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Abstract

A Bayesian network (BN) combines probability and graph theory to map static re-

lationships of the many variables comprising a stochastic system. This modeling

techniques has been applied in engineering, particularly in mine detection and sensor

management projects. Currently, Bayesian networks is applied to model human be-

havior, in particular criminal behavior. A Bayesian network (BN) model of criminal

behavior is obtained linking the action of an o↵ender on the scene of the crime to

his or her psychological profile. Structural and parameter learning algorithms are

employed to discover inherent relationships that are embedded in a database con-

taining crime scene and o↵ender characteristics from homicide cases solved by the

British police from the 1970s to the early 1990s. A technique has been developed

to reduce the search space of possible BN structures by modifying the greedy search

K2 learning algorithm to include a priori conditional independence relations among

nodes. The new algorithm requires fewer training cases to build a satisfactory model,

which can be of great benefit in applications where additional data may not be readily

available, such as criminal profiling. Once the BN model is constructed, an inference

algorithm is used to predict the o↵ender profile from the behaviors observed at the

crime scene. The overall predictive accuracy, which refers to the total number of

correct predictions, of the model obtained by the modified K2 algorithm is found to

be 79%, showing a 15% improvement over the original K2 algorithm. In fact, the

predictive accuracy is found to increase with the confidence level provided by the

BN. Thus, the confidence level provides the user with a measure of reliability for

each variable predicted in any given case. These results show that a BN model of

criminal behavior could provide a valuable decision tool for reducing the number of

suspects in a homicide case, based on the evidence at the crime scene.
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Chapter 1

Introduction

1.1 Background and Motivation

The scientific study of human behavior focuses on modeling underlying behavioral

dynamics as a function of environment and mental processes. The behavioral model

consists of a mathematical representation of the internal and external forces influenc-

ing an individual’s decisions and actions in the form of a wide range of stimuli, e.g.,

the environment, other people, and personal psyche. The forces involved in a behav-

ioral model are interpreted di↵erently than forces in a traditional engineering model

as behavioral forces do not follow general physical principles. Thus, the process of

obtaining a human behavior model relies on a dynamically evolving system not based

on a set of first principles. Thus, to obtain the actions and decisions of an individual

from modeling is best done through empirical analysis of data. The empirical data

available and its level of organization is growing rapidly due to recent and ongoing

contributions from the information technology field. The specific behavior model

addressed in this thesis is to study a genre of criminals to obtain a criminal profile.

The empirical research on criminal profiling, also known as o↵ender profiling,

so far has been limited both in scope and impact. The o↵ender profile consists of

determining the behavioral, cognitive, and emotional characteristics [27] from the

signature behaviors left behind by the o↵ender at the crime scene. The goal of

criminal profiling is to concentrate a criminal investigation by narrowing the number

of possible suspects and to recommend interrogation techniques [7, 18, 27]. In this

thesis, a Bayesian network (BN) approach is developed for modeling an o↵ender’s

behavior at the crime scene, with the purpose of predicting the o↵ender’s profile in
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unsolved cases.

It has been suggested [20] that o↵ender profiling is not only possible, but also a

psychologically straightforward process. Recent research has shown that it is much

more complex than just a “multilevel series of attributions, correlations and predic-

tions” [19]. In the early 1980’s, the FBI Behavioral Science Unit, the originator of

the modern profile, undertook an original empirical study in the field of criminal

profiling, focusing on sexual murders. This research sought to show that a correla-

tion existed between the level of behavioral sophistication of the crime and corre-

sponding o↵ender characteristics. Based on the analysis of 36 incarcerated sexual

murderers within North America, the outcome of this research explored the “or-

ganized/disorganized” behavior dichotomy. The organized o↵ender represented the

methodical, premeditated crime with corresponding o↵ender characteristics of matu-

rity, and resourcefulness, while the disorganized o↵ender represented an opportunist

likely to su↵er from some mental disorder [14, 20]. Thus, a criminal profile is deduced

by the investigator through categorizing the particular crime as either organized or

disorganized. This research showed promise drawing conclusions of an o↵ender from

the crime scene, but advocates recommended a consistent routine for investigators to

follow in the process of their investigation [31].

Later independent replications of the FBI research [15] revealed that a more real-

istic and utilitarian interpretation of crime behaviors was needed to develop beyond

the simple dichotomy. Dr. David Canter (between the years of 1985 and 1994)

focused on the search for feasible psychological principles that could be used to gen-

erate profiles and assist criminal investigations [1, 7]. This research expanded the

simple organized/disorganized model into five basic aspects of the criminal transac-

tion between the o↵ender and victim: interpersonal coherence, significance of time

and place, criminal characteristics, criminal behavior, and forensic awareness. It was
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suggested that future research should aim to construct a model for scientific and

objective interpretation of crime behaviors and associated characteristics [14, 15].

Other critiques noted the lack of substantiation when a profile is created, such as an

empirical measure to the level of confidence accompanying the predicted o↵ender be-

haviors [27]. For example, an o↵ender profiled as older in age through the categorical

profiling technique is not supported by a numerical confidence level. This research

did not show a distinct criminal profile but instead a categorization of similar behav-

iors. This did support, however, the basic assumption that similar crimes are done

by similar o↵enders.

More recently, empirical crime scene analysis using statistical methods to under-

stand the link between crime scene actions by an o↵ender and his/her characteristics

has shown promise [25]. The first study was based on 82 British single o↵ender-single

victim solved homicides [25], and the follow-up study was based on a larger sample

(247) of single o↵ender-single victim solved homicides [22]. Both used a statistical

analysis of Multidimensional Scaling (MDS) procedure to classify cases according to

specific behavioral themes: the expressive theme, composed of behaviors that center

on the victim as a certain person, and the instrumental theme, centered on the ben-

efits they obtained from the o↵ender (e.g., either sexual or material gain). MDS is

a non-metric multidimensional scaling procedure which plots the association coe�-

cients that are calculated for each variable. Each of the points on a plot represents

a crime scene behavior, and the proximity of points measures the strength of the re-

lationships between the variables they represent. Points plotted close together have

a stronger association than those plotted further apart [29]. Thus, similarly themed

actions will co-occur in the same region of the plot, and variables that do not oc-

cur together will be plotted farther apart. The final results of this study classifies

homicides as expressive and instrumental. A total of 62% of the cases were seen to
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exhibit a majority of the crime scene characteristics in a single theme, and 74% of

all o↵enders could also be classified as either expressive or instrumental. Over half

(55%) of all the 247 cases exhibited the same theme in both their crime scene actions

and in the o↵ender background characteristics [22].

A follow-up study [24] aimed at investigating the patterns of co-occurrences of

crime scene actions correlating to certain o↵ender behaviors. Based on the same

247 samples of the 2000 study, one of the conclusions was that crime scene variables

that are present in more than 50% of the samples, high frequency variables, should

not be considered when di↵erentiating between the cases. High frequency behaviors

are interpreted as typical behaviors within the cases and do not contribute to an

insightful and unique view of the o↵ender.

1.2 Research Objectives

Profiling is challenging due to many variables involved and the high degree of uncer-

tainty surrounding a criminal act and the corresponding investigation. Probabilis-

tic graphs are suitable modeling techniques because they are inherently distributed

and stochastic. In this work, the system variables comprising the BN are o↵ender

behaviors and crime scene evidence, which are initialized by experts through their

professional experience (expert knowledge). The mathematical relationships natu-

rally embedded in a set of crimes [20, 24, 28] are learned through training from a

database containing solved criminal cases. The BN model is to be applied when

only the crime scene evidence is known to obtain a useable o↵ender profile to aid

law enforcement in the investigations. A criminal profile is predicted with a certain

quantitative confidence.

The BN approach presented here seeks to build on the ideas of behavior corre-

lations in order to obtain a usable criminal profile when only crime scene evidence
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is known from the investigation. This thesis proposes a systematic approach for

deriving a multidisciplinary behavioral model of criminal behavior. The proposed

o↵ender behavioral model is a mathematical representation of a system comprised

of an o↵ender’s actions and decisions at a crime scene and the o↵ender’s personal

characteristics. The influence of the o↵ender traits and characteristics on the re-

sulting crime scene behaviors is captured by a probabilistic graph or BN that maps

cause-and-e↵ect relationships between events, and lends itself to inductive logic for

reasoning under uncertainty [5]. The use of BNs for criminal profiling (CP) may al-

low investigators to take into consideration various aspects of the crime and discover

behavioral patterns that might otherwise remain hidden in the data. The various

aspects of a crime include a victimology assessment (victim’s characteristics, e.g.,

background characteristics, age, gender, and education), crime scene analysis (evi-

dence from the crime scene, e.g., time and place the crime occurred), and a medical

report (autopsy report, e.g., type of non-deadly and deadly lesions and signs of self

defense).

The BN approach to criminal profiling is demonstrated by learning from a series

of crime scene and o↵ender behaviors. The learning techniques employed in this

modeling research are evaluated on a set of validation cases not used for training by

defining a prediction accuracy based on the most likely value of the output variables

(o↵ender profile) and its corresponding confidence level.

1.3 Thesis Organization

The topics addressed in this thesis begin with a background of Bayesian networks and

an introduction of notation to be used throughout the thesis. The following Criminal

Profile Modeling chapter is divided into five sections. Section 3.1 formulates the

criminal profiling problem with respect to this criminal profile research, and Sections

5



3.2-3.5 describe the o↵ender variables and the set of cases used in this research.

Chapter 4 details the learning and prediction methods implemented to obtain the

o↵ender model, while Chapter 5 outlines the application of BN learning and inference

and the overall model evaluation. Additional details are given in the Appendices.
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Chapter 2

Bayesian Networks

2.1 Introduction to Bayesian Networks

Bayesian networks (BNs) combine probability and graph theory in order to extract

knowledge of a given system from empirical data by mapping cause-and-e↵ect rela-

tionships among all relevant variables. By using conditional probabilities, they can

capture the extent to which variables are likely to a↵ect each other, even if the un-

derlying mechanisms are unknown. The causal relationships between variables and

events are learned from an ensemble of known cases where all the variables are known

or measured. Then, the BN model obtained can be used in new cases to infer missing

variables from known ones. Through this inference mechanism, the BN computes

the likelihood, or probability, that an unknown variable will take any of its possible

values [17].

A BN is a directed graph consisting of a set of variables or nodes (or events)

and a set of directed arc or edges between variables [12]. The nodes together with

the directed arcs form a directed acyclic graph (DAG). A variable represents a set of

countable states of a↵airs. It can be an event, a proposition, or a mathematical quan-

tity. Each arc represents a causal dependency among the nodes it connects. Each

arc has a strength associated with it that is stored in a conditional probability table

(CPT) attached to each node. Figure 2.1 shows a simple example of Bayesian net-

work, depicting four variables (“Cloudy”, “Sprinkler on”, “Rain”, and “Wet grass”)

and their causal influence. For the grass to be wet (W ), it is caused by rain (R)

and the sprinkler (S), both of which are a↵ected by a cloudy day (C). The CPT

attached to the node S corresponds to the variable “sprinkler on”. Suppose the rel-
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evant possibilities for S are that on a given day it was on at one point (S = True)

or that it was not on (S = False), and that the presence or absence of clouds (C)

influences the value of S. Then, C is said to be a parent of S, and the strength

of their relationships is expressed by the CPT attached to the node S. This table

contains the conditional probability p(S|C) for all possible values of the variables C

and S. For instance, the probability that the sprinkler was on given that it was not a

cloudy day, P (S = T |C = F ), is 0.9. If it is observed that the grass is wet, W = T , it

can be inferred, or predicted, the cause was either the sprinkler, rain, or both. With

the observation of W = T , the unknown variables S and R will be predicted with

a certain predictive probability, or confidence. From here, it is possible to infer the

presence or absence of a cloudy day.

Figure 2.1: Example of a Bayesian network in which the events “cloudy”, “sprinkler
on”, “rain”, and “wet grass” are displayed in the form of a DAG where T=True and
F=False, source: [17]

While the experts’ knowledge and experience can be used to initialize the graph,

the actual arcs (relationships) and probabilities are learned from an ensemble of

real cases, where all the variables are known from observation. Later, as new cases

become available, they also can be incorporated to refine the graph’s structure and

CPTs. Using basic probability theory, one can use the BN model to understand the
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relationships between the variables. For example, if two nodes are disconnected, they

are independent of each other (e.g., sprinkler on and rain from Figure 2.1). This is

also referred to as d -separation. If two variables are found to be weakly connected,

the arc between them will have very small probabilities. Another example is that if

two nodes are connected only through a third node (e.g., cloudy and wet grass in

Figure 2.1), they become independent when the intermediate variable or variables

(e.g., sprinkler on and rain ) is known. Another important property addressing

conditional independence is the directed Markov property, which states that a variable

is conditionally independent of its non-descendants given its parents [5].

It can be seen from this simple examples that the BN structure can be applied

to that of behavioral patterns to gain insight into what factors influence certain

human behaviors. Another important feature is that, once the structure and CPTs

are learned, the BN can be used for inference. This means that if a new case is being

investigated and some variables are unknown as they are unobservable, an inference

algorithm can be used to obtain a prediction as to the most likely value of the variable,

as well as the level of uncertainty associated with it.

2.2 Bayesian Network Notation and Theory

In this thesis, capital letters denote variables and lowercase letters denote the states

or instantiations of the variables (i.e., Xi is said to be in its jth instantiation when

Xi = xi,j). A variable or node in a BN corresponds to each item in a domain

X = (X1, ..., Xn) for n > 1 discrete variables in the probability space {⌦,F ,P}. The

probability space of a BN refers to a structure or graph ⌦ = {X ,S}, where S is

the set of directed arcs (denoted by arrows) between the variables X = (X1, ..., Xn).

The variables and directed edges of ⌦ together comprise a graph, referred to as a

directed acyclic graph (DAG) [12]. The BN parameter F is the space of all possible
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instantiations of Xi, for i = 1, ..., n. P is the probability distribution for all Xi with

respect to S and F .

A Bayesian network is a directed graphical model combining probability and graph

theory. Let B be the set of all possible BNs, B = (S, ⇥), where S is the DAG with pa-

rameters ⇥ = (✓1, ..., ✓n) and ⇥ 2 P . An example of the directed graphical structure

of a simple BN is in Figure 2.2. The parameter ✓i 2 ⇥ is the conditional probabil-

ity table (CPT) attached to node Xi. A CPT lists in tabular form the conditional

probabilities of each state of Xi with respect to each of its parents, P (Xi|⇡i), where

⇡i represents the parents of Xi. If a node has no parents (⇡i = (;)) , the CPT for ✓i

is simply a prior probability distribution P (Xi). Every Xi has a CPT that is either

initialized by a user from prior knowledge or learned from the set of training cases,

described in detail in Chapter 4. A sample over X is an observation for every variable

in X . A database D is a compilation of d samples of X , D = {C1, ..., Cd}. D is said

to have no missing values when all values of all variables are known. An assumption

is made that each individual sample Ci is independent and identically sampled (i.i.d.)

with an underlying unknown distribution.

A BN is a mathematical model based on the acquired data and the implementation

of Bayes rule for inference when a variable (or variables) is (are) unknown given

observations for the other variables [12, 10]. Bayes’ rule of dependence can be utilized

to calculate the posterior probability distribution of Xi given the instantiations of

Xi’s children, represented as µi, as follows

P (Xi|µi) =
P (µi|Xi)P (Xi)

P (µi)
. (2.1)

The prior probability of Xi, P (Xi), is the known probability distribution over the

states of Xi, (xi,1, ..., xi,ri), and is considered a known relationship either by previ-

ous experience, testing, or observation. The likelihood function, P (µi|Xi), contains
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the conditional probabilities of the instantiated children variables connected to Xi.

Similar to the prior probability, the likelihood function is obtained from prior ob-

servations or subjectively estimated by the user through experience. In this case,

it becomes the product of the likelihood probabilities of the instantiated variables

P (µi|Xi) =
pQ

j=1
P (µi(j)|Xi), where µi(j) is the instantiation of the jth child of Xi.

The marginalization of the observed variables, P (µi), accounts for the relationship

between the instantiated variables and all possible states of Xi as follows

P (µi) =
riX

k=1

P (Xi = xi,k)
pY

j=1

P (µi(j)|Xi), (2.2)

where µi(j) is the jth instantiated variable of Xi’s p total children. The posterior

probability of Xi = xi,k, denoted by P (Xi = xi,k|µi), is also known as the marginal

probability of xi,k and represents its confidence as a probability for which to occur

given the evidence. Predicting an unknown variable to be in a certain state based

on the evidence of the observed variables from Bayes’ Theorem is inference. Xi is

inferred from µi using (2.1).

A simple BN consisting of three-nodal diverging causal relationships in Figure 2.2

is used to illustrate Bayes’ rule for purposes of inferring an unknown variable based on

evidence. In causal BNs generally the “causes” are the parent nodes and the “e↵ects”

are the children nodes. The parent node X1 has r1 states (x1,1, ..., x1,r1), and the

children nodes X2 and X3 have the possible set of instantiations (x2,1, ..., x2,r2) and

(x3,1, ..., x3,r3), respectively. Thus, the parent variable ⇡i becomes ⇡2 = ⇡3 = (X1)

as X1 is the parent of variables X2 and X3, and likewise the children variable µj

becomes mu1 = (X2, X3). If it is observed that X2 = x2,r2 and X3 = x3,r3, the

11



posterior probability distribution of X1 given the evidence, (2.1) is as follows

P (X1|x2,r2, x3,r3) =
P (x2,r2, x3,r3|X1)P (X1)

P (x2,r2, x3,r3)
. (2.3)

The prior probability of X1, P (X1), is the known probability distribution over the

states of X1, (x1,1, ..., x1,r1). The likelihood function, P (x2,r2, x3,r3|X1), is the condi-

tional probabilities of the instantiated variables X2 and X3 connected to X1, which

becomes the product of the likelihood probabilities of the instantiated variables

P (x2,r2, x3,r3|X1) =
3Q

j=2
P (xj,rj|X1). The marginalization of the observed variables,

P (x2,r2, x3,r3), accounts for the relationship between the instantiated variables and

all possible states of X1, and (2.4) becomes

P (x2,r2, x3,r3) =P (x1,1)P (x2,r2|x1,1)P (x3,r3|x1,1) + ...+

P (x1,r1)P (x2,r2|x1,r1)P (x3,r3|x1,r1).
(2.4)

The distribution P (X1|x2,r2, x3,r3) is consistent with the the probability distribution

axiom
r1P

v=1
P (X1 = x1,v|x2,r2, x3,r3) = 1. The inference of X1 is the prediction of the

state of X1 from its posterior distribution from the observation of X2 and X3. The

posterior probability of Xi = xi,j, denoted by P (Xi = xi,j|µi), is also known as the

marginal probability of xi,j and represents its confidence as a probability for which

it occurs given the evidence. Hence, the state of X1 is predicted from the maximum

marginal probability, as this is seen as the most likely state given the uncertainty.

The exact computation of the marginal probabilities of a BN is often too computa-

tionally expensive [2, 8]. Constructing an inference engine allows for a more tractable

procedure to calculate the marginal probabilities in the BN [5]. E�cient inference

engines identify the conditional independencies between the variables in a system in

order to simplify computation, described in detail in the previous section. Typically,
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Figure 2.2: Example of simple diverging connect BN

identifying these relationships from conditional independent properties (i.e., directed

Markov property and d -separation) simplifies the inference procedure. Here, it also

is exploited to simplify structural learning to obtain the so-called K20 algorithm,

discussed in Chapter 4.

Potential conditional independencies among nodes must be identified so that in-

ference of unknown variables can be completed when evidence becomes available. For

this reason, the inference engine is compiled through steps of graphical manipulations

that transform a DAG into a junction tree. The junction tree is a moralized, trian-

gulated, and undirected graphical representation of the original BN structure [5, 4]

in which all of the conditional independencies among the variables are recognized.

An arc (also an edge) refers to the parent/child relationship between two variables

in the form of an arrow, leading from the parent to the child variable. An undirected

arc is simply a line relating two variables. A graph is moralized when undirected

arcs are added to all co-parents not previously joined, and all current directed arcs

become undirected. Triangulation refers to the acyclic property in which additional

undirected edges are added between nodes to assure that there are no cycles. The

final step in building the junction tree for graphical manipulation is to identify and

join the BN structure’s cliques, i.e., the unique path between two or more variables.

Once the junction tree compilation is complete, all conditional relationships among

variables are connected by an undirected edge. If two variables are not connected,
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then they are conditionally independent and the instantiation of one does not a↵ect

the inference of the other.

A graphical model whose edges are initially undirected is an undirected graphical

models, which is also called Markov Random Fields (MRFs) or Markov networks

[16, 13]. A major di↵erence between directed and undirected graphical models is

the di↵ering method for identifying the variables’ conditional independencies. An

undirected graphical model has a simple definition of independence in which two

variables are deemed conditionally independent if the are separated by a known

variable. However, directed graphical models, also called Bayesian networks or belief

networks (BNs), take into account the directionality of the arcs. For a directed

graphical model, two variables are deemed conditionally independent if two variables

are separated by a known variable in an equivalent undirected graphical model, which

is an undirected and moralized version of the directed graph. To obtain this equivalent

structure, the directed edges are first replaced with undirected edges, and undirected

edges are then added between parents who share a common child (i.e., “moralize”

the graph) to prevent identifying incorrect independence statements.

A good example of an undirected graphical structure is Figure 2.3a, where X1

and X4 are conditionally independent from each other given X2, as are X2 and X3

given X1. However, conditional independence is not recognized as easily for the di-

rected graphical structure depicted in Figure 2.3b, which becomes the undirected and

moralized structure in Figure 2.3c. Figure 2.3c di↵ers from the original undirected

graph in Figure 2.3a by the additional edge relating X4 and X1. The conditional

independencies for the directed graph are acquired from the undirected and moral-

ized graphical model. The variables X2 and X3 are conditionally independent if X1

is known, same as the undirected graph in Figure 2.3a. However, X4 and X1 are

conditionally dependent for a directed graphical structure, which is di↵erent than the
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undirected graph in Figure 2.3a. Although directed models have a more complicated

notion of independence than undirected models, they also have several advantages

including simpler training methods and the ability to encode deterministic relation-

ships. Directed models are more popular with the AI and statistics communities,

while undirected models are more popular with the physics and vision communities

[16].

Figure 2.3: Example of an undirected graphical model (a), a directed graphical
model (b), and the equivalent undirected and moralized graphical model (c)
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Chapter 3

Criminal Profile Modeling

3.1 Problem Formulation

Currently, a criminal profile (CP) is obtained from an investigator’s or forensic psy-

chologist’s interpretation linking crime scene characteristics and an o↵ender’s behav-

ior to his or her characteristics and psychological profile. This research seeks an

e�cient and systematic discovery of non-obvious and valuable patterns between vari-

ables from a large database of solved cases via a Bayesian network (BN) modeling

approach. The BN structure can be used to extract behavioral patterns and to gain

insight into what factors influence these behaviors. Thus, when a new case is being

investigated and the profile variables are unknown because the o↵ender has yet to

be identified, the observed crime scene variables are used to infer the unknown vari-

ables based on their connections in the structure and the corresponding numerical

(probabilistic) weights. The objective is to produce a more systematic and empirical

approach to profiling, and to use the resulting BN model as a decision tool.

A graphical model of o↵ender behavior is learned from a database of solved cases.

The database for this research is from the British police forces and were completed

by the investigator at the conclusion of an investigation. The resulting CP model

obtained through training is then tested by comparing its predictions to the actual

o↵enders’ profiles. The database D containing d solved cases {C1, ..., Cd}, where Ci

is an instantiation of X , is randomly partitioned into two independent datasets: a

training set T and a validation set V , such that D = T [ V . The variables X are

partitioned as follows: the inputs are the crime scene (CS) variables XI (evidence)

for XI = (XI
1 , ..., XI

k), and the outputs are the o↵ender (OFF) variables comprising
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the criminal profile XO for XO = (XO
1 , ..., XO

m), where (XI , XO) 2 X .

The BN model is learned from T , as explained in Chapter 4, and it is tested

by performing inference to predict the o↵ender variables (OFF) in the validation

cases V . An o↵ender profile is estimated based on crime scene evidence, with a

prediction being the most likely value of a particular o↵ender variable. During the

testing phase, the predicted value of XO
i , denoted by xP

i,a where a=1 or 2 for a binary

variable, is compared to the observed state xO
i,b obtained from the validation set V ,

where b=1 or 2. An example of an o↵ender variable is “gender”, with states “male”

and “female”. The overall performance of the BN model is evaluated by comparing

the true (observed) states xO
i,b to the predicted output variable values xP

i,a in the

validation cases. This process tests the generalization properties of the model by

evaluating its e�ciency over V .

The basic schematic of the training software, including the validation process,

is shown in Figure 3.1, where Bh is the proposed BN and Bopt is the trained (or

optimized) BN. The software is intended to aid law enforcement in the investigation

of violent crimes. Because the cases are unsolved and only the crime scene inputs

are known, the criminal profiling software consists of a trained BN model that has

been previously trained and validated with D. Also, the model has the potential to

be updated by means of an incremental training algorithm when additional cases are

solved by the police. Thus, Btrained consistently reflects the model of an evolving

criminal profile over time.

Figure 3.1: Diagram of the CP model training and validation software
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3.2 Variables

The relevant categories of variables that have emerged from the criminal profiling

research as selected by investigators, criminologists, and forensic psychologists are

described as follows:

• Crime Scene Analysis (CSA): CSA variables are systematic observations

made at the crime scene by the investigator. Examples of CSA variable per-

tain to where the body was found (e.g., neighborhood, location, environment

characteristics), how the victim was found (e.g., the body was well-hidden, par-

tially hidden, or intentionally placed for discovery), and the correlation between

where the crime took place and where the body was found (e.g., the body was

transported after the murder).

• Victimology Analysis (VA): VA variables consist of the background char-

acteristics of the victim independent of the crime. For example, VA variables

include the age, sex, race, education level, and occupation of the victim.

• Forensic Analysis (FA): FA variables rely on the medical examiner’s report

that deals with the autopsy. Examples of this are time of death, cause of

death, type of non-lethal wounding, wound localization, and type of weapon

that administered the wounds.

The set of CP variables used in this research were acquired from police reports of

homicide crime scenes and were defined in previous research [28, 23, 26, 22, 24]. The

selection criteria for variable selection [24] are: (i) behaviors are clearly observable

and not easily misinterpreted, (ii) behaviors are reflected in the crime scene, e.g.,

type of wounding, and (iii) behaviors indicate how the o↵ender acted toward and

interacted with the victim, e.g., victim was bound/gagged, or tortured. 36 crime scene
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(CS) variables describing the observable crime scene and 21 o↵ender (OFF) variables

describing the actual o↵ender were selected based on the above criteria. Examples of

the CS variables are multiple wounding to one area, drugging the victim, and sexual

assault. Examples of the o↵ender variables include prior o↵enses, relationship to the

victim, prior arrests, etc. The variables all have binary values representing whether

the event was present or absent.

3.3 Database of Solved Cases

A set of single o↵ender/single victim homicides was collected by psychologists from

solved homicide files of the British police forces around the UK from the 1970s to

the early 1990s. This same data was also used in criminal profiling research [22, 24].

In order to examine the aggressive behavioral patterns of a particularly violent of-

fense, the criteria for case selection is: single o↵ender/single victim homicide cases; a

mixture of domestic (where the victim and o↵ender were known to each other (e.g.,

family member, spouse, co-worker) and stranger (the o↵ender is unknown to the

victim, thus they had no previous links to each other) cases; o↵enders are adults at

least 17 years of age, as defined by the court system. Excluded from the sample were

cases when the cause of death was not aggressive or extremely intentional. Homicides

by reckless driving are not included due to the lack of interpersonal interaction be-

tween the o↵ender and victim. Also excluded was murder clearly done by professional

hitmen and euthanasia.

3.4 Sample Demographics

In these 247 sample cases, the majority of the victims were female (56%) with a

mean age of 41 years, ranging from 0 to 93. Male victims (44%) had a mean age

of 39 years, ranging from 0 to 82. The o↵enders in this sample were predominantly
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male (89%) with a mean age 32 years ranging from 16 to 79. The female o↵enders

(11%) had ages ranging from 17 to 70, with a mean age of 33 years. Only 15% of

the cases were considered sex crimes and only 9% of the o↵enders had prior sexual

convictions. As for the victim/o↵ender relationships, 10% of the victims were related

to their o↵ender (either by blood or otherwise) and 43% of the victims had a previous

sexual relationship with the o↵ender (excluding cases of prostitution). A total of 83%

of the o↵enders knew the victim in some capacity prior to the o↵ense.

3.5 Sampling

In order to study the BN learning and inference capabilities, a more extensive list of

crime scene and o↵ender characteristics, including multiple-valued variables, a sim-

ulation is built to produce an artificial CP database. A BN is used to simulate a

set of cases where the crime scene and o↵ender variables can be chosen by the user.

An initial structure So relating the variables and the corresponding initial proba-

bilistic parameters ⇥o are declared by expert criminologists and investigators (our

collaborators, see Acknowledgements) based on their prior knowledge, through ex-

perience, or by sampled statistics cited in literature from actual cases (similar to

the sample demographics in Section 3.4). Cases are simulated by feedforward sam-

pling, where variables are sampled one at a time in order from top-level variables

(variables without parents), to the mid-level variables (variables with both parents

and children), ending with the bottom-level variables (children variables with par-

ents only). For each variable, the discrete conditional prior probabilities in vec-

tor form, [P (xi,1|⇡i), P (xi,2|⇡i), ..., P (xi,r
i

|⇡i)], where ri is the maximum state for Xi

and ⇡i disappears if Xi is a top-level variable, represent ranges of occurrence for

each state. A value vi is drawn from a uniform continuous distribution between

[0, 1], and the conditional prior probability vector as a vector of ranges becomes
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[P (xi,1|⇡i), P (xi,1|⇡i) + P (xi,2|⇡i), ...,
r
iP

j=1
P (xi,j|⇡i)], which refers to

Xi =

8
>>>>>>><

>>>>>>>:

xi,1 if 0 < v < P (xi,1|⇡i)

xi,2 if P (xi,1|⇡i)  v <
2P

j=1
P (xi,j|⇡i)

...

xi,ri if
r
iP

j=1
P (xi,j|⇡i)  v < 1

(3.1)

To simulate a set of cases for the system represented by the three-nodal model in

Figure 2.2, the variables are ordered as (X1, X2, X3), where X1 is the parent of X2 and

X3, and X1 = (x1,1, x1,2), X2 = (x2,1, x2,2) and X3 = (x3,1, x3,2). Starting with X1,

it has three possible states with the prior probabilities P (x1,1) = 0.2, P (x1,2) = 0.5,

and P (x1,3) = 0.3, which becomes a range vector [0.2, 0.7, 1] referring to

X1 =

8
<

:

x1,1 if 0  v1 < 0.2
x1,2 if 0.2  v1 < 0.9
x1,3 if 0.9  v1 < 1

(3.2)

If v1 = 0.11 which makes X1 = x1,1, and the CPT for X2 is listed in Table 3.1, then

the conditional prior probability vector of ranges for a newly generated v2 becomes

X2 =

⇢
x2,1 if 0  v2 < 0.2
x2,2 if 0.2  v2 < 1

(3.3)

X3 sampled following the same procedure as X1 and X2. This is repeated until the

Table 3.1: An example of a CPT for X2 in Figure 2.2.

X2 P (x2,1|X1) P (x2,2|X1)

X1 = x1,1 0.2 0.8

X1 = x1,2 0.9 0.1

desired number of cases as specified by the user is reached. The Matlab function
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utilized for the sampling exercise is sample bnet in the Bayes Net Toolbox [17].
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Chapter 4

Learning Methods

Since the recent development of e�cient inference algorithms [11, 8], BNs have be-

come a common representation tool in computer science. They also are useful for

control and decision making because they can model stochastic processes from data.

A BN allows for deterministic interpretation of events in which predictions of inter-

vention are made with some unknown information. A set of probabilistic Bayesian

networks B can be constructed given a database containing the instantiation of a

set of variables and an implicit assumption about the variables’ characteristics and

interactions with each other. A learning framework is used to obtain the network

that “best” describes the database.

Ideally, if B = (S, ⇥) denotes the set of all possible BNs with nodes X reflecting

the variables inD, then the compatibility of all DAGs with T would be compared pair-

wise. The compatibility of each hypothesized structure, Sh 2 S, with the training

data is assessed by a so-called scoring metric that assigns a value, or score, to each

Sh given by the conditional probability of P (Sh|T ) [2, 11, 10]. The best score is the

maximum conditional probability of Sh given the training data T , i.e., max P (Sh|T ).

Since the calculation P (Sh|T ) is computationally infeasible, it is recognized that

because P (D) is independent of Sh, a more feasible calculation is the joint probability

P (Sh, T ) [2] (See Appendix B for the proof that P (Sh|T ) / P (Sh, T )). Thus, the

scoring metric becomes a joint probability calculation, where the joint probability

distribution is given by

P (S, T ) =

Z

⇥

f(T |S, ⇥)f(⇥|S)P (S)d⇥, (4.1)
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where f(T |S, ⇥) is the conditional probability density function over T given Sh and

⇥h; f(⇥|S) is the conditional probability density function over ⇥h given Sh; P (S) is

the prior probability of Sh. With the following assumptions [2], the computation of

(4.1) becomes tractable: (i) all variables are discrete; (ii) all structures are equally

likely, P (S) ⇠ i.i.d. Uniform(↵); (iii) all cases in D occur independently given a BN

model; (iv) all variables are known with no cases that have missing variables; (v) no

prior knowledge of the numerical properties to assign to Bh with structure Sh before

observing T . With assumptions (i -v), the scoring metric becomes a joint-probability

scoring metric [2] that can be simplified as follows (see Appendix B)

P (Sh, T ) = P (Sh) ·
nY

i=1

q
iY

j=1

(ri � 1)!

(N̄ij + ri � 1)!

r
iY

k=1

Nijk!, (4.2)

where n discrete variables in X each have ri possible states (xi,1, ..., xi,r
i

), qi is the num-

ber of unique instantiations for ⇡i, Nijk is the number of cases in T where Xi = xi,k,

and N̄ij =
r
iP

k=1
Nijk. Sh is encoded as a discrete variable whose state corresponds

to the set of possible network structures in B and assesses the probabilities P (Sh).

Since (4.2) depends on the relative compatibility of the hypothesized structure with

the data and the goal is to find Sh with maximum score, the scoring metric is maxi-

mized with respect to Sh.

The number of possible structures grows exponentially as a function of the number

of nodes [21]. Thus, a more feasible search algorithm is needed to systematically limit

the search space in order to find a suitable local optimized structure, Strained, for a

domain of variables X . Incremental search methods have been developed to minimize

the search field using a scoring function similar to (4.2). A typical search algorithm

works by adding an arc where one is absent, eliminating an arc if one is present,

scoring the new structure, and then continuing to the next structure. Arcs can be
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removed, reversed, or added, so long as they satisfy the acyclic property. Following

the notation introduced in [9], all eligible changes to a graph (i.e., arc additions,

reversals, or eliminations) are denoted by E and a specific graph, in the set E, is

denoted by e.

A popular search method is the greedy search algorithm [2, 9], which exploits

an assumption of node ordering for X , and allows only causal arcs in the forward

path eliminating arc reversals from the search space. Typically in BN learning,

variables are assigned a particular order (e.g., {X1, X2, ...}. Node ordering does not

always prevent a variable from being the child of a succeeding variable (e.g., X2

can be the parent of X1). However, in the K2 algorithm, a stricter interpretation

of node ordering is implemented in order to decrease the search space of Sh. It

is assumed that directed edges only can be replaced from preceding to succeeding

variables. This procedure allows the designer to use expert knowledge to eliminate

arc reversals between selected variables. Hence, if X1 precedes X2 an arc reversal

from X2 to X1 is excluded a priori. The greedy search algorithm begins with an

initial graph structure So, which is either known, empty, or random [9], and searches

for the maximum �(e) for all e 2 E, where �(e) is the change in the log score of

the modified network. The log score is implemented because of its monotonically

increasing characteristic that is computationally more e�cient. This algorithm does

not guarantee to find the structure with the highest probability, but it systematically

reduces the computationally infeasible search space and, at the same time, maximizes

the scoring function. Random restarts are introduced to avoid local maxima.

A greedy search algorithm, referred to as the heuristic search K2 algorithm [2],

is one method explored in this research. The following simplifying assumptions are

added to (i -v): (vi) ordering of nodes, and (vii) limited number of parents per node.
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These assumptions lead to a simplified score, from (4.2),

g = log

 
q
iY

j=1

(ri � 1)!

(N̄ij + ri � 1)!

r
iY

k=1

Nijk!

!
. (4.3)

The complexity of the K2 algorithm is significantly less than the complexity of an

exhaustive search. The function g in (4.3) is O(mur), where m is the maximum

number of cases in T , u is the maximum number of parents allowed per node, and

r = max1in ri. When this function is called at most n � 1 times, it requires

O(munr) computation time. Each of the total nodes n is limited to a maximum of

u parents leading to a computation time of O(un). The resulting complexity of the

K2 algorithm with a bound on the maximum number of parents is O(mu2n2r) [2].

The second learning method used in this research further reduces the computa-

tional complexity of (4.2) (while still maintaining a suitable search space) by intro-

ducing an additional assumption of input independence. The purpose of learning a

BN is to use the trained BN to infer variables that are non-observable from the values

of the observable variables. If it is known prior to learning that a set of nodes always

will be instantiated (always observed) during the inference process, independence

among these variables can be established. These conditional independence relation-

ships are illustrated by the BN in Figure 4.1. Since X4 has influence on X1 which in

turn has influence on X2 and X3, then evidence on X2 and X3 will e↵ect the inference

of both X1 and X4. However, if X1 is known, this instantiation blocks communication

to its parent and children respectively: X4 is said to be d-separated from X2 and X3

[12]. Similarly, if it is known prior to learning that X1 and X4 are always instanti-

ated and never inferred, then regardless of the connection between the X1 and X4,

these variables are always graphically conditionally independent of each other. This

statement is derived from the property of admittance of d -separation in BNs, which
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states that if two variables X4 and X2 are d -separated in a BN with evidence e for X1,

then P (X2|X4, X1) = P (X2|X1) [12]. Inhibiting certain node connections prior to

learning eliminates a subset of potential BNs and, thus, increases the e�ciency of the

greedy search algorithm. This conditional independence assumption is insu�cient if

the data is incomplete. Hence, it should be used only for those nodes that will be

instantiated by the observations. Further explanation of validating inhibiting nodal

connections among observed variables is found in Appendix B.

Figure 4.1: Inserting variable X4 as a parent to another input variable showing
independence between X1 and X4 if they are both instantiated

In this thesis, the modified K2 algorithm, where a particular set of arcs between

variables (i.e., input) is blocked a priori, is referred to as K20. The complexity of the

K20 algorithm is significantly less than the complexity of the K2. The K2 and K20

require the same time O(mur) for computing the function g in (4.3) n � 1 times,

leading to time O(munr). The computational expense for analysis of the maximum

of u parents in K2 looping over all X (n times) is O(un). With the conditional

independence assumption among input variables, the computation time is reduced

from O(un) to O(uk), where k = n � d, and d is the number of variables that are

independent of each other. Thus, the overall complexity of K20, O(mu2nkr) time,

significantly decreases as the number of independent variables, d, increases. The K2

algorithm function is called in Matlab by the learn struct k2 function in the Bayesian

Network Toolbox [17] and is compared to the K20 algorithm in support of the above
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assumption. In addition to reducing the computational expense, the K20 algorithm

shows an improvement in model accuracy for the validation data V 2 D.

The maximum likelihood parameter estimation (MLE) [9] procedure is imple-

mented to obtain ⇥h for a given Sh and T . MLE begins with a mathematical

expression known as the likelihood function of the sample data. The density function

f(T |⇥h) is the probability distribution for the set of training cases given the set of

parameters (CPTs for the n variables). The assumption is made that the cases in T
are i.i.d., and the resulting density for T is

f(T |⇥h,Sh) =
tY

i=1

f(Ci|⇥h,Sh) = L(⇥h|T ,Sh) (4.4)

The likelihood (L(·)) for a set of parameters given a set of training cases T and

hypothesized structure Sh is the probability of obtaining T given ⇥h and Sh. The

values of ⇥h that maximize the sample likelihood are known as the Maximum Like-

lihood Estimators MLE’s. Thus the goal of MLE is to find a particular ⇥h 2 ⇥ that

maximizes L, ⇥trained = max⇥h L(⇥|T ,Sh). This maximization function becomes

log(L(⇥h|T ,Sh)) because it is an equivalent and analytically easier calculation. The

MLE function is acquired in Matlab from the learn params function in the Bayesian

Network Toolbox [17].
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Chapter 5

BN Implementation for CP Modeling of

O↵ender Behavior

5.1 Application of BN Learning and Inference to

CP

A Bayesian network CP model can be used to estimate o↵ender variables, also pro-

viding confidence levels for these predictions, when only the crime scene evidence

is observed. Since BN arcs represent relationships between variables, a structure

learned from data can be used to discover links between variables and quantify their

significance. Thus, a trained BN model is able to determine a criminal profile based

upon the crime scene evidence.

Prior to training, the crime scene and o↵ender behavior variables, X , are selected

based on expert knowledge (Section 3.2), and the initial structure So is initialized

as an empty set (i.e., variables not connected by arcs) assuming no prior knowledge

about the node connections, as seen in Figure 5.1a. The training data is used to

build the probabilistic model by cycling through the set of possible BN, Bh 2 B for

the purposes of inference when the o↵ender variables are unknown. The learning

e�ciency of the K2 and K20 algorithms are compared when the number of training

cases is limited. The K20 algorithm inhibits connections between the k input nodes

XI
i , for i = (1, ..., k), which reduces the overall computational complexity of the

system in order to concentrate training. After the structure is learned, the parameters

are learned from the the maximum likelihood parameter estimation (MLE) procedure,

which is valid because T is a complete dataset. The trained model Btrained 2 B
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obtained is the Bh that best describes D and maximizes the scoring metric (4.2).

Each algorithm’s performance is compared in Chapter 5.2.

Figure 5.1: The initial BN structure is an empty set with no connections (a) an
example of a final structure (b), i.e., where (4.2) is presented, is learned from (a) and
T

For this research, the topology of the BN follows the causal representation in

that the o↵ender profile is the cause for the resulting crime scene. Also, observations

are made from the crime scene with the purpose of predicting the o↵ender profile.

Therefore, the inputs are the crime scene variables and the outputs are the o↵ender

variables (parent nodes), as is illustrated in Figure 5.2 for m outputs and k inputs.

Figure 5.2: Example of the BN structure with o↵ender variables (outputs) that are
parent to the crime scene variables (inputs).

The database D of single o↵ender/single victim homicides used in this research

contains 247 cases and are divided into T (200 cases) and V (47 cases). The variables

in X are partitioned into 36 crime scene (CS) input variables (XI
1 , ..., XI

36) (evidence),

and into 21 o↵ender (OFF) output variables (XO
1 , ..., XO

21). The outputs comprise the

criminal profile to be inferred from the input crime scene evidence. The maximum

number of parents allowed per node (u) is set to 10. All variables XI,O
i are binary
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(ri = 2), with the value xI,O
i,j representing whether an event is either present (xI,O

i,1 = 1)

or absent (xI,O
i,2 = 2). Examples of five input (crime scene) variables and eight output

(o↵ender) variables are listed in Table 5.1, while all 57 variables are listed in Appendix

A. For example, if the victim was found to be blindfolded (XI
3 ) for a particular case,

then XI
3=1.

Table 5.1: Definition of five crime scene (input) variables and 7 o↵ender (output)
variables.

Variable: Definition

XI
1 : Foreign object penetration

XI
2 : Face not deliberately hidden

XI
3 : Victim was blindfolded (at one point)

XI
4 : Wounds caused by a blunt instrument

XI
5 : Su↵ocation (other than strangulation)

XO
1 : Young o↵ender between 17-21 years

XO
2 : Criminal record of theft

XO
3 : Criminal record of fraud

XO
4 : Criminal record of burglary

XO
5 : Relationship with victim

XO
6 : Unemployed at the time of o↵ense

XO
7 : Male

XO
8 : Familiar with area of o↵ense occurrance

5.2 Results

5.2.1 Probabilistic Graphical Model of Criminal Behavior

Once a suitable model is attained for purposes of predicting an o↵ender profile,

another benefit of the probabilistic BN model is in the graphical display of the re-

lationships learned for a given system. A slice of the K20 model is shown in Figure

5.3, to illustrate an example of relationships between 5 of the 36 crime scene input
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variables, (XI
1 , ..., XI

5 ), and 8 of the 21 output o↵ender variables, (XO
1 , ..., XO

8 ), listed

in Table 5.1. Each arc is accompanied by a probabilistic weight in the form of a CPT.

Examples of this are Tables 5.2 and 5.3.

An example of an observation drawn from the structure and CPTs comprising

the trained BN, a pattern can be found linking the action of deliberately hiding the

victim’s face (XI
2 ) to the o↵ender’s gender (XO

7 ), as seen in Figure 5.3. The CPT

for variable XI
2 is shown in Table 5.2, with the values in the CPT being viewed

as a probabilistic degree of influence supporting the state of the unknown variable

based on the evidence. The influence between XO
7 and XI

2 is interpreted as strongly

supporting a male o↵ender (XO
7 = xO

7,1 = 1) if the face is hidden (0.98 compared

to 0.75). Instead, if the evidence shows that the victim’s face is not hidden, the

gender of the o↵ender is more likely female (XO
7 = xO

7,2 = 2, 0.25 compared to 0.05).

However, the BN in Figure 5.3 also shows that when inferring the gender of the

o↵ender, XO
7 , the evidence on wounding from a blunt instrument, XI

4 , must also be

taken into account. The CPT for XI
4 , shown in Table 5.3, shows that a blunt object

being used in the o↵ense supports a male o↵ender (0.26 compared to 0), and vice

versa. Of course, through inference in the BN, the influence of all observable crime

scene variables on the o↵ender profile is taken into account simultaneously. But

these examples show how the learned BN structure also portrays the relationships

discovered from the data, and thus can be easily utilized by a multidisciplinary team

interested in understanding human behavior.

Table 5.2: Conditional probability table (CPT) for the o↵ender variable XO
7 (male

o↵ender) influencing the crime scene variable XI
2 (victim’s face not hidden).

P (XI
2 = xI

2,1|XO
7 ) P (XI

2 = xI
2,2|XO

7 )

XO
7 = xO

7,1 0.98 0.05

XO
7 = xO

7,2 0.75 0.25
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Figure 5.3: A slice from the actual full BN structure that is learned from data by
the K20 algorithm (CPTs are not shown for simplicity).

Table 5.3: Conditional probability table (CPT) for the o↵ender variable XO
7 (male

o↵ender) influencing the crime scene variable XI
4 (wounds caused by a blunt instru-

ment).

P (XI
4 = xI

4,1|XO
7 ) P (XI

4 = xI
4,2|XO

7 )

XO
7 = xO

7,1 0.26 0.74

XO
7 = xO

7,2 0.0 1.0
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5.2.2 BN Predictions and Accuracy

When a BN model of o↵ender behavior on the crime scene is learned from solved

cases, it is implemented on a set of solved validation cases in order to test the trained

model’s performance. Performance is tested through probabilistic inference. In-

ference is the process of updating the probability distribution of a set of possible

outcomes based upon the relationships represented by the BN model and the obser-

vations of one or more variables. With the updated probabilities, a prediction can

be made from the most likely value of each inferred variable. Thus, in order to test

the trained model, only the crime scene evidence is inserted into the model, with

the predicted o↵ender profile being compared to the actual o↵ender characteristics.

Because this is a probabilistic model, a certain confidence accompanies the o↵ender

variable predictions.

To complete inference, an inference engine must first be compiled through the

steps of graphical manipulations described in Chapter 2.2. This entails identifying

all of the conditional independencies among the variables in a structure. A structure

is described as a joint density over all of the n variables and can be calculated as,

P (X1, ..., Xn) =
Y

i

P (Xi|⇡i), (5.1)

where the variable Xi has n possibilities and ⇡i represents the instantiation of the

parents of Xi. From the directed Markov property stated in Chapter 2.2, the recursive

factorization of (5.1) is simplified when, given the evidence, the conditional indepen-

dence relationships among the variables are identified. In this research, the Matlab

functions utilized are jtree inf engine to build the junction tree; enter evidence to

insert evidence; marginal nodes to complete the inference on the specified nodes for

the respective junction tree and evidence, and are found in Bayes Net Toolbox for
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Matlab [17].

An inferred variable refers to a posterior (or predictive) probability distribution,

where each of the individual probabilities (also called the marginal probabilities)

represent the probability (or confidence) of the particular state given the evidence.

Following the probability distribution property of
r
iP

j=1
P (Xi = xi,j|⇡i) = 1, the state of

a variable is predicted by choosing the state with the maximum marginal probability.

The predictive accuracy of a model is determined by comparing the overall correct

predictions of the o↵ender profile. In every one of the 47 validations cases, 21 output

variables are predicted, leading to a total of 987 predictions. Because the variables are

all binary, a uniformly-random prediction procedure would produce ⇠50% predictive

accuracy (PA). The predictive accuracy is defined as the frequency at which output

variables are inferred correctly over the 47 validation cases, V . A predicted variable

is said to be inferred correctly, or its prediction is said to be correct, when the true

(observed) state xO
i,b is equal to the predicted value xP

i,a. The overall model predictive

accuracy (OPA) is the percentage of correct predictions over the total number of

predictions (987). The predictive accuracy of an individual node (IPA) is computed

by considering the correct predictions of that node value over the total number of

validation cases (47). The K20 structural learning algorithm seeks uses fewer training

cases through additional conditional independence assumptions to obtain a useful CP

model, and is compared to its predecessor, the K2 algorithm. The overall complexity

of K20 is O(mu2nkr) = O(4.79⇥107) and is reduced with respect to the K2 algorithm,

with complexity O(mu2n2r) = O(1.3⇥ 108).

The results in Table 5.4 show that the predictive accuracy of the K2 and K20

algorithms is better than 50%. This suggests that this BN method may have value

in predicting o↵ender profiles in unsolved cases. Also, the K20 algorithm has a better

predictive accuracy than the K2 algorithm. Additionaly, Table 5.4 shows a compari-
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son of the overall performance for the models obtained by the two algorithms. The

improved accuracy brought about by the K20 indicates that the conditional indepen-

dence relations assumed between the crime scene variables correctly reflect the crime

situation.

Table 5.4: Overall performance e�ciency for K2 and K20 algorithms for 987 total
predictions.

Algorithm: K2 K20

OPA (%): 64.1% 79.0%

Correct Predictions (number of nodes): 633 780

Further comparison of the K2 and K20 models involves the confidence levels of

each prediction. When compared to other expert systems, such as Neural Networks,

probabilistic networks have the added advantage that their predictions are based

on posterior probability distributions for the states of each variable, also known as

marginal probabilities. The marginal probability P (xP
i,j|e) is computed for each state

of an inferred node Xi, and can be seen as the confidence level of a prediction stating

that Xi = xP
i,j. Table 5.5 shows that as the marginal probability for the predicted

variable increases, so does the accuracy of the prediction. The accuracy of nodes

predicted with a confidence level CL is denoted by CLA and is calculated by the

following formula

CLA =
KC,CL

KCL

⇤ 100, (5.2)

where, KC,CL is the total number of correct predictions (subscript C) with a specified

confidence level (subscript CL), and KCL is the total number of nodes in the specified

confidence level. For example, from Table 5.5 if the designated confidence level is

� 70%, KCL is the number of nodes with a marginal probability � 70% (KCL =

573 for K2 and KCL = 725 for K20), and KC,CL is the number of correctly predicted

variables with the � 70% confidence level (KC,CL = 493 for K2 and KC,CL = 618
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for K20). Thus, the overall number of variables predicted correctly from Table 5.4 is

KC,�50%. Table 5.5 also shows a comparison of the K2 and K20 models with respect

to the number of predictions with confidence levels ranging from � 50% to � 95%.

It is apparent that the K20 model has significantly more variables that are predicted

with a higher confidence level, although the CLA for both methods are similar. For

CL=� 70%, CLA = 86% for K2 and CLA = 85.2% for K20, but the number of

variables predicted correctly is significantly higher for K20 (KC,CL = 618) compared

to K2 (KC,CL = 493). In Appendix C, Figure C.3 shows a more in-depth view of the

CL behavior of the K2 and K20 algorithm models. Together, Table 5.5 and Figure

C.3 support the claim of the higher the marginal probability, which translates to a

higher confidence, then the higher the predictive accuracy.

Table 5.5: Confidence level of predictions for the K2 and K20 algorithm models.

Algorithm: K2 k K20

Confidence Level, CL (%): KCL KC,CL CLA(%)

� 50% 798 k 987 633 k 780 79.3% k 79.0%

� 60% 727 k 866 600 k 713 82.5% k 82.3%

� 70% 573 k 725 493 k 618 86.0% k 85.2%

� 80% 400 k 573 361 k 501 90.3% k 82.5%

� 90% 168 k 255 159 k 232 94.6% k 91.0%

� 95% 83 k 116 79 k 107 95.2% k 92.2%

Although the CLA of the models obtained by the K2 and K20 algorithms are

close, the number of inferred nodes with a marginal probability � 50% is consistently

higher with the K20 model. Only 798 out of 987 predictions had a predicted marginal

probability � 0.5 for the K2 model, because 189 variables had a predictive marginal

probability of zero. In this research, the occurrence P (Xj = xi|e) = 0 for i = 1, 2,

which results in
r=2P
i=1

P (Xj = xi|e) 6= 1, is referred to as a “Zero Marginal Probability”
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(ZMP) node. ZMP nodes have been observed when inference is performed in a BN

with an inadequate number of training cases. Where, the number of training cases

required depends not only on the network size and database D, but also on the

number of variables that need to be inferred in an unsolved case. As can be deduced

from Table 5.5, the number of ZMP nodes is 189, or 19% of all predictions. This idea

of ZMP leads to a more accurate calculation of the model’s PA (recorded in Table

5.4):

PA =
Kt � (Kw + KZMP )

Kt

· 100, (5.3)

where Kw is the number of variables inferred incorrectly, KZMP is the number of ZMP

variables, and Kt is the total number of predictions (Kt = 987 for OPA or Kt = 47

for IPA). KC,CL for CL� 50% is related to Kw and KZMP by KC,�50% = Kw +KZMP .

The decrease in prediction e�ciency caused by ZMP is overcome by (i) using more

training cases, (ii) decreasing the number of system variables, or (iii) decreasing the

number of variable relationships. However, the number of cases available is usually

not up to the programmer, and it is not good practice to eliminate variables, since

important relationships could be lost. The solution (iii) to decrease the search space

through additional simplifying assumptions is typically the most useful. In this work,

the search space is decreased through the K20 algorithm, which reduces the number

of possible variable relationships by exploiting conditional independence properties.

Table 5.5 shows that the given training data (200 cases) is su�cient for learning the

BN model through the K20 algorithm but insu�cient in learning for the K2 algorithm

as seen by the presence of ZMP nodes. Although computational savings previously

mentioned by the K20 algorithm from the K2 algorithm may appear at first to be

insignificant, it is enough to eliminate the ZMP nodes from the model for inference

when the number of training cases is limited.

Another method for decreasing the number of ZMP variables while improving
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the predictive accuracy is to decrease the number of system variables (solution (ii)).

The variables that are present in more than 50% of all of the cases are considered

high frequency (HF) and are removed from the model, as discussed in Chapter 1. By

removing the HF variables, the model size is systematically decreased by the idea

that HF behaviors are interpreted as typical behaviors within the cases and do not

add any more insight into the behavior of the o↵ender. A total of four crime scene

behaviors are recognized as HF variables and are listed in Table 5.6. Also listed in

Table 5.6 is the the variables’ frequency of occurrence, and is shown to be similarly

distributed between T and V from D.

Table 5.6: High frequency CS behaviors.

CS Behavior: Frequency (%) in T kVkD
Face not hidden 88 k 89.4 k 88.4

Victim found at the scene where he/she was killed 78.5 k 80.9 k 78.9

Victim found face up 59 k 70.2 k 61.1

Multiple wounds to the body 54 k 44.7 k 52.2

The OPA with respect to the resulting models in which the HF variables have been

removed (HFMs) are listed in Table 5.7. The results show that the HFM learned from

the K20 algorithm has a higher predictive accuracy than the HFM learned from the

K2 algorithm, consistent with the results of Table 5.4. Comparing the HFMs listed

in Table 5.7 to the original models listed in Table 5.4, the OPA increases slightly for

the HFMs, but this improvement is considered negligible. However, the K2 HFM

has 21 fewer ZMP variables than the original K2 model. This suggests that if the

number of variable relationships cannot be decreased, i.e., the K20 algorithm is not

a solution, then the HFM is an alternative solution to reducing the number of ZMP

nodes. It is important to note that combining solutions (ii-iii) does not improve

model performance.
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Table 5.7: Comparing the overall performance e�ciency of the HFMs obtained by
the the K2 and K20 structural learning algorithms.

Algorithm: K2 K20

OPA (%): 66% 79.6%

KC,�50% (number of nodes): 652 786

KZMP (number of nodes) 168 0

5.2.3 Frequency of Occurrence

Earlier analysis showed that K2 and K20 are more e�cient than a model with no

prior information, which would have a 50% OPA. Further analysis compares the

K20 algorithm to a non-intelligent method called frequency, F . The frequency of

occurrence of a variable is the number of times the variable was present in a dataset.

In this instance, f represents the frequency of presence for a variable over T , and the

frequency of non-occurrence, f̄ , represents the frequency of absence for a variable over

a dataset, or f̄ = 1�f . For example, 93 out of 200 training cases involve an o↵ender

with a prior theft conviction (XO
2 =1), which leads to f = 0.465 and f̄ = 0.535. To

incorporate the idea of frequency for the prediction of variables in V , f and f̄ are

acquired from T for each o↵ender variable. These probabilities can be interpreted

as this method’s confidence levels. For XO
2 , the variable is more often absent with

f̄ = 0.535, so the variable is predicted to be absent for each of the 47 validation

cases. Thus, because XO
2 is absent in 25 of the 47 cases in V , or 0.51, the IPA for

the näıve method F for XO
2 is 51%. Table 5.8 shows the o↵ender profile for the eight

o↵ender variables listed in Table 5.1 based on frequency of occurrence from T , with

their “confidence levels” in parentheses.

Comparing the two methods in similar fashion to K2 and K20 in Table 5.5, Table

5.9 compares K20 and F with respect to the number of predictions with confidence

levels ranging from � 50% to � 95%. However, unlike the results in Table 5.5 that
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Table 5.8: The o↵ender profile for eight o↵ender variables from the frequency of
occurrence from T is the same over all V . The third column represents 1=Present,
2=Absent.

Variable: Definition F O↵ender Profile

XO
1 : Young o↵ender between 17-21 years 2 (0.81)

XO
2 : Criminal record of theft 2 (0.54)

XO
3 : Criminal record of fraud 2 (0.67)

XO
4 : Criminal record of burglary 2 (0.67)

XO
5 : Relationship with victim 2 (0.64)

XO
6 : Unemployed at the time of o↵ense 1 (0.52)

XO
7 : Male 1 (0.90)

XO
8 : Familiar with area of o↵ense occurrence 1 (0.86)

clearly supported K20 over K2, the results in Table 5.9 do not appear to strongly

support one algorithm over the other. Due to the absence of ZMP nodes, the OPA

is the same as the CLA for CL � 50%, which means that the OPA for K20 and F

are approximately the same (OPAK20 = 79.0%, OPAF = 79.3%). By inspection,

F predicts more variables than K20 when the lower bound is CL � 60%, while K20

predicts more variables than F when the lowerbound of CL increases beyond 60%.

Table 5.9: Confidence level of predictions for the F and K20 algorithm models.

Algorithm: K20 k F

Confidence Level, CL (%): KCL KC,CL CLA(%)

� 50% 987 k 987 780 k 784 79.0% k 79.3%

� 60% 866 k 893 713 k 740 82.3% k 82.9%

� 70% 725 k 658 618 k 568 85.2% k 86.3%

� 80% 573 k 470 501 k 423 87.4% k 90.3%

� 90% 255 k 188 232 k 172 91.0% k 91.5%

� 95% 116 k 47 107 k 46 92.2% k 97.9%

Because Table 5.9 does not appear to strongly support the usefulness of K20,

another method is used to di↵erentiate between the two. Information Entropy, H
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is a quantitative measure of the certainty/uncertainty in a probability distribution

describing a system. The amount of information is related to the confidence of the

prediction, and is calculated by [3]

H = �
r
iX

i=1

pi log(pi), (5.4)

where
P

pi = 1. From (5.4), max(H) occurs when pi = 1
r
i

, or a uniform distribution,

and min(H) occurs when pi = 1 from the property H = �1 log(1) = 0 when p =

{0, ..., 1} [3]. Thus, less entropy means more predictions in the long run. Applying

this idea to K20 and F , the best measure is to calculate H over the entire model. H

for a model is calculated by the chain rule for entropies,

H(X1, X2, ..., Xn) =
kX

i=1

H(Xi|Xi�1, ..., X1), (5.5)

where k is the number of o↵ender variables and the crime scene variables can be

thought of as fixed. The independence bound on entropy is

H(X1, X2, ..., Xn) 
kX

i=1

H(Xi). (5.6)

It is apparent from (5.6) that the independent model is either equal to or less than

the same model with the addition of conditionally dependent relationships. So, an

improvement that can be incorporated to improve the certainty of a model is to

include dependency relationships among the variables. The H calculation for F is

simple due to the independence of the o↵ender variables, but is much more di�cult

for K20 due to all the variable dependencies. Thus, H is calculated with respect to

the marginal probabilities K20 and the frequency probabilities for F , and becomes an

average of entropies over all of the posterior distributions. The respective calculations
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of H become HF =
kP

i=1
H(Xi) and HK20 

kP
i=1

H(Xi), which lead to an average

HF = 0.49 and HK20 = 0.45. The initial H for K20 is not significantly better than

F , however, it suggests that there is more certainty involved in the predictions made

from the K20 model rather than F . Proofs of various H relationships are in Appendix

B.

Another aspect in which to compare the two models is to show the range of

the confidence levels for each variable over all the predictions. Obviously, F has

only one confidence level for each variable over all the validation cases. However,

the confidence level changes for the K20 model as it is dependent on the evidence

variables for each case. Figure 5.4 shows that for almost all of the variables, the

confidence levels for each prediction vary for the K20 algorithm. Even though the

OPA for K20 and F are equivalent, the K20 model is much more advantageous as the

confidence level takes into account the crime scene evidence and the other o↵ender

variables, thus is more descriptive than the F confidence level. It is also shown from

Figure 5.4 which o↵ender variables are not improved by training, as evident to the

constant confident level across V . The two variables with a fairly constant confidence

level are XO
14 and XO

16 (definitions are in Appendix A), which can be considered as

not improving with training. This could be due to the fact that there is not a strong

relationship in the data supporting these variables or because there was insu�cient

training cases to learn the behavior.

Variables that have a ⇠ 50% frequency of occurrence are considered more di�cult

to predict because they are present and absent at approximately the same rate. Thus,

when one of these variables are predicted with a strong confidence level, this is seen

as a benefit to the BN modeling. An example of a sample case that is inferred by

the BN model from the crime scene evidence is compared to the o↵ender profile by

the frequency of occurrence and the actual o↵ender profile. The F o↵ender profile is
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Figure 5.4: The range of the confidence level of predictions for the K20 and F for
each variable over V
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the same for all cases (also in Table 5.8), however the confidence levels for the BN

model obtained by the K20 algorithm are the predictive probabilities from inference.

From this case, variables XO
2 , XO

4 , XO
5 , and XO

6 all have a frequency of occurrence

of approximately 50%. However, XO
2 , XO

4 , and XO
6 are all predicted correctly with

a fairly high confidence level, which is � 75%. In addition to this, XO
3 , XO

5 , and XO
6

were all predicted incorrectly by the F method but correctly by the BN model.

Table 5.10: A sample of an o↵ender profile obtained by both F and BN models to
compare to the actual

Variable: F CP K20 CP Actual CP

XO
1 : 2 (0.81) 2 (0.93) 2

XO
2 : 2 (0.54) 2 (0.75) 2

XO
3 : 2 (0.67) 1 (0.73) 1

XO
4 : 2 (0.67) 2 (0.82) 2

XO
5 : 2 (0.64) 1 (0.56) 1

XO
6 : 1 (0.52) 2 (0.87) 2

XO
7 : 1 (0.90) 1 (0.89) 1

XO
8 : 1 (0.86) 1 (0.78) 1

5.2.4 Internal Stability

Finally, the K20 model is tested for internal stability with respect to the validation

data. Internal stability refers to the consistency of the predictions made by the model

regarding the frequency of a particular marginal probability. This analysis is done

by first obtaining a matrix M, whose dimensions are 21 ⇥ 47 (number of o↵ender

variables by number of validation cases), and each entry is the marginal probability

for the state “present” for the respective variable and case. For example, the marginal

probabilities for XO
1 in case 1 are (0.6633, 0.3367), where the first entry is “present”

(XO
1 =1), the second entry is “absent” (XO

1 =2), which makes M(1,1)=0.6633. Next,

the entries of M are grouped into intervals (x) ranging from 0 to 1 in increments of
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0.05, where the first interval is [0,0.05) and the last interval is [1]. The number of

marginal probabilities in each x is m, and the number of actual “presents” known

from V is p, where the ratio of p/m is y. This probability is plotted versus x for

K20 in Figure 5.5. The internal stability plot for the K2 model is in Appendix

C but is similar to Figure 5.5. Perfect internal stability occurs essentially when

x = y and is represented by the solid line. If there are 10 entries of M in the range

0  x < 0.05 (m = 10), it is desired that p be very small which makes y very small,

as p = 0 =) x = y = 0. It can be seen in Figure 5.5 that the K20 model is consistent

with x = y, thus is considered internally stable.

Figure 5.5: Displays the internal stability of the K20 algorithm.
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Chapter 6

Conclusions

This thesis presents an approach for deriving a network model of criminal profiling

that draws on knowledge-based systems and on fields of criminology and o↵ender

profiling. Implementing Bayesian networks makes it possible to represent multidi-

mensional interdependencies between all relevant variables that have been identified

in previous research as playing a role in determining or reflecting the behavior of

o↵enders at the crime scene. Hence, a valid network model can be used to predict

unknown variables composing an o↵ender profile based on the variables observed from

the crime scene. In addition to the predicted criminal profile, confidence levels that

denote the probability that the variables predicted are correct can be very valuable

in narrowing the list of suspects, due to the fact that variables with the highest confi-

dence can be given a higher priority over the others. In addition, structural learning

algorithms and corresponding sensitivity analysis can be used to understand what

are the most significant relationships among the CP variables.

The Bayesian network modeling approach to identify underlying patterns of crim-

inal behavior from a database of solved cases implements a well-known structural

learning algorithm, known as K2, and compares this to a modified version that ex-

ploits conditional independence relations among the input variables. The modified

algorithm, referred to as K20, is faster, more e↵ective, and requires fewer number of

training cases for learning a BN from data for the purpose of predicting a criminal

profile. This thesis shows that additional conditional independence relationships can

be e↵ectively incorporated into the learning procedure to increase the final model

performance. Inhibiting nodal connections systematically decreases the search space
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and is shown to improve the model performance considerably. Most importantly,

the K20 requires a smaller sample of training cases than the K2 algorithm, which

may otherwise lead to ZMP predications. This attribute is particularly useful in

applications where additional data is not easily acquired.

The learned structure is particularly useful for understanding human behavior.

The usefulness of the K20 algorithm over the frequency approach was not as ap-

parent as it was over the K2 algorithm. Intuitively, it is obvious that the more

e�cient method of acquiring a prediction is a model that incorporates the evidence

and training from prior solved cases. However, the OPA for the K20 and F models

were the same, as was the CLA. It is important to note that there were more predic-

tions made in F with a confidence level less than 70%, and more predictions made

for K20 with a confidence level greater than or equal to 70%. Higher confidence levels

associated with predictions refer to more correct actual predictions, which supports

the K20 algorithm over F . A measure of the confidence level for each prediction is

information entropy, which also supports K20. The final analysis for the K20 and F

comparisons were the range of confidence levels for each variable over V . This showed

the advantage of K20 over F in the fact that the confidence level for the predictions

made by the K20 model were in fact a↵ected by the evidence. Also, by showing the

ranges of the confidence levels, it is apparent which variables do not benefit from the

training. The lack of training required for some variables may be due to the fact that

there does not exist strong co-occurrence relationships in the data for these variables

or because there was insu�cient training cases to learn the behavior. In the long

run, it can be concluded that the K20 training algorithm is advantageous over F due

to the incorporation of the crime scene evidence in the confidence of the predictions.

Future research should explore a possible collaboration of other intelligent sys-

tems, such as neural networks (NN). By combining the probabilistic features of a BN
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to the non-linear aspects of the NN, a more robust model may be learned from the

data for purposes of prediction. Another collaborative recommendation is to com-

bine the categorized instrumental/expressive CP model described in Section 1.3 by

[25, 22, 24] to the BN technique described in this thesis. The research method being

proposed is to first analyze each training and validation case through the MDS tech-

nique developed by [22, 24] to categorize the case and label as either instrumental or

expressive. Once all of the training and validation cases have been divided into cate-

gories, the training cases will be used to train a respective BN. Thus, the outcome will

be an expressive BN and an instrumental BN. Next, the validation cases will be used

to validate their respective models. The error analysis will be the same as before,

with each models’ incorrectly predicted variables divided by the total possible pre-

dictions. One note that has to be looked into is there are some cases that have traits

in more than one category. Depending on the forthcoming analysis, a multi-themed

case may end up training both the expressive BN and instrumental BN, as the two

categorical models are independent of each other. This highly supervised learning

will optimize the learning capability of the BN to allow the intelligent system to more

e↵ectively predict an o↵ender profile. In addition to the collaborative research e↵orts

suggested here, another recommendation to advance the methods described in this

thesis is to explore variables with more than two states, such as the o↵ender variable

“young o↵ender” becoming “age” and having states that range from 17 to older than

65 years of age.

In conclusion, the preliminary results expressed in this thesis support the idea that

underlying patterns exist between o↵enders and their crime, and that they can be

learned from a set of solved cases. Future research will expand upon this methodology

to systematically evaluate and improve automated criminal profiling techniques.
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Appendix A

Crime Scene and O↵ender Variables

The following is a list of the definitions of the 36 crime scene (input) variables:

Variable Definition

XI
1 : Foreign object penetration

XI
2 : Face not deliberately hidden

XI
3 : Victim was blindfolded

XI
4 : Wounds caused by blunt instrument

XI
5 : Su↵ocation (other than strangulation)

XI
6 : Vaginal penetration

XI
7 : Anal penetration

XI
8 : Face up (victim found as they fell)

XI
9 : Victim partially undressed

XI
10: Victim naked

XI
11: Deliberate clothing damaged

XI
12: Bound (at one point)

XI
13: Stabbing injuries

XI
14: Manual injuries (hitting, kicking, strangled)

XI
15: Gunshot wounds

continued on next page...
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Variable Definition

XI
16: Wounds to the head

XI
17: Wounds to the face

XI
18: Wounds to the neck

XI
19: Wounds to the torso

XI
20: Wounds to the limbs

XI
21: Multiple wounds to one body area (MWOA)

XI
22: Multiple wounds distributed across di↵erent body parts

(MWD)

XI
23: Weapon brought to scene

XI
24: Weapon from the scene

XI
25: Identifiable property stolen (identification property)

XI
26: Non-identifiable property stolen (non-valuable and uniden-

tifiable)

XI
27: Valuable property stolen

XI
28: Body hidden (outside)

XI
29: Body transported

XI
30: O↵ender forensically aware

XI
31: Victim found at the same scene where they were killed

XI
32: Sexual crime

XI
33: Arson to crime scene/body

XI
34: Victim found in water

continued on next page...
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Variable Definition

XI
35: Victim drugged and/or poisoned

XI
36: Victim covered (i.e., inside rather than outside)

The following is a list of the definitions of the 21 o↵ender (output) variables:

Variable Definition

XO
1 : Young o↵ender between 17-21 years

XO
2 : Criminal record of theft

XO
3 : Criminal record of fraud

XO
4 : Criminal record of burglary

XO
5 : Relationship with victim

XO
6 : Unemployed at the time of o↵ense

XO
7 : Male

XO
8 : Familiar with area of o↵ense occurrence

XO
9 : Criminal record of violence

XO
10: Criminal record of committing damage

XO
11: Criminal record of disorderly conduct

XO
12: Record of imprisonment

XO
13: Sexual related criminal record

XO
14: Armed services, past or present

continued on next page...
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Variable Definition

XO
15: Knew victim

XO
16: History of abusiveness in past relationships

XO
17: Attempts of suicide

XO
18: Psychiatric disorders

XO
19: Related to victim

XO
20: Blood relative to victim

XO
21: Turned self into police
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Appendix B

Additional Proofs

Theorem 1. The calculation of P (Sh|T ) is equivalent to the calculation of P (Sh, T )

[2].

Proof. To determine which hypothesized structure Sh best describes a given set of

training cases T , the obvious calculation is the posterior probability P (Sh|T ), which

quantifies the conditional belief of a particular Sh given T . By obtaining a rank order

[2] of the set of structures with respect to the probability value, i.e., order all Sh 2 S
by largest probability (most compatible) to smallest probability (least compatible),

the trained structure is identified. However, due to the intractability of P (Sh|T ), it is

recognized that P (Sh|T ) relates to the joint probability, P (Sh, T ), from the following

conditional probability property [12]: P (Sh, T ) = P (Sh|T )P (T ). The result is an

equivalence relationship in which the ratios for the pairs of hypothesized structures

are rank ordered by their respective posterior probabilities from calculating the joint

probabilities,

P (Sh
i |T )

P (Sh
j |T )

=

P (Sh

i

,T )
P (T )

P (Sh

j

,T )

P (T )

=
P (Sh

i , T )

P (Sh
j , T )

. (B.1)

From (B.1), the following property for rank ordering a set of structures holds

P (Sh
1 |T ) < P (Sh

2 |T ) , P (Sh
1 , T ) < P (Sh

2 , T ).

Theorem 2. The joint probability (4.1)

P (Sh, T ) =

Z

⇥h

f(T |Sh, ⇥h)f(⇥h|Sh)P (Sh)d⇥h
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becomes (4.2)

P (Sh, T ) = P (Sh) ·
nY

i=1

q
iY

j=1

(ri � 1)!

(N̄ij + ri � 1)!

r
iY

k=1

Nijk!

by the following assumptions [2]:

1. All variables are discrete.

2. All Sh are equally likely, P (S) ⇠ i.i.d. Uniform(↵)

3. All cases in T occur independently given a BN model.

4. All variables are known with no cases that have missing variables.

5. No prior knowledge of the numerical properties to assign to Bh with structure

Sh before observing T .

Proof. The joint probability integral (4.1) is over all possible value assignments to

⇥h 2 ⇥, where ⇥h is a vector with values denoting the conditional probability assign-

ments with respect to Sh. The function f(T |Sh, ⇥h) is the conditional probability

density function over T given Sh and ⇥h. Likewise, f(⇥h|Sh) is the conditional prob-

ability density function over ⇥h given Sh. The term P (Sh) is the prior probability

of Sh. The joint probability of any particular instantiation of all n variables is as

follows

P (Xi, ..., Xn) =
nY

i=1

P (Xi = xi,j|⇡i). (B.2)

Assumptions 1 and 2: By assuming X 2 D are discrete (assumption 1), the

density function f(T |Sh, ⇥h) becomes a probability mass function P (T |Sh, ⇥h). If no

prior knowledge is known about the likelihood of any particular structure (assumption

2), the prior probability of P (S) is uniformly distributed with probability ↵, where
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↵ = 1
Sh

total

, and Sh
total is the total number of Sh 2 S. Thus, P (Sh

1 ) = P (Sh
2 ) = ... =

P (Sh
s ) for s total Sh 2 S, and P (Sh) is considered a constant. Applying assumptions

1 and 2, (4.1) is rewritten

P (Sh, T ) = P (Sh)

Z

⇥h

P (T |Sh, ⇥h)f(⇥h|Sh)d⇥h. (B.3)

Assumption 3: P (T |Sh, ⇥h) denotes the probability of reacquiring T given a

structure Sh and ⇥h. By assuming cases occur independently given Bh = (Sh, ⇥h),

the mass function over all of T becomes the product of the mass functions for each

of the cases in T conditional on Bh. For t total training cases, the following holds:

P (T |Sh, ⇥h) =
tQ

h=1
P (Ch|Bh). Applying assumption 3, (4.1) is rewritten

P (Sh, T ) = P (Sh)

Z

⇥h

"
tY

h=1

P (Ch|Bh)

#
f(⇥h|Sh)d⇥h. (B.4)

Assumption 4: The following notation is introduced to precede the next assump-

tion. Currently, xi,j is the jth instantiation for Xi. To further apply this notation to

each case, xi,j,h is the jth instantiation for Xi in Ch, xvariable,state,case. Every variable

has a set of parents ⇡i that are instantiated as wi. If Xi has no parents, ⇡i and wi

are empty sets, denoted as Ø. For example, three cases are generated by the BN

depicted in Figure 4.1 and the parameters are depicted in Table B.1. X1 has a parent

list ⇡1 = (X4), and w1 = ((x4,1,1), (x4,1,2), (x4,1,3)) due to the instantiations of X4

in the three cases. Let wi,j denote the jth element of wi, where the jth element is

the index function �(i, h), the instantiation of ⇡i in case h. For example, because in

case 3 X1 has the parent variable X4 (⇡1 = X4) which is instantiated as x4,1,3 and

represented by the value w1, then it follows that �(1, 3) = 1 and w1,�(1,3) is equal to

x4,1,1.
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Table B.1: Three sample cases generated by the BN in Figure 4.1

Variable Case 1 Case 2 Case 3 ⇡i wi

X1 x1,1,1 x1,3,2 x1,1,3 (X4) ((x4,1,1), (x4,1,2), (x4,1,3))

X2 x2,r2,1 x2,1,2 x2,2,3 (X1) ((x1,1,1), (x1,3,2), (x1,1,3))

X3 x3,3,1 x3,1,2 x3,r3,3 (X1) ((x1,1,1), (x1,3,2), (x1,1,3))

X4 x4,1,1 x4,1,2 x4,1,3 (Ø) (Ø)

From assumption 4 which states all X 2 D are observed, the term
tQ

h=1
P (Ch|Bh)

in (B.3) becomes

tY

h=1

nY

i=1

P (Xi = xi,j,h|⇡i = wi,�(i,h), ⇥
h),

where n is the number of variables in X . This expression computes the probability

of each case from the conditional probabilities of the variables of the case based on

the particular instantiations given proposed parents and ⇥h. Applying assumption

3, (B.4) becomes

P (Sh, T ) = P (Sh)

Z

⇥h

"
tY

h=1

nY

i=1

P (Xi = xi,j,h|⇡i = wi,�(i,h), ⇥
h)

#
f(⇥h|Sh)d⇥h.

(B.5)

Recalling that each of the n variables in X has ri possible state (xi,1, ..., xi,ri), then

Nijk is defined as the number of cases in T when both Xi = xi,k and ⇡i = wi,j for a

maximum of qi unique instantiations. The sum of Nijk is defined to be N̄ij =
riP

k=1
Nijk.

Thus, (B.5) can be rewritten as

P (Sh, T ) = P (Sh)

Z

⇥h

"
nY

i=1

q
iY

j=1

r
iY

k=1

P (Xi = xi,k|⇡i = wi,�(i,j), ⇥
h)N

ijk

#
f(⇥h|Sh)d⇥h.

(B.6)
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To simplify the notation, the following variable assignment is made: ✓ijk = P (Xi =

xi,k|⇡i = wi,�(i,j), ⇥h). The conditional probability of ✓ijk is in the probability distri-

bution of (✓ij1, ..., ✓ijr
i

), such that
riP

k=1
✓ijk = 1. The probability density function over

the probability distribution for a given xi,k and wi,j is denoted as f(✓ij1, ..., ✓ijr
i

) and

is called a second-order probability distribution [2, 6].

Assumption 5: Assumption 5 states that prior to observing T , all Bh 2 B are

equally likely to occur. This di↵ers from assumption 2 as assumption 2 only included

the indi↵erence of the prior structure. Assumption 5 is two-fold in implying that

f(✓ij1, ..., ✓ijr
i

) is independent and uniformly distributed for 1  i  n, 1  j  qi.

By being independently distributed, f(⇥h|Sh) can be rewritten to be f(⇥h|Sh) =

nQ
i=1

qiQ
j=1

f(✓ij1, ..., ✓ijr
i

). This expression refers to the independence of f(✓ij1, ..., ✓ijr
i

)

in that the values are not influenced by the values of other second-order probability

distributions. Substituting this expression, (B.6) becomes

P (Sh, T ) = P (Sh)

Z

✓
ijk

...

Z " nY

i=1

q
iY

j=1

r
iY

k=1

✓
N

ijk

ijk

#"
nY

i=1

qiY

j=1

f(✓ij1, ..., ✓ijr
i

)

#
d✓ij1, ..., d✓ijr

i

.

(B.7)

Equation (B.7) is currently considered an integral of products. By identifying the

independent terms, the outer and middle products are factored outside of integral to

convert (B.7) to a product of integrals

P (Sh, T ) = P (Sh)
nY

i=1

q
iY

j=1

Z

✓
ijk

...

Z " r
iY

k=1

✓
N

ijk

ijk

#
f(✓ij1, ..., ✓ijr

i

)d✓ij1, ..., d✓ijr
i

. (B.8)

Because f(✓ij1, ..., ✓ijr
i

) is uniformly distributed, this refers to the indi↵erence of

the values for ✓ij1, ..., ✓ijr
i

. Similar to P (h) = constant in assumption 2, f(✓ij1, ..., ✓ijr
i

)
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is equal to some constant, ij, for a certain i and j. f(✓ij1, ..., ✓ijr
i

) = ij follows the

probability distribution property of

Z

✓
ijk

...

Z
ijd✓ij1, ..., d✓ijr

i

= 1.

Substituting this relationship into (B.8), the joint probability relationship is rewritten

P (Sh, T ) = P (Sh)
nY

i=1

q
iY

j=1

ij

Z

✓
ijk

...

Z " r
iY

k=1

✓
N

ijk

ijk

#
d✓ij1, ..., d✓ijr

i

. (B.9)

The probability density function f(✓ij1, ..., ✓ijr
i

) is a special case of Dirichlet’s

distribution [6] and the multiple integral in (B.9) is Dirichlet’s integral and has the

following solution [30]

Z

✓
ijk

...

Z " r
iY

k=1

✓
N

ijk

ijk

#
d✓ij1, ..., d✓ijr

i

=

r
iQ

k=1
Nijk!

(N̄ij + ri � 1)!
. (B.10)

By solving (B.9) for ij by substituting in (B.10) and Nijk = 0, which in turn makes

N̄ij = 0, the result is ij = (ri � 1)!. This leads to the scoring metric of (4.2)

P (Sh, T ) = P (Sh) ·
nY

i=1

q
iY

j=1

(ri � 1)!

(N̄ij + ri � 1)!

r
iY

k=1

Nijk!. (B.11)

Theorem 3. H(X) � 0 [3].

Proof. 0  p(x)  1 implies log(1/p(x))) � 0

Theorem 4. H(X) ⌘ 0 when p=0 or 1 [3].

Proof. H(X) = �p log(p)� (1� p) log(1� p) ⌘ H(p). When p=0 or 1, the variable

is not random and there is no uncertainty. Figure B.1 is a plot of H versus pi, and

shows the maximum H when pi = 0.5 for a binary variable (ri = 2) and a minimum
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H when pi = 0 or 1.

Figure B.1: Information entropy (H) versus probability (p) for log2

Theorem 5. Chain rule for entropy : Let X1, ..., Xn be drawn according to P (x1, ..., xn),

then H(X1, ..., Xn) =
nP

i=1
H(Xi|Xi�1, ..., X1) [3].

Proof. H(X1, ..., Xn) = H(X1) + H(X2|X1) + ... + H(Xn|Xn�1, ..., X1) =)

) H(X1, ..., Xn) =
nP

i=1
H(Xi|Xi�1, ..., X1)

Additional Justification for the K20 algorithm The K20 algorithm inhibits nodal

connections among evidence variables in order to reduce the search space. Figure B.2a

and Figure B.2b in that there exists a relationship between the evidence variable X2

and X3 in Figure B.2a. If it is known prior to training that X2 and X3 will always be

observed, then it is stated that Figure B.2a and Figure B.2b are equivelant structures.

Proof. A structure is described as a joint density over all of the n variables by (5.1),

restated here as

P (X1, ..., Xn) =
nY

i=1

P (Xi|⇡i). (B.12)
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Figure B.2: An example of a BN in which the evidence variables are connected (a)
and the equivalent structure inhibiting the connection of evidence variables

Equation (B.12) is also referred to as recursive factorization according to the DAG.

The recursive factorization [5] for the graphical model in Figure B.2a is

P (X1, X2, X3, X4) = P (X4)P (X1)P (X2|X4, X1, X3)P (X3|X1)

= P (X4)P (X1)P (X2|X4)P (X2|X1)P (X2|X3)P (X3|X1).
(B.13)

The fundamental rule for probability calculus [12] is

P (a|b)p(b) = P (a, b), (B.14)

which becomes

P (a|b)p(b) = P (b|a)P (a). (B.15)

Equation (B.15) is applied to the following terms in (B.13) to yield

P (X4)P (X2|X4) = P (X2)P (X4|X2), (B.16)

P (X1)P (X3|X1) = P (X3)P (X1|X3), (B.17)

P (X2|X1) =
P (X1|X2)P (X2)

P (X1)
. (B.18)

Finally, if X2 and X3 are both known, then it follows that

P (X2|X3) = 1. (B.19)
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Applying (B.16-B.19) to (B.13), the joint density over all the variables in Figure B.2a

becomes

P (X1, X2, X3, X4) =
P (X2)P (X4|X2)P (X3)P (X1|X3)P (X1|X2)P (X2)

P (X1)
. (B.20)

Similarly, the recursive factorization for the graphical model in Figure B.2b is

P (X1, X2, X3, X4) = P (X4)P (X1)P (X2|X4, X1)P (X3|X1)

= P (X4)P (X1)P (X2|X4)P (X2|X1)P (X3|X1).
(B.21)

Utilizing the relationships (B.16-B.18), the joint density over all the variables in

Figure B.2b becomes

P (X1, X2, X3, X4) =
P (X2)P (X4|X2)P (X3)P (X1|X3)P (X1|X2)P (X2)

P (X1)
, (B.22)

which is the same as (B.22). Thus, Figure B.2a is equivalent to Figure B.2b i↵ X2

and X3 are observed.
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Appendix C

Additional Figures and Tables

Figures C.1-C.2 show the internal stability plots for K2 and F , which is similar to

Figure 5.5.

Figure C.1: Internal stability of the K2 model

Figure C.2: Internal stability of the F model
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This figure compliments Table 5.5. Whereas Table 5.5 displays the CL analysis

for K2 and K20 algorithms for CL =� 50%,� 70%,� 90%, Figure C.3 shows more

in-depth the behavior for CL ranging from � 50% to � 95%, with increments of

5%. It is obvious that as the CL increases, the di↵erence between KC and KC,CL

decreases. Figure C.3 supports the claim that the higher the marginal probability,

which translates to a higher confidence, then the better the predictive accuracy.

Figure C.3: Comparison of the K2 and K20 algorithms’ confidence level of predic-
tions
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The lower bound on the predictive accuracy for individual variables, obtained from

the K20 model, is shown in Table C.1. These results show that a significant number

of o↵ender variables has a predictive accuracy higher than 60%, and that 76% of

the variables has an IPA greater or equal to 70%. Table C.2 shows the predictive

Table C.1: The number of o↵ender nodes (21 possible) with the corresponding PA
for the K20 model.

IPA (%) Number of o↵ender nodes

< 50% 1

� 50% 20

� 60% 19

� 70% 16

� 80% 11

� 90% 5

accuracies of the output nodes defined in Table 5.1 and used in the graph in Figure

5.3. The mean predictive accuracy for this sample of 8 o↵ender nodes is 70.2%, with a

standard deviation of 15.1%. This sample mean and standard deviation is consistent

with the rest of the o↵ender variables, which has a mean predictive accuracy of 79.1%

and standard deviation of 13.7%.

Table C.2: The IPA (%) for each o↵ender (output) variable defined in Table 5.1
inferred over 47 validation cases.

Variable: IPA (%)

XO
1 : 68.1%

XO
2 : 57.4%

XO
3 : 72.3%

XO
4 : 72.3%

XO
5 : 63.8%

XO
6 : 46.8%

XO
7 : 87.2%

XO
8 : 93.6%
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A complement to Table C.1, Table C.3 shows the number of o↵ender nodes with an

IPA above a specified lower bound. The number of o↵ender variables in each category

is the same for K20 and F , except for one more node in F with an IPA� 70%. Even

though the two are similar in this regard, it was described throughout Section 5.2 as

to the additional benefits of K20 over F .

Table C.3: The number of o↵ender nodes (21 possible) with the corresponding PA
for the K20, K2, and F algorithms.

IPA (%) K20 K2 F
< 50% 1 2 1
� 50% 20 19 20
� 60% 19 13 19
� 70% 16 7 17
� 80% 11 0 11
� 90% 5 0 5
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