-Leibler divergence (KLD) or information di-

vergence–between two distributions with densities p(x) and q(x) is [86, 70]

IKL(p; q) =

∫
p(x) log

p(x)

q(x)
dx (2.14)

When q and p represent prior and posterior densities, the KLD is a measure of

information gain. By this principle, the information gain associated with sens-

ing decisions and outcomes can be rigorously quantified and used as a basis for

intelligent sensor control.

More generally, the KLD belongs to a class of divergence measures known

as f -divergences, as shown by Csizár [70]. For two distributions P and Q with

corresponding density functions p(x) = dP/dx and q = dQ/dx, the f -divergence

is

If (P,Q) =

∫
q(x)f

(
p(x)

q(x)

)
dx (2.15)

for any convex function f : (0,∞) 7→ R, where the integrand is assumed to be

properly specified at points where the densities are zero [70]. Letting f(t) = t log t

in (2.15), the KLD is recovered.

In some cases, the terminology “information-theoretic” is used to refer to any

combinations of quantities that are in some way related to uncertainty reduction.

However, this dissertation adopts the narrower definition of this terminology by

which “information-theoretic” is used exclusively to describe measures and policies

based on f -divergence measures, the Cauchy-Schwarz divergence (which behaves

much like the KLD), or entropy reduction.
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2.3 Random Finite Set Background

The pioneering efforts of Goodman and Mahler [41] in RFS theory have resulted in

a robust framework for solving multi-sensor multi-object information fusion prob-

lems. In essence, RFS theory establishes multi-object analogs to random variables,

density functions, moments, and other statistics, such that multi-sensor multi-

object problems can be solved in a top-down fashion and with theoretic guarantees.

RFS theory has enabled the development of numerous state-of-the-art multi-object

filters [73, 114, 116, 89, 112, 65, 93] as well as provided a unifying theoretical basis

for the reformulation and analysis of earlier non-RFS-based approaches [125].

An RFS X is a random variable that takes values on F(X), where F(X) denotes

the space of finite subsets of X. A labeled random finite set (LRFS) X̊ is a random

variable that takes values on F(X×L), where L is a discrete label space. Both RFS

and LRFS distributions can be described by set density functions, as established

by Mahler’s FISST [74, 75]. This section provides a review of key RFS concepts

and notation, including an overview of the Poisson RFS, independently and identi-

cally distributed cluster (i.i.d.c.) RFS, multi-Bernoulli (MB) RFS, and generalized

labeled multi-Bernoulli (GLMB) LRFS distributions used in this dissertation.

2.3.1 Poisson RFS

The Poisson RFS is fundamental to RFS multi-object tracking due to its desirable

mathematical properties and its usage in modeling false alarm and birth processes.

For example, the popular probability hypothesis density (PHD) filter is derived

from the assumption that the multi-object state is governed by a Poisson RFS

process, which, in turn, leads to a computationally efficient multi-object filtering
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algorithm [72, 97, 110].

The density of a Poisson-distributed RFS X is

f(X) = e−NX [D]X (2.16)

where NX is the object cardinality mean, and D(x) is the PHD, or intensity func-

tion, of X, which is defined on the single-object space X. The cardinality of a

Poisson RFS is, in fact, Poisson distributed:

|X| ∼ PoisNX
(|X|) , NX

|X|e−NX

|X|!
(2.17)

where “|·|” denotes the cardinality of its argument. Each element x ∈ X is inde-

pendently and identically distributed (i.i.d.) according to the normalized density

D(x)/NX , such that

x ∼ D(x)

NX

∀x ∈ X (2.18)

The PHD is an important statistic in RFS theory as its integral over a set

T ⊆ X gives the expected number of objects in that set:

E[|X ∩ T |] =
∫
T

D(x)dx (2.19)

The PHD of a general RFS X is given in terms of its set density f(X) as [72]

D(x) =

∫
f({x} ∪X ′)δX ′ (2.20)

The integral in (2.20) is a set integral, defined as∫
f(X)δX ,

∞∑
n=0

1

n!

∫
f({x1, . . . ,xn})dx1 · · · dxn (2.21)

The set integral is a fundamental construct of RFS theory and enables the direct

translation of the Bayes’ filter recursion to the multi-object setting, as shown in [74]
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and discussed in Section 2.3.5. Set integration via (2.21) also presents practical

challenges, since exact computation is rarely possible due to the infinite summation

of nested multivariate integrals required. This challenge is a key motivation of the

tractable cell multi-Bernoulli approximation introduced in Section 4.3.

2.3.2 Independent Identically Distributed Cluster RFS

The density of an i.i.d.c. RFS is

f(X) = |X|! · ρ(|X|)[p]X (2.22)

where ρ(n) is the cardinality probability mass function (pmf) and p(x) is the single-

object state pdf. Similar to the Poisson RFS, elements of the i.i.d.c. RFS are i.i.d.

such that

x ∼ p(x) ∀x ∈ X (2.23)

Unlike the Poisson RFS distribution, the cardinality of an i.i.d.c. RFS is distributed

according to an arbitrary pmf:

|X| ∼ ρ(|X|) (2.24)

This generalization of the cardinality distribution enables an extra degree of speci-

ficity and plays an important role in the development of the cardinalized probability

hypothesis density (CPHD) filter, as shown in [115].

2.3.3 Multi-Bernoulli RFS

In an MB distribution, a given object’s existence is modeled as a Bernoulli random

variable and specified by a probability of existence. As such, the MB RFS can
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accurately model a variety of multi-object processes when the true existence of

objects is unknown and subject to change. The density of an MB distribution is

[75, p. 102]

f(X) =
[
1− r(·)

]NM
∑

1≤i1 6=···6=in≤M

[
ri(·)pi(·)(x(·))

1− ri(·)

]Nn

(2.25)

where n = |X|, M is the number of MB components and maximum possible

object cardinality, ri is the probability that the ith object exists, and pi(x) is the

single-object state probability density of the ith object if it exists. Given an MB

distribution with density (2.25), its PHD is given by

D(x) =
M∑
j=1

rjpj(x) (2.26)

2.3.4 Generalized Labeled Multi-Bernoulli LRFS

The density of a GLMB distribution, as proposed in [112], is given by

f̊(X̊) = ∆(X̊)
∑
ξ∈Ξ

w(ξ)(L(X̊))[p(ξ)]X̊ (2.27)

where Ξ is a discrete space, and where each ξ ∈ Ξ represents a history of mea-

surement association maps, each p(ξ)(·, `) is a probability density on X, and each

weight w(ξ) is non-negative with

∑
(I,ξ)∈F(L)×Ξ

w(ξ)(I) = 1

The label of a labeled state x̊ is recovered by L(̊x), where L : X × L 7→ L is the

projection defined by L((x, `)) , `. Similarly, for LRFSs, L(X̊) , {L(̊x) : x̊ ∈ X̊}.

The distinct label indicator ∆(X̊) = δ(|X̊|)(|L(X̊)|) ensures that only sets with

distinct labels are considered.
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2.3.5 Multi-Object Bayes Filter

In multi-object estimation problems, single-object states evolve stochastically due

to unknown inputs and random environmental phenomena. Furthermore, the

number of objects itself is random due to object appearance (birth) and disap-

pearance (death). Thus, the multi-object state can be naturally modeled as an

RFS X ∈ F(X). Similarly, the multi-object measurement, which is corrupted by

random noise, missed detections, and spurious detections, is naturally modeled as

an RFS Z ∈ F(Z).

By these RFS definitions of measurement and state, Mahler’s FISST establishes

the multi-object Bayes recursion [74]:

fk|k−1(Xk|Z0:k−1) =

∫
fk|k−1(Xk|Xk−1)fk−1(Xk−1|Z0:k−1)δXk−1 (2.28)

fk(Xk|Z0:k) =
gk(Zk|Xk)fk|k−1(Xk|Z0:k−1)∫
gk(Zk|X)fk|k−1(X|Z0:k−1)δX

(2.29)

where fk|k−1(Xk|Xk−1) is the multi-object transition density, gk(Zk|Xk) is the

multi-object likelihood function. LRFS distributions are predicted and updated

in a similar manner via the labeled multi-object Bayes filter recursion:

f̊k|k−1(X̊k|Z0:k−1) =

∫
f̊k|k−1(X̊k|X̊k−1)f̊k−1(X̊k−1|Z0:k−1)δX̊k−1 (2.30)

f̊k(X̊k|Z0:k) =
gk(Zk|X̊k)f̊k|k−1(X̊k|Z0:k−1)∫
gk(Zk|X̊)f̊k|k−1(X̊|Z0:k−1)δX̊

(2.31)

as shown in [113, 112]. The accent “̊ ” is used to distinguish labeled states and

functions from their unlabeled equivalents, where a state’s label is simply a unique

number or tuple to distinguish it from the states of other objects and associate

track estimates over time.

Equations (2.28)-(2.29) and (2.30)-(2.31) are often referred to in the literature

as the “standard” form of the unlabeled and labeled Bayes recursion, respectively.
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In the standard recursion, object appearance is modeled as part of the multi-

object transition density and thus is treated in the prediction stage of the Bayes

recursion. This approach is often problematic in practice, as it requires maintaining

a probabilistic representation of objects that may exist but are never detected.

An alternative approach is to model object appearance as part of the Bayes

update and treat an object’s appearance as the event of first detection, circum-

venting the aforementioned issues. This approach is hereon referred to as the

measurement-driven labeled Bayes filter recursion [65], given by:

f̊p(X̊p,k|Z0:k−1) =

∫
f̊(X̊p,k|X̊k−1)f̊(X̊k−1|Z0:k−1)δX̊k−1 (2.32)

f̊(X̊k|Z0:k) =
g(Zk|X̊k)f̊p(X̊p,k|Z0:k−1)f̊b(X̊b,k)∫
g(Zk|X̊)f̊p(X̊p,k|Z0:k−1)f̊b(X̊b,k)δX̊

(2.33)

The function time indices have been suppressed for brevity, and f̊p,k(X̊p,k) and

f̊b,k(X̊b,k) denote the density of persisting and birth objects, respectively, where

the joint state X̊k = X̊p,k ∪ X̊b,k. f̊k|k−1(X̊p,k|X̊k−1) is the multi-object transition

density, gk(Zk|X̊k) is the multi-object measurement likelihood function, and gk is

used to denote both the single-object and multi-object measurement likelihood

function. The nature of the likelihood function can be easily determined from its

arguments.

2.3.6 Multi-Sensor Multi-Object Bayes Filter

Given a multi-object state realization X, the multi-sensor measurement likelihood

function is denoted by gk(Z(1), . . . , Z(M)|X). If sensor measurements are condition-

ally independent of the multi-object state, i.e.,

gk(Z
(1), . . . , Z(M)|X) = g

(1)
k (Z(1)|X) · · · g(M)

k (Z(M)|X) (2.34)
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then the multi-sensor multi-object posterior is given by the Bayes update [75, p.

280]

fk|k(X |Z(1:M)
0:k ) =

gk(Z
(1), . . . , Z(M)|X)fk|k−1(X)

fk(Z(1), . . . , Z(M))
(2.35)

where Z(1:M)
0:k denotes the collection of all measurements up to and including time k,

and where the normalization constant is given by

fk(Z
(1), . . . , Z(M)) =

∫
g(Z(1), . . . , Z(M) |X)fk|k−1(X)δX (2.36)

2.3.7 Kullback-Leibler Divergence

Like single-object distributions, the similarity of two RFS distributions may be

measured by the KLD. Let f1 and f0 be integrable set densities where f1 is

absolutely continuous with respect to f0. Then, the KLD is [41, p. 206]

IKL(f1; f0) =

∫
f1(Y ) log

(
f1(Y )

f0(Y )

)
δY (2.37)

Further simplification is possible if f0 and f1 are Poisson with respective PHDs D0

and D1, in which case

IKL,Pois(f1; f0) = N0 −N1 +

∫
D1(y) · log

(
D1(y)

D0(y)

)
dy (2.38)

where N0 =
∫
D0(y)dy and N1 =

∫
D1(y)dy. The KLD has many practical

uses in estimation theory, including as a metric for measuring the goodness of a

density approximation with respect to the original density, as demonstrated in

Section 4.3.1. Importantly, when f0 and f1 represent prior and posterior densities,

respectively, the KLD is a measure of information gain and provides a foundation

for information-driven control, as discussed in Chapters 4 and 5.
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CHAPTER 3

SOFT AND NEGATIVE INFORMATION AND FIELD-OF-VIEW

CARDINALITY DISTRIBUTIONS

3.1 Introduction

RFS theory has been proven a highly effective framework for developing and an-

alyzing tracking and sensor planning algorithms in applications involving an un-

known number of multiple targets (objects) [74, 112, 89, 37, 51, 12, 117]. To date,

however, little attention has been given to the role that bounded FoV and negative

information play in the FISST recursive updates for assimilating measurements,

or lack thereof, into multi-object probability distributions. Existing algorithms

typically terminate object tracks after the object is believed to have left the sensor

FoV. While this approach is suitable when the FoV doubles as the tracking region

of interest (ROI), it is inapplicable when the sensor FoV is much smaller than the

ROI and, thus, must be moved or positioned so as to maximize information value

[33, 119, 39, 18, 68, 69].

Knowledge of object presence inside the FoV is powerful evidence that can be

incorporated to update the object pdf in a Bayesian framework. For example,

the absence of detections, referred to as negative information, may suggest that

the object state resides outside the FoV [60]. In contrast, binary-type sensors

may produce imprecise measurements [41, 40, 90] that indicate the object is inside

the sensor FoV but provide no further localization information. Similarly, “soft”

data from human sources, such as natural language statements, can be modeled as

imprecise measurements due to their inherent ambiguity [14, 93]. Particle-based

filtering algorithms [5, 111, 90] can accommodate such measurements but require
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a large number of particles and are computationally expensive. Particle represen-

tations are also not amenable to rigorous multi-sensor fusion, since the supports of

two Dirac mixtures will be disjoint in general. Another approach [101] uses GMs to

model both the object pdf and the state-dependent probability of detection func-

tion. Though GMs efficiently model some detection probability functions, other

simple functions, such as uniform probability densities over a 3D FoV, require

problematically large numbers of components. Other approaches [1, 118] employ

stochastic sampling and the expectation maximization (EM) algorithm to com-

pute GM approximations to the posterior pdf. However, the use of intermediate

particle representations and EM reconstruction can lead to information loss, and

convergence is sensitive to EM initial condition specification.

This chapter presents relevant bounded FoV statistics both in the form of

state densities and cardinality pmfs. Section 3.3 presents a deterministic method

that partitions a GM state density along FoV bounds through recursive Gaussian

splitting. By this approach, inclusion/exclusion evidence can be incorporated in

single- and multi-object GM filtering densities by virtue of Bayes’ rule. Section 3.4

presents an application of the splitting method to the tracking of a person in a

crowded space using natural language statements and a new GM Bernoulli filter

algorithm. In Section 3.5, FoV object cardinality pmfs are derived for some of the

most commonly encountered RFS distributions. Section 3.6 presents an application

of bounded FoV statistics to a sensor placement problem, and conclusions are made

in Section 3.7.
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3.2 Problem Formulation and Assumptions

This chapter considers the incorporation of bounded FoV information into algo-

rithms for (multi-)object tracking and sensor planning when the number of objects

is unknown and time-varying. Often in tracking, object detection may depend

only a partial state s ∈ Xs ⊆ Rns , where Xs ×Xv = X ⊆ Rnx forms the full object

state space. For example, the instantaneous ability of a sensor to detect an object

may depend only on the object’s relative position. In that case, Xs is the position

space, and Xv is composed of non-position states, such as object velocity. This

nomenclature is adopted throughout the chapter while noting that the approach

is applicable to other state definitions. As shown in [10], the sensor FoV can be

defined as the compact subset S(q) ⊂ Xs. In general, the FoV is a function of the

sensor state q, which, for example, may consist of the sensor position, orientation,

and zoom level. However, for notational simplicity, this dependence is omitted in

the remainder of this chapter.

Now, let the object state x consist of the kinematic variables that are to be

estimated from data via filtering, such as the object position, velocity, turn rate,

etc. Then, the single-object pdf is denoted by p(x). Letting s = projXs
x denote

the state elements that correspond to Xs, an object’s presence inside the FoV can

be expressed by the generalized indicator function

1S(x) =

 1, if s ∈ S

0, otherwise
(3.1)

The number of objects and their kinematic states are unknown a priori, but can be

assumed to consist of discrete and continuous variables, respectively. The collection

of object states is modeled as an RFSX or LRFS X̊, where the single-object labeled

state x̊ = (x, `) ∈ X×L consists of a kinematic state vector x and unique discrete
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label `. It is assumed that the prior multi-object distribution is known, e.g., from

the output of a multi-object filter, and modeled using either the RFS density f(X)

or LRFS density f̊(X̊).

In RFS-based tracking, single-object densities are, in fact, parameters of the

higher-dimensional multi-object density. Non-Gaussian single-object state densi-

ties are often modeled using GMs because they admit closed-form approximations

to the multi-object Bayes recursion under certain conditions [112, 110]. Therefore,

in this chapter, it is assumed that single-object densities (which are parameters of

the higher dimensional multi-object density) are parameterized as

p(x) =
L∑

`=1

w(`)N (x; m(`), P(`)) (3.2)

where L is the number of GM components and w(`), m(`), and P(`) are the weight,

mean, and covariance matrix of the `th component, respectively.

In this chapter, the problem considered is forming GM Bayesian posteriors

given evidence of the forms:

T1. The existence or non-existence of a measurement is evidence of the inclusion

or exclusion of the object state within a known set. For example, the non-

existence of a detection (measurement) is evidence of an object’s position

exclusion from the sensor FoV.

T2. The value of the measurement is evidence of the inclusion or exclusion of the

object state within a known set. For example, the observation that a sea-level

freshwater lake is frozen is evidence that the water temperature belongs to

the set of temperatures below 0 ◦C.

Mahler’s FISST provides the mathematical machinery for modeling types T1
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and T2 using state-dependent probability of detection functions and generalized

likelihood functions, respectively. However, in both cases, the Bayes posterior

involves products of the prior GM with indicator functions such as

p(x)1S(x) , pS(x) and (3.3)

(1− 1S(x))p(x) , pC(S)(x) (3.4)

and thus, the resulting posterior is no longer a GM.

This chapter presents a fast GM approximation of (3.3) and (3.4), thereby

enabling the assimilation of inclusion/exclusion evidence in any GM-based RFS

single-object or multi-object filter. Building on these concepts, this chapter also

considers the role of inclusion/exclusion evidence in object cardinality distributions

and derives pmf expressions that describe the probabilities associated with different

numbers of objects existing within a given set S (such as an FoV).

3.3 GM Approximation of FoV-Partitioned Densities

This section presents a method for partitioning the object pdf into truncated den-

sities pS(x) and pC(S)(x), with supports S×Xv and C(S)×Xv , respectively. Focus

is given to the single-object state density with the awareness that the method

is naturally extended to RFS multi-object densities and algorithms that use GM

parameterization. Consider the single-object density p(x) parameterized by an

L-component GM, as follows:

p(x) = pS(x) + pC(S)(x) =
L∑

`=1

w(`)N (x; m(`),P(`)) (3.5)

One simple approximation of densities partitioned according to the discrete FoV

geometry, referred to as FoV-partitioned densities hereon, is found by evaluating
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the indicator function at the component means [64], i.e.:

pS(x) ≈
L∑

`=1

w(`)1S(m
(`))N (x; m(`), P(`)) (3.6)

pC(S)(x) ≈
L∑

`=1

w(`)(1− 1S(m
(`)))N (x; m(`), P(`)) (3.7)

By this approach, components whose means lie inside (outside) the FoV are pre-

served (pruned), or vice versa.

The accuracy of this mean-based partition approximation depends strongly

on the resolution of the GM near the geometric boundaries of the FoV. Even

though the mean of a given component lies inside (outside) the FoV, a considerable

portion of the probability mass may lie outside (inside) the FoV, as is illustrated

in Fig. 3.1a. Therefore, the amount of FoV overlap, along with the weight of the

component, determines the accuracy of the approximations (3.6)-(3.7). To that

end, the algorithm presented in the following subsection iteratively resolves the

GM near FoV bounds by recursively splitting Gaussian components that overlap

the FoV bounds.
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Figure 3.1: Original component density and FoV with covariance eigenvectors
overlaid (a), and same component density and FoV after change of variables (b).
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3.3.1 Gaussian Splitting Algorithm

The Gaussian splitting algorithm presented in this subsection forms an FoV-

partitioned GM approximation of the original GM by using a higher number of

components near the FoV boundaries, ∂S, so as to improve the accuracy of the

mean-based partition.

Consider for simplicity a two-dimensional example in which the original GM,

p(x), has a single component whose mean lies outside the FoV, as shown in

Fig. 3.1a. The algorithm first applies a change of variables x 7→ y ∈ Y ⊆ Rns

such that p(y) is symmetric and has zero mean and unit variance. The basis

vectors of the space Y correspond to the principal directions of the component’s

position covariance. The same change of variables is applied to the FoV bounds

(Fig. 3.1b).

A pre-computed point grid is then tested for inclusion in the transformed FoV

in order to decide whether to split the component, and if so, along which prin-

cipal direction. For each new split component, the process is repeated–if a new

component significantly overlaps the FoV boundaries, it may be further split into

several smaller components, as illustrated in Fig. 3.2b. This process is repeated

until stopping criteria are satisfied. After the GM splitting terminates, pS(x) and

pC(S)(x) are approximated by the mean-based partition, as illustrated in Fig. 3.3.
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Figure 3.2: 1σ contours of components after first split operation (a), and second
split operation (b), where components formed in the second operation are shown
in red.
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Figure 3.3: The GM approximations to densities pC(S)(x) (a), and pS(x) (b) after
two iterations of splitting.
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3.3.2 Univariate Splitting Library

Splitting is performed efficiently by utilizing a pre-generated library of optimal

split parameters for the univariate standard Gaussian q(x), as first proposed in

[55] and later generalized in [25]. The univariate split parameters are retrieved

at run-time and applied to arbitrary multivariate Gaussian densities via scaling,

shifting, and covariance diagonalization.

Generation of the univariate split library is performed by minimizing the cost

function

J = L2(q||q̃) + λσ̃2 s.t.
R∑

j=1

w̃(j) = 1 (3.8)

where

q̃(x) =
R∑

j=1

w̃(j)N (x; m̃(j), σ̃2) (3.9)

for different parameter values R, λ. The regularization term λ balances the im-

portance of using smaller standard deviations σ̃ with the minimization of the L2

distance. While other distance measures may be used, the L2 distance is attractive

because it can be computed in closed form for GMs [25]. As an example, the op-

timal split parameters for R = 4, λ = 0.001 are provided in Table 3.1 and plotted

in Fig. 3.4.

Table 3.1: Univariate split parameters for R = 4, λ = 0.001.

j w̃(j) m̃(j) σ̃
1 0.10766586425362 −1.42237156603631 0.58160633157686
2 0.39233413574638 −0.47412385534547 0.58160633157686
3 0.39233413574638 0.47412385534547 0.58160633157686
4 0.10766586425362 1.42237156603631 0.58160633157686
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Figure 3.4: Standard univariate normal q(x) and optimal GM approximation q̃(x)
with R = 4, λ = 0.001.

3.3.3 Change of Variables

The determination of which components should be split, and if so, along which

direction, is simplified by first establishing a change of variables. By applying this

change of variables, the split criteria and direction selection are standardized in

terms of the standard unit normal distribution, as described in the following. For

each component with index `, the change of variables h(`) : Xs 7→ Y is applied as

follows:

y = h(`)(s;m(`)
s ,P(`)

s ) , (Λ(`)
s )−

1
2V (`)T

s (s−m(`)
s ) (3.10)

where

V (`)
s = [v

(`)
s,1 · · · v(`)

s,ns
] (3.11)

(Λ(`)
s )−1/2 = diag

([
1√
λ
(`)
s,1

· · · 1√
λ
(`)
s,ns

])
(3.12)
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and m
(`)
s is the ns-element position portion of the full-state mean, and the columns

of V (`)
s are the normalized eigenvectors of the position-marginal covariance P

(`)
s ,

with v
(`)
s,i corresponding to the ith eigenvalue λ(`)s,i . In the transformed space,

p(y) = N (y; 0, I) (3.13)

Note that, in defining the transformation over Xs, the same transformation can be

applied to the FoV, such that

S(`)
y = {h(`)(s;m(`)

s ,P(`)
s ) : s ∈ S} (3.14)

In Y, the Euclidean distances to boundary points of S(`)
y can be interpreted as

probabilistically normalized distances. In fact, the Euclidean distance of a point

y from the origin in Y corresponds exactly to the Mahalanobis distance between

the corresponding point s and the original position-marginal component.

3.3.4 Component Selection and Collocation Points

Components are selected for splitting if they have sufficient weight and significant

statistical overlap of the FoV boundaries (∂S). For components of sufficient weight,

the change of variables is applied to the FoV to obtain S(`)
y per (3.14). The overlap

of the original component on S is then equivalent to the overlap of the standard

Gaussian distribution on S(`)
y , which is quantified using a grid of collocation points

on Y, as shown in Fig. 3.1b.
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Define the collocation point ȳi1,...ins
∈ Y such that

ȳi1,··· ,ins
, [ȳ1(i1) . . . ȳns(ins)]

T , (i1, . . . , ins) ∈ G (3.15)

ȳj(l) = −ζ + 2ζ

(
l − 1

Ng − 1

)
, j ∈ Nns (3.16)

G = {(i1,..., ins) : i(·) ∈ NNg , ‖yi1,...,ins
‖ ≤ ζ} (3.17)

where ζ is a user-specified bound for the grid, G is the set of indices of points that

are within ζ of the origin, and Ng is the upper bound of the number of points per

dimension. An inclusion variable is defined as

d
(`)
i1,...,ins

, 1S(`)
y
(ȳi1,...,ins

) (3.18)

With this, %S(`)
y
∈ {0, 1} is established to mark total inclusion or total exclusion as

%S(`)
y

=
∏
G

δ
d
(`)
1,...,1

(d
(`)
i1,...,ins

) (3.19)

which is equal to unity if all grid points lie inside of S(`)
y or all grid points lie outside

of S(`)
y , and is zero otherwise. If either all or no points are included, no splitting is

required. Otherwise, the component is marked for splitting.

3.3.5 Position Coordinate Split Direction

Rather than split the component along each of its principal directions, a more

judicious selection can be made by limiting split operations to a single direction

(per component) per recursion. Thus, by performing one split per component per

recursion, the component selection criteria are re-evaluated, reducing the overall

number of components generated. In the aforementioned two-dimensional example,

only a subset of new components generated from the first split is selected for further

splitting as shown in Fig. 3.2b.
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The split direction is chosen based on the relative geometry of the FoV, and

thus position vectors are of interest. Choosing the best position split direction

is a challenging problem. A common approach is to split along the component’s

covariance eigenvector with the largest eigenvalue [55]. This strategy, however,

does not consider the FoV geometry and thus may increase the mixture size with-

out improvement to the FoV-partitioned densities (3.6)-(3.7). Ref. [54] provides

a more sophisticated split direction criterion based on the integral linearization

errors along the covariance eigenvectors. However, in the case that the FoV does

not intersect the eigenvectors, this criterion cannot distinguish the best split direc-

tion. Another approach [107] determines the split direction based on the Hessian of

the underlying nonlinear transformation, evaluated at the component mean. How-

ever, for the transformations (3.3)-(3.4) considered in this chapter, the associated

Hessian either vanishes (for s /∈ ∂S) or is undefined (for s ∈ ∂S).

Ideally, splitting along the chosen direction should minimize the number of

splits required in the next iteration as well as improve the accuracy of the parti-

tion approximation applied after the final iteration. The computational complexity

of exhaustive optimization of the split direction would likely negate the computa-

tional efficiency of the overall algorithm. Instead, to minimize the number of splits

required in the next iteration, the position split direction is chosen as the direction

that is orthogonal to the most grid planes of consistent inclusion/exclusion. Intro-

ducing a convenience function s(`)j : NNg 7→ {0, 1}, the plane of constant yj = ȳj(l)

is consistently inside or consistently outside if

s
(`)
j (l) =

∏
G,ij=l

δ
d
(`)
1,...,ij ,...,1

(d
(`)
i1,...,ij ,...,ins

) (3.20)

is equal to unity. The optimal position split direction is then given by the eigen-
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vector vs,j∗ , where the optimal eigenvector index is found as

j∗ = argmax
j

(
Ng∑
l=1

s
(`)
j (l)

)
(3.21)

For notational simplicity, the implicit dependence of j∗ on the component index

` is omitted. For example, referring back to the two-dimensional example and

Fig. 3.1b, there are more rows than columns that are consistently inside or outside

the transformed FoV, and thus j∗ = 2 is chosen as the desired position split

direction index. In the case where multiple maxima exist, the eigenvector with

the largest eigenvalue is selected, which corresponds to the direction of the largest

variance among the maximizing eigenvectors.

3.3.6 Multivariate Split of Full-State Component

Gaussian splitting must be performed along the principal directions of the full-

state covariance. The general multivariate split approximation, splitting along the

kth eigenvector v
(`)
k is given by [25] as

w(`)N (x; m(`), P(`)) ≈
R∑

j=1

w(`,j)N (x; m(`,j), P(`,j)) (3.22)

where

w(`,j) = w̃(j)w(`) (3.23)

m(`,j) = m(`) +

√
λ
(`)
k m̃(j)v

(`)
k (3.24)

P(`,j) = V (`)Λ(`)V (`)T (3.25)

Λ(`) = diag
(
[λ1 · · · σ̃2λk · · · λnx ]

)
(3.26)

and the optimal univariate split parameters w̃(j), m̃(j), and σ̃ are found from the

pre-computed split library given the number of split components R and regulariza-

tion parameter λ. In general, the position components of the full-state eigenvectors
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will not perfectly match the desired position split vector due to correlations be-

tween the states. Rather, the actual full-state split is performed along v
(`)
k∗ , where

the optimal eigenvector index is found according to

k∗ = argmax
k

∣∣[v(`)T
s,j∗ 0T

]
v
(`)
k

∣∣ (3.27)

where, without loss of generality, a specific state convention is assumed such that

position states are first in element order.

3.3.7 Split Recursion and Role of Negative Information

The splitting procedure is applied recursively, as detailed in Algorithm 1. The

recursion is terminated when no remaining components satisfy the criteria for

splitting. Each recursion further refines the GM near the FoV bounds to improve

the approximations of (3.6)-(3.7). However, because a Gaussian component’s split

approximation (3.22) does not perfectly replicate the original component, a small

error is induced with each split. Given enough recursions, this error may become

dominant. In the author’s experience, the recursion is terminated well before the

cumulative split approximation error dominates.

One of the many potential applications of the recursive algorithm presented

in this section involves incorporating the evidence of non-detections, or negative

information, in single- and multi-object filtering. To demonstrate, a single-object

filtering problem with a bounded square FoV is considered where, in three subse-

quent sensor reports, no object is detected. The true object position and constant

velocity are unknown but are distributed according to a known GM pdf at the

first time step. As the initial pdf is propagated over time, the position-marginal

pdf travels from left to right, as shown in Fig. 3.5. For simplicity, the probabil-

31



Algorithm 1 split_for_fov({w(`),m(`),P(`)}L`=1, wmin, S, R, λ)

split ← {}, no_split ← {}
if L = 0 then

return split
end if
for ` = 1, . . . , L do

if w(`) < wmin then
add {w(`),m(`),P(`)} to no_split
continue

end if
Compute S(`)

y accrd. to (3.14)
if %S(`)

y
= 1 then

add {w(`),m(`),P(`)} to no_split
else
j∗ ← Eq. (3.21) , k∗ ← Eq. (3.27)
{w(`,j),m(`,j),P(`,j)}Rj=1 ← Eq. (3.22) with k = k∗

add {w(`,j),m(`,j),P(`,j)}Rj=1 to split
end if

end for
split←split_for_fov(split, wmin, S, R, λ)
return split ∪ no_split

ity of detection inside the FoV is assumed equal to one. At each time step, the

GM is refined by Algorithm 1 using wmin = 0.01, R = 3, and λ = 0.001. Then,

the mean-based partition approximation (3.7) is applied and the updated filtering

density (3.4) is found. By this approach, the number of components may increase

over time but can be reduced as needed through component merging and pruning.

Figure 3.5: Negative information, comprising the absence of detections inside the
sensor FoV S, is used to update the object pdf as the object moves across the ROI.
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3.3.8 Splitting for Multiple FoVs

The splitting approach presented in Section 3.3.7 can be extended to accommodate

multiple FoVs, which may arise in multi-sensor networks or in imprecise measure-

ments that take the form of multiple closed subsets, as is shown in Section 3.4.

Consider the case where the GM is to be partitioned about the boundaries of M

FoVs {S(ı)}Mı=1. One simple approach to incorporate the multiple FoVs is to re-

cursively apply Algorithm 1 for each FoV. Recall from Section 3.3.5, however,

that the direction order in which components are split ultimately determines the

total number of components generated. Thus, by the described naive approach,

the resulting mixture size inherently depends on the order by which the FoVs are

processed, which is undesirable.

Instead, the remainder of this subsection establishes a multi-FoV splitting al-

gorithm that is invariant to FoV order. Given S(ı), denote by S(ı,`)
y the resulting

transformed FoV for component ` via application of (3.14). Then, an inclusion

variable similar to (3.18) is established as

d
(ı,`)
i1,...,ins

, 1S(ı,`)
y

(ȳi1,...,ins
) (3.28)

In each transformed FoV, grid points are either totally excluded or totally included

if and only if

%
(`)
{Sy} =

M∏
ı=1

∏
G

δ
d
(ı,`)
1,...,1

(d
(ı,`)
i1,...,ins

) (3.29)

is equal to unity, which indicates that a component does not require splitting. If a

component is to be split, the direction is chosen to minimize downstream mixture

size, as discussed in Section 3.3.5. This is accomplished by identifying grid planes

that are either consistently included/excluded in each FoV. Consistency of the
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plane of constant yj = ȳj(l) is indicated by

s
(`)
j (l) =

M∏
ı=1

∏
G,ij=l

δ
d
(ı,`)
1,...,ij ,...,1

(d
(ı,`)
i1,...,ij ,...,ins

) (3.30)

equal to unity, where the inner product is taken over index sets in G that satisfy

the condition ij = l. By this multi-FoV generalized indicator function, the optimal

position split direction is found via (3.21). The complete multi-FoV splitting algo-

rithm is summarized in Algorithm 2, and an example tracking problem involving

multiple FoVs is presented in the following section.

Algorithm 2 split_for_multifov({w(`),m(`),P(`)}L`=1, wmin, {S(ı)}Mı=1, R, λ)

split ← {}, no_split ← {}
if L = 0 then

return split
end if
for ` = 1, . . . , L do

if w(`) < wmin then
add {w(`),m(`),P(`)} to no_split
continue

end if
for ı = 1, . . . ,M do

compute S(ı,`)
y accrd. to Eq. (3.14)

end for
if %(`){Sy} = 1 then

add {w(`),m(`),P(`)} to no_split
else
j∗ ← Eq. (3.21) , k∗ ← Eq. (3.27)
{w(`,j),m(`,j),P(`,j)}Rj=1 ← Eq. (3.22) with k = k∗

add {w(`,j),m(`,j),P(`,j)}Rj=1 to split
end if

end for
split←split_for_multifov(split, wmin, {S(ı)}Mı=1, R, λ)
return split ∪ no_split
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3.4 Application to Imprecise Measurements

This section presents the application of the splitting algorithm to estimation prob-

lems involving imprecise measurements. Unlike traditional vector-type measure-

ments, imprecise measurements are non-specific, yet still contain valuable informa-

tion. Examples of imprecise measurements include natural language statements

[14, 93], inference rules [75, Sec. 22.2.4], and received signal strength type mea-

surements under path-loss uncertainty [93, 84]. This section demonstrates the

estimation of a person’s location and velocity as they move through a public space

using imprecise natural language measurements, as originally posed in [93]. Track-

ing is performed using a new GM Bernoulli filter for imprecise measurements, as

discussed in the following subsections.

3.4.1 Imprecise Measurements

Imprecise measurements, such as those from natural language statements, can be

modeled as RFSs and specified using generalized likelihood functions. For example,

the statement

S = “Felice is near the taco stand” (3.31)

provides some evidence about Felices’s location, yet is not mutually exclusive1.

For simplicity, this chapter adopts the definition of being “near” a point z0 as

belonging to a disc ζ ⊂ Z of radius l:

ζ = {z : ‖z− z0‖ ≤ l} (3.32)
1In fact, this statement can further be considered vague or fuzzy due to uncertainty in the

observer’s definition of “near” [41, p. 266].
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Although this specific natural language statement interpretation is considered for

simplicity, the presented approach does not preclude more sophisticated models,

such as those in [14, 106]. The associated generalized likelihood function for this

imprecise measurement is

g̃(ζ|x) = P{z ∈ ζ} = P{h(x) ∈ ζ} (3.33)

where h : X 7→ Z is the deterministic mapping from the state space to the mea-

surement space [93]. Generalized likelihood functions, such as those for natural

language statements, are often nonlinear in x and therefore result in non-Gaussian

posterior single-object densities. Through the presented Gaussian splitting ap-

proach and expansion of the likelihood function about the component means, GM

RFS filters can accommodate imprecise measurements, as demonstrated in the

context of the RFS Bernoulli filter in the following subsection.

3.4.2 Bernoulli Filter for Imprecise Measurements

The Bernoulli filter is the Bayes-optimal filter for tracking a single object in the

presence of false alarms, misdetections, and unknown object birth/death [74, Sec.

14]. A Bernoulli distribution is parameterized by a probability of object existence

r and state pdf p(x). The density of a Bernoulli RFS is [74, p. 516]

f(X) =


1− r, if X = ∅

r · p(x), if X = {x}
(3.34)

Denote by pb the conditional probability that the object is born given that it

did not exist in the previous time step. Similarly, denote by pS the conditional

probability that the object survives to the next time step. The initial state of an
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object born at time k is assumed to be distributed according to the birth spatial

density bk(x). Then, by the FISST generalized Chapman-Kolmogorov equation,

the Bernoulli filter prediction equations are [74, p. 519]

pk|k−1(x) =
pb · (1− rk−1|k−1)bk|k−1(x)

rk|k−1

+
pS · rk−1|k−1

∫
πk|k−1(x|x′)pk−1|k−1(x

′)dx′

rk|k−1

(3.35)

rk|k−1 = pb · (1− rk−1|k−1) + pS · rk−1|k−1 (3.36)

where πk|k−1(x|x′) is the single-object Markov state transition density. Suppose

that the spatial density and birth density are GMs and that the transition density

is linear-Gaussian:

pk−1|k−1(x) =

Lk−1∑
`=1

w
(`)
k−1N (x; m

(`)
k−1, P

(`)
k−1) (3.37)

bk|k−1(x) =

Lb,k∑
`=1

ŵ
(`)
b,kN (x; m

(`)
b,k, P

(`)
b,k) (3.38)

πk|k−1(x|x′) = N (x; Fk−1x
′, Qk−1) (3.39)

where Fk−1 ∈ Rnx×nx is the discrete time state transition matrix and Qk−1 ∈

Rnx×nx is the process noise covariance matrix. Then, the predicted spatial density

at k is the sum of two GMs, given as

pk|k−1(x) =

Lb,k∑
`=1

w
(`)
b,kN (x; m

(`)
b,k, P

(`)
b,k) +

Lk−1∑
`=1

w
(`)
S,k|k−1N (x; m

(`)
S,k|k−1, P

(`)
S,k|k−1)

(3.40)

where

w
(`)
b,k = ŵ

(`)
b,k

pb · (1− rk−1|k−1)

rk|k−1

(3.41)

w
(`)
S,k|k−1 = w

(`)
k−1

pS · rk−1|k−1

rk|k−1

(3.42)

m
(`)
S,k|k−1 = Fk−1m

(`)
k−1 (3.43)

P
(`)
S,k|k−1 = Fk−1P

(`)
k−1F

T
k−1 +Qk−1 (3.44)
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The predicted spatial density (3.40) can thus be expressed as a combined GM of

the form

pk|k−1(x) =

Lk|k−1∑
`=1

w
(`)
k|k−1N (x; m

(`)
k|k−1, P

(`)
k|k−1) (3.45)

where
∑Lk|k−1

`=1 w
(`)
k|k−1 = 1.

The FoV-dependent probability of detection function is given by

pD,k(x;Sk) = 1Sk
(x)pD(s) (3.46)

where the single-argument function pD(s) is the corresponding probability of de-

tection for an unbounded FoV. The measurement Υk is then an RFS

Υk = {ζ1, . . . , ζMk
} ∈ F(Z) (3.47)

consisting of a (potentially empty) set of false alarms and a (potentially empty)

imprecise measurement set due a true object, where Z is the set of all closed

subsets of Z and F(Z) is the space of all finite subsets of Z, as shown in [74,

Ch. 5]. Assume that false alarms are Poisson distributed (2.16) with rate λc and

PHD λcc̃(ζ), where c̃(ζ) denotes the normalized density. Then, the posterior state

density and probability of existence are given by

pk|k(x) =
1− pD(x;Sk) + pD(x;Sk)

∑
ζ∈Υk

g̃k(ζ|x)
λcc̃(ζ)

1−∆k

pk|k−1(x) (3.48)

rk|k =
1−∆k

1− rk|k−1∆k

rk|k−1 (3.49)

where

∆k =

∫
pD(x;Sk)pk|k−1(x)dx−

∑
ζ∈Υk

∫
pD(x;Sk)g̃k(ζ|x)pk|k−1(x)dx

λcc̃(ζ)
(3.50)

If pk|k−1(x) is a GM, the state-dependent probability of detection and general-
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ized likelihood function can be expanded about the component means, giving

pk|k(x) =

Lk|k∑
`=1

w
(`)
k|kN (x; m

(`)
k|k, P

(`)
k|k) (3.51)

w
(`)
k|k =

w
(`)
k|k−1

1−∆k

[
1− pD(m(`)

k|k−1;Sk) + pD(m
(`)
k|k−1;Sk)

∑
ζ∈Υk

g̃k(ζ|m(`)
k|k−1)

λcc̃(ζ)

]
(3.52)

∆k =

Lk|k−1∑
`=1

w
(`)
k|k−1pD(m

(`)
k|k−1;Sk) (3.53)

−
∑
ζ∈Υk

∑Lk|k−1

`=1 w
(`)
k|k−1pD(m

(`)
k|k−1;Sk)g̃k(ζ|m

(`)
k|k−1)

λcc̃(ζ)

m
(`)
k|k = m

(`)
k|k−1 (3.54)

P
(`)
k|k = P

(`)
k|k−1 (3.55)

The approximation error due to the expansion in (3.52) and (3.53) depends on

the GM resolution near points of strong nonlinearity. In a high-resolution mixture

containing many components with small covariance matrices, the region about

each mean in which the linear approximation must be valid is correspondingly

smaller compared to a low-resolution mixture [2]. Therefore, the recursive splitting

method is employed to refine the mixture in nonlinear regions–specifically around

∂S(·)
k and ∂ζ(·)–before computing the posterior GM (3.51). Then, the resulting

posterior GM is reduced using one of many available algorithms for GM reduction

[124, 94, 95, 24]. This novel process, referred to as the GM Bernoulli filter for

imprecise measurements, is summarized in Algorithm 3.
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Algorithm 3 GM Bernoulli Filter for Imprecise Measurements
given r0|0, p0|0(x)
for k = 1, . . . ,K do

Compute rk|k−1 accrd. to (3.36)
Compute {w(`)

S,k|k−1,m
(`)
S,k|k−1,P

(`)
S,k|k−1}

Lk|k−1

`=1 accrd. to (3.42)-(3.44)
Compute {w(`)

b,k}
Lb,k

`=1 accrd. to (3.41)
{w(`)

k|k−1,m
(`)
k|k−1,P

(`)
k|k−1}

Lk|k−1

`=1 ← ...
{w(`)

S,k|k−1,m
(`)
S,k|k−1,P

(`)
S,k|k−1}

Lk−1

`=1 ∪ {w
(`)
b,k|k−1,m

(`)
b,k|k−1,P

(`)
b,k|k−1}

Lb,k

`=1

{w(`)
k|k−1,m

(`)
k|k−1,P

(`)
k|k−1}

Lk|k−1

`=1 ← ...
split_for_multifov({w(`)

k|k−1,m
(`)
k|k−1,P

(`)
k|k−1}

Lk|k−1

`=1 , wmin, {S(ı)k }Mı=1 ∪Υk, R, λ)
Compute ∆k accrd. to (3.53)
Compute rk|k accrd. to (3.49)
Compute {w(`)

k|k,m
(`)
k|k,P

(`)
k|k}

Lk|k
`=1 accrd. to (3.52),(3.54),(3.55)

{w(`)
k|k,m

(`)
k|k,P

(`)
k|k}

Lk|k
`=1 ← reduce( {w(`)

k|k,m
(`)
k|k,P

(`)
k|k}

Lk|k
`=1 )

end for

3.4.3 Airport Tracking Example

The recursive splitting approach is demonstrated in the context of tracking a person

of interest through a crowded airport. This problem was originally posed in [93]

and solved using a particle filter implementation of the Bernoulli filter. The object

state is defined as

xT
k = [xk yk ẋk ẏk] = [sTk vT

k ] (3.56)

where sk is the person’s 2D position in the airport and vk is the person’s velocity,

where dimensionless distance units are used throughout. Measurements of the

person are composed of natural language statements describing the person’s current

location in the form Zk = {ζk,1, . . . , ζk,Mk
}, where Mk is the number of statements

received at time k and

ζ = a =⇒ the person is near the anchor a (3.57)

In (3.57), the integer a ∈ A ⊂ N represents a fixed anchor, such as a taco stand

or coffee shop, with corresponding known position ra ∈ Z. Observers sometimes
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report incorrect statements (as false alarms) and sometimes fail to report true

statements (as misdetections). The corresponding generalized likelihood function

is

g̃k(ζ = a |xk) =


1 if ‖sk − ra‖ < 2da/3

0 otherwise
(3.58)

where da is the distance between anchor a and its nearest neighbor. If the target is

within 2da/3 of anchor a, the natural language statement reports that the target

is near a (unless misdetected). Defining the compact subset

Aa = {s : ‖s− ra‖ < 2da/3} (3.59)

the generalized likelihood function (3.58) can be written in terms of an indicator

function as

g̃k(ζ = a |xk) = 1Aa(sk) (3.60)

By this likelihood function, (3.52)-(3.53) simplify to

w
(`)
k|k =

w
(`)
k|k−1

1−∆k

(
1− pD(m(`)

k|k−1;Sk) + pD(m
(`)
k|k−1;Sk)

∑
ζ∈Zk

1Aζ
(m

(`)
s,k|k−1)

λcc̃(ζ)

)
(3.61)

∆k =

Lk|k−1∑
`=1

w
(`)
k|k−1pD(m

(`)
k|k−1;Sk) (3.62)

−
∑
ζ∈Zk

∑Lk|k−1

`=1 w
(`)
k|k−1pD(m

(`)
k|k−1;Sk)1Aζ

(m
(`)
s,k|k−1;Sk)

λcc̃(ζ)

where the density of false alarms (clutter) c̃(ζ) is taken to be uniform over support

A with rate λc.

The anchor locations and bounds ∂Aa are shown in Fig. 3.6. The gray shaded

regions indicate exclusion regions the person cannot occupy due to physical barri-

ers, and thus, pk(x) = 0 in these regions. Detections are reported every Tk = 15 [s]
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Figure 3.6: Anchor locations and association extents.

and include an average of λc = 0.25 false detections per reporting period. True

detections are reported with a probability of detection pD(xk;Sk) given by (3.46)

with pD(sk) = 0.9 and composite detection FoV

Sk =
⋃
a∈A

Aa (3.63)

The person state is governed by the linear-Gaussian transition density

πk|k−1(x|x′) = N (x; Fk−1x
′, Qk−1) (3.64)

where

Fk =



1 0 Tk 0

0 1 0 Tk

0 0 1 0

0 0 0 1


and Qk =



$T 3
k

3
0

$T 2
k

2
0

0
$T 3

k

3
0

$T 2
k

2

$T 2
k

2
0 $Tk 0

0
$T 2

k

2
0 $Tk


(3.65)

and $ = 0.04 is the intensity of process noise.

The simulated reports are processed by the GM Bernoulli filter for imprecise

measurements (Alg. 3) at each time step to obtain the posterior probability of
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existence and state density. By splitting the density about the relevant anchor

boundaries, the imprecise measurements are incorporated to refine the probabilistic

belief and estimate the person’s trajectory over time. The true and estimated

trajectories and densities at select time steps are shown in Fig. 3.7a. As shown,

the true trajectory is consistently within the spatial distribution support. For

computational performance, Runnal’s GM reduction algorithm [94] is employed

to reduce the posterior mixture to 100 components. The posterior probability of

existence is shown over time in Fig. 3.7b. The probability of existence of the object

is consistently near one, falling momentarily to rk|k = 0.4, which appropriately

reflects the increased uncertainty after receiving three consecutive misdetections.

The state estimation performance is quantified using the root-sum-square

(RSS) of the posterior conditional covariance and shown in Fig. 3.8. The ve-

locity RSS quickly converges to a steady state of approximately 1.6 [dist/s], the

lower bound of which is largely determined by the person’s assumed maneuver-

ability and associated process noise covariance. Similarly, the largest uncertainty

is observed near k = 21 (t = 315 [s]), after three consecutive misdetections.

While this example considers single-object estimation, the expansion and split-

ting approach described in Section 3.4.2 is applicable to any GM RFS filter and,

thus, can be used in multi-object estimation problems. In the example problem

on tracking a person of interest and its multi-object extension involving multiple

persons of interest, the posterior RFS density can be used to intelligently query or

deploy resources to find or intercept persons of interest. In this case, one particu-

larly useful statistic is the probability that a given number of people are present

near a particular anchor. This information is fully described by the RFS FoV

cardinality distribution, as presented in the following section.
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Figure 3.7: (a) True trajectory and state estimates over time, where position state
densities are shown for time steps k = 15, 25, 55 (t = 225, 375, 825 [s]) and (b) pos-
terior probability of existence over time.

44



0 200 400 600 800
0

100

200

(a)

t [s]

P
o

si
ti

o
n

R
S

S

0 200 400 600 800
0

5

10

15
(b)

t [s]

V
el

o
ci

ty
R

S
S

Figure 3.8: RSS of position (a) and velocity (b) conditional covariance.

3.5 FoV Cardinality Distribution

This section presents pmfs for the cardinality of objects inside a bounded FoV S

given different multi-object workspace densities f(·). A similar concept is discussed

in [75] in the context of “censored” RFSs, and a general expression is provided in

terms of set derivatives and belief mass functions. This dissertation presents a

new direct approach to obtain FoV cardinality distributions based on conditional

cardinality functions and derives new simplified expressions for representative RFS

distribution classes. The Poisson, i.i.d.c., MB, and GLMB distributions are con-

sidered in Subsections 3.5.1, 3.5.2, 3.5.3, and 3.5.4, respectively.

The probability of n objects existing inside FoV S conditioned on X can be

written in terms of the indicator function as

ρS(n |X) =
∑

Xn⊆X

[1S(·)]X
n

[1− 1S(·)]X\Xn (3.66)

where the summation is taken over all subsets Xn ⊆ X with cardinality n. Given

the RFS density f(X), the FoV cardinality distribution is obtained via the set

integral as

ρS(n) =

∫
ρS(n |X)f(X)δX (3.67)
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Expanding the integral,

ρS(n) =
∞∑

m=n

1

m!

∫
Xm

ρS(n | {x1,...,xm})f({x1,...,xm})dx1···dxm

Remark. The results presented in this section can be extended to express the

cardinality distribution of object-originated detections Z (excluding false alarms)

by noting that

ρS(nZ |X) =
∑

Xn⊆X

[pD(·)1S(·)]X
n

[1− pD(·)1S(·)]X\Xn (3.68)

where nZ = |Z|.

3.5.1 Poisson Distribution

The following proposition establishes the FoV cardinality distribution for the Pois-

son RFS prior, which is commonly used to model false alarm and object birth

distributions.

Proposition 1. Given a Poisson-distributed RFS with PHD D(x) and global car-

dinality mean NX , the cardinality of objects inside the FoV S ⊆ X is distributed

according to

ρS(n) =
∞∑

m=n

e−NX

n!(m− n)!
〈1S , D〉n 〈1− 1S , D〉m−n (3.69)

Proof: Substituting (2.16) into (3.68),

ρS(n) =
∞∑

m=n

1

m!
e−NX

∫
Xm

∑
Xn⊆X

[1S(·)D(·)]Xn · [(1− 1S(·))D(·)]X\Xn

dx1 · · · dxm

(3.70)
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The nested integrals of (3.70) can be distributed, rewriting the second sum over

n-cardinality index sets In as

ρS(n) =
∞∑

m=n

1

m!
e−NX

∑
In⊆Nm

[∫
1S(x(·))D(x(·))dx(·)

]In

·
[∫

(1− 1S(x(·)))D(x(·))

]Nm\In

(3.71)

Note that the value of the integrals is independent of the variable index, and thus

ρS(n) =
∞∑

m=n

e−NX
1

m!

m!

n!(m− n)!
〈1S , D〉n 〈1− 1S , D〉m−n (3.72)

from which (3.69) trivially follows. �

Remark. Computation of (3.69) requires only one integral computation; namely〈
1S , D

〉
, which can be found either by summing the weights of (3.6) or through

Monte Carlo integration. Using the integral property of the PHD (2.19), the integral

〈
1− 1S , D

〉
= NX −

〈
1S , D

〉
(3.73)

Furthermore, for m � NX , the summand of (3.69) is negligible, and the infinite

sum can be safely truncated at an appropriately chosen m = mmax(NX).

3.5.2 Independent Identically Distributed Cluster (i.i.d.c.)

Distribution

The i.i.d.c. RFS distribution is a generalization of the Poisson RFS in which the

cardinality is not restricted to be Poisson but rather described by an arbitrary pmf.

As such, i.i.d.c. distributions can describe false alarm and birth object processes

when more specific cardinality information is available. The following proposition

establishes the corresponding FoV cardinality distribution for i.i.d.c. distributions.
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Proposition 2. Given an i.i.d.c.-distributed RFS with cardinality pmf ρ(·) and

state density p(·), the cardinality of objects inside the FoV S is distributed according

to

ρS(n) =
∞∑

m=n

ρ(m)

(
m

n

)〈
1S , p

〉n〈
1− 1S , p

〉m−n (3.74)

where
(
m
n

)
is the binomial coefficient.

Proof : Substituting (2.22) into (3.68),

ρS(n) =
∞∑

m=n

1

m!
m!ρ(m)

∫
Xm

∑
Xn⊆X

·[1s(·)p(·)]X
n

[(1− 1s(·))p(·)]X\Xn

dx1···dxm

(3.75)

The integral can be moved inside the products so that

ρS(n) =
∞∑

m=n

ρ(m)
∑

In⊆Nm

[∫
1s(x(·))p(x(·))dx(·)

]In

·
[∫

(1− 1s(x(·)))p(x(·))dx(·)

]Nm\In

(3.76)

Equation (3.74) follows from (3.76) by noting that there are
(
m
n

)
unique unordered

n-cardinality index subsets of Nm. �

3.5.3 Multi-Bernoulli Distribution

Multi-object processes characterized by object existence uncertainty and spatial

uncertainty can be modeled efficiently as MB RFSs. Given the MB density de-

scribing a multi-object distribution over the surveillance region, a useful statistic

is the probability that a given number of objects exist within a given subregion,

such as a sensor FoV. The following proposition establishes the FoV cardinality

distribution for an MB distribution.
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Proposition 3. Given an MB density of the form of (2.25), the cardinality of

objects inside the FoV S is distributed according to

ρS(n) =
[(
1− r(·)

)]NM ·
∑

I1]I2]I3

δn(|I1|)

[〈
1S , r

(·)p(·)
〉

1− r(·)

]I1 [〈
1− 1S , r

(·)p(·)
〉

1− r(·)

]I2
(3.77)

where the summation is taken over all mutually exclusive index partitions I1]I2]

I3 = NM .

The proof of Proposition 3 is given in Appendix A.1. Following the same

procedure, similar results for the labeled multi-Bernoulli (LMB) [89] and multi-

Bernoulli mixture (MBM) [125] RFS distributions may be obtained.

Direct computation of (3.77) is only feasible for small M due to the sum over

all permutations I1 ] I2 ] I3. For large M , an alternative formulation based on

Fourier transforms allows fast numerical computation. For each MB component,

the integral
〈
1S , p

(i)
〉

is computed either by summing the weights of the partitioned

GM or by Monte Carlo integration. Using the integral results, the probability of

object i existing inside the FoV is found as

r
(i)
S = r(i)

〈
1S , p

(i)
〉

(3.78)

Then, following the approach of [32], (3.77) can be equivalently written as

ρS(n) =
1

M + 1
·

M∑
m=0

{
e−j2πmn/(M+1)

M∏
k=1

[
r
(k)
S ej2πm/(M+1) + (1− r(k)S )

]}
(3.79)

and solved using the discrete Fourier transform, for which a number of efficient

algorithms exist.
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3.5.4 Generalized Labeled Multi-Bernoulli Distribution

The GLMB LRFS is among the most descriptive RFS distribution classes and is a

conjugate prior under the GLMB filter “standard” transition and likelihood density

models. The following proposition establishes the FoV cardinality distribution for

GLMB distributions.

Proposition 4. Given a GLMB density f̊(X̊) of the form of (2.27), the cardinality

of objects inside a bounded FoV S is distributed according to

ρS(n) =
∑

(ξ,I1]I2)∈Ξ×F(L)

w(ξ)(I)δn(|I1|) 〈1S , p〉I1 〈1− 1S , p〉I2 (3.80)

Proof : Equation (3.66) can be rewritten to accommodate the labeled RFS as

ρS(n | X̊) =
∑

X̊n⊆X̊

[1S(·)]X̊
n

[1− 1S(·)]X̊\X̊n (3.81)

If X̊ is distributed according to the LRFS density f̊(X̊), the FoV cardinality dis-

tribution is obtained via the set integral

ρS(n) =

∫
ρS(n | X̊)f̊(X̊)δX̊ (3.82)

Expanding the integral,

ρS(n) =
∞∑

m=n

1

m!

∑
(`1,...,`m)∈Lm

∫
Xm

ρS(n | {(x1, `1),..., (xm, `m)})

· f̊({(x1, `1),..., (xm, `m)})dx1 · · · dxm (3.83)

Defining p(ξ,`)(x) , p(ξ)(x, `), substitution of (2.27) and (3.81) into (3.83) yields

ρS(n) =
∞∑

m=n

1

m!
m!

∑
{`1,...,`m}∈Lm

∑
ξ∈Ξ

w(ξ)({`1, . . . , `m})

∑
In⊆{`1,...`m}

〈
1S , p

(ξ,·)〉In〈1− 1S , p
(ξ,·)〉{`1,...,`m}\In

=
∑

(ξ,I)∈Ξ×F(L)

w(ξ)(I)
∑
In⊆I

〈
1S , p

(ξ,·)〉In〈1− 1S , p
(ξ,·)〉I\In (3.84)
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from which (3.80) follows. �

Remark. Substitution of n = 0 in (3.80) gives the GLMB void probability func-

tional [12, Eq. 22], which, while less general, has theoretical significance and prac-

tical applications in sensor management.

3.6 Sensor Placement Example

The FoV statistics developed in this chapter are demonstrated through a sensor

placement optimization problem subject to multi-object uncertainty. The multi-

object state is unknown, random, and distributed according to a known MB dis-

tribution f(X). Numerical simulation is performed for the case of 100 MB compo-

nents, with probabilities of existence randomly chosen between 0.35 and 1. Each

MB component has a Gaussian density and randomly chosen mean and covariance.

To visualize the workspace distribution, the PHD is shown in Fig. 3.9.
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Figure 3.9: PHD of MB workspace distribution with 100 potential objects, where
object means are represented by orange circles and the bounds of the FoV that
maximizes the FoV cardinality variance are shown in white.

The objective of the sensor control problem is to place the FoV S(u), consisting
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of a square of 1 × 1 dimensions centered at u ∈ U ⊆ R2, in the ROI (Fig. 3.9)

such that the variance of object cardinality inside the FoV is maximized. This

objective can be interpreted as placing the FoV in a region of the workspace where

the object cardinality is most uncertain. A related objective which minimizes the

variance of the global cardinality using cardinality-balanced multi-object multi-

Bernoulli (CB-MeMBer) predictions was first proposed in [51]. For each candidate

FoV placement u ∈ U, the FoV cardinality pmf ρS(u)(n) is given by (3.77) and is

efficiently computed using (3.79). The variance of the resulting pmf is shown as a

function of the FoV center location in Fig. 3.10. The optimal FoV center location

is found to be u∗ = [−0.8 − 1.25]T .

A compelling result is that, by virtue of the bounded FoV geometry, spatial

information is encoded in the FoV cardinality pmf. It can be seen that the optimal

FoV (Fig. 3.9) has boundary segments (lower half of left boundary and right half of

lower boundary) that bisect clusters of MB components. These boundary segments

divide the components’ single-object densities such that significant mass appears

inside and outside the FoV, increasing the overall FoV cardinality variance.

Note that, by the proposed FoV cardinality objective function, the only sensor

parameter considered is the FoV geometry and location. In general, it may be

desirable to consider other sensing parameters which may vary with u, such as the

probability of detection within the FoV, the false alarm distribution, and sensor

noise. The following chapters present objective functions based on information

gain that account for the complete probabilistic sensing model in a theoretically

rigorous fashion.
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Figure 3.10: FoV cardinality variance as a function of FoV center location, where
the red star denotes the maximum variance point.

3.7 Conclusions

This chapter presents an approach for incorporating bounded field-of-view (FoV)

geometry into state density updates and object cardinality predictions via finite set

statistics (FISST). Negative information is processed in state density updates via

a novel Gaussian splitting algorithm that recursively refines a Gaussian mixture

approximation near the boundaries of the discrete FoV geometry. Using FISST,

cardinality probability mass functions that describe the probability that a given

number of objects exist inside the FoV are derived. The approach is presented for

representative labeled and unlabeled random finite set distributions and, thus, is

applicable to a wide range of tracking, perception, and sensor planning problems.
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CHAPTER 4

SINGLE SENSOR INFORMATION-DRIVEN CONTROL

4.1 Introduction

Many modern multi-object tracking applications involve mobile and reconfigurable

sensors able to control the position and orientation of their FoV in order to expand

their operational tracking capacity and improve state estimation accuracy when

compared to fixed sensor systems. By incorporating active sensor control in these

dynamic tracking systems, the sensor can autonomously make decisions that pro-

duce observations with the highest information content based on prior knowledge

and sensor measurements [34, 122, 121]. Also, the sensor FoV is able to move and

cover large regions of interest, potentially for prolonged periods of time. By ex-

panding the autonomy and operability of sensors, however, several new challenges

are introduced. As the sensor moves and reconfigures itself, the number of objects

inside the FoV changes over time. Also, both the number of objects and the ob-

jects’ states are unknown, time-varying, and subject to significant measurement

errors. As a result, existing tracking algorithms and information gain functions

(e.g., [34, 122, 121, 100]) that assume a known number of objects and known data

association, are either inapplicable or significantly degrade in performance due to

measurement noise, object maneuvers, missed/spurious detections, and unknown

measurement origin.

Through the use of RFS theory, this chapter formulates the multi-object

information-driven control problem as a partially-observed Markov decision pro-

cess (POMDP). Sensor actions can then be decided to maximize the expected

information gain conditioned on a probabilistic belief state. Information-theoretic
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functions, such as expected entropy reduction (EER) [19, 128], Cauchy-Schwarz

Divergence (CSD) [50, 11, 43], KLD [41], and Rényi divergence [91, 92], have

been successfully used to represent sensing objectives, such as detection, classifi-

cation, identification, and tracking, circumventing exhaustive enumeration of all

possible outcomes. However, RFS-based information-theoretic sensor control poli-

cies remain computationally challenging. Alternatively, they require simplifying

assumptions that limit their applicability to SWT systems. Existing tractable

solutions employ the so-called predicted ideal measurement set (PIMS) approx-

imation [76], by which sensor actions are selected based on ideal measurements

with no measurement noise, false alarms, or missed detections. This chapter

presents a new computationally tractable higher-order approximation called the

cell multi-Bernoulli (cell-MB) approximation for a restricted class of multi-object

information gain functions satisfying cell-additivity constraints. Unlike existing

approximation methods, the cell-MB approximation accounts for higher-order ef-

fects due to false alarms, missed detections, and non-Gaussian object probability

distributions.

The cell-MB approximation and KLD information gain function presented in

this chapter also account for both discovered and undiscovered objects by enabling

the efficient computation of the RFS expectation operation. In particular, a par-

tially piecewise homogeneous Poisson process is used to model undiscovered objects

efficiently over space and time, including in challenging settings in which objects

are diffusely distributed over a large geographic region. Prior work in [81] estab-

lished a multi-agent PHD-based path planning algorithm aimed at maximizing the

detection of relatively static objects. In [39], the exploration/exploitation problem

was addressed by establishing an information-theoretic uncertainty threshold for

triggering pre-planned search modalities. The occupancy grid approach in [79] was
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successfully implemented for tracking and discovering objects with identity-tagged

observations. Task-driven approaches were considered in [42] and [17] based on

LMB and Poisson multi-Bernoulli mixture (PMBM) priors, respectively. However,

these existing methods all rely on the PIMS approximation and, therefore, neglect

the contribution of nonideal measurements in the prediction of information gain.

The new RFS information-driven approach presented in this chapter derives

a cell-MB approximation of the RFS information gain expectation that accounts

for nonideal measurements. A new KLD function is shown to be cell-additive and

employed to represent information gain for discovered and undiscovered objects

and, subsequently, is approximated efficiently using the cell-MB decomposition.

The effectiveness of this new approach is demonstrated using real video data in a

challenging tracking application involving multiple closely-spaced vehicles maneu-

vering in a cluttered and remote environment. The proposed approach is demon-

strated by tracking and maintaining discovered vehicles using an optical sensor

with a bounded FoV, while simultaneously searching and discovering new vehicles

as they enter the surveillance region.

4.2 Problem Formulation

This chapter considers an online SWT problem involving a single sensor with a

bounded and mobile FoV that can be manipulated by an automatic controller,

as illustrated in Fig. 4.1. The sensor objective is to discover and track multiple

unidentified moving objects in an ROI that far exceeds the size of the FoV. The

objects are characterized by partially hidden states and are subject to unknown

random inputs, such as driver commands, and may leave and enter the ROI at any
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time. The sensor control inputs are to be optimized at every time step in order to

maximize the expected reduction in track uncertainty, as well as the overall state

estimation performance.

Figure 4.1: Conceptual image of multi-object search-while-tracking, wherein the
sensor field-of-view S is controlled to maximize the cell multi-Bernoulli approxi-
mated information gain.

The number of objects is unknown a priori and changes over time because

objects enter and exit the surveillance region as well as, potentially, the sensor

FoV. Let Nk denote the number of objects present in the surveillance region W

at time k. The multi-object state Xk is the collection of Nk single-object states at

time k and is expressed as the finite set

Xk = {xk,1, . . . ,xk,Nk
} ∈ F(X) (4.1)
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where xk,i is the ith element of Xk and F(X) denotes the collection of all finite

subsets of the object state space X.

The multi-object measurement is the collection of Mk single-object measure-

ments at time k and is expressed as the set

Zk = {zk,1, . . . , zk,Mk
} ∈ F(Z) (4.2)

where Z denotes the measurement space. The sensor resolution is such that single-

object detections zk,i are represented by points, e.g., a centroidal pixel, with no

additional classification-quality information. Because detections contain no iden-

tifying labels or features, the association between tracked objects and incoming

measurement data is unknown.

Depending on the sensor, object detection may depend only a partial state

s ∈ Xs ⊆ Rns , where Xs × Xv = X ⊆ Rnx forms the full object state space. For

example, the instantaneous ability of a sensor to detect an object may depend

only on the object’s position. In that case, Xs is the position space, and Xv is

composed of non-position states, such as object velocity. This nomenclature is

adopted throughout the chapter while noting that the approach is applicable to

other state definitions.

The sensor FoV is defined as a compact subset Sk ⊂ Xs. Then, object detection

is assumed to be random and characterized by the probability function

pD,k(xk;Sk) = 1Sk
(sk) · pD,k(sk) (4.3)

where the single-argument function pD,k(sk) is the probability of object detection

for an unbounded FoV. When an object is detected, a noisy measurement of its

state xk is produced according to the likelihood function

zk ∼ gk(zk|xk) (4.4)
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where zk ∈ Z. In addition to detections originating from true objects, the sensor

produces extraneous measurements due to random phenomena, which are referred

to as “clutter” or “false alarms.” Each resolution cell (e.g., a pixel) of the sensor

image plane is equally likely to produce a false alarm, and thus, the clutter process

is modeled as a Poisson RFS process with PHD κc,k(z) [9]. Further discussion on

Poisson RFSs and the PHD function can be found in Section 2.3.1.

Let uk ∈ Uk denote the sensor control inputs that, through actuation, deter-

mine the position of the sensor FoV at time k, Sk, where Uk is the set of all admis-

sible controls at time k. The control uk influences both the FoV geometry, Sk, and

the sensor measurements, Zk, due to varying object visibility. Because in many

modern applications the surveillance regionW is much larger than the sensor FoV,

only a fraction of the total object population can be observed at any given time.

Therefore, given the admissible control inputs Uk, let the field-of-regard (FoR) be

defined as

Tk ,
⋃

uk∈Uk

Sk(uk) (4.5)

and represent the composite of regions that the sensor can potentially cover (al-

though not simultaneously) at the next time step.

Then, the sensor control problem can be formulated as an RFS POMDP [91,

62, 21], that includes a partially- and noisily-observed state Xk, a known initial

distribution of the state f0(X0), a probabilistic transition model fk|k−1(Xk|Xk−1),

a set of admissible control actions Uk, and a reward Rk associated with each

control action. At every time k, an RFS multi-object tracker provides the prior

fk|k−1(Xk|Z0:k−1) and the sensor control input is chosen so as to maximize the

expected information gain, or

u∗
k = argmax

uk∈Uk

{
E
[
Rk(Zk; Sk, fk|k−1(Xk|Z0:k−1), u0:k−1)

]}
(4.6)
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where the functional dependence of Zk and Sk on uk is omitted for brevity here

but is described in [75]. Upon applying the sensor control input, the multi-object

observation Zk is received and processed by the RFS multi-object tracker to pro-

duce the posterior belief state fk(Xk|Z0:k). In this dissertation, Rk is taken to

be an information gain function, while noting that the presented results are more

broadly applicable to any integrable reward function satisfying the cell-additivity

constraint defined in Section 4.3.

A computationally tractable approximation of the expected information gain

in (4.6) is derived using the new cell-MB approximation presented in Section 4.3.

Based on this approximation, a new sensor control policy for SWT applications

is obtained in Section 4.4 using a joint information gain function. The joint in-

formation gain formulation treats discovered and undiscovered objects as separate

processes, modeling undiscovered objects as a partially piecewise homogeneous

Poisson process. By this approach, a computationally efficient sensor controller is

developed for SWT over potentially large geographic regions.

4.3 Information-Driven Control

The objective of information-driven control is to maximize the value of the infor-

mation gained by future measurements before they are known to the sensor. The

expected information gain, therefore, can be obtained by marginalizing over the

set Zk, using an available measurement model. Then, the expected information

gain obtained at the next time step can be obtained from the set integral

E[Rk] =

∫
Rk(Zk; ·)f(Zk)δZk (4.7)
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where f(Zk) is the predicted measurement density conditioned on past measure-

ments. In general, direct evaluation of (4.7) is computationally intractable due

to the infinite summation of nested single-object integrals (see (2.21)). Further-

more, each integrand evaluation encompasses a multi-object filter update and sub-

sequent divergence computation. As such, principled approximations are needed

for tractable computation of the expected information gain.

4.3.1 The Cell-MB Distribution

A new approximation of RFS density functions is presented in this section and,

then, used to obtain the information gain expectation. This approach, referred to

hereon as the cell-MB approach, approximates an arbitrary measurement density

as an MB density with existence probabilities and single-object densities derived

from a cell decomposition of the measurement space.

Definition 1. Consider the decomposition of the space Y into P disjoint subspaces,

or cells, as

Y =
1

Y ] · · · ]
P

Y (4.8)

Given the cell-decomposition (4.8), the RFS

Y = {y1, . . . ,yn}

is considered to be cell-MB if it is distributed according to the density

f(Y ) = ∆(Y,Y)
[
1− r(·)

]NP ·
∑

1≤j1 6=···6=jn≤P

[
rj(·)pj(·)(y(·))

1− rj(·)

]Nn

(4.9)

where

∆(Y,Y) ,


1 |Y ∩

j

Y| ≤ 1 ∀ j ∈ {1, . . . , P}

0 otherwise
(4.10)
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and ∫
j

Y
pj(y)dy = 1, j = 1, . . . , P (4.11)

The cell-MB distribution is a special case of the MB distribution in which the

probability of more than one object occupying the same cell is zero.

In [80], a collection of Bernoulli distributions was defined over an occupancy

grid by integration of the PHD for dynamic map estimation applications. In-

spired by [80], in this chapter, a general cell-MB approximation is developed for

an arbitrary density and appropriate cell-decomposition. The following proposi-

tion shows that the best cell-MB approximation, as defined by KLD minimization,

has a matching PHD and cell weights equal to the expected number of objects in

each cell.

Proposition 5. Let f(Y ) be an arbitrary set density with PHD D(y) and
1

Y]· · ·]
P

Y

be a cell decomposition of space Y such that∫
j

Y
D(y)dy ≤ 1, j = 1, . . . , P (4.12)

If f̄(Y ) is a cell-MB distribution over the same cell-decomposition with parameters

{rj, pj}Pj=1, the KLD between f(Y ) and f̄(Y ) is minimized by parameters

rj =

∫
1 j

Y
(y)D(y)dy (4.13)

pj(y) =
1

rj
1 j

Y
(y)D(y) (4.14)

The proof is provided in Appendix A.2. When applied to the predicted mea-

surement density, the cell-MB approximation results in a simplified multi-object

expectation for a restricted class of information gain functions, as described in the

following subsection.
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4.3.2 Information Gain Expectation: Cell-MB

In order to reduce the computational complexity associated with the set integral

in (4.7), this subsection shows that the multi-object information gain expecta-

tion simplifies to a finite sum involving only single-object integrals, assuming the

measurement is cell-MB distributed and the information gain function in (4.7) is

cell-additive, as defined in this subsection.

Given the FoV S ⊂ Xs, let the abbreviation
j

S denote the intersection function

j

S , µ(S, j) , S ∩
j

Xs (4.15)

Furthermore, assume that position state cells do not overlap at the FoV bounds,

such that each position state cell
j

Xs is either wholly included in or wholly excluded

by S:
j

Xs \
j

S = ∅ ∀
j

S 6= ∅ (4.16)

The FoV alignment constraint of (4.16) is assumed to hold throughout the disser-

tation. This is without loss of generality, as a cell
j

Xs can be trivially subdivided

in the event (4.16) does not hold such that, under the new decomposition, the

condition holds. Then, the cell-additivity condition can be defined as follows.

Definition 2. Given a decomposition
1

Z] · · · ]
P

Z of space Z, the information gain

function Rk(·) is cell-additive if

Rk(Zk;Sk) =
P∑

j=1

Rk(Zk ∩
j

Z;
j

Sk) (4.17)

Theorem 1. Let Zk be distributed according to the cell-MB density f(Zk) with

parameters {rj, pj}Pj=1 and the cell decomposition

Z =
1

Z ] · · · ]
P

Z (4.18)
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If the information gain function Rk(·) is integrable and cell-additive (Def. 2), then

the expected information gain is

E[Rk] =
P∑

j=1

Rk(∅;
j

Sk)
(
1− rj

)
+ R̂j

z,k · r
j (4.19)

where

R̂j
z,k ,

∫
j

Z
Rk({z};

j

Sk)pj(z)dz (4.20)

Proof of Theorem 1 is given in Appendix A.3.

Remark. In (4.17), (4.19), and (4.20), the auxiliary information gain arguments

are suppressed for brevity and to highlight the structure of the cell-MB approxima-

tion.

The remainder of this chapter considers information gain functions satisfying

the cell-additivity constraint of (4.17), such as the PHD filter based KLD informa-

tion gain. Note that adopting the PHD filter for estimating the information gain

does not require using it for multi-object tracking. Given an arbitrary RFS prior

density fk|k−1(X) and its PHD Dk|k−1(x), the PHD-based KLD information gain

is

Rk(Z;S, Dk|k−1) =

∫
X
Dk|k−1(x) · {1− LZ(x;S) + LZ(x;S) log[LZ(x;S)]}dx

(4.21)

where the pseudo-likelihood function

LZ(x;S) = 1− pD(x;S) +
∑
z∈Z

pD(x;S) · g(z|x)
κc(z) +

∫
pD(x;S)g(z|x)Dk|k−1(x)dx

(4.22)

is adopted from [75, p. 193]. Note that, in (4.21), the information gain is written

explicitly as a function of Dk|k−1 in place of the full RFS density fk|k−1 to empha-

size that the reward depends only on the prior PHD. The following proposition

establishes that (4.21) is cell-additive for appropriate cell decompositions.
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Proposition 6. Assume there exists a decomposition

Z =
1

Z ] · · · ]
P

Z , X =
1

X ] · · · ]
P

X (4.23)

such that (4.16) is satisfied, and assume that an object in a given cell can only

generate measurements within its corresponding measurement cell; i.e.:

Dk|k−1(x)gk(z|x) = 0 ∀ x ∈
j

X, z ∈
j′

Z, j 6= j′ (4.24)

Then, the PHD-based KLD is cell-additive:

Rk(Z;S, Dk|k−1) =
P∑

j=1

Rk(Z ∩
j

Z;
j

S, Dk|k−1) (4.25)

Proof of Proposition 6 is provided in Appendix A.4. Proposition 6 establishes

that for appropriate cell decompositions, the PHD-based KLD for a given FoV is

equivalent to the sum of PHD-based KLD information gains for smaller “virtual”

FoVs. Perfect cell-additivity requires satisfying (4.24), which, in turn, implies

that an object in cell
i

X does not generate a measurement in
j

Z for i 6= j. In

general, violations of (4.24) are tolerable and result in approximation errors that

are negligible in comparison to the stochastic variations in the actual information

gain. Furthermore, these simplifying assumptions need not be satisfied by the

multi-object tracker.

The cell-MB approximation accounts for the potential information gain of non-

ideal measurements, which may include missed detections, clutter, and measure-

ments originating from new objects. The latter case is particularly important for

the search of undiscovered objects, as is shown in the following section.

65



4.4 Search-While-Tracking (SWT) Sensor Control

This section presents a joint information gain function and associated sensor con-

trol policy that takes into account both discovered and undiscovered objects. The

information gain function proposed in Section 4.4.1 balances the competing ob-

jectives of object search and tracking by means of a unified information-theoretic

framework. Sections 4.4.2 and 4.4.3 derive the expected information gain functions

for discovered and undiscovered objects, respectively, the combination of which is

maximized by the sensor control policy in Section 4.4.4. Sections 4.4.5 and 4.4.6

describe multi-object filters for recursive estimation of the undiscovered and discov-

ered object densities, respectively, and the overall SWT algorithm is summarized

in Section 4.4.7.

4.4.1 Joint Information Gain Function

Separate density parameterizations for discovered and undiscovered objects are

employed such that their unique characteristics may be leveraged for computational

efficiency. Let Xu,k ∈ F(X) be the state of objects that were not detected during

steps 0, . . . , k − 1 and Xd,k ∈ F(X) be the state of objects detected prior to k.

Denote by Zu,k, Zd,k, and Zc,k the detections generated by Xu,k, Xd,k, and clutter,

respectively. Let Vk , Zd,k ∪ Zc,k and Wk , Zu,k ∪ Zc,k. Then, the sensor control

policy is defined in terms of the joint information gain as

u∗
k = argmax

uk∈Uk

{
E[Rd

k(Vk;Sk(uk))] + E[Ru
k(Wk;Sk(uk))]

}
(4.26)
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where

Rd
k(·; ·) = Rk(·; ·, Dd,k|k−1) (4.27)

Ru
k(·; ·) = Rk(·; ·, Du,k|k−1) (4.28)

are used for brevity, and Dd,k|k−1 and Du,k|k−1 are the prior PHDs of discovered and

undiscovered objects, respectively. The individual information gain expectations

for discovered and undiscovered objects are derived in the following subsections.

4.4.2 Expected Information Gain of Discovered Objects

If fk|k−1(Vk) is cell-MB with parameters {rjv, pjv}Pj=1, then from Theorem 1 it follows

that

E[Rd
k] =

P∑
j=1

Rd
k(∅;

j

Sk)
(
1− rjv

)
+ R̂d,j

v,k(
j

Sk) · rjv (4.29)

where

R̂d,j
v,k(

j

S) ,
∫

j

Z
Rd

k({z};
j

S)pjv(z)dz (4.30)

rjv(S) =
∫

1 j

Z
(z)Dv,k|k−1(z;S)dz (4.31)

pjv(z;S) =
1

rjv
1 j

Z
(z)Dv,k|k−1(z;S) (4.32)

The multi-object tracker provides the prior GLMB density f̊p,k|k−1(X̊p,k|Z0:k−1),

from which the discovered object PHD is obtained as

Dd,k|k−1(x) =
∑

(I,ξ)∈F(L)×Ξ

∑
`∈I

w(ξ)(I)p(ξ)(x, `) (4.33)

The PHD Dv,k|k−1 can be obtained from the predicted measurement density

fk|k−1(Vk) through application of (2.20). From the prior GLMB density,

fk|k−1(Vk) =

∫
gk(Vk|X̊)f̊k|k−1(X̊)δX̊ (4.34)
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Given a GLMB prior, explicit computation of the predicted measurement den-

sity is computationally challenging. Thus, Dv,k|k−1 is directly computed from the

discovered object PHD using the approximation

Dv,k|k−1(z;S) ≈
∫
Dd,k|k−1(x)pD,k(x;S)gk(z|x)dx+ κc,k(z) (4.35)

Because an analytic solution of the integral in (4.30) is not available, a numer-

ical quadrature rule is employed. In the proposed approach, a measurement cell is

further tessellated into regions {
j

Ωi}
Rj

i=1 ⊂
j

Z based on the anticipated information

value of measurements within each region, as illustrated in Fig. 4.2. Then, given a

representative measurement zj,i for each region, the conditional information gain

expectation is approximated as

R̂d,j
v,k(

j

S) ≈
Rj∑
i=1

Rd
k({zj,i};

j

S)pjv(zj,i)Aj,i (4.36)

where Aj,i is the volume of region
j

Ωi. By this approach, the PHD-based KLD

information gain function is only evaluated Rj times. Further details regarding

the computation of the quadrature regions and representative measurement points

are provided in Appendix A.5.

4.4.3 Expected Information Gain of Undiscovered Objects

This subsection presents a new approach to efficiently model the undiscovered

object distribution, which may be diffuse over a large region. Although GMs and

particle representations can be used to model undiscovered objects, they are highly

inefficient at representing diffuse distributions. Thus, in this chapter, the position-

marginal density of undiscovered objects is taken to be piecewise homogeneous
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j

Ω1
j

Ω2
j

Ω3

j

Ω4

j

Ω5

Figure 4.2: Example quadrature of the single-measurement conditional expected
information gain, where representative measurements zj,i are denoted by red dots
and quadrature regions are outlined in cyan.

with PHD

Du,k|k−1(s) =
P∑

j=1

1 j

Xs

(s)

A(
j

Xs)

· λj,k|k−1 (4.37)

where λj,k|k−1 is the expected number of undiscovered objects in
j

Xs at time step

k and A(
j

Xs) is the volume of cell
j

Xs. For ease of exposition, the undiscovered

object PHD is modeled using the same cell decomposition employed in the cell-MB

approximation.

If fk|k−1(Wk) is cell-MB with parameters {rjw, pjw}Pj=1, then by Theorem 1,

E[Ru
k ] =

P∑
j=1

Ru
k(∅;

j

Sk)
(
1− rjw

)
+ R̂u,j

w,k(
j

Sk) · rjw (4.38)

69



where

R̂u,j
w,k(

j

S) ,
∫

j

Z
Ru

k({z};
j

S)pjw(z)dz (4.39)

rjw(S) =
∫

1 j

Z
(z)Dw,k|k−1(z;S)dz (4.40)

≈
λj,k|k−1

A(
j

Xs)

∫
j

Xs

pD(s;S)ds (4.41)

pjw(z;S) =
1

rjw
1 j

Z
(z)Dw,k|k−1(z;S) (4.42)

Dw,k|k−1(z;S) =
∫
Du,k|k−1(x)pD,k(x;S)gk(z|x)dx+ κc,k(z) (4.43)

Under a piecewise homogeneous PHD, the undiscovered object information gain

simplifies drastically if the measurement likelihood is independent of non-position

states: i.e. gk(·|x) = gk(·|s). Following (4.21),

Ru
k(Wk; Sk) =

∫
Xs

Du,k|k−1(s){1− LWk
(s;Sk) + LWk

(s;Sk) log[LWk
(s;Sk)]}ds

(4.44)

Given that at most one measurement may exist per cell, two cases need to be

considered: the null (empty) measurement case and the singleton measurement

case. Letting Wk = ∅, and after some algebraic manipulation, the undiscovered

object information gain for a null measurement can be written as

Ru
k(∅;Sk) =

P∑
j=1

Ru
k(∅;

j

Sk) (4.45)

Ru
k(∅;

j

Sk) = λj,k|k−1 · dj · (1− δ∅(
j

Sk)) (4.46)

dj ,
1

A(
j

Xs)

∫
j

Xs

pD(s) + (1− pD(s)) log[1− pD(s)]ds (4.47)

Furthermore, if the probability of detection is homogeneous within cells such that

pD(s) = pD,j ∀ s ∈
j

Xs (4.48)
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then (4.47) simplifies to

dj = pD,j + (1− pD,j) log(1− pD,j) (4.49)

For the singleton measurement case, similar analytic simplifications of the con-

ditional information gain (4.39) are limited. However, within a cell, the uniform

position density of undiscovered objects is known a priori up to an unknown factor

λj,k|k−1. Thus, the undiscovered object information gain can be pre-computed for

efficiency and

R̂u,j
w,k(

j

Sk) ≈ R̄u,j
w (λj,k|k−1) (4.50)

where the function R̄u,j
w (λj,k|k−1) returns interpolated information gain values over

λj,k|k−1 ∈ [0, 1].

4.4.4 Field-of-View (FoV) Optimization and Sensor Con-

trol

Prior to optimization of the FoV, the information gain associated with each cell

in the FoR is computed, as described in Algorithm 4. The FoR cell information

gains for discovered and undiscovered objects are stored as arrays {Rd
k[j]}Pj=1 and

{Ru
k [j]}Pj=1, respectively. Then, the optimal FoV is found as the one composed of

the cells with the highest composite information gain, without reevaluating the

information gain. With this, the sensor control that produces the desired optimal

FoV can be written as

u∗
k = argmax

u∈Uk


∑

j∈NP ,
j

Xs⊆Sk(u)

(
Ru

k [j] +Rd
k[j]
) (4.51)
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Algorithm 4 FoR Information Gain Pseudocode
Input: Tk, f̊k|k−1(X̊), Du,k|k−1(x)

Compute Dd,k|k−1(x) from f̊k|k−1(X̊) (4.33)
Compute Dv,k|k−1(z; Tk) (4.35)

for j = 1, . . . , P for j such that
j

Xs ∈ Tk do
rjv ←

∫
1 j

Z
(z)Dv,k|k−1(z; Tk)dz

rjw ←
∫
1 j

Z
(z)Dw,k|k−1(z; Tk)dz

Compute R̂d,j
v,k(

j

T ) (4.36)

Compute R̂u,j
w,k(

j

T ) (4.50)

Rd
k[j]←Rd

k(∅;
j

T k)(1− rjv) + R̂
d,j
v,k(

j

T k) · rjv

Ru
k [j]←Ru

k(∅;
j

T k)(1− rjw) + R̂
u,j
w,k(

j

T k) · rjw
end for
return (Rd

k[j])
P
j=1, (Ru

k [j])
P
j=1

Remark. Explicit computation of the cell-MB single-object densities pjv and pjw is

not required. Instead, these densities are implicitly computed when evaluating the

conditional information gain expectations R̂d,j
v,k and R̂u,j

w,k.

4.4.5 Undiscovered Object Prediction and Update

The prediction and update of the undiscovered object PHD is accomplished using

the cell-discretized PHD filter. The prediction step incorporates undiscovered ob-

ject motion, birth, and death. The undiscovered object distribution parameters

are predicted and updated as

λj,k|k−1 = λB,j,k +
P∑
i=1

pS,i,k · Pj|i · λi,k−1 (4.52)

λj,k =

[
1− pD,j · (1− δ∅(

j

Sk))

]
· λj,k|k−1 (4.53)
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where λB,j,k is the expected number of newborn objects in cell j, pS,i,k is the

probability that an object in cell i not detected before k survives, and Pj|i is the

probability that an undiscovered object moves to cell j given that it exists in cell i.

4.4.6 Discovered Object Tracking

Discovered object tracking is performed using the data-driven GLMB filter. While

a detailed description of the data-driven GLMB filter is beyond the scope of this

chapter, one important consideration is highlighted involving the FoV-dependent

nonlinear probability of detection. The data-driven GLMB is implemented in GM

form, such that single-object densities are

p(ξ)(x, `) =

J(ξ)(`)∑
i=1

w
(ξ)
i (`)N (x;m

(ξ)
i (`),P

(ξ)
i (`)) (4.54)

It is through the FoV-dependent pD that the filter probabilistically incorporates

the knowledge of where objects were not observed.

In the filter, products of the form pD(x;S)p(ξ)(x) are expanded about the GM

component means. The accuracy of this expansion is dependent on the GM res-

olution near the FoV boundaries. Thus, the recursive splitting algorithm (Algo-

rithm 1) is employed to identify and split Gaussian components that overlap the

FoV boundaries into several “smaller” Gaussians. The resulting J ′(ξ)(`) component

mixture replaces the original density, enabling the accurate zeroth-order expansion

approximation

pD(x;S)p(ξ)(x, `) ≈
J ′(ξ,`)∑
i=1

w
(ξ,`)
i pD(m

(ξ,`)
i ;S)N (x;m

(ξ,`)
i ,P

(ξ,`)
i ) (4.55)

An example is provided in Fig. 4.3, wherein the prior density is split prior to a

Bayes update, allowing for the accurate incorporation of negative information from
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a non-detection.

(a) (b)

Figure 4.3: Prior object density and FoV (a), and posterior object density after
recursive split and non-detection (b).

4.4.7 Numerical Implementation

This subsection summarizes the SWT algorithmic implementation. At each step

k, a time-update (2.32), (4.52) of the previous posterior densities yields predicted

prior densities for the time of the next decision. The FoR is constructed from

admissible control actions as shown in (4.5), and the expected information gain

for each cell within the FoR is computed. The candidate FoV that contains the

maximizing sum of cell information gains is found, and the corresponding control

(4.51) which yields that FoV is applied. The sensor collects a new multi-object

measurement which is processed in the data-driven GLMB filter to update the

multi-object density, giving the posterior density in (2.33). The algorithm is sum-

marized in Algorithm 5.
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Algorithm 5 SWT Sensor Control Pseudocode
Input: f̊0(X̊), Du,0(x)

for k = 1, . . . , K do
f̊k|k−1(X̊), Du,k|k−1(x)← filter_prediction(f̊k−1(X̊), Du,k−1(x)) (2.32),
(4.52)
(Rd

k[j])
P
j=1, (Ru

k [j])
P
j=1 ← FoR_information_gain(Tk, f̊k|k−1(X̊), Du,k|k−1(x))

Alg. 4
u∗
k ← maximize_expected_reward((Rd

k[j])
P
j=1, (Ru

k [j])
P
j=1) (4.51)

Sk(u∗
k)← apply sensor control

Zk ← obtain measurement
f̊k|k−1(X̊)← split_for_FoV(f̊k|k−1(X̊), Sk) [67]
f̊k(X̊), Du,k ← filter_update(f̊k|k−1(X̊), Du,k|k−1(x), Zk, Sk) (2.33), (4.53)

end for

4.5 Application to Remote Multi-Vehicle SWT

The cell-MB SWT framework is demonstrated in a vehicle tracking problem using

real video data. The video was recorded using a fixed camera with a large FoV

(Fig. 4.4.a), and real-time FoV controlled motion was simulated by windowing the

data over a small fraction of the image, as illustrated in Fig. 4.4.b. This dataset

presents significant tracking challenges, including jitter-induced noise and clutter,

unknown measurement origin, merged detections from closely-spaced vehicles, and

most significantly, temporal sparsity of detections.

4.5.1 Ground Vehicle Dynamics

Vehicle dynamics are modeled directly in the image frame. While vehicle dynamics

are more naturally expressed in the terrestrial frame, the camera’s precise location

and orientation are unknown. Thus, transformation between image and terrestrial

coordinates could not be readily established.
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Figure 4.4: Example video frame (a), artificially windowed to emulate smaller,
movable FoV, which is enlarged in (b) to show detail.

The object state is modeled as

xk = [sTk ζT
k ]

T (4.56)

sk = [ξk ηk]
T , ζk = [ξ̇k η̇k Ωk]

T (4.57)

where ξk and ηk are the horizontal and vertical coordinates, respectively, of the ve-

hicle position with respect to the full-frame origin, ξ̇k and η̇k are the corresponding

rates, and Ωk is the vehicle turn rate.

Vehicle motion is modeled using the nearly coordinated turn model with direc-

tional process noise [9, 127] as

xk+1 = fk(xk) + Γkνk(sk) (4.58)
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where

fk(xk) =



1 0 sin(Ωk∆t)
Ωk

−1−cos(Ωk∆t)
Ωk

0

0 1 1−cos(Ωk∆t)
Ωk

sin(Ωk∆t)
Ωk

0

0 0 cos(Ωk∆t) − sin(Ωk∆t) 0

0 0 sin(Ωk∆t) cos(Ωk∆t) 0

0 0 0 0 1


xk (4.59)

Γk =


1
2
(∆t)2I2×2 02×1

(∆t)I2×2 02×1

01×2 ∆t

 (4.60)

where ∆t = 1 [sec] is the discrete time step interval, In×n denotes the n× n iden-

tity matrix, and 0m×n denotes the m × n matrix whose elements are zero. The

covariance of the process noise is

E[νkν
T
k ] = Qk(s) =

DT (s)QdD(s) 0

01×2 σ2
Ω

 (4.61)

Qd =

σ2
t 0

0 σ2
n

 , D(s) =

 cosΨ(s) sinΨ(s)

− sinΨ(s) cosΨ(s)

 (4.62)

where σΩ = 180 [arcmin/sec] is the turn rate process noise standard deviation,

σt = 5 [pixel/sec2] and σn = 0.01 [pixel/sec2] are the standard deviation of process

noise tangential and normal to the road, respectively, and Ψ(s) is the angle of the

road segment nearest s, measured from the horizontal axis to the tangent direction.

The true trajectories of all moving objects are shown in Fig. 4.5.

4.5.2 Sensor and Scene Model

Object detections are generated from raw frame data using normalized difference

change detection [99] and fast approximate power iteration subspace tracking [6]
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Figure 4.5: True trajectories of moving objects with an example image as frame
as background.

for temporal background estimation. The single-object measurement function is

linear-Gaussian with corresponding likelihood

g(z|x) = N (z; Hx, R) , (4.63)

H =

[
I2×2 02×3

]
, R = 9 · I2×2 [pixel2] (4.64)

The sensor FoV is a rectangular region that is 240 pixels wide and 160 pixels

tall. Moving objects within the FoV are assumed to be detectable with probability

pD,k(sk) = 0.9.

The scene is tessellated by a 16×32 grid of uniformly sized rectangular cells as

shown in Fig. 4.6. Within the scene, an ROI is specified which contains the scene’s

two primary roads and is denoted by T due to its equivalence to the FoR for this

problem. Within the ROI, cells containing road pixels comprise the set B, which

is used to establish an initial uniform distribution of undiscovered objects. Thus,

following the assumptions established in Section 4.4.3, the initial undiscovered

object position marginal PHD is characterized by (4.37) with

λj,0 =


0.137

j

X ⊆ B

0 otherwise
(4.65)

which corresponds to an initial estimate of ten undiscovered objects in the scene.
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Figure 4.6: Field-of-regard, T , and primary road region B, with example image
frame as background.

4.5.3 Experiment Results

An experiment consisting of sixty time steps is performed. To emulate a pan/tilt

camera from the wider available frame data, the FoV is assumed to be able to be

moved to any location within the scene in a single time step. This is a reasonable

assumption as these adjustments would be less than a degree. While not considered

in this experiment, kinematic constraints can be easily imposed on sensor motion.

However, because the sensor control policy is solved myopically (one stage at a

time), some motion constraints may result in the sensor becoming “trapped” in

local maxima. Multi-stage information-driven control will be considered in future

work.

Some key frames of the experiment are shown in Fig. 4.7. In the early time

steps, the FoV motion is dominated by the undiscovered object component of the

information gain. As more objects are discovered and tracked, the observed actions

demonstrate a balance of revisiting established tracks to reduce state uncertainty

and exploring new areas where undiscovered objects may exist.

The performance of the SWT sensor control is evaluated by the multi-object

tracking accuracy, as measured using the generalized optimal sub-pattern assign-
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ment (GOSPA) metric [85]. The GOSPA metric, the number of missed objects,

and the number of false tracks over time are shown in Fig 4.8. The cell-MB SWT

sensor control effectively balances the competing objectives of new object discov-

ery and maintenance of established tracks, as illustrated by the decline in missed

objects and consistently low number of false tracks. An increase in GOSPA is ob-

served in the final time steps of the experiment, which is caused by a sharp uptick

in new object appearances.

Figure 4.7: FoV position and tracker estimates in the form of single-object density
contours for objects with probabilities of existence greater than 0.5, shown at select
time steps.

The average GOSPA over the experiment is compared with the PIMS-based

information driven control and random FoV motion in Table 4.1. The cell-MB

sensor control achieves significant improvement with respect to other methods in

the number of missed and false tracks, as well as the overall GOSPA metric, which
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Figure 4.8: GOSPA metric and component errors over time using cutoff distance
c = 20 [pixel], order p = 2, and α = 2.

encompasses cardinality errors and localization errors. While the PIMS approach

Table 4.1: GOSPA performance, averaged over experiment duration, with percent-
age improvement over baseline random control shown parenthetically.

Algorithm GOSPA [pixel] Missed False
Cell-MB 37.84 (56%) 5.27 (168%) 0.97 (158%)
PIMS 47.46 (24%) 9.95 (42%) 0.90 (178%)
Random 59.07 (N/A) 14.10 (N/A) 2.50 (N/A)

performs poorly in this application, it should still be considered as a viable method

when using an information gain function that is non-additive.

4.6 Conclusion

This chapter presents a novel cell multi-Bernoulli (cell-MB) approximation that en-

ables the tractable higher-order approximation of the expectation of set functions

that are additive over disjoint measurable subsets. The cell-MB approximation is
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useful for approximating the expectation of computationally-expensive set func-

tions, such as information-theoretic reward functions employed in sensor control

applications. The approach is developed in the context of information-driven sen-

sor control in which the objective is to discover and track an unknown time-varying

number of non-cooperative objects with minimal estimation error. The problem is

formulated as a partially-observed Markov decision process with a new Kullback-

Leibler divergence-based information gain that incorporates both discovered and

undiscovered object information gain. In a demonstration using real sensor data,

the search-while-tracking sensor control is used to manipulate the sensor field-of-

view to discover and track multiple moving ground objects from an aerial vantage

point.
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CHAPTER 5

MULTIPLE SENSOR INFORMATION DRIVEN CONTROL

5.1 Introduction

Many modern robotic and aerospace systems employ multiple sensors for naviga-

tion, perception and surveillance. Sensors may be collocated on a single platform

or distributed across many agents or vehicles. Such systems, referred to as multi-

sensor systems, offer distinct advantages over single-sensor systems. Multi-sensor

systems are inherently more robust to individual sensor failures and, when dis-

tributed, can cover larger ROIs. Through the exchange of data over a connected

network of sensors, information from separate sources can be fused to provide more

refined classification assessments or state estimates. Examples of multi-sensor sys-

tems include terrestrial wireless sensor networks [84, 103, 3], underwater sensor

networks [109], SSA sensor networks [46, 45, 38, 39, 71, 98, 20], unmanned aerial

systems (UASs) [123], climate measurement systems [120], satellite systems [18],

and multi-static radar systems [27, 129, 105].

Dynamic and configurable sensor networks can offer even greater sensing ca-

pability, but require sophisticated coordination to maximize the collective perfor-

mance and avoid unwanted redundancy. While human-centric operation of multi-

sensor networks is feasible for small numbers of sensors, efficient orchestration of

large sensor networks ultimately requires machine-driven autonomy.

Multi-sensor control objective functions generally fall into one of two cate-

gories: task-driven and information-driven [61]. Task-driven objective functions

are typically heuristic and designed to encode some tangible goal, such as regional
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coverage, detection of objects, or object classification. Task-driven approaches are

often amenable to dynamic programming-based solutions and perform well in ap-

plications where the desired system behavior is well-described by a single goal or

figure of merit. Information-driven objective functions, on the other hand, are

theoretically rigorous and elegantly encapsulate multiple complex and competing

objectives. It is for these reasons that information-theoretic policies have been

described as “a near-universal proxy” to convey their ability to achieve similar

performance to tailored task-driven policies for a wide range of tasks [48, 61].

This chapter considers the problem of information-driven autonomous multi-

sensor SWT with an unknown and time-varying number of objects using noisy

measurements with unknown origin. In such scenarios, approaches that assume

prior knowledge of the number of objects [47, 104] are either inapplicable or exhibit

significant performance degradation. Recent work [57, 20, 83, 129, 117] has shown

that such problems can be formulated as an RFS POMDP, wherein the belief state

is described by a set density formed from the recursive assimilation of multi-sensor

measurement data. A key challenge of the RFS approach to multi-sensor control

is in evaluating the expected information gain which is generally intractable. For

this reason, all existing RFS multi-sensor control approaches [57, 20, 83, 129, 117]

employ a computationally-inexpensive yet severe single-sample approximation of

the expected information gain known as the PIMS approximation. This chapter

presents the first RFS multi-sensor control approach based on higher-order approx-

imations of the expected information gain which capture the contributions of non-

ideal measurements. In particular, this chapter treats the general and nontrivial

case in which sensor FoVs may fully or partially overlap, in which the information

gain is nonadditive across sensors.
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The remainder of the chapter is organized as follows: Section 5.2 describes

the problem formulation. Section 5.3 derives a cell-MB approximation of the

expected multi-sensor information gain for information gain functions satisfying

cell-additivity constraints. An information-theoretic reward based on iterated-

corrector updates is proposed and proven to satisfy the cell-additivity property

under appropriate cell-decompositions. Section 5.4 derives the information gain

for joint SWT by use of a joint representation of discovered and undiscovered ob-

jects and presents a computationally efficient suboptimal solution to multi-FoV

optimization. Section 5.5 includes a demonstration of the approach in a challeng-

ing SWT problem involving multiple remote sensors and ground vehicles, with

tracking performance analyzed and compared across different numbers of sensors.

5.2 Problem Formulation

This chapter considers an online SWT problem involving multiple homogeneous

sensors with bounded and mobile FoVs that can be manipulated by an automatic

controller, as illustrated in Fig. 5.1. The sensing objective is to discover and track

multiple unidentified moving objects in an ROI that far exceeds the size of the

FoV of an individual sensor. The objects are characterized by partially hidden

states and are subject to unknown random inputs, such as driver commands, and

may leave and enter the ROI at any time. The sensor control inputs are to be

optimized at every time step in order to maximize the expected reduction in track

uncertainty, as well as the overall state estimation performance.

The number of objects is unknown a priori and changes over time because

objects enter and exit the surveillance region as well as, potentially, the sensor
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Figure 5.1: Multi-sensor multi-object search-while-tracking with M = 3 sensors,
where due to sensor FoV overlap (green region), the information gain is nonadditive
over sensors.

FoVs. Let Nk denote the number of objects present in the surveillance region W

at time k. The multi-object state Xk is the collection of Nk single-object states at

time k and is expressed as the finite set

Xk = {xk,1, . . . ,xk,Nk
} ∈ F(X) (5.1)

where xk,i is the ith element of Xk and F(X) denotes the collection of all finite

subsets of the object state space X.

The multi-object measurement produced by sensor i is the collection of M (i)
k

single-object measurements at time k and is expressed as the set

Z
(i)
k = {zk,1, . . . , zk,M(i)

k
}(i) ∈ F(Z(i)) (5.2)

where Z(i) denotes the measurement space of sensor i. The sensor resolution is

such that single-object detections zk,j are represented by points, e.g., a centroidal

pixel, with no additional classification-quality information. Because detections

contain no identifying labels or features, the association between tracked objects

and incoming measurement data is unknown.
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The FoV of sensor i is defined as a compact subset S(i)
k ∈ S, where S denotes the

space of compact subsets on Xs. Then, object detection is assumed to be random

and characterized by the probability function,

p
(i)
D,k(xk;S(i)

k ) = 1S(i)
k
(sk) · pD,k(sk) (5.3)

where the single-argument function p
(i)
D,k(sk) is the probability of object detection

for an unbounded FoV. In general, sensor FoVs may overlap, in which case multiple

simultaneous detections may be made of the same object. When an object is de-

tected, a noisy measurement of its state xk is produced according to the likelihood

function

zk ∼ g
(i)
k (zk|xk) (5.4)

where zk ∈ Z. In addition to detections originating from true objects, sensors

produce spurious measurements due to random phenomena, which are referred to

as clutter or false alarms. Each resolution cell (e.g., a pixel) of the sensor image

plane is equally likely to produce a false alarm, and thus, the clutter process is

modeled as a Poisson RFS process with PHD κ
(i)
c,k(z) [9]. For simplicity, it is

assumed that sensors are homogeneous such that p(i)D,k(·) = pD,k(·), g(i)k (·) = gk(·),

and κ
(i)
c,k(·) = κc,k(·) for all sensors i.

Let u
(i)
k ∈ U(i)

k denote the sensor control inputs that, through actuation, de-

termine the position of the sensor FoV at time k, S(i)
k , where U(i)

k is the set of all

admissible controls for sensor i. The control u(i)
k influences both the FoV geometry,

S(i)
k , and the sensor measurements, Z(i)

k , due to varying object visibility. Because

in many modern applications the surveillance region W is much larger than the

sensor FoV, only a fraction of the total object population can be observed at any

given time. Therefore, given the admissible control inputs U(i)
k , let the FoR be
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defined as

T (i)
k ,

⋃
u
(i)
k ∈U(i)

k

S(i)
k (u

(i)
k ) (5.5)

and represent the composite of regions that the sensor can potentially cover (al-

though not simultaneously) at the next time step.

Then, the sensor control problem can be formulated as an RFS POMDP [91,

62, 21], that includes a partially- and noisily-observed state Xk, a known initial

distribution of the state f0(X0), a probabilistic transition model fk|k−1(Xk|Xk−1),

a set of admissible control actions U(1:M)
k , and a reward Rk associated with

each control action. At every time step k, an RFS multi-sensor multi-object

tracker processes incoming measurements to produce the posterior information

state fk(Xk|Z(1)
0:k , . . . , Z

(M)
0:k ), where M denotes the total number of sensors. Then,

the sensor control input is chosen so as to maximize the expected information gain,

or,

u∗
k
(1:M) = µ∗(fk|k−1(Xk|Z(1:M)

0:k−1)) (5.6)

µ∗(fk|k−1(Xk|Z(1:M)
0:k−1)) , argmax

u
(1:M)
k ∈U(1:M)

k

{
E
[
Rk(Z

(1:M)
k ;S(1:M)

k , fk|k−1(Xk|Z(1:M)
0:k−1),u

(1:M)
0:k−1)

]}
(5.7)

S(1:M)
k , (S(1)

k , . . . ,S(M)
k ) ∈ S(1:M) (5.8)

u
(1:M)
0:k−1 , (u

(1)
0:k−1, . . . ,u

(M)
0:k−1) ∈ U(1:M)

0:k−1 (5.9)

U(1:M)
k , U(1)

k × · · · × U(M)
k (5.10)

where the functional dependence of Z(1:M)
k and S(1:M)

k on u
(1:M)
k is omitted for

brevity. In this chapter, Rk : Z(1:M) × S(1:M) × F × U(1:M)
k 7→ R is taken to be

a multi-sensor information gain function, where F represents the space of valid

RFS densities, while noting that the presented results are more broadly applicable

to any integrable reward function satisfying the cell-additivity constraint defined
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in Section 4.3. In general, the optimal decision may result in sensor FoVs that

partially or fully overlap, in which case the information value is not additive over

sensors.

Policies of the form of (5.7) are sometimes referred to as myopic, as they only

consider the reward or information gain for the single next time step, thereby

reducing the computational complexity compared to longer-horizon planning poli-

cies. However, even in the reduced complexity myopic setting, direct evaluation

of the optimal policy µ∗ is intractable due to the RFS expectation, which involves

an infinite summation of multivariate integrals. Optimization of sensor decisions

is further complicated by the high-dimensional admissible control space, which

grows exponentially with the number of sensors. Thus, principled approximations

of the optimal policy are required for tractability. Three forms of approximation

are considered in this chapter:

1. Approximation of the multi-sensor information gain using the PHD iterated-

corrector recursion (Section 5.3.1)

2. Approximation of the RFS expectation using the cell-MB approximation

(Section 5.3.1)

3. Constraints on admissible multi-sensor control actions (Sections 5.3.2

and 5.4.4)

5.3 Multi-Sensor Multi-Object Expected Information Gain

At every time step k, the multi-sensor decision u
(1:M)
k must be determined on the

basis of its resulting information value. However, because the future multi-sensor
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measurement is unknown and random, so too is the actual information gain. Thus,

a “risk neutral” strategy is to control sensors according to the expected informa-

tion gain. Given the known multi-sensor measurement distribution f(Z(1:M)), the

information gain is averaged over all possible multi-sensor measurements via the

RFS expectation

E[R] =
∫
R(Z(1:M);S(1:M))f(Z(1:M))δZ(1)δZ(2) · · · δZ(M) (5.11)

Direct computation of (5.11), which involves multiple set integrals, is clearly

intractable. This section shows, however, that for certain classes of information

gain functionals, the multi-sensor multi-object information gain expectation can

be approximated through nested cell-MB expectations. For clarity of presentation,

the approximation is first developed for the specific case of two sensors before

proceeding to the general case of M sensors.

5.3.1 Information Gain for Two Sensors with Common FoV

This subsection establishes the cell-MB approximation of the multi-sensor multi-

object information gain expectation for the case of two sensors. For conceptual

clarity and ease of exposition, it is assumed that the sensors have identical FoVs

S(1) = S(2) = S. This is without loss of generally, as the result holds when applied

over regions of partial FoV overlap, as is shown in Section 5.3.2.

The cell-MB approach to multi-sensor information driven control is based

on cell-MB approximations of the “last” sensor’s measurement distribution

f(Z(M)) and of the conditional measurement distributions f(Z(i)|Z(i+1:M);S) for

i = 1, ...,M− 1. In the case of two sensors, this corresponds to the approximation
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of f(Z(2)) and f(Z(1)|Z(2);S) as cell-MB. By this approach, the expected multi-

sensor multi-object information gain reduces to a finite sum, as established more

formally in the following theorem.

Theorem 2. Let f(Z(2)) be cell-MB with parameters {rj, pj}Pj=1. Let the condi-

tional measurement density f(Z(1)|Z(2);S) be cell-MB with conditional parameters

{řj(Z(2) ∩
j

Z), p̌j(z|Z(2) ∩
j

Z)}Pj=1. If R(Z(1), Z(2);S) is integrable and cell-additive,

then

EZ(1),Z(2) [R(Z(1), Z(2);S)] (5.12)

=
P∑

j=1

(1− rj)(1− řj(∅))R(∅, ∅;
j

S)

+
P∑

j=1

(1− rj)řj(∅)
[∫

j

Z
R({z′}, ∅;

j

S)p̌j(z′|∅)dz′
]

+
P∑

j=1

rj
[∫

j

Z
R(∅, {z};

j

S)(1− řj({z}))pj(z)dz
]

+
P∑

j=1

rj
{∫

j

Z
řj({z})

[∫
j

Z
R({z′}, {z};

j

S)p̌j(z′|{z})dz′
]
pj(z)dz

}

The proof is provided in Appendix A.6. Equation (5.12) is the two-sensor

cell-MB expected multi-sensor reward. The right-hand-side (RHS) of (5.12) is

organized intentionally to reveal that the expectation considers four possible out-

comes for each cell. From top to bottom, the four groups of terms correspond to

the cases of “miss/miss,” “detect/miss,” “miss/detect,” and “detect/detect,” re-

spectively. That is, the first line of the RHS corresponds to the information gain

achieved when both sensors produce no measurements in a given cell. The second

(third) line, then, corresponds to the information gain for sensor one (two) produc-

ing a singleton measurement and sensor two (one) producing no measurement in

a given cell. Lastly, the fourth line corresponds to both sensors producing single-
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ton measurements. Unlike the previous terms, this “detect/detect” case involves

integration over
j

Z×
j

Z and thus is the most computationally burdensome term.

In Theorem 2, the conditional density f(Z(1)|Z(2);S) is taken to be cell-MB.

Recall that, given a suitable cell-decomposition, a cell-MB density approximation

can be obtained for an arbitrary density, as shown in Section 4.3.1. Specifically, by

Proposition 5, given the conditional density f(Z(1)|Z(2);S) and its corresponding

conditional PHD Ď(z|Z(2);S), the best cell-MB approximation is specified by the

parameters

řj(Z(2) ∩
j

Z) =
∫

1 j

Z
(z)Ď(z|Z(2) ∩

j

Z;
j

S)dz (5.13)

p̌j(z|Z(2) ∩
j

Z) =
1

řj(Z(2) ∩
j

Z)
1 j

Z
(z)Ď(z|Z(2) ∩

j

Z;
j

S) (5.14)

In general, direct computation of f(Z(1)|Z(2);S) may be impractical. Instead, the

conditional PHD can be approximated directly from the prior PHD as

Ď(z|Z;Sk) ≈
∫
X
Dk|k−1(x)LZ(x;S, Dk|k−1)pD,k(x;Sk)gk(z|x)dx+ κc,k(z) (5.15)

The remainder of this subsection establishes a multi-sensor information gain

approximation that satisfies cell-additivity constraints and thus can be applied in

concert with Theorem 2. Consider the KLD multi-sensor information gain for the

case when the prior and posterior distributions are Poisson, where by (2.38),

IKL,Pois(f(Xk|Z(1:M)
0:k ); f(Xk|Z(1:M)

0:k−1)) = N0 −N1 +

∫
Dk|k(x) log

(
Dk|k(x)

Dk|k−1(x)

)
dx

(5.16)

where N0 =
∫
Dk|k−1(x)dx and N1 =

∫
Dk|k(x)dx. Recall that a Poisson RFS

distribution is completely described by its PHD. Thus, the multi-sensor posterior

can be approximated by the multi-sensor iterated corrector PHD update [72]:

Dk|k(x) ≈ LZ(2)(x;S, D(1)
k (·|Z(1);S)) · LZ(1)(x;S, Dk|k−1) ·Dk|k−1(x) (5.17)
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where Dk|k is the posterior PHD, Dk|k−1(x) is the prior PHD, and

D
(1)
k (x|Z(1);S) = LZ(1)(x;S, Dk|k−1) ·Dk|k−1(x) (5.18)

is the intermediate result of updating applying the first PHD update with Z(1).

By the iterated-corrector update (5.17), the KLD information gain is

Rk(Z
(1),Z(2);S, Dk|k−1) =

∫
X
Dk|k−1(x)·[

1− LZ(2)(x;S, D(1)
k (·|Z(1);S)) · LZ(1)(x;S, Dk|k−1)

+ LZ(2)(x;S, D(1)
k (·|Z(1);S)) · LZ(1)(x;S, Dk|k−1)

· log
(
LZ(2)(x;S, D(1)

k (·|Z(1);S)) · LZ(1)(x;S, Dk|k−1)
)]
dx (5.19)

The following theorem establishes that (5.19) is cell-additive.

Theorem 3. Let the joint decomposition

Z =
1

Z ] · · · ]
P

Z , X =
1

X ] · · · ]
P

X (5.20)

be such that (4.16) and (4.24) hold. Let both sensors share a common Sk, gk(z|x),

pD,k(x;Sk), and κc,k(z). Then, the multi-sensor iterated-corrector PHD KLD in-

formation gain (5.19) is cell-additive. That is

Rk(Z
(1),Z(2);Sk, Dk|k−1) =

P∑
j=1

Rk(Z
(1) ∩

j

Z, Z(2) ∩
j

Z;
j

Sk, Dk|k−1) (5.21)

The proof is provided in Appendix A.7.

Thus, given the conditional cell-MB parameters (5.13)-(5.14), and cell-

additivity satisfaction by Theorem 3, the expected multi-sensor multi-object in-

formation gain is obtained via Theorem 2. The significance of this result is that

the expectation, which is generally intractable due to the infinite summation of
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multivariate integrals (see (5.11) and (2.21)), is given by a finite sum. Note that

the terms corresponding to the “detect/detect” case in (5.12) require integration

on
j

Z ×
j

Z, and thus is more computationally demanding than the single-sensor

cell-MB expectation.

Fortunately, by the nature of the cell decomposition, the information gain ex-

pectation can be computed cell-wise, where the two-sensor cell-MB expectation

is computed for cells covered by two sensors, and the less expensive single-sensor

cell-MB expectation is computed for cells covered by one sensor, as shown in Sec-

tion 5.3.2. While, in principle, nested cell-MB approximations can be applied to

express the expected information gain for regions covered by three or more sen-

sors, the resulting expressions are increasingly cumbersome to compute due to

the increased dimensionality of the integral in the “all detect” case. Thus, the

remainder of this chapter considers information gain functions and corresponding

control policies that restrict a given cell’s coverage to at most two sensors, without

restricting the number of sensors in general, which may be greater than two.

5.3.2 Information Gain for M Sensors with Partial FoV

Overlap

This section establishes the expected multi-sensor information gain for the general

case of M homogeneous sensors under the restriction that no region is covered by

more than two sensors simultaneously. This assumption is illustrated in Fig. 5.2

and formalized in the following assumption:

Assumption 1. No cell is covered by more than two sensors simultaneously.
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Equivalently,

S(i)
k ∩ S

(j)
k ∩ S

(`)
k = ∅ ∀i 6= j 6= `, i, j, ` ∈ NM (5.22)

(a) (b)

Figure 5.2: Examples of (a) allowable FoV overlap where S(i)
k ∩S

(j)
k ∩S

(`)
k = ∅, and

(b) unallowable FoV overlap where S(i)
k ∩ S

(j)
k ∩ S

(`)
k 6= ∅.

Theorem 4. Let Assumption 1 hold. Let f(Z(M)) be cell-MB and f(Z(i)|Z(i+1:M))

be conditionally cell-MB for 1 ≤ i < M. Then, the multi-sensor multi-object

expected information gain is

EZ(1:M) [R(Z(1:M);S(1:M))] =
P∑

j=1

E(j, Z(1:M),S(1:M)) (5.23)

where, for b ∈ NM,

E(j, Z(b:M),S(b:M)) (5.24)

=


E[R(Z(i) ∩

j

Z;
j

S)]
j

X ⊆ S(i),
j

X * S(t) ∀ b ≤ t ≤ M, t 6= i

E[R(Z(i) ∩
j

Z, Z(t) ∩
j

Z;
j

S)]
j

X ⊆ S(i) ∩ S(t), b ≤ i < t ≤ M

0 otherwise

A proof by induction is provided in Appendix A.8.
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5.4 Search-While-Tracking (SWT) Multi-Sensor Control

This section presents a joint multi-sensor multi-object information gain function

and multi-sensor control policy that accounts for both discovered and undiscovered

objects. The information gain function proposed in Section 5.4.1 balances the

competing objects of maintaining existing track estimates and discovering new

objects without introducing heuristics. The discovered object and undiscovered

object components of the joint multi-sensor information gain function are derived

in Sections 5.4.2 and 5.4.3. Section 5.4.4 presents a greedy approach to multi-sensor

FoV optimization under the joint information-theoretic control objective.

5.4.1 Joint Information Gain Function

As shown in Section 4.4.1, separate density parameterizations for discovered and

undiscovered objects enable efficient computation of the joint information gain.

This section lifts the joint information gain approach to the multi-sensor setting.

Denote by Xu,k ∈ F(X) the undiscovered multi-object state, defined here as the

state of objects that were not detected during steps 0, . . . , k− 1. Let Xd,k ∈ F(X)

be the discovered state, defined as the state of objects detected prior to k. Then,

sensor i’s measurement is composed by Z
(i)
u,k, Z

(i)
d,k, and Z

(i)
c,k, which denote the

detections generated by Xu,k, Xd,k, and clutter, respectively. Let V (i)
k , Z

(i)
d,k ∪Z

(i)
c,k

and W
(i)
k , Z

(i)
u,k ∪ Z

(i)
c,k. Then, the multi-sensor control policy is defined in terms

of the joint information gain as

µ(f̊p,k|k−1(X̊p,k|Z(1:M)
0:k−1), fu,k|k−1(Xu,k))

= argmax
u
(1:M)
k ∈U(1:M)

k

{
E[Rd

k(V
(1:M)
k ;S(1:M)

k )] + E[Ru
k(W

(1:M)
k ;S(1:M)

k )]

}
(5.25)

96



where

Rd
k(·; ·) = Rk(·; ·, Dd,k|k−1) (5.26)

Ru
k(·; ·) = Rk(·; ·, Du,k|k−1) (5.27)

are used for brevity, and Dd,k|k−1 and Du,k|k−1 are the prior PHDs of discovered and

undiscovered objects, respectively. The multi-sensor control policy is a function

of the predicted distribution of discovered objects and the predicted distribution

of undiscovered objects. Furthermore, the proposed iterated-corrector based KLD

information gain functions are described completely in terms of the PHDs of the

underlying distributions, and thus are written explicitly as functions of Dd,k|k−1

and Du,k|k−1. The individual information gain expectations for discovered and

undiscovered objects are derived in the following subsections.

5.4.2 Expected Information Gain of Discovered Objects

If f(V (M)
k ) is cell-MB with parameters {rjv, pjv}Pj=1, f(V

(i)
k |V

(i+1:M)
k ) is conditionally

cell-MB with parameters {rjv(V
(i+1:M)
k ∩

j

Z), pjv(z|V
(i+1:M)
k ∩

j

Z)}Pj=1, and no cell is

covered by more than two sensors, then it follows from Theorem 4 that

EV (1:M) [Rd(V (1:M);S(1:M))] =
P∑

j=1

Ed(j, V (1:M),S(1:M)) (5.28)

where the time subscripts have been omitted for brevity and, as a slight abuse of

notation,

V
(i+1:M)
k ∩

j

Z , V
(i+1)
k ∩

j

Z, . . . , V (M)
k ∩

j

Z (5.29)
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and

Ed(j, V (1:M),S(1:M)) (5.30)

=


E[Rd(V (i) ∩

j

Z;
j

S)]
j

X ⊆ S(i),
j

X * S(t) ∀ 1 ≤ t ≤ M, t 6= i

E[Rd(V (i) ∩
j

Z, V (t) ∩
j

Z;
j

S)]
j

X ⊆ S(i) ∩ S(t), 1 ≤ i < t ≤ M

0 otherwise

The first case of (5.30) is given by (4.29). The second case corresponds to two

sensors overlapping a given cell and is given by

E[Rd(V (i) ∩
j

Z, V (t) ∩
j

Z;
j

S)] (5.31)

= (1− rjv)(1− řjv(∅))Rd(∅, ∅;
j

S)

+ (1− rjv)řjv(∅)
[∫

j

Z
Rd({z′}, ∅;

j

S)p̌jv(z′|∅)dz′
]

+ rj
[∫

j

Z
Rd(∅, {z};

j

S)(1− řjv({z}))pjv(z)dz
]

+ rj
{∫

j

Z
řjv({z})

[∫
j

Z
Rd({z′}, {z};

j

S)p̌jv(z′|{z})dz′
]
pjv(z)dz

}

5.4.3 Expected Information Gain of Undiscovered Objects

If f(W (M)
k ) is cell-MB with parameters {rjw, pjw}Pj=1, f(W

(i)
k |W

(i+1:M)
k ) is condition-

ally cell-MB with parameters {rjw(W
(i+1:M)
k ∩

j

Z), pjw(z|W
(i+1:M)
k ∩

j

Z)}Pj=1, and no

cell is covered by more than two sensors, then it follows from Theorem 4 that

EW (1:M) [Ru(W (1:M);S(1:M))] =
P∑

j=1

Ed(j,W (1:M),S(1:M)) (5.32)
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where the time subscripts have been omitted for brevity, and

Eu(j,W (1:M),S(1:M)) (5.33)

=


E[Ru(W (i) ∩

j

Z;
j

S)]
j

X ⊆ S(i),
j

X * S(t) ∀ 1 ≤ t ≤ M, t 6= i

E[Ru(W (i) ∩
j

Z,W (t) ∩
j

Z;
j

S)]
j

X ⊆ S(i) ∩ S(t), 1 ≤ i < t ≤ M

0 otherwise

The first case of (5.33) is given by (4.44). The second case corresponds to two

sensors overlapping a given cell and is given by

E[Ru(W (i) ∩
j

Z,W (t) ∩
j

Z;
j

S)] (5.34)

= (1− rjw)(1− řjw(∅))Ru(∅, ∅;
j

S)

+ (1− rjw)řjw(∅)
[∫

j

Z
Ru({z′}, ∅;

j

S)p̌jw(z′|∅)dz′
]

+ rj
[∫

j

Z
Ru(∅, {z};

j

S)(1− řjw({z}))pjw(z)dz
]

+ rj
{∫

j

Z
řjw({z})

[∫
j

Z
Ru({z′}, {z};

j

S)p̌jw(z′|{z})dz′
]
pjw(z)dz

}
As discussed in Section 4.4.3, if the prior PHD of undiscovered objects is taken to

be partially piecewise homogeneous with a position-marginal PHD given by (4.37),

then it can be shown that (5.34) is a function only of the prior expected number

of undiscovered objects in each cell, λj,k|k−1. Thus, for a one-time computational

cost, (5.34) can be computed at the outset for a range of values λj,k|k−1 ∈ [0, 1],

and then simply interpolated at each time k.
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5.4.4 Field-of-View Optimization and Multi-Sensor Con-

trol

Because exhaustive search over the complete space of multi-sensor actions U(1:M) is

NP-hard [104, 126], suboptimal solutions of (5.7) are needed. The constraint on the

maximum cell overlap reduces the search space considerably. The computational

burden can be further reduced by considering a greedy optimization algorithm

[58]. To avoid computing the expected two-sensor reward for every cell, a greedy

optimization strategy can be applied as follows:

u(M)∗ ← argmin
u∈U(M)

{
EZ(M) [R(Z(M); (S(M)(u)))]

}
(5.35)

u(M−1)∗ ← argmin
u∈U(M−1)

{
EZ(M−1),Z(M) [R(Z(M−1), Z(M); (S(M−1)(u),S(M)∗))]

}
(5.36)

u(M−2)∗ ← argmin
u∈Ū(M−2)

{
EZ(M−2:M) [R(Z(M−2), Z(M−1), Z(M); (S(M−2)(u),S(M−1)∗,S(M)∗))]

}
(5.37)

...

u(1)∗ ← argmin
u∈Ū(1)

{
EZ(1:M) [R(Z(1), . . . , Z(M); (S(1)(u),S(2)∗, . . . ,S(M)∗))]

}
(5.38)

where S(i)∗ , S(i)(u(i)∗) and, for sensors i = 1, . . . ,M − 2, the restricted space of

admissible control actions

Ū(i) , {u : u ∈ U(i),S(i)(u) ∩ S(j) ∩ S(h) = ∅ ∀ i < j < h ≤ M} (5.39)

ensures that no cell is covered by more than two sensors simultaneously. The

greedy strategy begins by determining the sensor input u(M)∗ according to (4.51).

Then, for sensor M − 1, evaluation of the more computationally expensive two-

sensor information gain expectation is required only for the subset of cells within

S(M)∗ ∩ T (M−1), and so forth for the remaining sensors.
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5.5 Application to Remote Multi-Vehicle SWT

In this section, the efficacy of the cell-MB multi-sensor information driven control

is demonstrated on an SWT problem involving multiple ground vehicles and real

video data. A detailed description of the experiment can be found in Section 4.5,

which is summarized here for convenience. The experiment consists of discovering

and tracking an unknown and time-varying number of vehicles which are observed

by a camera system approximately five kilometers away. Vehicle motion is mod-

eled using the nonlinear nearly coordinated turn model. Each sensor’s single-object

measurement likelihood is linear-Gaussian as described in Section 4.5.2. One key

difference in the multi-sensor experiment is that synthetic noisy measurements

are generated from the ground truth in place of the image processing-based mea-

surements. This ensures that the measurement noise is independent across the

simulated sensors since the dataset was collected from a single physical sensor.

At each time step, sensor decisions are determined by the greedy optimization

program (5.38). The noisy measurements are incorporated to update the infor-

mation state using the multi-sensor data-driven GLMB filter [65]. State estimates

are computed from the posterior multi-object distribution. The GOSPA metric

measures the error between the ground truth and the state estimates and is used

to assess the overall SWT performance. GOSPA values for simulations involving

M = 2, 3, and 4 sensors are shown in Fig. 5.3.

Unsurprisingly, the best SWT performance is achieved by the four-sensor sys-

tem. The most significant performance differences occur at the early time steps

due to the larger networks’ ability to more quickly discover all objects in the scene.

These differences are less pronounced at the later time steps, when control deci-

sions are less influenced by discovering objects and more driven by the information
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Figure 5.3: GOSPA metric and component errors over time using cutoff distance
c = 20 [pixel], order p = 2, and α = 2.

gain associated with maintaining tracks of discovered objects.

Snapshots of the sensor FoV positions and the multi-object state uncertainty

are shown at three time steps for each of the experiments in Fig. 5.4. When

considering the added complexity associated with allowing sensor FoV overlap, a

natural question that arises is “Is it worth it?”. A related question is “Given the

opportunity to overlap, how often does an overlapping FoV configuration corre-

spond to a higher expected information gain?”. If overlapping configurations are

rarely optimal, it is then reasonable to consider constraining FoV geometries to

be disjoint to lessen the computational complexity of the control objective. The

snapshots in Fig. 5.4 alone, however, suggest that the optimal sensor configurations

often involve overlapping FoVs and that the extent of overlap increases with larger

numbers of sensors. These trends are explored more thoroughly by computing the
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Figure 5.4: FoV positions and tracker estimates for M = 2 (a)-(c), M = 3 (d)-(f),
and M = 4 (g)-(i), where the columns correspond to k = 5, 30, 45 from left to right.

ratio of unique coverage area to total FoV area, as shown over time in Fig. 5.5. In

Fig. 5.5, values of 100% correspond to disjoint FoVs, and lower values correspond

to increased overlap region areas. The results shown in Fig. 5.5 confirm that, in

all three experiments, the optimal configuration frequently involved overlapping

FoVs. The FoV overlap extent also appears to increase with the number of sensors

considered. This observation suggests that, even if enough sensors are available

to simultaneously cover the entire ROI, it is often better, from an information-

theoretic perspective, to allow regions to go briefly uncovered in favor of doubling

coverage in an area characterized by high concentrations of objects of interest.
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Figure 5.5: The ratio of unique area coverage to total FoV area, expressed as a
percentage and smoothed by a five step rolling average filter for legibility.

5.6 Conclusion

This chapter presents an information-theoretic control policy for multi-sensor

multi-object search-while-tracking (SWT) that is demonstrated in a multi-vehicle

tracking problem using real video data from a remote sensor. The proposed policy

is made tractable by a novel approximation of the expected information gain using

cell multi-Bernoulli (cell-MB) distribution approximations, while accounting for a

variety of sensing outcomes, including spurious detections, missed detections, and

overlapping sensor fields-of-view (FoVs). An analysis of the experimental results

reveals that optimal sensing configurations often involve overlapping sensor FoV,

suggesting that other policies that require disjoint sensor coverage are subopti-

mal in an information-theoretic sense. Finally, the information-theoretic approach
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presented in this chapter is not restricted to the chosen sensor phenomenology

or object dynamics and has been developed to be extensible to a wide variety of

multi-sensor multi-object sensing applications.
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APPENDIX A

APPENDIX

A.1 Proof of Proposition 3

Equation (2.25) can be rewritten as

f(X) =
[(
1− r(·)

)]NM
∑

(Iσ)]I3

[
ri(·)pi(·)(x(·))

1− ri(·)

]Nn

(A.1)

where (Iσ) denotes the (ordered) sequence (i1,..., in) = (ασ(1),..., ασ(n)), where the

n-tuple index set {α1,..., αn} ] I3 = NM and σ is a permutation of Nn.

Substituting (A.1) into (3.68),

ρS(n) =
[(
1− r(·)

)]NM

·
M∑

m=n

1

m!

∫
Xm

∑
(Iσ)]I3

δm(|Iσ|)
[
ri(·)pi(·)(x(·))

1− ri(·)

]Nm

∑
Xn⊆X

[1S(·)]X
n

[1− 1S(·)]X\Xn

dx1 · · · dxm (A.2)

The last sum can be written in terms of label index sets I1 ] I2 = Iσ as

ρS(n) =
[(
1− r(·)

)]NM (A.3)

·
M∑

m=n

1

m!

∫
Xm

∑
(Iσ)]I3

δm(|Iσ|)
[
ri(·)pi(·)(x(·))

1− ri(·)

]Nm

·
∑

I1]I2=Iσ

δn(|I1|)[1S(x(·))]
{j:ij∈I1}[1− 1S(x(·))]

{j:ij∈I2}dx1 · · · dxm
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Distributing terms from the second summation,

ρS(n) =
[(
1− r(·)

)]NM (A.4)

·
M∑

m=n

1

m!

∫
Xm

∑
(Iσ)]I3

δm(|Iσ|)
∑

I1]I2=Iσ

δn(|I1|)

·
[
1S(x(·))r

i(·)pi(·)(x(·))

1− ri(·)

]{j:ij∈I1}
·
[
[1− 1S(x(·))]r

i(·)pi(·)(x(·))

1− ri(·)

]{j:ij∈I2}
dx1 · · · dxm

Because I1 ∩ I2 = ∅, then {xj : ij ∈ I1} ∩ {xj : ij ∈ I2} = ∅ and the integral on

Xm becomes a product of integrals on X, such that

ρS(n) =
[(
1− r(·)

)]NM (A.5)

·
M∑

m=n

1

m!

∑
(Iσ)]I3

δm(|Iσ|)
∑

I1]I2=Iσ

δn(|I1|)

·

[〈
1S , r

i(·)pi(·)
〉

1− ri(·)

]{j:ij∈I1} [〈
1− 1S , r

i(·)pi(·)
〉

1− ri(·)

]{j:ij∈I2}
Now note that the result of the innermost sum does not depend on the permutation

order of (Iσ). Thus the property [113, Lemma 12] that for an arbitrary symmetric

function h ∑
(i1,...,im)

h({i1, . . . , im}) = m!
∑

{i1,...,im}

h({i1, . . . , im}) (A.6)

is applied, yielding

ρS(n) =
[(
1− r(·)

)]NM ·
M∑

m=n

∑
I1]I2]I3

δm(|I1 ] I2|)δn(|I1|)

·

[〈
1S , r

(·)p(·)
〉

1− r(·)

]I1 [〈
1− 1S , r

(·)p(·)
〉

1− r(·)

]I2
The term δm(|I1 ] I2|) is non-zero only when the combined cardinality of I1 and

I2 is equal to m—the index of the outermost sum. Thus, the outermost sum is

absorbed by the second sum to give (3.77). �
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A.2 Cell-MB Parameter Optimization

The minimization of the KLD between f and f̄ can be equivalently expressed as

the maximization problem

max
{rj ,pj}Pj=1

[∫
f(Y ) log(f̄(Y ))δY

]
(A.7)

Equation (4.9) can be equivalently written as

f̄(Y ) = ∆(Y,Y)
P∏

j=1

(
1− rj

)( n∏
i=1

P∑
j=1

rjpj(yi)

1− rj

)
(A.8)

where it is noted that for each i in the rightmost product, the sum has only one

nonzero term at j = j′ where
j′

Y 3 yi. Thus, (A.8) can be factored as

f̄(Y ) = ∆(Y,Y)
P∏

j=1

(
1− rj

)( n∏
i=1

P∑
j=1

1 j

Y
(yi)

1− rj

)(
n∏

i=1

P∑
j=1

rjpjn(yi)

)
(A.9)

According to (2.26), the rightmost sum of (A.9) is equal to the PHD of f̄(Y ), such

that

f̄(Y ) = ∆(Y,Y)
P∏

j=1

(
1− rj

)( n∏
i=1

P∑
j=1

1 j

Y
(yi)

1− rj

)(
n∏

i=1

D̄(yi)

)
(A.10)

Now, taking the logarithm of (A.10),

log(f̄(Y )) = log(∆(Y,Y)) + log
P∏

j=1

(
1− rj

)
(A.11)

+ log

(
n∏

i=1

P∑
j=1

1 j

Y
(yi)

1− rj

)
+ log

(
n∏

i=1

D̄(yi)

)

= log(∆(Y,Y)) +
P∑

j=1

log
(
1− rj

)
(A.12)

+
n∑

i=1

log

(
P∑

j=1

1 j

Y
(yi)

1− rj

)
+

n∑
i=1

log
(
D̄(yi)

)
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The third term in (A.13) can be modified by recognizing that the inner sum has

only one nonzero term, and thus

n∑
i=1

log

(
P∑

j=1

1 j

Y
(yi)

1− rj

)
=

n∑
i=1

log

 1

1−
∑P

j=1 1 j

Y
(yi)rj

 (A.13)

= −
n∑

i=1

log

(
1−

P∑
j=1

1 j

Y
(yi)r

j

)
(A.14)

which, by substitution of into (A.13), yields

log(f̄(Y )) = log(∆(Y,Y)) +
P∑

j=1

log
(
1− rj

)
(A.15)

−
n∑

i=1

log

(
1−

P∑
j=1

1 j

Y
(yi)r

j

)
+

n∑
i=1

log
(
D̄(yi)

)
Now taking the set integral of the product∫

f(Y ) log(f̄(Y ))δY

=

∫
f(Y ) log(∆(Y,Y))δY +

∫ P∑
j=1

f(Y ) log
(
1− rj

)
δY

−
∫ n∑

i=1

f(Y ) log

(
1−

P∑
j=1

1 j

Y
(yi)r

j

)
δY

+

∫ n∑
i=1

f(Y ) log
(
D̄(yi)

)
δY (A.16)

=

∫ P∑
j=1

f(Y ) log
(
1− rj

)
δY

−
∫ n∑

i=1

f(Y ) log

(
1−

P∑
j=1

1 j

Y
(yi)r

j

)
δY

+

∫ n∑
i=1

f(Y ) log
(
D̄(yi)

)
δY (A.17)

where in the last equation, the first term vanished due to the observation that

f(Y ) = 0 everywhere that ∆(Y,Y) = 0 and by application of the identity
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limx→0 x log x = 0. By applying Proposition 2a of [72], which states that∫
f(Y )

n∑
i=1

h(yi)δY =

∫
D(y)h(y)dy (A.18)

equation (A.17) can be rewritten in terms of the PHD as∫
f(Y ) log(f̄(Y ))δY

=
P∑

j=1

log
(
1− rj

)
−
∫
D(y) log

(
1−

P∑
j=1

1 j

Y
(y)rj

)
dy

+

∫
D(y) log

(
D̄(y)

)
dy (A.19)

=
P∑

j=1

log
(
1− rj

)
−

P∑
j=1

∫
1 j

Y
(y)D(y) log

(
1− rj

)
dy

+

∫
D(y) log

(
D̄(y)

)
dy (A.20)

=
P∑

j=1

log
(
1− rj

)(
1−

∫
1 j

Y
(y)D(y)

)
+

∫
D(y) log

(
D̄(y)

)
dy (A.21)

Equation (A.21) consists of the sum of two terms and is maximized when both

terms are simultaneously maximized. The first term is maximized by

rj =

∫
1 j

Y
(y)D(y)dy

and the second term is maximized when D̄(y) = D(y). By (2.26),

D̄(y) =
P∑

j=1

rjpj(y) =
P∑

j=1

1 j

Y
(y)D(y) (A.22)

By equating like-terms,

pj(y) =
1

rj
1 j

Y
(y)D(y) (A.23)

completing the proof. �

110



A.3 Cell-MB Expectation

Let z1:n , z1, . . . , zn and dz1:n , dz1 · · · dzn. Substitution of the cell-MB density

(4.9) and cell-additive information gain (4.17) into (4.7) gives

E[R] =
[

r(·)

1− r(·)

]NP
(
R(∅;S) +

P∑
n=1

1

n!
ψ(n;S)

)
(A.24)

where

ψ(n;S) ,
∫

∆({z1:n},Z) ·

[
P∑

j=1

R({z1:n} ∩
j

Z;
j

S)

][
P∑

j=1

rjpj(z(·))

1− rj

]Nn

dz1:n (A.25)

We wish to simplify the set integral into combinations of vector integrals
∫
·dz

such that the expected information gain is computationally feasible. Integrals on

Z are equivalent to ∫
h(z)dz =

∫
1
Z
h
(1
z
)
d
1
z+ · · ·+

∫
P
Z
h
(P
z
)
d
P
z (A.26)

where
j
z ∈

j

Z, as shown in [75, Eqn. 3.50]. First, note that the rightmost sum

P∑
j=1

rjpj(zi)

1− rj
(A.27)

has only one nonzero term: namely, when j = j′ where zi ∈
j′

Z. Then, the integral

can be written as a sum of integrals, each wherein z1 is integrated over a different

subset
i1
Z ⊆ Z, i1 ∈ NP as follows:

ψ(n;S) =
P∑

i1=1

∫
∆({z2:n},Z(i1))

·

[
R({i1z};

i1
S) +

P∑
j=1,j 6=i1

R({z2:n} ∩
j

Z;
j

S)

]

·

(
ri1pi1(

i1
z)

1− ri1

)[
P∑

j=1,j 6=i1

rjpj(z(·))

1− rj

]Nn\N1

d
i1
z dz2:n (A.28)
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where

Z(i1, ..., in) , Z \ (
i1
Z ] · · · ]

in
Z) (A.29)

Repeating the same procedure for z2, ..., zn

ψ(n;S) =
P∑

i1=1

P∑
i2=1,i2 6=i1

∫
∆({z3:n},Z(i1, i2))

·

R({i1z}; i1S) +R({i2z}; i2S) + P∑
j=1,j /∈{i1,i2}

R({z3:n} ∩
j

Z;
j

S)


·

ri(·)pi(·)(i(·)z )
1− ri(·)

N2
 P∑

j=1,j /∈{i1,i2}

rjpj(z(·))

1− rj

Nn\N2

d
i1
z d

i2
z dz3:n (A.30)

=
∑

1≤i1 6=···6=in≤P

∫ [
R({i1z};

i1
S) + · · ·+R({inz};

in
S)+

R(∅;S(i1, . . . in))
]ri(·)pi(·)(i(·)z )

1− ri(·)

Nn

d
i1
z · · · din

z (A.31)

where

S(i1, . . . in) , S \ (
i1
S ] · · · ]

in
S) (A.32)

Moving the existence probability terms outside the integral and exploiting sym-

metry over order permutations of (i1, . . . , in) gives

ψ(n;S) = n!
∑

1≤i1<···< 6=in≤P

[
ri(·)

1− ri(·)

]Nn

∫ [
R({i1z};

i1
S) + · · ·+R({inz};

in
S) +R(∅;S(i1, . . . in))

]
·
[
pi(·)(

i(·)
z )

]Nn

d
i1
z · · · din

z (A.33)

= n!
∑

1≤i1<···<6=in≤P

[
ri(·)

1− ri(·)

]Nn

·

[
R(∅;S(i1, . . . in)) +

n∑
`=1

∫
R({i`z};

i`
S)pi`(i`z)di`

z

]
(A.34)
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where the last line is obtained by using the pdf property
∫
pi`(

i`
z)d

i`
z = 1. Substi-

tution of (A.34) into (A.24) gives

E[R] =
[
1− r(·)

]NP R(∅;S) +

[
P∑

n=1

∑
1≤i1<···<in≤P

[
ri(·)
]Nn

·
[
1− r(·)

]NP \{i1,...,in}

·

(
R(∅;S(i1, ...in)) +

n∑
`=1

R̂i`
z

)]
(A.35)

The above equation can be expressed in a more convenient form using disjoint

index sets as

E[R] =
∑

I0]I1=NP

[
r(·)
]I1 [

1− r(·)
]I0 [∑

i∈I0

R(∅;
i

S) +
∑
`∈I1

R̂`
z

]
(A.36)

Through the introduction of indicator functions, the summation hierarchy can be

changed as follows:

E[R] =
P∑

j=1

R(∅;
j

S)
∑

I0]I1=NP

[
r(·)
]I1 [

1− r(·)
]I0 · 1I0(j)

+
P∑

j=1

R̂j
z

∑
I0]I1=NP

[
r(·)
]I1 [

1− r(·)
]I0 · 1I1(j) (A.37)

Consider the first line of (A.37). The inner summand is only nonzero when j ∈ I0,

so all nonzero terms share the common factor (1 − rj). Similarly, in the second

line, all nonzero terms in the inner summation share a common factor of rj. Thus

these terms are factored out, reducing the inner summation to one over disjoint

subsets of NP \ j as

E[R] =
P∑

j=1

R(∅;
j

S)
(
1− rj

) ∑
I0]I1=NP \j

[
r(·)
]I1 [

1− r(·)
]I0

+
P∑

j=1

R̂j
z · rj

∑
I0]I1=NP \j

[
r(·)
]I1 [

1− r(·)
]I0 (A.38)

A manipulation of the inner sum yields∑
I0]I1=NP \j

[
r(·)
]I1 [

1− r(·)
]I0

=
[
1− r(·)

]NP \j ∑
I0]I1=NP \j

[
r(·)

1− r(·)

]I1
(A.39)
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By the binomial theorem [74, p. 369],

∑
I0]I1=NP \j

[
r(·)

1− r(·)

]I1
=

[
1 +

r(·)

1− r(·)

]NP \j

(A.40)

Thus,

∑
I0]I1=NP \j

[
r(·)
]I1 [

1− r(·)
]I0

=

[(
1− r(·)

)(
1 +

r(·)

1− r(·)

)]NP \j

(A.41)

=
[
1− r(·) + r(·)

]NP \j
= 1 (A.42)

With this, (A.38) simplifies to

E[R] =
P∑

j=1

R(∅;
j

S)
(
1− rj

)
+

P∑
j=1

R̂j
z · rj (A.43)

from which (4.19) follows, completing the proof. �

A.4 Cell-Additivity of PHD-Based KLD Information Gain

By (4.24), the pseudo-likelihood can be written in terms of a sum of cell pseudo-

likelihood functions

LZ(x;S) =


∑P

j=1 1 j

S
(s)L

(j)
Z (x;

j

S) s ∈ S

1 s /∈ S
(A.44)

where

L
(j)
Z (x;

j

S) =


1− pD,k(x;

j

S) + pD,k(x;
j

S)Φ(j)
k (Z|x) s ∈

j

S

1 s /∈
j

S
(A.45)

Φ
(j)
k (Z|x) =

∑
z∈Z∩

j

Z

gk(z|x)

κk(z) +
∫

j

X
Dk|k−1(x′)pD,k(x′;

j

S)gk(z|x′)dx′
(A.46)

114



Substituting (A.44) into (4.21) and noting that L(i)
Z (x;

j

S) = L
(i)

Z∩
i
Z
(x;

j

S),

Rk(Z;S) =
P∑

j=1

∫
Dk|k−1(x)

{
1− L(j)

Z∩
j

Z
(x;

j

S) + L
(j)

Z∩
j

Z
(x;

j

S) log[L(j)

Z∩
j

Z
(x;

j

S)]
}
dx

(A.47)

A comparison of (A.47) to the form of (4.21) reveals that the information gain is,

in fact, a sum of information gains over the cells:

Rk(Z;S) =
P∑
i=1

Rk(Z ∩
i

Z;
i

S) (A.48)

A.5 Quadrature of Single-Measurement Conditioned Infor-

mation Gain Expectation

The quadrature approximation in (4.36) is most accurate when all measurement

points within a given region yield a similar information gain. However, perform-

ing excessive information gain computations to determine the quadrature regions

on the basis of information gain similarity would be counterproductive. Instead,

the regions {
j

Ωi} and their representative quadrature points zj,i are selected using

discrete samples of the predicted measurement PHD.

Let {z̄j[`]}Q`=1 be an array of Q � Rj uniformly spaced measurement samples

on
j

Z and

D̄j[`] , Dv,k|k−1(z̄j[`];S) (A.49)

As illustrated in Fig. 4.2, the quadrature regions can be represented by sets of
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measurement points with similar log-PHD values; i.e.,

j

Ωi =


{z̄j[`] : 1 ≤ ` ≤ Q, D̄j[`] ≤ eεj,i} i = 1

{z̄j[`] : 1 ≤ ` ≤ Q, eεj,i−1 < D̄j[`] ≤ eεj,i} i > 1

(A.50)

where the discrete logarithmic bin edges are obtained as

εj,i = ε0 +
i

Rj

(εRj
− ε0), 0 < i < Rj (A.51)

εj,0 = max

[
εmin, min

1<`<Q

(
log{D̄j[`]}

)]
(A.52)

εj,Rj
= max

1≤`≤Q

(
log{D̄j[`]}

)
(A.53)

In (A.52), the tunable parameter εmin represents the lowest log-PHD that should

be considered, so as to reduce unnecessary information gain computations in areas

of extremely low probability. Then, a representative measurement is chosen from

each region as

zj,i = argmin

z̄[`]∈
j

Ωi

[
|D̄j[`]− D̂j,i|

]
(A.54)

where, in (A.54), | · | represents the absolute value operator, and D̂j,i is the average

PHD value in region i of measurement cell j:

D̂j,i =
1

|
j

Ωi|

∑
1≤`≤Q, z̄j [`]∈

j

Ωi

D̄j[`] (A.55)

The volumes can be approximated by the proportion of discrete measurement

samples that fall within each region as

Aj,i =
|
j

Ωi|
Q
· A(

j

Z) (A.56)
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A.6 Proof of Theorem 2

By the law of iterated expectations [7, p. 82],

EZ(1),Z(2) [R(Z(1), Z(2);S)] = EZ(2)

[
EZ(1)

[
R(Z(1), Z(2);S)|Z(2)

]]
(A.57)

=

∫
Z(2)

EZ(1)

[
R(Z(1), Z(2);S)|Z(2)

]
f(Z(2);S)δZ(2)

(A.58)

where f(Z(2);S) is the predicted density of Z(2) and

EZ(1)

[
R(Z(1), Z(2);S)|Z(2)

]
=

∫
Z(1)

R(Z(1), Z(2);S)f(Z(1)|Z(2);S)δZ(1) (A.59)

where f(Z(1)|Z(2);S) is the predicted density of the first sensor’s measurement

conditioned on Z(2). By Theorem 1,

EZ(1),Z(2) [R(Z(1), Z(2);S)] =
∫
Z(2)

EZ(1)

[
R(Z(1), Z(2);S) |Z(2)

]
f(Z(2);S)δZ(2)

(A.60)

=
P∑
i=1

EZ(1)

[
R(Z(1), ∅;µ(S, i))|∅

]
(1− ri)

+ ri
∫

i
Z
EZ(1)

[
R(Z(1), {z};µ(S, i))|{z}

]
pi(z)dz

(A.61)

where the shorthand
i

S has been replaced with its explicit function definition (4.15)

for careful bookkeeping. The conditional density f(Z(1)|Z(2);S) is cell-MB and

thus

EZ(1)

[
R(Z(1), Z(2);S)|Z(2)

]
=

P∑
j=1

R(∅, Z(2);
j

S)(1− řj(Z(2) ∩
j

Z))

+ řj(Z(2) ∩
j

Z)
∫

j

Z
R({z′}, Z(2);

j

S)p̌j(z′|Z(2) ∩
j

Z)dz′

(A.62)
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The information gain expectation over Z(1), conditioned on Z(2) = ∅ is, by Theo-

rem 1,

EZ(1)

[
R(Z(1), ∅;µ(S, i))|∅

]
=

P∑
j=1

R(∅, ∅;µ(µ(S, i), j))(1− řj(∅ ∩
j

Z))

+ řj(∅ ∩
j

Z)
∫

j

Z
R({z′}, ∅;µ(µ(S, i), j))p̌j(z′|∅ ∩

j

Z)dz′ (A.63)

=
P∑

j=1

R(∅, ∅;
i,j

S )(1− řj(∅)) + řj(∅)
∫

j

Z
R({z′}, ∅;

i,j

S )p̌j(z′|∅)dz′ (A.64)

= R(∅, ∅;
i

S)(1− ři(∅)) + ři(∅)
∫

i
Z
R({z′}, ∅;

i

S)p̌i(z′|∅)dz′ (A.65)

where the abbreviation
i,j

S denotes the nested FoV intersections

i,j

S k , µ(µ(S, j), i) = S ∩
j

Xs ∩
i

Xs =


j

Sk i = j

∅ i 6= j

(A.66)
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Similarly, the information gain expectation taken over Z(1) conditioned on

Z(2) = {z} is

EZ(1)

[
R(Z(1), {z};µ(S, i))|{z}

]
=

P∑
j=1

R(∅, {z};µ(µ(S, i), j))(1− řj({z} ∩
j

Z))

+ řj({z} ∩
j

Z)
∫

j

Z
R({z′}, {z};µ(µ(S, i), j)))p̌j(z′|{z} ∩

j

Z)dz′ (A.67)

=
P∑

j=1

R(∅, {z};
i,j

S )(1− řj({z} ∩
j

Z))

+ řj({z} ∩
j

Z)
∫

j

Z
R({z′}, {z};

i,j

S )p̌j(z′|{z} ∩
j

Z)dz′ (A.68)

= R(∅, {z};
i

S)(1− ři({z} ∩
i

Z))

+ ři({z} ∩
i

Z)
∫

i
Z
R({z′}, {z};

i

S)p̌i(z′|{z} ∩
i

Z)dz′ (A.69)

Substitution of the simplified terms (A.65) and (A.69) into (A.61) gives (5.12),

completing the proof. �

A.7 Proof of Theorem 3

By the stated assumptions, the decomposition

Z =
1

Z ] · · · ]
P

Z , X =
1

X ] · · · ]
P

X (A.70)

is such that (4.16) and (4.24) hold. It follows then that

Dk(x|Z(1);S)gk(z|x) = LZ(1)(x;S, Dk|k−1)Dk|k−1(x)gk(z|x) (A.71)

= 0 ∀ x ∈
j

X, z ∈
j′

Z, j 6= j′ (A.72)
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Next note that, for s /∈ Sk, LZ(2)(x;Sk, D(1)
k (·|Z(1));Sk)LZ(1)(x;Sk, Dk|k−1) = 1,

and thus the integral in (5.19) can be restricted to Sk × Xv:

Rk(Z
(1),Z(2);Sk, Dk|k−1) =

∫
Sk×Xv

Dk|k−1(x)·[
1− LZ(2)(x;Sk, D(1)

k (·|Z(1);S)) · LZ(1)(x;Sk, Dk|k−1)

+ LZ(2)(x;Sk, D(1)
k (·|Z(1);S)) · LZ(1)(x;Sk, Dk|k−1)

· log
(
LZ(2)(x;Sk, D(1)

k (·|Z(1);S)) · LZ(1)(x;Sk, Dk|k−1)
)]
dx (A.73)

Furthermore, the integral can be re-expressed as a sum of integrals

Rk(Z
(1),Z(2);Sk, Dk|k−1) =

P∑
j=1

∫
j

S×Xv

Dk|k−1(x)·[
1− LZ(2)(x;Sk, D(1)

k (·|Z(1);Sk)) · LZ(1)(x;Sk, Dk|k−1)

+ LZ(2)(x;Sk, D(1)
k (·|Z(1);Sk)) · LZ(1)(x;Sk, Dk|k−1)

· log
(
LZ(2)(x;Sk, D(1)

k (·|Z(1);Sk)) · LZ(1)(x;Sk, Dk|k−1)
)]
dx (A.74)

As shown in Appendix (A.4), the pseudo-likelihood can be written terms of a

sum of cell pseudo-likelihood functions

LZ(1)(x;Sk, Dk|k−1) =


∑P

j=1 1 j

Sk

(s)L
(j)

Z(1)(x;
j

Sk) s ∈ Sk

1 s /∈ Sk
(A.75)

where by (A.44),

L
(j)

Z(1)(x;
j

Sk) =


1− pD,k(x,

j

Sk) + pD,k(x,
j

Sk)Φ(j)
k (Z(1)|x) s ∈

j

Sk

1 s /∈
j

Sk
(A.76)

Φ
(j)
k (Z(1)|x) =

∑
z∈Z(1)∩

j

Z

gk(z|x)

κk(z) +
∫

j

X
Dk|k−1(x′)pD,k(x′;

j

Sk)gk(z|x′)dx′
(A.77)
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where the implicit dependence on Dk|k−1 is omitted from the functions’ arguments

for brevity. Similarly,

LZ(2)(x;Sk, D(1)
k (·|Z(1);Sk)) =


∑P

j=1 1 j

Sk

(s)L
(j)

Z(2)(x;
j

Sk, D
(1)
k (·|Z(1);Sk)) s ∈ Sk

1 s /∈ Sk

(A.78)

≡


∑P

j=1 1 j

Sk

(s)L
(j)

Z(2)(x;
j

Sk, D
(1)
k (·|Z(1);

j

Sk)) s ∈ Sk

1 s /∈ Sk

(A.79)

where by (A.44),

L
(j)

Z(2)(x;
j

Sk, D
(1)
k (·|Z(1);

j

Sk))

=


1− pD,k(x,

j

S) + pD,k(x,
j

S)Φ(j)
k (Z(2)|x;D(1)

k (·|Z(1);
j

Sk)) s ∈
j

Sk

1 s /∈
j

Sk

(A.80)

Φ
(j)
k (Z(2)|x;D(1)

k (·|Z(1);
j

Sk)) =
∑

z∈Z(2)∩
j

Z

gk(z|x)

κk(z) +
∫

j

X
D

(1)
k (x′|Z(1);

j

Sk)pD(x′)gk(z|x′)dx′

(A.81)

and where the equivalence of (A.78) to (A.79) is due to the equivalence

Φ
(j)
k (Z(2)|x;D(1)

k (·|Z(1);Sk)) ≡ Φ
(j)
k (Z(2)|x;D(1)

k (·|Z(1);
j

Sk)). Also note that the in-

tegral in the denominator of (A.81) is restricted to
j

X as a result of (A.72).
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The product of (A.44) and (A.79) gives

LZ(2)(x;Sk, D(1)
k (·|Z(1));Sk)LZ(1)(x;Sk, Dk|k−1) (A.82)

=


∑P

j=1

∑P
i=1 1 j

Sk

(s)1 i
Sk

(s)L
(j)

Z(1)(x;
j

Sk)L
(i)

Z(2)(x;
i

Sk, D
(1)
k (·|Z(1);

i

Sk)) s ∈ Sk

1 s /∈ Sk

(A.83)

=


∑P

j=1 1 j

Sk

(s)L
(j)

Z(2)(x;
j

Sk, D
(1)
k (·|Z(1);

j

Sk))L
(j)

Z(1)(x;
j

Sk) s ∈ Sk

1 s /∈ Sk
(A.84)
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Substituting this product into (A.74),

Rk(Z
(1), Z(2);Sk, Dk|k−1)

=
P∑

j=1

∫
j

Sk×Xv

Dk|k−1(x) (A.85)

·

[
1−

(
P∑
i=1

1 i
Sk

(s)L
(i)

Z(2)(x;
j

Sk, D
(1)
k (·|Z(1);

i

Sk))L
(i)

Z(1)(x;
i

Sk)

)

+

(
P∑
i=1

1 i
Sk

(s)L
(i)

Z(2)(x;
j

Sk, D
(1)
k (·|Z(1);

i

Sk))L
(i)

Z(1)(x;
i

Sk)

)

· log

(
P∑
i=1

1 i
Sk

(s)L
(i)

Z(2)(x;
j

Sk, D
(1)
k (·|Z(1);

i

Sk))L
(i)

Z(1)(x;
i

Sk)

)]
dx

=
P∑

j=1

∫
j

Sk×Xv

Dk|k−1(x) (A.86)

·

[
1−

(
P∑
i=1

1 i
Sk

(s)L
(i)

Z(2)(x;
i

Sk, D
(1)
k (·|Z(1);

i

Sk))L
(i)

Z(1)(x;
i

Sk)

)

+

( P∑
i=1

1 i
Sk

(s)L
(i)

Z(2)(x;
i

Sk, D
(1)
k (·|Z(1);

i

Sk))L
(i)

Z(1)(x;
i

Sk)

· log
(
1 i
Sk

(s)L
(i)

Z(2)(x;
i

Sk, D
(1)
k (·|Z(1);

i

Sk))L
(i)

Z(1)(x;
i

Sk)

))]
dx

=
P∑

j=1

∫
j

Sk×Xv

Dk|k−1(x) ·

[
1− 1 j

Sk

(s)L
(j)

Z(2)(x;
j

Sk, D
(1)
k (·|Z(1);

j

Sk))L
(j)

Z(1)(x;
j

Sk)

+ 1 j

Sk

(s)L
(j)

Z(2)(x;
j

Sk, D
(1)
k (·|Z(1);

j

Sk))L
(j)

Z(1)(x;
j

Sk)

· log
(
1 j

Sk

(s)L
(j)

Z(2)(x;
j

Sk, D
(1)
k (·|Z(1);

j

Sk))L
(j)

Z(1)(x;
j

Sk)

)]
dx (A.87)

From (A.87), the final result of (5.21) is obtained by noting that L
(j)

Z(1)(·) =

L
(j)

Z(1)∩
j

Z
(·) and L

(j)

Z(2)(·) = L
(j)

Z(2)∩
j

Z
(·), completing the proof. �
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A.8 Proof of Theorem 4

The result is proven by induction. The base case of b = M follows directly from

Theorem 1 as follows:

EZ(M) [R(Z(M);S(M))] =
P∑

j=1

R(∅;
j

S)(1− rj) + R̂j
z · rj (A.88)

=
P∑

j=1

E
Z(M)∩

j

Z
[R(Z(M) ∩

j

Z;
j

S)] (A.89)

=
P∑

j=1

E(j, Z(M),S(M)) (A.90)

For the inductive step, assume (5.24) holds for b = `. Now consider the case of

b = `− 1. By the law of iterated expectation,

EZ(`−1:M) [R(Z(`−1:M);S(`−1:M))] = EZ(`−1)

{
EZ(`:M)

[
R(Z(`−1:M);S(`−1:M))

]
|Z(`−1)

}
(A.91)

Because the conditional distribution f(Z(`−1)|Z(`:M)) is cell-MB with parameters

{řj(Z(`:M) ∩
j

Z), p̌j(z|Z(`:M) ∩
j

Z)}Pj=1, Theorem 1 can be applied to find

EZ(`−1:M) [R(Z(`−1:M);S(`−1:M))] (A.92)

=
P∑

j=1

(1− řj(·))EZ(`:M)

[
R(∅, Z(`:M) ∩

j

Z;
j

S(`−1:M))

]

+
P∑

j=1

∫
j

Z
řj(·)p̌j(z′|·)EZ(`:M)

[
R({z′}, Z(`:M) ∩

j

Z;
j

S(`:M))

]
dz′
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EZ(`−1:M) [R(Z(`−1:M);S(`−1:M))] (A.93)

=
P∑

j=1

[1− řj(·)]1∅(
j

S(`−1))E
Z(`:M)∩

j

Z

[
R(Z(`:M) ∩

j

Z;
j

S(`:M))
]

+
P∑

j=1

[1− řj(·)]
[
1− 1∅(

j

S(`−1))
]
E
Z(`:M)∩

j

Z

[
R(∅, Z(`:M) ∩

j

Z;
j

S(`−1:M))
]

+
P∑

j=1

∫
j

Z
řj(·)p̌j(z′|·)1∅(

j

S(`−1))E
Z(`:M)∩

j

Z

[
R(Z(`:M) ∩

j

Z;
j

S(`:M))

]
dz′

+
P∑

j=1

∫
j

Z
řj(·)p̌j(z′|·)

[
1−1∅(

j

S(`−1))
]
E
Z(`:M)∩

j

Z

[
R({z′}, Z(`:M) ∩

j

Z;
j

S(`−1:M))

]
dz′

Note that
j

S(`−1) = ∅ =⇒ řj(·) = 0, and thus

EZ(`−1:M) [R(Z(`−1:M);S(`−1:M))] (A.94)

=
P∑

j=1

1∅(
j

S(`−1))E
Z(`:M)∩

j

Z

[
R(Z(`:M) ∩

j

Z;
j

S(`:M))
]

+
P∑

j=1

[
1− 1∅(

j

S(`−1))
]
[1−řj(·)]E

Z(`:M)∩
j

Z

[
R(∅, Z(`:M) ∩

j

Z;
j

S(`−1:M))
]

+
P∑

j=1

[
1−1∅(

j

S(`−1))
] ∫

j

Z
řj(·)p̌j(z′|·)E

Z(`:M)∩
j

Z

[
R({z′}, Z(`:M) ∩

j

Z;
j

S(`−1:M))
]
dz′

By reverse application of Theorem 1,

EZ(`−1:M) [R(Z(`−1:M);S(`−1:M))] (A.95)

=
P∑

j=1

1∅(
j

S(`−1))E
Z(`:M)∩

j

Z

[
R(Z(`:M) ∩

j

Z;
j

S(`:M))
]

+
P∑

j=1

[
1− 1∅(

j

S(`−1))
]
E
Z(`−1:M)∩

j

Z

[
R(Z(`−1:M) ∩

j

Z;
j

S(`−1:M))
]

For
j

S(`−1) 6= ∅, Assumption 1 asserts that there is at most one other FoV that
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covers
j

Xs, and thus

E
Z(`−1:M)∩

j

Z

[
R(Z(`−1:M) ∩

j

Z,
j

S(`−1:M))
]

(A.96)

=


E
[
R(Z(`−1)∩

j

Z,
j

S(`−1))
] j

S(`−1) 6= ∅,
j

Xs * S(t) ∀ t > `−1, t ≤ M

E
[
R(Z(`−1)∩

j

Z, Z(t)∩
j

Z,
j

S(`−1),
j

S(t))
] j

Xs ⊆ S(`−1) ∩ S(t), t > `− 1

for all j such that
j

S(`−1) 6= ∅, and where the expectation subscripts have been

dropped for brevity. By (A.96) it follows that

EZ(`−1:M) [R(Z(`−1:M);S(`−1:M))] =
P∑

j=1

Ẽ(j, Z(`−1:M),S(`−1:M)) (A.97)

where

Ẽ(j, Z(`−1:M),S(`−1:M)) (A.98)

,


E
[
R(Z(`:M)∩

j

Z;
j

S(`:M))
] j

S(`−1) = ∅

E
[
R(Z(`−1)∩

j

Z,
j

S(`−1))
] j

Xs⊆S(`−1),
j

Xs*
j

S(t) ∀ t > `−1, t≤M

E
[
R(Z(`−1)∩

j

Z, Z(t)∩
j

Z,
j

S(`−1),
j

S(t))
] j

Xs ⊆ S(`−1) ∩ S(t), t > `− 1

By the induction hypothesis,

Ẽ(j, Z(`−1:M),S(`−1:M)) (A.99)

=


E(j, Z(`:M),S(`:M))

j

S(`−1) = ∅

E
[
R(Z(`−1)∩

j

Z,
j

S(`−1))
] j

Xs⊆S(`−1),
j

Xs*
j

S(t) ∀ t > `−1, t≤M

E
[
R(Z(`−1)∩

j

Z, Z(t)∩
j

Z,
j

S(`−1),
j

S(t))
] j

Xs ⊆ S(`−1) ∩ S(t), t > `− 1
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which, when expanded gives

Ẽ(j, Z(`−1:M),S(`−1:M)) (A.100)

=



E
[
R(Z(i) ∩

j

Z,
j

S(i))
] j

S(`−1) = ∅,
j

Xs ⊆ S(i),
j

Xs *
j

S(t) ∀ ` ≤ t ≤ M, t 6= i

E
[
R(Z(i) ∩

j

Z, Z(t) ∩
j

Z,
j

S(i),
j

S(t))
] j

S(`−1) = ∅,
j

Xs ⊆ S(i) ∩ S(t),

` ≤ i < t ≤ M

E
[
R(Z(`−1) ∩

j

Z,
j

S(`−1))
] j

Xs ⊆ S(`−1),
j

Xs *
j

S(t) ∀ `− 1 < t ≤ M

E
[
R(Z(`−1) ∩

j

Z, Z(t) ∩
j

Z,
j

S(`−1),
j

S(t))
] j

Xs ⊆ S(`−1) ∩ S(t), t > `− 1

0 otherwise

=


E
[
R(Z(i) ∩

j

Z,
j

S(i))
] j

Xs⊆S(i),
j

Xs*
j

S(t) ∀ `− 1 ≤ t ≤ M, t 6= i

E
[
R(Z(i) ∩

j

Z, Z(t) ∩
j

Z,
j

S(i),
j

S(t))
] j

Xs⊆S(i) ∩ S(t), `− 1 ≤ i < t ≤ M

0 otherwise

= E(j, Z(`−1:M),S(`−1:M)) (A.101)

Substitution of this result in (A.97) completes the proof. �
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