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Abstract

This thesis presents a method for solving partial di↵erential equations (PDEs) using

artificial neural networks. The method uses a constrained-backpropagation (CPROP)

approach for preserving prior knowledge during incremental training for solving

nonlinear elliptic and parabolic PDEs adaptively, in non-stationary environments.

Compared to previous methods that use penalty functions or Lagrange multipliers,

CPROP reduces the dimensionality of the optimization problem by using direct elim-

ination, while satisfying the equality constraints associated with the boundary and

initial conditions exactly, at every iteration of the algorithm. The e↵ectiveness of

this method is demonstrated through several examples, including nonlinear elliptic

and parabolic PDEs with changing parameters and non-homogeneous terms. The

computational complexity analysis shows that CPROP compares favorably to ex-

isting methods of solution, and that it leads to considerable computational savings

when subject to non-stationary environments.

The CPROP based approach is extended to a constrained integration (CINT)

method for solving initial boundary value partial di↵erential equations (PDEs). The

CINT method combines classical Galerkin methods with CPROP in order to con-

strain the ANN to approximately satisfy the boundary condition at each stage of

integration. The advantage of the CINT method is that it is readily applicable to

PDEs in irregular domains and requires no special modification for domains with

complex geometries. Furthermore, the CINT method provides a semi-analytical so-
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lution that is infinitely di↵erentiable. The CINT method is demonstrated on two

hyperbolic and one parabolic initial boundary value problems (IBVPs). These IB-

VPs are widely used and have known analytical solutions. When compared with

Matlab’s finite element (FE) method, the CINT method is shown to achieve signifi-

cant improvements both in terms of computational time and accuracy.

The CINT method is applied to a distributed optimal control (DOC) problem of

computing optimal state and control trajectories for a multiscale dynamical system

comprised of many interacting dynamical systems, or agents. A generalized reduced

gradient (GRG) approach is presented in which the agent dynamics are described

by a small system of stochastic di↵erential equations (SDEs). A set of optimality

conditions is derived using calculus of variations, and used to compute the opti-

mal macroscopic state and microscopic control laws. An indirect GRG approach is

used to solve the optimality conditions numerically for large systems of agents. By

assuming a parametric control law obtained from the superposition of linear basis

functions, the agent control laws can be determined via set-point regulation, such

that the macroscopic behavior of the agents is optimized over time, based on multiple,

interactive navigation objectives.

Lastly, the CINT method is used to identify optimal root profiles in water limited

ecosystems. Knowledge of root depths and distributions is vital in order to accurately

model and predict hydrological ecosystem dynamics. Therefore, there is interest in

accurately predicting distributions for various vegetation types, soils, and climates.

Numerical experiments were were performed that identify root profiles that maximize

transpiration over a 10 year period across a transect of the Kalahari. Storm types

were varied to show the dependence of the optimal profile on storm frequency and

intensity. It is shown that more deeply distributed roots are optimal for regions where

storms are more intense and less frequent, and shallower roots are advantageous in

regions where storms are less intense and more frequent.
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1

Introduction

E↵ective methods, such as the finite di↵erence method (FDM) and the finite element

method (FEM), have been developed for solving partial di↵erential equation (PDE)

problems numerically in stationary environments [102, 42]. Given a PDE with known

parameters and initial and boundary conditions, FDM and FEM algorithms compute

the approximate value of the solution at a discrete number of points, producing a

look-up table that can be interpolated when the solution is needed elsewhere in the

domain. One disadvantage of these methods is that, in order to obtain satisfactory

solution accuracy, it may be necessary to deal with fine meshes that significantly

increase the size of the look-up table and memory required [80, 88].

ANNs provide an ideal representation tool for adaptive PDE solutions because

they are characterized by adjustable parameters that can be modified by incremental

training algorithms [1], and because of their ability to approximate nonlinear func-

tions on a compact space. Furthermore, ANN solutions of PDEs are characterized by

other advantages over FDM and FEM solutions that are especially important in non-

stationary environments. One advantage is that the approximate solution is given in

closed analytic form and is infinitely di↵erentiable. This solution is represented by a
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small number of parameters, which reduces the amount of memory required [56, 97].

Another advantage is that the solution is valid over the entire domain, eliminating

the need for interpolation.

Artificial neural networks (ANNs) are commonly implemented to provide a func-

tional representation of PDE solutions. Examples range from solving the Poisson

equation [55] to solving the Hamilton-Jacobi-Bellman (HJB) equation to find the

fixed-final-time-constrained optimal control for nonlinear systems [20]. In many of

these applications, the PDE describes an underlying dynamic process that is subject

to change as a result of a non-stationary environment. Therefore, while the PDE

may capture the dynamic process on short time scales, the process, and thus the

PDE, both are subject to change over long time scales. In particular, for a given dy-

namic process, a non-stationary environment may bring about incremental changes

in the PDE parameters, and external forcing (or nonhomogeneous term) that result

in incremental changes of the PDE solution. An adaptive PDE solution can respond

to these changes by adapting incrementally over time to satisfy the PDE problem

subject to changing parameters, and/or changing external forcing.

One approach to solving PDEs numerically using ANNs is to utilize the discrete

FDM or FEM solution to train a neural network using a conventional backpropaga-

tion algorithm [59], such as Levenberg-Marquardt (LM), in batch mode [62]. Methods

have also been proposed to determine the PDE solution in one step by training an

ANN to minimize an error function formulated in terms of the di↵erential operator.

One of the main di�culties that arises in ANN-based methods lies in satisfying the

boundary conditions (BCs) and initial conditions (ICs), which amount to a set of

equality constraints on a continuous domain. One possibility is to use a problem-

specific ansatz that has been tailored to automatically satisfy BCs, while containing

an ANN that is trained to minimize the PDE error. Although this approach has been

shown e↵ective at solving boundary value problems (BVPs) with a high degree of ac-
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curacy [55, 95, 70], it has yet to be demonstrated on initial-boundary value problems

(IBVPs). Another disadvantage is that the ansatz is problem specific and, thus, it

has to be designed by the user. As a result, the approach may not be applicable to

all PDE problems, and cannot be used to obtain an adaptive PDE solution.

Another approach for incorporating the ICs and BCs in the ANN solution is

to use them to formulate a penalty function, thereby converting the constrained

optimization problem into an unconstrained optimization problem [27]. As with

all penalty function methods [33], this method can display slow convergence, and

poor solution accuracy in the equality constraints (I/BCs). Improving accuracy

typically requires using many more nodes in the ANN hidden layer, and a dense set

of collocation points along the boundary of the domain. Besides making the approach

computationally expensive, these steps involve user intervention, and, therefore, do

not allow for an adaptive solution of the PDE problem.

A well known result from constrained optimization theory is that if the equality

constraints satisfy the implicit function theorem, they can be at once satisfied exactly,

and used to reduce the dimensionality of the optimization problem, through the

method of direct elimination [103, 8]. Thus, whenever applicable, direct elimination

is to be preferred over the penalty function method or the method of Lagrange

multipliers, which rely on augmenting the objective function by a function of the

constraints and, thus, increase the dimensionality of the unconstrained optimization

by introducing additional variables (e.g. Lagrange multipliers).

It was recently shown in [31] that the method of direct elimination can be used

to train ANNs in the presence of equality constraints through a method known as

constrained backpropagation (CPROP). CPROP preserves a set of input-output and

gradient information during incremental training sessions by embedding this infor-

mation into a set of equality constraints that are formulated in terms of the neural

weights by means of algebraic training [32]. In previous work, CPROP has been
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used to eliminate interference [12], and preserve prior knowledge in fully-connected

sigmoidal neural networks, and to adapt an ANN-based nonlinear controller online,

subject to changing and unmodeled aircraft dynamics [31]. In [26], CPROP was

demonstrated on benchmark problems in function approximation, system identifica-

tion, and the solution of ordinary di↵erential equations (ODEs).

This thesis shows that CPROP o↵ers a natural paradigm for solving PDEs via

ANNs, because the ANN can be adapted to minimize the error defined by the di↵er-

ential operator, while satisfying the I/BC equality constraints. Furthermore, since it

allows for the equality constraints to be satisfied during incremental training sessions,

CPROP can be easily extended to the adaptive solution of PDEs in non-stationary

environments. In the case of elliptic BVPs, CPROP equality constraints are used to

preserve the BC. As a result, the shape of the domain does not increase the di�culty

of the method, and the CPROP algorithm is more computationally e�cient and con-

verges more rapidly than other ANN based methods, because there is no need for

a penalty function. In the case of parabolic IBVPs, the solution is structured so as

to satisfy the BC exactly, while the IC is preserved using the equality constraints.

It is shown that adaptive CPROP solutions brings about a significant reduction in

computation time compared to existing methods [44] for elliptic and parabolic PDEs.

To further improve speed and accuracy in obtaining numerical solutions for sta-

tionary PDE problems, the CPROP PDE adaptive solution method is extended to

a constrained integration (CINT) method, in which CPROP is combined with tradi-

tional Galerkin methods. Galerkin methods have been used in ANN training in order

to overcome slow convergence. For example, in [71] the ANN output weights were

found using an inner product rather than a more traditional training method, such as

backpropagation or genetic algorithm. A similar approach was used in [20] to solve

the HJB equation, and in [48] to analyze bifurcations of a cellular nonlinear network.

In these cases, the ANN output weights were treated as functions of time and an
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inner product was used to transform the PDEs into systems of ODEs. The output

weights were then found by integrating the resulting ODEs. Using Galerkin methods

for training has been shown to improve solution accuracy and computational time

when compared to traditional training methods [71, 20, 48]. However, one disad-

vantage of continuous Galerkin methods is that PDEs solved over non-rectangular

or irregular domains typically require a domain transformation [53] or domain de-

composition [75], which greatly increases the di�culty of obtaining an approximate

solution. A smoothed boundary method was proposed in [15] to overcome the di�-

culties associated with irregular domains for PDE problems with a zero-flux BC. In

smoothed boundary methods the domain is embedded into a box and a smoothing

term is used to encode the boundary condition into a modified PDE that can be

solved using standard Galerkin methods.

The CINT method is broadly applicable to solving problems in irregular do-

mains, eliminating the need to perform a domain transformation or decomposition,

or modify the PDE as done in [15]. Additionally, the CINT method is applicable to

problems with Dirichlet, Neumann, and/or Robin boundary conditions. Like in the

inner product based methods used in [20, 48], the CINT method approximates the

solution with a single layered ANN with time-dependent output weights. However,

unlike the ANN based approach developed in [20, 48], which does not directly ad-

dress how boundary conditions are satisfied, the CINT method utilizes CPROP to

constrain the the ANN so as to satisfy the boundary condition.

This thesis is organized as follows. Chapter 2 defines the classes of PDE problems

that are addressed in this thesis and gives a background of the CPROP and Galerkin

methods. In Chapter 3, the CPROP and CINT methods for solving PDEs are

given and demonstrated through several example problems in Chapter 4, including

Laplace’s equation, the heat/di↵usion equation in two and three spatial dimensions,

the Boussinesq equation, the wave equation. In Chapter 5 the CINT method is

5



applied to the problem of obtaining the optimal control of a multi-scale dynamical

system comprised of many interacting agents, and in Chapter 6 the CINT method

is used to identify the optimal root profile in water-limited ecosystems.
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2

Problem Formulation and Background

PDE problems frequently arise in areas such as fluid mechanics, thermodynamics,

and optimal control that can greatly benefit from ANN solution methods that ap-

proximate the PDE solution with an infinitely di↵erentiable, close form solution.

This thesis presents new CPROP and CINT methodologies that use ANN to numer-

ically solve linear and nonlinear elliptic BVPs and parabolic and hyperbolic IBVPs

of second order. Section 2.1 describes the classes of PDEs that to which the CPROP

and CINT methods are applicable.

This chapter also includes background information on the CPROP method in

Section 2.2. The CPROP method preserves a set of input-output and gradient in-

formation during incremental training sessions by embedding this information into

a set of equality constraints that are formulated in terms of the neural weights by

means of algebraic training [32]. It will be shown in Chapter 3, that CPROP is used

to constrain the ANN such that the BC or IC is satisfied at each iteration of training.

Lastly, this chapter gives background information on Galerkin’s method in Section

2.3. The CINT method is a modification of Galerkin’s method and is used to solve

parabolic and hyperbolic IBVPs. In the CINT method, the output ANN weights are

7



trained using an inner-product, as done in Galerkin’s method, however, the output

weights are constrained using a modified CPROP method, such that the ANN PDE

solution satisfies the PDE’s BC at each step of integration.

2.1 Problem Formulation

This dissertation gives new methods that use ANN to approximate solutions to linear

and nonlinear second order PDEs of elliptic, parabolic, and hyperbolic type. A linear

second order PDE over the domain ⌦ Ä R2 has the form,

ap⇠, ⌘q

B

2u

B⇠2
` bp⇠, ⌘q

B

2u

B⇠B⌘
` cp⇠, ⌘q

B

2u

B⌘2
(2.1)

`dp⇠, ⌘q

Bu

B⇠
` ep⇠, ⌘q

Bu

B⌘
` hp⇠, ⌘qu “ F,

where p⇠, ⌘q P ⌦. In any region of ⌦ where b2 ´ 4ac † 0, the PDE problem is

classified as elliptic, and in any region where b2 ´ 4ac “ 0 the PDE problem is said

to be parabolic. Also, when b2 ´ 4ac ° 0 the problem is said to be hyperbolic [74].

Elliptic type BVPs, treated in this thesis, are written in the compact form,

D
n

rupxqs “ F
n

pxq, x P I (2.2)

where x P I Ä Rr, D
n

is the di↵erential operator, and F
n

: Rr

Ñ R is a forcing

function or source/sink term. The above PDE is subject to the BC,

Brupxqs “ fpxq, x P BI (2.3)

where Bp¨q is a linear di↵erential operator of order less than Dp¨q, and f : Rr

Ñ R.

Parabolic and hyperbolic type IBVPs are represented in compact form by,

B

ku

Btk
px, tq “ D

n

rupx, tqs, x P I (2.4)
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subject to linear BC,

Brupx, tqs “ fpx, tq, x P BI (2.5)

and initial (or terminal) condition(s),

B

`u

Bt`
px, t0q “ h

`

pxq, ` “ 0, ..., k ´ 1, x P I. (2.6)

where h
`

: Rr

Ñ R, and t P rt0, tf q.

The CPROP approach o↵ers a natural paradigm for solving ODEs and PDEs

via ANNs, because the ANN can be adapted to satisfy the di↵erential operator,

while preserving the I/BCs. Furthermore, it allows for the equality constraints to be

satisfied during repeated incremental sessions by introducing a sequence of objective

functions e
n

, n “ 1, 2, . . .. Thus, it can be easily extended to the adaptive solution

of PDEs in non-stationary environments.

In the presence of a non-stationary environment, and over long time scales, the

underlying dynamic process may be subject to change and, as a result, the di↵erential

operator and/or forcing function in (2.2) and (2.4) may also change. In this case, a

solution of (2.2) or (2.4) may be required for a sequence of PDEs, all in the same

form, represented by a sequence of functions tpD
n

, F
n

q : n “ 1, 2, . . .u, where each

pair of functions pD
n

, F
n

q defines one elliptic or parabolic PDE. Thus, in this thesis,

each PDE problem is labeled by n, and solved incrementally by adapting the same

ANN solution. It is assumed that the nth PDE problem holds for a period of time �T

that is much greater than the time required to obtain the ANN solution. Therefore,

the next PDE problem, labeled by pn ` 1q, can be approached after the ANN has

converged to an acceptable solution of the nth PDE problem.

2.2 Background on Constrained Backpropagation (CPROP)

Classical backpropagation solves an unconstrained optimization problem involving

the minimization of a scalar objective function e : RM

Ñ R, with respect to the
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ANN weights w P RM . In supervised learning, e is formulated in terms of a training

set composed of known input and output information, T “ tx
k

,y
k

u

k“1,2,..., and e is

a measure of the error between the ANN output and the corresponding output y
k

.

In reinforcement learning, the training set is given by input values T “ tx
k

u

k“1,2,...,

and e is a performance measure.

As in classical backpropagation problems, CPROP seeks to minimize a scalar

objective function e : RM

Ñ R formulated from training set T
S

. However, CPROP

performs the training subject to a set of equality constraints. These constraints

preserve the ANN’s ability to satisfy data used in prior training, T
L

or long term

memory (LTM), at all times while training over new data, T
S

or short term memory

(STM). In the application of CPROP to PDEs the equality constraints arise from

the boundary or initial conditions. These equality constraints are an example of a

smooth function approximation that is solved using algebraic training [32] and are

preserved via CPROP during subsequent incremental training sessions [31].

In previous work, CPROP has been used to eliminate interference and preserve

prior knowledge in fully-connected sigmoidal neural networks, and to adapt an ANN-

based nonlinear controller online, subject to changing and unmodeled aircraft dy-

namics [31]. In [26], CPROP was demonstrated on benchmark problems in function

approximation, system identification, and the solution of ordinary di↵erential equa-

tions.

After training an ANN over T
L

, algebraic training [32] is used to embed T
L

into

a functional relationship describing the network weights,

gpw
L

,w
S

,x
`

q “ 0, x
`

P T
L

(2.7)

where the network weights have been partitioned into two vectors, w
L

P RM

L and

w
S

P RM

S . Then, a training method that preserves T
L

while minimizing e can be
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formulated as a constrained optimization problem:

minimize epw
L

,w
S

,x
s

q, x
s

P T
S

(2.8)

subject to gpw
L

,w
S

,x
`

q “ 0, x
`

P T
L

. (2.9)

Now, if (2.7) satisfies the implicit function theorem, then it uniquely implies the

function,

w
L

“ Cpw
S

q (2.10)

and the method of direct elimination can be applied by re-writing the objective

function as,

Epw
S

q “ epCpw
S

q,w
S

q (2.11)

such that the value of w
S

can be determined independently of w
L

. In this case, the

solution of (2.8) is an extremum of (2.11) that obeys BE{Bw
Spjq “ 0 for j “ 1, ...,M

S

.

Throughout this thesis the jth element of a vector is denoted by a subscript pjq. The

jth column of a matrix also is denoted by a subscript pjq, and the element in the ith

row and jth column of a matrix is denoted by a subscript pi, jq.

Once the optimal value of w
S

is determined, the optimal value of w
L

can be

obtained from w
S

using (2.10). Furthermore, by use of the chain rule the adjoined

error gradient is given by [113],

BE

Bw
Spiq

“

Be

Bw
Spiq

`

Be

BC
BC

Bw
Spiq

(2.12)

and the objective function can be written as

epw
L

,w
S

q “

1

2
✏T✏ (2.13)

where ✏pjq is the error associated with the jth point in the training set T
S

.

In this thesis, Levenberg-Marquardt (LM) is the training algorithm of choice

because of its excellent convergence and stability properties [69, 62]. In the LM
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algorithm, the update to the weights, �w
S

, is found by solving a nonlinear system

of equations,
`
JTJ ` µI

˘
�w

S

“ ´JT✏ “ ´r
w

S

E. (2.14)

where, I is the identity matrix, µ is a positive constant, known as learning rate, and

J is the Jacobian matrix. Then, a CPROP LM training algorithm can be obtained

by deriving the adjoined Jacobian:

Jpm,nqpwS

q “

B✏pmqrCpw
S

q,w
S

s

Bw
Spnq

“

B✏pmqpwL

,w
S

q

Bw
Spnq

`

B✏pmqrCpw
S

q,w
S

s

BC
BC

Bw
Spnq

(2.15)

For the CPROP method, the ANN is chosen as a feedforward, one-hidden-layer,

sigmoidal neural network, because of its universal function approximation ability

[6, 63, 40]. The hidden layer can be represented by an operator with repeated

sigmoidal functions, �pnq :“ r�pn1q ¨ ¨ ¨ �pn
s

qs

T , where n
i

denotes the ith component

of the input-to-node vector n P Rsˆ1, and �pn
i

q :“ peni

´ 1q{peni

` 1q. Then, the

neural network input-output equation is,

ŷpxq “ �pxTWT

` bT

qvT (2.16)

where b P Rsˆ1, W P Rsˆr and v P R1ˆs, are the adjustable bias, input, and output

weights, respectively.

From the CPROP equations (2.10)-(2.13), the method of direct elimination can

be applied by partitioning the weights into an LTM set grouped in w
L

, and an STM

set grouped in w
S

. The derivation of the adjoined derivatives can be simplified by

partitioning the input weights, biases, and output weights into LTM and STM sets,

denoted by subscripts L and S respectively, as shown in Fig. 2.1. Where, each set

is identified by first partitioning hidden layer into ‘S’ nodes and ‘L’ nodes, and then
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designating all weights connected to the ‘S’ nodes as STM weights, and all weights

connected to the ‘L’ nodes as LTM weights. By this approach, the neural network

input-output equation (2.16) can be re-written as,

ŷpxq “ �
`
xTW

L

` b
L

˘
vT

L

`�
`
xTW

S

` b
S

˘
vT

S

(2.17)

and used to derive the adjoined derivatives. In the following chapter, the derivation of

the adjoined Jacobian (2.15), the objective function (2.13), and the explicit constraint

equation (2.10) for the CPROP solution of elliptic and parabolic PDEs is given.

x0 

x1 

x2 

  

w00 

w32 

LTM 

STM 

 v0 σ0 
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σ2 
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b1 
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b0 
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b2 
 n3 

 

n2 
 

n1 
 

n0 
 

Σ 

Figure 2.1: Partitioning of ANN nodes and weights.

2.3 Background on Galerkin Methods

The CINT method combines elements of CPROP (presented in the previous section)

with Galerkin methods. Galerkin methods belong to the class of numerical methods

for solving PDEs known as spectral methods, which approximate the solution to

a PDE with a linear combination of basis functions. Spectral methods are widely

implemented in various fields, including fluid dynamics, quantum mechanics, heat
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conduction, and weather prediction [17, 36, 77, 46, 37]. This section presents a brief

overview of spectral methods and their application to IBVPs. Spectral methods are

not inherently adaptive, as the CPROP PDE solution method is, and so the subscript

n on the di↵erential operator in (2.4) will be dropped to indicate a stationary PDE.

In spectral methods, the PDE solution upx, tq is approximated by a finite sum

of linearly independent basis functions. Let t�1pxq, ...,�
Q

pxqu denote a set of basis

functions that belong to a Hilbert space with corresponding output weights vptq.

Fourier and Chebyshev polynomials are commonly used bases due to the availability

of the fast Fourier transformation (FFT) [53]. It is assumed that the approximate

solution to (2.4) is given by

ûpx, tq “

Qÿ

q

�
q

pxqvpqqptq. (2.18)

Now, let the inner product of two functions, ppxq, qpxq P L2 be denoted by xppxq, qpxqy

and defined as

xppxq, qpxqy fi
ª

I
ppxqqpxqdx. (2.19)

In Galerkin methods, the approximate solution (2.18) is substituted into (2.4), and

the inner-product (2.19) is used to arrive at the system of ODEs,

A
B

kv

Btk
ptq “ brvptqs, (2.20)

where the matrix A P RQˆQ and vector brvptqs P RQ are defined as

Api,jq fi x�
j

pxq,�
i

pxqy “

ª

I
�
j

pxq�
i

pxqdx, (2.21)

bpiq fi xDrûpx, tqs,�
i

pxqy “

ª

I
Drûpx, tqs�

i

pxqdx. (2.22)

The initial condition(s) to the system of ODEs (2.20) is given by

A
B

`v

Bt`
p0q “ q, (2.23)
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where

qpiq fi xg
`

pxq,�
i

pxqy “

ª

I
g
`

pxq�
i

pxqdx. (2.24)

The boundary condition (5.8) is enforced by performing integration by parts on the

right-hand side of (2.20) [18]. In practice, computing the right-hand side of (2.20) can

be very expensive [41]. In particular, if Drûpx, tqs contains non-constant coe�cients

or non-linear terms, then a convolution of sums must be computed.

To simplify the enforcement of the boundary condition and to avoid computing

convoluted sums, a pseudo-spectral method is often used. In pseudo-spectral meth-

ods, the solution is approximated at a set of discrete points, such that û
i,j

« upx
i

, t
j

q.

Then, at each time step, t
j

, the approximate solution û
i,j

is transformed to the out-

put weights, vpt
j

q, in the spectral domain. The spatial derivatives of û
i,j

are then

found by evaluating the partial derivatives of (2.18) at the collocation points px
i

, t
j

q,

and the right-hand side of (2.4) is computed. This is done at each time step, and

the values of the approximate solution, û
i,j

, located at collocation points along the

boundary are adjusted in order to satisfy the boundary condition (2.5). This trans-

formation can be performed in OpN logNq computations by means of the FFT,

where N is the number of collocation points, x
j

, in I. However, when N is large,

the integration step size, �t, is severely restricted [53].

Alternatively, a basis can be chosen or constructed that satisfies the boundary

condition at each time step. For example, a Fourier series can be used for the special

case that I is a rectangular domain and u is periodic on the boundary. The following

Chapter demonstrates how the approximate solution to (2.4) is constrained in the

CINT method to approximately satisfy the boundary condition (5.8) at each time

step. The CINT method is then demonstrated on three IBVPs. Computational

speed and accuracy of the CINT method are compared with Matlab’s FE solver.
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3

Methodology

The background given in the previous chapter is used in this chapter to develop

the CPROP adaptive PDE solver and CINT methods. The first section gives the

CPROP PDE solution method, which is applicable to linear and nonlinear elliptic

type BVPs with linear BCs and parabolic type IBVPs with Dirichlet type BCs.

Following the CPROP PDE methodology, the CINT method is given. The CINT

method is applicable to parabolic and hyperbolic type IBVPs with linear BCs.

3.1 The Adaptive Constrained Backpropagation (CPROP) Method

As the nature of elliptic BVPs di↵er from parabolic IBVPs, the adaptive CPROP

method is slightly di↵erent for each type of PDEs. Thus, this section is divided into

subsections describing the methodology for elliptic type equations and for parabolic

type equations.

3.1.1 Elliptic Boundary Value Problems

Consider the elliptic BVP (2.2). The LTM information that is to be preserved during

training by being embedded in the equality constraint (2.7) is specified by the BC
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(2.3), specifically, the training set

T
L

“ tx
`

, hpx
`

qu

`“1,...,N
L

. (3.1)

From (2.17), we seek an approximate ANN solution to the elliptic BVP problem

(2.2),(2.3) in the form,

ûpxq “ �
`
xTWT

L

` bT

L

˘
vT

L

`�
`
xTWT

S

` bT

S

˘
vT

S

. (3.2)

where, W
S

, W
L

, b
S

, b
L

, v
S

and v
L

are the adjustable ANN parameters. The

number of ‘L’ nodes is determined from T
L

using algebraic training [31, 32],[30]. The

number of ‘S’ nodes is determined heuristically, based on the size and complexity of

T
S

.

The objective function (2.13) for elliptic type BVPs is obtained by applying the

di↵erential operator to the approximate ANN solution (3.2), and evaluating the

resulting function at points in the training set T
S

, giving

✏pjq “ tD
n

rûpxqs ´ F
n

pxqu

x“x

j

PT
S

. (3.3)

To evaluate the the above equation, the partial derivatives of ûpxq with respect to

the input variables, x, are required. Consider the partial derivative,

�pxq “

B

�upxq

Bxm1
p1q ...Bx

m

r

prq
, (3.4)

where � “ m1 ` ... ` m
r

. Let !
S

j

represent a diagonal matrix of the jth column of

W
S

, and let

⇤
S

“

rπ

j“1

!
m

j

S

j

. (3.5)

Similarly, ⇤
L

is a product of diagonal matrices taken from columns of W
S

. Then,
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di↵erentiating (3.2) with respect to the elements of x,

B

�ûpxq

Bxm1
p1q ...Bx

m

r

prq
” �̂pxq “ ��

`
xTWT

L

` bT

L

˘
⇤

L

vT

L

` ��

`
xTWT

S

` bT

S

˘
⇤

S

vT

S

(3.6)

where ��

p¨q denotes the �th derivative of the sigmoidal operator. Thus, all partial

derivatives in the PDE di↵erential operator D
n

rûpxqs can be derived in closed form

from (3.2)-(3.5), and substituted in (3.3) to complete the expression for the ANN

objective function (2.13).

The derives the ANN equality constraints and adjoined Jacobian that circumvent

the need for substituting the equality constraints in the objective function directly

are derived. Although the Jacobian depends on the form of the di↵erential operator

D
n

p¨q, its derivation can be illustrated through the partial derivative �̂, defined in

(3.4). Since the CPROP equations express equality constraints in terms of the PDE

parameters and external forcing, the ANN solution can be adapted incrementally

over time, to continue to satisfy parameters and/or external forcing that change as

a result of non-stationary environments.

Because the forcing function F
n

in the elliptic PDE (2.2) is independent of w
S

,

it follows that B✏pkq{Bw
S

“ BD
n

rûp¨qs{Bw
S

|

x

k

for any k. Let M denote the number

of partial derivatives of û in D
n

rûp¨qs. Then, the equality constraint D
n

rûp¨qs “

Gp�̂1, ..., �̂M

q, the adjoined error gradient (2.12), and the Jacobian (2.15) can be

obtained from the gradient

BD
n

rûpxqs

Bw
Spkq

“

ÿ

i

BGr¨s

B�̂
i

B�̂
i

Bw
Spkq

(3.7)

For every ith derivative, let

BGr¨s

B�̂
i

B�̂
i

Bw
Spkq

“

BGr¨s

B�̂
i

r⇠1pxq ` ⇠2pxqs (3.8)

18



where,

⇠1pxq “

B

Bw
Spkq

“
��

pxTWT

L

` bT

L

q⇤
L

vT

L

‰

⇠2pxq “

B

Bw
Spkq

“
��

pxTWT

S

` bT

S

q⇤
S

vT

S

‰
(3.9)

and Br¨s{Bw
Spkq denotes the kth element of the gradient vector Br¨s{Bw

S

. Since w
S

is obtained by re-grouping the elements of W
S

, b
S

, and v
S

, the partial derivatives

with respect to these weights are derived separately as follows.

As a first step, consider the input weights, where w
Spkq corresponds to the input

weight W
Spi,jq , and let

↵
ij

” m
j

`
W

Spi,jq

˘
m

j

´1
rπ

k‰j

`
W

Spi,kq

˘
m

k . (3.10)

Then, for any input weight W
Spi,jq , the term ⇠2pxq in (3.8) can be written as,

⇠2pxq “

B

BW
Spi,jq

“
��

pxTWT

S

` bT

S

q⇤
S

vT

S

‰
(3.11)

“

”
↵
ij

��

piqpx
TWT

S

` bT

S

q `

⇤
Spi,iq�

�`1
piq pxTWT

S

` bT

S

qxpjq
ı
v
Spiq

and for any input bias b
Spiq , or output weight vSpiq , ⇠2pxq can be written as,

⇠2pxq “

B

Bb
Spiq

“
��

pxTWT

S

` bT

S

q⇤
S

vT

S

‰
(3.12)

“ ⇤
Spi,iq�

�`1
piq pxTWT

S

` bT

S

qv
Spiq

or,

⇠2pxq “

B

Bv
Spiq

“
��

pxTWT

S

` bT

S

q⇤
S

vT

S

‰
(3.13)

“ ⇤
Spi,iq�

�

piqpx
TWT

S

` bT

S

q
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respectively. These equations provide the first term of the adjoined error gradient

and Jacobian (2.12) and (2.15), and corresponds to the same partial derivatives used

in classical backpropagation. The second term in the adjoined Jacobian (2.15) is

given by the unused term in (3.8), BF {B�̂
i

ˆ ⇠1pxq. This term is subject to the

constraint (2.10), and is derived as follows.

For an elliptic di↵erential operator, the equality constraint is specified by a train-

ing set T
L

defined from the BCs. When the BCs in (2.3) are imposed on the ANN

approximate solution (3.2), they can be written as,

Brûpxqs “ B “
�

`
xTWT

L

` bT

L

˘‰
vT

L

` B “
�

`
xTWT

S

` bT

S

˘‰
vT

S

(3.14)

using the linearity of the operator B. According to the algebraic training approach in

[32], (3.14) is evaluated at the collocation points in the training set T
L

and arranged

into a linear system of equations. It follows that an ANN that satisfies T
L

at all

times can be obtained provided training satisfies the following equality constraint,

f “  vT

L

`⌦vT

S

(3.15)

where,

fpjq ” fpx
j

q (3.16)

 pj,kq ” B “
�pkq

`
xT

j

WT

L

` bT

L

˘‰
(3.17)

⌦pj,kq ” B “
�pkq

`
xT

j

WT

S

` bT

S

˘‰
(3.18)

for all x
j

P T
L

. Then, an explicit equality constraint in the form (2.10) can be

obtained from (3.15) as follows,

vT

L

“  ´1
rf ´⌦vT

S

s, (3.19)

where  is assumed to be an invertible matrix that can be constructed using the

method in [32].
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According to the CPROP training approach reviewed in Section 2.2, the objective

function (2.13) is minimized with respect to w
S

, while W
L

is held constant. Thus,

the matrix  remains known and constant at all times. With the constraint now

defined, the function ⇠1pxq in (3.8) is

⇠1pxq “ ��

pxTWT

L

` bT

L

q⇤
L

BvT

L

Bw
Spkq

. (3.20)

Then, when w
Spkq corresponds to the input weight W

Sp◆,mq , the derivative of the

constraint is given by

BvT

L

BW
Sp◆,mq

“ ´ ´1yv
Sp◆q . (3.21)

For the points x
j

P BI at which B defines Dirichlet conditions, the vector y in (3.21)

is given by,

ypjq “ x
jpmq�

1
p◆qpx

T

j

WT

S

` bT

S

q. (3.22)

whereas for points at which B defines BCs on the derivatives, this vector is given by,

ypjq “ ↵
◆m

��

p◆qpx
T

j

WT

S

` bT

S

q (3.23)

` ⇤
Sp◆,◆qxjpmq�

�`1
p◆q pxT

j

WT

S

` bT

S

q.

Similarly, for the input bias, the derivative of the constraint is given by

BvT

L

Bb
Sp◆q

“ ´ ´1yv
Sp◆q (3.24)

Where, for points at which B defines BCs Dirichlet boundary conditions, the vector

y in (3.24) is,

ypjq “ �1
p◆qpx

T

j

WT

S

` bT

S

q, (3.25)

and for points at which B defines BCs on the derivatives

ypjq “ ⇤
Sp◆,◆q�

�`1
p◆q pxT

j

WT

S

` bT

S

q. (3.26)
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Finally, the constrained derivatives for the output weights is,

BvT

L

Bv
Sp◆q

“ ´ ´1y, (3.27)

where,

ypjq “ �p◆qpx
T

j

WT

S

` bT

S

q, (3.28)

for points with Dirichlet BCs, and,

ypjq “ ⇤
Sp◆,◆q�

�

p◆qpx
T

j

WT

S

` bT

S

q. (3.29)

for points with BCs on the derivatives.

Equations (3.11)-(3.13) with (3.21)-(3.27) complete the derivation of the equality

constraints and corresponding adjoined Jacobian for the elliptic BVP. The adjoined

Jacobian, together with the unconstrained derivatives derived in this section, are

then implemented by the CPROP algorithm to train the ANN [31]. The following

subsection derives the constraints and adjoined Jacobian for parabolic IBVPs.

3.1.2 Parabolic Initial-Boundary Value Problems

Now, consider PDEs of the form given in (2.4). In order to simplify notation, the

input variable t is assumed to be the rth component of x, such that x P I, I “

H ˆ rt0, tf q Ä Rr, and H is a compact set. It is further assumed that the PDE (2.4)

is of parabolic type, i.e. k “ 1, and the di↵erential operator, Bp¨q, in the BC (2.5) is

the identity operator, giving a Dirichlet BC,

upxq “ fpxq, @x P BH ˆ rt0, tf q (3.30)

where f : Rr

Ñ R. IBVPs di↵er from BVPs in that they also have an initial condition

(2.6) associated with xprq, where t0 § xprq § t
f

. As it is assumed that the subscripts

k and ` in (2.4) and (2.6) are fixed (k “ 1, ` “ 0), these subscripts will be omitted

in this section.

22



Based on the seminal work in [55, 70], the approximate ANN solution can be

written as,

ûpxq “ f̃pxq ` qpxq

“
�

`
xTWT

L

` bT

L

˘
vT

L

(3.31)

` �
`
xTWT

S

` bT

S

˘
vT

S

‰

where f̃pxq is di↵erentiable for all x in I, and satisfies the BC (3.30). The function

q : Rr

Ñ R also is di↵erentiable, and it is equal to zero along BH, and nonzero

in the interior of H. When the BCs do not change over time, using (3.31) has the

advantage that the BCs are automatically satisfied, leaving the initial condition as

the only equality constraint.

The ANN objective function (2.13) to be minimized is obtained, similarly to

the elliptic case, by applying the the parabolic di↵erential operator in (2.4) to the

approximate solution (3.31),

✏pjq “

"
Bûpxq

Bxprq
´ D

n

rûpxqs

*

x“x

j

PT
S

. (3.32)

However, for the parabolic IBVP described in this subsection, the partial derivatives

di↵er from (3.6) because of the form of the ANN approximate solution (3.31). The

derivatives of (3.31) consist of products of qpxq and its derivatives with derivatives

of the ANN, �̂pxq, as found in (3.6). First order derivatives are given by

Bûpxq

Bxpjq
“

Bh̃pxq

Bxpjq
`

Bqpxq

Bxpjq

“
�

`
xTWT

L

` bT

L

˘
vT

L

` �
`
xTWT

S

` bT

S

˘
vT

S

‰
` qpxq

“
�1

`
xTWT

L

`bT

L

q!
L

j

vT

L

` �1
`
xTWT

S

` bT

S

˘
!

S

j

vT

S

‰
(3.33)

The second order derivatives of the approximate solution (3.31) is given by (A.1) in

Appendix A.
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With the above approximate solution structure (3.31), the ANN equality con-

straint (2.7) is obtained from the IC training set given by,

T
L

“ tx
`

, ĥpx
`

qu

`“1,...,N
L

“

#
rxp1q, ...,xpr´1q, t0s

T

`

,
upxq ´ f̃pxq

qpxq

ˇ̌
ˇ̌
ˇ
x“x

`

+

`“1,...,N
L

for tx1, . . . ,xr´1u P H. The equality constraints are obtained by evaluating the ANN

input-output equation in (3.31) at all points in the training set T
L

, defined in (3.34).

The resulting set of algebraic equations are then organized into a linear system of

equations that can be solved to obtain the explicit equality constraint,

vT

L

“  ´1
´
ĥ ´⌦vT

S

¯
, (3.34)

where  and ⌦ are defined as in the previous subsection, ĥpjq ” ĥpx
j

q, where ĥp¨q

is defined in (3.34). It can be seen that if the problem is shifted so that t0 “ 0, the

term xT

k

WT

L

in (3.17) is independent of the weights in the rth column of W
L

, and,

thus, so is the equality constraint (3.34) representing the PDE ICs. This equality

constraint is also independent of the rth column of W
S

, and, thus, the corresponding

derivatives needed to train these weights can be computed by means of classical

backpropagation.

Since the equality constraint (3.34) is in the same form as the elliptic constraint

(3.19), the derivatives in (3.21)-(3.27) are also used to compute the adjoined Jacobian

for the parabolic IBVP. Then, given the explicit equality constraint equations, the

adjoined Jacobian, and objective function, the CPROP algorithm can be used to

determined the ANN weights incrementally, such that the chosen PDE is solved

within a user-defined tolerance e
tol

.
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Table 3.1: Computational complexity of ANN PDE solution methods

CPROP FDM w/ ANN Penalty Function
J OpN

S

N
L

Q
S

Q
L

q{OpN
S

N
L

Q
S

q OpNQq OpNQq

JTJ OpN
S

Q2
S

q OpNQ2
q OpNQ2

q

LM update OpQ3
S

q OpQ3
q OpQ3

q

3.1.3 Computational Complexity Analysis

A general concern is how fast the computational time grows with respect to the

number of weights, which is proportional to the number of nodes in the hidden

layer. Let Q
S

represent the number of S nodes and Q
L

the number of L nodes

with Q “ Q
L

` Q
S

(Fig. 2.1). Also of interest is how the problem scales with

the number of collocation points. Let N
S

represent the cardinality of T
S

and N
L

the cardinality of T
L

, with N “ N
L

` N
S

. The computational complexity of the

adjoined Jacobian is derived here for the case of a linear elliptic/parabolic PDE.

While it is di�cult to derive the computational complexity of the adjoined Jacobian

for nonlinear elliptic and parabolic PDEs, a useful comparison is made between the

order of operations of the constrained and the unconstrained training algorithms.

The results are summarized in Table 3.1.

Consider the equation for the derivatives of the di↵erential operator in (3.8)

needed to compute the adjoined gradient for the elliptic BVP using the CPROP

algorithm. The term ��

pxTWT

L

` bT

L

q is a row vector of length Q
L

that is indepen-

dent of w
S

. The derivative of vT

L

is given by (3.21) and (3.27), which multiply the

matrix  ´1
P RQ

L

ˆN

L by a column vector of length N
L

. Then, the most compu-

tationally expensive operation is a matrix-vector multiplication, which is OpQ
L

N
L

q,

and performing it for N
S

collocation points and Q
S

weights leads to a complexity of

OpQ
L

N
L

Q
S

N
S

q to compute the derivatives in (3.8) for the elliptic BVP. In the case

of parabolic IBVP the complexity of (3.8) can be reduced compared to the elliptic
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case, because W
L

is held constant, and thus ��

pxTWT

L

`bT

L

q ´1 can be computed

for all N
S

points and stored prior to training. Then, the matrix-vector multiplication

in (3.8) is reduced to a vector-vector multiplication with a total number of operations

OpN
L

N
S

Q
S

q.

The function ⇠2pxq in (3.8) does not contain the constraint, and thus is of the same

order as unconstrained LM, and the derivatives are given by equations (3.11)-(3.13).

The most computationally expensive part of computing (3.11)-(3.13) is evaluating

�� at N
S

ˆ K
S

points, which requires OpN
S

K
S

q computations. When the di↵er-

ential operator is linear, BD
n

rûpxqs{B�̂ in in (3.8) is a constant, thus computing

the Jacobian is OpN
L

N
S

Q
S

q for elliptic problems and OpN
L

N
S

Q
L

Q
S

q for parabolic

problems.

One approach that has been used extensively in the literature to solve PDEs via

ANNs is to use a numerical solution method, such as FDM, to obtain a discrete

solution in the form of a look-up table, and then to use this solution to train an

ANN [87, 64]. Explicit FDM schemes are known to be OpNq, though in practice

more points may be needed to obtain an accurate solution and avoid instabilities

than required by the ANN CPROP solution. In this case, the most computation-

ally expensive step in computing the (unconstrained) Jacobian is evaluating � at

NQ points, which is OpNQq. It can be easily shown that this is also the computa-

tional cost of computing the Jacobian in penalty function methods, which essentially

amount to including all collocation points in T
L

.

Assume the LM algorithm is used to train the ANN, either using classical uncon-

strained backpropagation or CPROP. LM requires computing JTJ, and solving the

linear system of equations in (2.14) to update the weights (LM update). In the case

of CPROP computing JTJ is OpN
S

Q2
S

q, while in the case of unconstrained ANN

training (using the FDM solution or penalty function method), computing JTJ is

OpNQ2
q. The order of operations for solving the system of equations in (2.14) for
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CPROP is OpQ3
S

q, while for the FDM solution and the penalty function method it

is OpQ3
q.

As can be expected, the most expensive step in the CPROP method is computing

the Jacobian, with complexity OpN
S

N
L

Q
S

q (for the elliptic case), while the most

expensive step in the other methods is OpNQ2
q. Typically N ° Q to avoid over-

fitting. Thus, it can be concluded that the computational complexity of CPROP is

comparable both to the process of training an ANN using an FDM solution, and to

the method of solving the PDE via ANNs using a penalty function to account for the

BCs. Furthermore, CPROP eliminates the need for user intervention, as required by

the FDM-based method, and requires less weights, less collocation points, and less

training epochs the penalty function method, because it reduces the dimensionality

of the optimization problem, as do all direct elimination methods. The numerical

results presented in Chapter 4.1 demonstrate that the CPROP methodology can be

used to solve elliptic BVPs and parabolic IBVPs adaptively with excellent accuracy.

The CPROP PDEmethod was expanded to the CINTmethod in order to decrease

the computational time and improve accuracy in stationary IBVPs. The following

section describes the CINT method, and compares it to Galerkin’s method. The

CINT and CPROP methods are demonstrated on several problems in Chapter 4

3.2 The Constrained Integration (CINT) Method

This section presents the CINT method. It is shown how the CPROP method

is to preserve the BC, as well as how CINT compares to the classical Galerkin

method. The primary di↵erences between the two methods are in how they enforce

the boundary condition in (5.8), and in how they approximate the integrals in (2.20)-

(2.24) that are a result of the inner product. The linear combination of basis functions

(2.18) is similar in structure to a feed-forward ANN with a single hidden layer. Using

this paradigm, the boundary condition (5.8) is enforced in the CINT method using
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a modification of the CPROP algorithm [31, 73].

Similarly to spectral methods, in the CINT method the solution to (2.4) is ap-

proximated by a feedforward ANN with a single hidden layer. As in [31, 73], the

ANN is partitioned into two parts, one part is used to satisfy the BC (5.8) and the

other to satisfy the PDE (2.4). The transfer functions used to preserve (5.8) are

radial basis functions (RBFs) denoted by �
L1pxq, ..., �

L

Q

L

pxqu. Gaussian RBFs are

used for problems where the solution, upx, tq, is specified at the boundary (Dirichlet

condition):

�
L

i

pxq “ expp´�||x ´ x
i

||

2
q. (3.35)

In the above equation the shape parameter, �, is a positive constant and x
i

is a point

along the boundary, around which the above RBF is centered. For PDE problems

with a specified flux (Neumann condition), the transfer functions, �
L

i

pxq, are given

by

�
L

i

pxq“expp´�||x ´ x
i

||

2
q

ˆ
exprpx ´ x

i

q

T n̂
i

s ´ 1

exprpx ´ x
i

q

T n̂
i

s ` 1

˙
, (3.36)

where n̂
i

is the unit vector normal to the boundary at x
i

. The CINT transfer functions

used to satisfy (2.4) are denoted by t�
S1pxq, ..., �

Q

L

pxqu. Polynomials and Fourier

functions were found to work well in the IBVPs solved in Section 4.2. The ANN

representation of the approximate solution of (2.4) is then given by

ûpx, tq “

Q

Lÿ

i“1

�
L

i

pxqv
L

i

ptq `

Q

Sÿ

j“1

�
S

j

pxqv
S

j

ptq

“ �T

L

pxqv
L

ptq ` �T

S

pxqv
S

ptq. (3.37)

To determine the above ANN solution, (3.37) is first substituted into (2.5), then the

resulting equation is evaluated at a set of training or collocation points along the

boundary, T
L

“ tx
k

| x
k

P BIu. The boundary condition is then approximately
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satisfied at these points provided

v
L

ptq “ B`
L

rfptq ´ B
S

v
S

ptqs , (3.38)

where ‘`’ denotes the pseudo-inverse, and

B
Lpi,jq “ Br�

L

j

pxqs

ˇ̌
x“x

i

, (3.39)

B
Spi,jq “ Br�

S

j

pxqs

ˇ̌
x“x

i

, (3.40)

fpiqptq “ fpx
i

, tq, (3.41)

for x
i

P T
L

. Substituting the right hand side of (3.38) for the output weights, v
L

ptq,

in the ANN solution (3.37) yields an approximate solution that satisfies (5.8) to

within some desired tolerance at each time step,

ûpx, tq “

“
�T

S

pxq ´ �T

L

pxqB`
L

B
S

‰
v
S

ptq ` �T

L

pxqB`
L

fptq

“

Q

Sÿ

i“1

�
i

pxqv
S

i

ptq ` ⇣px, tq. (3.42)

Rather than directly computing the inner product in (2.20), the constrained approx-

imate solution (3.42) is substituted into the PDE in (2.4), and evaluated at a set of

training or collocation points within the domain, T
S

“ tx
i

| x
i

P Iu, producing the

following system of ODEs:

M
B

kv
S

Btk
ptq “ ⇠rv

S

ptqs (3.43)

M
B

`v
S

Bt`
pt0q “ p

`

(3.44)

where,

Mpi,jq fi �
j

px
i

q, (3.45)

⇠piqrvS

ptqs fi
"
Drûpx, tqs ´

B

k⇣

Btk
px, tq

*

x“x

i

, (3.46)

p
`piq fi g

`

px
i

q ´

B

`⇣

Bt`
px

i

, tq
ˇ̌
ˇ
t0

. (3.47)
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We are now ready to state the main theoretical result for the CINT method.

Theorem 1. If Drûpx, tqs is Riemann integrable then the coe�cients, v
S

, obtained

by solving the systems that arise in Galerkin methods (2.20)-(2.24), are equal to those

obtained by solving the linear least-squares problem described in (3.43) in the limit

as the number of training points, N
S

, goes to infinity.

Proof. Let I be partitioned into N
S

sub domains, S
n

Ä I, such that mpS
n

XS
k

q “ 0,

@ n ‰ k, and mpS
n

q “ mpS
k

q “ �x, @ n, k P t1, ..., N
S

u, where mpS
n

q is the measure

of S
n

. Let T
S

be chosen such that @x
n

P T , x
n

P S
n

. Then the least squares solution

to (3.43) is equal to the solution found by solving the equivalent system

M˚M
B

kv
S

Btk
�x “ M˚⇠�x (3.48)

where the superscript ˚ indicates the conjugate transpose. Now consider a single

element of M˚M:

pM˚Mqpi,jq�x “

N

Sÿ

n“1

�
j

px
n

q�
i

px
n

q�x “ (3.49)

N

Sÿ

n“1

�
j

px
n

q�
i

px
n

qmpS
n

q.

The above equation is a Riemann sum, and as N
S

Ñ 8, (3.49) converges to the limit

lim
N

S

Ñ8
pM˚Mqpi,jq�x “ (3.50)

ª

I
�
j

pxq�
i

pxqdx “ x�
j

pxq,�
i

pxqy “ A
i,j

.

Similarly, consider a single element of the right-hand side of (3.48):

pM˚⇠qpiq�x“

N

Sÿ

n“1

ˆ
Drûpx, tqs´

B

k⇣

Btk
px, tq

˙ˇ̌
ˇ̌
ˇ
x

n

�
i

px
n

q�x

“

N

Sÿ

n“1

ˆ
Drûpx, tqs ´

B

k⇣

Btk
px, tq

˙ ˇ̌
ˇ̌
ˇ
x

n

�
i

px
n

qmpS
n

q. (3.51)
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The above equation is, again, a Riemann sum, and as N
S

Ñ 8, converges to the

limit

lim
N

S

Ñ8
pM˚⇠qpiq�x “ (3.52)

ª

I

ˆ
Drûpx, tqs ´

B

k⇣

Btk
px, tq

˙
�
i

pxqdx “

xDrûpx, tqs ´

B

k⇣

Btk
px, tq,�

i

pxqy “ bpiq.

As in pseudo-spectral schemes, in the CINT method the solution is transformed

between real (u) and spectral pv
S

q spaces at each time step of the temporal integra-

tion. However, in pseudo-spectral methods the solution is transformed from real to

spectral space where spatial derivatives are computed, then transformed back to real

space. In the CINT method the coe�cients, v
S

, are transformed to the approximate

solution and its derivatives in real space via (2.18). The right-hand side of (2.4)

is then evaluated and multiplied by M` to perform an inverse transformation and

obtain an approximation of the temporal derivatives of v
S

ptq.

In the following chapter the CINT method is demonstrated on three IBVPs. In

the first two problems, the CINT method is applied to the wave equation in two

spatial dimensions, which is a linear, hyperbolic PDE. In the final IBVP, the CINT

method is used to solve the heat/di↵usion equation in two spatial dimensions, which

is a linear parabolic PDE. In the first two problems the CINT method outperforms

the FE method both in terms of computational time and accuracy. For the parabolic

heat/di↵usion equation, the CINT and FE methods have similar performances.
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4

Baseline Problems

In this chapter the adaptive CPROP and CINT PDE solution methods are demon-

strated on several baseline PDE problems. The CPROP method is applied to a

Poison problem with nonlinear forces, the heat/di↵usion equation in two and three

spatial dimensions, and the Boussinesq equation. The CINT method is demonstrated

on the heat/di↵usion equation and wave equation in two dimensions.

4.1 CPROP Numerical Simulations and Results

This section demonstrates the e↵ectiveness of the CPROP methodology through

several examples of elliptic and parabolic PDEs. Available methods of solution, such

as the MATLABr PDE Toolbox [2], are not applicable to all of the PDE problems

considered in this section. Therefore, the CPROP solutions are compared to the best

available numerical solution, on a case-by-case basis.
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4.1.1 Adaptive CPROP Solution of Elliptic BVP

Consider the elliptic equation over the domain x P I “ r´1, 1s ˆ r´1, 1s,

r2upxq ` ↵
n

eupxq
“ ↵

n

«
1 ` x2

p1q ` x2
p2q `

4

p1 ` x2
p1q ` x2

p2qq
2

�
, (4.1)

with the boundary condition

upxq “ logpx2
p1q ` x2

p2q ` 1q, @x P BI. (4.2)

The above PDE can be used to capture many dynamic processes in fluid mechanics,

electrostatics, and thermodynamics, such as, steady incompressible irrotational fluid

flow in two dimensions, and heat/di↵usion processes in steady state. The e↵ect of

non-stationary environments is simulated by changing the parameter ↵
n

, representing

the relative importance of the nonlinear term versus the forcing function. A sequence

of six PDEs problems in the form (4.1)-(4.2) is obtained by letting n “ 0, . . . , 5, and

↵
n

“ 0.2n. For ↵
n

“ 0, the PDE in (4.1) reduces to Laplace’s equation.
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Figure 4.1: CPROP solution to the elliptic PDE (4.1) when n “ 0 (a), and corre-
sponding training error (b).

Using the CPROP methodology presented in Section 3.1, the ANN in (3.2) is

trained to solve these six PDEs adaptively. When the objective function decreases
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below e
tol

, the CPROP algorithm ceases training the ANN. Then, when the value of

↵
n

is modified, the change is reflected in the training sets and, subsequently, in the

objective function. As a result, the objective function exceeds e
tol

, and the CPROP

algorithm resumes training the ANN incrementally, starting with the weights ob-

tained during the last training session. The input data in T
L

consists of 180 equally

spaced collocation points in BI. The input data in T
S

consists of a 35 ˆ 35 grid of

points in the interior of I. The corresponding output data for the two training sets

is computed as explained in Section 3.1.1. The ANN is partitioned into 40 ‘L’ nodes

and 20 ‘S’ nodes (Fig. 2.1). The training set T
S

is used to formulate the objective

function (3.3) to be minimized in terms of the di↵erential operator in (4.1).
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Figure 4.2: CPROP solution to the elliptic PDE (4.1) when n “ 5 (a), and corre-
sponding training error (b).

At n “ 0, the weights are initialized randomly. No training of W
L

and b
L

is

required and, instead, it is su�cient to initialize the input weights with uniformly

distributed values in the interval p´5, 5q, similarly to [45, 65]. The CPROP adaptive

solution is obtained for n “ 0, ..., 5, and is shown in Figs. 4.1 and 4.2 for n “ 0 and

n “ 5.

For n “ 0, the CPROP solution is compared to the solution obtained using the
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Figure 4.3: Final training error of elliptic PDEs CPROP solutions.

MATLABr PDE Toolbox [2], and for n “ 5 it is compared to the analytical solution

upxq “ logpx2
p1q ` x2

p2q ` 1q [70]. Plots of these solutions are not included for brevity,

but the corresponding Relative Error Norm (REN),

E “

∞
i

pupx
i

q ´ ûpx
i

qq

2

∞
i

u2
px

i

q

(4.3)

computed using a validation set is plotted in Fig. 4.4 for the elliptic PDE (4.1) with

n “ 5, solved via CPROP 800 times. Each box plot shows the distribution of REN

resulting from 100 simulations, using di↵erent numbers of nodes. Similar results were

obtained for n “ 0, but are omitted for brevity.

For ↵
n

‰ 0 the MATLABr PDE Toolbox cannot be used to solve (4.1) due to the

presence of the nonlinearity. Therefore, as a form of comparison the final training

error associated with each PDE problem is plotted as a function of ↵
n

in Fig. 4.3. It

can be seen that the errors are similar for all value of ↵
n

and, in fact, decreasing with

each new adaptation of the solution. The history of the errors demonstrates that

the CPROP methodology is benefiting from solving the PDE online, exploiting the

previous PDE solution as an excellent initial estimate. Moreover, by this approach, a
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Figure 4.4: Box plots of REN vs. the number of nodes in the NN.

reasonable approximation to the PDE solution is available at all times in functional

form. These plots also show that fewer iterations are required to converge to a

satisfactory solution, compared to when the initial weights are initialized randomly.

This result is verified in Fig. 4.5, where five box plots, each representing 100 solutions,

show that the number of epochs required by the adaptive solution is far less than that

required by the non-adaptive solution. As can be expected, the adaptive solution is

most e↵ective when the change between the n ´ 1 and n equations are incremental,

as if the di↵erence is very large, then the computational savings are not significant.

4.1.2 Adaptive CPROP Solution of a two-dimensional linear, unsteady heat/di↵usion
IBVPs

This subsection presents the results obtained for a two-dimensional (2D) linear, un-

steady, heat/di↵usion equation without convection or source/sink terms, which is

one of the most basic parabolic equations. The PDE problem is solved adaptively,

subject to a changing coe�cient that represents the di↵usivity of the material.
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Figure 4.5: Box plots of CPROP training epochs needed to solve the elliptic PDE
(4.1) adaptively from the ↵

n´1 solution, and non-adaptively.

The unsteady, linear 2D heat/di↵usion equation is,

Bupxq

Bxp3q
“ k

n

«
B

2upxq

Bx2
p1q

`

B

2upxq

Bx2
p2q

�
(4.4)

where upxq is represents the temperature in the heat equation, or density in the

di↵usion equation. The coe�cient k
n

, which is typically held constant, represents the

di↵usivity of the material, and determines the rate at which heat or mass is di↵used

through the system. The domain of the PDE is pxp1q,xp2qq P H “ r´1, 1s ˆ r´1, 1s,

and xp3q • 0, where xp3q represents time. The PDE in (4.4) is subject to Dirichlet

boundary conditions,

upxq “ 0, @pxp1q,xp2qq P BH, (4.5)
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and to the initial condition,

upxp1q,xp2q, 0q “ e´7px2
p1q`x

2
p2qq sinp2⇡xp1qq, (4.6)

@ pxp1q,xp2qq P H,

which specifies the solution everywhere in H at time zero.

The ANN solution takes the form (3.31), with a user-defined function qpxq ”

px2
p1q ´ 1qpx2

p2q ´ 1q. The ANN in (3.31) is chosen to have 50 L nodes and 30 S nodes

(Fig. 2.1). The input data in T
L

consists of a 30 ˆ 30 grid of equally spaced points

in H, which are used together with the ICs (4.6) to formulate the equality constraint

3.34. The input data in T
S

consists of a 15 ˆ 15 ˆ 15 lattice of points in H ˆ p0, 1s.

To simulate the e↵ects of non-stationary environments, two PDE problems in the

form (4.4)-(4.6) were considered by letting n “ 0, 1, with k0 “ 0.01, and k1 “ 0.1.

The results in Fig. 4.6 show sample snapshots of the PDE solution obtained using

MATLABr and CPROP at sample moments in time. The CPROP training error

(omitted for brevity) shows that, after an instantaneous increase due to the changing

coe�cient, the error decreases significantly until CPROP converges to optimal weight

values. The adaptive solution is plotted in Fig. 4.8 for n “ 1, and compared to

the (non-adaptive) MATLABr. It can be seen that the adaptive solution rapidly

converges to the steady-state zero solution, despite the fact that this type of flat

function is one of the hardest to approximate via ANNs. The REN of the parabolic

PDE (4.4) obtained by solving the problem 160 times is plotted in Fig. 4.7. Each

box plot represents the REN from 20 approximate solutions to the parabolic PDE

for n “ 0, showing that the accuracy can be improved by increasing the number of

nodes. Similar results were obtained for n “ 1 but are omitted for brevity.
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Figure 4.6: 2D-heat/di↵usion equation solutions obtained using MATLABr and
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Figure 4.7: Box plots of relative error norm with respect to the number of nodes.

4.1.3 Adaptive CPROP Solution of a three-dimensional linear, unsteady heat/di↵usion
IBVPs

The unsteady, linear 3D heat/di↵usion equation is,

Bupuq

Bxp4q
“ k

n

«
B

2upxq

Bx2
p1q

`

B

2upxq

Bx2
p2q

`

B

2upxq

Bx2
p3q

�
(4.7)

where pxp1q,xp2q,xp3qq P I “ r´1, 1s ˆ r´1, 1s ˆ r´1, 1s, and xp4q • 0 represents time.

The parabolic PDE in (4.7) is subject to the BCs,

upxq “ 0, @pxp1q,xp2q,xp3qq P BI. (4.8)

and to the ICs,

upxp1q,xp2q,xp3q, 0q “ 2
´
e´10||x´x0||2

´ e´10||x`x0||2
¯

@ pxp1q,xp2q,xp3qq P I, (4.9)

where x0 “ r0.5 0.5 0.5 0s

T is a known and constant vector.

The above PDE problem is chosen to demonstrate the CPROP method’s ability

to cope with several variables, and to adapt a 4D PDE solution to a non-stationary

environment, by letting n “ 0, 1, where k0 “ 0.01 and k1 “ 0.1. The ANN solution
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Figure 4.8: Adaptive CPROP solution for the 2D heat/di↵usion (4.4) when n “ 1 is
compared to the (non-adaptive) solution obtained using MATLABr at times xp3q “ 0
s, xp3q “ 0.6 s, and xp3q “ 1 s.
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Figure 4.9: CPROP solution of the 3D heat/di↵usion equation (4.7) when n “ 0.

takes the form (3.31), with a user-defined function qpxq “ px2
p1q ´1qpx2

p2q ´1qpx2
p3q ´1q.

The ANN architecture consists of 30 ‘L’ nodes, and 60 ‘S’ nodes. The input data in

T
L

consists of a 25 ˆ 25 ˆ 25 lattice of spatial points in the interior of I, while the

input data in T
S

consists of an 8 ˆ 8 ˆ 8 ˆ 8 lattice of points in H ˆ p0, 1s.

When n “ 0, an accurate ANN PDE solution is obtained using CPROP, as shown

in Fig. 4.9, using randomly initialized weights. For n “ 1, the ANN PDE solution

is adapted by the CPROP algorithm, as shown in Fig. 4.10. These solutions could

not be compared to the MATLABr solution, because the MATLABr PDE Toolbox

is not capable of solving 3D problems [2]. However, the CPROP solution is found

to converge to the steady state solution, known to be u “ 0, and the training errors

(not shown for brevity) confirm convergence to optimal ANN weights. To illustrate

the computational savings brought about by the adaptive CPROP solution, the

3D heat/di↵usion equation (4.7) with n “ 1 was solved 20 times using random

initial weights (non-adaptively). The di↵erence in number of epochs required by the

adaptive and non-adaptive ANN solution is plotted in Fig. 4.11, where it can be

seen that the former converges significantly faster than the latter.
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Figure 4.10: CPROP solution of the 3D heat/di↵usion equation (4.7) when n “ 1.
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Figure 4.11: Box plots of number of CPROP training epochs needed to solve the
3D heat/di↵usion equation (4.4) adaptively and non-adaptively.

4.1.4 Adaptive CPROP Solution of the Boussinesq Equation

The CPROP methodology is demonstrated on a nonlinear di↵usion PDE problem,

commonly known as the Boussinesq equation, which is chosen to show the applicabil-

ity of the method to nonlinear, parabolic IBVPs. The Boussinesq equation is a model

of heat/di↵usion process with nonlinear di↵usive properties that is used extensively
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in numerical groundwater flow simulations [24], and can be written as,

S
n

Bu

Bxp3q
“

B

Bxp1q

„
K

n

u
Bu

Bxp1q

⇢
`

B

Bxp2q

„
K

n

u
Bu

Bxp2q

⇢
(4.10)

where u is the elevation of the water table above a horizontal base, the spatial

coordinates are pxp1q,xp2qq P H “ r´1, 1s ˆ r´1, 1s, and xp3q • 0 is time. S
n

is the

specific yield, or the amount of water released per volume of porous medium when

changing from a saturated state to an unsaturated state high above the water table,

and K
n

is the hydraulic conductivity.

In many applications K
n

and S
n

are assumed to be constant. To demonstrate

the ability of CPROP to solve nonlinear parabolic IBVPs adaptively, in this paper

the specific yield and hydraulic connectivity are modeled as,

S
n

pxp1q,xp2qq “ .2

ˆ
1 ` �

n

e10xp1q`2xp2q
´ 1

e10xp1q`2xp2q
` 1

˙
(4.11)

K
n

pxp1q,xp2qq “ .0002

ˆ
1 ´ �

n

e10xp1q`2xp2q
´ 1

e10xp1q`2xp2q
` 1

˙
(4.12)

also rendering the PDE problem considerably more challenging. The Boussinesq

PDE (4.10) is subject to the ICs,

upxp1q,xp2q, 0q “ 10 ` 9 sinp⇡pxp1qxp2q ` x2
p1qqq (4.13)

ˆ cosp2⇡px2
p2q ` .1qqpx2

p1q ´ 1qpx2
p2q ´ 1q

ˆ expp´ sin2
p2⇡xp2qqq, @pxp1q,xp2qq P H

and to the Dirichlet BCs

upxq “ 10, @pxp1q,xp2qq P BH (4.14)

Because MATLABr PDE toolbox is only capable of solving linear parabolic

PDEs, for comparison, the PDE problem in (4.10)-(4.14) was solved using FDM.
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The finite di↵erence scheme implemented in this paper discretizes the domain of the

problem, letting,

um

i,j

“ up´1 ` i�xp1q,´1 ` j�xp2q,m�x3q. (4.15)

denote a point-wise solution, and using a forward stepping temporal di↵erence to

approximate Bu{Bxp3q with central di↵erencing for spatial derivatives. The stencil is

shown in (B.1) in Appendix B. The domain H is discretized using �xp3q “ 5e´4, and

�xp1q “ �xp2q “ 0.02. The Boussinesq equation being nonlinear makes it di�cult

to use implicit or semi-implicit schemes, such as Crank-Nicolson, that are known to

exhibit higher stability than strictly explicit schemes, such as the one used in this

paper. Thus �xp3q is chosen to be very small to avoid stability issues.

The CPROP solution to (4.10)-(4.14) is obtained using input data in T
L

that

consists of a 40 ˆ 40 grid in H, and input data in T
S

that consists of a 20 ˆ 20 ˆ 20

lattice in H ˆ p0, 1s, with 110 ‘L’ nodes and 30 ‘S’ nodes. Compared to the previous

examples, the IC in this example was more intricate. Thus a larger number of ’L’

nodes as well as training points were required to obtain desired accuracy. In order to

simulate the e↵ect of non-stationary environments, the parameter �
n

in the specific

yield and hydraulic connectivity equations, (4.11) and (4.12), is varied from �0 “ 0

to �1 “ 0.5. As a result, two Boussinesq PDE problems are obtained for n “ 0 and

n “ 1.

For n “ 0, the ANN weights were initialized randomly, and the CPROP solution

is plotted in Fig. 4.12 and compared to the FDM solution at di↵erent moments in

time. When n “ 1, the CPROP solution was adapted, and plotted in Fig. 4.13,

along with the comparison with an FDM solution obtained by solving the same PDE

problem non-adaptively. As in previous examples, the Boussinesq PDE problem

with �
n

“ 0.5 was solved 20 times (non-adaptively) with FDM, and compared to

the adaptive solutions. The resulting box plot (Fig. 4.14) illustrates that the adap-
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Figure 4.12: Solution of Boussinesq PDE (4.10) obtained by CPROP when n “ 0
is compared to FDM solution at xp3q “ 0 s, xp3q “ 0.5 s, and xp3q “ 1 s.
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Figure 4.13: Adaptive solution of Boussinesq PDE (4.10) obtained by CPROP
when n “ 1 is compared to (non-adaptive) FDM solution at xp3q “ 0 s, xp3q “ 0.5 s,
and xp3q “ 1 s.
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Figure 4.14: Box plots of number of CPROP training epochs needed to solve the
Boussinesq PDE (4.10) adaptively and non-adaptively.

tive CPROP solution brings about a significant reduction in the number of training

epochs required.

4.2 CINT Simulations and Results

The method presented in the previous section is applied to three IBVPs described

in this section. The first consists of a 2D wave equation in a circular domain with

a Dirichlet boundary condition. The second problem is a 2D wave equation solved

over a square domain with a Neumann boundary condition. The wave equation is a

linear hyperbolic PDE and was chosen for its wide use in areas ranging from acoustics

[78] to electromagnetics [96]. The final problem is the 2D heat/di↵usion equation

on a semi-circular domain with a Dirichlet boundary condition. This equation is a

parabolic type PDE, and has been used to model physical phenomena such as particle

and thermal di↵usion, and also arises in other areas such as financial mathematics.

These PDEs and their domains were chosen because in each case a simple analytical

solution is available, and, thus, can be used to compare and validate the results.
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For each IBVP, comparisons were made between the CINT method and Matlab’s

FE-based PDE toolbox solver, including a comparison of accuracy and speed. The

FE method was chosen to provide a baseline comparison, as it is frequently used

in problems with complex geometries [15]. It has also been used extensively to

solve the wave and heat/di↵usion equations [4, 3, 2, 43, 111]. It is noted that both

methods used Matlab’s ODE15s ODE solver [94] to integrate the respective ODEs

that arise in each method. As the speed of the algorithm is determined by the

computational complexity and the allowable integration step size, the mean step

size, �t, observed in each method is also reported. As ODE15s uses an adaptive

time step, the mean observed step size gives an approximation of the allowable step

size for these problems. The error from the hyperbolic IBVPs is measured using the

root mean square (RMS) error

RMSptq “

d∞
M

m“1rupx
m

, tq ´ ûpx
m

, tqs

2

M
, (4.16)

for M points in I. Because for the parabolic IBVP, u Ñ 0 as t Ñ 8, a more

meaningful measure of solution accuracy is the relative error norm (REN)

RENptq “

b∞
M

m“1rupx
m

, tq ´ ûpx
m

, tqs

2

b∞
P

p“1 u
2
px

p

, tq
. (4.17)

The observed statistics of the errors from the IBVPS are shown in Table 4.1. The

errors reported are the cumulative RMS errors for the IBVPs in Section 4.2.1 and

4.2.2 and the cumulative REN for the IBVP in Section 4.2.3. Mean�t is the observed

mean time step used in the integration, and Time is the computational time, in

seconds, required for each problem. It can be seen that in both hyperbolic problems,

the CINT method obtained the numerical solution significantly faster than the FE

method. In the heat/di↵usion equation, the FE method was found to be faster. In
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Table 4.1: Observed statistics from the three IBVPs.

IBVP Method Error Mean �t Time [s]

(4.18) CINT .0018 .006 6.9
(4.18) FE .0064 .003 49.2
(4.25) CINT .013 .0046 2.18
(4.25) FE .11 .001 38.65
(4.31) CINT .0018 .147 3.1
(4.31) FE .0034 .128 1.7

each IBVP studied the solution obtained from the CINT method was considerably

more accurate than the solution provided by the FE method.

4.2.1 Wave Equation with a Dirichlet Boundary Condition in Two Dimensions

The results obtained by the CINT method for the two dimensional wave equation

are given. Note that throughout this section x “ rx, ys

T . The IBVP was solved over

the circular domain given by I “ tpx, yq | x2
` y2 § 1u, and over the time interval

t P r0, 3s. The wave equation is given by

B

2u

Bt2
“ c2

ˆ
B

2u

Bx2
`

B

2u

By2

˙
, (4.18)

where c is the wave speed, taken to be 2. The above PDE is subject to the Dirichlet

boundary condition

upx, y, tq “ 0 px, yq P BI, (4.19)

and initial conditions

upx, y, 0q “ J0

´
�4

a
x2

` y2
¯

px, yq P I, (4.20)

Bu

Bt
px, y, 0q “ 0 px, yq P I. (4.21)

J0p¨q represents a Bessel function of the first kind,

J0prq “

8ÿ

m“0

p´1q

m

pm!q2

´x

2

¯2m

, (4.22)
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Figure 4.15: Analytical (left) and numerical (right) solutions to (4.18) at t “ 0 to
t “ .41.

51



Keith Rudd  

Results Document for CINT 5/15/13 

 

 

 

0 0.5 1 1.5 2 2.5 3
0

0.005

0.01

0.015

 

 

CINT
FE

R
M

S 
Er

ro
r 

t 

This figure shows the evolution of RMS errors from the FE and CINT solutions to the 2D wave 
equation with Dirichlet boundary conditions.   

Figure 4.16: RMS error in the approximate solutions to (4.18) returned by the FE
and CINT methods versus t.

and �4 represents the 4th zero of J0p¨q. This IBVP has the analytical solution

upx, y, tq “ J0

´
�4

a
x2

` y2
¯
cospc�4tq. (4.23)

The RBFs, t�̃1pxq, ..., �̃
Q̃

pxqu, that were used for this problem are given by (3.35)

with � “ 10 and Q̃ “ 40. They were centered at 40 points uniformly distributed

along the boundary of the domain. A polynomial basis was used for the transfer

functions �
j,m

pxq,

�
j,m

px, yq “ xj´mym, (4.24)

where j “ 0, ..., 14, m “ 0, ..., j.

The analytical and numerical solutions to (4.18) are shown in Fig. 4.15. The

RMS errors observed in the solutions obtained by the FE and CINT methods are

shown in Fig. 4.16. It can be seen that the initial error is slightly larger in the

solution returned from the CINT method, however, the error grows more slowly
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than the observed error in the solution obtained by the FE method. Furthermore,

the CINT method arrived at the numerical solution in approximately 6.9 seconds

and Matlab’s solver required approximately 49.2 seconds. Thus, the CINT method

reduced the computation time by 85%. The cumulative RMS error for this problem

was 0.0064 for the FE method and 0.0018 for the CINT method, an error reduction

of approximately 70%.

4.2.2 Wave Equation with a Neumann Boundary Condition in Two Dimensions

The results of applying the CINT method to the 2D wave equation over a square

domain with a Neumann boundary condition are given in this section. The PDE

was solved over the domain I “ tpx, yq | px, yq P r´1, 1s ˆ r´1, 1su, and time interval

t P r0, 3s. The wave equation is again given by

B

2u

Bt2
“ c2

ˆ
B

2u

Bx2
`

B

2u

By2

˙
, (4.25)

and is subject to the boundary condition

rupx, y, tq ¨ n̂ “ 0 px, yq P BI, (4.26)

where n̂ is the outward unit normal vector. The initial conditions are given by

upx, y, 0q “ cosp2⇡xq cosp3⇡yq px, yq P I, (4.27)

Bu

Bt
px, y, 0q “ 0 px, yq P I. (4.28)

This IBVP has the analytical solution

upx, y, tq “ cosp2⇡xq cosp3⇡yq cos
´
c⇡

?

22 ` 32t
¯
. (4.29)

The RBFs used to solve this problem are given by (3.36), with � “ 90. The RBFs

were centered at points distributed uniformly along the boundary, with 70 along each
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Figure 4.17: Analytical (left) and numerical (right) solutions to (4.25) at times
t “ 0, t “ .07, t “ .16, and t “ .21.
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Figure 4.18: RMS error in the solutions to (4.25) returned by the FE and CINT
methods versus t.

of the four sides of the square domain. As in the previous problem, a polynomial

basis was used for the transfer functions, �
j

pxq, given by

�
j

pxq “ xm

jynj , (4.30)

where j “ 0, ..., 142, and m
j

, n
j

P t0, ..., 14u. The analytical and numerical solutions

to (4.25) are shown in Fig. 4.17. The left column shows the analytical solution; the

right column shows the numerical solution obtained by the CINT method.

As in the previous IBVP, the RMS error was computed at various time steps

and plotted in Fig. 4.18. It can be seen from this figure that the initial error is

initially slightly larger in the solution obtained from the CINT method, however,

grows significantly slower than the error measured in the solution obtained from

the FE method. For this problem, the CINT method required approximately 2.18

seconds to obtain a solution, and Matlab’s FE-based solver took approximately 38.65

seconds. Therefore, the CINT method reduced the computation time by 94%. The
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cumulative RMS error observed in the solution obtained by the FE method was 0.11,

wherease the solution obtianed with the CINT method had a cumulative RMS error

of 0.013, an error reduction of approximately 88%.

4.2.3 Heat/Di↵usion Equation in Two Dimensions

The final IBVP presented in this paper is given by the heat/di↵usion equation in two

spatial dimensions. This problem was solved in the domain given by the semicircle

I “ tpx, yq | x P r´1, 1s, y P

”
0,

a
p1 ´ x2

q

ı
u, in the time interval t P r0, 5s. The

parabolic PDE is, then, given by

Bu

Bt
“ k

ˆ
B

2u

Bx2
`

B

2u

By2

˙
x P I, (4.31)

where k is the di↵usivity, taken to have the constant value of .002. The above PDE

is subject to the boundary condition

upx, tq “ 0 x P BI, (4.32)

and initial condition

upx, t0q “ J3

´
�3

a
x2

` y2
¯
sinr3 arctanpy{xqs. (4.33)

J3p¨q in the above equation is a Bessel function of the first kind

J3prq “

8ÿ

m“0

p´1q

m

m!pm ` 3q!

´x

2

¯2m`3

, (4.34)

and �3 is the 3rd zero of the above Bessel function. This problem has the analytical

solution

upx, tq“J3

´
�3

a
x2

` y2
¯
sinr3 arctanpy{xqse´k�

2
3t. (4.35)

As in the problem presented in Section 4.2.1, the RBFs used in the approximate

solution are given by (3.35), with � “ 20. Sixty RBFs centered at points distributed
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These plots show the evolution of the solution to the 2D heat equation in a semi-circular domain 
with Dirichlet boundary conditions. The left column is the analytical solution; the right column 
shows the numerical solution obtained from CINT. 
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Figure 4.19: Analytical (left) and numerical (right) solutions to (4.31) at times
t “ 0, t “ 1.67, t “ 3.33, and t “ 5.
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uniformly over the boundary of the domain were used. A truncated Fourier basis

was used for the transfer functions �
j

pxq :

�
j

pxq Pt1, sinp⇡xq, cosp⇡xq, ..., sinp5⇡xq, cosp5⇡xqub

t1, sinp⇡yq, cosp⇡yq, ..., sinp5⇡yq, cosp5⇡yqu, (4.36)

where b denotes the tensor product.
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This figure shows the evolution of REN from the FE and CINT solutions to the 2D heat equation 
with Dirichlet boundary conditions.   

Figure 4.20: REN observed in the FE and CINT numerical solutions to (4.31).

The analytical and numerical solutions to (4.31) are shown in Fig. 4.19 at times

t “ 0, 1.67, 3.33, 5. The computational time was approximately 0.6 seconds for the

FE method and 1.7 seconds for the CINT method. The REN observed in the solution

returned by the FE and CINT methods are shown in Fig. 4.20. This plot shows that,

although initially more accurate, the error in the solution from the FE method grows

significantly faster than the error measured in the solution from the CINT method,

and quickly becomes less accurate. An analysis of the error, or rate of convergence

of the CINT method, is provided in the following subsection.
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4.2.4 Error Analysis

The rate at which the CINT method is able to solve PDEs is determined by the

number of basis functions required to satisfy a user defined error tolerance. Explicitly,

assuming that M` has been pre-computed and stored, each step within the ODE

solver requires OpNQq computations. It has been shown that if u is analytic, then

classical spectral methods converge exponentially in Q [14],

||upx, tq ´ ûpx, tq|| § c1e
´c2Q, (4.37)

where c1 and c2 are positive constants. Exponential convergence was also observed

in the CINT method. Figure 4.21 shows the RMS error versus the highest degree

of polynomial used to solve the IBVP given in section 4.2.2 (or
?

Q
S

as the PDE is

solved in two dimensions). It was found that RMS « 692 expp´0.85
?

Q
S

q, and is

the solid line plotted in Fig. 4.21.
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Figure 4.21: Exponential convergence observed in the CINT method. This plot
shows the RMS error versus the power of polynomial used in the approximate solution
(3.42). The observed errors are indicated by stars (*), and the exponential regression
is shown by the solid line.
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5

Distributed Optimal Control (DOC)

This chapter considers the problem of computing optimal state and control trajec-

tories for a multiscale dynamical system comprised of many interacting dynamical

systems, or agents. Optimality conditions are derived and solved using the CINT

method to obtain optimal control.

5.1 Distributed Optimal Control

Many complex systems ranging from renewable resources [89] to very large scale

robotic (VLRS) systems [84] can be described as multiscale dynamical systems com-

prised of many interactive agents. In recent years, significant progress has been

made in formation control and stability analysis of teams of robots, or swarms, in

which the mutual goal of the agents is to maintain a desired configuration, such

as a triangle or a star formation, or a desired behavior, such as translating as a

group (schooling), or maintaining the center of mass of the group stationary (flock-

ing) [7, 25, 35, 29, 61, 84]. While this literature has successfully illustrated that the

behavior of large networks of interacting agents can be conveniently described and
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controlled by density functions, it has yet to provide an approach for controlling the

agents such that their overall performance is optimized.

Recently, a coarse-grained optimal control approach for large, multiscale dynam-

ical systems, referred to as distributed optimal control (DOC) was proposed, that

enables the optimization of density functions, and/or their moments, subject to the

agents’ dynamic constraints [34]. The DOC approach in [34] is applicable to multi-

scale dynamical systems comprised of many agents or processes that, on small spatial

and time scales, are each described by a small set of ordinary di↵erential equations

(ODEs), referred to as the microscopic or detailed equations. On larger spatial and

temporal scales, the agents’ dynamics and interactions are assumed to give rise to

macroscopic coherent behaviors, or coarse dynamics, described by partial di↵erential

equations (PDEs). This chapter extends the capabilities of the DOC approach pro-

posed in [34] for deterministic agent dynamics, to agent dynamics that are governed

by stochastic di↵erential equations (SDEs).

In recent years, the optimal control of stochastic di↵erential equations (SDEs)

has gained increasing attention. Considerable research e↵orts have focused on the

optimal control and estimation of SDEs driven by non-Gaussian processes, such as

Brownian motion combined with Poisson processes, and various other stochastic pro-

cesses [99, 100, 76]. The approach in [99, 100, 76] views the microscopic agent state

as a random vector, and derives an SDE dynamic equation that involves the evolu-

tion of the statistics of the microscopic vector function, and may be integrated using

stochastic integrals. Then, the performance of multiple agents can be expressed as an

integral function of multiple, corresponding vector fields to be optimized subject to

a set of SDEs. However, solutions can only be obtained for relatively few and highly

idealized cases in which finite-dimensional, local approximations can be constructed,

for example, via moment closure [99, 100]. Therefore, while optimal control of SDEs

has been shown useful to selected applications in population biology and finance
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[99, 100, 76], it is yet to be successfully applied to multiscale systems in which the

coarse dynamics do not obey these idealized conditions, and are instead dictated by

realistic constraints (e.g., vehicle dynamics) and objectives (e.g., minimizing energy

consumption, or maximizing coverage).

The GRG-DOC methodology presented in this chapter relies on identifying a con-

sistency relationship between the microscopic agent dynamics and a macroscopic de-

scription, such as the time-varying probability density function (PDF) of the agents’

state. Unlike Nash Certainty Equivalence (NCE), or Mean Field, methods, in which

the (weak) couplings between agents are produced by the averaging of the micro-

scopic agent dynamics and costs, in the DOC approach the couplings need not be

weak, and may arise as a result of cooperative objectives expressed by the macro-

scopic cost function. Therefore, the cost function can represent objectives of a far

more general form than NCE, and admit (optimal) solutions that entail strong cou-

plings between the agent dynamics and control laws. Also, unlike prioritized and

path-coordination methods [106, 58], the proposed DOC approach does not rely on

decoupling the agents’ dynamics, or on specifying the agents’ distribution a priori.

Instead, DOC optimizes the macroscopic behavior of the system subject to coupled

microscopic agent dynamics, and relies on the existence of an accurate macroscopic

evolution equation and an associated restriction operator that characterize the multi-

scale system to reduce the computational complexity of the optimal control problem.

As a result, the computation required is far reduced compared to classical optimal

control, and realizations of the trajectories of all agents over large spatial and time

scales are calculated simultaneously without sacrificing optimality or completeness.

5.2 Problem Formulation

This chapter considers the problem of computing optimal state and control trajecto-

ries for a multiscale dynamical system comprised of N interacting dynamical systems,
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or agents. The dynamics of each agent on the microscopic scale can be described by

a small system of the SDEs,

9xptq “ f rxptq,uptq, ts ` Gwptq, xpt0q “ x0, (5.1)

where xptq P X Ä Rn is the microscopic state and u “ crxptq, ts P U Ä Rm is the

microscopic control law, which is assumed to be a function of the state. The micro-

scopic dynamics are influenced by additive Gaussian noise, where the disturbance,

w P Rn, is a vector of independent and identically distributed random variables from

a standard Gaussian process, and G is a time-invariant matrix. A standard Gaussian

process is used here for simplicity, but this approach is applicable to any di↵usion

process. It is assumed that the microscopic state, x, of every agent is fully observable

and error free.

On large spatial and temporal scales, the agents can be represented by a macro-

scopic state, denoted byX P R`, ` †† n, by means of a restriction operator. Depend-

ing on the macroscopic system performance to be optimized, the restriction operator

may consist of the agent distribution and/or of its lower-order moments, such that

Xptq “ }rxptq, ts [51]. In this chapter, the system restriction operator } is assumed

to be a time-varying probability density function (PDF), } : X ˆ R Ñ R, such that

the probability that the state of the ith agent has a value x P B Ä X is given by,

P rxptq P Bs “

ª

B

}rxptq, tsdx (5.2)

Then, the agent PDF, }, is a non-negative probability function that must satisfy the

normalization condition,
ª

X
}rxptq, tsdx “ 1 (5.3)

In many complex systems, such as autonomous vehicles and sensor networks,

the performance to be optimized can be defined as an integral cost function of the
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macroscopic state } and the microscopic control u,

J “

ª

X
� r}px, t

t

q, t
f

s dx `

ª

t

ª

X
L r}px, tq,uptq, tsdxdt, (5.4)

where L is the Lagrangian function of the DOC problem. The multi-agent trajec-

tory optimization problem considered in this chapter seeks to determine the optimal

trajectories for the macroscopic state X˚ and microscopic control u˚ that minimizes

the cost function (5.4), subject to the dynamic constraint (5.1) and the equality

constraint (5.3).

Assuming that the agents exist only in the state space X ,

}rxptq R X , ts “ 0, @ P pt0, tf s (5.5)

and that no agents are created or destroyed, the evolution of the agent PDF, can be

shown to be governed by the so-called advection-di↵usion equation. The advection-

di↵usion equation is a parabolic PDE that describes the motion of a conserved scalar

quantity, such as a PDF, as it is advected by a known velocity field and undergoes

a di↵usion process [13]. Since the agent distribution, }, is advected by a known

velocity field v “

9x P Rn, given by the detailed equation (5.1), and di↵used by the

additive Gaussian noise, the time-rate of change of } can be defined as the sum of

the negative divergence of the advection vector p}vq and the divergence of di↵usion

vector pGGTr}q [68]. Then, from the advection-di↵usion equation, the agent PDF

is governed by,

B}

Bt
“ ´r ¨ t}px, tqf rx,uptq, tsu ` ⌫r2}px, tq (5.6)

where the r denotes a row vector of partial derivatives with respect to the elements

of x, and the di↵usion coe�cient is ⌫ “ GGT .

This chapter presents a GRG method for computing the optimal trajectories of

the macroscopic state X˚ and the microscopic control u˚ that optimize J over the
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time interval pt0, tf s. The optimization of J is subject to the macroscopic dynamics

(5.6), the normalization condition (5.3), and the state space constraint (5.5). and the

initial and boundary conditions. Additionally, since the agents are assumed to exist

in X at all times, their initial PDF, g0 is typically given. Therefore, the optimization

of J is also subject to the initial and boundary conditions,

}px, t0q “ g0pxq (5.7)

tr}px, tqu ¨ n̂ “ 0, @ P pt0, tf s (5.8)

that require all agents to remain in X at all times, where n̂ is a vector normal to BX
of unit length. The following section presents an indirect solution method based on

a GRG approach for solving PDE-constrained optimization problems.

5.3 Methodology

An indirect GRG solution method is presented in this section for computing the

optimal macroscopic state and microscopic control trajectories for the DOC problem

in (5.1)-(5.6). By this approach, a Lagrange multiplier, �px, tq, is used to adjoin

the dynamic and equality constraints, (5.5)-(5.8), (5.3), to the integral cost function

(5.4), obtaining the augmented integral cost function,

Ĵp},u,�q “

ª

X
� t}px, t

f

q, t
f

u dx `

ª

t

ª

X

#
L r}px, tq,uptqs (5.9)

`�px, tq
”

B}px, tq

Bt
` r ¨ r}px, tqfpx,u, tqs ´ ⌫r2}px, tq

ı+
dxdt.

The necessary conditions for optimality for this augmented cost function are derived

in Section 5.3.1 using the calculus of variations.

To have a closed form representation of the control for all x, every element of

the control vector, u
j

, is parameterized as the sum of m linearly-independent basis
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functions �1p¨q, . . . ,�
m

p¨q, such that

u
j

“

ÿ

k

�
k

pxq↵
j,k

ptq, for j “ 1, . . . ,m. (5.10)

Then, the goal of the DOC problem is to obtain the parameters, ↵˚
j,k

ptq, that minimize

the cost function (5.4), subject to the aforementioned constraints. As shown in

Section 5.3.2, since the macroscopic state, }, and the Lagrangian multiplier, �, can

be found explicitly as a function of u, a generalized reduced gradient (GRG) method

[105] can be used to determine the optimal parameters of the control law (5.10).

5.3.1 Optimality Conditions

The optimality conditions for the optimal control problem presented in Section 5.2

are derived here using calculus of variations. Let µ “ ruT ,},�s

T denote a vector

of variables for the DOC problem, where function arguments are omitted hereon for

brevity. The necessary condition for optimality is,

rĴpu,},�q “ lim
✏Ñ0

Ĵpµ ` ✏�µq ´ Ĵpµq

✏
“ 0, (5.11)

where rĴ is the gradient of Ĵ with respect to the variables, u, }, �, and the vector

✏ �µ “ ✏ r�uT , �}, ��s

T contains the variations of the DOC variables.

The variation in the PDF, } Ñ } ` ✏}, results in the condition,

lim
✏Ñ0

Ĵpu,}`✏�},�q´Ĵpu,},�q

✏
“

ª

X

B�

B}

ˇ̌
ˇ
t

f

�}dx (5.12)

`

ª

t

ª

X

BL
B}

�}`�

„
B�}

Bt
`r ¨ p�} fq´r2�}

⇢
dxdt“0.

which provides the weak formulation of the DOC optimality conditions. The funda-

mental theorem of variational calculus (ftvc) is used to arrive at the strong formula-

tion of the DOC optimality conditions. From the ftvc, and integration by parts, the
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partial derivatives acting on the variations are
ª

t

ª

X
�

B�}

Bt
dxdt “ (5.13)

ª

X
��}dx

ˇ̌
t

f

t0
´

ª

t

ª

X

B�

Bt
�}dxdt,

ª

t

ª

X
�r ¨ p�} fq dxdt “ (5.14)

ª

t

ª

BX
�pf ¨ n̂q�}dxdt ´

ª

t

ª

X
r� ¨ f�}dxdt,

ª

t

ª

X
⌫�r2�}dxdt “ (5.15)

ª

t

ª

BX
⌫�pr�} ¨ n̂q�}dxdt ´

ª

t

ª

X
⌫r� ¨ r�}dxdt “

ª

t

ª

BX
⌫�pr�} ¨ n̂q�}dxdt ´

ª

t

ª

BX
⌫r� ¨ n̂�}dxdt`

ª

t

ª

X
⌫r2��}dxdt.

Because an initial condition for } is given at t0, as shown in (5.7), the initial

variation in the PDF is �}
ˇ̌
t0

“ 0, and (5.13) simplifies to

ª

t

ª

X
�

B�}

Bt
dxdt “ (5.16)

ª

X
��}dx

ˇ̌
t

f

´

ª

t

ª

X

B�

Bt
�}dxdt.

The boundary condition (5.8) implies that (5.15) simplifies to

ª

t

ª

X
⌫�r2�}dxdt “ (5.17)

´

ª

t

ª

BX
⌫r� ¨ n̂�}dxdt `

ª

t

ª

X
⌫r2��}dxdt.
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Then, by substituting the results in (5.14), (5.16), and (5.17) into (5.12), and group-

ing like terms, the variation in (5.12) can be written as

0 “

ª

X

ˆ
B�

B}
` �

˙
�}

ˇ̌
ˇ
t

f

dx` (5.18)

ª

t

ª

BX
p�pf ¨ n̂q ` ⌫r� ¨ n̂q �}dxdt`

ª

t

ª

X

ˆ
BL

B}
´

B�

Bt
´ r� ¨ f ´ ⌫r2�

˙
�}dxdt.

By the fundamental theorem of variational calculus (ftvc), the variation in (5.18) can

be written as the adjoint PDE:

B�

Bt
“

BL
B}

´ r� ¨ f ´ ⌫r2� (5.19)

SJT: �px, t
f

q “ ´

B�

B}

ˇ̌
ˇ
t

f

x P X ,

�pf ¨ n̂q ` ⌫pr�q ¨ n̂ “ 0 x P BX

The variation in the control law, u Ñ u ` ✏�u,

lim
✏Ñ0

Ĵpu ` ✏�uq ´ Ĵpuq

✏
“ (5.20)

ª

t

ª

X

BL

Bu
` �

„
r ¨

ˆ
}

Bf

Bu
�u

˙⇢
dxdt “

ª

t

ª

X

BL
Bu

´ r� ¨

ˆ
}

Bf

Bu

˙
�udxdt`

ª

t

ª

BX
�

ˆ
}

Bf

Bu
¨ n̂

˙
�udxdt.

must equal zero for optimality, by the ftvc, i.e.:

0 “

BL
Bu

´ r� ¨

ˆ
}

Bf

Bu

˙
. (5.21)
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Finally, the variation in the Lagrange multiplier, � Ñ � ` ✏��, leads to the macro-

scopic state equation. Thus, the DOC optimality conditions are given by the set of

PDEs:

B}

Bt
“ ´ r ¨ p}fq ` ⌫r2} (5.22)

SJT: }px, t0q “ ppxq x P X ,

r} ¨ n̂ “ 0 x P BX
B�

Bt
“

BL
B}

´ r� ¨ f ´ ⌫r2� (5.23)

SJT: �px, t
f

q “ ´

B�

B}

ˇ̌
ˇ
t

f

x P X ,

r� ¨ n̂ “ 0 x P BX

0 “

BL

Bu
´ r� ¨

ˆ
}

Bf

Bu

˙
. (5.24)

The macroscopic state (5.22) and adjoint (5.23) equations are parabolic PDEs.

The control equation (5.24) is an algebraic equation relating the optimal u to } and

�. If (5.22)-(5.24) are satisfied, then the resulting } and u are the optimal control

and resulting agent distribution for the macroscopic control problem. To obtain the

su�cient conditions for optimality, the second-order variations of Ĵ may be tested

to verify that these values in fact are at an extremal that is a minimum of J , but

in this chapter, the solutions are considered to be optimal if any perturbations only

increase the value of J . The following subsection presents an GRG method to solve

the optimality conditions to determine optimal DOC trajectories.

5.3.2 Numerical Solution Via GRG

The DOC optimality conditions (5.22)-(5.24) consist of a coupled set of parabolic

PDEs. Because analytical solutions to these PDEs are not available, this chapter

presents a GRG approach for reducing the computation required by the numerical
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solution of the DOC optimality conditions. The approach exploits the causality of

the macroscopic dynamic equation (5.6) to represent Ĵ solely as a function of u.

Then an extremum of the DOC problem (5.1)-(5.6) can be found by determining the

parameters of the control laws (5.10) that satisfy the optimality conditions.

GRG methods improve iteratively upon the approximation of the optimal control

law and of the macroscopic state and co-state (or Lagrangian), by holding the other

fixed during each update. During every iteration of the GRG algorithm, the latest

approximation of u˚
“ c˚

rxptq, ts, in parameterized form (5.10) is used to solve

macroscopic state and adjoint PDEs, (5.22) and (5.23), to obtain an approximation

for }˚ and �˚. Subsequently, holding the approximations of }˚ and �˚ fixed, the

approximation for u˚ is updated so as to minimize (5.4), and satisfy the third and

final optimality condition. This process is repeated until the norm of the gradient is

below a user-defined tolerance or any update to u˚ causes an increase in J .

The GRG method falls under a larger class of optimization techniques referred

to as Nested Analysis and Design (NAND). In NAND approaches, the gradient is

obtained at each iteration of the optimization by eliminating the state and co-state

variables by solving the PDEs using a numerical algorithm, and only the control is

considered [10]. Alternatively, a Simultaneous Analysis and Design (SAND), or full

space, optimization strategy could be used in which the optimization over the state,

co-state, and control are preformed simultaneously. However, it has been shown that

SAND methods are often very ill conditioned, where the individual PDEs in the

NAND techniques are typically better conditioned [11].

An analytical representation of the gradient of the cost function, J , with respect

to the controls, u, can be found, thereby circumventing the need for finite di↵er-

ence to approximate the gradient, greatly reducing the computational requirements.

The gradient of J is calculated as follows. Let }̃ and �̃ satisfy (5.22) and (5.23),
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Algorithm 1 GRG Optimality Solver
initialize ↵

j,k

ptq
while ||g|| °TOL do

}̃ – solve macroscopic state PDE (u)
�̃ – solve adjoint PDE (}̃,u)
for all ` do

g
`

– compute gradient (}̃, �̃,u)
end for
for all j, k do

↵
j,k

– update ↵
j,k

(J,g)
end for

end while

respectively, for a given u. Then the gradient is given by

r
u

J “ r
u

Ĵ
ˇ̌
ˇ
}̃,�̃

“

ª

X

B�

B}
r

u

} �u
ˇ̌
ˇ
}̃,t

f

dx` (5.25)

ª

t

ª

X

#
BL
Bu

�u`

BL
B}

r
u

} �u`r
u

� �u

„
B}

Bt
`r ¨ p}fq

⇢
`

�

„
B

Bt
pr

u

} �uq`r ¨

ˆ
r

u

}f�u ` }
Bf

Bu
�u

⇢̇

´ ⌫r2r
u

}�u

+

}̃,�̃

dxdt

Performing integration by parts and recalling that }̃ and �̃ were defined to satisfy

(5.22) and (5.23), equation (5.25) becomes

r
u

J “

ª

t

ª

X

„
BL
Bu

´ r�̃ ¨

ˆ
}̃

Bf

Bu

˙⇢
�udxdt. (5.26)

Let the time be discretized into Q equally spaced points, t
q

“ t0 ` q�t, where

q “ 0, ..., Q, and �t “ pt
f

´ t0q{Q. Then from (5.26) it follows that

BJ

B↵
j,k

ˇ̌
ˇ̌
ˇ
t“t

q

« �t

ª

X

„
BL

Bu
j

´ r�̃ ¨

ˆ
}̃

Bf

Bu
j

˙⇢

t“t

q

�
k

dx. (5.27)

The previous equation gives the gradient of the cost function with respect to the

parameters that determine the control u. Using this expression of the gradient, u
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can be updated using one of many gradient-based optimization schemes, such as

Sequential Quadratic Programming (SQP). The algorithm for solving the optimality

conditions is then given in Algorithm 1. The next section demonstrates the use of

Algorithm 1 to find the optimal control law in a multi-agent path planning problem.

5.4 Multi-agent Trajectory Optimization

The GRG method presented in the previous sections is demonstrated here on a

multi-agent trajectory optimization problem, that obeys the problem formulation in

Section 5.2. Consider a system of N cooperative agents with microscopic dynamics

given by a single integrator model for a point robot that was modified from the model

proposed in [114],
„

9x
9y

⇢
“

„
v
x

v
y

⇢
` �I2

„
⌘
x

⌘
y

⇢
(5.28)

where q “ rx ys

T denotes the configuration vector of the ith agent, and x and y are the

xy-coordinates. The microscopic control vector of the ith agent is u “ rv
x

v
y

s

T , where

v
x

and v
y

are linear velocities in the x and y directions, respectively. The disturbance

vector is w “ r⌘
x

⌘
y

s

T , where ⌘
x

and ⌘
y

are independent random variables with values

given by standard Gaussian processes, � is a constant, and I2 is the identity matrix.

The agents operate in a workspace I “ rL, 0s ˆ r0, Ls Ä R2 over a time interval

pt0, tf s. The system restriction operator is a time-varying PDF of the agent states,

} : X ˆ R Ñ R, where }pq, tq provides the probability that the ith agent has the

configuration q at time t. Then } describes the density of the agents in the state

space X .

The agents have the goal of traveling to a time-invariant target distribution, ppxq,

that is known a priori, while minimizing the energy consumed through control. The

objective function to be minimized can be written in terms of }, and is given by the
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integral cost function

Jpuq “

ª

I
�p}q

ˇ̌
ˇ
t

f

dx `

ª

I

ª
t

f

t0

L puqdtdx “ (5.29)

ª

I
w

}

pg ´ }q

2
ˇ̌
ˇ
t

f

dx `

ª

I

ª
t

f

t0

e
w

u

2 pv2
x

`v

2
y

qdtdx

where w
}

and w
u

are user-defined constant weights.

The optimal agent PDF }˚ and control u˚ can be computed as follows. The

control, u, is approximated by the Fourier sine series

upx, tq“

aÿ

n“1

bÿ

m“1

sinrn⇡px1`1q{2s sinrm⇡px2`1q{2s↵
mnj

ptq. (5.30)

This form ensures that u “ 0 on the boundary, forcing f ¨ n̂ “ 0, which simplifies the

boundary condition in (5.23) to r� ¨ n̂ “ 0. With this parameterized representation

of the control, the gradient equation (5.27) is given by

BJ

B↵
qpj

«�t

ª

I

”
w

u

u
j

e
w

u

2 pv2
xi

`v

2
yi

q
´ }

B�

Bx
j

ı
ˆ (5.31)

sinrp⇡px ` 1q{2s sinrq⇡py ` 1q{2sdx.

where u
j

and x
j

denote the jth component of u and x, respectively.

The numerical scheme used to solve (5.22) and (5.23) consists of a modified

Galerkin method. A Galerkin type method was chosen for its non-dissipative prop-

erty [50, 93]. In this modified approach, the solution is approximated by the linear

combination of a Fourier basis and Gaussian radial basis functions (RBF), which are

used to enforce the boundary conditions at each point of the integration.

An initial guess of ↵
qpj

“ 0 was used to define the control for the first iteration

of the optimization (Algorithm 1). Then the state and adjoint problems, (5.22)

and (5.23), were solved. The control parameters, ↵
qpj

pt
n

q, were then updated using

gradient descent.
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The agents’ feedback control laws can be obtained from a set-point regulation

method that uses the optimal agent PDF, }˚, and open-loop control, u˚, that are

found by solving the optimality conditions (5.22)-(5.24), as desired set-points [103].

The closed-loop control of each agent is computed independently, such that the con-

trol value at time t of the ith agent, uptq, is determined to minimize the deviation

between the observed agent distribution, denoted as }̂ptq, and the optimal distribu-

tion }˚
ptq, and the deviation between uptq and the optimal open-loop control u˚

ptq

[83],

u˚
ptq “ min

uptq

ª
t`�t

t

1

2

 
r}˚

px, tq ´ }̂px, tqs

2 (5.32)

` }u˚
ptq ´ uptq}

2
(
dt

where } ¨ } is the Euclidean norm, and �t is a user-defined time increment. The

observed agent distribution, }̂, is calculated from the states of all agents using kernel

density estimation with a standard Gaussian kernel [98]. The optimal feedback

control u˚ is updated at each timestep by minimizing (5.32) using one of several

available quadratic programming algorithms [83]. In this chapter, �t is chosen to be

small for simplicity, such that �t †† t
f

´ t0.

5.4.1 Numerical Simulations

The GRG method presented in Section 5.3 is illustrated here through a numerical

example where the optimal agent trajectories are calculated for a system of N “ 250

agents with microscopic dynamics governed by the single integrator model (5.28)

with � “ 0.01. The agents exist in a workspace I “ r0, Ls ˆ r0, Ls, L “ 16 km,

over a time interval pt0, t
f

s, where t0 “ 0 and t
f

“ 16 hr. The agents have a given

initial distribution g0 shown in Figure 5.1(a), and the initial microscopic states and

sampled from g0. The system’s objective is to minimize the integral cost (5.29) with

w
}

“ 100, w
u

“ 6, by travelling to a known target agent distribution p, illustrated
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in Figure 5.1(b), while minimizing the energy consumed by control. The solution

to the trajectory optimization problem is found using the GRG approach, and the

optimal agent distribution and microscopic states are plotted at four instants in

time in Figure 5.2. It is seen from the results that the optimal agent distribution }˚

reaches the target distribution p.

(a) (b)

Figure 5.1: Initial agent distribution, g0 (a). Target agent distribution, p (b).

The agents’ control input is given by the feedback control law (5.32) and calcu-

lated using MATLAB’s quadratic program solver quadprog, where �t “ 20 s. Then

the microscopic states are updated by integrating the microscopic dynamic equations

(5.28). The optimal microscopic state trajectories of s “ 50 randomly-chosen agents

are plotted in Figure 5.3(a), and the optimal microscopic control trajectories of r “ 3

randomly-chosen agents are shown in Figure 5.3(b).
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(a) (b)

(c) (d)

Figure 5.2: Optimal evolution of agent distribution and microscopic states (yellow
circles) for a system of N “ 250 agents at four instants in time.

(a) (b)

Figure 5.3: Optimal microscopic state trajectories of s “ 50 randomly-chosen
agents traveling from their initial states (blue circles) to final states (yellow circles)
(a). Optimal microscopic control trajectories of r “ 3 randomly-chosen agents.

77



6

Optimal Root Profiles in Water-Limited
Ecosystems

A plant’s growth, reproduction, and survival all depend on the plant’s ability to

absorb soil moisture through its root system [60, 66]. As root distributions are

determined by the survival strategy of the plant, optimization concepts have been

used to identify root distributions based on ecohydrological facets of the soil-plant-

atmosphere system [67]. This chapter focuses on water-limited ecosystems and iden-

tify optimal vertical root profiles that maximize transpiration in order to explore

how a shift in the temporal structure of rainfall might a↵ect competition between

di↵erent rooting strategies, as well as how herbaceous plants would need to adjust

their root profile to remain optimal in its access to water.

Knowledge of the active root layer is essential for the study of water and nutrient

dynamics as needed in atmospheric science, hydrology, ecology, and geochemistry

(e.g. Bhattachan et al. [9]). There are several factors that influence root depths

and distributions. For example, Schenk and Jackson found a positive correlation be-

tween rooting depths and annual potential evapotranspiration (PET ), mean annual
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precipitation (MAP), and length of the warm season [90]. In particular, Schenk and

Jackson were able to use MAP to explain 62% of the observed variance in median

rooting depths for herbaceous plants in water-limited ecosystems [91].

It has also been shown that root distributions [47] and absolute root depths [16]

vary by vegetation type. As mentioned above, Schenk and Jackson found a positive

correlation between MAP and median root distributions for herbaceous plants [91,

90], however, Bhattachan et al. showed that this correlation may not apply to woody

root distributions [9].

Two optimization variables that are frequently used to infer characteristics of root

distributions are carbon gain and transpiration. Kleidon and Heimann [52] estimated

optimal root depths by maximizing the carbon gain to the vegetation within a global

Terrestrial Biosphere Model. Schwinning and Ehleringer explored potential trade-

o↵s in water uptake and carbon cost by developing a simple model of plant water

transport and carbon gain in a two-layered soil environment [92]. Similarly, Guswa

provided a cost-benefit analysis of root structures [38, 39], where the optimal root

depth was balanced by the carbon cost of forming the root structure.

Transpiration optimality was first used to predict root characteristics in [82],

where Protopapas and Bras identified root profiles which maximize transpiration in

a maize crop in Flevoland (Netherlands). They used a transient soil moisture model,

primarily driven by initial conditions, as they assumed no precipitation during the

simulations. A similar approach was taken in [22], where Collins and Bras simulated

soil moisture content that was driven at the surface by an average daily rainfall. van

Wijk also used an average daily rainfall in his analysis to show that observed patterns

of rooting characteristics of herbaceous plant species could be explained using the

concept of hydrological optimality for arid climates [110]. In [57] Laio et al. used

a steady-state analytical model of soil moisture to link vertical root distributions

to climate and soil properties. Specifically, they investigated the dependency of
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the optimal average root depth on average daily rainfall and potential transpiration

(PT ) for various soil types. Sivandran and Bras also used optimal transpiration to

investigate the relationship between soil type and optimal root profiles in [101]. In

their analysis they used a stochastic rainfall model to generate rainfall data for a

single climate.

Recent analysis of the climate system [21] has suggested that increased greenhouse

forcing can lead to mechanistic changes in precipitation frequency and intensity. In

fact, there is a likely tendency towards decreased frequency and increasing intensity

in the tropics. This raises the question of how root profiles may need to adapt to

simultaneous changes in storm depth and frequency. This work further explores

the use of hydraulic optimization as a means of predicting vertical characteristics of

root profiles for herbaceous plants. However, unlike [82, 22, 101, 110, 57], this study

focuses on the e↵ects that storm structure may have on optimal root profiles in order

to better understand how plants may need to adapt to a changing climate. Richards’

equation is used to model soil moisture with seasonal potential evapotranspiration

(PET ) and leaf area index (LAI). The soil moisture is driven at the surface by

seasonal stochastic rainfall to observe changes in optimal root profiles occurring

from perturbations in storm frequency and intensity. As this work focuses on water-

limited ecosystems, the carbon cost of deeper roots or the role of other nutrients are

not considered.

For each climate type and trial root profile, Richards equation is solved using

a new constrained integration (CINT) partial di↵erential equation (PDE) solution

method. The CINT method is similar to pseudo-spectral solution methods; in this

method traditional Galerkin methods are combined with a modified constrained

backpropogation (CPROP) [31, 26] algorithm in which radial basis functions (RBFs)

are used to enforce the boundary conditions.

This chapter is organized as follows: Section 6.1 gives a mathematical description

80



of the governing equations used in the model. Section 6.2 describes the climate and

soil types used in the mathematical simulations. The results of the simulations are

given in Section 6.3, followed by a brief discussion in Section 6.4.

6.1 Model Description

A transient state of soil moisture is used that is driven at the surface by rain and

evaporation. In this model, roots compete for moisture with evaporative e↵ects

near the soil surface and with gravity drainage at lower depths. It is assumed that

interception is small, and that rainfall rates in excess of the maximum infiltration

rate are lost as runo↵. Additionally, only vertical water fluxes are considered and

it is assume that the root zone does not interact with the water table below. The

variables and parameters used in the model are summarized in Table 6.1.

Groundwater flow within the vadose zone was modeled using Richards’ equation

[19]:

B✓

Bt
pz, tq “

B

Bz

"
Kr pz, tqs

„
B 

Bz
pz, tq ` 1

⇢*
´ Spz, tq. (6.1)

The soil moisture, ✓pz, tq, and matric potential,  pz, tq, states are related here by

van Genuchten’s formula [107],

✓p q “ ✓
r

` p✓
s

´ ✓
r

qS
e

p q, (6.2)

where

S
e

p q “ r1 ` p↵ q

n

s

´m. (6.3)

The hydraulic conductivity, K, was approximated using Mualem’s formula [72],

Kp q “ k
s

S`

e

p q

“
1 ´ p1 ´ S1{m

e

p qq

m

‰2
. (6.4)

The values used for the soil parameters pertaining to the soil types used are shown

in Table 6.2.
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Table 6.1: Description of model variables and parameters.

Variable Description
z Vertical distance (positive up) rcms

t Time rds

 Matric Potential rcms

✓ Volumetric water content rcm3
{cm3

s

K Hydraulic conductivity rcm{ds

S Root sink term rd´1
s

R Precipitation rate rcm{ds

E Evaporation rcm{ds

T Total transpiration
⇢ Root density r1{cms

� Root e�ciency term
PET Potential evapotranspiration rcm{ds

PE Potential evaporation rcm{ds

PT Potential transpiration rcm{ds

LAI Leaf area index rm2
{m2

s

✓
r

Residual water content rcm3
{cm3

s

✓
s

Saturated water content rcm3
{cm3

s

↵ Fitting parameter rcm´1
s

n Fitting parameter (dimensionless)
m Fitting parameter (dimensionless)
k
s

Saturated soil conductivity [cm{d]
` Fitting parameter (dimensionless)

The sink term, Spz, tq, is the rate at which moisture is extracted from the soil by

the root system at time t and depth z, and is described by

S “ �p q⇢pzqPT, (6.5)

where �p q, shown in Fig. 6.1, is the root e�ciency term given by van Genuchten

[109]

�p q “

1

1 ` p { 50q
p

. (6.6)

In the above equation,  50 is the soil-water pressure head at which the extraction

rate is reduced by 50%, and in the work presented in this chapter was given the value

of 50 cm, similar to values reported in [112]. The parameter p is commonly assumed
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to have a value of 3 (dimensionless) [108].
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Figure 6.1: Plot of the root e�ciency term, �p q.

PET is partitioned into potential evaporation, PE, and potential transpiration,

PT [85],

PE “ PET pe´�LAI

q (6.7)

PT “ PET p1 ´ e´�LAI

q, (6.8)

where � “ .4 [22]. Seasonal LAI, with values similar to those reported in [81, 49],

was represented by,

LAIptq “ 1 ` tanhp3 cosp2⇡t{365qq. (6.9)

A plot of (6.9) is shown in Fig. 6.2. It is also assumed seasonal PET , with a peak

daily total of 5 mm{d during the wet/growing season and 1.25 mm{d during the dry

season [104]. This is represented by

PET ptq “ .5⇡r3{8p1 ` cosp2⇡t{365qq ` .25sˆ (6.10)

maxtsinp2⇡tq, 0u.

An analytical function of shape for the root density is assumed, given by

⇢pzq “

cpz{D50q
c´1

D50 r1 ` pz{D50q
c

s

2 , (6.11)
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Figure 6.2: One season of LAI as a function of t [81].

where c is defined as

c “

2.94

lnpD50{D95q
. (6.12)

D50 and D95 are parameters that determine the shape of ⇢pzq. D50 determines the

depth at which the bulk of the root density is located; specifically, it is the depth

above which 50% of the root is located. The parameter D95 is associated with

absolute rooting depths, and is the depth above which 95% of the root is located.

This density function is the derivative of the cumulative density function proposed by

Schenk and Jackson [90] and has been widely used to describe root distributions of

herbaceous plants [110, 22]. An example density is shown in Fig. 6.3 for D50 “ ´100

rcms and D95 “ ´200 rcms.

This work explores how, for fixed MAP, varying storm frequency and intensity

a↵ect the optimal root profile. The focus is on relative changes in root distribution

rather than absolute rooting depth, and so, it was assumed that D95 “ ´200 rcms in

order to simplify the analysis. The parameter D50 was allowed to vary to maximize
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the total transpiration,

T “

10ˆ365ª

0

0ª

´400

Spz, tq dz dt. (6.13)

A 10 year period was chosen as the time frame for the simulations. In initial trials

it was found that this was a su�cient amount of time for clear patterns to emerge

in the results.
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Figure 6.3: Example root density profile, ⇢pzq, with D50 “ ´100 and D95 “ ´200.

The boundary condition at the surface (z “ 0) is given as a specified flux (Neu-

mann condition) [19] using Darcy’s law

Rptq ´ Er p0, tqs “ Kp q

ˆ
B 

Bz
` 1

˙ˇ̌
ˇ̌
z“0

, (6.14)

where rptq is the rainfall rate and Er p0, tqs is the evaporation rate given by

E “ �rS
e

p p0, tqqsPE. (6.15)

In the above equation, PE is the potential evaporation specified by (6.8) and �rS
e

p p0, tqqs

is a function that describes the e↵ect of water stress on soil evaporation. The water

stress function ranges from 0 to 1, and in this study is assumed to have the form

�rS
e

p p0, tqqs“

1

2

„
1`tanh

ˆ
c2S

c3
e

´

c1
S
e

˙⇢

z“0

, (6.16)
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where c1, c2, and c3 are positive constants. A plot of �rS
e

p p0, tqqs is shown in Fig.

6.4. Note that this function’s output is similar to piecewise functions commonly used

(see [22, 110]), however is di↵erentiable everywhere.

This work seeks to examine modest perturbations in key features of a climate’s

precipitation structure. A two parameter stochastic rainfall generator was used to

obtain the rainfall time series used in these simulations. With this generator, pre-

cipitation is represented as a Poisson process with mean storm frequency, �˚
rd´1

s,

and mean storm depth ↵˚
rmms [38, 86, 28, 23].
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Figure 6.4: Water stress function �rS
e

p p0, tqqs used to approximate the rate of
evaporation.

The boundary condition at the bottom of the soil profile, taken to be at z “ ´400

cm, is given by drainage under gravity (e.g. [5]) and was implemented by enforcing

B 

Bz

ˇ̌
ˇ̌
z“´400

“ 0. (6.17)

Richards’ equation (6.1) was solved using the CINT method [54]. The CINT

method is similar to pseudo-spectral solution methods; in this method traditional

Galerkin methods are combined with a modified CPROP algorithm [31, 26], in which

RBFs are used to enforce the boundary conditions. The CINT method was chosen
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because it has been shown to be faster and more accurate than the finite element

(FE) method for several types of PDEs [54].

To ease the numerical implementation in the application of the CINT method to

Richards’ equation, particularly near saturation, the substitution  ̃pz, tq “ logr´ pz, tqs

was made. This substitution changes the PDE (6.1) to

B ̃

Bt

B✓

B 
“

B ̃

Bz

BK

B 

«
1 ´ expp ̃q

B ̃

Bz

�
` K

»

–
˜

B ̃

Bz

¸2

`

B

2 ̃

Bz2

fi

fl
` expp´ ̃qS. (6.18)

Note that the boundary condition at the bottom of the soil profile given in (6.17)

does not change, as

B 

Bz
“ ´ expp ̃q

B ̃

Bz
(6.19)

implies that the boundary condition for the re-scaled hydraulic pressure head is

B ̃

Bz

ˇ̌
ˇ
z“´400

“ 0. (6.20)

The depth, z, was rescaled and shifted to z̃,

z̃ “ z{200 ` 1, (6.21)

so that z̃ P r´1, 1s.

As done in Galerkin and pseudo-spectral methods, the re-scaled hydraulic pres-

sure head,  ̃pz̃, tq, is approximated by the linear combination of basis functions,

 ̃pz̃, tq «

Jÿ

j“1

�
j

pz̃q↵
j

ptq. (6.22)

The boundary condition (6.20) is enforced by setting

↵1ptq “ ´

ˆ
B�1pz̃q

Bz̃

˙´1 Jÿ

j“2

B�
j

pz̃q

Bz̃
↵
j

ptq
ˇ̌
ˇ
z̃“´1

(6.23)
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In the above equation, �1pzq is the Gaussian function

�1pzq “ expr´100pz ` 1.1q

2
s. (6.24)

For PDE problems that do not contain traveling waves, commonly used basis func-

tions such as Fourier or Chebyshev polynomials can be used for �
j

pz̃q, however, as

traveling waves appear in solutions to (6.1), piecewise cubic polynomials were found

to be more e↵ective. Letting the domain, r´1, 1s be partitioned into J ´ 1 equally

spaced subregions rz̃
j

, z̃
j`1s, the functions �

j

pz̃q for j “ 2, ..., J are piecewise cubic

polynomials given in by,

�
j

“

1

�z3

$
’’’’’’&

’’’’’’%

pz̃ ´ z̃
j´2q

3, if z P rz̃
j´2, z̃j´1s

�z3 ` 3�z2pz̃ ´ z̃
j´1q ` 3�zpz̃ ´ z̃

j´1q
2

´ 3pz̃ ´ z̃
j´1q

3, if z̃ P rz̃
j´1, z̃js

�z3 ` 3�z2pz
j`1 ´ zq ` 3�zpz̃

j`1 ´ z̃q

2
´ 3pz̃

j´1 ´ z̃q

3, if z̃ P rz̃
j

, z̃
j`1s

pz̃
j`2 ´ z̃q

3, if z̃ P rz̃
j`1, z̃j`2s

0, otherwise

(6.25)

where �z “ z̃
j`1 ´ z̃

j

.

To solve Richards’ equation, the right hand side of (6.23) is substituted into

(6.22), giving an approximate solution that satisfies the boundary condition at the

bottom of the soil profile. This approximate solution is then substituted into (6.18),

and evaluated at collocation points within the domain r´1, 1s, resulting in a system

of ordinary di↵erential equations (ODEs). This system of ODEs is then integrated

to obtain an approximate solution to (6.18). In this work, the integration algorithm

of choice was Matlab’s ODE15s [94]. At each integration time step, t
j

, the approxi-

mate solution was re-constructed at the collocation points by evaluating (6.22). The

approximate solution was then adjusted at the soil surface so as to satisfy the bound-

ary condition (6.15), using fixed point iterations to deal with the nonlinearity in the

condition.
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6.2 Experimental Setup

This work focuses on the e↵ects of simultaneous changes in storm frequency and

intensity on optimal root distributions. This section specifies climate and soil prop-

erties that were used in the model description given in the previous section. The

Kalahari is used as an interesting example, but the work is intended to illuminate

the general case of changing precipitation structure in water-limited ecosystems.

6.2.1 A↵ect of Precipitation on Root Depth

To better understand the e↵ects that storm type has on optimal root profiles, rainfall

data were generated for eleven year periods, with varying frequency and intensity

of storms. Mean storm frequency was varied from 0.1 to 0.4 d´1, and mean depth

varied from 8 to 12 mm, similar to values reported by Porporato et al. [79] for a

transect of the Kalahari. Storm frequency, �˚, was allowed to vary seasonally,

F
m

“ r.5p1 ` tanhpcosp2⇡m{12qqs

4 , (6.26)

�
m

“ �˚F
m

{F, (6.27)

�˚
m

“ mint�
m

, .99u. (6.28)

where m indicates the month of year, and �˚
m

is the average storm frequency for

month m. The average depth was also allowed to vary seasonally,

↵˚
m

“ ↵˚
` 3.5 tanhpcosp2⇡m{12 ` ⇡qq. (6.29)

From the eleven year period, the first year was used for ‘spin-up’ to minimize the

e↵ects of the initial conditions. Simulations were then run over the remaining 10 years

for analysis. The soil type used in these numerical experiments was sandy loam, and

the parameters associated with this soil are given in the following subsection.
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6.2.2 Sensitivity to Underlying Soil Type

This work also explores the sensitivity of the results to underlying soil type by obtain-

ing the optimal root profiles for two di↵erent soil types. These simulations focus on

the wet end of the Kalahari, near Manu Zambia, with mean storm depth ↵˚
“ 10.1

mm and mean arrival time �˚
“ .38 d´1 [79]. The average monthly totals for this

site are plotted in Fig. 6.5, and are in close agreement with the monthly averages

reported in [79].
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Figure 6.5: Average monthly rainfalls generated for ↵˚
“ 10.1 mm and �˚

“ .38
d´1.

The two soil types considered in this work were sandy loam and sandy clay loam.

The parameters associated with these soil types are found in Table 6.2.

Table 6.2: Soil specific parameters used in (6.2) and (6.4).

Sandy Loam Sandy Clay Loam
✓
s

.41 .39
✓
r

.065 .1
↵ -.075 -.059
n 1.89 1.49
m 1 ´ n 1 ´ n
` .5 .5
k
s

106.1 31.44
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6.3 Simulations and Results

6.3.1 Variable Storm Type

The results of the simulations across storm types are given in Figs. 6.6(a)-6.7(b). The

contour lines in these figures show constant values of MAP. In Fig. 6.6(a) the optimal

D50 is shown over the values of �˚ and ↵˚ that were explored. These results indicate

that for low MAP the optimal profile is distributed closer to the surface, and becomes

more deeply distributed as MAP increases, as shown in [82, 22, 101, 110, 57]. This

suggest that, for areas with low MAP, plants compete with evaporation for water.

However, as MAP increases, the roots must compete with evaporation and drainage

for moisture and, hence, a deeper distribution becomes advantageous.

What is new in this study is that one can observe variations in optimal root

structures for di↵ering storm types with a fixed MAP. These findings provide a view of

below ground implications for predicted changes in ↵˚ and �˚ [21]. Traveling along a

contour line of constant MAP in Fig. 6.6(a), one observes that as frequency increases

and depth decreases, shallower roots are advantageous. As frequency decreases and

intensity increases, the optimal root profile is more deeply distributed.

The average yearly transpiration, drainage, and evaporation recorded in the sim-

ulations with the optimal root profiles (Fig.6.6(a)) are shown in Figs. 6.6(b)-6.7(b).

Change in storage is was not included for brevity, as it was small (on the order of the

observed error). These figures show that transpiration, drainage, and evaporation

remain nearly constant along lines of constant MAP, provided the vegetation is able

to adapt to the new storm frequency and intensity.

6.3.2 Variable Soil Type

The results of the simulations over varying soil types are shown in Figs. 6.8(a)-

6.9(a). Figure 6.8(a) shows recorded transpiration as a function of D50 for the two
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Figure 6.6: Optimal value of D50 versus mean storm depth, ↵˚, and mean arrival
time, �˚ (a). Mean annual transpiration as a function of mean storm depth, ↵˚, and
mean arrival time, �˚ (b).

 

8 9 10 11 12
0.1

0.15

0.2

0.25

0.3

0.35

0.4  

 
100

200

300

400

500

600

700

800

900  

12

400

500

600

700

800

900

1000

1100

1200

D
ra

in
ag

e 
[m
m

] 

A
nn

ua
l R

ai
nf

al
l [
m
m

] 

(a)

8 9 10 11 12
0.1

0.15

0.2

0.25

0.3

0.35

0.4  

 50

60

70

80

90

100

 

400

500

600

700

800

900

1000

1100

1200

A
nn

ua
l R

ai
nf

al
l [
m
m

] 

Ev
ap

or
at

io
n 

[m
m

] 

(b)

Figure 6.7: Mean annual drainage as a function of mean storm depth, ↵˚, and
mean arrival time, �˚ (a). Mean annual evaporation as a function of mean storm
depth, ↵˚, and mean arrival time, �˚ (b).

soil types used in this study, where the optimal D50 has been indicated. Figure

6.8(b) shows the observed drainage, and Fig. 6.9(a) shows the observed evaporation.

The corresponding optimal profiles for each soil are shown in Fig. 6.9(b). These

results show, as others have observed (see [101, 22, 110, 57]), that for soils with high

conductivity, the optimal profile is more deeply distributed. This characteristic also

agrees with what has been observed in nature [91, 47].
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Figure 6.8: Transpiration versus D50 for each soil type (a). Drainage versus D50

for each soil type.
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Figure 6.9: Evaporation versus D50 for each soil type(a). Optimal root profiles for
each soil type (b).

6.4 Discussion

The results in the previous section show that for soils with a sandier constitution and

a higher hydraulic conductivity, the optimal root profiles are more deeply distributed,

as observed in nature [91, 47]. These results are in harmony with previous work

[82, 22, 101, 110, 57]. The water balances shown in Figs. 6.8(a)-6.9(a) suggest that

for sandier soils evaporative e↵ects are not as significant as the e↵ects of gravity,
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and, thus, a deeper distribution is optimal.

The results given for optimal profiles (Fig. 6.6(a)) as a function of storm intensity

and frequency show the dependence of the optimal profile on mean annual precip-

itation. These results empirically agree with what was reported in [91], that root

systems tend to be deeper and narrower in cold and wet climates and more shallowly

distributed in hot, dry climates.

The results shown in Fig. 6.6(a) also show that as storms become less frequent

and more intense, the optimal profile has a deeper distribution. It is interesting to

note that the optimal profile returns approximately the same water balance for each

storm type, suggesting that in order to maintain current rates of transpiration, plants

may need to adjust rooting strategies in response to predicted climatic changes [21].

These results raise interesting questions for future studies of nutrient dynamics

and implications for below ground carbon allocation.
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7

Conclusions and Recommendations

ANNs have been used in a number of applications to provide functional represen-

tations of PDE solutions that are amenable to mathematical analysis, and to more

e�cient processing by data assimilation and estimation algorithms. In many of these

applications, however, the underlying dynamic process may be subject to change as

a result of a non-stationary environment. Thus, while the PDE may capture the

dynamic process on short time scales, the process, and thus the PDE, both are

subject to change over long time scales. Typically, the presence of I/BCs equality

constraints makes the optimization problem more di�cult to solve, because it re-

duces the set of feasible solutions. However, a well known result from constrained

optimization theory is that if the equality constraints satisfy the implicit function

theorem, they can be written in explicit form, and used to reduce the dimensional-

ity of the optimization problem through the method of direct elimination. In this

case, the optimization problem is simplified, and the equality constraints are satisfied

exactly at every iteration of the optimization algorithm.

It was recently shown that the method of direct elimination can be used to train

ANNs in the presence of equality constraints through CPROP. This thesis shows that
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CPROP o↵ers a general and natural paradigm for solving PDEs in non-stationary

environments because the ANN can be adapted to minimize the error defined by

the di↵erential operator, while satisfying initial and boundary conditions through

direct elimination. Furthermore, direct elimination can be applied by means of an

adjoined gradient or Jacobian that simplifies the computation of error derivatives

across the hidden layer subject to the equality constraints. The e↵ectiveness of the

CPROP solution method is demonstrated through several examples of linear and

nonlinear elliptic and parabolic PDEs, subject to initial and boundary conditions.

The method also is applicable to irregular domains, and to other classes of PDEs,

including hyperbolic equations. For both elliptic and parabolic equations, CPROP

brings about a significant reduction in the number of iterations required for solv-

ing the PDE adaptively, and is characterized by a computational complexity and a

solution accuracy that compare favorably to existing methods of solution.

Additionally, the CPROP based approach was extended to the CINT method for

solving IBVPs. It was shown how the CINT method combines classical Galerkin

methods with CPROP in order to constrain the ANN to approximately satisfy the

boundary condition at each stage of integration. The advantage of the CINT method

is that it is readily applicable to PDEs in irregular domains and requires no special

modification for domains with complex geometries. Furthermore, the CINT method

provides a semi-analytical solution that is infinitely di↵erentiable. The CINT method

was implemented on three IBVPs with di↵erent domains and boundary conditions.

These problems were chosen because they have simple analytical solutions with which

comparisons where made. For the hyperbolic problems, the CINT method outper-

formed Matlab’s FE method in terms of speed and accuracy. In the first IBVP the

CINT method reduced the computational time by 85% and the error by 70%. In

the second problem, the CINT method reduced the computational time by 94% and

the error by 88%. Finally, it was shown that for these problems, the CINT method
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exhibits the exponential rate of convergence seen in classical Galerkin methods.

The CINT method was used in solving the optimality conditions that arose in a

DOC problem, giving the optimal state and control trajectories for a multiscale dy-

namical system comprised of many interacting dynamical systems, or agents. A GRG

approach is presented to compute the optimal agent state and control trajectories

for the DOC problem formulation with stochastic agent dynamics. This expands the

capabilities of the DOC approach, which was previously only formulated for systems

with deterministic agent dynamics. A new set of optimality conditions are derived

for this case and are then solved using an indirect optimization method with GRG to

obtain a functional representation of the optimal macroscopic state and microscopic

open-loop control. A microscopic feedback control law is obtained using a set-point

regulation method. The optimality conditions and the GRG approach are verified

through a numerical simulation that determines the optimal state and control tra-

jectories of a large system of agents with dynamics governed by a single integrator

point robot model.

The CINT method was also used to show that hydraulic optimality can be used

to identify root distributions with characteristics that are in agreement with root

profiles observed in nature for water-limited ecosystems. In particular, optimal root

profiles were identified for sandy clay loam and sandy loam soil types for climates

typical of the Kalahari.

The optimal profiles were identified for a spectrum of storm types, with mean

depths ranging from 8 to 12 mm and mean frequencies ranging from .1 to .4 d´1. It

was shown that the optimal profile depends, not only on mean annual precipitation,

but also on the storm type. These results suggest that as forcing from greenhouse

gases result in shifting storm structure [21], plants in water limited ecosystems will

be required to adapt their rooting strategies in order to maintain optimality and

water balances.
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The work done in this thesis has yielded several interesting questions for future

research. One possible area to explore is developing the CPROP PDE solver to be

applicable to IBVPs with Neumann or Robin boundary conditions. Future research

could also focus on developing the method to be capable of solving hyperbolic type

equations. There are also interesting aspects of the CINT method to explore. For

example, future research could include identifying the optimal shape parameters and

number of RBF used, and how these relate to a given PDE and type of STM transfer

functions.
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Appendix A

Partial Derivative of ANN Solution for Parabolic
Problems

The second partial derivative of the ansatz (3.31) to the parabolic IBVP is given by,

B
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Appendix B

Finite Di↵erence Stencil

The FDM stencil used to solve the Boussinesq equation (4.10) is given by
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