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Abstract

Sensor network coverage refers to the quality of service provided by a sensor network

surveilling a region of interest. So far, coverage problems have been formulated to

address area coverage or to maintain line-of-sight visibility in the presence of obsta-

cles (i.e., art-gallery problems). Although very useful in many sensor applications,

none of the existing formulations address coverage as it pertains to target tracking

by means of multiple sensors, nor do they provide a closed-form function that can

be applied to the problem of allocating sensors for the surveilling objective of max-

imizing target detection while minimizing false alarms. This dissertation presents a

new coverage formulation addressing the quality of service of sensor networks that

cooperatively detect targets traversing a region of interest, and is readily applicable

to the current sensor network coverage formulations. The problem of track coverage

consists of finding the positions of n sensors such that the amount of tracks detected

by at least k sensors is optimized. This dissertation studies the geometric proper-

ties of the network, addressing a deterministic track-coverage formulation and binary

sensor models. It is shown that the tracks detected by a network of heterogeneous

omnidirectional sensors are the geometric transversals of non-translates families of

disks. A novel methodology based on cones and convex analysis is presented for rep-

resenting and measuring sets of transversals as closed-form functions of the sensors

positions and ranges.

As a result, the problem of optimally deploying a sensor network with the afore-

mentioned objectives can be formulated as an optimization problem subject to mis-

sion dynamics and constraints. The sensor placement problem, in which the sen-

sors are placed such that track coverage is maximized for a fixed sensor network,

is formulated as a nonlinear program and solved using sequential quadratic pro-

gramming. The sensor deployment, involving a dynamic sensor network installed on

non-maneuverable sonobuoys deployed in the ocean, is formulated as an optimization

problem subject to inverse dynamics. Both a finite measure of the cumulative cover-
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age provided by a sensor network over a fixed period of time and the oceanic-induced

current velocity field are accounted for in order to optimize the dynamic sensor net-

work configuration. It is shown that a state-space representation of the motions of the

individual sensors subject to the current vector field can be derived from sonobuoys

oceanic drift models and obtained from CODAR measurements. Also considered in

the sensor model are the position-dependent acoustic ranges of the sensors due to

the effects from heterogenous environmental conditions, such as ocean bathymetry,

surface temporal variability, and bottom properties. A solution is presented for the

initial deployment scheme of the non-maneuverable sonobuoys subject to the ocean’s

current, such that sufficient track coverage is maintained over the entire mission. As

sensor networks are subject to random disturbances due to unforseen heterogenous

environmental conditions propagated throughout the sensors trajectories, the optimal

initial positions solution is evaluated for robustness through Monte Carlo simulations.

Finally, the problem of controlling a network of maneuverable underwater vehicles,

each equipped with an onboard acoustic sensor is formulated using optimal control

theory. Consequently, a new optimal control problem is presented that integrates

sensor objectives, such as track coverage, with cooperative path planning of a mobile

sensor network subject to time-varying environmental dynamics.
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Chapter 1

Introduction

“If you cause your ship to stop, and place the head of a long tube in the water and

place the outer extremity to your ear, you will hear ships at a great distance from

you.” -Leonardo da Vinci, 1490 A.D. [7]

Simple, low power sensors distributed throughout an environment can provide situ-

ational awareness at moderate cost. This technology lends itself to surveillance and

monitoring tasks [8], such as environmental (e.g., monitoring ocean temperatures and

tracking animal species) and military (e.g., surveillance and reconnaissance), which

require coverage of large two-dimensional regions of interest with little or no prior

knowledge of the target tracks. To ensure the distributed system is both practical

and affordable, passive proximity sensors with individual detection capabilities are

often employed to obtain limited measurements from each target, possibly at different

moments in time, for the purpose of detection coverage. These sensors only report

a simple acoustic energy observation, from which a relative distance measurement

from the sensor to the target, referred to as the sensor-to-target closest-point-of-

approach (CPA), may be inferred. Multiple sensor detections are used to form an

hypothetical target track by fusing together the detection events from several sensors

in what is referred to as a track-before-detect approach to moving target detection

and tracking [3].

Although the problem of target tracking by means of multiple sensors arises in

many applications, coverage formulations introduced so far in the literature address

line-of-sight area coverage in the presence of obstacles (i.e., art-gallery problem) or
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point or area coverage, to ensure that every point in a two-dimensional region is within

the range of at least one sensor in the network [8]. Although they are very useful

in other sensor applications, none of the existing coverage formulations address the

problem of coverage as it pertains to target-formation by means of multiple sensors, or

track coverage. The problem of placing sensors in order to optimize track-formation

capabilities over a region of interest so far has been addressed by placing sensors

via randomized algorithms, grid configurations, or Poisson probability distributions

[9–12]. As a result, the many sensor applications that include surveillance over a

region for purposes of detecting a moving target are effectively limited by the current

coverage formulations.

A novel coverage problem, referred to as track coverage, is presented in this dis-

sertation. This problem is relevant when multiple sensors are used to track a moving

target through non-directional measurements, such as CPA detections, according to

the track-before-detect approach or are subject to frequent false alarms. The track

coverage function is formulated as a problem in computational geometry using line

transversals such that the quality of service of a given network configuration with re-

spect to a pre-defined area of interest can be rapidly assessed. The overall objective

of this research is to develop an optimal deployment strategy for a sensor network

that is both practical, affordable, and realistic for the purposes of target tracking

and detection. The simple proximity sensors to be deployed must optimize the over-

all track coverage over a specified region of interest and a fixed period of time. To

achieve this, the following problems are to be addressed in this dissertation:

1. Place sensors in order to achieve maximum track-formation capabilities over a

homogeneous region of interest.

2. Distribute autonomous sensors within a heterogenous, dynamic environment
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(e.g., ocean environment, oceanic current) such that the overall track coverage

over a fixed period of time is maximized.

3. Model the environmental effects that affect the acoustic sensor detection range

(i.e., range of the sensor’s omnidirectional field-of-view), such that the strategy

accounts for sensor ranges as a function of their position within the area of

interest.

4. Evaluate the robustness of the optimal deployment solution by evaluating the

optimality of solutions after incorporating various sources of uncertainty through

Monte Carlo simulations.

5. Optimize the trajectories of a group of underwater vehicles for cooperative

coverage in the presence of ocean dynamics using optimal control theory.

The track coverage function is formulated with respect to the sensors respective

locations and ranges. Since many distributed sensors are subject to environmen-

tal forcing (e.g., sonobuoys distributed in the ocean and drifting according to the

current), track coverage is also optimized subject to non-maneuverable sonobuoy dy-

namics, as well as a mobile, controllable underwater gliders. In most applications,

the sensor network is subject to random disturbances, such as unforseen and un-

controllable variations in the initial sensor location, in the ocean current, or in the

maximum sensor range due to heterogenous environmental conditions. In this case,

the robustness of the solution obtained from the track coverage optimization is in-

vestigated by incorporating uncertainty that is propagated throughout time. Also,

the ocean bathymetry, surface temporal variability, and bottom properties influence

the maximum range of an acoustic sensor and its location over time. Thus, the opti-

mization of the track coverage function is extended to include a moving sensor field,

position-dependent sensor ranges as due to heterogenous environmental conditions,
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and finally random disturbances and partially-unknown state due to changes in the

ocean current and range model.

1.1 Problem Formulation and Assumptions

The track coverage problem consists of placing a set of omnidirectional sensors in

a region of interest (ROI) for detecting moving targets, such that the amount of

tracks that are cooperatively detected is maximized. The present formulation is in

two-dimensional Euclidian space and relies on the following assumptions: (i) target

maintains constant heading, speed, and amplitude; (ii) the region of interest A ⊂ R2

is a rectangle with dimensions L1×L2 Km2; (iii) the omnidirectional sensor field-of-

view can be approximated by a disk centered at the sensor location, where the radius

of the disk (range) is known, as in [3,11,13,14]; and (iv) a sensor may detect a target

only if the target track intersects its field-of-view. These assumptions apply to the

remaining chapters, unless indicated otherwise.

1.2 Research and Dissertation Outline

The main body of the dissertation is organized into five chapters. Chapter 2 provides

the background for the main concepts used throughout the problem formulation,

such as various coverage formulations, geometric transversals, and target tracking

by multiple detections. These provide the foundation and motivation for the quality

of service measurements derived in Chapter 3. In Section 3.1, the track coverage

optimization problem is formulated and the track coverage function is derived. This

closed form function can rapidly measure the coverage of any sensor network within

a region of interest based only upon the sensor locations within the region of interest

and the sensors fields-of-view. Then, the other quality-of-service metrics of a sensor
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network that are employed throughout this dissertation, that is area coverage and

energy consumption, are derived in Sections 3.2-3.3. The track coverage optimization

problem formulated in Section 3.1 is solved for various networks in Chapter 4 and

compared to several other popular deployment algorithms used frequently in the

literature.

Then, in Chapters 5 and 6, the static track coverage formulation is extended to

include a non-fixed environment, which leads to a new problem in dynamic com-

putational geometry pertaining to the geometric transversals of a moving family of

objects. For example, when sensors are deployed in the ocean, they move according

to the ocean current-induced velocity. Chapter 5 formulates the optimal deploy-

ment problem of a sensor network comprised of sonobuoys. As the current-induced

drift of the sonobuoys is known to have a detrimental impact on the performance

of the sensor network, the problem is formulated to include the state-space buoy

equations of motion due to the ocean-induced drift velocities. These current veloci-

ties are obtained by real measurements, and approximated by a NN (Section 5.1.1).

Also, environmental conditions, such as, bathymetry, surface temporal variability,

and bottom properties, are known to influence the maximum range of an acoustic

sensor (Section 5.1.2). Thus, the optimization of the track coverage function of a

non-maneuverable, moving sensor network, is solved with respect to the initial posi-

tions that maximize coverage over a period of time, thereby minimizing the negative

effects of the ocean environment. In most applications, especially sensors deployed in

the ocean, the sensor network is subject to random disturbances, such as unforseen

and uncontrollable variations in both the sensor location and maximum range due to

heterogenous environmental conditions. Therefore, the robustness of the nominal so-

lution of the optimal deployment problem due to parameter uncertainty is evaluated

through Monte Carlo simulations (Section 5.3.2). Then, Chapter 6 addresses com-
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puting optimal trajectories for controllable underwater gliders that are deployed to

detect moving targets in an oceanic region of interest by means of onboard omnidirec-

tional acoustic sensors through optimal control theory. Consequently, a new optimal

control problem is presented that integrates sensor objectives such as track coverage

with cooperative path planning of a mobile sensor network subject to time-varying

environmental dynamics.
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Chapter 2

Background

2.1 Sensor Coverage and Search Problems

Coverage can be considered a measure of the quality of service of a sensor network

deployed to perform a specified mission over time. The most popular definition of

coverage, point coverage, refers to the two-dimensional space and ensures that every

point in the specified space is within range of at least one sensor in the network [8].

The sensor is assumed to cover an area given by a disk with radius equal to the

sensor range, and its center placed at the sensor position. Then, the network coverage

considers the union of all areas covered by the sensors, referred to as area coverage [14,

15], where all points in the 2-D space are within the radius of at least one sensor. This

formulation can be used to deploy sensors by solving a class of problems commonly

referred to as packing problems. The circle-packing optimization problem is posed as:

given a set of unequal disks and a rectangular area, find the sensor locations so that

all disks can be packed into the container without overlapping. Proposed solutions

to this problem include genetic algorithms [16] and a greedy heuristic algorithm that

iteratively places disks according to the maximum-hole degree rule [17]. The latter

algorithm is particularly interesting as it addresses the value of corner placement,

where corner positions possess the highest value, followed by the side placements, with

the middle positions being the least valuable. By following this placement strategy,

the hole degree, or uncovered area that occurs once an object has been placed, is

kept to a minimum. Even though packing problems address only one aspect of the

multi-faceted problem of sensor network tracking posed here, the observation in [17]
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pertaining to corner placement is readily apparent in the initial results of this study,

discussed in Section 4.1. Another common formulation of coverage is described by

the art-gallery problem, characterized as line-of-sight visibility, where a sensor sees

the target if the line segment between the two does not intersect any obstacle [18–20].

This formulation is concerned with placing the sensors such that the targets in a given

area of interest, including the obstacles, are in the line of sight of at least one of the

sensors. Although these formulations can be useful for various sensor applications,

they are not entirely applicable to target tracking by means of a distributed and

collaborative sensor network, a problem in itself with limited study.

This research focuses on target surveillance applications for target detection, a

class of problems known as “search” problems. Objectives of search strategies include

maximizing the total probability of successful searches [21, 22] or minimizing the

expected cost (usually referring to time) until the object is found [21,23]. One search

strategy, referred to as“alert-confirm” [24] entails scanning a portion of an overall

area. If the sensor detects a possible target (an alert) in a broad scan, the sensor

then focuses on that point to confirm the target location. Early work in the 1940’s

focused on deployment strategies based on search platforms, e.g., radar and sonar

on a boat or plane, to best find enemy targets [25,26]. This early research naturally

extends to the optimal search tactics developed for distributed sensor networks [22],

searches that develop sequentially over time [27], and developing a network of fixed

sensors for a collaborative search [28]. The most limiting drawback in early classical

sensor applications is independent and noncollaborative sensors in a network (or

searchers) seeking targets. Many applications in tracking and surveillance benefit

when increased coverage is provided by a distributed set of sensors over coverage

provided by a single sensor platform. In [29], an incremental greedy search strategy

was implemented for detecting a single static target located in one cell comprising a
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particular area. The results show that an optimal search strategy can be obtained by

incrementally placing sensors such that each sensor maximizes the immediate gain in

either the most-likely or second-most-likely place to contain an object. However, it

does not provide a significant algorithm for achieving an optimal sensor configuration.

Another popular search technique for optimal sensor placement is genetic algo-

rithms, which has commonly been applied to the field of structures. One example is

modal identification on a large space structure [30]. Another example involves fault

detection involves using neural networks to locate and classify faults while a genetic

algorithm (GA) determines an optimal (or near optimal) sensor distribution [31].

Both applications display positive results in their sensor configurations. Although

the application to structures is very different from the application for target surveil-

lance, genetic algorithms can be compared to the methods posed in this research

when applied to the optimal sensor placement problem.

The problem of target tracking by a sensor network arises in many applications,

including surveillance systems, monitoring endangered species, and manufacturing,

and as a result has received considerable attention. Tracking refers to the estimation

of the state (e.g., position, velocity, acceleration) of a moving object by way of a

sensor or sensors positioned on a stationary or moving platform. The track of a

target once detected by the sensor(s) in search mode is formed by its state trajectory

being estimated from the set of measurements acquired from each sensor detection.

The measurements of multiple sensors are combined to estimate a target’s state and

maintain the track as precisely as possible, using data fusion. Popular algorithms for

data fusion include the Nearest Neighbor algorithm, Probabilistic Data Association,

and Multiple Hypothesis Tracking [32–37]. Another popular fusion algorithm for

combining information from multiple sensor nodes for optimal detection decisions is

the Neyman-Pearson test with the likelihood ratio tests [38–43]. This method, which
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seeks a decision rule to have maximum probability of detection while not allowing

the probability of false alarm to exceed a certain value, gives excellent theoretical

results, but is not generally applicable when no a-priori knowledge of the target

track is known, as is the case for proximity sensors or a variable environment. Efforts

have been made to develop a training approach that learns the typically unknown

statistical performance probabilities of detections and false alarms [44–46]. However,

these approaches have been effectively hindered by a large region of interest for which

to observe the same target over the same time interval by many sensors, and are

also limited by the communications bandwidth available between the sensors in the

network. These efforts are not applicable to the proximity sensors because once

the data is associated with one target and fused by an algorithm described above,

it is used together with past observations to estimate the target tack by means of

well-known Kalman-filter equations [47] as done in [33]. They rely on frequent and

accurate measurements from sensors, typically obtained over the same time interval,

such as, in the case of air-traffic control radars.

To make distributed sensor networks practical and affordable, each sensor must be

relatively simple. Proximity sensors are typically deployed when they may be lost over

time, there is no a-priori knowledge of the target track, and the measurements are

limited and collected at different times while the target moves across a large region

of interest. A central fusion center that fuses only the limited energy information

attained from the proximity sensors is incorporated such that the sensor network

has very low communication bandwidth and is easily applied to a variety of target

types with little modification. A central fusion system collects only peak energy

information from each individual proximity sensor, and assumes that the relationship

between the energy recorded and the distance between the target and the sensor

follows a known relationship and is easily acquired numerically, as done in [3]. This

10



limited-information event-based approach for forming an estimate of a target track

in a distributed sensor network showed that when considering a single target moving

at a constant heading, speed, and source amplitude through the sensor field, it is

possible to derive a reduced set of potential target path tracks from only the proximity

information from multiple sensors and the closest-point-of-approach (CPA) [3]. An

additional benefit of this approach when combined with track path clustering is its

robustness to false detections or false alarms [3]. Thus, for every potential target,

multiple detections must be obtained from sensors distributed throughout the region

of interest [3, 13,48].

2.2 Geometric Transversals

This dissertation focuses on the geometric properties of the network, addressing a

deterministic track-coverage formulation and binary sensor models (as in [9, 14,49]).

In order to maximize the coverage provided inA by n sensors, the space of all tracks is

derived through geometric transversal theory, see [2]. A line transversal, also referred

to as a stabber, is a straight line that intersects every member in a family of objects,

while a common transversal for a family of sets is a line which intersects every set in

a family. When a set of geometric objects in Rd have a k-transversal, the objects are

said to be simultaneously intersected by a k-dimensional flat (or translate of a linear

subspace). When k = 0, the objects are referred to as point transversals. The field

of geometric transversals has originated with Helly’s Theorem.

Helly’s Theorem [50] S is a family of n convex sets in Rd that has a common

intersection point if and only if every d + 1 convex sets have a common intersection

point

Since the introduction of Helly’s Theorem in 1923, much study has been given to

establishing the necessary and sufficient conditions for the existence of transversals,
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as well as developing algorithms for determining common transversals. However,

algorithms for determining common transversals are known in special cases only.

Finding point transversals for families of half-spaces is the focus of linear program-

ming [51]. When k = 1, i.e., stabbing lines, the problem is formulated similarly to

k = 0, and S has a line transversal if there exists a line that intersects every member

of S. However, this computation becomes increasingly more difficult compared to

k = 0 [2]. Although the general problem for finding k-transversal to a family of n

polytopes in Rd can be formulated in terms of a system of algebraic inequalities, or

LMIs, the current methods for solving such systems, such as computer algebra, are

inefficient due to their generality as well as ignoring the underlying geometric nature

of the problem.

A brief overview is given of the more popular algorithms for constructing the space

of transversals for a family S of n simple objects (polygons with a constant number

of edges, e.g., disks) in R2. Motivated by the practical visibility problem in the plane,

one of the first proposed line transversal algorithms constructs the stabbing region for

n line segments in R2 in O(n log n) by a general “divide and conquer” technique [52].

The n line segments are partitioned into two groups of n/2 segments to calculate the

space of transversal for each group, with the two merging at the end to form the

entire space of transversals for the original n line segments. This early algorithm was

then extended to a family of simple convex sets whose boundaries intersect pairwise

at most s times [53], finding line transversals for homothets (involving both scaling

and translating) of simple planar objects [54], and finding line transversals for disks

of equal radius [46], all of which run in O(n log n). The algorithm in [52] was also

successfully extended to plane transversals of convex polytopes in R3 but was unable

to improve upon the computational complexity in higher dimensions [55].

One of the most relevant results to the track coverage problem is an algebraic
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decision tree methodology that finds a single line transversal for a translates family

of n line segments in R2, or n equal disks in R2 [56]. Although existing algorithms

(e.g., [56,57]) cannot construct closed-form representations of line transversals, they

could be applied to determine the tracks intercepted by a family of omnidirectional

sensors, provided all sensors have the same range and their positions are known.

It was pointed out in [2] that geometric transversals algorithms could be greatly

improved by considering the underlying geometric nature of the problem. Therefore,

the track coverage function is formulated in Section 3.1 as a measure of the geometric

transversals (potential target tracks) that intersect the non-translate families of disks

(omnidirectional sensors fields-of-view).

 Figure 2.1: Examples of line transversals for a family of five square polygons, with
k = 3 (taken from [2]).

2.3 Track-Before-Detect Approach in Surveillance

Systems

The problem of target tracking by a sensor network arises in many applications,

including surveillance systems, monitoring of endangered species, and manufacturing.

As a result, it is receiving considerable attention. Tracking refers to the estimation

of the state (e.g., position, velocity, acceleration) of a moving object by means of

multiple sensor measurements. Once a detection is declared by sensors in search

mode, a target track is formed by estimating its state from the set of measurements
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acquired over time, through Kalman filtering. In this dissertation, it is assumed that

a central fusion center collects only peak energy information from a set of proximity

sensors and then computes all sensor-target distances as shown in [3]. Using only

limited sensed information, such as closest-point-of-approach (CPA) detections, it is

possible to hypothesize a set of target paths for one or more targets moving at a

constant heading and non-zero speed through the sensor field [3].

Passive (or listening) sensor systems detect the acoustic energy emitted by the

target. In this context, we are concerned with proximity sensors, which report a

simple acoustic energy observation, from which a relative omnidirectional distance

measurement to the target may be inferred. For example, when a target moves at a

constant speed and heading through A, each sensor reports to a central fusion proces-

sor its respective location in two-dimensional space and a single value for the received

signal level at the sensor-to-target CPA. The event-based tracking algorithm in [3]

assumes each sensor from the same target receives an isotropic energy attenuated by

the environment according to the power law from the target,

ei(t) = cF (di(t))
−α (2.1)

ei(t) |ti,CPA
= eCPAi = cF (di)

−α (2.2)

where ti,CPA is the time period of the CPA for the ith sensor; di is the CPA range

(distance) from the ith sensor-to-target and is approximated by a disk centered at

the sensor location xi; F , which in the sonar literature is also frequently denoted as

TS, represents a target source level independent of both time and location; c is the

target independent scaling constant that is based on the physics of the problem; and

the nondimensional exponential attenuation coefficient α depends on the particular

physical mechanism of the energy that is being received and the environment. As

time is not reported, it is assumed that multiple detections from a single target
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occur within a specified time period and the target does not maneuver in that time.

Introducing the constant scaling factor B = (cF )−1/α and a minimum detection

threshold ϑ, it was shown in [3] that given a set of τi error-free measurements

τi = (eCPAi )−1/α = B · di > 0 (2.3)

for each of the sensors located at x = [xT1 ... xTn ]T , then for the set of single positive

detections

T = {τi|τi = B · di ≥ ϑ} (2.4)

the target path is a line that is jointly tangent to all disks Ci(S) ≡ {χ : ‖χ−xi‖ ≤ dj},

where χ ∈ R2×1 and ‖ · ‖ is the Euclidean norm. Fig. 2.2 illustrates the two possible

tracks formed from two sensor measurements, τ1 and τ2 ∈ T , where di = τi/B.

Since B is constant for both sensors, it may remain unknown without affecting di [3].

Consequently, reliable target detection typically requires k ≥ 2 sensor detections that

are used in a track-before-detect approach.

C1

C2
r1

 r2

CPA points CPA point

CPA point

Exterior track

   Interior track 

x1   x2

 

Figure 2.2: Geometry of interior and exterior tracks formed from two CPA detec-
tions obtained by two omnidirectional sensors, placed at x1 and x2 (adapted from [3],
reflections are omitted for simplicity).
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Chapter 3

Objective Functions for Assessing the

Quality-of-Service of Mobile Sensor

Networks in Surveilling Systems

3.1 A Geometric Transversal Approach to Ana-

lyzing Track Coverage in Sensor Networks

Suppose a network of n proximity sensors with different ranges r1, . . . , rn must be

deployed in a region of interest A for the purpose of detecting moving targets. Then,

the number of detections required per track is a constant parameter k, such that

1 ≤ k ≤ n, and its value is decided based on the level of confidence required by the

sensor system. For example, in applications with infrequent false alarms k = 3 is

considered to be the minimum number of detections required for forming a reliable

track and declare a detection. Figure 2.2, taken from [3], illustrates that two CPA

detections obtained by proximity sensors may be caused by four possible tracks (the

two in the figure, and their reflections). In systems where the sensor detections

provide additional information about the target (such as, the position), multiple

detections may still be required to track a moving target due to the presence of

measurement errors and false alarms.

Therefore in this section we derive a track coverage function in order to address

sensor deployment as an optimization problem (Chapters 4-6). In order to optimize

the sensors placement, the amount of tracks they intercept is expressed as a function

of the sensors coordinates in the plane x1, . . . ,xn and respective ranges r1, . . . , rn.

Under the given assumptions from Chapter 1.1, track coverage can be viewed as a
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new geometric transversal problem. Thus, in this dissertation, a novel approach is

presented for representing geometric transversals by means of cones.

3.1.1 Cone Representation of Track Coverage

Based on the track-coverage problem formulation and assumptions (i)-(iv) in Section

1.1, the tracks detected by k sensors in an omnidirectional network S of size n can

be viewed as the line transversals of a family of disks with different radii. In this

section, we show that a set of line transversals can be represented by means of a

coverage cone, which contains line transversals (or tracks) characterized by the same

intercept. The coverage cone of a single sensor is defined in the following section,

where we obtain the coverage cone of multiple sensors. Then, the track coverage over

a rectangular area is represented by the union of coverage cones with intercepts along

the perimeter. Finally, the coverage cone representation of line transversals is used

in Section 3.1.2 to obtain a track-coverage function that quantifies the ability of a

sensor network to perform cooperative detections.

Coverage Cone

Consider a sensor in the network S that is indexed by i and is located at xi =

[xi yi]
T ∈ R2 in the xy-plane. Let C(xi, ri) = Ci denote a disk with radius ri

centered at xi that represents the field-of-view of this sensor. Assume that any

target track can be described by a straight line, y = ayx + by, with slope ay and y-

intercept by. As shown in [3], a CPA detection event takes place when the target path

is tangential to a disk of radius di ≤ ri, centered at xi. Without loss of generality, we

can assume that all disks and CPA detections are in the positive orthant R2
+. Then,

we can represent tracks by rays or half-lines denoted by Rα(by). Each ray originates

at an intercept y = by and forms an angle α = tan−1(ay) with the x-axis. Let the

17



vector y0 ≡ [0 by]
T denote the position of the y-intercept. Then, the position of

the ith sensor can be expressed by a relative position vector that is convenient for

generating the sensor coverage cone, namely:

vi ≡ (xi − y0) =

[
xi

(yi − by)

]
(3.1)

Borrowing two basic definitions from convex analysis [58], a set K is said to be a cone

if for all x ∈ K, where x ∈ R2, and c > 0, we have cx ∈ K. Also, given a nonempty

subset X of Rn, the cone generated by X is the set of all nonnegative combinations

of the elements of X, denoted by cone(X). We define the coverage cone of the ith

sensor with respect to the intercept by to be the cone generated by Ci with origin

y0, and we denote it by K(Ci,y0). The coverage cone is a basic construct for the

coverage function because it represents the set of tracks that can be detected by the

ith sensor.

Remark 3.1.1 The coverage cone K(Ci,y0) contains the set of all tracks Rα(by)

that intersect the sensor field-of-view Ci(xi, ri) in R2
+:

The proof is provided in Appendix A, and an example of coverage cone is illustrated

in Fig. 3.1.

Let θi denote half the opening angle of the coverage cone (Fig. 3.1). Since the

extremals of K are tangential to Ci, the trigonometric relationships,

sin θi =
ri
‖vi‖

=
ri√

x2
i + (yi − by)2

(3.2)

and,

cos θi =

√
‖vi‖2 − (ri)2

‖vi‖
(3.3)
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relate the opening angle to the sensor location xi through vi in (3.1). Then, the

coverage cone K ⊂ R2 is finitely generated by two unit vectors l̂i and ĥi, that is,

K(Ci,y0) = cone(̂li, ĥi) = {x | x = c1̂li + c2ĥi, c1, c2 ≥ 0} (3.4)

provided the unit vectors are obtained from vi through rotation matrices,

ĥi =

[
cosλi
sinλi

]
= Q+

i v̂i ≡
[

cos θi − sin θi
sin θi cos θi

]
vi
‖vi‖

(3.5)

and,

l̂i =

[
cos γi
sin γi

]
= Q−i v̂i ≡

[
cos θi sin θi
− sin θi cos θi

]
vi
‖vi‖

(3.6)

where, Q−i = (Q+
i )T . Thus, the coverage cone K(Ci,y0) is completely specified by

the unit vectors l̂i and ĥi, which are known functions of xi and ri.

 xi

          x 

    K(Ci , y0)
y 

 vi

y0

iĥ  

il̂  

θi

Ci

by

  ri

 

Figure 3.1: Coverage cone K(Ci,y0) of a sensor located at xi, generated by the unit

vectors l̂i and ĥi.

k-Coverage Cone for Multiple Sensors

Multiple sensor detections typically are necessary to determine target tracks by means

of proximity sensors, or in the presence of measurement errors and false alarms, as
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shown in [3]. Let k denote the minimum number of distinct sensor detections that

are required by the system to reliably form a track. Two detections are said to be

distinct when they are obtained by two different sensors. Thus, k detections are

obtained when k sensors in the network S = {C1, C2, . . . , Cn} intersect the same

track.

  x 

y 

+

 ui

uj

uk

 Figure 3.2: Example of three vectors ordered according to the xy-frame, where
ui ≺ uj ≺ uk.

In this section, we show that the set of tracks that intersect at least k sensors

in S, with y-intercept by, is contained by a so-called k-coverage cone. Vectors in

R2 are ordered according to the orientation of the reference frame. Two vectors ui

and uj are said to be ordered according to the xy-frame such that ui ≺ uj if when

these vectors are translated to make their origins coincide, and ui is rotated through

the smallest angle possible to meet uj, this rotation is in the same direction as the

orientation of the xy-frame (as illustrated in Fig. 3.2 and in [59]). Let Ω(S,y0) and

Λ(S,y0) denote the sets of unit vectors generating the coverage cones of all sensors

in S with origin y0. That is, from (3.5)-(3.6), Ω(S,y0) = {ĥi | Q−i ĥi = v̂i, ∀i ∈ IS}

and Λ(S,y0) = {̂li | Q+
i l̂i = v̂i, ∀i ∈ IS}, where IS denotes the index set of S. Then,

these two sets can be used to determine the k-coverage cone of S, as shown by the

following result:

Proposition 3.1.2 The set of all tracks Rα(by) that are line transversals to a family

of k non-translates disks S = {C1, C2, . . . , Ck} ≡ Sk with index set ISk
, is contained
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by the finitely generated cone

Kk(Sk,y0) = cone(̂l∗, ĥ∗) (3.7)

Where, y0 = [0 by]
T , ĥ∗ = ĥ and l̂∗ = l̂ı with , ı ∈ ISk

, such that ĥ � ĥi ∈

Ω(Sk,y0) and l̂ı � l̂i ∈ Λ(Sk,y0) for ∀i ∈ ISk
, and provided l̂ı ≺ ĥ. If l̂ı � ĥ, then

Kk(Sk,y0) = ∅.

A proof is provided in Appendix B.

A simple example of k-coverage cone is illustrated in Fig. 3.3, where k = 2, and

S2 contains two sensors located at x1 and x2. In this example, the 2-coverage cone

K2(S2,y0) is generated by the unit vectors l̂∗ = l̂2 and ĥ∗ = ĥ1, since Ω(S2,y0) =

{ĥ1, ĥ2} and Λ(S2,y0) = {̂l1, l̂2}, where l̂2 � l̂1 and ĥ1 ≺ ĥ2.

2ĥ  

 x 

  y 

by

y0
1̂l

x1 
   x2 

),( 02 yCK  

C2

C1

),( 01 yCK  

       K2(S2 , y0)

1ĥ  
*ĥ=  

2l̂  
*l̂=

 
Figure 3.3: The k-coverage cone K2(S2,y0) of the family S2 = {C1, C2} is shown

in dark grey and is generated by the unit vectors l̂∗ and ĥ∗ obtained from the sets of
unit vectors generating K(C1,y0) and K(C2,y0) (shown in light grey).

The cone Kk(Sk,y0) is referred to as the k-coverage cone of Sk with origin y0.

An important feature of this approach is that the k-coverage cone is easily obtained
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from the sets of unit vectors Ω and Λ. Provided two unit vectors are in the first or

fourth quadrant of a reference frame, they can be ordered by their direction sines (as

shown in Appendix C). Therefore, if we let

sinλ∗ = inf{sinλi | ĥi = [cosλi sinλi]
T ∈ Ω(Sk,y0), ∀i ∈ ISk

}
sin γ∗ = sup{sin γi | l̂i = [cos γi sin γi]

T ∈ Λ(Sk,y0), ∀i ∈ ISk
}

(3.8)

then, l̂∗ = [cos γ∗ sin γ∗]T and ĥ∗ = [cosλ∗ sinλ∗]T . When the unit vectors

are in the second or third quadrant, they can still be ordered by their direction

sines by introducing a constant rotation (Appendix C). Therefore, the infimum and

supremum in (3.8) can be determined by linear operations on the elements of Ω and

Λ, respectively.

Consider now the tracks detected by at least k sensors in S = {C1, . . . , Cn}, with

1 ≤ k < n. These tracks are the line transversals of any k-subset of S. A k-subset

is defined as a subset containing any k elements of a set with n elements [60]. By

Proposition 3.1.2, all tracks Rα(by) detected by a set of k sensors Sk are contained

by the k-coverage cone of Sk. It follows that the set of all tracks Rα(by) detected by

at least k sensors in S is the union of the k-coverage cones of all k-subsets of S:

Kk(S,y0) =
m⋃
j=1

Kk(S
j
k,y0), m =

(
n
k

)
(3.9)

Sjk denotes the jth k-subset of S, and the number m of possible k-subsets is given

by the binomial coefficient n choose k, as shown in (3.9). Since Kk is a union of

possibly disjoint cones, it may not be a cone [58]. Nevertheless, it is just as useful

because the same measure defined for a cone can be applied to it using the principle

of inclusion-exclusion, as shown in Section 3.1.2. In the next section, we utilize the

k-coverage cone to construct an approximate representation of the set of tracks that

traverse the region-of-interest A, and are detected by at least k sensors in S.
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Track-Coverage over a Rectangular Area or Region-of-Interest (ROI)

The track coverage problem consists of placing a set of sensors for the purpose of

detecting moving targets cooperatively in a region-of-interest (ROI). In this disserta-

tion, the ROI is assumed to be a rectangle A of known dimensions L1×L2. Place the

xy-frame of reference along two sides of A, such that its origin (0, 0)xy coincides with

one vertex, and one side of A can be denoted by the interval Iy ≡ {y | y ∈ [0 L2]}

(as shown in Fig. 3.4). Based on the previous section, the set of all tracks Rα(by)

that intersect this side of A at by ∈ Iy and are detected by at least k sensors in S is

Kk(S,y0), and is given by (3.9). In order to obtain representations that are computa-

tionally tractable, we discretize the interval Iy in N2 increments of size δb = L2/N2,

and define b`y ≡ ` · δb, and y`0 ≡ [0 b`y]
T . Then, the set of tracks that intersect

the y-axis over the interval Iy and are detected by at least k sensors in S can be

approximated by:

Kk(S, Iy) ≈
⋃

`=0,...,N2

Kk(S,y`0), N2 = L2/δb (3.10)

Where, each set Kk(S,y`0) is given by (3.9). Clearly, by letting δb → 0 the above

approximation approaches the entire set of tracks intersecting Iy.

The methodology is extended to all sides of A by placing a second frame of refer-

ence, x′y′, along the remaining sides of A, such that its origin (0, 0)x′y′ is the vertex

opposite to (0, 0)xy, as shown in Fig. 3.4. Then, each side of A is denoted by one

of the following intervals: Iy, Ix ≡ {x | x ∈ [0 L1]}, Ix′ ≡ {x′ | x′ ∈ [0 L1]}, or

Iy′ ≡ {y′ | y′ ∈ [0 L2]}. With this choice of reference frames an efficient represen-

tation of the target-tracks traversing A can be obtained by defining coverage cones

with origins on each of the four axes, namely, x0 = [bx 0]T , y′0 = [0 by′ ]
T , and

x′0 = [bx′ 0]T , where bx ∈ Ix, bx′ ∈ Ix′ , and by′ ∈ Iy′ (Fig. 3.4). The coverage

cones of the ith sensor with respect to each axis are denoted by K(Ci,y0), K(Ci,x0),
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Figure 3.4: Reference frames used to define k-coverage cones with respect to each
axis, as illustrated in the figure for k = 2 and S2 = {C1, C2}.

K(Ci,y
′
0), and K(Ci,x

′
0), and are obtained by defining a relative-position vector for

each axis. From hereon, denote the vector in (3.1) by vi(y0), and let vi(x0) = (xi−x0)

denote the relative-position vector for x. The relative-position vectors for the x′ and

y′ axes are defined as,

vi(x
′
0) = L− xi − x′0, and vi(y

′
0) = L− xi − y′0, for ∀i ∈ IS (3.11)

where, L ≡ [L1 L2]
T . The coordinate transformation xi|x′y′ = (L − xi) is used to

express all sensor positions with respect to the same coordinate frame xy. Then, the

k-coverage cone for multiple sensors methodology can be extended to all axes.

For simplicity, all intervals Iy, Ix, Iy′ , and Ix′ are discretized by increments of

the same size δb. Hence, from (3.10), the set of tracks traversing A and intersecting
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at least k sensors in S is given by,

Kk(S,A) = Kk(S, Iy) ∪ Kk(S, Ix) ∪ Kk(S, Ix′) ∪ Kk(S, Iy′) (3.12)

≈
(
∪N2
`=0 ∪

m
j=1 Kk(S

j
k,y

`
0) ∪Kk(S

j
k,y

′`
0 )
)

(3.13)

∪
(
∪N1
`=0 ∪

m
j=1 Kk(S

j
k,x

`
0) ∪Kk(S

j
k,x

′`
0 )
)
,

where m is equal to the binomial coefficient k choose n (as in (3.9)), N2 = L2/δb,

and N1 = L1/δb.

Example: Assessing the track-coverage of a known sensor network config-

uration with n = 20 and k = 3

The cone representation of track coverage is demonstrated by considering a known

sensor network configuration. When the sensors positions are known, the tracks

detected can be verified by testing a designated sample [61]. In this example, the

sensor network S is characterized by n = 20, k = 3, and ranges and positions shown in

Fig. 3.5(a). The union of k-coverage cones Kk(S,y`0), with y`0 = [0 15]T , is illustrated

in Fig. 3.5(a). The cone representation of area track-coverage, Kk(S,A), is computed

using the methodology in Section 3.1.1 and plotted in parameter space in Fig. 3.5(b),

where grey represents sets of tracks that are detected by at least k sensors.

When the sensors positions are known, a sample of tracks detected by S can be

determined numerically by testing their intersections with S. Although this approach

does not provide a closed-form representation of track-coverage, it is useful for val-

idating its cone representation Kk(S,A). As shown in [3], a CPA detection takes

place when the track Rα(by) is tangential to a disk with a radius less or equal to a

sensor range ri. Then, the tracks intercepted by the ith sensor, positioned at xi, are
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those whose parameters satisfy the inequality,

di =

∣∣∣∣∣(by + ayxi − yi)√
a2
y + 1

∣∣∣∣∣ ≤ ri (3.14)

where, ay = tan(α). A brief proof is provided in Appendix D. This inequality can

be used to develop a simple detection test for a designated set of tracks, denoted

by TR. Since the sensors ranges and positions are all known, the inequality (3.14)

can be evaluated for every track in TR and for every sensor in S. Let Bi denote a

logical array or truth table in which every element corresponds to one track in TR,

and is either equal to 1 or 0, depending on whether the track has been detected (1)

or missed (0) by the ith sensor. Every element of Bi can be evaluated using (3.14),

and an array Bi can be obtained for every sensor in S. Then, the logical array,

Tk =

{∑
i∈IS

Bi ≥ k

}
(3.15)

indicates whether each track in TR has been detected by at least k sensors in S.

The array Tk obtained for the sensor network in Fig. 3.5(a) is plotted in parameter

space in Fig. 3.5(b). The total number of detections per track is also plotted in Fig.

3.6(a) to verify the track coverage results in Fig. 3.6(b). It can be seen by comparing

Fig. 3.6(b) to Fig. 3.5(b) that Kk(S,A) provides a faithful representation of the

tracks that are cooperatively detected by S.

3.1.2 Track-Coverage Function

The cone representation of track coverage allows to generate the space of tracks that

are cooperatively detected by a sensor network using sets of unit vectors. Another

important use of coverage cones is the functional representation of the quality of

service of the network. In this section, we derive a so-called track-coverage function
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Union of k-coverage cones for n=20, k=3, and by=15  
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Figure 3.5: Track coverage Kk(S,A) (b) of a known sensor network configuration
(a) with n = 20, k = 3. The union Kk(S,y`0) is illustrated by the grey cones in (a)
for y`0 = [0 15]T .
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Figure 3.6: Number of detections obtained through testing (a) and resulting track
coverage (b) for the sensor network in Fig. 3.5(a).
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that quantifies the ability of an omnidirectional sensor network S to detect straight

tracks traversing A, as a function of the sensors ranges RS = {r1, . . . , rn}, and

positions XS = {s1, . . . , sn}.

We assign a Lebesgue measure µ on [0, π] to any set of rays K ⊂ R2, such that

µ{α : Rα ∈ K}. Then, the opening angle of the cone K is a measure on the set

of rays contained by K. It follows from Remark 3.1.1 that the opening angle of the

coverage cone K(Ci,y0) is a measure on the set of tracks through y0 that are detected

by the sensor Ci. Similarly, it follows from Proposition 3.1.2 that the opening angle

of the k-coverage cone Kk(Sk,y0) is a measure on the set of tracks through y0 that

are detected by all sensors in Sk.

Based on Section 3.1.1, it is always possible to generate the k-coverage cone

of a set Sk by means of two unit vectors l̂∗ and ĥ∗. This convenient unit vector

representation also allows to compute the opening angle of any coverage cone by

means of the cross product. Let ψ = ψ(Sk,y0) denote the opening angle of the k-

coverage cone Kk(Sk,y0) in (3.7), with origin y0 = [0 by]
T , and by ∈ Iy. This cone

is finitely generated by two unit vectors l̂∗ = l̂ı and ĥ∗ = ĥ that are defined in terms

of the relative-position vector (3.1). From the properties of the cross product

sinψ = ‖̂l∗ × ĥ∗‖ (3.16)

Thus, using (3.5)-(3.6), the opening angle can be written with respect to the sensors

positions,

ψ = H[det(Mı)] · sin−1[det(Mı)], (3.17)

where

Mı ≡
[

l̂∗T

ĥ∗T

]
=

[
(v̂ı)

TQ+
ı

(v̂)
TQ−

]
, v̂i ≡

(xi − y0)

||(xi − y0)||
for i = ı, . (3.18)
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H[ · ] denotes the Heaviside function, and det( · ) denotes the matrix determinant.

From Proposition 3.1.2, ı and  are the indices of the unit vectors l̂ı and ĥ with

ı,  ∈ ISk
, such that l̂ı � l̂i ∈ Λ(Sk,y0) and ĥ � ĥi ∈ Ω(Sk,y0) for ∀i ∈ ISk

(and

obtained as shown in Appendix C). The Heaviside function in (3.17) ensures that if

l̂ı � ĥ, then ψ = 0.

Consider now the case in which 1 ≤ k ≤ n. We still wish to obtain a measure of

the set of tracks through y0 that are detected by at least k sensors, namely Kk(S,y0).

But, as shown in (3.9), this set is not always a cone. Thus, the Lebesgue measure

µ on Kk(S,y0) is obtained through the principle of inclusion-exclusion [21, 62], as

shown by the following result:

Theorem 3.1.3 A measure on the set Kk(S,y0) for a family of non-translates disks

S = {C1, . . . , Cn} ⊂ R2
+ is given by,

T ky0
(XS, RS) =

m∑
j=1

(−1)j+1
∑

1≤i1<...<ij≤m

ψ(Si1k ∪. . .∪S
ij
k ,y0), m =

n!

(n− k)!k!
(3.19)

where, the summation
∑

1≤i1<...<ij≤m is a sum over all the [m!/(m − j)! j!] distinct

integer j-tuples (i1, . . . , ij) satisfying 1 ≤ i1 < . . . < ij ≤ m. Silk denotes the ithl

k-subset of S, and the union {Si1k ∪ . . . ∪ S
ij
k } is a p-subset of S, with k ≤ p ≤ n.

A proof is provided in Appendix E. In the remainder of the dissertation, the

union {Si1k ∪ . . . ∪ S
ij
k } is abbreviated as S

i1,j
p .

The function T ky0
provides a measure of the amount of tracks through y0 that are

detected by at least k sensors in a network S, as a function of the sensor positions,

XS, and ranges RS. It can be seen from (3.19) that T ky0
can be evaluated by summing

the opening angles of the coverage cones of all p-subsets of S, with k ≤ p ≤ n. For a

p-subset Sp, the coverage cone Kp(Sp,y0) is generated by two unit vectors according
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to Proposition 3.1.2, and its opening angle ψ(Sp,y0) is given by the cross product in

(3.17). The above result is illustrated through a simple example in the next section,

and will be used to derive a coverage function for A in Section 3.1.2.

Example: Track-coverage function for a single intercept, y0, and a network

with n = 3 and k = 2

To illustrate the result in Theorem 3.1.3, we use a simple example involving a network

S = {C1, C2, C3} positioned at XS = {x1,x2,x3} and ranges RS = {r1, r2, r3}, as

shown in Fig. 3.7. Let k = 2 be the number of required detections for forming a

track, and consider the tracks through y0. Then, from (3.19), the amount of tracks

detected by at least two sensors in S is given by,

T 2
y0

= ψ(S1
2 ,y0) + ψ(S2

2 ,y0) + ψ(S3
2 ,y0)−

[
ψ(S1

2 ∪ S2
2 ,y0) (3.20)

+ ψ(S1
2 ∪ S3

2 ,y0) + ψ(S2
2 ∪ S3

2),y0

]
+ ψ(S1

2 ∪ S2
2 ∪ S3

2 ,y0)

where, from the definition of k-subset: S1
2 = {C1, C2}, S2

2 = {C1, C3}, and S3
2 =

{C2, C3}. But, the union of two or more k-subsets of S always produces a p-subset

of S, with k < p ≤ n. For instance, in this case S1
2 ∪ S2

2 = {C1, C2, C3} = S, and

S1
2 ∪S3

2 = S2
2 ∪S3

2 = S1
2 ∪S2

2 ∪S3
2 = {C1, C2, C3} = S. Therefore, the above equation

simplifies to:

T 2
y0

= ψ(S1
2 ,y0) + ψ(S2

2 ,y0) + ψ(S3
2 ,y0)− 2ψ(S,y0) (3.21)

This result is illustrated in Fig. 3.7.

Using the cross product, the opening angles in (3.21) can be expressed as explicit

functions of the sensors positions XS = {x1,x2,x3}, as illustrated in Appendix F.

This property of the coverage function allows to formulate the placement of the

sensors as an optimization problem, in which XS is to be determined (as shown in

Section 4).
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 Figure 3.7: An example of coverage function, T 2
y0

, for three sensors S = {C1, C2, C3}
located at XS = {x1,x2,x3} and k = 2.

Area Track-Coverage Function

The track-coverage function for a rectangular ROI A is obtained by considering the

sets of tracks intersecting its four sides, Iy, Ix, Iy′ , and Ix′ , and leading to at least

k detections by S. These sets can be represented by coverage cones, as illustrated in

Section 3.1.1. Consider the set of tracks that intersect Iy and are detected by at least

k sensors, Kk(S, Iy), in (3.10). The sets in (3.10) are all disjoint because they contain

rays with different intercepts, thus Kk(S,y`i0 ) ∩ Kk(S,y
`j
0 ) = ∅ when `i 6= `j. Using

the definition of Lebesgue measure for disjoint sets [63], it follows that a measure of

the set Kk(S, Iy), obtained from (3.10) and (3.19), is,

T kIy
(XS, RS) =

N2∑
`=0

T ky`
0
(XS, RS) =

N2∑
`=0

m∑
j=1

(−1)j+1
∑

1≤i1<...<ij≤m

ψ(S i1,j
p ,y`0) (3.22)

where m, S
i1,j
p , and the j-tuples (i1, . . . , ij) are all defined as in Theorem 3.1.3, and

N2 = L2/δb. Thus, equation (3.22) is a measure approximating the amount of tracks
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that are detected by at least k sensors in S and intersect Iy.

Then, obtain a measure on the set of tracks that traverse A and are detected by

at least k sensors in S, denoted by Kk(S,A) and given by (3.12). The sets Kk(S, Iy),

Kk(S, Ix), Kk(S, Ix′), and Kk(S, Iy′) in (3.12) are not disjoint, and a track intersecting

one side of A always intersects one other side of A. It follows that if we sum the

measure µ on these four sets, every element in Kk(S,A) is counted twice. Thus,

the true measure µ on Kk(S,A) can be obtained by dividing this sum by two. Let

the opening angles of the k-coverage cones Kk(Sk,x0), Kk(Sk,y
′
0), and Kk(Sk,x

′
0) be

denoted by ζ(Sk,x0), ξ(Sk,y
′
0), and ρ(Sk,x

′
0), respectively. Then, a measure µ on

Kk(S,A) is given by the following sum,

T kA (XS, RS) =
1

2
[T kIy

(XS, RS) + T kIx
(XS, RS) + T kIx′

(XS, RS) + T kIy′
(XS, RS)]

=
1

2

N2∑
`=0

m∑
j=1

(−1)j+1
∑

1≤i1<...<ij≤m

[ψ(S i1,j
p ,y`0) + ξ(S i1,j

p ,y′`0 )] (3.23)

+
1

2

N1∑
`=0

m∑
j=1

(−1)j+1
∑

1≤i1<...<ij≤m

[ζ(S i1,j
p ,x`0) + ρ(S i1,j

p ,x′`0 )]

where each term ∪mj=1Kk(Sk, · ) in (3.12) has been written in terms of opening angles

using Theorem 3.1.3. All opening angles are obtained from the cross product of two

unit vectors (3.16), and can be written as explicit functions of the sensors positions

and ranges, as shown in Appendix F.

In Chapters 4-6, the track-coverage function is used to optimize the deployment

of sensor networks performing cooperative target detection. Also, in Chapter 4 the

coverage cones and their opening angles are used to derive an upper bound for the

track-coverage function, and the probability of cooperative target detection of the

network.
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3.2 Area Coverage in Omnidirectional Sensor Net-

works

A trivial increase to track coverage occurs when multiple sensors fields-of-views over-

lap, e.g., Fig. 3.8(a). However, multiple detections in the same location of the ROI

may be multiple false alarms caused by the same false target or anomalous envi-

ronmental conditions. Therefore, in order to prevent overlapping fields-of-view, two

approaches are explored in this dissertation. The first approach imposes nonlinear

state-constraints on XS by prohibiting disks that represent sensors fields-of-view from

overlapping one another. For example, the nonlinear constraint for two sensors xi

and xj ∈ XS with position vectors xi = [xi yi]
T and xj = [xj yj]

T and detection

radii ri and rj ∈ RS, is given by

c(xi(t),xj(t)) ≡ −(xi−xj)2− (yi− yj)2 + (ri + rj)
2 ≤ 0, i, j = 1, ..., n, ∀i, j, i 6= j

(3.24)

Then, for n sensors, the number of state constraints is c1 = n!
2(n−2)!

. Including this

nonlinear overlapping constraint when optimizing the track-coverage function in affect

limits the feasible track coverage solutions to the space of maximum area coverage.

●

●

● ●●
●

 

(a)

●

●

● ●●
●

 

(b)

Figure 3.8: Simple example of n = 3 sensors in A that provide (a)maximum
k-coverage but minimum area coverage, and (b) maximum k-coverage for the maxi-
mum area coverage solution.

The second approach consists of implementing an additional quality of service

performance function, referred to as area coverage [14, 15]. By including the area
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coverage term in an objective function that is to be maximized in affect penalizes

sensors whose fields-of-view intersect, thereby offsetting the trivial increase to the

k-coverage. The measure of area coverage is defined by [14] as the union of area

(units of length2) of the area representing the field-of-view of each sensor,

AC =
⋃

i=1,...,n

Ai (3.25)

where Ai is the area covered by the ith sensor. Although the author mentions that

sensors partially outside the ROI and those that overlap each other result in a de-

crease in total area coverage, these specific cases are not addressed mathematically.

Therefore, an area coverage function that measures the distinct area in A covered by

a set of n sensor is derived here.

Let Ci(xi, ri) continue to denote a disk with radius ri centered at xi that represents

the field-of-view of this sensor. The area coverage for sensors constrained entirely

within A and whose detection ranges do not overlap is simply the summation of the

area of each disk,

A0 =
n∑
i=1

H(A0,i) ·πr2
i (3.26)

where the heaviside function H( · ) ensure that sensors entirely outside of A provides

zero area coverage,

H(A0,i) =

{
0 if xi + ri < 0 | yi + ri < 0 | xi − ri > L1 | yi − ri > L2

1 otherwise
(3.27)

The three special cases that reduce (3.26) occur when the sensors fields-of-view (i)

overlap, which results in redundant area coverage, (ii) are partially inside of A, and

(iii) are entirely outside of A. Then, the total area coverage provided by a set of n

sensors is formally expressed as,

AC = A0 − As − Ap (3.28)
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where As and Ap denote the total segment areas of the disks that are overlapping or

partially outside of A, respectively. A sensor whose field-of-view is entirely outside

of A is considered by (3.27). Examples of each of these cases are depicted in Fig 3.9.

 

Figure 3.9: An example of a set of n=9 sensors deployed in A, where the sensors
overlap each other and are only partially in A.

Each component of AC in (3.28) is derived here in terms of the known variables

xi and ri. The distance between the origins of the ith and jth sensors is given by the

distance formula as,

hij =
√

(xi − xj)2 + (yi − yj)2 (3.29)

When hij < (ri + rj), the fields-of-view of these two sensors are overlapping, and

the intersection area, a circular segment, must be subtracted from the total area of

each sensor. A circular segment is the portion of a disk whose upper boundary is

a (circular) arc si and whose lower boundary is a chord ci making a central angle

θi < π radians (180◦). This is illustrated in Fig. 3.11(a) as the shaded region. A

segment of a disk As,i is calculated from a property in geometry [64] as follows,

As,ij =
1

2
r2
i (θij − sin θij) (3.30)
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where the subscript ij denotes the ith segment area due to the ith and jth sensor

overlap. An example of this is illustrated in Fig. 3.10 by the darker gray shaded

area. The reverse subscripts θji refers to the jth segment area due to this overlap,

and is also illustrated in Fig. 3.10 by the lighter gray area. Let ri be the radius of

the disk and hi the height of the triangle with sides (ri, hi,
1
2
ci). From Fig. 3.11, the

central angle θij is given by,

θij = 2 cos−1

(
hi
ri

)
(3.31)

where hi is,

hi = ri sin

(
θ′ij
2

)
(3.32)

and θ′ij is the opening angle between ri and rj for the triangle with sides (ri, rj, hij).

The opening angle θ′ij is given by the law of cosines as

cos θ′ij =
r2
i + r2

j − h2
ij

2rirj
⇔ θ′ij = cos−1

(
r2
i + r2

j − h2
ij

2rirj

)
(3.33)

Substituting (3.31)-(3.33) into (3.30), the area for the segment of the ith sensor over-

lapping the jth sensor is

As,ij = H(As,ij) ·
r2
i

2
[θij − sin θij]

= H(As,ij) ·
r2
i

2

[
2 cos−1

(
sin

(
θ′ij
2

))
− sin

(
2 cos−1

(
sin

(
θ′ij
2

)))]
(3.34)

= H(As,ij) ·
r2
i

2

[
2 cos−1

(
sin

(
1

2
cos−1

(
r2
i + r2

j + (xi − xj)2 + (yi − yj)2

2rirj

)))

− sin

(
2 cos−1

(
sin

(
1

2
cos−1

(
r2
i + r2

j + (xi − xj)2 + (yi − yj)2

2rirj

))))]
where θij is a function of the sensor positions xi and xj and ranges ri and rj, i.e.,

θij = θij(xi, ri,xj, rj). It follows that As,ij = 0 when two sensors do not overlap due
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to the heaviside function H(As,ij),

H(As,ij) =

{
0 if (ri + rj)

2 < h2
ij

1 otherwise
(3.35)

Then (3.34) is calculated for all the combination of n sensors taken two at a time,

where order does matter, which leads to the total segment area, i.e., redundant area

coverage,

As =
n∑
i=1

n∑
j=1;i 6=j

H(As,ij) ·
r2
i

2
(θij − sin θij) (3.36)

Due to symmetry of the ith and jth disks, (3.34) for As,ij and As,ji reduces to,

As,ji =
r2
j

r2
i

As,ij (3.37)

Then, (3.36) is simplified to

As = ·
n−1∑
i=1

n∑
j=2

H(As,ij) ·
r2
i

2
(θij − sin θij)

(
1 +

r2
i

r2
j

)
(3.38)

The reduction of area coverage for a sensor partially outside of A is derived

similarly to As. The main difference is the value of hi, which is now the perpendicular

distance between the sensor origin and the reference axis-of-interest,

hi = ‖xi − xr‖ =
√

(xi − xr)2 + (yi − yr)2, ∀ r ∈ IR (3.39)

where IR = {y, x, y′, x′} denotes the index set of the reference axes-of-interest, with

specific vector values of xr of the four axes, namely, xy = [xi, 0]T , xx = [0, yi]
T ,

xy′ = [L1, 0]T , and xx′ = [0, L2]T . Then, the segment area of the disk outside of A

is calculated by substituting (3.31), (3.32), and (3.39) into (3.30) for j = r, which is
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given for the ith sensor and r-axis by,

Ap,ir = H(Ap,ir) ·
r2
i

2
[θir − sin θir]

= H(Ap,ir) ·
r2
i

2

[
2 cos−1

(
(xi − xr)2 + (yi − yr)2

ri

)

− sin

(
2 cos−1

(
(xi − xr)2 + (yi − yr)2

ri

))]
(3.40)

It is important to note that when a sensor does not overlap a primary axis, Ap,ir = 0

due to the heaviside function H(Ap,ir),

H(Ap,i) =


0 if − ri < xi < ri | − ri < yi < ri | L1 − ri < xi < L1 + ri

| L2 − ri < xi < L2 + ri
1 otherwise

(3.41)

Then, for all n sensors and four axes, the segmented are outside of A is given by,

Ap =
n∑
i=1

∑
∀r∈IR

H(Ap,ir) ·
r2
i

2
(θir − sin θir) (3.42)

where θir = θir(xi, ri,xr).

The total area coverage for a network of n sensors area coverage is calculated by

substituting (3.26), (3.38), and (3.42) into (3.28). It has been shown here that AC

is a function of the sensors positions XS and ranges RS for a specific ROI. However,

the maximum area coverage, where every point in A is encompassed within at least

one sensor field-of-view, has an upper bound,

Amax
C = L1 ·L2 (3.43)

that is independent of k and n. In Chapter 6, the track-coverage function is used to

optimize the deployment of sensor networks performing cooperative target detection
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subject to the strict constraint of maximum area coverage (3.44). Then, in Chapter

5, the objective function is a weighted sum of the track coverage (3.23) and the area

coverage (3.28) functions.
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Figure 3.10: Geometry and notation of two overlapping sensors. The darker area
represents As,i while the lighter area represents As,j.
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Figure 3.11: The geometry of (a) the segment of the ith sensor, and (b) the triangle
with sides (ri, rj, hij).

3.3 Vehicle Energy Consumption

In some applications, when the sensors are each attached to a controllable platform,

such as an underwater glider, control is applied in order to maneuver the group of

gliders along desired trajectories. The use of energy-optimal trajectories can extend
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the period of operation for autonomous underwater vehicles with limited energy re-

sources by reducing the energy consumption. By including an energy term into the

objective function, the system more effectively exploits the natural dynamics for ve-

hicle transport, which has been used in a number of research areas, such as space

mission designs for space mission design and low energy orbits [65].

Consider the energy source driving a network of underwater gliders. Let u(t) ∈ Rq

be the velocity of the n underwater gliders due to the control. As the velocity

of the gliders are directly proportional to the energy, minimizing energy consumed

by the group of gliders over a period of time is viewed as minimum-control-effort

problem [66]. Then, the minimum expenditure of control effort is sought to transfer

a system from an arbitrary initial state x(t0) = [xT1 (t0), ...x
T
n (t0)]

T ∈ R2n to final state

x(tf ) = [xT1 (tf ), ...x
T
n (tf )]

T ∈ R2n along a trajectory (or path) x(t). Then, the general

form of the performance measure for energy expenditure along an entire trajectory

x(t) is,

JE =

tf∫
t0

[
uT (t)Ru(t)

]
dt (3.44)

=

tf∫
t0

‖u(t)‖2Rdt (3.45)

where R ∈ Rq×q is a real symmetric positive definite (i.e., zTRz > 0∀z 6= 0 [66])

weighting matrix representing the relative importance of the energy of different sen-

sors. The elements of R may be functions of time if it is desired to vary the weights

on control-effort expenditure during the time-interval [t0, tf ]. Typically, R is equal

to the identity matrix I as this provides equal weight to all sensors over the entire

trajectory.
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3.4 Chapter Summary

This chapter formulates the quality of service measures to be used throughout this

dissertation. Section 3.1 presents a novel track coverage formulation addressing the

quality of service of sensor networks performing cooperative target detection. In many

surveillance applications, simple (e.g., proximity) sensor networks are employed to de-

tect passive unauthorized targets, such as aircraft and submarines, that may traverse

a region of interest along a straight path. When sensor measurements are limited

and subject to false alarms a track-before-detect approach is employed to form a fea-

sible track before the target is positively detected. Thus, multiple and distinct sensor

detections must be obtained from each target in what is referred to as cooperative

detection. This section focuses on the geometric properties of these networks and for-

mulates the problem of cooperative sensors detection of moving targets through the

theory of geometric transversals. The network coverage is approached using a novel

methodology based on the theory of cones. This methodology allows to represent sets

of geometric transversals in closed-form, and to assign a Lebesgue measure that is

a function of the sensors positions. Then, in Section 3.2, an area coverage function,

which is commonly implemented in the coverage literature, is formally formulated

to measure the amount of distinct area covered by the sensors field-of-view. This

measure is necessary when sensors are employed in a moving environment, such as

the ocean, in order to compensate the trivial solution to the track-coverage function

(Chapter 5). The final performance function formulated in Section 3.3 measures the

total energy consumption of a sensor network due to onboard control. When sensors

are deployed on a controllable platform, such as an underwater glider (Chapter 6),

limited energy resources and the affects of energy on the performance of each sensor

provide the motivation for including the energy consumption term to be minimized.

42



Chapter 4

Track Coverage Optimization and

Probability of Detection

The quality of service objective functions derived in Chapter 3.1 are implemented

accordingly to address the following problem:

Problem 4.0.1 (Track Coverage Optimization) Given a parameter 1 ≤ k ≤ n

and a network S of n omnidirectional sensors with ranges RS = {r1, . . . , rn}, find

the sensor positions XS = {x1, . . . ,xn} inside a region-of-interest A such that the

amount of tracks detected by at least k sensors in S is maximized.

Using the track-coverage function obtained in Section 3.1.2, Problem 4.0.1 can be

formulated as a nonlinear program (NLP). In order to obtain distinct sensor detec-

tions in the ROI, the sensors positions are constrained to lie in A and to prevent

overlapping. Then, the set of optimal sensor positions X∗S is given by the solution

{x∗1, . . . ,x∗n} of the following NLP:

maximize T kA (XS, RS), (4.1)

subject to (xi − xj)2 + (yi − yj)2 > (ri + rj)
2, ∀i, j ∈ IS (4.2)

0 < xi < L1, ∀i ∈ IS (4.3)

0 < yi < L2, ∀i ∈ IS (4.4)

where x∗i = [x∗i y∗i ]
T , and the objective function T kA (XS, RS) is given by (3.23). Also,

the NLP (4.1)-(4.4) can be easily modified to add sensors optimally to an existing

network. In fact, suppose f sensors already exist in A, and there is an opportunity

for replenishing the network with q additional sensors. The NLP (4.1)-(4.4) can
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be written for a network S = {C1, . . . , Cf , Cf+1, . . . , Cn} with n = q + f sensors,

where now {s1, . . . , sf} are known constants, and {xf+1, . . . ,xn} are the variables.

Then, its solution {x∗f+1, . . . ,x
∗
n} represents the set of sensor positions for optimally

replenishing the network.

It is shown in Appendix G that the track-coverage function (3.23) has an upper

bound,

T max
A =

(
L1 + L2

δb
+ 2

)
π ≥ T kA (XS, RS), for ∀ XS, k, n (4.5)

that is independent of k and n. This upper bound represents the track coverage

provided by a sensor network that detects all tracks through A at least k times,

where A is L1×L2. Therefore, it is referred to as total track coverage. In large sensor

networks total track coverage may be achieved by concentric configurations placed

around the perimeter of A. However, in many applications the available sensors are

not sufficient to provide total track coverage and T kA can be maximized by determining

the optimal placement X∗S with known ranges RS from (4.1)-(4.4).

The coverage cone representation of track coverage is also used to derive the

probability of detection of targets in A as a function of XS and RS. In applications

where there is no prior knowledge of target tracks any ray Rα(by) has the same

probability of representing an actual target track. Then, the probability that a target

traversing A along a straight path is detected by at least k sensors in S is,

PrkA(XS, RS) =
δb

2π(L2 + δb)

N2∑
`=0

m∑
j=1

(−1)j+1
∑

1≤i1<...<ij≤m

[ψ(S i1,j
p , y`0) + ξ(S i1,j

p , y′`0 )] +

+
δb

2π(L1 + δb)

N1∑
`=0

m∑
j=1

(−1)j+1
∑

1≤i1<...<ij≤m

[ζ(S i1,j
p , x`0) + ρ(S i1,j

p , x′`0 )](4.6)
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where m, S
i1,j
p , and the j-tuples (i1, . . . , ij) are defined as in Theorem 3.1.3. A proof

is provided in Appendix H. As in the previous sections, the opening angles ψ, ξ,

ζ, and ρ are given by the functions in Appendix F, and are computed for every

coverage cone of the p-subsets in (4.6), with k ≤ p ≤ n. The derivation in Appendix

H can be modified to account for non-uniform probabilities of the tracks’ heading

and intercept. Due to space limitations, this topic will be the subject of a separate

dissertation.

4.1 Static Optimization of the Track Coverage Func-

tion

The methodology developed in the previous sections is implemented to optimize track

coverage with respect to the sensors positions. We show that a number of sensor

deployment problems can be formulated as an NLP optimizing the track coverage

function (3.23). In every case, the NLP solution, X∗S, is determined by the sequential

quadratic programming (SQP) algorithm [67, 68]. Multiple random initializations

are utilized to avoid local maxima. In Section 4.1.1, the track coverage provided

by networks deployed using the SQP algorithm is compared to that obtained by

random and grid deployment strategies, which have been proposed by several authors,

including [9] and [69]. The SQP algorithm is shown to improve track coverage by

up to two orders of magnitude, compared to the former techniques. Also, a fast

and efficient greedy algorithm implementing the coverage function (3.23) is shown to

produce deployment strategies that are considerably more effective than random or

grid deployment. In Section 4.1.2, the NLP solution is used to deploy sensors until

a desired detection performance is achieved. The results show that this approach

employs significantly smaller networks (e.g., with 50% fewer sensors) than the path-

exposure deployment strategy proposed in [70]. In Section 4.1.3, the NLP is modified
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as explained in Section 4 in order to optimally replenish an existing sensor network.

These results show that when a network is replenished by SQP the resulting track

coverage is almost doubled compared to random or grid strategies.

Using on-board thrustors and GPS systems, even simple disposable sensors can be

accurately positioned and replenished to maintain satisfactory surveillance. In some

cases, these sensors can even reposition themselves once or twice during their lifetime

and, consequently, the network performance can be significantly improved by using

the methodology developed in this dissertation. In Section 4.1.4, an NLP is used to

optimally reposition sensor networks with maneuvering capabilities. By repositioning

each sensor within a region dictated by its power and energy limitations, it is possible

to improve the track coverage of a sensor network by up to 69.4%.

Table 4.1: Sensor networks size and range

n RS (Km)

10 { 3, 3, 5, 5, 6, 6, 8, 8, 10, 10 }
15 { 3, 3, 3, 5, 5, 5, 6, 6, 6, 8, 8, 8, 10, 10, 10 }
20 { 3, 3, 3, 3, 5, 5, 5, 5, 6, 6, 6, 6, 8, 8, 8, 8, 10, 10, 10, 10}
40 { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5,...

5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 8, 8}

4.1.1 Formulation of the Track Coverage Optimization Prob-

lem

The effectiveness of deploying sensors using the solution of the track coverage opti-

mization problem (Problem 4.0.1) is demonstrated for the sensor networks in Table

6.1. The number of required detections, k, is made to vary between 2 and 4, and

the dimensions of A are L1 × L2 = 150 × 100 (Km). In Table 4.2, the track cover-

age of sensors placed at the SQP solution X∗S of the NLP (4.1)-(4.4) is compared to

that obtained by random and grid deployments. In this table, the coverage function
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T kA (XS) is normalized by T max
A , such that track coverage can be compared for dif-

ferent sensor networks and parameters . These results show that sensors placed at

the SQP solution achieve significantly higher track coverage than the grid and ran-

dom deployments, which have been previously proposed in the literature for placing

sensors for cooperative target detection (e.g., see [9, 69]). In fact, the same network

deployed via SQP can provide a track coverage up to 10 or 15 times higher than the

coverage provided by random or grid deployments (Table 4.2, n = 15 and k = 3).

Table 4.2: Normalized track coverage as a function of network parameters and
deployment strategy

Network T k
A(XS)/T max

A (SQP Improvement %)

Parameters

n, k SQP Random Grid Greedy

10,2 0.304 0.169 (79.9%) 0.158 (92.4%) 0.300 (1.33%)

10,3 0.158 0.033 (379%) 0.0392 (303%) 0.151 (4.64%)

10,4 0.0700 3.00× 10−3 4.90× 10−4 0.0680 (2.94%)

(2.23× 103%) (1.42× 104%) 0.0680 (2.94%)

15,3 0.286 0.0764 (274%) 0.0912 (214%) 0.250 (14.4%)

15,4 0.172 0.0179 (861%) 0.0117 (1.37× 103%) 0.149 (15.4%)

20,3 0.364 0.183 (98.9%) 0.169 (115%) 0.325 (12.0%)

40,3 0.578 0.440 (31.4%) 0.450 (28.4%) 0.471 (22.7%)

40,4 0.423 0.202 (109%) 0.226 (87.2%) 0.354 (19.5%)

Also, a fast and effective greedy algorithm has been obtained by implementing

the track coverage function in a packing algorithm proposed in [17], as shown in

Algorithm 1. The original algorithm consists of packing unequal disks in a rectangle

by placing them one at a time based on heuristic criteria and on their maximum hole

degree performance [17]. The heuristic criteria are that the first disk is placed in the

bottom-left corner of A, and each subsequent disk must border two items (one side

of A, or another disk) and avoid overlapping. It is found that by implementing the

coverage function (3.23) in lieu of the maximum hole degree performance function
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[17], the resulting deployment is considerably more effective than the grid and random

deployments. In fact, the track coverage of sensor networks deployed by the greedy

algorithm lies within 1.3-22.7% of the optimal track coverage T kA (X∗S) (Table 4.2).

Therefore, the greedy algorithm may be used in lieu of SQP when computation time

is a concern.

Algorithm 1 Pseudocode of greedy track coverage algorithm.

order n sensors in S according to decreasing radii;
place first sensor in bottom-left corner of A;
for i = 2 to n do

generate all eligible positions for sensor Ci;
Require: Ci touches two items;
for (every eligible placement of Ci) do

calculate the coverage T kA ({x1, ...,xi−1,xi});
end for
select eligible placement xi with maximum track-coverage;

end for

The SQP and greedy sensor deployments are plotted in Fig. 4.1 for n = 40

and k = 3, and can be compared to the grid and random deployments plotted in

Fig. 4.2. The greedy algorithm tends to cluster sensors providing near-optimal track

coverage when area coverage is low, but may cause track-coverage holes for small k,

as shown in Fig. 4.1(b). This behavior could be prevented by optimizing a tradeoff

between T kA and T 1
A . The track coverage Kk(S,A) in (3.12) is plotted over parameter

space in Fig. 4.3 for the SQP and grid deployments of a network with n = 40 and

k = 4. Although the two sensor networks perform detections in similar regions of

parameter space, the SQP deployment displays far less coverage holes leading to an

87.2% increase in track coverage (Table 4.2).
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 SQP (optimal) sensor deployment for n=40 and k=3 
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Figure 4.1: Deployment of a sensor network with n = 40 and k = 3 obtained by the
SQP solution (�) in (a), and by the greedy algorithm (◦) in (b).

4.1.2 Application to Sensor Deployment for Achieving a De-

sired Detection Performance

The problem of deploying sensors for cooperatively detecting targets that traverse

a region of interest has been previously considered in [70]. In this work, a sequen-

tial deployment algorithm was developed to achieve a desired detection performance

by using a minimal number of sensors. In this section, we implement the same de-

ployment strategy as [70] and show that, by deploying the sensors using the SQP
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Figure 4.2: (a) Grid and (b) random deployments for a sensor network with n = 40
and k = 3.

solution of the NLP (4.1)-(4.4), the number of sensors n̂ that is required to achieve

a desired probability of detection P̂ k
A can be decreased by up to 50%. In the first

example, all sensors have the same range ri = 5 Km, and the desired probability of

detection is P̂ 3
A = 0.41. When the sensor network is deployed using the sequential

algorithm from [70], as shown in Fig. 4.4(a), the minimal number of sensors required

is n̂SEQ = 40. Instead, when the sensor network is deployed using the SQP solution,

the number of sensors required is only n̂SQP = 30 (Fig. 4.4(b)). In the second ex-

ample, the desired probability of detection is P̂ 3
A = 0.18, and the size of the network
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Figure 4.3: Track coverage Kk(S,A) of a sensor network with n = 40 and k = 4,
deployed by (a) SQP and (b) grid strategies.

is increased according to the sensor networks (ranges) in Table 6.1. In this case,

the sequential deployment algorithm from [70] requires a minimum of n̂SEQ = 20 to

achieve the desired probability of detection. Whereas, the SQP deployment achieves

the desired detection performance with only n̂SQP = 10 sensors (i.e., 50% less than

the sequential algorithm).
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Sequential sensor deployment for =0.41 3P̂A
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Figure 4.4: Sequential deployment of n = 40 sensors in (a) and optimal deployment
of n = 30 sensors in (b), all with range ri = 5 Km.

4.1.3 Application to Optimal Replenishment of Sensor Net-

works

In some applications, sensors cannot all be placed at desired locations or may be

displaced over time. In this section, the NLP (4.1)-(4.4) is used to deploy a set of

sensors for the purpose of replenishing an existing network that has suboptimal track

coverage performance. It is assumed that the positions of f existing sensors in A

are known, but the sensors have no repositioning capabilities. Therefore, the track

coverage of the network is to be improved by adding an additional set of q sensors.
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Consider an example with parameters f = 10, q = 10, and k = 3. The existing sensor

network is shown by dots in Fig. 4.5(a), and provides a normalized track coverage

T kA/T max
A = 0.033. The new set of q = 10 sensors is added at the optimal solution

X∗S of the NLP (4.1)-(4.4), as shown by the diamonds in Fig. 4.5(a). By replenishing

the sensor network using this optimal deployment strategy, the track coverage of the

entire network (with n = q + f sensors) is improved by 715.2%. Whereas, when

the q sensors are added using a random sequential strategy (adapted from [70]), the

track coverage is improved by only 35.9%. In another example, the existing sensor

network is in a grid configuration, as shown by dots in Fig. 4.5(b), and provides

T kA/T max
A = 0.039. When an additional q = 10 sensors are deployed by the SQP

algorithm (as shown by diamonds in Fig. 4.5(b)), the track coverage is improved by

635.9%. Whereas, the same set of sensors deployed by a random sequential strategy

improves the track coverage by only 47.2%. Thus, by replenishing a sensor network

with the methodology presented in this dissertation, its track coverage is improved

significantly compared to existing deployment schemes.

4.1.4 Application to Optimal Repositioning of Sensor Net-

works

In applications where sensors are maneuverable (e.g., sensors are equipped with

thrusters) an optimal deployment strategy can be obtained by including the allowed

repositioning region in the NLP constraints. Without loss of generality, assume that

all sensors have the same repositioning capabilities, and let w denote half the width

of a square region within which each sensor can maneuver with the thrusters and

power available, as shown in Fig. 4.6(a). Then, the NLP (4.1)-(4.4) is modified by

replacing the constraints (4.3)-(4.4) with the following equations
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Optimally replenished sensor network with f=10, q=10, and k=3 
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Figure 4.5: Optimal replenishment of an existing sensor network with f = 10
sensors (•) in a (a) random or (b) grid configuration, with q = 10 replenished sensors
symbolized by diamonds (�).

xi − w < xi < xi + w, ∀i ∈ IS (4.7)

xi − w > 0, ∀i ∈ IS (4.8)

xi + w < L1, ∀i ∈ IS (4.9)

yi − w < yi < yi + w, ∀i ∈ IS (4.10)

yi − w > 0, ∀i ∈ IS (4.11)

yi + w < L2, ∀i ∈ IS (4.12)
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The SQP solution X∗S of the resulting NLP constitutes the new positions to be

assumed by the maneuvering sensors in order to improve the overall track coverage

of the sensor network. Consider the sensor network in Fig. 4.6(a), with suboptimal

track coverage T kA/T max
A = 0.44, n = 40, k = 3, and w = 24 Km. When these

sensors are repositioned using the SQP solution, as shown by the diamonds in Fig.

4.6(b), the track coverage of the network is improved by 27.7%. As another example,

consider the sensor network illustrated in Section 3.1.1, Fig. 3.5(a), with suboptimal

track coverage T kA/T max
A = 0.183, n = 20, k = 3, and w = 24 Km. When these

sensors are repositioned using the SQP solution, the track coverage is improved by

69.4%. Thus, the methodology presented in this dissertation can be used to improve

the track coverage of a sensor network by allowing existing sensors in A to maneuver

subject to power and energy constraints.

4.2 Chapter Summary

The novel track coverage formulation in Section 3.1 is optimized using a nonlinear

program (NLP). The numerical results show that optimal deployment can increase

track coverage by up to two orders of magnitude compared to existing grid and

random deployment schemes. This methodology can decrease the number of sensors

required to provide a desired probability of detection by up to 50% compared to

existing path-exposure techniques. Also, it can significantly improve track coverage

by replenishing or repositioning an existing sensor network that displays suboptimal

performance due to errors in its initial placement or to sensors being displaced over

time by winds or oceanic currents.

55



Suboptimal sensor network with n=40 and w=24 Km 
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Figure 4.6: A suboptimal sensor network (a) in which every sensor has the capability
of maneuvering within a region of width 2w (dashed line) is optimally repositioned
using SQP in (b).
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Chapter 5

Optimal Deployment of Acoustic Sensor

Networks in an Oceanic Environment

In Chapter 3 (Section 3.1), the track coverage function is formulated with respect to

the ranges RS and fixed locations XS of the sensors within A. Since many distributed

sensors are not naturally stationary within their environment (e.g., sensors distributed

in the ocean), track coverage must be formulated to address moving sensor networks.

It has long been recognized in practice that a moving sensor network, such as one

comprised of sonar buoys drifting due to the oceanic current, can have a detrimental

impact on the effectiveness of a distributed sensor network for maintaining surveilling

coverage of an ROI. A drifting sensor network typically develops significant track-

coverage holes over time. A coverage hole is defined as a region in parameter space

where tracks are not detected by at least k sensors. Another undesirable outcome

is the increased redundant coverage, which takes place when more than k sensors

detect the same set of tracks. If the sensors have no control inputs, e.g., they are non-

maneuverable free-floating sensors, the trajectories that maximize the overall sensor

network performance over a period of time are in terms of the initial conditions that

represent the initial location of the sensors. The drift dynamics induced by an oceanic

environment are accounted for by utilizing oceanographic models and measurements

of the ocean current, which produce a known forcing vector field in the buoy equations

of motion [4]. Then, both a finite measure of the cumulative coverage provided by

a sensor network and the drift dynamics of the environment must be accounted for

in order to optimize the dynamic sensor network configuration. The track coverage

function optimization problem stated in Problem 4.0.1 is reformulated in this chapter
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to include drift dynamics and measure the track coverage of a sensor network over a

fixed period of time.

A typical free-floating sensor network is comprised of sonobuoys that are deployed

from an aircraft in canisters (Fig. 5.1(a)). Then, upon impact of the water an in-

flatable float with a radio transmitter remains on the surface for communication,

while the passive acoustic sensor and stabilizing equipment descends to a (preset)

depth. The schematic of a sonobuoy example AN/WSQ-6 is shown in Fig. 5.1(b).

To minimize the impact that the currents have on the performance of the sonobuoy

system, the current vector field is modeled and accounted for by the track-coverage

function optimization. One popular approach to measuring oceanic currents, referred

to as the Lagrangian approach, employs a buoy known as a drifter that rides at the

ocean surface. Tracking this drifter (by satellite, radar, radio, sound [71–76]) then

provides a description of the ocean current. Other methods for obtaining current

measurements include radar-based measurements, such as Coastal Ocean Dynam-

ics Applications Radar (CODAR) [77], and satellites [5]. In view of these recent

technological developments, a methodology is developed here for optimally placing

a set of proximity sensors whose dynamics are formulated in terms of the surface

current-velocities specified by a known vector field.

In this chapter, a novel sensor deployment problem is presented with the objective

of providing maximum track coverage of a rectangular region of interest over time

by means of moving sensors. The approach developed in this chapter leads to a new

problem in dynamic computational geometry pertaining the geometric transversals

of moving families of objects. It is shown that a state-space representation of the

motions of the individual sensors subject to the current vector field can be derived

from sonobuoys oceanic drift models. Also, the heterogenous environmental condi-

tions, such as bathymetry, surface temporal variability, and bottom properties, are
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(a)
 

(b)

Figure 5.1: (a) Aircraft deployment of a sonobuoy, and (b) the schematic of the
AN/WSQ-6 taken from [4].

known in practice to influence the field-of-view of an acoustic sensor with respect to

its position within A (Section 5.1.2). In addition to the environmental effects on the

sensor range, a sensor network is subject to random disturbances, such as unforseen

and uncontrollable variations in both the sensor location and field-of-view. The un-

certainties surrounding sensor movement and positioning in the ocean include actual

currents, severe weather, and accuracy of initial deployment, due to heterogenous en-

vironmental conditions. Both the uncertainty and position-dependent sensor range

affect the overall track coverage provided by the sensor network. Therefore, the nom-

inal (i.e., ideal) solution to the optimal initial positions for maximum track coverage

over a fixed period of time, which accounts for both the oceanic current-velocities

and the position-dependent sensor ranges, is tested for robustness by incorporating

uncertainty into the system.

Thus the sensor network research for optimal track coverage investigated here seeks to

extend the optimization of the track coverage function to the case of a moving sensor

field, i.e., sensors moving according to oceanic drift, the case of position-dependent
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sensor range as due to heterogenous environmental conditions, and finally to the case

of random disturbances and partially-unknown state, as due to changes in the ocean

current and range model.

5.1 Methodology

5.1.1 Sonobuoy Equations of Motion

The ocean-current velocity profile induced by an oceanic environment is acquired by

oceanographic models [4], satellite [5], or by Coastal Ocean Dynamics Applications

Radar (CODAR) [77]. Surface currents can be measured through oceanographic

models from past measurements acquired from previously deployed sonobuoys in the

ocean, as explained in [4]. The measurement of surface currents by CODAR, a high

frequency radar system, employs a transmitter that sends out radio waves that scatter

off the ocean surface and then return to a receiver antenna. Using this information

and the principles of the Doppler shift, CODAR is able to calculate the speed and

direction of the surface current.

Another method for obtaining the ocean surface current vector components uti-

lizes state-of-the-art satellite technology. Currently, the most efficient way of deriving

the surface currents consists of performing feature tracking, which overlaps multiple

synthetic aperture radar (SAR) images taken from different satellites over a short

period of time [5]. SAR is a side-looking imaging radar that transmits a series of

short, coherent pulses to the ground. Then, the high-resolution image is produced

by detecting small Doppler shifts to the moving radar. The image-collecting sensors

on each satellite have very different dynamic ranges of data, and filtered data with

the same dynamic range are essential for feature tracking. The SAR data obtained

from different satellites is matched by means of a 2-dimensional band-pass data filter
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that is localized in both frequency and time, and employs wavelet transforms [5]. For

example, Figure 5.2(a) taken from [5], shows the ocean surface drift (green arrows)

derived from the wavelet analysis of two satellites’ SAR data over the Luzon Strait

near the Philippines (Figure 5.2(b)).

(a) (b)

Figure 5.2: (a) Ocean surface drift (green arrows) derived from two satellites’ SAR
data over the Luzon Strait, and (b) the location map with the SAR image coverage
area shown in the large box taken from [5].

Once a current vector field has been obtained by one of the above methods,

it can be employed in buoy equations of motion that have been validated through

experiments in the ocean, and are taken from [4]. The sonobuoy response to a 3-

dimensional current profile is represented by a two orthogonal planar current profile

characterized by the drag equation

fd =
1

2
ρCdAV

2 (5.1)

where ρ is the fluid density, Cd is the object’s coefficient of drag, and A is the object’s

cross-sectional area, all of which are assumed to be constant. fd is the total drag on

a sphere obtained from the steady-state solution to Stokes’ problem along the local

current velocity vector. V , the magnitude of the fluid relative velocity vector past the
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object, which is a function of both position and time but is excluded in the notation

for simplicity, has the following upper and lower sonobuoy components (denoted by

subscripts u and `, respectively and illustrated in Fig. 5.3(a)),

∆vu ≡ uu − υ (5.2)

∆v` ≡ υ − u`, (5.3)

assuming that the velocity profile in the vertical direction can be approximated as

shown in Figure 5.3(b). Each velocity vector can be described in the plane as ∆vi =

[∆vxi
∆vyi

]T , the water velocity components ui = [uxi
uyi

]T , and the sonobuoy

velocity components υ = [vx vy]
T .

uu

ul
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 fu

 fl
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υ

 (a)

 
  y  

 υ 

 sensor 
υy

 υx

   x 
(b)

Figure 5.3: (a) The upper and lower components of a sonobuoy in which a force
balance of fu = f` is applied, (5.5)-(5.6), and (b) is the view from above.

In order to describe the sononbuoy velocity by a differential equation,

ẋ = υ(x, y, t), (5.4)

a force balance is applied to the upper and lower spheres that approximate the

sonobuoy, as shown in Figure 5.3. It follows that the equations in the x− and

y−directions are:

CduAu(∆vxu)2 = Cd`
A`(∆vx`

)2 (5.5)

CduAu(∆vyu)2 = Cd`
A`(∆vy`

)2. (5.6)
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Introducing the constant β =
√

(Cd`
A`)/(CduAu), the relative velocities can be writ-

ten as ∆vxu = β∆vx`
and ∆vyu = β∆vy`

. Then, the velocity of the buoy in (5.2)-(5.3)

is,

υ =

[
uxu+βux`

1+β
uyu+βuy`

1+β

]
(5.7)

Now, let ux`
= αxuxu and uy`

= αyuyu , and for simplicity assume that αx = αy = α,

with 0 ≤ α ≤ 1. Then (5.7) can be written as,

υ =

 (1+βα
1+β

)
uxu(

1+βα
1+β

)
uyu

 = γ

[
uxu

uyu

]
, (5.8)

with the scalar γ ≡ (1 + βα)/(1 + β) ≤ 1. Then, it follows that by assuming the

buoys move with the surface current, i.e., ∆vi = 0 , the buoy equation of motion

(5.4) in terms of the nonlinear, time-varying (NLTV) currents at the ith sonobuoy

location is written in terms of the ith sensor location,

ẋ(t) = υ(xi(t), t) = [υx(xi(t), t) υy(xi(t), t)]
T (5.9)

where xi = [xi yi]
T , and the ocean current velocity vector for the entire sensor

network is denoted as υ = [υT1 ... υTn ]T . Then the unforced (i.e., no control) system

dynamics (5.10) is written in terms of the entire sensor network as

ẋ(t) = υ(x(t), t), ẋ ∈ R2n (5.10)

Modeling of the Nonlinear, Time-Varying Oceanic Currents

In practice, the ocean-induced current velocity represented by (5.10) is a nonlinear,

time-varying function. The current velocity profile υ(x, y, t) can be obtained by the

methods discussed in Section 5.1.1, specifically Coastal Ocean Dynamics Applications

Radar (CODAR) [77], which is the method used here. CODAR data was obtained
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from COOL [77] at Rutgers University in tabular form, which describes the current

velocity profile off the coast of NJ (shown in Fig. 5.6(a)) for the coordinates over

several days. Examples of the measured current-velocities are illustrated in Fig. 5.4,

which clearly shows the currents in the x− and y−direction are in fact nonlinear.

Then, by comparing υx and υy in Figs. 5.4(a)-5.4(b), respectively, to the currents

taken approximately two days later illustrated in Figs. 5.4(c)-5.4(d) over the same

ROI, the time-varying behavior of the currents is also illustrated.
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Current velocity measured in the x-direction on February 3, 2007 (0200 GMT) 
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Figure 5.4: Current velocity measured by CODAR in the (a) x-direction on February
1, 2007 (0300 GMT), (b) y-direction on February 1, 2007 (0300 GMT), (c) x-direction
on February 3, 2007 (0200 GMT), (d) y-direction on February 3, 2007 (0200 GMT).

The true underlying functional that describes the spatial and temporal character-

istics of the current velocity field is unknown for a large area of the ocean. Without

making prior assumptions on its functional form, the current velocity profile data is
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approximated by means of a nonlinear neural network. The CODAR training data

consists of a set of input/output samples T = {ya, za}a=1,...,p such that za = υ(ya)

from (5.10), where ya = [x(t), y(t), t]T and za = [υx, υy]
T . The ranges of T are listed

in Table 6.1. A two-layer feedforward neural network is created and illustrated in

Fig. 5.5 for a three-element input vector y(t), s hidden neurons from the hyperbolic

tangent sigmoid transfer function,

h(y(t)) =
1

1 + e−(w1 · (y)T +b1)
(5.11)

and two linear output neurons,

υ(y(t)) = w2 ·h(y(t)) + b2 (5.12)

where (5.12) is the approximated NLTV ocean current in (5.10). The NN input

and output weights w1 ∈ Rs×3 and w2 ∈ R2×s, and input and output biases b1 ∈

Rs×1 and b2 ∈ R2×1, are obtained through supervised learning in batch mode from

the CODAR data. The automated regularization training algorithm (‘trainbr’ [78])

updates the weight and bias values according to Levenberg-Marquardt optimization

through Bayesian Regularization [79, 80]. This training algorithm is used here as it

is known to generalize well for function approximation problems with possibly that

may contain noisy data. The effectiveness of the NN approximator in (5.11)-(5.12) for

s = 100 hidden nodes is verified through the following simulations. The trajectories of

three gliders with zero on-board control are randomly placed in the region of interest

in the ocean with measured CODAR information. As shown in Fig. 5.6, the gliders’

trajectories simulated over a period of 5-days confirm that the approximator provides

a satisfactory closed-form representation for the real CODAR measurements.
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Figure 5.5: Neural network architecture with the elements of the input and output
weighting matrices, w1 and w2, denoted by wi(j, `) for i=1,2 and j, ` are the matrix
indices.
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Figure 5.6: NLTV velocity field off the coast of NJ with coordinates (−74.1◦,−72.7◦)
longitude and (38.6◦, 39.5◦) latitude is measured by CODAR and approximated by
the NN. The approximation is validated through simulation for three sonar buoys
deployed in A (a), where (b)-(d) depict the zoomed in trajectory comparisons.
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Table 5.1: Range of the NN input/output samples obtained from CODAR measure-
ments
Variable Range

x −74.6◦ − − 72.54◦ longitude

y 38.6◦ − 39.5◦ latitude

υx −1.93 Km/hr − 2.41 Km/hr

υy −2.37 Km/hr − 1.81 Km/hr

t 0 − 120 hours, Feb. 1, 2007 (0000 GMT) - Feb. 5, 2007 (2300 GMT)

5.1.2 Environmental Effects on the Acoustic Sensor Range

While an acoustic sensor field-of-view placed in the ocean can be approximated by a

disk, the radius (range) is known to depend upon the local environmental conditions

surrounding the sensors, because they affect the sound propagation process [81]. The

acoustic effects from the sea surface act as a near-perfect reflector scattering much

of the sound energy due to its temporal variability. The ocean bottom also has high

variability acoustic properties that range from perfectly reflective to almost total

attenuation, with sea floor roughness accounting for significant scattering. Thus,

an improved strategy for sensor deployment would account for the sensors range

dependency upon the environmental conditions, which may vary considerably within

A.

The sensor field-of-view is now approximated by a disk centered at the sensors

origin whose range is no longer a constant but is a function of the local environmental

conditions influencing the sensor measurements, i.e.:

ri = r(xi(t)) ≡ re(xi(t)) (5.13)

A BN approach has been developed in [1] to determine (5.13) within A for the

variables listed in Table 5.2. BNs organize the body of knowledge for a given system

by mapping deterministic relationships among all relevant variables. They can be
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used to estimate unknown variables (in this case, the range) and make predictions

by combining probabilistic data with heuristic arguments. A BN model of acoustic-

wave propagation is trained using the range-dependent acoustic model (RAM) [82,83],

where the resulting BN structure learned from the RAM data is illustrated in Fig.

5.7(a).

The BN model can be combined with the sonar equation [81] to obtain the function

describing maximum range of the sensor field-of-view, re(xi), due to the environmen-

tal conditions with reasonable accuracy [1]. This function describes the maximum

distance between the target and the sensor that may lead to a positive CPA detec-

tion by a sensor located at xi. The target strength, TS, and the detection threshold,

denoted as ϑ or in sonar literature as DT , are known quantities given by the target

of interest and sensor characteristics, and are assumed to be location invariant. The

noise level, NL, over a ROI is assumed to have a Gaussian distribution with range

interval [66, 78] dB, and is estimated using the ambient-noise spectra [81] for the

ship-traffic in the ROI. Then, using the passive sonar equation,

SL+DIs − PL− (NL−DI) = DT (5.14)

the maximum value of PL leading to a detection that surpasses the threshold DT

can be determined for a sensor with known directivity index, DI, and target-source

directivity, DIs. Subsequently, the maximum value of PL and any known envi-

ronmental conditions near xi(t) are provided as evidence, denoted by the set e =

{Z, SF,BD, V, F, PL}, to the BN model in Fig. 5.7(a). The probability that the

range assumes any one of its possible values is given by Bayes’ Rule [84,85],

Pr(R|e) =
Pr(e|R)Pr(R)

Pr(e)
(5.15)

Then, the sensor range re(xi(t)) is estimated according to the highest probability of

its probability distribution Pr(R|e), such as, re(xi(t)) = argmax Pr(R|e) [1]. The
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estimated range of the sensor field-of-view re(xi(t)) computed by this method for the

same A used in Fig. 5.6(a) is plotted in Fig. 5.7(b), with respect to the latitude and

longitude coordinates. It can be seen that the sensor performance varies significantly

with respect to the sensor location as a consequence of the environmental conditions.

Table 5.2: List of variables of BN acoustic model from [1], where an instantiation
refers to the value taken by the variable.

Variable
Type

Variable (units) Number of Instantiations:
[Interval]

Target
Range, R (m) depends on application, e.g.,

40: [100:100:4000]
Position Depth, Z (m) depends on application, e.g.,

10: [50:50:500]

Sea Floor, SF 3: flat, uphill, downhill, up
and down

Environment Bottom Density, BD (g/cc) 10: [1.5:0.1:2.4]

Bottom Sound Speed, V (m/s) 10: quadratic experiential
function of BD

Source
Parameters

Source Frequency, SF (Hz) depends on source character-
istics, e.g., 20: [10:10:200]

Output Propagation Loss, PL (dB) depends on discretization
method, e.g., 10-20 instantia-
tions (see [1])

5.1.3 Optimization of Cumulative Track Coverage Over a

Fixed Period of Time

The optimization of the track coverage provided by a sensor network over a fixed

period of time consists of optimizing the space of line transversals of a moving family

of disks. As the sensors are non-maneuverable, the trajectories of the sensors depend

only on their initial conditions, namely, their initial positions in A. The coverage

function (3.23) is used to obtain a measure of the cumulative coverage over time in

terms of an integral objective function of the Lagrange type. This objective function

is derived through a dynamic computational geometry approach that expresses a
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Figure 5.7: (a) BN model of acoustic wave propagation learned from RAM for
sensor parameters and environmental variables defined in Table 5.2, and (b) sensor
range over an oceanic ROI.

Lebesgue measure on the space of line transversals in closed form. Since the objective

function is not quadratic and is composed of several terms, the solution of this optimal

control problem becomes increasingly difficult as A becomes larger and the number

of sensors increases.

In this chapter, the sensor network is assumed to be governed by (5.23), and

the goal is to find the initial conditions for which the resulting trajectories provide

maximum cumulative coverage. As discussed in Section 3.2, k-coverage increases as

sensors fields-of-view overlap. When sensors are moving due to the ocean-induced

current velocities but are non-maneuverable, it is feasible to impose the nonlinear

constraint (3.24) only on the initial positions, which is considered the controllable

aspect of the problem, and not the trajectories. In order to describe the coverage

over a period-of-time with respect to the initial positions, the objective function must

then include the area coverage measure (Section 3.2), as this penalizes sensors whose

fields-of-view overlap, but does not impose a hard constraint that may reduce the

feasible solution space unnecessarily. Therefore, the objective function is a weighted
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sum of the track and area coverages provided by n sensors,

J (x(t), r(x(t)), t) =

∫ tf

t0

{
WT T kA [XS(t), RS(XS(t))] +WCAC [XS(t), RS(XS(t))]

}
dt

≡
∫ tf

t0

{
WT T kA [x(t), r(x(t))] +WCAC [x(t), r(x(t))]

}
dt (5.16)

where the set XS(t) as a vector is denoted as x(t) = [xT1 (t), ...,xTn ]T ∈ R2n, and the set

RS(x(t)) as a vector is denoted as r(x(t)) = [r1(x1(t)), ..., rn(xn(t))]T ∈ Rn, and WT

and WC represent the scalar weights on the track and area coverage, respectively. Be-

cause the track coverage and area coverage functions, (3.23) and (3.28), respectively,

are implicit functions of the sensor position and range within A (Chapter 3), then

these functions are naturally time-varying when extended to the problem of measuring

the track coverage over a fixed period of time for location-dependent sensor ranges,

i.e., T kA (XS, RS) = T kA (XS(t), RS(XS(t)) and AC(XS, RS) = (XS(t), RS(XS(t)). The

sensor positions x(t) in the objective function (5.16) can be related to their initial

positions by integrating the system dynamics (5.10),

x(t) = x0 +

t∫
t0

υ(x(t), t)dt. (5.17)

where υ(x(t), t) are obtained from the NN approximator discussed in Section 5.1.1.

The objective of the optimization problem of maximizing the cumulative cover-

age, J in (5.16), is to initially place n sensors in an ROI such that their ability

to cooperatively detecting moving targets over a fixed period of time is optimized.

Using the objective function (5.16), this problem can be reformulated as a NLP. In

order to obtain distinct sensor detections in the ROI, the sensors initial positions

are constrained to lie in A and to prevent overlapping. Then, the initial positions
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x(t0) = x0 is given by the solution x∗0 of the following NLP:

max
x0

J (x(t), re(x(t))), (5.18)

subject to x(t) = x0 +

t∫
t0

υ(x(t), t)dt (5.19)

0 > (rei,0 + rej,0)
2 − (xi,0 − xj,0)2 − (yi,0 − yj,0)2, ∀i, j ∈ IS (5.20)

0 < xi,0 < L1 ∀i ∈ IS (5.21)

0 < yi,0 < L2 ∀i ∈ IS (5.22)

where x∗0 = [x∗ T1 (t0)...x
∗ T
n (t0)]

T , notation is simplified to re(xi(t0)) = rei,0, xi(t0) =

xi,0, and yi(t0) = yi,0, and the objective function is given by (5.16).

Optimal Deployment of a Moving Sensor Network Based on Linear, Time-

Invariant Equations of Motion

In order to illustrate the problem of computing the initial positions that maximize

track coverage of an entire trajectory over a fixed period of time, a preliminary

simplifying assumption to the buoy equation of motion (5.10) is to reduce it to a

linear, time-invariant (LTI) state space model,

dx(t)

dt
= υ = Ax(t), (5.23)

Then, the LTI system dynamics are incorporated into preliminary analysis of optimal

deployment of moving sensors in Sections 5.1.3-5.1.3 in order to illustrate the optimal

deployment problem posed in the previous section. These results also motivate the

much more computationally expensive optimal deployment of sensors according to

the nonlinear, time-varying system dynamics, and the inclusion of the area coverage

term in the objective function. As this is a preliminary example, the ranges are

assumed constant.
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For this example, the objective function is formulated in terms of the cumulative

track coverage, as follows,

J (x(t), t) =

∫ tf

t0

T kA [x1(t), ...,xn(t)]dt. (5.24)

Since the governing equation of the system dynamics (5.23) is linear, the sensor

positions x(t) can be related to their initial positions by the transition matrix, Φ(t, t0):

x(t) = Φ(t, t0)x(t0). (5.25)

Where, Φ = eA(t−t0), and the elements of A are constant parameters obtained from

the known current vector field. A general form for Φ(t, t0) is derived in Section 5.1.3.

Then, (5.25) is substituted in (5.24), and the integral is maximized with respect to

x(t0) = x0 in order to obtain the optimal initial position, x∗0. Then, the optimization

problem in (5.18)-(5.22) is restated for this example as,

max
x0

J , (5.26)

subject to x(t) = Φ(t, t0)x(t0) (5.27)

(xi,0 − xj,0)2 + (yi,0 − y2
j,0 > (ri,0 + rj,0)

2, ∀i, j ∈ IS (5.28)

0 < xi0 < L1, ∀i ∈ IS (5.29)

0 < yi,0 < L2, ∀i ∈ IS (5.30)

In order to solve (5.26)-(5.30) for the initial sensor positions, the NLP solution, x∗0,

is determined by the sequential quadratic programming (SQP) algorithm [67,68].

Example: Optimization of Dynamic Track Coverage for n = k = 1

A simple example with n = 1 sensor and k = 1 is presented in order to illustrate

the solution approach outlined in the previous section. Φ is derived for a general
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state-space matrix A representing the vector field and can easily be applied to n > 1

by increasing the dimensions appropriately. Assuming the buoys moves in a linear

fashion with the surface current according to (5.23), A is a 2n× 2n matrix that for

one sensor can be defined as,

A =

[
a b
c d

]
, (5.31)

where the elements of A are obtained from the current vector field. The trajectory

of one sensor can be described in terms of the initial sensor position using (5.25) as

follows

ẋ = AΦ(t, t0)x0 (5.32)

The eigenvalues, or roots, of the characteristic equation det(sI−A) are found to

be,

λ1 =
K1 +

√
K2

1 − 4 ·K2

2
(5.33)

λ2 =
K1 −

√
K2

1 − 4 ·K2

2
(5.34)

where K1 = d+ a and K2 = ad− bc. Therefore, the transition matrix becomes,

Φ(t, 0) =

[
(c1e

λ1t + c2e
λ2t) (c3e

λ1t + c4e
λ2t)

(c5e
λ1t + c6e

λ2t) (c7e
λ1t + c8e

λ2t)

]
. (5.35)

Because Φ(0, 0) = I and Φ̇(0, 0) = A, a system of eight simultaneous equations is

used to obtain the eight unknowns in c = [c1, ..., c8]
T in terms of the constants a, b,

c, d, λ1, and λ2, as shown in Table 5.3.

Substituting the values in Table 5.3 into (5.35), and substituting (5.35) into (5.32),

the optimal initial conditions can be obtained by maximizing the resulting integral

function (5.24). For example, for one sensor and k = 1, the integrand of the cost
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Table 5.3: The constants of Φ

c1 = a−λ2

λ1−λ2
c3 = b

λ1−λ2
c5 = c

λ1−λ2
c7 = d−λ2

λ1−λ2

c2 = a−λ1

λ2−λ1
c4 = b

λ2−λ1
c6 = c

λ2−λ1
c8 = d−λ1

λ2−λ1

function (5.24) simplifies through the relationship sin θ = r/‖v‖,

J =
1

2

tf∫
0

 L2∑
by=0

r

‖v(t)‖y
+

L1∑
bx=0

r

‖v(t)‖x

+

L2∑
by′=0

r

‖v(t)‖y′
+

L1∑
bx′=0

r

‖v(t)‖x′

 dt, (5.36)

where ‖v‖ is the position vector relative to the axes indicated by the subscript, for

example, ‖v(t)‖x =
√

(x− bx)2 + y2.

Track Coverage Optimization of the Linear, Time-Invariant System

The methodology developed in this chapter is used to optimize the track coverage of

a moving sensor network with respect to an area of interest over a period of time.

This problem is relevant to sensor networks floating and drifting in the ocean subject

to the surface currents that are employed for detecting moving targets in a region

of interest. A cumulative track coverage function is presented in Section 5.1.3 and

is optimized subject to the LTI system dynamics. The (k = 3) - track coverage of

a network with n = 10 sensors, and ranges RS = {3, 3, 5, 5, 6, 6, 8, 8, 10, 10},

is considered. The parameter k represents the number of CPA detections that are

required for declaring a track detected. For comparison, the sensors are first placed

according to the optimization of the static coverage function (3.23), without account-

ing for the buoys dynamics, as shown in blue in in Figure 5.8. When the cumulative

track coverage function (5.24) is optimized subject to the drift dynamics (5.23), the
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sensor network is deployed at the positions shown in red in Figure 5.8. The resulting

sensors trajectories, plotted in Figures 5.9(a) and 5.9(b), differ significantly due to

the diversity in the oceanic currents that are experienced by the individual sensors.

Consequently, the track coverage of the two sensor networks also differs significantly.

x' 

A 
Optimal deployment for LTI   )(tx&

y' 
y 

 

Static optimal deployment 

x 

Figure 5.8: Comparing the initial sensor configurations by the static optimization
(4.1)- (4.4) and the optimal deployment (5.26)-(5.30).

The time histories of the track coverage provided by the drifting sensor networks

are plotted in Fig. 5.10. Although the two sensor networks are comprised of the same

number of sensors and of the same individual performance (range), the different de-

ployment results in significantly different drift patterns for the sensors over the 7-days

mission (Figure 5.9). Consequently, it can be seen from Fig. 5.10 that the coverage

provided by the sensors placed by optimizing the cumulative coverage function is

much improved over time, despite the initial coverage being higher for the network

placed by the static optimization. The maximum coverage provided by the sensor

network placed by optimal control peaks at approximately 6 days, and displays a 43%

decrease in coverage from initial deployment to the end of the mission. Whereas, the

sensor network placed according to the static optimization peaks initially, but then

decreases by 86% over the 7-days period. Finally, the cumulative coverage (Fig. 5.10)
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Sensor network trajectories over a 7-day period: 
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Sensor network trajectories over a 7-day period: 
Optimal deployment for LTI system dynamics 
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Figure 5.9: The drift trajectories of n = 10 sensors for k = 3 detections placed
according to the (a) the static optimal optimization and the (b) optimal deployment
with respect to the LTI dynamics within an arbitrary reference frame.
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Figure 5.10: Coverage deterioration for sensors placed according to the optimal and
static deployments.

reveals a 85% increase as a result of the initial deployment accounting for the drift

dynamics.

5.2 Robustness Analysis of the Moving Sensor Net-

work

A sensor network placed in an ocean environment is subject to various sources of

uncertainty that cannot be accounted for a priori. The first source of uncertainty is

due to the deployment of the sonobuoys, which is typically carried out by an aircraft.

As a result, the actual deployment of the sonobuoys may include human-error and

disturbances due to inclement weather conditions experienced by the sonobuoys as

they travel in the air from the aircraft to the ocean surface. For example, strong

wind can result in a systematic (bias) error in the initial deployment, such that all

sensor locations deviate from the intended locations by the same error vector. Once

the sensors are deployed, the GPS location device on each sonobuoy may relay a

slightly different position of the sonobuoy than the actual position. Then, over the

course of the mission, sonobuoys are likely to experience oceanic currents that differ
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from those estimated by the NN from CODAR measurements (Section 5.1.1), thereby

affecting the entire trajectory. Also, the range of each sensor field-of-view is known

to be subject to errors due to the classification estimate from the BN [1]. These

sources of uncertainty are considered through Monte Carlo robustness analysis in

order to estimate the expected performance reduction that the actual sensor system

will experience when deployed by the methods developed in this section.

The optimal solution obtained for zero errors (ideal conditions) is referred to as

the nominal trajectory. The above sources of uncertainty on the initial positions,

currents, and sensor ranges are represented by the following random variables

x̂0 = x0 + dε + nε, x̂0 ∈ R2n (5.37)

υ̂(x̂(t), t) = υ(x̂(t), t) + υε, υ̂ ∈ R2n (5.38)

r̂(x̂(t)) = r(x̂(t)) + rε, r̂ ∈ Rn (5.39)

As the state x(t) cannot be propagated with certainty, it also is considered as a

random variable. The errors expressed in (5.37)-(5.38) are propagated through time

by integrating the dynamic equation (5.10) with respect to the random initial state

variable x̂0 and υ̂ simultaneously to get the expected trajectory

x̂(t) = x̂0 +

∫ tf

t0

υ(x̂(t), t)dt (5.40)

It is assumed here that each error is independently and identically distributed (i.i.d.)

from a Gaussian (normal) distribution, and the x− and y−directions of the sensor

position and current are independent. Then, the uncertainty variables dε, nε, υε, and

rε each have an associated mean expected value and covariance matrix, given in the
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form (mean, covariance),

(E[dε] = md · [1, ..., 1]T = md, E[dεd
T
ε ] = pdI(2n×2n) = Pd) (5.41)

(E[nε] = mn · [1, ..., 1]T = mn, E[nεn
T
ε ] = pnI(2n×2n) = Pn) (5.42)

(E[υε] = mυ · [1, ..., 1]T = mυ, E[υευ
T
ε ] = pυI(2n×2n) = Pυ) (5.43)

(E[rε] = mr · [1, ..., 1]T = mr, E[rεr
T
ε ] = prI(n×n) = Pr) (5.44)

where the dimensions of the mean vectors and covariance matrices are given as

md,mn,mυ ∈ R2n×1, mr ∈ Rn×1 Pd,Pn,Pυ ∈ R2n×2n, Pr ∈ Rn×n, and I is the

identity matrix with noted dimensions.

The specific values of the scalar mean and covariance values in (5.41)-(5.44) are

listed in Table 5.4. The measurement error on the initial positions, nε, is relatively

small (on the order of a couple meters) thanks to the accuracy of GPS devices.

On the other hand, the deployment error, dε, is considerably larger. Two different

deployment models are investigated to accommodate for different scenarios that may

occur in practice, such as calm weather with no wind versus strong winds. The first

case includes md = 0 and a 3 − σ initial position variation of 5 Km. The second

case introduces a bias on the mean of 3 − σ = 5 Km, which translates a sensor

network in A by the same distance. These cases are investigated separately in order

to provide a clear picture of the sensor network performance sensitivity in the face of

uncertainty. As for the expected uncertainty in the currents, it has been noted in [86]

that the RMS differences between the CODAR and in situ instruments to be between

0.18 and 0.54 Km/hr, which is approximately a 10% difference. We implement a 15%

3−σ variation of the currents to account for both measurement error and unexpected

severe weather. Finally, the 3− σ range error is 0.224 Km, as described in [1].

A sensor network that provides satisfactory coverage over time in the presence of

system uncertainty is said to be robust. The probability of satisfactory J coverage
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Table 5.4: List of the system Gaussian errors included in the Monte Carlo simulation

Variables 3− σ Variation Mean

Initial positions:

deployment error, dε [Km] ±5 0 / 3− σ = ±5

measurement error, nε [Km] ±0.005 0

Range, rε [Km] ±0.224 0

Ocean Current, υε [Km/hr] ±15% 0

is defined as,

pJ = Pr[{Ĵ /J ≥ ς}], 0 ≤ ς ≤ 1 (5.45)

where ς is the smallest allowable decrease in the objective function J (a deterministic

quantity). The pJ should be close to 1, or some other chosen value within the

the interval [0, 1], as this represents a system that is (almost) entirely satisfactory.

Otherwise, the system is not robust. The value pJ is unknown analytically, and may

be estimated by Monte Carlo simulation. Let the expected value of the objective

function in terms of (5.40) and (5.39),

Ĵ = J (x̂(t), r̂(x̂(t)), t) (5.46)

=

∫ tf

t0

[
WT · T kA (x̂(t), r̂(x̂(t))) +WA ·AC(x̂(t), r̂(x̂(t)))

]
dt

be evaluated N times. Then, the estimate of the probability of sufficient performance

(5.45) becomes increasingly precise as N becomes large, i.e.,

Pr[{Ĵ /J ≥ ς}] = lim
N→∞

M(Ĵ /J ≥ ς)

N
(5.47)

where M( · ) is the number of cases of sufficient coverage, that is, Ĵ /J ≥ ς. For

N < ∞, the probability of sufficient performance from Monte Carlo simulation is

an estimate, denoted p̂J . Then, the estimate p̂J is related to the true underlying
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probability of pJ through confidence intervals [87],

Pr[L < pJ < U ] = 1− α (5.48)

where (L,U) is the interval estimate, 1− α is the confidence coefficient, and p̂J lies

within (L,U) with 100 · (1−α)% confidence. For example, a 95% confidence interval

implies that 95% of N samples lies within (L,U)

Pr[µ̂J − 1.96
σ̂J√
N
< pJ < µ̂J + 1.96

σ̂J√
N

] = 0.95 (5.49)

where µ̂J and σ̂J are the sample mean and standard deviation of the objective

function, respectively. It follows that the narrower is the interval, the more precise

is the estimate p̂J . Therefore, both p̂J and (L,U) can be used for assessing the

robustness of the nominal system acquired through track coverage optimization of

the moving sensor network.

5.3 Application to Optimal Deployment of a Sonobuoy

Sensor Network

The methodology developed in this chapter is implemented such that the coverage

objective function of a moving sensor network is maximized with respect to an area

of interest over a period of time. This problem is relevant to a sensor network of

sonobuoys that are floating and drifting in the ocean due to the surface current

velocities that are employed for detecting moving targets in a region of interest. The

system dynamics are approximated by a nonlinear, time-varying NN approximator

function obtained from CODAR data (Section 5.1.1). Also, the sensor ranges are

approximated by a nonlinear, position-dependent BN (Section 5.1.2). Then, the

sensor deployment problem is formulated as an NLP (5.18)-(5.22), which is solved

by the SQP algorithm [67, 68] using Runge-Kutte (4,5) numerical integration [88].
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In Section 5.3.1, the track coverage provided by networks deployed using the SQP

algorithm (and numerical integration) is compared to those obtained by the static

solution from Chapter 4.1, i.e., solving the NLP (4.1)-(4.4) that we will refer to as

the static SQP deployment, as well as the random and grid deployment strategies,

all of which are discussed in Chapter 4. In Section 5.3.1, the nominal (i.e., ideal)

solution of the NLP (5.18)-(5.22) from the SQP algorithm is shown to improve track

coverage by up to two orders of magnitude, compared to the former techniques, for

networks of various size and k required detections. Then, in Section 5.3.2, the nominal

solutions obtained in Section 5.3.1 are tested for robustness, as discussed in Section

5.2, through Monte Carlo simulation. Uncertainty is introduced into the nominal

initial positions, and the errors on the initial positions, current velocity, and sensor

ranges are propagated through time to obtain the trajectories of each sensor subject

to errors. The cases of no bias and bias uncertainty included in the initial positions

are investigated separately to illustrate the sensitivity of the nominal initial position

solution. The results show that the decrease in sensor network performance in the

face of uncertainty is less than 6% for both cases. Although the bias error results

in larger initial and final position envelopes, the resulting performance for the two

models are very similar. Also in both cases performance is much improved over the

static SQP, grid, and random deployments.

5.3.1 MultiObjective Optimization

The effectiveness of deploying sensors using the solution of the NLP (5.18)-(5.22)

is demonstrated for four networks listed in Table 5.5. The dimensions of A are

L1×L2 = 90× 82.5 Km2, while the mission period-of-time is 4 days. The respective

83



weights of the objective function WC and WT are given as

WC =
αC
Amax
C

=
15

7, 426
= 0.0020 (5.50)

WT =
αT
T max
A

=
2.5

1, 097
= 0.0023 (5.51)

where track-coverage is given slightly more weight than area coverage. Then, in Table

5.5, the performance measures of track coverage, area coverage, and the objective

function are calculated for the trajectories from the sensors placed according to the

SQP solution x∗0 to the NLP and compared to the static SQP, random, and grid

deployments. As a result of significantly different drift patterns experienced by the

four sensor networks, sensors placed at the SQP solution achieve significantly higher

performance than the other three deployment methods. In fact, the same network

deployed via the SQP solution for n = 15 and k = 3 can provide significantly higher

track coverage (+519%) and area coverage (+553%) over the static SQP deployment.

A comparison of the coverage over time is illustrated in Fig. 5.11 for n = 20 and k = 3,

whose deployment positions and trajectories are shown in Fig. 5.12. The coverage

provided by the the SQP solution is consistent over time, as evident from Fig. 5.11,

compared to the other deployment methods whose coverage decrease significantly as

the mission progresses. Even though the initial coverage is higher for the static SQP

deployment, the sensors quickly drift outside of A and significantly overlap (Fig.

5.12(b)), providing much less coverage.

5.3.2 Robustness Analysis via Monte Carlo Simulations

A Monte Carlo (MC) simulation is utilized to statistically assess the robustness of the

nominal SQP solutions discussed in Section 5.3.1. The Gaussian errors on the initial

positions, ocean-current velocities, and ranges, with means and variances listed in
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Table 5.5: Comparison between the different deployment methods of sensor networks
for coverage over a 4-day mission period of time, where ( · ) represents the (SQP %
Improvement) over each deployment method.

n,k : Performance
Measures

SQP Static Grid Random

Track Coverage 1.671× 104 8,823 4,866 4,951

Area Coverage 3.091× 104 1.119× 104 1.831× 104 1.843× 104

10, 2
Objective
Function

100.5 42.73
(135%)

48.09
(109%)

48.51 (107%)

Track Coverage 1.630× 104 3,145 1,763 2,057

Area Coverage 5.368× 104 8,223 2.830× 104 3.094× 104

15, 3
Objective
Function

145.6 23.78
(512%)

61.17
(138%)

67.19 (117%)

Track Coverage 2.245× 104 1.326× 104 2,800 6,281

Area Coverage 7.174× 104 2.965× 104 3.607× 104 3.471× 104

20, 3
Objective
Function

196.1 90.14
(118% )

79.25
(147%)

84.43 (132%)

Track Coverage 1.860× 104 1.358× 104 932.3 2,648

Area Coverage 8.892× 104 3.211× 104 4.163× 104 4.494× 104

25, 4
Objective
Function

222.0 95.97
(132%)

86.21
(158%)

96.82 (129%)

Table 5.4 are simulated for M = 5, 000 MC trials for two different cases: when initial

position uncertainty has no bias (i.e., md = 0) or includes bias (i.e., md ∼ N (0, 2.78

from (3−σ) = 5 in Table 5.4). Comparing these two different cases in affect provides

a clear picture to the actual sensitivity of the performance to the uncertainty.

First, we will investigate the system robustness for the no bias case. The three

nominal performance measures (track coverage, area coverage and objective func-

tion) are compared to the mean of the performance measures obtained from the MC

simulation in Table 5.6. The largest decrease of the nominal performance occurs for

n = 15 and k = 3, although this decrease is approximately 6%. Compared to the per-

formance of the other deployment methods in Table 5.5, the decrease in performance

is 84%, 58%, and 54% for the static SQP, grid, and random deployments, respectively.
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Table I. Comparison of four different placement methods of sensor networks for a 4-day 
mission.   
 (n, k) Performance 

Measures 
SQP Static  Grid Random 

(10,2): 
 

Track coverage 
Area Coverage 
Total Cost, J 

1.671x104

3.091x104

100.5 

8,823 

1.119x104

42.73 

4,866 
1.831x104

48.09 

4,951 
1.843x104

48.51 
 Improvement (%)  +135% +109% +107% 
(15,3) Track coverage 

Area Coverage 
Total Cost, J 

1.630x104

5.368x104

145.6 

3,145 

8,223 
23.78 

1,763 
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Figure 1. Performance of the four deployment methods over a period of 4-day mission for 
n=20, k=3. Figure 5.11: Performance of the four deployment methods over a period of 4-day

mission for n = 20 and k = 3.

In addition, the relatively narrow 95% confidence level of the objective function for

the three examples indicates that the mean cost has been rather precisely measured.

Even though sensors do not follow the nominal paths (from the trajectory envelopes

in Fig. 5.14(d) for 5000 MC trials of two sensors), sensors will provide coverage

over other areas of A, as evident by the light shading in the parameter space plots

5.14(a)-5.14(c). Therefore, performance of the sensor network over time is consistent

(Fig. 5.13), although each trial may provide coverage over different areas of A.

The MC robustness analysis is also performed for sensors deployed with a non-zero

bias error as depicted in Fig. 5.15(c). The simulations including uncertainty (Figs.

5.15(b)-5.15(c)) lead to both overlapping fields-of-view and to be partially outside of

A. However, the performance for each of these systems does not decrease significantly

over time and is very close to the nominal performance, as illustrated in Fig. 5.15(d).

The results for the M = 5000 MC trials that include the bias error in the initial

positions are listed in Table 5.7 for three different sensor networks. Of the three

examples investigated, only one of the listed results actually provide less expected

performance compared to the no bias example, i.e., J k
A = 186.2 compared to J k

A =
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Figure 2. The resulting sensor trajectories of the four methods differ significantly due to the 
diversity of the drift patterns experienced by the individual sensors over the 4-day missions. 
 
 
 
 
As a consequence to the significantly different drift patterns experienced by the four different 
sensor networks of n=20 (in Fig. 2), the coverage provided by the sensors for k=3 detections 
placed by optimizing the cumulative objective function is consistent over time, and is much 
higher than the other three methods (as much as +512% from Table I). Even though the initial 
coverage is higher for the network placed by the static optimization, the sensors quickly drift 
outside of A, providing much less coverage. 

(d)

Figure 5.12: The trajectories of n = 20 sensors over the 4-day missions according
to the (a) SQP, (b) static SQP, (c) grid, and (d) random deployments.
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Table 5.6: Performance results with no bias error, where ( · ) represents the SQP
difference (%) with the performance mean

n,k Performance
Measure

SQP Performance
mean

95% Confidence
Level, no bias

Track Coverage 1.671× 104 1.508× 104 (1.507, 1.510)×104

10,2 Area Coverage 3.091× 104 3.063× 104 (3.061, 3.065)×104

Objective Function 100.5 96.27 (4.21%) (96.21,96.33)

Track Coverage 1.630× 104 1.468× 104 (1.467, 1.470)×104

15,3 Area Coverage 5.368× 104 5.116× 104 (5.112, 5.119)×104

Objective Function 145.6 136.8 (6.04%) (136.7,136.9)

Track Coverage 2.245× 104 2.046× 104 (2.044, 2.047)×104

20,3 Area Coverage 7.174× 104 6.907× 104 (6.903, 6.911)×104

Objective Function 196.1 186.2 (5.05% ) (186.1,186.3)

185.9, respectively. However, this difference is less than 0.1% between the two cases,

and less than a 5.2% decrease from the nominal performance. Another difference

between these two cases can be seen in the slightly different confidence intervals. For

the example with n = 10, the difference of the lower and upper confidence interval

for the bias case is 0.05 units larger than the no bias case. However, this difference

is practically negligible, considering the order of the objective function (102). In

fact, the other two examples provide the same interval size between the bias and no

bias cases. Although the performance of these two cases are nearly identical, it is

obvious from Fig. 5.14(d) that the trajectory envelopes for the bias case are notably

larger compared to the no bias case. The distribution of the initial and final position

envelopes are also illustrated in Figs. 5.16-5.17 as contour plots. This confirms that

the initial position envelope for the bias case provides a wider distribution than the no

bias envelope, which are characterized by distinct peaks (much darker shading in the

middle). Therefore, the nominal solution is shown to be both robust and insensitive

to uncertainty.
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Figure 3. The individual performance of the actual trajectories with propagated error defines 
the performance envelope, which is well above the other deployment methods (from Fig. 1)  
for example (n=20, k=3). 

Figure 5.13: The performance envelope calculated from the actual trajectories of
n = 20 sensors and k = 3 detections with propagated error and no bias included in
the initial position uncertainty.

5.4 Chapter Summary

The methodology developed in this chapter is implemented to optimize track cov-

erage of a moving sensor network with respect to an ROI over a fixed period of

time. This problem is relevant to a moving sensor network of sonobuoys employed

to detect moving targets in an ROI. In Section 5.1.1, the ocean current-velocities

are approximated by an NLTV NN approximator obtained from measured CODAR

data. Also, the expected performance, i.e., the range of the field-of-view, of each

sensor is approximated by a BN that is a function of the sensor location in A (5.1.2).

These closed-form models are incorporated implicitly into the weighted sum objective

function of the cumulative track and area coverage (Section 5.1.3). This objective

function is formulated as an NLP and optimized subject to the drift dynamics with

respect to the initial positions of the sensors.
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 Figure 4. (a)-(c) the track-coverage in parameter space over time, (a) initial, (b) 

midpoint, and (c) final times in the mission for n=20, k=3 (no bias). (d) Two examples  
(from n=20) of the envelopes of the initial and final positions and trajectories for 
M=5000 MC trials with the propagated error listed in Table II. 
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 Although sensors do not follow the nominal paths (as evident from the trajectory envelopes in Figure 

4(d) for 5000 MC trials of two sensors), sensors will provide coverage over other areas of A, as 
evident by the light blue in the PS plots (a)-(c). Therefore, the performance of the sensor network 
over time is consistent (Fig. 3), although each trial may provide coverage over different areas of A.  
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evident by the light blue in the PS plots (a)-(c). Therefore, the performance of the sensor network 
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(d)

Figure 5.14: (a)-(c) the track-coverage in parameter space over time, (a) initial, (b)
midpoint, and (c) final times in the mission for n = 20 and k = 3 (no bias). (d)
Two examples (from n = 20) of the envelopes of the initial and final positions and
trajectories for M = 5000 MC trials with the propagated error listed in Table 5.6.

90



Nominal      :  : x0             : xf
No bias       :        :                :   

Nominal      : x0         : xf              : )(tx  
0x̂ fx̂ )(ˆ tx

Bias            : x        :0ˆ fx̂                :   )(ˆ tx
Nominal      : x0         : xf              : x  )(t

Longitude (deg) 

La
tit

ud
e 

(d
eg

) 

Longitude (deg) 

La
tit

ud
e 

(d
eg

) 

Longitude (deg) 

La
tit

ud
e 

(d
eg

) 

Time (hours) 

J A
k  (·

) 
A C

 (·
) 

       : Nominal               : No Bias               : Bias 

T
A

k  (·
) 

(a)

Nominal      :  : x0             : xf
No bias       :        :                :   

Nominal      : x0         : xf              : )(tx  
0x̂ fx̂ )(ˆ tx

Bias            : x        :0ˆ fx̂                :   )(ˆ tx
Nominal      : x0         : xf              : x  )(t

Longitude (deg) 

La
tit

ud
e 

(d
eg

) 

Longitude (deg) 

La
tit

ud
e 

(d
eg

) 

Longitude (deg) 
La

tit
ud

e 
(d

eg
) 

Time (hours) 

J A
k  (·

) 
A C

 (·
) 

       : Nominal               : No Bias               : Bias 

T
A

k  (·
) 

(b)

Nominal      :  : x0             : xf
No bias       :        :                :   

Nominal      : x0         : xf              : )(tx  
0x̂ fx̂ )(ˆ tx

Bias            : x        :0ˆ fx̂                :   )(ˆ tx
Nominal      : x0         : xf              : x  )(t

Longitude (deg) 

La
tit

ud
e 

(d
eg

) 

Longitude (deg) 

La
tit

ud
e 

(d
eg

) 

Longitude (deg) 

La
tit

ud
e 

(d
eg

) 

Time (hours) 

J A
k  (·

) 
A C

 (·
) 

       : Nominal               : No Bias               : Bias 

T
A

k  (·
) 

(c)

Nominal      :  : x0             : xf
No bias       :        :                :   

Nominal      : x0         : xf              : )(tx  
0x̂ fx̂ )(ˆ tx

Bias            : x        :0ˆ fx̂                :   )(ˆ tx
Nominal      : x0         : xf              : x  )(t

Longitude (deg) 

La
tit

ud
e 

(d
eg

) 

Longitude (deg) 

La
tit

ud
e 

(d
eg

) 

Longitude (deg) 
La

tit
ud

e 
(d

eg
) 

Time (hours) 

J A
k  (·

) 
A C

 (·
) 

       : Nominal               : No Bias               : Bias 

T
A

k  (·
) 

(d)

Figure 5.15: (a) The nominal trajectories for n = 10 and k = 2 are compared to
an example of sensors placed with (b) no bias error and (c) bias error, where the
performance measure for each sensor network is illustrated in (d).
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 Figure 5.  The contour plots illustrates the distribution of the initial and final position 

envelopes for 5 sensors (two of which are shown in Fig. 4) for n=20 k=3 example with 
(a) no bias, (b) bias. 
 
 
 
The above contour plots show that the distribution of the initial positions are in fact 
Gaussian, while the final positions (due to the propagation of current error) is much 
more spread out, not necessarily Gaussian. As expected, the 3-sigma bias included in 
the initial positions result in a larger initial position envelope, and an even larger final 
position envelope, compared the initial positions with no bias. However, the affect on 
performance between the two above scenarios is minimal (Tables III and IV). 
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The above contour plots show that the distribution of the initial positions are in fact 
Gaussian, while the final positions (due to the propagation of current error) is much 
more spread out, not necessarily Gaussian. As expected, the 3-sigma bias included in 
the initial positions result in a larger initial position envelope, and an even larger final 
position envelope, compared the initial positions with no bias. However, the affect on 
performance between the two above scenarios is minimal (Tables III and IV). 

 
 
 
 
 
 

(b)

Figure 5.16: The contour plots illustrates the distribution of the initial and final
position envelopes for five sensors (two of which are shown in Fig. 5.14(d)) for n=20
k=3 example with (a) no bias, (b) bias error included in the initial positions.
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Figure 6. (b)-(c) The contour plots (b)-(c) illustrates the distribution of the initial and 
final position envelopes for (a) the SQP solution for n=10 sensors and k=3 detections. 
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and bias solutions. The above contour plots show that the distribution of the initial 
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current error) is much more spread out, not necessarily Gaussian. As expected, the 3-
sigma bias included in the initial positions result in a larger initial position envelope, 
and an even larger final position envelope, compared the initial positions with no bias. 
However, the affect on performance between the two above scenarios is minimal 
(Tables III and IV). 
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However, the affect on performance between the two above scenarios is minimal 
(Tables III and IV). 

(b)

Figure 5.17: The contour plots illustrates the distribution of the initial and final
position envelopes for n = 10 sensors (with nominal positions in Fig. 5.15(a)) for (a)
no bias, (b) bias error included in the initial positions.
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Table 5.7: Performance results with bias error, where ( · ) represents the SQP dif-
ference (%) with the performance mean

n,k Performance
Measure

SQP Performance
mean

95% Confidence
Level, bias

Track Coverage 1.671× 104 1.509× 104 (1.507, 1.511)×104

10,2 Area Coverage 3.091× 104 3.064× 104 (3.061, 3.066)×104

Objective Function 100.5 96.29 (4.19%) (96.21,96.38)

Track Coverage 1.630× 104 1.472× 104 (1.471, 1.474)×104

15,3 Area Coverage 5.368× 104 5.110× 104 (5.106, 5.114)×104

Objective Function 145.6 136.8 (6.04%) (136.7,136.9)

Track Coverage 2.245× 104 2.048× 104 (2.046, 2.050)×104

20,3 Area Coverage 7.174× 104 6.892× 104 (6.888, 6.896)×104

Objective Function 196.1 185.9 (5.20%) (185.8,186.0)

An example of the optimal solution for LTI system dynamics is shown in Sections

5.1.3 for the k = 3 track coverage of a network with n = 10 sensors. These results

show a considerable improvement to track-coverage over a period of time, although

the overlapping sensors fields-of-view provide poor area coverage. Then, the final

results, which incorporate the NLTV equations of motion, position-dependent range,

and the weighted sum objective function results in significant improvement over var-

ious other deployment methods proposed proposed in the literature (i.e., grid and

random) and the solution to the static track coverage problem that does not include

the ocean current-velocities (from Chapter 4). As in most applications, especially

when deployed in the ocean, a sensor network is subject to random disturbances,

such as unforseen and uncontrollable variations in both the sensor location and field-

of-view due to any number sources of error. The robustness of the nominal solution

of the initial positions that maximize cumulative track coverage is verified through

Monte Carlo Simulation for propagated uncertainty incorporated in the the initial

deployment, trajectories, and range.
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Chapter 6

Optimal Control of a Mobile Underwater

Sensor Network

A group of mobile underwater vehicles, each with an onboard acoustic sensor, can

reach a higher accuracy, and enable detection of low signature targets by combining

measurements from multiple sensors [89]. However, cooperative detection of a moving

target becomes increasingly difficult for a mobile sensor network as the path planning

strategy must consider a group of independently moving vehicles for the unified pur-

pose of coverage. In this chapter, a method is developed for computing the optimal

trajectories of a group of underwater vehicles, such as gliders, in order to coopera-

tively provide optimal performance of a mission with respect to the quality of service

sensor performance metrics introduced in Chapter 3. For this purpose, the interac-

tion between the dynamical system comprised of the underwater gliders with onboard

acoustic sensors that have omnidirectional fields-of-view is modeled in Section 6.2.2.

The oceanic surface currents are modeled by ordinary differential equations that are

approximated by a NN (Section 5.1.1). The influence of the environmental variables

on the sensors fields-of-view can be modeled as a BN, as discussed in Section 5.1.2.

The approaches to cooperative path planning through control can be categorized

into two classes: reactive and pregenerative. Much of the research in cooperative

control for underwater vehicles is reactive and determines the control inputs in real-

time to coordinate the autonomous sensors for objectives such as surveys, coverage

and sampling [90–93]. The shortcoming of reactive control methods is that if the

sensors move through a highly nonlinear, time-varying environment, the vehicles

do not efficiently utilize the natural environmental dynamics as only the flow field
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velocity data at each specific sensor location is incorporated into the path planning.

Potentially, a more favorable environment located elsewhere in the region is not

recognized.

The pregenerative approach to cooperative vehicle control is carried out prior to

the mission. Thus, in a oceanic environment, it must include a forecast model of the

environmental dynamics in order to account for their influence on the trajectories of

the gliders. An example of pregenerative control was presented in [94] to determine

the trajectory of a single underwater vehicle traveling from specified initial and final

positions, in the shortest time using minimal energy. By using a forecast model of the

currents, the ideal path of the glider is one that provides the most velocity-assistance,

thereby conserving energy and possibly reducing the travel-time. Although the glider

may consume slightly more energy at times in order to reach the currents that will

provide the most assistance, the total energy is minimized. The limited amount

of pregenerative control methods that include a forecast environmental model for

optimal control is limited to single vehicle dynamics and objectives that typically in-

clude energy and mission time, such as path planning for obstacle avoidance [94–96].

For example, the numerical solution obtained using Nonlinear Trajectory Generation

seeks to find a tradeoff between the shortest path using minimal energy consump-

tion for a single glider [94]. In [96], the energy-optimal trajectories for individual

underwater gliders are computed using optimal control. While the author proposes

the optimal control strategy for multiple vehicles, a non-cooperative cost function

governs the problem, i.e., minimum time and energy trajectory that avoids obstacles.

This concept of controlling a group of vehicles through individual solutions is the ba-

sis of an algorithm proposed in Chapter 6. Ideally, it is advantageous to have a path

planning approach that is a mixture of pregenerative/reactive, where the problem is

formulated such that the prediction of the temporal evolution of the oceanographic
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environment is acquired by a forecast model that is updated as the vehicle navigates

the environment [95].

This chapter addresses computing optimal trajectories for controllable underwater

gliders that are deployed to detect moving targets in an oceanic region of interest by

means of onboard omnidirectional acoustic sensors. This constitutes a new optimal

control problem that integrates geometric sensor objectives such as track coverage

with cooperative path planning of a mobile sensor network subject to time-varying

environmental dynamics. A parametric study revels the Pareto-front of the multi-

objective cooperative control problem. The weighted sum cost function relates the

competing objectives of minimizing energy while maximizing track coverage. The

optimal control problem presented in this chapter can be viewed as a new problem

in dynamic computational geometry pertaining to the geometric transversals of a

moving family of geometric objects representing the sensors fields-of-view. In order

to solve for the trajectory optimization problem through optimal control, it is impor-

tant to have a closed form representation of the highly nonlinear oceanic currents.

In Section 5.1.1 it was shown that the nonlinear, time-varying ocean current velocity

are approximated by a neural network, which are included in into the glider systems

dynamics in Section 6.2.1. Then, the multiobjective problem of maximizing track

coverage while minimizing energy consumption is formulated as a multi-dimensional,

constrained optimal control problem (Section 6.2.3). The quality-of-service measure

of the mobile sensor network is formulated using the track coverage function repre-

sented in Section 3.1 and the energy consumption function in Section 3.3. Then, the

continuous-time optimal control problem is approximated by a discrete parametric

control problem in order to obtain a numerical solution that is locally and approxi-

mately optimal (Section 6.3). Finally, the parametric study in Section 6.4 show how

the optimal trajectories differ based on different weights chosen for the competing

97



objectives.

6.1 Background on Optimal Control

The deployment of a mobile underwater sensor network investigated in this research

is formulated as follows. Determine the optimal state x∗(t) ∈ Rn and control policy

u∗(t) ∈ Rm that maximizes the Bolza integral cost function,

J = φ(x(tf )) +

tf∫
t0

g(x(t),u(t), t)dt (6.1)

subject to a non-autonomous nonlinear system dynamic equation,

ẋ(t) = f(x(t),u(t), t), t ∈ [t0, tf ] (6.2)

and a set of equality and inequality constraints on the state and control,

Φ(x(t0), t0, tf ) = 0, Φ ∈ Rq (6.3)

C(x(t),u(t), t) ≤ 0, t ∈ [t0, tf ], C ∈ Rc (6.4)

respectively.

The above optimal control problem (6.1)-(6.4) can be approached by the calculus

of variations using Pontryagin’s maximum principle [97], or by the dynamic program-

ming approach, using the principle of optimality [98], applied to optimal control prob-

lems [99]. The necessary conditions for optimality are expressed as Euler-Lagrange

equations, as derived from the calculus of variations [99]. However, as there typically

is no closed form analytic solution to these equations when the system dynamics are

nonlinear, it is necessary for computational tractability to solve the optimal control

problem numerically. Numerical methods for solving optimal control problems can be

categorized as either direct or indirect methods. In an indirect method, the first-order
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optimality conditions are derived using the minimum principle of Pontryagin [100].

These necessary conditions lead to a Hamiltonian boundary value problem (HBVP)

which is then solved to determine candidate optimal trajectories, or extremal trajec-

tories. On the other hand, a direct method discretizes the continuous-time problem

about collocation points and then transcribes it into a finite-dimensional nonlinear

program (NLP). The NLP is then solved using an appropriate optimization method,

such as sequential quadratic programming (SQP) [67], [68]. Compared to indirect

methods, direct methods are typically more popular as it is typically easier to find a

solution to a NLP than a solution to the associated HBVP. Several direct methods

of solution are discussed in Section 6.3.

6.2 Methodology

The cooperative trajectory optimization problem of a group of independent under-

water gliders in a dynamic ocean environment consists of deploying and controlling

a group of gliders, each with an onboard acoustical sensor, in order to maximize

a cooperative measure of sensing performance. Underwater gliders are an example

of vehicles for large-scale ocean operations, such as surveys and surveillance, in the

ocean due to their low cost, simple and efficient design, and their capability to op-

erate autonomously. They are winged, buoyancy-driven submersible vehicles that

have high endurance and are strongly influenced by the currents. An example of an

underwater glider is Eyak 02 from Alaska Native Technologies and is shown in Fig.

6.1 [6]. For these reasons, the glider model should take advantage of ocean current

measurements and forecasts, such that the gliders can be steered efficiently and with

minimal energy consumption. The drift dynamics induced by an oceanic environ-

ment are accounted for by utilizing oceanographic models and measurements from

the ocean [4], which produce a known forcing vector field in the glider equations of
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motion [94]. As the gliders maneuver through the environment, the onboard acoustic

sensors are continuously taking measurements within their respective fields-of-view.

Representative models for both the gliders motion in the dynamic ocean environment

and the expected field-of-view of each sensor are necessary for optimal path planning

of a group of independent underwater gliders for the cooperative purpose of provid-

ing track coverage over a period of time. In this chapter, we show that an optimal

control strategy can be used to optimize the sensor network performance, subject to

a dynamic environment and mission constraints. The optimal control formulation

relies on the assumptions from Chapter 1.1.

 

Figure 6.1: An acoustic underwater glider from Alaska Native Technologies (Eyak
02) [6].

6.2.1 Equations of Motion of the Sensor Network

In order to optimize the objective function (6.1) subject to system dynamics, a closed-

form model of the dynamics (6.2) is derived from the kinematic models of n under-

water gliders [94],

ẋi(t) =

[
vx(xi, yi, t)
vy(xi, yi, t)

]
+ Vi(t)

[
cos θi(t)
sin θi(t)

]
, ∀ i = 1, ..., n (6.5)

where vx and vy are the time-dependent components of the ocean current velocity in

the x- and y- direction, and Vi and θi are the control speed and direction for the ith
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sensor. Then, the control vector for the ith sensor is defined as,

ui(t) = Vi(t) · [cos θi(t) sin θi(t)]
T (6.6)

and the control vector for the entire sensor network is denoted as u = [u1 ... un]T .

The ocean current velocity in the system dynamic Eq. (6.5) is described in detail in

Section 5.1.1, and is rewritten here for the ith sensor location as,

υi(xi(t), t) = [vx(xi, t) vy(xi, t)]
T (6.7)

where xi = [xi yi]
T , and the ocean current velocity vector for the entire sensor

network is denoted as υ = [υ1 ... υn]T . Then, the system dynamics (6.5) is given

by (6.5) is written in terms of the sensor network as follows,

ẋ(t) = υ(x(t), t) + u(t), ẋ ∈ R2n (6.8)

6.2.2 Acoustic Sensor Detection Range

As shown in Sections 2.3 and 5.1.2, the maximum nominal value of the CPA distance

at which the sensor can make a positive detection occurs when di = ϑ/B. In addition

to being affected by the environmental conditions (as discussed in Section 5.1.2), the

range is also affected by the use of onboard control by the glider. Onboard control

increases the local noise around the acoustic sensor, thereby decreasing the sensor

range. The scalar detection range of a sensor can then be approximated by the sum

of these two effects,

ri = r(xi(t),ui(t)) = re(xi(t)) + ru(ui(t)), 0 < ri ≤ re, ru < 0 (6.9)

where ru(ui(t)) is the estimated reduction in the sensor range re brought about

by the onboard control ui(t). It is assumed here that the estimated reduction of
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range monotonically decreases as an exponential function of the glider control speed,

Vi = ‖ui‖,

ru(ui(t)) =
1

ae−b‖ui‖
+ c, a, b < 0 < c (6.10)

where constants a, b, and c and are chosen, either heuristically by the user or by

experimentation, based on sensor and glider design characteristics. For example, in

order to bound (6.11) between [−1, 0] for a maximum glider velocity umax = 5.4

Km/hr specified in [101], the constants are chosen heuristically to be a = −13.88,

b = −0.5, and c = 0.072 and ru is illustrated in Fig. 6.2. For simplicity, it is

assumed here that the sensor range with respect to the environment is constant, i.e.,

re(xi(t)) = r0,i (assumption (ii)). Then, for the entire network x(t), the range vector

is defined as,

r(u(t)) = r0 + ru(u(t)), ru ∈ Rn (6.11)

for r(u(t)) ≡ [r1(u1(t)) ... rn(un(t))]T .

 

r u (u
i) 

 (K
m

) 

Vi  (Km/hr) 

Figure 6.2: Reduction in range as a result of the magnitude of the applied control
to the underwater glider.
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6.2.3 Objective Function of the Mobile Sensor Network

The sensor system employs a track-before-detect approach to form target tracks based

on multiple CPA detections, in order to effectively minimize the probability of false

alarms and, eventually, pursue enemy targets. Therefore, a minimum of k distinct

detections must be performed per target, anywhere along its track within the area-of-

interest A, for a positive detection. Because the surveillance area is much larger than

the area covered by the limited number of sensors, it is essential that the sensors move

in a cooperative fashion to maximize the track coverage. Also, each glider has limited

energy resources, which must also be taken into consideration. In this research, the

glider trajectories in A must optimize a tradeoff of track coverage and vehicle energy

consumption. The weighting coefficients manage these competing objectives, as some

missions may require more energy consumption (as they may be longer in duration)

as opposed to shorter missions that may want more track coverage as the limited

amount of energy is of no concern.

The optimal control problem for an autonomous network of sensing underwater

gliders is to find the control histories u(t) which optimize a weighted difference of

track coverage and energy consumptions, over a fixed time interval, [t0, tf ], that is,

J(x(t),u(t), t) = φ(x(tf ))+

tf∫
t0

{
WT T kA{x(t), r(u(t))} −Wu

(
uT (t)Ru(t)

)}
dt (6.12)

where WT and Wu represent the weights on the total mission track coverage and

energy expenditure, respectively. R is the diagonal control weighting matrix rep-

resenting the relative importance of the energy of different sensors. It follows from

Section 5.1.3 that when the set RS is given as an implicit function of the control,

the range set becomes Rs{r1(u1(t)), ..., rn(un(t))}, and in vector form r(u(t)) =

[r1(u1(t)), ..., rn(un(t))]T ∈ Rn. Because the track coverage function, (3.23) is an
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implicit function of the sensor position and range within A (Chapter 3), then these

functions are naturally time-varying when extended to the problem of measuring

the track coverage over a period of time for location-dependent sensor ranges, i.e.,

T kA (XS, RS) = T kA (XS(t), RS(u(t)).

The final position of the sensors or other mission objectives at the final time tf

can be specified through the penalty function φ( · ), which could be defined as

φ(x(tf )) = Wφ[xf − x(tf )]
T [xf − x(tf )], Wφ, φ ∈ R (6.13)

where xf is the desired final position of the sensors, and Wφ < 0 is the weight on the

corresponding error. If final positions are not specified, then φ( · ) = 0

6.2.4 Inequality Constraints on the State and Control

As discussed in Section 3.2, the trivial solution to the optimization of track coverage

leads to sensors with overlapping fields-of-view, as this provides increased multiple

detections. The first proposed method of preventing (or penalizing) the overlapping

of sensors includes an additional term in the integrand of the cost function (with its

own respective weight) that calculates the area coverage, or the area in A covered

by at least one sensor. This method was investigated in Chapter 5, as the sensors

were uncontrollable. The second method, which uses nonlinear state-constraints on

the trajectories of n sensors to prevent overlapping disks representing sensors fields-

of-view is applicable when the sensors are controllable and the solution is both the

trajectories and control policy of the system. Restating (3.44) here, the nonlinear

constraint for two sensors with position vectors xi = [xi yi]
T and xj = [xj yj]

T ,

and characterized by detection radii ri and rj, is given by

c(xi(t),xj(t)) ≡ −(xi−xj)2− (yi− yj)2 + (ri + rj)
2 ≤ 0, i, j = 1, ..., n, ∀i, j, i 6= j

(6.14)
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Then, for n sensors, the number of state constraints is c1 = n!
2(n−2)!

, where c1 ≤ c, and

c ⊂ C in Eq. (6.4). An additional path constraint is imposed to bound the gliders

to remain in A,

c(x(t)) =

[
x(t)− L
−x(t)

]
≤ 0, c(x(t)) ⊂ C(x(t),u(t), t) (6.15)

where L = [L1, L2, ..., L1, L2]
T ∈ R2n×1. Finally, the constraint on the controls

ensures that the speed of the glider is within the physical limitations,

c(ui(t)) = ‖ui‖ − umax ≤ 0, i = 1, ..., n, c(u(t)) ⊂ C(x(t),u(t), t) (6.16)

where umax = umax · [1, ..., 1]T ∈ Rn×1

6.3 Numerical Solutions of the Optimal Control

Problem

6.3.1 Direct Shooting Approach

A direct shooting approach is implemented in this section to solve the optimal control

problem (6.12), (6.3), (6.8), (6.14)-(6.16) numerically through parametric zero-order

hold control of a uniformly discretized dynamic system. The control is approximated

as piecewise-constant between equidistant collocation points, and the system dynam-

ics are explicitly integrated by forward (Euler) integration of the nonlinear state-space

equations. The infinite-dimensional optimal control problem is approximated by a

finite-dimensional NLP

J(P ) = φ(xN) + ∆t
N−1∑
T=0

L[x(T ), r(u(T )),u(T ), T ], (6.17)

where L[ · ] is the integrand of the cost function (6.12), with constraints

c(P ) ≤ 0 (6.18)
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P ∈ RM is a finite set of parameters uniquely defining the controls u(t) and states

x(t) of the system. For N equally-spaced switching times (T0, T0 + ∆t, ..., TN−1) the

parameter set P for a sensor network is given as,

P = {uT0 , ...,uTN−1
,xT0 , ...,xTN

}, M = 2n× (2N + 1) (6.19)

where the notation for x and u is simplified in discrete time as xTi
= x(T = i)

and uTi
= u(T = i). The constraints (6.14)-(6.16) defined in function space are

converted to finite-dimensional functions of the parameters in Eq. (6.18) of the NLP.

The constraints must be satisfied at N discrete points in time, where the number of

finite inequality constraints on the parameters is c ·N .

The continuous trajectory x(t) represented by integrating the ODE in Eq. (6.2),

x(t) = x(t0) +

t∫
t0

f(x(t),u(t), t)dt, x(t) ∈ R2n (6.20)

can be approximated by the following discretization

x(T ) = x(T − 1) + ∆t · f(x(T − 1),u(T − 1), T − 1) (6.21)

= x(0) + ∆t ·
T−1∑
τ=0

f(x(τ),u(τ), τ), x(0) = xT0 (6.22)

where ∆t = tf/N . Substituting the nonlinear glider dynamic equation (6.8) into

(6.22) over the time interval [T, T + 1) yields,

x(T ) = x(0) + ∆t ·
T−1∑
τ=0

[υ(x(τ), τ) + u(τ)] (6.23)

The inherent continuous-time behavior of the dynamic constraint (6.8) is incorporated

into the discretization of (6.23) by further constraining the control and currents to be
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constant along each time interval and change discontinuously only at the switching

times. Then, the cumulative cost is obtained by Euler forward integration of the

discretized performance index (6.17) and the state-space equations (6.23).

In Section 6.4, the NLP (6.17)-(6.19) is solved using SQP [67], [68], giving a

suboptimal but feasible solution to the optimal control problem (6.12), (6.3), (6.8),

(6.14)-(6.16). This solution can be arbitrarily close to the global solution by choosing

the size of the parameter set P arbitrarily large (i.e., M →∞ and ∆t→ 0) [102].

6.3.2 Gauss Pseudospectral Method of an NLP

A direct approach to solving the continuous time optimal control problem described

in Eqs. (6.12), (6.3), (6.8), (6.14)-(6.16) is referred to as the Gauss Pseudospectral

methom (GPM) [103–105]. GPM is an orthogonal collocation method where the

collocation points are the Legendre-Gauss points of which the state and control is

approximated. The following summarizes GPM for this one-phase optimal control

problem, while the reader is referred to [103] for further details of the method.

Since the Bolza problem defined in Eqs. (6.12), (6.3), (6.8), (6.14)-(6.16) is defined

over the time interval t ∈ [t0, tf ], and GPM points lie on the interval τ ∈ [−1, 1], the

following transformation is used to express the problem in t ∈ [t0, tN ] = [−1, 1],

τ =
2t− (tf + t0)

tf − t0
(6.24)

It follows that by using Eq. (6.24), the scalar cost function (6.12) is given in terms

of τ ∈ [−1, 1] as,

J = φ(x(−1), t0, tf ) +
tf − t0

2

1∫
−1

(
WT · T kA (x(τ), r(u(τ)))−Wu ·uT (τ)Ru(τ)

)
dτ

(6.25)
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subject to the constraints,

ẋ(τ) =
tf − t0

2
(υ(x(τ), τ) + u(τ)) (6.26)

Φ(x(−1), τ0, τf ) = 0 ∈ Rq (6.27)

C(x(τ),u(τ), τ) ≤ 0 ∈ Rc (6.28)

The state, x(τ), of the continuous problem is approximated using a basis of N + 1

Lagrange interpolating polynomials, Li, (i = 0, ..., N), on the closed interval τ ∈

[−1, 1] as

x(τ) ≈ X(τ) =
N∑
i=0

X(τi)Li(τ), (6.29)

where Li(τ) for i = 0, ..., N is defined as follows

Li(τ) =
N∏

j=0, j 6=i

τ − τj
τi − τj

∣∣∣∣ Li(τj) =

{
1 i = j
0 i 6= j

, i, j = 0, ..., N (6.30)

The control is also approximated using a basis of N Lagrange interpolating polyno-

mials Li,(i = 1, ..., N) as

u(t) ≈ U(τ) =
N∑
i=1

U(τi)Li(τ), (6.31)

where Li in Eq. (6.30) also satisfies the property in Eq. (6.30) except for the single

difference of i, j = 1, ..., N .

Once J is transcribed to be τ ∈ [−1, 1], then it is approximated using a Gauss

Quadrature [106], where the discretization occurs at the Gauss points. The approxi-

mation to the derivative of the state ẋ(τ) in terms of x(τ) at the collocation points
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τi, we differentiate Eq. (6.29) to obtain a matrix multiplication of the following form:

ẋ(τ) ≈ Ẋ(τ) =
N∑
i=0

X(τi)L̇i(τ) =
N∑
i=0

D`i(X)(τ`) = (υ(X(τ`), τ`) + U(τ`)) , ` = 1, ..., N,

(6.32)

where D`i are the elements in the D ∈ RN×N+1 differential approximation matrix

determined offline from the exact derivative of the Lagrange interpolating polynomials

Li(τ) as follows

D`i = L̇i(τk) =
N∑
ı=0

∏N
j=0,j 6=i,ı(τ` − τj)∏N
j=0,j 6=i(τi − τj)

(6.33)

The continuous time problem is transcribed into a NLP using the variables X` =

X(τ`) ∈ Rn for the state and U` = U(τ`) ∈ Rm for the control and the `th Gauss

point. When using GPM, the differential dynamic constraints are applied only at

the N collocation points, whereas the state is approximated at N + 1 interpolation

points (including τ = −1) [103]. The cost functional in Eq. (6.25) is approximated

using the Gauss quadrature [106] as

J = φ(X0, t0, tf ) +
tf − t0

2

N∑
`=1

w`
(
WT · T kA (X`, r(U`))−Wu ·UT

` RU`

)
(6.34)

where w` are the Gauss weights. The discretized differential dynamic constraint is

transcribed into algebraic constraints via D as follows,

N∑
i=0

D`iXi −
tf − t0

2

N∑
`=1

w` (υ(X`, τ`) + U`) = 0 (6.35)

Finally, the boundary and path constraint, where the latter is evaluated at the LG

points, are expressed as

Φ(X0, t0, tf ) = 0 (6.36)

C(X`,U`, τ`) ≤ 0, ` = 1, ..., N (6.37)
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The cost function of Eq. (6.34) together with the algebraic constraints of Eqs. (6.34)-

(6.36) comprise the NLP whose solution is an approximate solution to the continuous

Bolza problem, and solved using the optimal control software GPOCS [105].

6.3.3 Single-Vehicle Minimal Energy Method

Much of the research in trajectory optimization of an underwater vehicle is to min-

imize energy for a single vehicle for fixed initial and final positions [94–96]. Using

these methods, a fast and effective algorithm, referred to here as single-vehicle mini-

mal energy method (SVM), is formulated here by solving only for the minimal energy

trajectories of each glider individually. The cooperative measure of track coverage

is incorporated into the individual optimal trajectories through the initial and final

positions of the gliders. These positions are acquired by obtaining several local solu-

tions to the static track coverage optimization problem state in Problem 4.0.1 (i.e.,

a solution for each random initialization) from Chapter 4. If the initial positions are

fixed (e.g., a prior deployment which is not optimal), the final positions may be ob-

tained by employing the optimal repositioning algorithm described in Section 4.1.4,

for a value of w that constrains the sensors to remain in A. If the initial sensor posi-

tions are not given (i.e., x0: free), then the initial and final positions are heuristically

selected as a local optimum solution. For example, a heuristic strategy to selecting

the initial and final positions utilizes the symmetry of the track coverage function.

A static local optimal solution may be to place sensors centralized to one part (e.g.,

a corner) of A. Then, the final position can be selected by translating these sensors

to the opposite corner of A. Then, the control strategy is for each sensor to travel

from its initial position to the desired final position with minimal control-effort.

As to be expected, this algorithm provides less coverage than the solutions ob-

tained by DSM and GPM. However, it provides very little computation and is shown
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to improve track coverage significantly over both the area coverage solution and the no

control trajectories. Formally stated, the optimal control problem for the individual

gliders is to find the control histories u(t) which minimizes the energy consumption,

over a fixed time interval, [t0, tf ], that is,

J ′(ui(t)) = φ(xi(tf ))−
tf∫
t0

{
Wu ·

(
uTi (t)Rui(t)

)}
dt, R ∈ R2×2 (6.38)

φ(xi(tf )) = Wφ · [xi,f − xi(tf )]
T [xi,f − xi(tf )], Wu,Wφ, φ ∈ R (6.39)

where Wu > 0 and Wφ > 0 represent the weights on the total energy expenditure and

the final position, respectively, and xi,f and xf (tf ) are the desired and actual final

position of the ith sensor. The control that minimizes J ′ is formulated as an NLP,

min J ′(ui(t)), (6.40)

subject to xi(t) = xi,0 +

t∫
t0

υi(xi(t), t)dt (6.41)

0 < xi,0 < L1 (6.42)

0 < yi,0 < L2 (6.43)

where xi,0 = [xi(t0) yi(t0)]
T and the objective function is given by (6.38). The

NLP (6.40)-(6.43) is solved by the SQP algorithm [67, 68] using Runge-Kutte (4,5)

numerical integration [88]. The Single-Vehicle Minimal Energy Method is presented

as Algorithm 2.

6.4 Application to the Optimal Control of Under-

water Gliders in Sensor Surveillance Systems

The methodology developed in the previous sections is implemented for trajectory

optimization of a network of gliders, each equipped with an acoustic sensor network,
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Algorithm 2 Pseudocode of the Single-Vehicle Minimal Energy Method

if x0 is fixed then
Solve the NLP (4.1),(4.2),(4.7)-(4.12) for x∗f

else
Solve the NLP (4.1)-(4.4) for multiple initializations
Heuristically select x∗0 and x∗f from the local static optimums

end if
for i = 1 to n do

Solve for the control that minimizes J ′ by the NLP (6.40)-(6.43)
end for

for the purpose of the cooperative track-coverage measure over an area A with di-

mensions L1 × L2 = 90 × 82.5 (Km2). The nominal ranges r0 that represent the

unforced sensors fields-of-view are listed in Table 6.1 for the different sensor networks

used in this study. Due to the highly nonlinear cost function J (6.12) and dynamics

(6.8), one must strive to be convinced that the numerical solution obtained to the

optimal control problem is a reasonable approximation to a (global) maximum. As

there are no systematic methods for this [107], a heuristic method to the problem at

hand consists of comparing the solutions of three independent approximation meth-

ods, DSM, GPM, and SVM, which were discussed in Section 6.3. While it is shown

that the solutions obtained from these three methods for four different sensor net-

works are similar, the solution from DSM is slightly improved over GPM and even

moreso over SVM. Then, the DSM algorithm is compared to the control policy ob-

tained by the maximum area coverage algorithm, which has been proposed by several

authors, including [14, 108, 109]. In Section 6.4.2 a Pareto-front approach to solving

the weighted difference cost function (6.12) illustrates the effects of different weights

on energy and track-coverage. Also investigated is the subproblem formulation of

trajectory optimization for a mission that requires the sensor network to maintain a

certain amount of track coverage. By including an additional constraint on the mini-

mum track coverage and minimizing only energy consumption, the results in Section

6.4.3 show very different results for slight variations in the minimum allowable track
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coverage.

Table 6.1: Sensor networks size and nominal ranges

n Ranges, r0 (Km)

10 [3, 3, 5, 5, 6, 6, 8, 8, 10, 10]T

15 [4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4]T

20 [4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4]T

6.4.1 Optimal Glider Trajectories

A heuristic method for determining whether the numerical solution is in fact a rea-

sonable approximation to the global maximum consists of comparing the solutions

of three independent approximation methods presented in Section Ḟor example, the

parametric-constant zero-order hold control solution from DSM in Section 6.3.1 is jus-

tified if the gliders trajectories are similar to those obtained by GPM, from Section

6.3.2. Then, the solutions obtained by these two methods are compared to the solu-

tion from SVM, where the control policy is solved for each glider individually. The

results from these methods are summarized in Table 6.2. The performance measures

of track-coverage, energy, and objective functional J for weights (WE, WT ) = (1, 1).

Only the results from two examples are listed for GPM as this was an extremely

time-consuming routine due to the complexity of the cost function, and took consid-

erably more time to run compared to DSM or SVM. As it is observed that GPM and

DSM are in fact very similar, with DSM converging to a slightly better solution in

both cases, no more simulations from GPM are necessary for comparison.

To illustrate similar solutions obtained by DSM and GPM, Fig. 6.3 shows the

solution for n = 10 sensors and k = 3 required detections over a 3-day mission

time. While the solutions to both GPM and DSM are to place the gliders initially in

the upper-right-hand corner of A and similarly the gliders final positions are in the
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bottom-right-hand corner of A, DSM converged to a better local solution (+2%). For

the second example where x0 is fixed and the mission time is 5-days, the performance

measures (energy, track coverage, and multiobjective cost) are illustrated in Figure

6.4. Although the control obtained by DSM is constrained to be a step function, the

local solution is in fact better for DSM over GPM (+9%). Therefore, the simplifica-

tions to the numerical solution obtained by the numerical direct shooting method in

Section 6.3 can be applied successfully to this highly nonlinear, large scale problem

in order to achieve a suitable approximation to the (global) solution.

The third method, single vehicle minimum energy solution or SVM, consists of

solving the minimal energy control solution of each glider according to Algorithm

2. The results of this simulation are listed in Table 6.2. As to be expected, SVM

achieves less track coverage than GPM and SVM. By cooperatively controlling the

gliders, improvements over SVM are as much as +71%. However, for n = 10, k = 3,

the expected improvement of DSM is only 19%. Also, the the computation expense

of SVM is considerably less than DSM and GPM, as the integrand of the cost func-

tion contains only the quadratic energy term, and the offline static optimization is

completed once (twice for x0: free). Therefore, SVM provides a computationally less

expensive alternative to DSM, although with less expected performance.

The effectiveness of the numerical solution in Section 6.3 from DSM is also com-

pared to the area coverage formulation, which is a popular performance measure in

the surveillance literature [14,108,109] and is derived in Section 3.2. Solving for the

maximum area coverage problem can be solved by defining a new cost function that

replaces the track coverage term in (6.12) with the area coverage function (3.28). An

equivalent (and more efficient) method of solution consists of minimizing the NLP

(6.17)-(6.19) for weights Wu = 1 and Wφ = WT = 0, which includes the nonover-

lapping sensors fields-of-view constraint. Then, the performance measures (track
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Figure 6.3: Comparison of the solutions to the optimal initial positions and trajec-
tories for the (a) direct shooting method solved by DSM and (b) GPM.
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Table 6.2: Performance measures of network parameters and numerical solution,
where ( · ) refers to (DSM Improvement, %).

(n,k) : Performance DSM GPM SVM

x0, tf Measures

(10,3): Track Coverage 2.929× 104 2.802× 104 2.360× 103

x0 fixed, Energy 924.2 1,406 22.03

5-days Cost, J 2.836× 104 2.661 × 104

(+9%)
2.358× 104 (+21%)

(10,3): Track Coverage 1.821× 104 1.809× 104 1.527× 104

x0 free, Energy 164.9 336.6 34.90

3-days Cost, J 1.805× 104 1.776 × 104

(+2%)
1.523× 104 (+19%)

(15,3): Track Coverage 1.742× 104 – 1.040× 104

x0 fixed, Energy 1,307 – 212.8

3-days Cost, J 1.742× 104 – 1.019× 104 (+71%)

(20,4): Track Coverage 1.818× 104 – 1.449× 104

x0 free, Energy 268.9 – 162.3

3-days Cost, J 1.791× 104 1.433× 104 (+25%)

coverage, energy, and multiobjective cost) are listed in Table 6.3 for comparison. As

expected, the track-coverage DSM trajectory optimization significantly improves the

track coverage of A as opposed to the area coverage solution. It is interesting to note

that the total amount of area coverage, i.e., the time integral of (3.28), calculated for

the two solutions is approximately the same, with only a slight decrease achieved by

DSM due to the increase in energy consumption; however, the area coverage solution

provides significantly less track coverage (less than half on average). For example,

the largest difference between the total area coverage for the maximum area coverage

solution and DSM occurs for the sensor network (n = 15, k = 3), where only a 3.7%

increase in area coverage is achieved by the maximum area coverage solution. This

is compared to the increase of 121% in track coverage that is achieved by the track

coverage solution DSM over the maximum area coverage solution. Therefore, the for-
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Results summary for the Optimal Control Paper. By Kelli 10/15/2007 
 
1) Comparison between two methods of numerical solution. These results are intended to 
show that SQP provides a maximal solution. 
 
 (n, k): 
x0, 
time 

Performance 
Measures 

SQP GPM Improvement 
(%) 

(10,3): 
x0 fixed, 
5-days 

Track coverage 
Energy 
Cost, J 

2.929x104

924.2 
2.836x104

2.802x104 

1,406 
2.661x104

 
 
+109% 

 Maximum gradient    
(10,3): 
x0 free, 
3-days 

Track coverage 
Energy 
Cost, J 

1.821x104

164.9 
1.805x104

1.809x104 

336.6 
1.776x104

 
 
+102% 

 Maximum gradient    
 
 
In the table: Provide the gradients from each optimization from SQP as a “lithus 
test” to show they are close to zero… 
 
Although the solutions between GPM and SQP are similar, SQP converges to a better 
solution and requires less computation time.  The following  plot compares the three 
performance measures of SQP and GPM for  the example n=10, k=3, x0 fixed and 
mission time is 5-days 
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Figure 6.4: A comparison of the three performance measures of the solutions to the
trajectory optimization obtained by DSM and the the direct shooting method solved
by DSM for the example n = 10, k = 3, x0 fixed and mission time is 5-days.

mulation and solution to the track-coverage optimization can be directly applied to

area coverage problems, whereas it is not true vice versa. Comparing the trajectories

of the n sensors for the two solutions (Figs. 6.5(a) and 6.5(b)), it is apparent why

the track coverage is so poor for the area coverage solution. Track coverage is best

achieved when the limited number of sensors are in a clustered configuration which

maximizes the k detections required for a positive detection. The final comparison of

DSM is to the zero-control scenario, where sensors are simply left to move with the

currents for a given sensor configuration (i.e., x0 fixed). Without control, the sensors

fields-of-view overlap and the gliders drift outside of A (Fig. 6.5(c)). This results

in significant coverage holes, and improvement of the DSM trajectory optimization

is nearly 9 times that of zero-control. It should also be noted that the solutions ob-

tained by SVM provide significant improvement compared to both the area coverage

solution and the zero-control trajectories.
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The above plots illustrate the three solutions from Table I for fixed initial sensor positions 
(n=15, k=3). Over the duration of the mission, the SQP method significantly improves 
track coverage.  As for the no control, more than half of the sensors drift outside of the 
area of interest, in addition to several sensors overlapping while in A.  
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The above plots illustrate the three solutions from Table I for fixed initial sensor positions 
(n=15, k=3). Over the duration of the mission, the SQP method significantly improves 
track coverage.  As for the no control, more than half of the sensors drift outside of the 
area of interest, in addition to several sensors overlapping while in A.  
 

(b)

 
 

    : x0           : xfSQP Area Coverage 

La
tit

ud
e 

[d
eg

re
es

] 

La
tit

ud
e 

[d
eg

re
es

] 

Longitude [degrees] Longitude [degrees] 
        : SQP           : AC             : NC             : RP 

No control 

Tr
ac

k 
C

ov
er

ag
e 

La
tit

ud
e 

[d
eg

re
es

] 

C
os

t, 
J 

Longitude [degrees] time [hours] 

 
The above plots illustrate the three solutions from Table I for fixed initial sensor positions 
(n=15, k=3). Over the duration of the mission, the SQP method significantly improves 
track coverage.  As for the no control, more than half of the sensors drift outside of the 
area of interest, in addition to several sensors overlapping while in A.  
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The above plots illustrate the three solutions from Table I for fixed initial sensor positions 
(n=15, k=3). Over the duration of the mission, the SQP method significantly improves 
track coverage.  As for the no control, more than half of the sensors drift outside of the 
area of interest, in addition to several sensors overlapping while in A.  
 

(d)

Figure 6.5: Comparison of the trajectories from (a) trajectory optimization via
DSM, (b) area coverage, and (c) zero-control, while (d) shows that the DSM solution
achieves significantly higher track-coverage over the other three methods.
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Table 6.3: Performance measures for the network parameters (n, k) and control
policy over a mission period-of-time, where ( · ) refers to (DSM Improvement, %).

(n,k) : Performance DSM Maximum Area Zero-Control

x0, tf Measures Coverage

(10,3): Track Coverage 2.929× 104 1.710× 104 1.274× 104

x0 fixed, Energy 924.2 0.5443 0

5-days Cost, J 2.836× 104 1.822× 104 (+56%) 1.274 × 104

(+123%)

(10,3): Track Coverage 1.821× 104 9,731 –

x0 free, Energy 164.9 1.508× 10−4 –

3-days Cost, J 1.805× 104 1.217× 104 (+50%) –

(15,3): Track Coverage 1.742× 104 8, 026 1,989

x0 fixed, Energy 1,307 140.9 0

3-days Area Coverage 5.213× 104 5.404× 104 3.190× 104

Cost, J 1.742× 104 7,880 (+121%) 1,989 (+776%)

(20,4): Track Coverage 1.818× 104 6,733 –

x0 free, Energy 268.9 9.827× 10−4 –

3-days Cost, J 1.771× 104 6,732 (+166%) –

6.4.2 Parametric Study of the Multi-Objective Optimal Con-

trol Problem

In practice, the weights of the individual cost of energy and track coverage are typ-

ically governed by specific mission requirements. For example, missions of longer

duration will require a higher energy weight for conservation. The weighted sum ap-

proach to multiobjective optimization applied in this research allows for this freedom

of weight selection by the user. In order to illustrate the effect of the weights on the

solution, i.e., initial deployment scheme and control policy, a parametric study was

performed on a sensor network with n = 10 sensors and k = 3 required detections

for the weights WE + WT = K. Then the multiobjective cost function of the NLP
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(6.17) can be restated as

J = max
T∑
τ=0

[
κ · T

k
A (x(τ), r(u(τ)))

sfT
+ (K − κ) · u(τ)Ru(τ)

sfu

]
(6.44)

for the weighting coefficients Wφ = 0, WT = κ, Wu = K − κ, where κ ∈ [0, K], and

scaling factors sfT and sfu. For this problem these parameters are given as K = 101,

sfT = 100, sfu = 1. By varying the weights systematically, where each different single

objective optimization determines a different Pareto optimal solution, we solve several

suboptimization problems obtaining optimal solutions in the objective space, which

then leads to an approximation of the Pareto front. The series of Pareto points

obtained with weighting increments listed in Table 6.4 are shown in Fig. 6.6(a),

where the extremum values of the convex curve are given by the weighting increments

WE = 0 and WE = K. Four different solutions are illustrated for their respective

weights, three in Fig. 6.6 and one (WT = 100) in Fig. 6.3(a). As expected, the

minimal energy (WE = K) provides the least amount of track coverage as the solution

is governed by a noncooperative objective. When energy and track-coverage are

equally weighted, the solution shows that the sensors more effectively use the natural

currents to maneuver to areas of higher track coverage. However, in all cases the

solutions recognize the currents in the bottom left hand corner of A are relatively

smaller in magnitude after the first day, which is reflected in the respective initial

placements and subsequent trajectories; as κ → K, the gliders move to this area

of A much quicker. This natural phenomena of the currents over time shows the

importance of including a forecast model of the ocean dynamics into the equations

of motion for trajectory optimization.
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3) Perform a parametric study of optimal trajectories for different pairs of weights WT 
and Wu, in the cost function (4).  In this study, both x0

*and u*(t) are computed 
simultaneously.   

 
The Parametric study was performed on a sensor network with n=10 sensors and k=3 
detections. As to be expected, when energy is given less weight, more control is applied 
to the gliders to maneuver them to areas of higher track coverage immediately. When 
energy and track-coverage are equally weighted, the solution shows that the sensors more 
effectively use the natural currents to maneuver to areas of higher track coverage. 
However, when track coverage is given a nonzero weight, all of the solutions recognize 
that the currents in the bottom left hand corner of A are relatively smaller in magnitude 
after the first day, which is reflected in the respective initial placements and subsequent 
trajectories.   
(WE, WT) dtttT )()( uRu∫  ∫⋅ dttttk

A ))(),(),((01.0 ruxT  J 

(101, 0) 2.065x10- 5 94.036 -2.086 x10- 3

(100, 1) 0.0172 133.3 131.6 

(50.5, 50.5) 5.007 172.6 8,464 

(1, 100) 164.9 182.1 1.805x104

(0.001, 100.999) 459.87 183.46 1.853x104
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The optimal solutions from weighted sum approach, where the Pareto front is 
a convex curve. 
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An important feature of our method demonstrates how the competing objectives affect the 
solution, where four different solutions are illustrated for their respective weights to show the 
transition of the opimal solution. When energy is weighted the most, the solution shows a 
sensor network that is spaced and not uniform, while when energy is given the least 
consideration, the sensors are nearly stationary in a local static optimum. 
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An important feature of our method demonstrates how the competing objectives affect the 
solution, where four different solutions are illustrated for their respective weights to show the 
transition of the opimal solution. When energy is weighted the most, the solution shows a 
sensor network that is spaced and not uniform, while when energy is given the least 
consideration, the sensors are nearly stationary in a local static optimum. 
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An important feature of our method demonstrates how the competing objectives affect the 
solution, where four different solutions are illustrated for their respective weights to show the 
transition of the opimal solution. When energy is weighted the most, the solution shows a 
sensor network that is spaced and not uniform, while when energy is given the least 
consideration, the sensors are nearly stationary in a local static optimum. 
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Figure 6.6: (a) Pareto front is a convex curve for the following weights, (WE,WT ):(b)
(101,0), (c) (50.5,50.5), (d) (0,101), while (1,100) is in Fig. 6.3(a).
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Table 6.4: Maximal solutions from the weighted sum approach

(WE, WT ) 1/sfu ·
∫

u(t)TRu(t)dt 1/sfT ·
∫
T kA ( · )dt J

(101, 0) 2.065× 10−5 94.036 −2.086× 10−3

(100, 1) 0.0172 133.3 131.6

(50.5, 50.5) 4.844 172.8 8,482

(1,100) 164.9 182.1 1.805× 104

(0,101) 459.9 183.5 1.853× 104

6.4.3 Inequality Constraints for Maintaining Track Coverage

Above a Minimum Threshol

In certain missions, it may be necessary to maintain a minimum amount of track-

coverage. Then, the problem is reformulated as a minimum energy problem (i.e.,

WT = 0) that includes an additional constraint in C( · ), as

c(T kA [x(t), r(u(t))]) = Tmin − T kA [x(t), r(u(t))] ≤ 0 (6.45)

where Tmin is the minimum allowable track coverage for the mission. These results for

(n, k) = (20, 3) show how the minimum energy solution is affected when a minimum

constraint on energy is included in the problem formulation. Figure 6.7(a) shows

that the amount of track coverage remains close to its lower bounds over the mission

time, in this case a three-day period.

Slight changes in the minimum energy constraint results in significant differences

in total energy consumption. For example, even though two values of Tmin are only

3% different, the gliders’ trajectories are significantly different. When Tmin = 315,

the total energy is increased nearly 320 times over Tmin = 300. When Tmin = 325,

sensors are placed very close to their final positions in a corner (Fig. 6.8(b)), as a

clustered corner configuration provides the most instantaneous track-coverage. It is

the left hand corner due to the natural phenomena of smaller currents after the first

day, and any other corner would have both used more energy to remain there, and
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Tmin would have been violated by traveling from one corner to the next. Therefore,

most of the control is applied in the first day until the currents become smaller, as

evident from Fig. 6.7(b). The solution to Tmin = 300, which is illustrated in Fig.

6.8(a), shows how important the initial positions are to minimizing the overall energy,

as very little control is needed to achieve relatively high track coverage over the entire

mission Fig. 6.7).

Table 6.5: Total amounts of energy and track coverage for different values of Tmin.

Tmin Energy Track Coverage

300 0.591 2.191× 104

315 188.8 2.260× 104

325 254.0 2.346× 104

4) Solve the optimal control problem subject to performance constraints.   
(4.B) In equation (4), let γ = K, that is, optimize only energy consumption, subject to the 
constraint, 
 
 ( )[ ] min)(),(, TtttT k

A ≥urx  
where Tmin is the minimum allowable track coverage in the mission. 
 
Compute the value of Tmin from the value of probability of track detection used in our 
static track coverage paper, in the results section where a minimum probability of track 
detection was set for a network, and sensors were added until this minimum probability 
was achieved.  A couple of simulations (with different n, k, and Tmin) should be enough 
for this study.
 
 
(Results) These results show how the minimum energy solution is affected when a 
minimum constraint on energy is included in the problem formulation. The amount of 
track coverage remains close to its lower bounds over the 3-day period. Also, even with 
slight changes in the minimum energy constraint, the results show significant differences 
in total energy consumption. 
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4) Solve the optimal control problem subject to performance constraints.   
(4.B) In equation (4), let γ = K, that is, optimize only energy consumption, subject to the 
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where Tmin is the minimum allowable track coverage in the mission. 
 
Compute the value of Tmin from the value of probability of track detection used in our 
static track coverage paper, in the results section where a minimum probability of track 
detection was set for a network, and sensors were added until this minimum probability 
was achieved.  A couple of simulations (with different n, k, and Tmin) should be enough 
for this study.
 
 
(Results) These results show how the minimum energy solution is affected when a 
minimum constraint on energy is included in the problem formulation. The amount of 
track coverage remains close to its lower bounds over the 3-day period. Also, even with 
slight changes in the minimum energy constraint, the results show significant differences 
in total energy consumption. 
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Figure 6.7: The (a) track coverage and (b) energy for the three different values of
Tmin.

6.5 Summary and Conclusions

A new optimal control problem has been formulated here that seeks to control a group

of independent gliders in a cooperative manner for the purpose of track coverage. By

incorporating a forecast model into the dynamic constraints, the glider trajectories

can effectively maneuver to areas that require less energy long-term. Prediction of
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(b)

Figure 6.8: The solution of the gliders positions and trajectories for (a) Tmin = 300
and (b) Tmin = 325.
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the temporal evolution of the oceanographic conditions can be generated by forecast

models, but also updated as the vehicles navigate by incorporating new measure-

ments and updated forecasts. Hence the trajectory optimization problem can be

applied in mixed pregenerative/reactive planning situations. A central challenge in

guidance and control of autonomous vehicles is the difficulty of efficiently computing

trajectories that exploit the domains of the vehicle’s nonlinear behavior as a result of

environmental conditions. It is shown here that the direct shooting, parametric zero

order hold control numerical solution converged to a better local solution in a much

shorter time compared to GPM. It was also shown that the track-coverage solution

provided nearly maximum area coverage, while the maximum area coverage solution

provided much less track coverage. When compared to the independent reposition-

ing problem, the improvement of the cooperative track coverage solution was less

significant than the improvement over area coverage due to the incorporation of the

static local optimums into the initial and final conditions of the problem formulation.

This approach could provide the basis for future trajectory optimization algorithms.

A parametric study performed on the weights of the objective function provided an

approximation to the Pareto-front. In conclusion, the optimal control problem was

shown to be easily modified according to specific mission requirements, e.g., longer

missions vs. shorter missions, achieve maximal area coverage, and maintain a mini-

mum amount of track coverage over time.
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Chapter 7

Conclusion

The primary objective of this dissertation is to optimize the quality of service of

sensor networks that cooperatively detect targets traversing a region of interest. A

novel approach is presented for defining and formulating the track coverage in a

sensor network that tracks a moving target through limited measurements, such as

CPA detections. Central to this approach is the formulation that is based on planar

geometry and the introduction of a k-coverage cone, which quantifies the amount of

tracks detected by k sensors in terms of opening angles along the boundaries of an

area of interest. A coverage function is derived analytically to express the k-coverage

in terms of sensor locations and ranges. Consequently, the track coverage function

can be optimized using a nonlinear program (NLP) in order to compute the optimal

network placement over a region of interest for known and constant sensors range.

The numerical results show that optimal sensor placement significantly increases track

coverage compared to existing grid and random deployment schemes. In scenarios

where a deterministic deployment is not feasible or when sensor networks have been

displaced over time by winds or oceanic currents, this methodology is easily modified

to reposition sensors and significantly improve track coverage. This method enables

a very practical and cost-efficient alternative to replenishing sensor networks.

The methodology developed for measuring the fixed (instantaneous) track cover-

age of a sensor network is extended to measure track coverage of a moving sensor

network with respect to an area of interest over a period of time. This problem

is relevant to a sensor network of sonobuoys floating and drifting according to the

oceanic-induced velocity field. This system is initially considered non-maneuverable,
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and therefore the track coverage optimization problem is formulated as the optimal

initial positions of the sonarbuoys that, over a fixed period of time, provide maximum

cumulative track coverage. To solve this problem, we developed a closed-form sys-

tem of differentiable equations describing the cumulative track coverage with respect

to the natural trajectories of the sensors, and their location-dependent range over a

fixed period of time. A state-space representation of the motions of the individual

sensors subject to the ocean current vector fields can be derived from sonobuoy drift

models, with specific values obtained by CODAR measurements in tabular form. In

order to incorporate the drift dynamics into the system dynamics for optimization,

a closed form function describing the nonlinear, time-varying ocean velocity field is

approximated by a neural network. A BN was shown to provide a realistic model of

the location-dependent ranges by incorporating both known range models and the

passive sonar equation.

Then, the closed-form models of the current-velocities and sensor ranges are in-

corporated implicitly into an objective function that is the weighted sum of the

cumulative track and area coverage. The inclusion of area coverage is necessary to

counteract the trivial solution to the track-coverage function. The optimal initial

positions significantly improve upon other deployment methods proposed in the lit-

erature (i.e., grid and random), as well as the solution to the track coverage problem

that does not include the ocean current-velocities. Most significant to the optimal

initial deployment solution is that when uncertainty is incorporated into the system

and incorporated over the entire trajectory, cumulative track coverage is not signifi-

cantly affected. Even when a bias error is included into the system, the outcome is

nearly the same as including no bias error. This entire methodology demonstrates

the importance of a deterministic deployment scheme, even if the deployment must

be done quickly and in less than ideal weather conditions.
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The methodology was then extended to a controllable platform of underwater

gliders with onboard acoustic sensors. This formulation led to a new optimal control

problem, as none of the current control formulations for mobile sensor networks

address the optimization of the trajectories of a group of underwater vehicles for

cooperative coverage in the presence of ocean dynamics. As solving for a large-scale,

highly nonlinear control problem is very difficult, several methods of solution were

implemented. A computationally less-expensive direct-shooting method of solution

was shown to provide superior results compared to GPM. Although this particularly

method of solution may not always be applicable (as discussed in Section 7.1), it does

provide an efficient approximation that can either be used as a main solution or as a

comparison to a more effective solution in future work.

The contributions described in this dissertation lead to a successful implementa-

tion of the different types of sensor networks, i.e., fixed, moving, and mobile. The

improvements of all key design stages compared to existing methods lead to a highly

effective method for coverage that is both cost efficient and practical. The formula-

tions developed here greatly increases the potential for real life applications of simple

and inexpensive proximity sensors for advanced surveilling of a region of interest.

7.1 Recommendations

The main recommendation of future work is to expand upon the different nonlinear

models used in this research and address these problems in a three-dimensional Eu-

clidean space. In this case, the two-dimensional disk becomes a three-dimensional

spherical sensor field-of-view and the system dynamics include the z-direction of

the ocean current-velocities. However, CODAR data is limited to measuring two-

dimensional surface current velocities over a period of time. Current projects, such

as the large-scale Autonomous Ocean Surveying Network [110], employ a group of
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underwater gliders to survey a region of the ocean. Gliders naturally provide data

of a three-dimensional region of interest over a period of time and may provide a

sample of the ocean current velocities for purposes of training a NN to map a four-

dimensional input (x, y, z, and t) to a three dimensional output (υx, υy, υz). In

addition to the three-dimensional ocean current profile, it would be interesting and

provide more validation to the effectiveness of this coverage formulation and method

of solution to investigate a different area of the ocean. One potential area of interest

is off the coast of Monterey Bay, CA, where particularly strong surface currents are

known to occur just outside the bay.

One of the most difficult components of optimizing a highly nonlinear cost function

is to solve for the global optimum. In this dissertation, we either introduced many

random initializations or compared the solutions from to several other independent

methods. The GPM actually provided, at least in theory, an analytical test in which

to show the goodness of solution, as it provides estimation procedures which can be

used to verify the optimality of the resulting solution. However, it was shown here

that GPM does not yet converge to solution in a reasonable amount of time due to

the large-scale, highly nonlinear model.
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Appendix A

Proof of Remark 3.1.1

LetRα(by) denote a ray that intersects Ci = Ci(xi, ri) in R2
+. Consider any two points

that lie on Rα(by) and inside Ci(xi, ri), and let u1,u2 ∈ R2
+ denote their positions

relative to the origin y0 of the coverage cone K(Ci,y0). By construction, u1,u2 ∈

Ci(xi, ri) and a vector z joining the two points will lie on the rayRα(by). Let c1 and c2

denote any two positive constants. By definition of vector sum and subtraction [59],

if z = c1u1 + c2u2 then z has the same origin as u1 and u2. Thus, since z lies on

Rα(by), Rα(by) intercepts the y-axis at the cone origin y0. If z = ±c1u1 ∓ c2u2, z

does not have the same origin as u1 and u2 and, thus, Rα(by) does not intercept the

y-axis at y0. By definition, K(Ci,y0) is the set of all nonnegative combinations of

the elements in Ci. Since u1 and u2 are two elements in Ci, and any nonnegative

combination of these two elements can be written as c1u1 + c2u2, with c1, c2 > 0,

it follows that z = c1u1 + c2u2 ∈ K(Ci,y0). Finally, since Rα(by) denotes any ray

with intercept by that intersects Ci = Ci(xi, ri) in R2
+, and z = c1u1 + c2u2 provided

Rα(by) intercepts the y-axis at y0, it also follows that any Rα(by) that intersects Ci

and the y-axis at y0 is contained by K(Ci,y0).
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Appendix B

Proof of Proposition 3.1.2

This proof considers a family of k = 3 non-translates S3 = {Ci, Cj, Cl} with index set

IS3 = {i, j, l}. The results can be extended to higher k by induction. From Remark

3.1.1, a coverage cone K(C`,y0) contains the set of all tracks R(by) that intersect C`

in R2
+, where ` ∈ IS3 . Then, from set theory, the set of tracks intersecting all disks

in the family S3 is given by the following intersection:

K3(S3,y0) =
⋂
`∈IS3

K(C`,y0) = K(Ci,y0) ∩K(Cj,y0) ∩K(Cl,y0) (B.1)

From the properties of cones [58, pg. 70], the intersection of a collection of cones is

also a cone. Thus, K3(S3,y0) is a cone. A vector z representing a ray R lies in a

cone K if and only if R lies in K, since any point on R can be written as cz, with

c > 0.

Consider any ray R` ∈ K(C`,y0), where K(C`,y0) = cone(̂l`, ĥ`), and thus can

be represented by a vector z` = c1̂l` + c2ĥ` with constants c1, c2 > 0. Then, z` ∈

K(C`,y0) and, by the properties of vector sum, l̂` ≺ z` ≺ ĥ`. Next, consider a cone

K∗ = cone(̂l∗, ĥ∗) that is finitely generated by two unit vectors ĥ∗ = ĥ and l̂∗ = l̂ı

with , ı ∈ IS3 , and assume l̂ı ≺ ĥ . By the properties of finitely generated cones [58],

any vector z∗ = b1̂l
∗+ b2ĥ

∗ with constants b1, b2 > 0 must lie in K∗. It follows that a

ray R∗ with the same slope and origin as z∗ must also lie in K∗, since any point on

R∗ can be written as cz∗ with c > 0. Since z∗ is a positive combination of l̂∗ and ĥ∗,

it also follows that l̂∗ ≺ z∗ ≺ ĥ∗.

According to Proposition 3.1.2, choose ĥ∗ = ĥ � ĥ` and l̂∗ = l̂ı � l̂` for ∀` ∈ IS3 .

Suppose the unit vectors of S3 can be ordered as ĥl ≺ ĥj ≺ ĥi and l̂i ≺ l̂l ≺ l̂j. Then,

131



the unit vectors and z∗ can be ordered as follows,

l̂` � l̂j = l̂∗ ≺ z∗ ≺ ĥ∗ = ĥl � ĥ` for ∀` ∈ {i, j, l} = IS3 (B.2)

or, more explicitly:

l̂i ≺ l̂l ≺ l̂j = l̂∗ ≺ z∗ ≺ ĥ∗ = ĥl ≺ ĥj ≺ ĥi (B.3)

Since the above order also implies l̂` ≺ z∗ ≺ ĥ` for ∀` ∈ IS3 , then z∗,R∗ ∈ K(C`,y0)

for ∀` ∈ IS3 . Thus, from (B.1), z∗,R∗ ∈ K3(S3,y0) = K∗ = cone(̂l∗, ĥ∗), provided l̂∗

and ĥ∗ are chosen subject to (B.2).

So far it was assumed that l̂ı ≺ ĥ. If the unit vectors in Ω(S3,y0) and Λ(S3,y0)

are such that l̂ı � ĥ, then there are no vectors that can satisfy the order l̂ı = l̂∗ ≺

z∗ ≺ ĥ∗ = ĥ, and K3(S3,y0) = K∗ = ∅.
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Appendix C

Linear Operations for Ordering Unit

Vectors According to a Frame of

Reference

This Appendix illustrates a methodology for efficiently ordering sets of unit vectors

according to a fixed frame of reference. Consider a set of unit vectors {û1, ..., ûn} with

index set I. Any unit vector can be written in terms of its direction sine and cosine,

namely ûi = [cos γi sin γi]
T , for ∀i ∈ I. We seek to order the unit vectors according

to the xy-frame, therefore γi can also be viewed as the angle that ûi makes with the

x-axis. Then, for any two unit vectors ûi and ûj in the first and fourth quadrant,

ûi ≺ ûj if and only if sin γi < sin γj. From Proposition 3.1.2, it is of interest to obtain

the first or last element of a list comprised of these unit vectors in ascending order:

{û, ûl, . . . , ûı}, with û � ûl � . . . � ûı. The first and last elements, û and ûı,

can be obtained without ordering the entire set, using the following pair-wise linear

operations on the direction sines of the unit vectors:

sin γ =
1

2
[sin γi + sin γj − | sin γi − sin γj|] (C.1)

sin γı =
1

2
[sin γi + sin γj + | sin γi − sin γj|] (C.2)

i 6= j, ∀i, j ∈ I

It can be easily shown that the unit vectors generating cones with origin y0 on the

y-axis always lie in the first or fourth quadrant. Thus, the k-coverage cone Kk(Sk,y0)

can be obtained by applying (C.1) to Ω(Sk,y0), and by applying (C.2) to Λ(Sk,y0),

as shown in Proposition 3.1.2.
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In Section 3.1.1 , k-coverage cones are also defined with respect to the x, y′,

and x′ axes. These cones can also be obtained by applying (C.1) and (C.2) to the

corresponding sets of unit vectors provided they first undergo a constant rotation.

Let the following rotation matrices denote clockwise rotations of 90◦, 180◦, and 270◦:

Q90 ≡
[

0 1
−1 0

]
, Q180 ≡

[
1 0
0 1

]
, Q270 ≡

[
0 −1
1 0

]
. (C.3)

Then, (C.1) and (C.2) are applied to the rotated unit vector sets, ΩR and ΛR, obtained

by the following linear operations:

ΩR(Sk,x0) ≡ {ĥRi | ĥRi = Q90ĥi, ∀ĥi ∈ Ω(Sk,x0)} (C.4)

ΩR(Sk,y
′
0) ≡ {ĥRi | ĥRi = Q180ĥi, ∀ĥi ∈ Ω(Sk,y

′
0)} (C.5)

ΩR(Sk,x
′
0) ≡ {ĥRi | ĥRi = Q270ĥi, ∀ĥi ∈ Ω(Sk,x

′
0)} (C.6)

And, the sets ΛR(Sk, · ) are defined by substituting Ω with Λ in the above three

equations. The rotated unit vector sets are only used to determine the indices (, ı ∈

ISk
) of the unit vectors generating a k-coverage cone (as indicated by Proposition

3.1.2). Once the indices are determined, the original unit vectors (ĥ and l̂ı) generate

the actual cone Kk(Sk, · ) and are used in all subsequent operations (Section 3.1.2).
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Appendix D

Proof of Equation (3.14)

Consider the CPA triangle formed by joining the y-intercept y0, the CPA point, and

the ith sensor position xi = [xi yi]
T . This is always a right triangle, and the side

opposite to the right angle (located at the CPA point) is the relative-position vector

vi = (xi − y0), with y0 = [0 by]
T . Let z = [−by/ay − by]T be a vector parallel to

a track Rα(by) that is detected by the ith sensor. Then, the angle φi that is opposite

to the right angle can be obtained from the following dot product,

vi · z = ‖vi‖‖z‖ cosφi =
−byxi
ay

− by(yi − by) (D.1)

and the distance between the CPA point and the sensor is given by

di = ‖vi‖ sinφi (D.2)

The angle φi is eliminated by dividing (D.2) by (D.1),

di
−by( xi

ay
+ yi − by)

=
tanφi
‖z‖

=
tanφi

| by
ay
|
√
a2
y + 1

(D.3)

and by using the trigonometric identity,

tan(φi + α) =
tanφi + tanα

1− tanφi tanα
=

(yi − by)
xi

(D.4)

Then, since ay = tanα, an equation for tanφi is found solely with respect to the

track parameters ay and by:

tan θi =
(yi − by − ayxi)

(xi + ayyi − ayby)
(D.5)
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Hence, by combining (D.5) with (D.3) and simplifying the result, an equation can be

obtained expressing the CPA distance in terms of the track parameters,

di =

∣∣∣∣∣(by + ayxi − yi)√
a2
y + 1

∣∣∣∣∣ ≤ ri

since the CPA must occur within the sensor range in order for the track to be detected.
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Appendix E

Proof of Theorem 3.1.3

We seek a measure µ on the set of tracks Kk(S,y0) given by (3.9). Since Kk(S,y0)

is the union of m sets that may or may not be disjoint, we apply the principle of

inclusion-exclusion [21,62]

µ(Kk(S,y0)) = µ

(
m⋃
j=1

Kk(S
j
k,y0)

)
(E.1)

=
m∑
j=1

(−1)j+1
∑

1≤i1<...<ij≤m

µ(Kk(S
i1
k ,y0) ∩ . . . ∩Kk(S

ij
k ,y0))

where,

m =

(
n
k

)
=

n!

(n− k)! k!
, and

∑
1≤i1<...<ij≤m

is a sum over all the [m!/(m − j)! j!] distinct integer j-tuples (i1, . . . , ij) satisfying

1 ≤ i1 < . . . < ij ≤ m. Also, µ( · ) denotes a measure on the set. Since the right-hand

side of (E.1) is an intersection of cones, it also is a cone on which we can impose the

Lebesgue measure µ.

Now, consider the intersection of cones Kk(S
i1
k ,y0) ∩ . . . ∩Kk(S

ij
k ,y0) inside the

inner summation in (E.1). Where, Silk denotes the ithl k-subset of S, il is a positive

integer between 1 and ij ≤ m, and m is the total number of k-subsets in S. By

the properties of cones, this intersection is also a cone. Also, this intersection is the

set of tracks through y0 that intersect all sensors in the set Sp = {Si1k ∪ . . . ∪ S
ij
k }.

Based on the properties of k-subsets, this set must contain k ≤ p ≤ n elements

of S and, thus, is a p-subset of S. Based on the properties of k-coverage cones
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(Proposition 3.1.2), the set of tracks intersecting all p sensors in Sp (also referred

to as line transversals of Sp) through y0 can be represented by the p-coverage cone

Kp(Sp,y0) = Kp(S
i1
k ∪ . . . ∪ S

ij
k ,y0). Therefore, (E.1) can be written as,

µ(Kk(S,y0)) =
m∑
j=1

(−1)j+1
∑

1≤i1<...<ij≤m

µ(Kp(S
i1
k ∪ . . . ∪ S

ij
k ,y0)), (E.2)

where p is the number of elements in the union of j k-subsets of S. Finally, since a

Lebesgue measure on a k-coverage cone is its opening angle, a Lebesgue measure on

Kk(S,y0) is

T ky0
= µ(Kk(S,y0)) =

m∑
j=1

(−1)j+1
∑

1≤i1<...<ij≤m

ψ(Si1k ∪ . . . ∪ S
ij
k ,y0) (E.3)

The opening angles in the above summation are given by (3.5)-(3.6) and, thus, T ky0

is a function of the sensors positions XS = {x1, . . . ,xn} and RS = {r1, . . . , rn} as

Ci = C(xi, ri).
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Appendix F

Opening Angles Equations

Let ψ = ψ(Sk,y0) denote the opening angle of the k-coverage cone Kk(Sk,y0) for ∀k,

1 ≤ k ≤ n and y0 ≡ [0 by]
T . Then, according to Section 3.1.1, the cone is finitely

generated by two unit vectors l̂ı and ĥ obtained from Λ and Ω, such that ı,  ∈ ISk

and l̂ı � l̂i ∈ Λ(Sk,y0) and ĥ � ĥi ∈ Ω(Sk,y0) for ∀i ∈ ISk
(as shown in Appendix

C). Letting ı and  denote the indices of these unit vectors and using (3.17), the

opening angle can be be written explicitly as a function of XS:


ψ = H[det(Mı)] · sin−1[det(Mı)],
det(Mı) = 1

w2
ıw

2

{[xıqı + (yı − by)rı][xr + (y − by)q]

− [xq − (y − by)r][(yı − by)qı − xırı]}
wi ≡ ‖vi(y0)‖ =

√
x2
i + (yi − by)2, qi ≡

√
w2
i − r2

i , i = ı, 

(F.1)

Where, XS = {xi | i ∈ IS}, ISk
⊂ IS, and xi ≡ [xi yi]

T for ∀i.

The opening angles of the k-coverage cones defined with respect to the other axes

are obtained by the redefining the relative position vector vi. The opening angle of

k-coverage cones with intercept x0 = [bx 0]T on the x-axis is given by:


ζ = H[det(Mı)] · sin−1[det(Mı)],
det(Mı) = 1

w2
ıw

2

{[(x − bx)q + yr][(xı − bx)rı + yıqı]

− [(xı − bx)qı − yırı][yq − (x − bx)r]}
wi ≡ ‖vi(x0)‖ =

√
(xi − bx)2 + y2

i , qi ≡
√
w2
i − r2

i , i = ı, 

(F.2)

The opening angles of the k-coverage cones with intercepts on the remaining axes, x′

139



and y′, are given by,


ξ = H[det(Mı)] · sin−1[det(Mı)],
det(Mı) = 1

w2
ıw

2

{[(L1 − xı)qı + (L2 − yı − by′)rı] · [(L1 − x)r − (L2 − y − by′)q]

−[(L1 − x)q − (L2 − y − by′)r][(xı − L1)rı + (L2 − yı − by′)qı]}
wi ≡ ‖vi(y′0)‖ =

√
(L1 − xi)2 + (yi + by′)2, qi ≡

√
w2
i − r2

i , i = ı, 

(F.3)

and,


ρ = H[det(Mı)] · sin−1[det(Mı)],
det(Mı) = 1

w2
ıw

2

{[(L2 − yı)qı + (L1 − xı − bx′)rı] · [(L2 − y)r + (L1 − x − bx′)q]

−[(L2 − y)q − (L1 − x − bx′)r][−(L2 − yı)rı + (L1 − xı − bx′)qı]},
wi ≡ ‖vi(x′0)‖ =

√
(L1 − bx′ − xi)2 + y2

i , qi ≡
√
w2
i − r2

i , i = ı, 

(F.4)

respectively. Where, the indices ı and  are always determined by ordering unit

vectors according to Appendix C.
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Appendix G

Total Track-Coverage

Consider the union of k-coverage cones Kk(S,y0), representing the set of tracks

through y0 that are detected by at least k sensors in S, and given by (3.9). Since

all cones in this union are generated by objects in R2
+, Kk(S,y0) only contains cones

in the first and fourth quadrant of the xy-reference frame, and its measure T ky0
in

(3.19) is bounded from above by π. This upper bound corresponds to the case in

which Kk(S,y0) is a non-convex cone and is a half-space with x ≥ 0. By induction,

the measures T kx0
, T ky′0 , and T kx′0 are all bounded from above by π, for any value of

the intercept. Thus, the upper bound on the track-coverage function is obtained by

substituting T k
y`

0
= T k

x`
0

= T k
y′`0

= T k
x′`0

= π for any value of ` in (3.23):

T max
A =

1

2

N2∑
`=0

(π + π) +
1

2

N1∑
`=0

(π + π) = (N2 + 1)π + (N1 + 1)π

=

(
L1 + L2

δb
+ 2

)
π (G.1)
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Appendix H

Probability of Detection of Unobserved

Tracks

Let the ray Rα(b`y) denote a track with intercept value b`y ∈ Iy ≡ [0, L2], and let Dk

denote a cooperative detection event, such that Dk = 1 if a target is detected by at

least k sensors, and Dk = 0 otherwise. Also, let Pr(b`y) denote the prior probability

that a target enters A at y`0 = [0 b`y]
T . Then, the probability that a target enters

A at y`0, and is detected by k sensors is,

Pr{Rα(b`y), Dk = 1} = Pr(by) · Pr(Kk(S,y`0)) (H.1)

where, Pr(Kk(S,y`0)) denotes the probability that the track lies inside the setKk(S,y`0).

Now, assuming that all y-intercepts are equally likely, Pr(b`y) = δb/(L2 + δb). Also,

assuming that all directions α ∈ (−π/2, +π/2) are equally likely, (H.1) can be

written as,

Pr{Rα(b`y), Dk = 1} =
δb

(L2 + δb)
· 1

π

m∑
j=1

(−1)j+1
∑

1≤i1<...<ij≤m

ψ(S i1,j
p ,y`0) (H.2)

where ψ(S
i1,j
p ,y`0) is the opening angle of the p-coverage cone of the p-subset of S

that is defined as the union {Si1k ∪ . . . ∪ S
ij
k }, for every tuple (i1, . . . , ij) in the inner

summation (as shown in Appendix E).

Since sets Kk(S,y`0) with different values of y`0 are always disjoint, the probability
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that a target enters A through Iy and is detected by k sensors is:

Pr{R ∩ Iy 6= ∅, Dk = 1} =

N2∑
`=0

Pr{Rα(b`y), Dk = 1}

=
δb

π(L2 + δb)
·
N2∑
`=0

m∑
j=1

(−1)j+1
∑

1≤i1<...<ij≤m

ψ(S i1,j
p ,y`0)(H.3)

Similarly, the probability that Dk = 1 and the target intersects the sides Ix, Iy′ , and

Ix′ , can be obtained in terms of the opening angles. Then, the probability that a

target traverses A and Dk = 1 is obtained by considering the probability of the union

of intersecting sets [111]. The set of tracks that traverse A and are detected by at

least k sensors is given by the union Kk(S,A) in (3.12). Since every track in this

union intersects two sides of A and belongs to two k-coverage cones, the intersection

of these cones is equal to its complement and, thus:

PrkA(XS) ≡ Pr{R ∩ A 6= ∅, Dk = 1} (H.4)

=
δb

2π(L2 + δb)

N2∑
`=0

m∑
j=1

(−1)j+1
∑

1≤i1<...<ij≤m

[ψ(S i1,j
p ,y`0) + ξ(S i1,j

p ,y′`0 )]

+
δb

2π(L1 + δb)

N1∑
`=0

m∑
j=1

(−1)j+1
∑

1≤i1<...<ij≤m

[ζ(S i1,j
p ,y`0) + ρ(S i1,j

p ,y′`0 )]

It can be easily shown by substituting the same upper bounds used in Appendix G

in the above equation that when the sensor network provides total track coverage

PrkA = 1.
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[29] D.A. Castañon. Optimal search strategies in dynamic hypothesis testing. IEEE
transactions on systems, man, and cybernetics, 25(7):1130–1138, 1995.

[30] L. Yao, W. A. Sethares, and D. C. Kammer. Sensor placement for on-orbit
modal classification via a genetic algorithm. AIAA Journal, 31:1167–1169,
1993.

[31] K. Worden and A. P. Burrows. Optimal sensor placement for fault detection.
Engineering Structures, 23:885–901, 2001.

[32] Y. Bar-Shalom and X. R. Li. Multitarget-Multisensor Tracking: Principles and
Techniques. YBS Publishing, 1995.

[33] Y. Bar-Shalom. Multitarget-Multisensor Tracking: Applications and Advances,
Vol. III. Artech House, 2000.

[34] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan. Estimation with Applications to
Tracking and Navigation: Algorithms and Software for Information Extraction.
J. Wiley and Sons, 2001.

[35] C. L. Morefield. Application of 0-1 integer programming to multitarget tracking
problems. IEEE Transactions on Automatic Control, 22(3):302–312, 1977.

[36] S. S. Blackman. Multi-Target Tracking with Radar Applications. Artech House,
1986.

[37] A. B. Poore and N. Rijavec. A numerical study of some data association prob-
lems arising in multitarget tracking. Computational Optimization and Appli-
cations, 3(1):27–57, 1994.

146



[38] S. C. A. Thomopoulos, R. Viswanathan, and D. K. Bougoulias. Optimal dis-
tributed decision fusion. IEEE Transactions on Aerospace and Electronic Sys-
tems, 25(5):761–765, 1989.

[39] R. Viswanathan and P. K. Varshney. Distributed detection with multiple sen-
sors: Part i- fundamentals. Proceedins IEEE, 85(1):54–63, 1997.

[40] R. Blum, S. A. Kassam, and H. V. Poor. Distributed detection with multiple
sensors: Part ii- advanced topics. IEEE Proceedings, 85(1):64–79, 1997.

[41] M. Xiang and J. Zhao. On the performance of distributed Neyman-Pearson
detection systems. IEEE Transactions in Systems, Man, and Cybernetics, Part
A, 31(1):78–83, January 2001.

[42] Q. Yan and R. S. Blum. Distributed signal detection under the Neyman-
Pearson criterion. IEEE Transactions on Information Theory, 47(4):1368–
1377, May 2001.

[43] Q. Yan and R. S. Blum. On some unresolved issues in finding optimum
distributed detection schemes. IEEE Transactions on Information Theory,
48(12):3280–3288, May 2000.

[44] N. S. V. Rao. Distributed decision fusion using empirical estimation. IEEE
Transactions on Aerospace and Electronic Systems, 33(4):1106–1114, 1997.

[45] J. Liu, M. Chu, J. Liu, and F. Zhao. Distibuted state representation for tracking
problems in sensor networks. Proceedings IPSN04, pages 234–242, 2004.

[46] N. Ansari, J-G. Chen, and Y-Z. Zhang. Adaptive decision fusion for un-
equiprobable sources. IEEE Proceedings of Radar, Sonar, and Navigation,
144(3):105–111, June 1997.

[47] R.E. Kalman. A new approach to linear filtering and prediction theory. Journal
of Basic Engineering, 1960.

[48] Y.-C. Tseng, S.-P. Kuo, H.-W. Lee, and C.-F. Huang. Location tracking in a
wireless sensor network by mobile agents and its data fusion strategies. Com-
puter Journal, 47(4):448–60, 2004.

[49] M. Marengoni, B. A. Draper, A. Hanson, and R. A. Sitaraman. System to
place observers on a polyhedral terrain in polynomial time. Image and Vision
Computing, 18:773–780, 1996.

147



[50] E. Helly. über mengen konvexer körper mit gemeinschaftlichen punkten. Jber.
Deutsch. Math. verein, 32:175–176, 1923.

[51] N. Megiddo. Linear programming in linear time when the dimension is fixed.
J. Assoc. Comput. Mach, 31:114–127, 1984.

[52] E. Edelsbrunner, H. A. Maurer, F. P. Preparata, A. L. Rosenberg, E. Welzl,
and D. Wood. Stabbing line segments. BIT, 22:274–281, 1982.

[53] M. Atallah and C. Bajaj. Efficient algorithms for common transversals. Infor-
mation Processing Letters, 25:87–91, 1987.

[54] E. Edelsbrunner. Finding transversals for sets of simple geometric figures.
Theoretical Computer Science, 35:55–69, 1985.

[55] E. Edelsbrunner, L. J. Guibas, and M. Sharir. The upper envelope of piece-
wise linear functions: Algorithms and applications. Discrete Computational
Geometry, 4:311–336, 1989.

[56] D. Avis, J. M. Robert, and R. Wenger. Lower bounds for line stabbing. Infor-
mation Processing Letters, 33:59–62, 1989.

[57] P. Egyed and R. Wenger. Stabbing pairwise disjoint translates in linear time.
Proceedings of the Fifth Annual ACM Symposium on Computational Geometry,
pages 364–369, 1989.

[58] D. P. Bertsekas. Convex Analysis and Optimization. Athena Scientific, Bel-
mont, MA, 2003.

[59] H. F. Davis and A. D. Snider. Vector Analysis. William C Brown Publisher,
1987.

[60] S. Skiena. Generating k-subsets. In Implementing Discrete Mathematics: Com-
binatorics and Graph Theory with Mathematica, pages 44–46. Addison-Wesley,
Reading, MA, 1990.

[61] S. Ferrari. Track coverage in sensor networks. Proceedings of the ACC 2006,
pages 1–10, 2006.

[62] J. Pitman. Probability. Springer-Verlag, 1993.

148



[63] H. T. Croft, K. J. Falconer, and R. K. Guy. Unsolved Problems in Geometry.
Springer-Verlag, New York, NY, 1991.

[64] E. W. Weisstein. Circular segment, 2003.

[65] G. Gomez, W.S. Koon, M.W. Lo, J.E. Marsden, J. Masdemont, and S.D. Ross.
Invariant manifolds, the spatial three-body problem and space mission design.
In Proceedings of the AIAA/AAS Astrodynamics Specialist Meeting, Quebec
City, Quebec, Canada, 2001.

[66] D. E. Kirk. Optimal Control Theory: An Introduction. Prentice-Hall, 1970.

[67] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic,
London, 1981.

[68] Mathworks. Matlab Optimization Toolbox. [Online]. Avaliable:
http://www.mathworks.com, 2004. function: fmincon.

[69] T. Clouqueur, V. Phipatanasuphorn, P. Ramanathan, and K. Saluja. Sensor
deployment strategy for target detection. The First ACM International Work-
shop on Wireless Sensor Networks and Applications (WSNA’02), September
2002.

[70] T. Clouqueur, V. Phipatanasuphorn, P. Ramanathan, and K. Saluja. Sensor
deployment for detection of targets traversing a region. Mobile Networks and
Applications, 8:453–461, August 2003.

[71] H. Freeland, P. Rhines, and T. Rossby. Eddy resolution versus eddydiffusion
in a double gyre GCM. part II: Mixing of passive tracers. Journal of Physical
Oceanography, 24:387–402, 1975.

[72] W. Krauss and C. Boning. Lagrangian properties of eddy fields in the Northern
Atlantic as deduced from satellite-tracked buoys. Journal of Marine Research,
45:259–291, 1987.

[73] V. Rupola, B. Hua, A. Provenzale, and V. Artale. Lagrangian velocity spectra
at 700 m in the western North Atlantic. Journal of Physical Oceanography,
26:1591–1607, 1996.

[74] R. E. Davis. Lagrangian ocean studies. Annual Reviews of Fluid Mechanics,
23:43–64, 1991.

149



[75] W. B. Wilson. Numerical modeling of drifting buoys and its relevence to la-
grangian tracking. Engineering Structures, 23:885–901, 2001.

[76] S. E. Pazan. Intercomparison of drogued and undrogued drift buoys. IEEE,
3(1):864–872, 1996.

[77] COOL. Rutgers University. [Online]. Avaliable: http://marine.rutgers.edu,
2002.

[78] Mathworks. Matlab. [Online]. Avaliable: http://www.mathworks.com, 2004.

[79] F. D. Foresee and M. T. Hagan. Gauss-Newton approximation to Bayesian
regularization. In Proceedings of the 1997 International Joint Conference on
Neural Networks, pages 1930–1935, 1997.

[80] D.J.C. MacKay. Bayesian interpolation. Neural Computation, 4(3):415–447,
1992.

[81] R. J. Urick. Principles of Underwater Sound. McGraw-Hill Book Company, 3
edition, 1983.

[82] M. D. Collins. A split-step Pade solution for the parabolic equation method.
The Journal of the Acoustical Society of America, 93:1736–1742, 1993.

[83] M. D. Collins. Generalization of the split-step Pade solution. The Journal of
the Acoustical Society of America, 96:382–385, 1994.

[84] F.V. Jensen. Bayesian Networks and Decision Graphs. Springer-Verlag, 2001.

[85] D. Heckerman. A Bayesian approach to learning causal networks. Technical
Report MSR-TR-95-04, pages 1–23, May 1995.

[86] H. Roarty, J. Kohut, and S. Glenn. Intercomparison of an ADCP, ADP, stan-
dard and long-range HF radar: influence of horizontal and vertical shear. In
Proceedings of the IEEE/OES Seventh Working Conference on Current Mea-
surement Technology, pages 75–78, March 13-15 2003.

[87] R. F. Stengel and L. R. Ray. Stochastic robustness of linear time-invariabt
control systems. IEEE Transactions on Automatic Control, 36(1):82–87, 1991.

[88] Mathworks. Matlab Optimization Toolbox. [Online]. Avaliable:
http://www.mathworks.com, 2004. function: ode45.

150



[89] I. F. Akyildiz, D. Pompili, and T. Melodia. Underwater acoustic sensor net-
works: research challenges. Ad Hoc Networks, 3, 2005.
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