
CONSTRAINED LEARNING IN NEURAL CONTROL

SYSTEMS

by

Mark A. Jensenius

Department of Mechanical Engineering and Materials Science
Duke University

Date:
Approved:

Dr. Silvia Ferrari, Advisor

Dr. Henri P. Gavin

Dr. Ronald Parr

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science

in the Department of Mechanical Engineering and Materials Science
in the Graduate School of

Duke University

2005

Contents

List of Tables vi

List of Figures vii

Nomenclature xv

1 Introduction 1

1.1 Background and Motivation . 2

1.1.1 Dynamic Programming and Approximate Dynamic Programming 3

1.1.2 Neural Networks . 5

1.2 Dissertation Overview . 6

2 Neural Control Formulation 8

2.1 The Nonlinear System . 9

2.2 Optimal Control Approach . 11

2.2.1 Linear Quadratic Regulator (LQR) 12

2.3 Neural Control Architecture . 15

2.4 Dual Heuristic Programming Adaptive Critics 16

2.5 Feedforward Neural Networks . 18

2.5.1 Neural Network Training . 21

2.5.2 Some Useful Notation . 23

2.6 Chapter Summary . 24

3 Constrained Neural Controller 26

3.1 Network Constraint Equations . 26

3.2 Initialization . 30

ii

3.2.1 Unconstrained Weights . 31

3.2.2 Bias Vector . 31

3.2.3 Auxiliary Input Weights . 32

3.2.4 Constrained Weights . 34

3.3 Constrained Gradient-Based Online Training 34

3.3.1 Constrained Error Gradient 35

3.3.2 Modified Resilient Backpropagation 39

3.3.3 Satisfying Network Constraints 43

3.4 Chapter Summary . 43

4 Software Implementation 45

4.1 Design Envelope . 46

4.2 Linear Control . 48

4.2.1 Proportional-Integral Control 48

4.3 Neural Controller Initialization . 52

4.4 Target Selection and Training . 52

4.5 Parallel Hardware Architecture . 55

4.6 Chapter Summary . 55

5 Numerical Simulation Results 57

5.1 Design Point . 59

5.1.1 Longitudinal Maneuver . 60

5.1.2 Lateral-Directional Maneuver 64

5.1.3 Coupled Longitudinal-Lateral-Directional Maneuver 68

5.2 Interpolation Point . 72

5.2.1 Longitudinal Maneuver . 73

iii

5.2.2 Lateral-Directional Maneuver 77

5.2.3 Coupled Longitudinal-Lateral-Directional Maneuver 81

5.3 Extrapolation Point . 85

5.3.1 Longitudinal Maneuver . 85

5.3.2 Lateral-Directional Maneuver 90

5.3.3 Coupled Longitudinal-Lateral-Directional Maneuver 94

5.4 Constrained and Unconstrained Training 98

5.4.1 Interpolation Point . 98

5.4.2 Design Point . 102

5.5 Chapter Summary . 106

6 Conclusions 108

6.1 Recommendations for Future Research 109

Appendix A Hyperspherical Initialization 110

A.1 Distributing points on a unit hypersphere 110

A.2 Distributing dual-points on a unit hypersphere 112

A.3 E↵ectiveness . 112

A.4 Conclusion . 113

Appendix B Gradient Transformation 120

B.1 Matrix Transpose . 121

B.2 Linear Functions . 121

B.3 Matrix Inverse . 122

B.4 Positional Function . 123

B.5 Element-wise Functions . 124

iv

B.6 Concluding Remarks . 125

Appendix C Aircraft Model 126

References 129

v

List of Tables

4.1 The 14 design points used to initialized and constrain the neural con-
troller . 48

5.1 The mean squared error between the constrained action neural network
values and the equivalent linear gain matrix values during a simulation.102

vi

List of Figures

1.1 Principle of Optimality . 4

2.1 Block diagram of an dual heuristic programming adaptive critic neural
controller . 15

2.2 A neural network with a single hidden layer. There are q inputs, s
hidden layer nodes, and ✓ outputs in this neural network. 19

2.3 Neural network with input groups I1 and I2, hidden layer node groups
H1 and H2, and output groups ⇥1 and ⇥2. The weights corresponding
to W(I1,H2,⇤) are shown in bold. 24

4.1 Flight envelope, design envelope and design points 47

4.2 Error vs epoch in a typical action network training session 54

5.1 The flight envelope with design points and test points. 58

5.2 The design point [90m/s, 3000m] . 59

5.3 System output values at the design point with a longitudinal command 61

5.4 System control values at the design point with a longitudinal command 62

5.5 Incremental and cumulative cost at the design point with a longitudi-
nal command . 63

5.6 System output values at the design point with a lateral-directional
command . 65

5.7 System control values at the design point with a lateral-directional
command . 66

5.8 Incremental and cumulative cost at the design point with a lateral-
directional command . 67

5.9 System output values at the design point with a coupled longitudinal-
lateral-directional command . 69

vii

5.10 System control values at the design point with a coupled longitudinal-
lateral-directional command . 70

5.11 Incremental and cumulative cost at the design point with a coupled
longitudinal-lateral-directional command 71

5.12 The design point [145m/s, 6000m] . 72

5.13 System output values at the interpolation point with a longitudinal
command . 74

5.14 System control values at the interpolation point with a longitudinal
command . 75

5.15 Incremental and cumulative cost at the interpolation point with a lon-
gitudinal command . 76

5.16 System output values at the interpolation point with a lateral-directional
command . 78

5.17 System control values at the interpolation point with a lateral-directional
command . 79

5.18 Incremental and cumulative cost at the interpolation point with a
lateral-directional command . 80

5.19 System output values at the interpolation point with a coupled longitudinal-
lateral-directional command . 82

5.20 System control values at the interpolation point with a coupled longitudinal-
lateral-directional command . 83

5.21 Incremental and cumulative cost at the interpolation point with a cou-
pled longitudinal-lateral-directional command 84

5.22 The design point [160m/s, 12000m] 86

5.23 System output values at the extrapolation point with a longitundinal
command . 87

viii

5.24 System control values at the extrapolation point with a longitundinal
command . 88

5.25 Incremental and cumulative cost at the extrapolation point with a
longitundinal command . 89

5.26 System output values at the extrapolation point with a lateral-directional
command . 91

5.27 System control values at the extrapolation point with a lateral-directional
command . 92

5.28 Incremental and cumulative cost at the extrapolation point with a
lateral-directional command . 93

5.29 System output values at the extrapolation point with a coupled longitudinal-
lateral-directional command . 95

5.30 System control values at the extrapolation point with a coupled longitudinal-
lateral-directional command . 96

5.31 Incremental and cumulative cost at the extrapolation point with a
coupled longitudinal-lateral-directional command 97

5.32 System output values at the interpolation point with a lateral-directional
command . 99

5.33 System control values at the interpolation point with a lateral-directional
command . 100

5.34 Incremental and cumulative cost at the interpolation point with a
lateral-directional command . 101

5.35 System output values at the design point with a coupled longitudinal-
lateral-directional command . 103

5.36 System control values at the design point with a coupled longitudinal-
lateral-directional command . 104

5.37 Incremental and cumulative cost at the design point with a coupled
longitudinal-lateral-directional command 105

ix

5.38 The flight envelope with design points and test points. 107

A.1 A comparison of the training set MSE after 1000 epochs for di↵erent
weight initialization algorithms (10 hidden layer nodes) 114

A.2 A comparison of the test set MSE after 1000 epochs for di↵erent weight
initialization algorithms (10 hidden layer nodes) 115

A.3 A comparison of the training set MSE after 1000 epochs for di↵erent
weight initialization algorithms (50 hidden layer nodes) 116

A.4 A comparison of the test set MSE after 1000 epochs for di↵erent weight
initialization algorithms (50 hidden layer nodes) 117

A.5 A comparison of the training set MSE after 1000 epochs for di↵erent
weight initialization algorithms (100 hidden layer nodes) 118

A.6 A comparison of the test set MSE after 1000 epochs for di↵erent weight
initialization algorithms (100 hidden layer nodes) 119

C.1 Definition of path angle, angle of attack and sideslip. 128

x

Nomenclature

nh The number of hidden layer nodes in the neural network

no The number of outputs of the neural network

nr The number of regular inputs to the neural network

nm The number of independent models used to describe the system

np Number of design points

p Aircraft body-axis roll rate

q Aircraft body-axis pitch rate

r Aircraft body-axis yaw rate

u Forward component of aircraft velocity

V Total Aircraft velocity

v Side component of aircraft velocity

w Downward component of aircraft velocity

xb Aircraft x body-axis

xr Inertial x axis

yb Aircraft y body-axis

yr Inertial y axis

zb Aircraft z body-axis

zr Inertial z axis

↵ Aircraft angle of attack

� Aircraft sideslip angle

� Aircraft path angle

µ Aircraft bank angle

� Aircraft Euler roll angle

 Aircraft Euler yaw angle

xi

✓ Aircraft Euler pitch angle

a Auxiliary input vector

ã Scheduling vector

b Neural network output bias vector

e Neural network error vector

p Neural network input vector

u Control vector

uc Trim control values for the commanded state

ũ Deviation from the trim control values for the commanded state

x State vector

xa Augmented state

xc Commanded state

x̃ Deviation from commanded state

y Neural network target output

yc Commanded plant output

ys System output vector

z Neural network output vector

zA Neural network output vector for the action network

zadj Neural network output adjustment vector

zC Neural network output vector for the critic network

H✓ The hidden layer node group corresponding to the ✓th output.

Im The input group corresponding to the mth model.

Mm The hidden layer node group corresponding to the mth model.

⇥m The output group corresponding to the mth model.

A Auxiliary input matrix

B Output bias matrix

xii

C Linear control gain matrix

Dk The target gradients of the neural network outputs with respect to the
state deviation vector

Ē Matrix of target neural network output gradient

E Rank-3 tensor of target neural network output gradient

Ēm Matrix of neural network output gradient

F State Jacobian matrix of a linear dynamic system

Fm Ideal model state jacobian

G Control Jacobian matrix of a linear dynamic system

K̄m Matrix of neural network output gradient

K̄c
m Matrix of neural network output gradient

M Weighting of the cross-coupled states and controls in the cost function

Ma Weighting of the cross-coupled augmented states and control deviations
in the cost function

P Riccati Matrix

Q Weighting of the state vector in the cost function

Qa Weighting of the augmented state vector in the cost function

R Weighting of the control vector in the cost function

Ra Weighting of the control deviation vector in the cost function

S Output of the hidden layer nodes at all design points

S✓ Output of the hidden layer nodes at all design points associated with H✓

Sc
✓ Output of the hidden layer nodes at all design points associated with Hc

✓

V Output weight matrix

V✓ Constrained output weights associated with the ✓th output

Vc
✓ Unconstrained output weights associated with the ✓th output

W Input weight matrix

xiii

W
A

Auxiliary input weight matrix

Wm Constrained input weights associated with the mth model

Wc
m Unconstrained input weights associated with the mth model

W
R

Regular input weight matrix

Z Neural network output matrix

K̄ See , page 28

Ż Rank-3 tensor of neural network output gradient

⌃ Diagonal matrix of the hidden layer nodes’ derivatives

⌃adj Diagonal matrix of the output adjustment’s hidden layer nodes’ deriva-
tives

H Hamiltonian

J Cost function

L Legrangian

NNA Vector output mapping by the action neural network

NNC Vector output mapping by the critic neural network

V Value function

� Neural network hidden layer sigmoidal function

()c Compliment of the indicated set

()e Equilibrium value

()L Related to the longitudinal model

()LD Related to the lateral-directional model

(˙) Derivative with respect to time

()(i,j,...) Element of the indicated matrix at coordinates (i, j, . . .)

()�1 Inverse

()⇤ Optimal value

()k Variable evaluated at the kth design point or after the kth time interval

xiv

()(I,H,⇥) Submatrix of the indicated matrix which corresponds to input group I,
hidden layer node group H, and output group ⇥

()T Transpose

(̆) Unconstrained error gradient with respect to the indicated matrix

�() Deviation from nominal value, ()� ()e

(̂) Constrained gradient matrix with respect to ()

(̆) Unconstrained gradient matrix with respect to ()

⇤ All available

xv

Chapter 1

Introduction

As science progress in today’s technologically advanced world, there grows a need

for improved performance and reliability in a wide range of devices. At the same

time, these devices continue to become more complex and nonlinear in their behav-

ior. There is a need to adjust the operation of these devices such that they perform

optimally. A collection of components that act on a system to maintain the system’s

performance close to a desired set of performance specifications is called a control

system. The system that is being controlled is often referred to as a plant. Control

systems can be mechanical, electrical, computational, or even human in nature. They

can be comprised of sensors, actuators, and other components that act together to

cause the plant to produce some desired output. These control systems can be static

in nature or they can adapt online to changes in the plant or the environment. A

control system which does change its internal parameters online is called adaptive

and can usually accommodate situations of greater uncertainty than a static con-

troller could accommodate. A neural controller is a controller whose computations

involve neural networks. The optimal linear control law for a particular plant can be

determined at several equilibrium points by linearizing and applying linear control

theory to the linearized dynamics equations. A controller is called a gain-scheduled

controller when it uses the control law defined for each equilibrium point and it

interpolates the control law when the system is between the equilibrium points.

The objective of this research is to show that an adaptive neural controller that

is applicable to plants described by nonlinear ordinary di↵erential equations can be

designed and optimized online such that its performance improves while retaining the

1

properties of a gain-scheduled design. Neural networks are particularly well-suited

for approximating nonlinear, high-dimensional mappings through training. Neural

control has been validated through many recent publications, such as [1], [2], and

[3]. Recent advances in neural control have shown that it is possible to build a

neural controller so that, prior to training, it operates as a gain-scheduled controller

[4]. Taking this idea one step further, a neural network training algorithm will be

presented which optimizes the neural controller’s performance while satisfying the

gain-scheduled requirements. The end result is a gain-scheduled controller that can

optimize its interpolation and extrapolation abilities. This research also presents

a streamlined approach to building such a controller, a new method for uniformly

distributing neural network weights called hyperspherical initialization, and a matrix

operation useful in obtaining derivatives in linear-algebra that is referred to as the

gradient transformation.

1.1 Background and Motivation

Nonlinear multivariate systems with constraints, such as control specifications, are

some of the most di�cult systems to control optimally. Dynamic programming meth-

ods have been proposed for producing optimal control in these cases [5]. Dynamic

programming is a direct-search method which guarantees optimal performance [6].

Approximate dynamic programming (ADP) tends to converge to an optimal or subop-

timal solutions and do so with a much lower computational burden. ADP techniques

require the use of parametric structures to approximate unknown nonlinear map-

pings over high dimensional compact spaces. Additionally, these parametric struc-

tures must have the ability to adapt and, ultimately, converge upon the unknown

mappings. Neural networks, in this case, are ideal parametric structures for several

reasons. Primarily, neural networks have the ability, given a su�cient number of

2

parameters, to approximate any function [7]. Additionally, neural networks have the

ability to learn in batch or incremental modes. Batch learning is beneficial in o✏ine

training when many training sets are available. Training sets include paired input and

target output values. Sometimes target network gradients are also provided for each

input value. Incremental training involved updating the neural network parameters

based on a single training set. This frequently occurs when the neural network is

operating online and training sets are generated sequentially.

1.1.1 Dynamic Programming and Approximate Dynamic Pro-

gramming

The fundamental concept in dynamic programming is the principle of optimality.

Consider the problem where a person needs to travel from point a to point c in figure

1.1.1. Every path the person could take involves a certain amount of e↵ort. The

dynamic programming, this mapping of path choice to e↵ort is referred to as a cost

function. For a path to be considered optimal, it must minimize the cost incurred.

Now, suppose that the person has identified the path which requires the least e↵ort,

S � T . This path is known as the optimal path. The principle of optimality states

that the every segment of the optimal path is also optimal. For example, let point

b lie on the optimal path from point a to point c. The principle of optimality states

that path S is the optimal path from a to b and T is the optimal path from b to c.

The proof is relatively simple. If segment T is not the optimal path from b to c, then

there exists some optimal path T 0 from b to c. However, this implies that path S�T 0

has a lower cost than path S � T which contradicts the assumption that S � T is

optimal. Thus, T 0 cannot be optimal. Since T 0 is chosen arbitrarily, this implies that

T is optimal. By the same reasoning, S is optimal. Since point b is arbitrary, this

holds for all points on the optimal path from a to c.

3

Figure 1.1: The principle of optimality: The optimal path from a to c is S-T. If T’
is a better path than T, then S-T’ becomes a better path than S-T which violates
the assumption.

Dynamic programming requires the comparison of all possible paths to obtain the

optimal plan. For continuous problems, this results in an infinitely large search space.

Discrete dynamic programming breaks the state space into discrete points and then

compares all possible strategies in order to select the globally optimal strategy [8].

By treating the problem as a multi-stage process and optimizing each stage sequen-

tially, the space of admissible solutions is reduced. However, for higher dimensional

spaces, such an approach is still too computationally expensive (due to the curse of

dimensionality). Additionally, this approach assumes there is perfect knowledge of

the system. In practice, this assumption is rarely true.

Approximate dynamic programming (ADP), on the other hand, is an incremental

minimization approach that provides approximations for the optimal cost and the

optimal strategy. Of particular interest in these methods is the cost-to-go. The cost-

to-go is a measure of the cost over all future stages given the optimal strategy and

the current state. Adaptive critic designs (ACD) implement ADP through the use of

recurrence relations for the optimal policy, the optimal cost, and, in some instances,

their derivatives. These designs attempt to overcome the curse of dimensionality

while still converging to near optimal strategies and cost-to-go values.

Some of the better known ADP methods include heuristic dynamic programming

4

(HDP) and dual-heuristic programming (DHP). Both approaches involve the use

of a parametric structure, referred to as the action network, to predict the optimal

strategy. HDP uses another parametric structure, called the critic network, to predict

the cost-to-go values. While relatively straightforward to implement, HDP tends

to breakdown, through slow learning, as the size of the problem grows larger [6].

Alternatively, in DHP, the critic network approximates the derivatives of the cost-

to-go function. These values are known as costates. While DHP does not share

the same pitfalls as HDP, successful implementations are fairly rare. Because DHP

requires derivative information to update the critic network, a more accurate system

model is needed than for HDP. However, if a reliable system model is available, DHP

is generally a better method for searching the space of strategies for the optimal

solution.

1.1.2 Neural Networks

The use of parametric structures to approximate unknown mappings is a key com-

ponent of the implementation of ADP designs. An artificial neural network is a

parametric structure inspired by the biological neural networks that drive all intelli-

gent animals. Often the term artificial is left out for sake of brevity. Neural networks

have several key qualities that make them the parametric structure of choice for ACD.

Neural networks have the ability to approximate any function given a su�cient num-

ber of parameters. Neural networks also have the ability to learn in batch mode or

incrementally, thus are applicable to o✏ine and online training, respectively. Finally,

due to their parallel structure, neural networks can easily be constructed for higher

dimensional mappings.

The basic components of neural networks are nodes and weights. Nodes accept one

input and act as a nonlinear scalar function. Weights serve as linear transformations

5

between layers of nodes. A neural network may consist of any number of layers and

each layer may have any number of nodes. The first layer of a neural network, with

nodes representing inputs, is called the input layer and the last layer of the network,

with nodes representing outputs, is the called the output layer. All other layers are

called hidden layers.

Sigmoidal neural networks contain nodes whose functions are identical and de-

scribed by exponential or hyperbolic-tangent relationships. Sigmoidal networks are

ideal for approximately smooth, nonlinear functions [7]. Another common neural

network is the radial basis network, whose node functions are radial-basis in nature.

These functions contain two parameters (radius and center) which vary from node to

node. Radial-basis networks learn quickly and are good for classification problems

where large sets of data are available. Due to the nature of the radial-basis functions,

any incremental learning tends to be highly localized [7]. The neural networks used

in this dissertation are sigmoidal networks with a single hidden layer.

1.2 Dissertation Overview

The main portion of this dissertation is organized into four chapters. Chapter 2

reviews the foundations of neural control. Criteria are established for optimality and

linked to the classical linear quadratic regulator solution. The recurrence relations

for dual heuristic programming are then established from these criteria. Additionally,

the criteria are expressed in terms of the general neural network structure. Neural

network training is discussed and some useful notation is established. Chapter 3

discusses, in detail, the neural network structures used in the DHP adaptive critic

architecture. The first section of the chapter explicitly defines the structure of the

neural network and relationships amongst the neural network parameters which draw

directly from the optimality criteria established in chapter 2. The chapter presents

6

a streamlined general approach for constructing such networks and also introduces a

novel training method which takes into account the optimality criteria. Two methods

are introduced during this chapter and, for sake of continuity, are explained in detail

in the first two appendices. Chapter 4 describes the actual implementation of the

theory outlined in chapter 3 to a business jet. This includes the selection of various

control structure, network and training parameters. The chapter also briefly discusses

the possible benefits of implementation on a parallel processing machine. Chapter

5 covers the results obtained through the numerical simulation of the business jet

mentioned in the previous chapter. The controlled time response of the business jet

is tested throughout the operational domain and for di↵erent step command inputs.

The performance of the adapting neural controller is compared with an optimal linear

controller and with a static version of the neural controller. The first appendix

discusses a novel method for selecting randomized, uniformly distributed weights for

a single neural network layer. The second appendix describes in detail an method

which simplifies the processes of obtaining derivatives in a linear algebra setting. The

last appendix gives specific details on the business jet model that was used for the

software implementation in chapter 4.

7

Chapter 2

Neural Control Formulation

When a control system is created for a particular application, it is created with

some performance metric in mind. The ideal control system maximizes total system

performance. In this way, designing a control law for a dynamic system can be

considered as an optimization problem. If a cost is associated with poor system

performance, then the optimal control law will minimize that cost. The optimization

problem is merely the minimization of the cost function subject to the system’s

dynamics.

There are many techniques available for generating an optimal control law for

linear systems [9]. Real world systems, however, usually exhibit nonlinear behaviors.

Thus, the application of a linear controller results in a tradeo↵ between robustness

and optimality. Nonlinear controllers are desirable since they can perform robustly

over a range of states. Where a linear controller may be stable only close to an

equilibrium point, a nonlinear controller can be designed such that is it both stable

and optimal for conditions not near the equilibrium point [10] [11].

The control scheme presented in this thesis provides optimal control for nonlinear

systems which can be approximated as linear parameter varying (LPV). The purpose

of this chapter is to define certain aspects of a system’s optimal control law and to

establish generalized equations in regards to neural networks and neural controllers.

8

2.1 The Nonlinear System

It is assumed that the dynamics of the nonlinear system being considered take the

following form.

ẋ = f(x,u) (2.1)

The system dynamics equation can be linearized for small state perturbations, �x,

about the equilibrium point (xe,ue). Since the equilibrium control values, u
e

, can

be numerically computed from any given equilibrium state vector, the equilibrium

point will be abbreviated as x
e

. Linearizing about this equilibrium point yields the

di↵erential equation

ẋ = ẋe + �ẋ = f(xe) +
@f

@x
(xe)�x +

@f

@u
(xe)�u (2.2)

From the definition of equilibrium, ẋe = 0. For convenience, the following Jacobian

matrices are introduced: F(x
e

) = @f

@x

(x
e

) and G(x
e

) = @f

@u

(x
e

). The linearized system

dynamics may change with deviations in certain system parameters. For example,

the linearized dynamics of a missile may change significantly with deviations in air-

speed but insignificantly with deviations in roll angle [12]. A vector of significant

parameters, ã, is called a scheduling vector and may not necessarily include all el-

ements of the state. However, equation 2.2 shows that a scheduling vector cannot

include parameters which are not derivable from the state vector. Thus, recognizing

that �ẋ = ẋ, the system dynamics can be written as a linear parameter-varying

di↵erential equation.

�̇x ' F(ã)�x + G(ã)�u (2.3)

It is assumed that the output of the system is a function of the state of the system

9

and the control values.

ys = h(x,u) (2.4)

Linearizing the system output at the equilibrium point xe yields

ys = ys
e

+ �ys = h(xe) +
@h

@x
(xe)�x +

@h

@u
(xe)�u (2.5)

For convenience, define Hx(xe) and Hu(xe) as the Jacobian matrices with respect to

the state and control vectors, respectively. The system output then has the following

perturbation model about xe.

�ys = Hx(ã)�x + Hu(ã)�u (2.6)

Section 4.2.1 shows that if the optimal control law cannot be expressed as a

function solely of the state, then it can be expressed as a function of an augmented

state. Therefore, the control law can be expressed as a function of the state without

any loss of generality.

u = c(x) (2.7)

The control law is approximated as linear near the equilibrium point xe. The control

law, linearized about xe, is

u = ue + �u = c(xe) +
@c

@x
(xe)�x (2.8)

Again, for convenience, the Jacobian of the control law with respect to the state

vector is defined as C(x
e

) = � @c

@x

(x
e

). The negative sign is chosen for convention.

Recognizing that the first term in the above equation is merely u
e

and that C(x
e

)

can be expressed as a function of ã yields the parameter-varying control law

�u = �C(ã)�x (2.9)

10

The control gradient, C(ã), at the equilibrium point x
e

will be referred to as the

linear control gain matrix at the equilibrium point x
e

. The linear control gain matrix

for an equilibrium point can be determined using any linear control technique, as

long as it satisfies the above equation.

Sampling several equilibrium points within the region of plausible system oper-

ation yields a set of linear control gain matrices which describe the optimal control

law. A gain-scheduled controller incorporates these matrices into a single control

law. A gain-scheduled controller provides optimal control near each sampled point

and interpolates between sampled points. Sample points used to design the linear

controller gain matrices will be referred to as the design points of the controller.

2.2 Optimal Control Approach

An optimal control law is a control law which minimizes the costs associated with

the system performance. These costs can be expressed in terms of a scalar terminal

cost and an integral function of the state and control.

J = �(x(tf), tf) +

Z t
f

t0

L(x(t),u(t), t)dt (2.10)

For many infinite horizon problems, the terminal cost can be neglected without

loss of generality. Some infinite horizon problems also seek to minimize a time-

averaged cost rather than total cost [13].

Consider a system for which there exists an optimal controller. Then, for any

state, there exists a value which equals the total cost accumulated over all future

time. The function which maps the states to the remaining cost values is called the

11

optimal value function and is defined as

V (x(t)) = min
u(t)

✓Z t
f

t

L(x(t),u(t), t)dt

◆
(2.11)

At all times the action performed by the controller must be optimal (see section

1.1.1) and thus the derivative of the optimal value function with respect to the optimal

control vector always is zero. Letting x⇤(t) and u⇤(t) be the optimal state and control

values, respectively, an optimality condition can be written as

@V (x⇤(t))

@u⇤(t)
= 0 (2.12)

2.2.1 Linear Quadratic Regulator (LQR)

By definition, gain-scheduled control laws are optimal at their design points. There-

fore, one of the goals of the initialization and learning algorithms for the neural

controller is to incorporate a gain-scheduled design into the nonlinear neural net-

work design. Additionally, gain-scheduled controllers have been used extensively and

successfully [14] [15] [16] in industry. Gain-scheduling uses linear control theory to

provide solutions to nonlinear control problems. The advantages of gain-scheduled

controllers can be incorporated into the neural network based controllers through an

approach entitled Classical/Neural Control Synthesis of Nonlinear Control Systems

[17]. This section reviews some of the LQR theory which is relevant to both designs

and to the training method outlined in section 3.3.

As mentioned in section 2.1, gain scheduling involves linearizing the dynamic

system about a set of equilibrium points referred to as the design points. Due to

the linear parameter varying nature of the system, each design point (xe,ue)k has a

12

corresponding scheduling vector, ãk such that

0 = f(x(ãk),u(ãk)) k=1,...,n
p

(2.13)

where np is the total number of design points. At each of these design points, it is

assumed that the cost function is quadratic

J =
1

2

Z t
f

t0

(�xTQ�x + 2�xTM�u + �uTR�u)dt (2.14)

While the condition expressed in equation 2.12 is necessary for the optimization

of the above cost function, it is not su�cient. There is a second condition which is

derived by taking the time derivative of the value function.

@V (x(t))

@t
= �L(x⇤(t),u⇤(t))� @V (x⇤(t))

@x⇤(t)
f(x⇤(t),u⇤(t))� @V (x⇤(t))

@u⇤(t)

@u⇤(t)

@t
(2.15)

Let the Hamiltonian be defined as

H(x(t),u(t), �(t)) = L(x(t),u(t)) + �T (t)f(x(t),u(t)) (2.16)

where �T (t) = @V (x(t))
@x(t) is known as the costate vector. Applying the condition speci-

fied in equation 2.12 yields

@V

@t
(x⇤(t)) = �L(x⇤(t),u⇤(t))� �⇤T (t)f(x⇤(t),u⇤(t)) (2.17)

= �min
u(t)

H(x⇤(t),u(t), �⇤(t)) (2.18)

From equation 2.17, it is clear that the derivative of the Hamiltonian, with respect

to the control values, must be zero for optimality to be satisfied. This condition is

known as the Hamilton-Jacobi-Bellman (HJB) equation as is expressed as

@H(x⇤(t),u⇤(t), �⇤(t))

@u⇤(t)
= 0 (2.19)

13

The linear quadratic (LQ) problem involves a linear system (equation 2.3), a

quadratic cost function (equation 2.14) and the optimal value function

V (�x(t)) =
1

2
�x⇤T (t)P(t)�x⇤(t) (2.20)

where P(t) ! P as t ! 1 [18]. Substituting this value function into the HJB

equation yields the condition

�x⇤T (t)M + �u⇤T (t)R + �x⇤T (t)PTG = 0 (2.21)

which implies that the optimal control law is

�u⇤(t) = �R�1(GTP + MT)�x⇤(t) = �C�x⇤(t) (2.22)

Substituting this result back into equation 2.17 and simplifying yields the Riccati

equation

Ṗ(t) = �(F�GR�1MT)P(t)�P(t)(F�GR�1MT) (2.23)

+P(t)GR�1GTP(t)�Q + MR�1MT (2.24)

Since Ṗ(t)! 0, this equation can be solved for the steady state Riccati matrix, P.

Once P is obtained, it is used in equation 2.22 to compute the optimal control values.

The control law obtained from the steady state Riccati matrix is time invariant.

Since each design point has its own linear system dynamics, the steady state

Riccati matrix, and thus the control gains, will vary from design point to design

point. The Riccati matrix and control gains associated with the kth design point,

ãk, will be denoted Pk and Ck. Note that at each design point, the gradient of the

control law with respect to the state is C and the gradient of the costate vector with

respect to the state is P.

14

2.3 Neural Control Architecture

The neural control system is composed of two neural networks, an action network

and a critic network, which work together to approximate the global control law and

costate vectors based on the nonlinear plant’s performance. As mentioned above, the

gradients of the control law and costate vector with respect to the system state are

constrained at the design points to equal the control gain matrix and the Riccati ma-

trix respectively. Thus, these matrices are used to determine the specific architecture

and initial parameter values of the neural networks [17].

Figure 2.1: Block diagram of an dual heuristic programming adaptive critic neural
controller

The purpose of the action network is to approximate the global control law while

the critic network approximates the costate vector. The input to these networks,

p, is composed of states and scheduling variables allowing the network to react not

only to changes in state but also, on a more global sense, to changes in scheduled

parameters.

u(t) = NNA(p(t)) = zA(t) (2.25)

�(t) = NNC(p(t)) = zC(t) (2.26)

15

As mentioned above, at the kth design point, the following equations must hold.

@z

A

(t)
@x(t) k

= Ck (2.27)

@z

C

(t)
@x(t) k

= Pk (2.28)

These equations will be referred to as the general gradient constraint equations.

An additional constraint exists at the design points since, at these points, there is no

state deviation and the system is in equilibrium. This implies that both the costate

vector and the control law have values of zero.

zA(t)
k

= 0 (2.29)

zC(t)
k

= 0 (2.30)

This set of constraint equations is known as the general output constraint equa-

tions. Optimal controllers must satisfy all of the constraints in equations 2.27 through

2.30. However, the satisfaction of these constraints is not a su�cient condition for

optimality. Therefore, the neural control system should be allowed to improve its

performance based on some form of learning heuristic.

2.4 Dual Heuristic Programming Adaptive Critics

While the controller is operating, the action and critic networks continuously update

themselves to more closely approximate the globally optimal control law subject to

the current plant dynamics. This adaptation improves performance for conditions

under which the linear gain-scheduled design does not perform adequately. This in-

cludes large command values and operation in regions outside of the design envelope.

The adaptation rules are based on the recurrence relation of dynamic programming

[8].

V (x⇤(tk)) =

Z t
k+1

t
k

L(x⇤(tk),u
⇤(tk), tk)dt + V (x⇤(tk+1)) (2.31)

16

At sampled points in time, the networks undergo an updating phase, known as

online training, in which the plant performance is analyzed and the controller is up-

dated accordingly. The controller’s built-in gain-scheduled knowledge is also perfectly

preserved during the training due to a special training algorithm, Constrained Re-

silient Backpropagation with scaling and backtracking (CRPROP), which is outlined

in section 3.3.

Because the training takes place at discrete time intervals, the plant model must

also be considered in discrete time. Along the optimal path, the state at time tk+1

can be expressed in terms of the state at time tk.

x⇤(tk+1) = x⇤(tk) +

Z t
k+1

t
k

f(x⇤(t),u⇤(t))dt (2.32)

At time tk, target values for the critic network can be obtained by di↵erentiating

the optimal value function (as expressed in equation 2.31) with respect to the states.

�T (tk) =
d

dx⇤(tk)

✓Z t
k+1

t
k

L(x⇤(t),u⇤(t), t)dt

◆
+ �T (tk+1)

@x⇤(tk+1)

@x⇤(tk)
(2.33)

Substituting equation 2.32 into equation 2.33gives an update equation for the costate

vector based on the predicted value of the costate vector at time tk+1.

�T (tk) = �T (tk+1) +
d

dx⇤(tk)

✓Z t
k+1

t
k

L(x⇤(t),u⇤(t), t) + �T (tk+1)f(x
⇤(t),u⇤(t))dt

◆

(2.34)

For the neural controlled system, the HJB equation becomes

�x⇤T (tk)M + �u⇤T (tk)R + zT
C(tk)

@f(x⇤(tk),u⇤(tk))

@u⇤(tk)
= 0 (2.35)

This equation can be solved numerically for the control values using a root-finding

technique such as Newton’s method. The control values found using this technique

17

and the costate values computed from equation 2.34 can then be used as targets for

the training algorithm.

So far, the conditions placed upon the action and critic networks are similar.

Gradient and output constraints are available for both networks and targets can be

computed for both networks. Because the same type of information is available for

both neural networks, their building and training methods are the same. Therefore,

the sections discussing the internal neural network functions are discussed for the

general case where, at the design points, the gradients are known and the output is

zero.

2.5 Feedforward Neural Networks

Feedforward neural networks can be used as the action and critic networks in the

adaptive critic architecture mentioned above. Single layer feedforward neural net-

works (figure 2.2) are useful because both their output and gain matrices are rela-

tively straight forward to compute. As mentioned above, the methods for building

and training the action network are the same methods used for the critic network.

Therefore, the matrix D is created to represent the gradient of the network output

to the state vector. It equals the matrix C for the action network and the matrix

P for the critic network. The input and output vectors will be denoted as p and z,

respectively.

The output of a feedforward network is computed as

z = V�(Wp) + b (2.36)

The input to the neural network, p, is comprised of the state deviation vector,

�x, the scheduling vector, ã, and the bias input, 1. The state deviation vector inputs

18

Figure 2.2: A neural network with a single hidden layer. There are q inputs, s
hidden layer nodes, and ✓ outputs in this neural network.

are referred to as regular inputs. The scheduling vector and the bias input are referred

to as auxiliary inputs and denoted by a. The output values which correspond to the

kth design point are denoted by zk. Likewise, ak refers to the auxiliary inputs at the

kth design point.

At the design points, the state deviation values are equal to zero and the neural

network output equation reduces to

zk = V�(W
A

ak) + b (2.37)

where W
A

is the matrix of input weights associated with the auxiliary inputs. Thus,

W
A

is called the auxiliary input weight matrix. W
R

is the matrix of input weights

associated with the state deviations and is referred to as the regular input weight

matrix.

As in section 2.2.1, np is the number of design points. Let Z be the matrix of

outputs for all the design points, such that the kth column of Z is the output at the

kth design point. Let A be defined such that the kth column of A is the auxiliary

19

input vector for the kth design point. Then the total design point output is

Z = V�(W
A

A) + B (2.38)

where B is a matrix with np columns which are all given by b.

Recall from equations 2.29 and 2.30, which are restated here

zA(t)
k

= 0

zC(t)
k

= 0

that the network should have an output of zero at the design points yields the equation

V�(W
A

A) + B = 0 (2.39)

This is the output constraint equation in terms of the neural network structure and,

as such, is a necessary condition for the gain-scheduled controller and the neural

network controller to perform equally at the design points.

The gradient of the neural network with respect to the state deviations at the kth

design point is

@zk

@�x
= VT⌃kWR

T = Dk (2.40)

where ⌃k is a diagonal matrix whose elements, ⌃(i, i) correspond to the derivative

of the hidden layer’s ith node’s output with respect to its input evaluated at the kth

design point. Equation 2.40 also is a necessary condition for the gain-scheduled and

neural controllers to perform equally at the design points.

Satisfying these two equations will not be enough to provide stable performance

near the design points. One additional requirement is that the output of the networks

must be zero whenever the regular inputs (the state deviations) are zero. This can

be accomplished by adding an adjustment to the output of the neural network.

z = V�(Wp) + b + zadj (2.41)

20

zadj = �V�(W
A

a)� b (2.42)

At the design points, this adjustment value is zero. Also, it has no e↵ect on the

output and also has no e↵ect on the derivatives of the outputs with respect to the

regular inputs. However, it does a↵ect the error gradient used for training the neural

network.

2.5.1 Neural Network Training

The neural controller should improve its performance at points other than the design

points through the use of a training algorithm. The method for obtaining a target

output vector for the action and critic neural networks is shown in section 2.4. In

this section the target output vector will be denoted by y. In order to train the

networks, an error function is used to determine how far the neural network is from

achieving the target output. Many training methods then adjust each weight’s value

according to the derivative of the error function with respect to that weight. The

gradient of the error function with respect to all of the weights is referred to as the

error gradient. In this research, the term unconstrained error gradient refers to the

error gradient when it is assumed that all weights are independent of each other. In

typical neural networks, the weights are independent. However, as shown in chapter

3, it is necessary to define dependencies in order to satisfy the constraint conditions.

Typically, the error function defined for a neural network is

e =
1

2
(z� y)T (z� y) (2.43)

From this equation, the unconstrained error gradient with respect to the output

weights is easily obtained via the chain rule. The output weight error gradient can

21

be expressed as the matrix V̆ where

V̆ = (z� y)
⇥
�(Wp)T � �(W

A

a)T
⇤

(2.44)

The breve notation is used to represent the unconstrained error gradient with respect

to the indicated matrix. The breve matrix is the same size as the indicated matrix

and each element of the breve matrix is the partial derivative of the error function

with respect to the corresponding element of the indicated matrix (all weights are

assumed independent). A hat matrix, such as V̂, is used to represent the constrained

error gradient with respect to the indicated matrix. The hat matrix is the same size

as the indicated matrix and each element of the hat matrix is the derivative of the

error function with respect to the corresponding element of the indicated matrix.

The hat notation will be used more in chapter 3.

The unconstrained error gradient with respect to the regular input weights is

W̆
R

= ⌃VT (z� y)�xT (2.45)

and the unconstrained error gradient with respect to the auxiliary input weights is

W̆
A

= [⌃�⌃adj]V
T (z� y)�aT (2.46)

where ⌃adj is equal to ⌃ when all regular inputs are set to zero. The unconstrained

error gradient with respect to the output bias is zero.

For the typical neural network which has independent weights, there are sev-

eral di↵erent types of gradient-based learning techniques. Two popular techniques

are Backpropagation and Resilient Backpropagation (RPROP). The backpropagation

technique uses a scaling factor, called the learning rate, in combination with the gra-

dient in a traditional gradient-descent method. One problem with such a technique

is that, for large networks, the error gradient with respect to any particular weight’s

value is very small. Thus, successful training may take many iterations. RPROP was

22

designed to overcome this problem and is presented, along with additional modifica-

tions, in chapter 3.

2.5.2 Some Useful Notation

A new and useful notation is introduced in order to explain how the constraint

equations are incorporated into the neural networks’ learning algorithm. Often, it is

necessary to refer to the set of values associated with a group of inputs, a group of

hidden layer nodes, or a group of outputs. The symbology presented here is meant

to simplify the equations used to refer to these sets of values.

Let I be a subset of all the inputs, let H be a subset of all the hidden layer

nodes, and let ⇥ be a subset of all the outputs. Then I, H, and ⇥ are referred to

as groups of inputs, hidden layer nodes, and outputs. Let Ic, Hc, and ⇥c be the

complements of I, H, and ⇥, respectively. If A is a matrix of values related to the

neural network and if B = A(I,H,⇥), then B is computed by removing from A all rows

and columns corresponding to (Ic, Hc, ⇥c). B will be referred to as a submatrix of A.

A ⇤ in place of a group reference indicates that the submatrix should not filter out

any rows or columns based on the group type where the ⇤ appears. In other words,

the compliment of ⇤ is the null set. For example, A(I,H,⇤) refers to the submatrix of

A pertaining to input group I, hidden layer group H, and all output groups. This

notation can be used with nth dimensional data. The concepts of rows and columns in

the two-dimensional definition is simply extended to all n dimensions. For simplicity,

the resulting data structure will still be referred to as a submatrix even though it is

a rank-n tensor. In figure 2.3, the input weights associated with input group 1 and

hidden layer node group 2 are referred to as W(I1,H2,⇤). Since input weights are not

associated with output weights, the symbol ⇤ is used to avoid confusion.

Subscripts are used throughout the thesis to refer to a specific element of a ma-

23

Figure 2.3: Neural network with input groups I1 and I2, hidden layer node groups
H1 and H2, and output groups ⇥1 and ⇥2. The weights corresponding to W(I1,H2,⇤)

are shown in bold.

trix or tensor by specifying the element’s coordinates. When used in conjunction

with the superscript group identifiers, the subscripts refer to the coordinates within

the submatrix specified by the superscripts. Similarly, the symbol ⇤ in a subscript

position indicates all elements of whatever position it takes. For example, W(⇤,1) is

the first column vector and W(⇤,⇤) is the entire matrix W.

2.6 Chapter Summary

Perturbation models have been established from the nonlinear dynamic system re-

sponse, the system output and the optimal control law. Criteria for the optimal

control law have been developed and related to the classical LQR result. The neural

control architecture has been established and the recurrence relations have been de-

veloped for the dual heuristic programming adaptive critic. These relations have been

24

expressed in terms of targets for the neural networks. Likewise, the optimality con-

ditions have been related to the neural network parameters. The unconstrained error

gradient for neural network training has been defined and some convenient notation

has been introduced.

25

Chapter 3

Constrained Neural Controller

Neural controllers have been used successfully in several applications [2] [3]. These

controllers work by allowing neural networks to approximate key parameters used in

determining control values. Usually these networks are subject to large amounts of

o✏ine training prior to online use. This is done to ensure that the neural networks

are able to perform well when first applied to the actual plant. The online training is

used to optimize performance based on the real-time plant dynamics. O✏ine training

usually consists of fitting the neural networks to large sets of input/target pairs. The

input/target pairs can be generated from simulation or collected from actual plant

experiments. A novel approach was recently suggested by Ferrari [17] to make use

of the constraints mentioned in the prior chapter to determine the structure and

the initial weight values of the neural network. This chapter presents modifications

to this method and extends the concept of constraining the network beyond the

initialization phase to the online training phase. A method for adapting the neural

network weights is presented that allows the network to be optimized while satisfying

the zero-output and gradient constraints.

3.1 Network Constraint Equations

As in the pervious chapter, let np be the number of design points for the controller.

Then, let nh be the number of hidden layer nodes. Finally, let nr be the number of

regular inputs and let no be the number of network outputs. For nh = nonp, there

exists a method for choosing the weight values such that the constraints mentioned

above are satisfied [19].

26

The hidden layer nodes can be partitioned such that each output has np hidden

layer nodes associated with it. The hidden layer nodes associated with the ✓th output

are referred to as the ✓th hidden layer node group, H✓. Note that Hc
✓ refers to the

group of hidden layer nodes that are not associated with the ✓th output.

For convenience, define S as the hidden layer nodes’ output at all design points

where S = �(W
A

A). For the ✓th output, the output constraint equation reduces to

Z(✓,⇤) = V(✓,⇤)S + B(✓,⇤) = 0 (3.1)

Equation 3.1 can be rewritten as

Z(✓,⇤) = V(⇤,H
✓

,⇤)
(✓,⇤) S(⇤,H

✓

,⇤) + V
(⇤,Hc

✓

,⇤)
(✓,⇤) S(⇤,Hc

✓

,⇤) + B(✓,⇤) = 0 (3.2)

Note that because each hidden layer group has np nodes, S(⇤,H
✓

,⇤)is np x np and thus

invertible. Rearranging equation 3.1 yields the function

V(⇤,H
✓

,⇤)
(✓,⇤) = �

h
V

(⇤,Hc

✓

,⇤)
(✓,⇤) S(⇤,Hc

✓

,⇤) + B(✓,⇤)

i ⇥
S(⇤,H

✓

,⇤)⇤�1
(3.3)

This function defines the value of V(⇤,H
✓

,⇤)
(✓,⇤) so that the output constraint with respect

to the ✓th output is satisfied. For this reason, the output weights associated with

V(⇤,H
✓

,⇤)
(✓,⇤) are referred to as constrained output weights and the weights associated with

V
(⇤,Hc

✓

,⇤)
(✓,⇤) are referred to as unconstrained output weights. The function is referred to

as an output weight construction function.

For convenience, the following abbreviations are adopted from this point forward.

V✓ = V(⇤,H
✓

,⇤)
(✓,⇤)

Vc
✓ = V

(⇤,Hc

✓

,⇤)
(✓,⇤)

S✓ = S(⇤,H
✓

,⇤)

Sc
✓ = S(⇤,Hc

✓

,⇤)

(3.4)

Then, the output weight construction function (equation 3.3) can be written as

V✓ = �
⇥
Vc

✓S
c
✓ + B(✓,⇤)

⇤
[S✓]

�1 (3.5)

27

A similar function can be derived for the gradient constraints. For convenience,

define Ż and E as rank-3 tensors where, for ✓ 2 [1, no],

Ż(⇤,⇤,✓) =

2

64

@z1(✓,⇤)
@�x

...
@z

n

p

(✓,⇤)
@�x

3

75

T

(3.6)

E(⇤,⇤,✓) =

2

64
D1(✓,⇤)

...
Dn

p

(✓,⇤)

3

75

T

(3.7)

Using this notation, equation 2.40 can be rewritten as

Ż(k,⇤,✓) = W
R

⌃kV(✓,⇤) = E(k,⇤,✓) (3.8)

for the kth design point and the ✓th output. If K is defined as

K(⇤,⇤,✓) =
⇥

⌃1V(✓,⇤) . . . ⌃n
p

V(✓,⇤)
⇤

(3.9)

then equation 3.8 can be expressed as

Ż(⇤,⇤,✓) = W
R

K(⇤,⇤,✓) = E(⇤,⇤,✓) (3.10)

This system of no simultaneous equations can be written as a single equation.

W
R

⇥
K(⇤,⇤,1) . . . K(⇤,⇤,n

o

)

⇤
=

⇥
E(⇤,⇤,1) . . . E(⇤,⇤,n

o

)

⇤
(3.11)

For convenience, define K̄ and Ē as

K̄ =
⇥

K(⇤,⇤,1) . . . K(⇤,⇤,n
o

)

⇤
(3.12)

Ē =
⇥

E(⇤,⇤,1) . . . E(⇤,⇤,n
o

)

⇤
(3.13)

28

Since K̄ is nonp x nonp, equation 3.11 can be solved for W
R

.

W
R

= Ē K̄�1 (3.14)

This approach assumes that the derivative of each output with respect to each

input is known. However, in the case of an airplane, it may be easier to model

the lateral dynamics and the longitudinal dynamics separately. If these two models

are used to describe the system as a whole, the cross-model derivatives will not

be known a priori. Instead, the neural controller must be allowed to learn these

derivatives online. Therefore, it is necessary to have a method which constrains the

network output derivatives for all input/output pairs belonging to the same model

while leaving cross-model derivatives unconstrained.

Assume that the system being controlled is described by nm independent dynamic

models. Then let the set of inputs related to the mth model be designated by the mth

input group, Im. Likewise, let the set of outputs related to this model be designated

by the mth output group, ⇥m. For convenience, let the group of hidden layer nodes

associated with the outputs of model m be designated by Mm. For now, assume that

elements of E are undefined for coordinates which correspond to unknown deriva-

tives. Then, equation 3.11 can be modified to express the value of the input weights

corresponding to Im and H✓ where the ✓th output belongs to ⇥m.

W
R

(I
m

,⇤,⇤)K̄(⇤,⇤,⇥
m

) = Ē(I
m

,⇤,⇥
m

) (3.15)

The left hand side of this equation can be broken into a sum of the gradient contri-

bution of the mth model and the gradient contribution of all of the other models, as

follows:

W
R

(I
m

,M
m

,⇤)K̄(⇤,M
m

,⇥
m

) + W
R

(I
m

,Mc

m

,⇤)K̄(⇤,Mc

m

,⇥
m

) = Ē(I
m

,⇤,⇥
m

) (3.16)

It can be observed that K̄(⇤,M
m

,⇥
m

) is (no
m

np) x (no
m

np), where no
m

is the number

of outputs associated with the mth model. Thus equation 3.16 can be solved for the

29

values of the weights associated with input group Im and hidden layer node group

Mm.

W
R

(I
m

,M
m

,⇤) =
h
Ē(I

m

,⇤,⇥
m

) �W
R

(I
m

,Mc

m

,⇤)K̄(⇤,Mc

m

,⇥
m

)
i ⇥

K̄(⇤,M
m

,⇥
m

)
⇤�1

(3.17)

For convenience, the following abbreviations are adapted from this point forward

K̄m = K̄(⇤,M
m

,⇥
m

)

K̄c
m = K̄(⇤,Mc

m

,⇥
m

)

Ēm = Ē(I
m

,⇤,⇥
m

)

Wm = W
R

(I
m

,M
m

,⇤)

Wc
m = W

R

(I
m

,Mc

m

,⇤)

(3.18)

Then, equation 3.17 can be rewritten as

Wm =
⇥
Ēm �Wc

mK̄c
m

⇤ ⇥
K̄m

⇤�1
(3.19)

This function defines the values of Wm so that the gradient constraint related to the

mth model is satisfied. The weights represented by Wm are referred to as constrained

input weights and the weights represented by Wc
m are referred to as unconstrained

input weights. Equation 3.19 is referred to as the input weight construction function.

This function and the output weight construction function determine the values of the

constraint input and output weights so that all constraining equations are satisfied.

3.2 Initialization

A method is presented in [17] for the selection of initial neural network weight values.

A modification of this method is presented here to produce satisfactory initial weight

values using the construction functions and a new process for distributing network

weights. The construction function defines the values of the constrained weights

based on the values of the unconstrained weights, the output bias vector, and the

auxiliary input weights. Therefore, the task of selecting initial values for all network

parameters is reduced to selecting values for these three groups.

30

3.2.1 Unconstrained Weights

The unconstrained weights can be given initial values of zero. This makes the cross-

model derivatives zero, which is equivalent to assuming decoupled plant dynamics.

Knowing a priori that the initialized neural network will have derivatives of zero for

all unconstrained derivatives implies that the initial network can be computed from

the construction equations as if only one model were used.

3.2.2 Bias Vector

The values in the output bias vector can be chosen as random. While the precise

value of the biases is unimportant, the order of magnitude of the bias values plays

an important role. Through the output weight construction function, the order of

magnitude of the bias dictates the order of magnitude of the output weights. The

order of magnitude of the output weights e↵ects the order of magnitude of the input

weights through the input weight construction function. The order of magnitude of

the input weights serves as a scale to the input of the sigmoidal functions of the

hidden layer, essentially controlling how linear the sigmoidal functions are near the

origin. Thus, the order of magnitude of the bias vector can be used to control the

linearity of the sigmoidal functions with respect to the regular inputs near zero. Since

the controller is based on a LPV model, linearity of the sigmoidal function is desirable

near zero. Therefore, the biases should have high orders of magnitude. If b⇤ has a

desirable order of magnitude, a bias vector can be constructed using algorithm 3.1.

Using this procedure results in an expected order of magnitude of log10(b
⇤). The

minimum and maximum possible orders of magnitude for elements of the bias vector

are log10(b
⇤)�0.5 and log10(b

⇤)+0.5, respectively. Adjusting the value of R will alter

the minimum and maximum values accordingly.

31

Algorithm 3.1 Initialize the bias vector, b.
b⇤ desired output bias value
R 1
for i = 1 to n✓ do

r R(rand� 0.5) + log10(b
⇤)

if rand < 0.5 then
b(i) �10r

else
b(i) 10r

end if
end for

3.2.3 Auxiliary Input Weights

The process for selecting the auxiliary input weights is more detailed. The output

weight construction function specified earlier (equation 3.3) requires that the auxiliary

input weights have values which allow certain matrices to be invertible. Specifically,

the matrix of the ✓th hidden layer group’s outputs, S(⇤,H
✓

,⇤), must be invertible. Thus

the matrix should be well conditioned, meaning it should have a condition number

less than "�0.5 where " is the smallest positive number such that (" + 1)� 1 = 0 on

the chosen computing machine. A strategy for choosing auxiliary input weights such

that S(⇤,H
✓

,⇤) is well-conditioned with probability 1 is presented in [20].

The strategy consists of selecting a suitable matrix T
n

(⇤,H
✓

,⇤) as the target hidden

layer inputs, solving for the values of W
A

(⇤,H
✓

,⇤) which produce the least squares best

match between the target hidden layer inputs and the actual hidden layer inputs.

The auxiliary input weight matrix, W
A

(⇤,H
✓

,⇤), is then scaled so that the maximum

magnitude of the hidden layer inputs is 10. It can be observed that at input values

of more than 10, the sigmoidal function is saturated.

A suitable target hidden layer input matrix is selected using the following process.

All the diagonal elements of T
n

(⇤,H
✓

,⇤) are set to zero and all the non-diagonal elements

are chosen independently from a normal distribution with mean zero and variance

one. Generating the target matrix in this manner is equivalent to distributing the

32

sigmoidal functions across the input space as in the Nguyen-Widrow initialization

algorithm [21]. A modified version of this strategy can be used to pick auxiliary input

weights which provide a best fit approach to achieving a condition number of one for

S(⇤,H
✓

,⇤). Using a method referred to as Dual-point Hyperspherical Initialization, a

matrix with a condition number of approximately one, T
s

(⇤,H
✓

,⇤), is selected as the

target hidden layer output matrix. This method is outlined in appendix A. The

target hidden layer input matrix can then be determined by applying the inverse of

the sigmoidal function. If such an inverse does not exist (for instance, more than one

input can generate the same output), a pseudo-inverse function returns one of the

values, selected at random, producing the desired sigmoidal function output:

T
n

(⇤,H
✓

,⇤) = ��1
⇣
T

s

(⇤,H
✓

,⇤)
⌘

(3.20)

From this point onward, the procedure for selecting the input weights is the same

as the strategy outlined in [20]. The auxiliary input weight matrix, W
A

(⇤,H
✓

,⇤) is

sought for which

T
n

(⇤,H
✓

,⇤) = W
A

(⇤,H
✓

,⇤)A (3.21)

Since A is not necessarily square, such a matrix does not always exist. However, the

least squares best fit can be computed as

WLS

A

(⇤,H
✓

,⇤)
= T

n

(⇤,H
✓

,⇤)AT
⇥
AAT

⇤�1
(3.22)

Let NLS

(⇤,H
✓

,⇤)
be the matrix of the ✓th hidden layer node group’s inputs when the

least squares best fit auxiliary input weight matrix is used.

NLS

(⇤,H
✓

,⇤)
= WLS

A

(⇤,H
✓

,⇤)
A (3.23)

Let l✓ be the largest magnitude of the elements of NLS

(⇤,H
✓

,⇤)
. The auxiliary input

weight matrix corresponding to the ✓th hidden layer node group can be set according

33

to:

W
A

(⇤,H
✓

,⇤) =
10

l✓
WLS

A

(⇤,H
✓

,⇤)
(3.24)

This modified method focuses on evenly distributing the outputs of the hidden layer.

The Dual-point Hyperspherical Initialization method can also be used to generate

the target hidden layer input matrix directly, in which case the distribution focus

will be on the inputs to the hidden layer.

3.2.4 Constrained Weights

The initial values for the constrained weights are computed from the construction

equations 3.5 and 3.19, using the values of the unconstrained weights, the output

bias vector and the auxiliary input weights determined in the three previous sections.

Once the values of the constrained weights are determined, the entire neural network

is considered initialized and the o↵-line training is complete.

3.3 Constrained Gradient-Based Online Training

Once the neural network has been initialized, it is ready to be further adjusted online.

Online, the neural network is fed an input vector in order to compute an output

vector. The network is also supplied with a target output vector. The weights of

the network are adjusted to minimize the di↵erent between the target output and

the actual output corresponding to the input vector. Each cycle of input-output-

target-training is referred to as an epoch. Successful training often requires that each

input-target pair be used over several epochs.

As mentioned in section 2.5.1, many training algorithms use unconstrained error

gradient based learning techniques. Application of such a technique to the neural

network would allow the weights to be modified without any guarantee that the of-

34

fline training requirements be satisfied. There are two approaches for allowing the

neural networks to satisfy the constraint equations during training. One approach is

to design a training algorithm which provides adjustments for the weights according

to both the unconstrained error gradient and the constraint equations. A second and

more feasible approach is to apply the construction equations after weight adjust-

ments have been made. This requires that the weight adjustments be based on the

constrained error gradient rather than the unconstrained error gradient. The second

approach is more feasible because it reduces the training problem to two separate

problems, each of which is solvable.

3.3.1 Constrained Error Gradient

The constrained error gradient is similar to the unconstrained error gradient except

that the dependencies between the weights are taken into account. Computing the

constrained error gradient makes use of the extension of the chain rule to linear

algebra referred to as the gradient transformation. The gradient transformation is

used to determine the value of one gradient matrix based on another, related gradient

matrix. For instance, let the matrix A be defined by some function applied to the

matrix B.

A = f(B) (3.25)

Also let the scalar value e represent some error value which is dependent on both

the matrix A and the matrix B. Using the notation from section 2.5.1, the uncon-

strained error gradient with respect to A is denoted by Ă, and unconstrained error

gradient with respect to B is denoted by B̆. However, B̆ does not reflect the actual

error gradient because of the dependency in equation 3.25. Since the value of A is

constrained by this equation, the constrained error gradient is the value that will

provide the true error gradient. The constrained error gradient with respect to B,

35

denoted by B̂, is expressed as

B̂ = B̆ + G [A,B, Ă] (3.26)

where the final term is called the gradient transformation of A with respect to B

given the unconstrained gradient Ă. The gradient transformation can be applied

recursively. For instance, if

B = g(C) (3.27)

then

Ĉ = G [B,C, B̂] = G [B,C, B̆ + G [A,B, Ă]] (3.28)

More information about the gradient transformation is contained in appendix B.

In neural network training, the gradient transformation can be used to compute

the constrained error gradient from the construction equations and the unconstrained

error gradient. It is important to note that since the constrained weights are fixed

by the construction functions, it is only necessary to compute the constrained error

gradient with respect to the unconstrained weights. By definition of the gradient

transformation, the constrained error gradient with respect to the unconstrained

input weights is

Ŵc
m = W̆c

m + G [Wm,Wc
m,W̆m] (3.29)

Applying the above gradient transformation (as shown in Appendix B), using equa-

tion 3.19 yields

Ŵc
m = W̆c

m + W̆m

h
K̄c

m

⇥
K̄m

⇤�1
iT

(3.30)

Computing the constrained error gradient with respect to the unconstrained out-

put weights is more involved. Note that the above gradient transformation involves

only one construction function. As shown in equation 3.5, the unconstrained output

weights e↵ect the constrained output weights. However, the definition of K̄ and equa-

tion 3.19 show that all of the values of the output weights a↵ect the constrained input

36

weight values. Thus, by application of the gradient transformation, the constrained

error gradient with respect to the output weights is:

V̂c
✓ = V̆c

✓ + G [V✓,V
c
✓, V̆✓] +

n
mX

m=1

G [Wm,Vc
✓,W̆m] (3.31)

The summation term of the above equation can be expanded as

G
h
Wm,Vc

✓,W̆m

i
= G

h
K̄c

m,Vc
✓, G

h
Wm, K̄c

m,W̆m

ii

+ G
h
K̄m,Vc

✓, G
h
K̄�1

m , K̄m, G
h
Wm, K̄�1

m ,W̆m

iii

+ G
h
V✓,Vc

✓, G
h
K̄c

m,V✓, G
h
Wm, K̄c

m,W̆m

iii

+ G
h
V✓,Vc

✓, G
h
K̄m,V✓, G

h
K̄�1

m , K̄m, G
h
Wm, K̄�1

m ,W̆m

iiii
(3.32)

From the definition of K̄m, the gradient transformation of Wm with respect to Vc
✓

given W̆m is zero if the ✓th output does not belong to the output group ⇥m (does not

belong to the mth model). The following intermediate values are defined to simplify

the expression for the constrained error gradient.

V̌c
✓ = V̆c

✓ + G
h
K̄c

m,Vc
✓, G

h
Wm, K̄c

m,W̆m

ii

+ G
h
K̄m,Vc

✓, G
h
K̄�1

m , K̄m, G
h
Wm, K̄�1

m ,W̆m

iii (3.33)

V̌✓ = V̆✓ + G
h
K̄c

m,V✓, G
h
Wm, K̄c

m,W̆m

ii

+ G
h
K̄m,V✓, G

h
K̄�1

m , K̄m, G
h
Wm, K̄�1

m ,W̆m

iii (3.34)

In these definitions, m is the number of the model to which the ✓th output belongs.

Substituting equations 3.32, 3.33, and 3.34 into equation 3.31 and applying the gra-

dient transformation yields a simplified expression for the constrained error gradient

with respect to the output weights which depends on the intermediate values defined

above.

V̂c
✓ = V̌c

✓ + V̌✓

⇥
Sc

✓ [S✓]
�1⇤T

(3.35)

37

The gradient transformations in equations 3.33 and 3.34 can be evaluated using the

techniques shown in appendix B. The constrained error gradient with respect to the

auxiliary input weights can be written as

Ŵ
A

(⇤,H
✓

,⇤)
= W̆

A

(⇤,H
✓

,⇤)
+

X

✓2

G [V✓2 ,WA

(⇤,H
✓

,⇤), V̌✓2]

+
X

m2

G [Wm2 ,WA

(⇤,H
✓

,⇤), V̌✓2]

(3.36)

This can be expanded as

Ŵ
A

(⇤,H
✓

,⇤)
= W̆

A

(⇤,H
✓

,⇤)
+ G

h
S✓,WA

(⇤,H
✓

,⇤), G
⇥
V✓,S✓, V̌✓

⇤i

+
X

✓2

G
h
Sc

✓2
,W

A

(⇤,H
✓

,⇤), G
⇥
V✓2 ,S

c
✓2

, V̌✓2

⇤i

+
X

m2

G
h
K̄m2 ,WA

(⇤,H
✓

,⇤), G
⇥
Wm2 , K̄m2 ,W̌m2

⇤i

+
X

m2

G
h
K̄c

m2
,W

A

(⇤,H
✓

,⇤), G
⇥
Wm2 , K̄

c
m2

,W̌m2

⇤i

= W̆
A

(⇤,H
✓

,⇤)
+ G

h
S✓,WA

(⇤,H
✓

,⇤), G
h
[S✓2]

�1,S✓2 ,�
⇥
Vc

✓2
Sc

✓2

⇤T
V̌✓

ii

+
X

✓2

G
h
Sc

✓2
,W

A

(⇤,H
✓

,⇤),� [Vc
✓]

T V̌✓2

⇥
[S✓]

�1
⇤T

i

+
X

m2

G
h
K̄m2 ,WA

(⇤,H
✓

,⇤), G
h
[K̄m2]

�1, K̄m2 ,
⇥
Ēm2 �Wc

m2
K̄c

m2

⇤T
W̆m2

ii

+
X

m2

G
h
K̄c

m2
,W

A

(⇤,H
✓

,⇤),�
⇥
Wc

m2

⇤T
W̌m2

⇥
[K̄c

m2
]�1

⇤T
i

(3.37)

The remaining gradient transformations in equation 3.37 are carried out in as specified

in appendix B.

Although the output bias does not directly e↵ect the output of the neural network,

it does e↵ect the constrained weights. Thus, the output bias has an indirect e↵ect on

38

the neural network error and the e↵ect must be incorporated into the training. The

constrained error gradient with respect to the output bias is solved as

b̂ = b̆ +
X

✓

G [V✓,b, V̌✓]

= �
X

✓

V̌✓

⇥
[S✓]

�1⇤T
(3.38)

The gradient transformation is an incredibly powerful tool in tracing the e↵ects of

the values in an entire matrix throughout a series of construction functions. Once the

constrained error gradient has been obtained, gradient-based training, such as modi-

fied resilient backpropagation, can be used to update the values of the unconstrained

weights.

3.3.2 Modified Resilient Backpropagation

As mentioned in section 2.5.1, backpropagation uses the error gradient to adjust the

values of the neural network weights. The application of gradient-based training to

a set of weights can be discussed for the general case, where the constrained error

gradient is known. Let U represent an arbitrary weight matrix associated with the

neural network. The backpropagation algorithm updates the values of the weights

during the kth epoch according to the following rule

Uk = Uk�1 � ⌘Ûk�1 (3.39)

where U0 is the initialized value of U and ⌘ is a parameter called the learning pa-

rameter which has a fixed value between 0 and 1. This rule allows training to stop

when the error gradient becomes small. However, there are some shortcomings to

this approach. While a small gradient can be indicative of good weight values, it

can also indicate that the sigmoidal functions are saturated. Input parameters with

small magnitudes either in the input layer or in the preceding sigmoidal layer also

39

can cause small derivatives. These small derivatives cause the associated weights to

remain relatively unchanged.

The resilient backpropagation (RPROP) technique overcomes these deficiencies

by adapting the weights based on the sign of the gradient and the increment of the

previous weight adaptation [22]. This eliminates the e↵ect of the gradient magnitude

on the update. The RPROP algorithm adapts weights according to the following rule

Uk = Uk�1 + �Uk (3.40)

where �Uk is defined by the following procedure.

�k
(i,j) =

8
><

>:

⌘+ �k�1
(i,j), if Ûk�1

(i,j)Û
k
(i,j) > 0;

⌘� �k�1
(i,j), if Ûk�1

(i,j)Û
k
(i,j) < 0;

�k�1
(i,j), if Ûk�1

(i,j)Û
k
(i,j) = 0.

(3.41)

�Uk
(i,j) =

(
sign

h
Ûk

(i,j)

i
�k

(i,j), if Ûk�1
(i,j)Û

k
(i,j) � 0;

��Uk�1
(i,j), if Ûk�1

(i,j)Û
k
(i,j) < 0;

(3.42)

Note that the sign[] operator returns 1 if argument is positive, �1 if the argument

is negative, and 0 otherwise. To aid with convergence, an additional rule is added.

If the error at stage k is greater than 110% of than the error at stage k� 1, then the

network reverts to stage k � 1 and a new �Uk is selected as

�Uk = sd(�Uk)old (3.43)

where sd is a positive number less than 1 and is referred to as the scale-down factor.

The scale-down factor scales the weight adaptation so that the minimization search

remains local. Likewise, a second rule states that if the error at stage k is less than

0.05% lower than the error at stage k � 1, the network reverts to stage k � 1 and a

new �Uk is selected as

�Uk = su(�Uk)old (3.44)

40

where su is a positive number greater than 1 and is referred to as the scale-up factor.

This factor serves to accelerate training when the step size is too small. Because these

scaling factors can be applied directly to the old �Uk, the constrained error gradient

does not need to be recalculated for a scale-up or scale-down step, which results in

significant computational savings. Additionally, because incremental training focuses

on only the current training set, too many training epochs can result in a network

that forgets previous training sets. This is often referred to as overtraining. To

prevent overtraining, the network training algorithm stops after the error is reduced

by ten percent.

For all elements of �0, Riedmiller and Braun suggest picking a fixed value, citing

the robustness of the RPROP algorithm [22]. Ferrari [17] notes that this is equivalent

to disregarding initial information stored in the network weights and o↵ers a modified

RPROP algorithm in which values for �0 are based on the initial values of the weights.

�0 = fu |U| + f0 (3.45)

However, the weights to be modified are the unconstrained weights and, by definition,

they have initial values of zero. Therefore, the modification suggested by Ferrari is

reduced, in this case, to picking an arbitrary value. While RPROP is robust in

regards to initial parameter choice, well-chosen parameters can significantly reduce

the number of epochs required for satisfactory training. A revised method of picking

meaningful values for �0 draws upon the original backpropagation algorithm. The

original backpropagation algorithm remains local by choosing the magnitudes of the

first adjustment (and all subsequent adjustments) based upon gradient information.

Thus, choosing �0 based on the error gradient will preserve the local information

contained in the weights. The magnitude of �0 should also depend on the magnitude

of the constrained weights since the two sets of weights are related. The following

41

rule is proposed for determining values for �0.

�0 = ⌘µ
���Û + Ru

��� (3.46)

where µ is the ratio of the sum of all elements of |U| to the sum of all elements of
���Û

���,

Ru is the zero-replacement matrix, and ⌘ is the learning rate borrowed from back-

propagation. Each element in the zero-replacement matrix, Ru, whose corresponding

element of Û is zero has a positive value, Ru, which ensures that the value of each

element of �0 is positive. The value added has an order of magnitude equal to the

average order of magnitude of the non-zero elements of Û.

Ru = e
1

n

u

i

ln|Û
c(i)| (3.47)

where Uc is a vector composed of all the constrained weights found in U and nu is

the number of constrained weights found in U.

Once �0 is determined, the algorithm runs according to the rules outlined in

equations 3.41 and 3.42. Riedmiller and Braun point out that computation devices

cannot accurately display every number and that if � becomes too large, numerical

errors induced by the computing device may compromise the training algorithm.

They suggest that to overcome this problem, a maximum be imposed on the elements

of �. Riedmiller and Braun suggest that this maximum value be 50. However, due

to the potentially large magnitudes of weight values in the neural networks, this limit

can e↵ectively halt training. For example, if the values of the constrained weights are

on the order of 108 and the elements of � have a value of 50, then the new weights will

not change significantly. However, if chosen well, a maximum for � is beneficial in

that they prevent the RPROP algorithm from taking too large of a step and skipping

local minima. A � maximum of 50 is hardly useful in this regard when the average

magnitude of the constrained weights is 10�7. Therefore, the Delta maximum should

42

be a function of the constrained weights. The following function has been found to

work well.

�Ulimit = 0.1
ū

nu

(3.48)

where ū is the average of the elements of |Uc|. These modifications to the RPROP

algorithm work for both the input and output unconstrained weights and ensure

quicker, localized training.

3.3.3 Satisfying Network Constraints

The final stage of every epoch is the network constraining stage. In this stage, the

construction functions are used to determine the values of the constrained weights

which cause the network weight values to satisfy the constraints imposed on the

network performance, based on the linear gain-scheduled controller. From section

3.1, the construction functions are

V✓ = �
⇥
Vc

✓S
c
✓ + B(✓,⇤)

⇤
[S✓]

�1

Wm =
⇥
Ēm �Wc

mK̄c
m

⇤ ⇥
K̄m

⇤�1

At this point the error function is evaluated with the new weights, the current input

and the current target. If the error is acceptably small and all other stopping con-

ditions necessary are satisfied, then the training algorithm ends. If the error level is

not acceptable or other conditions are not satisfied, then a new training epoch begins

based on these new network weights. Throughout the entire process, the network

satisfies the constraint equations 2.39 and 2.40.

3.4 Chapter Summary

In this chapter, construction functions are developed to define dependencies among

the network weights. The application of these construction functions yields a neural

43

network whose parameters satisfy the network constraint equations. A method which

makes use of dual-point hyperspherical initialization provides initial values for the

auxiliary input weights. Initial bias values are picked based on their influence on

the linearity of the sigmoidal functions. Unconstrained weights are initialized as zero

and initial constrained weights are determined from the construction functions. A

constrained error gradient is determined using a new operator called the gradient

transformation. The constrained error gradient is used in conjunction with a new

modified version of resilient backpropagation to optimize the network weights with

respect to an input/target pair. The use of the construction functions is built into this

process to ensure that the network adapts subject to the zero-output and gradient

constraints.

44

Chapter 4

Software Implementation

The new procedures introduced in the previous chapter are tested here, using a six-

degree-of-freedom Matlab simulation of a business jet. The aircraft neural control

system is modeled after a gain-scheduled proportional-integral (PI) controller. The

neural controller is obtained by using the gains specified in the PI controller to ini-

tialize and constrain the neural networks. The software models coupled longitudinal

and lateral-directional dynamic e↵ects. For steady, level flight these coupled e↵ects

are small and linearization yields decoupled models. Therefore, independent lin-

ear controllers are designed for the longitudinal and lateral-directional models and

the neural controller is constructed from the two independent models. Because the

coupled dynamic e↵ects are present in the simulation, the neural controller has the

opportunity to improve its performance.

The software models the dynamics of the business jet as

ẋ = f(x, ã,u) (4.1)

The longitudinal, ()L, aircraft model can be written as

ẋL = fL(xL, ã,uL) (4.2)

and the lateral-directional, ()LD, aircraft model can be written as

ẋLD = fLD(xLD, ã,uLD) (4.3)

Both systems of dynamic equations are based on mathematical models, full-scale wind

tunnel data, and the physical and performance characteristics of an early twin-jet

configuration [23]. The longitudinal state vector, xL = [V � q ✓]T is comprised

45

of the velocity, V (m/s), the path angle, � (rad), the pitch rate, q (rad/s), and the

pitch angle, ✓ (rad). The lateral-directional state vector, xLD = [r � p µ]T is

comprised of the yaw rate, r (rad/s), the sideslip angle, � (rad), the roll rate, p

(rad/s), and the bank angle, µ (rad). The scheduling vector, ã = [V H]T , is

comprised of the velocity and the altitude, H (km). The longitudinal control vector,

uL = [�T �S]T , is comprised of the control values for the throttle, �T (%), and

the stabilator, �S (rad). The lateral-directional control vector, uLD = [�A �R]T ,

is comprised of the control values for the aileron ,�A (rad), and the rudder, �R (rad).

Details concerning the equations of motion are provided in appendix C.

The aircraft is allowed to fly anywhere in its operational domain which is defined

as the set of points (xe, ã) for which there exists a control vector ue such that the

aircraft can be brought to equilibrium. Typically, the flight envelope is determined

for steady, level flight conditions by considering the stall speed, the thrust/power

required and available, compressibility e↵ects, and the maximum allowable dynamic

pressure to prevent structural damage [23]. In this approach, the design envelope

used to initialize and constrain the neural controller is the entire flight envelope or a

subset of its operating conditions.

4.1 Design Envelope

One of the major factors considered when selecting the design envelope and the

design points therein is the expected operating region of the airplane. Once the

design envelope is chosen, it is used to initialize and constrain the neural controller.

Thus, another important consideration is the computational power available. As

pointed out in appendix B, the processes of training the neural controller is O(n5),

where n is related to the number of design points. Thus, the number of design points

directly influences the time required to complete a training epoch. If too many design

46

points are used, the training will require infeasible computational time.

Figure 4.1: Flight envelope, design envelope and design points

Figure 4.1 shows the flight envelope and a smaller design envelope picked for the

initialization and for the constraints used for the neural controller. By using the

smaller envelope to initialize the controller, the remainder of the flight envelope can

be used to test the extrapolating capability of the adaptive neural controller. The

number of design points is e↵ectively limited by the computational device used to

train the neural networks. This device is a desktop computer with an Intel Pentium-4

3.06GHz central processing unit, 1.25GB of system memory, and a 533MHz front-side

bus running Matlab 6.5 R13. A selection of 14 design points was found to have an

average training epoch time of around one second for the action network. This time

interval is unreasonable for real-time control of an aircraft. However, it is reasonable

for the timely completion of the aircraft simulation. Section 4.5 proposes methods

for reducing the epoch time through parallelization for real-time application. The 14

design points are then selected to cover the design envelope as shown in figure 4.1

47

k (#) 1 2 3 4 5 6 7
V (m/s) 80 110 135 90 120 145 100
H (m) 1000 1000 1000 3000 3000 3000 5000

k (#) 8 9 10 11 12 13 14
V (m/s) 130 160 115 145 175 125 155
H (m) 5000 5000 7000 7000 7000 9000 9000

Table 4.1: The 14 design points used to initialized and constrain the neural controller

and table 4.1.

4.2 Linear Control

Equations 4.2 and 4.3 are linearized for each of the 14 design points as outlined in

section 2.1. This is done using a built-in numerical Jacobian function in Matlab

called numjac. Linearization yields the following approximate perturbation models

�ẋL = FL(ãk)�xL + GL(ãk)�uL (4.4)

�ẋLD = FLD(ãk)�xLD + GLD(ãk)�uLD (4.5)

The Jacobian matrices F and G can be use to obtain the linear control gains (Ck)L

and (Ck)LD along with the Riccati matrices (Pk)L and (Pk)LD (section 2.2.1). These

matrices are then used to generate the target output gradients for the neural networks

(section 2.3).

4.2.1 Proportional-Integral Control

As mentioned in chapter 2, the neural controller is designed to improve upon a

gain-scheduled controller. The gain-scheduled design selected to motivate the neural

controller is the proportional-integral (PI) controller. Since there are two independent

models, a PI controller can be constructed for each model. Because the process is

48

the same for the longitudinal and lateral-directional models, the subscripts ()L and

()LD are generally omitted.

The objective of a proportional-integral controller is to minimize the quadratic

cost function

J =

Z t
f

0

L(x̃a(t), ũ(t), t)dt

=
1

2

Z t
f

t0

�
x̃T

a Qax̃a + 2x̃T
a Maũ + ũTRaũ

�
dt

(4.6)

with respect to ũ. The augmented state deviation, x̃a, includes the deviation of the

state from the commanded state,

x̃ = x� xc (4.7)

and the time integral of the system output error, ⇠ such that

x̃a =
⇥
x̃T ⇠T

⇤T
(4.8)

The system output error is defined as ỹs = ys�yc where yc is the commanded system

output. The control deviation is defined as the di↵erence between the control values

and the control values which trim the aircraft at the commanded state.

ũ = u� uc (4.9)

The commanded state and the corresponding control values can be obtained from

the commanded system output. The linearized systems are at equilibrium when

0

�yc

�
=

F G
Hx Hu

�
�xc

�uc

�
(4.10)

Because there are as many control elements as system outputs, the system can be

solved for the commanded state and the control values which trim the aircraft about

the commanded state.

49

�xc

�uc

�
=

F G
Hx Hu

��1
0

�yc

�
=

B11 B12

B21 B22

�
0

�yc

�

=

B12�yc

B22�yc

� (4.11)

The weighting matrices Qa, Ma, and Ra are designed using implicit model fol-

lowing (IMF). IMF is a technique used to prompt the system to behave like a known,

ideal model. In the case of the aircraft, the ideal system should satisfy established

design criteria. The state Jacobian matrices for the ideal longitudinal and lateral-

directional models are obtained from [17].

Fm
L

=

2

664

�0.016 �1.8066 0 �8
2 · 10�4 �0.5 0 0.5

0 5 �1.7 �5
0 0 1 0

3

775 (4.12)

Fm
LD

=

2

664

�2.4 8 0 0
�1 �1.8 0 0
0 �2 �2 0
0 0 1 0

3

775 (4.13)

The cost function associated with following the dynamic response of the ideal system

model is

J =
1

2

Z t
f

t0

⇣
[�ẋa ��ẋa

m

]T Qm [�ẋa ��ẋa
m

] + ũTRmũ
⌘

dt (4.14)

where Qm is the weighting matrix for the di↵erence in the time derivatives of the

states and Rm is the cost associated with the control usage. This cost function can

be rewritten in the form of equation 4.6 if the cost-weighting matrices Q, R, and M

50

are defined as

Q = [F� Fm]T Qm [F� Fm] (4.15)

M = [F� Fm]T QmG (4.16)

R = GTQmG + Rm (4.17)

Then, the augmented weighting matrices can be defined in terms of the implicit model

following weighting matrices [24] as

Qa =

Q 0
0 Q⇠

�
(4.18)

Ma =

M
0

�
(4.19)

Ra = R (4.20)

The values for Qm, Rm, and Q⇠ are obtained from [17] to provide a good compromise

between the ideal model behavior and the intrinsic aircraft dynamic behavior.

Qm
L

=

2

664

0.5 0 0 0
0 10 0 0
0 0 5 0
0 0 0 1

3

775 (4.21)

Rm
L

=

0.5 0
0 5

�
(4.22)

Q⇠
L

=

1 0
0 103

�
(4.23)

Qm
LD

=

2

664

10 0 0 0
0 1 0 0
0 0 10 0
0 0 0 1

3

775 (4.24)

Rm
LD

=

0 0
0 0

�
(4.25)

Q⇠
LD

=

10 0
0 0.1

�
(4.26)

51

With Qa, Ma, and Ra fully defined at each design point, the linear quadratic result

from section 2.2.1 is used to obtain the linear control gain matrices and the Riccati

matrices.

4.3 Neural Controller Initialization

The neural controller is initialized using the methodology outlined in section 3.2. The

longitudinal model is the first model and the lateral-directional model is the second

model. The desired value of the output bias is 109, which provides ample linearity for

the sigmoidal functions. The auxiliary input weights are chosen using the dual-point

hyperspherical initialization method to determine the targets for the hidden layer

output values. The dual-point hyperspherical initialization is initialized with the

target values provided by Ferrari’s procedure (see section 3.2.3). Upon completion

of the neural network initialization phase, the outputs and output gradients of the

network are compared with their targets. The mean square di↵erence between the

target outputs and the actual outputs at the design points is on the order of 10�7.

Likewise, the mean square di↵erence between the target output gradients and the

actual output gradients at the design points is on the order of 10�28.

4.4 Target Selection and Training

Selection of the target follows from the theory presented in section 2.4. For the action

network, the target is found by solving the Hamilton-Jacobi-Bellman equation. The

HJB equation for the action neural network is

x̃⇤T
a M + ũ⇤TR + [NNC(x̃a)]

T @f(x,u)

@ũ
= 0 (4.27)

The target for the action neural network is the value of ũ that satisfies the above

equation. The Jacobian of the open loop dynamic system with respect to the states

52

is calculated using the numjac Matlab function. Using another built-in Matlab

function, called fminsearch, the mean square error between the left-hand-side and

the zero vector can be minimized to provide the target value for the action network.

However, the aircraft dynamics impose physical limitations on the control values and

target control values which exceed these limits are not valid. Thus, any excessive

target values are reduced appropriately. If the corresponding target control values

are equal to the reduced control values, then corresponding error is set to zero during

the neural network training. This step recognizes that the excessive values still results

the target control value. Consider, for example, the thrust, which is limited to 100%

of available thrust. There is no di↵erence in cost when the neural network output is

125% as opposed to 150%. Both control values are reduced to 100%. If the target

thrust value is 100%, the neural network does not need to train. However, if the

target value for the thrust is 99%, then training to meet the desired target requires

that the full errors of 26% and 51%, respectively, be considered.

The target for the critic network is found from equation 2.34 which can be rewrit-

ten as

NNC(x̃a(t)) = [NNC(x̃a(t + �t))]
@x̃a(t + �t)

@x̃a(t)
+

d�J

dx̃a(t)
(4.28)

where

�J =
1

2

Z t+�t

t

x̃T
a Qax̃a + 2x̃T

a Ma [NNA(x̃a(t))]

+ [NNA(x̃a(t))]
T Ra [NNA(x̃a(t))] dt

(4.29)

In section 4.1 it is mentioned that the average epoch for the action network takes

approximately one second. The average epoch for the critic network takes approxi-

mately 70 seconds. Rather than reduce the number of design points further (which

would reduce the quality of the controller), the critic network is left unconstrained

during simulation. This reduces epoch time to a fraction of a second because the

53

Figure 4.2: Error vs epoch in a typical action network training session

gradient transformation of an inverse matrix is removed from the training process.

Once the target has been chosen, training occurs via the modified RPROP algo-

rithm outlined in section 3.3.2. The scale-up and scale-down factors found to work

the best are 3.1 and 0.5 respectively. Using these factors results in 10 or fewer training

epochs during the first training session (when � has not yet adapted to the network).

The graph in figure 4.2 shows a training session for the action network. In this par-

ticular session, the network is allowed to train beyond the error tolerance level so

that the e↵ectiveness of the training algorithm itself could be observed. Normally an

error tolerance of 10�4 is used for the action network and an error tolerance of 10 is

used for the critic network.

54

4.5 Parallel Hardware Architecture

For significant time savings, the neural control system outlined in this thesis can

be implemented using a parallel hardware architecture. Neural networks are, by

definition, parallel structures. The computation of both their outputs and their un-

constrained error gradients can be performed using parallel procedures. Many of the

gradient transformation operations involve parallel operations. The most costly set

of computations is the gradient transformation of the inverse of a matrix. From the

definition of the gradient transformation of the inverse of an n x n matrix (see ap-

pendix B), this set of computations can be broken into parallel sets of computations.

Every term being summed can be computed independently and there are n2 terms

that are summed. When computing the constrained error gradient, n = npno
m

. For

the neural controller used in this paper, n = 28 for all models in the action network

and n = 84 for all models in the critic network. Therefore, the time to compute the

gradient transformation of the inverse could theoretically be reduced by 99.87% on

the action network by using 784 processors and by 99.98 on the critic network by

using 7056 processors. These are the limits of parallel savings. More realistically,

by using 8 processors, this step could theoretically be completed in 87.5% less time.

Since many other steps are also highly parallel, they also would benefit from multi-

ple processors. Thus, for a real-world application of this controller, it is necessary

(with today’s computing equipment) to have a multiprocessor machine to perform

the controller update process in real time.

4.6 Chapter Summary

A proportional-integral controller is used to motivate the neural controller design.

The controller is developed to mimic the performance of a previously published ideal

55

model. The PI control gains and Riccati matrices at the design points are then

used to initialize both the action network and the critic network. Numerical tests

of the training algorithm reveal that it does extremely well at reducing the network

error, while keeping the network constrained at the design points. Obtaining the

constrained error gradient is computationally expensive. Fortunately, the neural net-

works and related methods are fairly parallel in nature and the controller adaptation

can be significantly accelerated by a multiple processor implementation.

56

Chapter 5

Numerical Simulation Results

In this chapter, the performance of the neural control system obtained in chapter 4

is examined. To evaluate the performance of the training algorithm, the initialized

neural controller is tested with and without the adaptation routine engaged. Without

adaptation, the neural controller is simply a gain-scheduled controller where the

neural network itself computes the interpolated control values. The performance of

the control system is also compared to a linear controller optimized for the test point.

The three types of controllers are tested at a design point (1), an interpolation point

(2) and an extrapolation point (3) which are shown in figure 5.1.

At the design point, all three controllers should perform identically for small

commands. At the interpolation point, the linear controller should outperform the

neural controllers for small commands. The adaptive neural controller should per-

form on par to slightly better than the non-adapting neural controller for small com-

mands. For larger commands, the adaptive neural controller should show significant

improvement over the non-adapting neural controller. At the extrapolation point,

the adaptive neural controller should perform much better than the non-adapting

neural controller.

57

Figure 5.1: The flight envelope with design points and test points. Test points: (1)
a design point, (2) an interpolation point, (3) an extrapolation point

58

5.1 Design Point

The system is tested at a design point to verify that the adapting neural controller,

the non-adapting neural controller, and the linear controller all perform identically.

Identical performance is expected because the initialization algorithm for the neural

controllers specifically builds them to match the performance of the optimal linear

controller at the design points. Because performance is optimal, the adapting neural

controller is expected to refrain from adapting its weights. At the design point

selected, the aircraft is initially flying 90m/s at an altitude of 3000m.

Figure 5.2: The design point [90m/s, 3000m] at which the current set of simulations
take place.

59

5.1.1 Longitudinal Maneuver

The aircraft response is tested for a small longitudinal command. At time t = 0,

the aircraft is given a command to increase speed to 92m/s and climb at 2�. Because

the neural controllers are built to match the linear controller at the design point, it

is expected that the dynamic response, the control usage, and the cost accrued for

the neural controllers and the linear controller will be identical. Figure 5.3 shows

that the dynamic response is indeed identical. Figure 5.4 shows the control usage

during the 10 seconds after the step command is issued. As expected, the controllers

all have identical control usage. Figure 5.5 shows the incremental and cumulative

costs associated with the flight. The incremental cost value is the amount of cost,

�J , accrued during the prior 0.1 seconds. As can be seen in the figure, all three

controllers accrue the same amount of cost. This test case is a validation that the

three controllers perform identically upon initialization in the longitudinal plane.

60

Figure 5.3: System output values at the design point with a longitudinal command
(at [90m/s, 3000m] with a command of [+2m/s, +2�, +0�, +0�]). The ideal controller
is represented by the solid line. The non-adapting neural controller is represented by
the dashed line. The adaptive neural controller is represented by the dotted line. All
lines overlap in this graph.

61

Figure 5.4: System control values at the design point with a longitudinal command
(at [90m/s, 3000m] with a command of [+2m/s, +2�, +0�, +0�]). The ideal controller
is represented by the solid line. The non-adapting neural controller is represented by
the dashed line. The adaptive neural controller is represented by the dotted line. All
lines overlap in this graph.

62

Figure 5.5: Incremental and cumulative cost at the design point with a longitudinal
command (at [90m/s, 3000m] with a command of [+2m/s, +2�, +0�, +0�]). The ideal
controller is represented by the solid line. The non-adapting neural controller is
represented by the dashed line. The adaptive neural controller is represented by the
dotted line. All lines overlap in this graph.

63

5.1.2 Lateral-Directional Maneuver

The aircraft response is tested using a small lateral-directional command at a design

point. As in the previous case, the three controllers are expected to perform identi-

cally. At time t = 0, the aircraft is given a command to bank at 5� with a sideslip

angle of 5�. Figure 5.6 shows the system output, which is identical for all controllers.

Figure 5.7 shows the control usage during the 10 seconds after the step command is

issued. Figure 5.8 shows the incremental and cumulative costs associated with the

flight. As can be seen in the figures, the neural controllers and the linear controller

perform identically, validating the initialization method in the lateral and directional

planes.

64

Figure 5.6: System output values at the design point with a lateral-directional
command (at [90m/s, 3000m] with a command of [+0m/s, +0�, +5�, +5�]). The ideal
controller is represented by the solid line. The non-adapting neural controller is
represented by the dashed line. The adaptive neural controller is represented by the
dotted line. All lines overlap in this graph.

65

Figure 5.7: System control values at the design point with a lateral-directional
command (at [90m/s, 3000m] with a command of [+0m/s, +0�, +5�, +5�]). The ideal
controller is represented by the solid line. The non-adapting neural controller is
represented by the dashed line. The adaptive neural controller is represented by the
dotted line. All lines overlap in this graph.

66

Figure 5.8: Incremental and cumulative cost at the design point with a lateral-di-
rectional command (at [90m/s, 3000m] with a command of [+0m/s, +0�, +5�, +5�]).
The ideal controller is represented by the solid line. The non-adapting neural con-
troller is represented by the dashed line. The adaptive neural controller is represented
by the dotted line. All lines overlap in this graph.

67

5.1.3 Coupled Longitudinal-Lateral-Directional Maneuver

The aircraft response is tested using when given a small coupled command at a

design point. As with the previous two cases, it is expected that the three controllers

perform identically. At time t = 0, the aircraft is given a command to increase speed

to 93m/s, nose down at �2�, and bank at 5�. Figure 5.9 shows the system output.

Figure 5.10 shows the control usage during the 10 seconds after the step command is

issued. Figure 5.11 shows the incremental and cumulative costs associated with the

flight. As can be seen in the figures, the neural controllers and the linear controller

perform identically, validating the initialization method for small coupled maneuvers.

68

Figure 5.9: System output values at the design point with a coupled lon-
gitudinal-lateral-directional command (at [90m/s, 3000m] with a command of
[+3m/s, �2�, +5�, +0�]). The ideal controller is represented by the solid line. The
non-adapting neural controller is represented by the dashed line. The adaptive neural
controller is represented by the dotted line. All lines overlap in this graph.

69

Figure 5.10: System control values at the design point with a coupled
longitudinal-lateral-directional command (at [90m/s, 3000m] with a command of
[+3m/s, �2�, +5�, +0�]). The ideal controller is represented by the solid line. The
non-adapting neural controller is represented by the dashed line. The adaptive neural
controller is represented by the dotted line. All lines overlap in this graph.

70

Figure 5.11: Incremental and cumulative cost at the design point with a cou-
pled longitudinal-lateral-directional command (at [90m/s, 3000m] with a command
of [+3m/s, �2�, +5�, +0�]). The ideal controller is represented by the solid line. The
non-adapting neural controller is represented by the dashed line. The adaptive neural
controller is represented by the dotted line. All lines overlap in this graph.

71

5.2 Interpolation Point

The system is tested at an interpolation point to observe the performance of the

adapting neural controller when compared to the non-adapting neural controller and

the linear controller. It is expected that the adapting neural controller will improve

performance in cases where the performance of the non-adapting neural controller

is suboptimal. For large command inputs, it is expected that the adapting neural

controller will perform better than the linear controller due to the nonlinear nature

of the plant. At the interpolation point selected, the aircraft is initially flying 145m/s

at an altitude of 6000m.

Figure 5.12: The design point [145m/s, 6000m] at which the current set of simula-
tions take place.

72

5.2.1 Longitudinal Maneuver

The aircraft response is tested for a small longitudinal command at an interpolation

point. At an interpolation point, it is expected that the adapting neural network will

attempt to improve its performance through training. At time t = 0, the aircraft is

given a command to increase speed to 148m/s and dive at 5�. Figure 5.13 shows the

system output. At the interpolation point, the adaptive neural controller adapts as

evidenced by the system response. Since the non-adapting neural controller produces

an optimal response, the action network must be optimal at the test point. For

the adaptive neural controller to train, the critic network must be suboptimal. The

suboptimal critic provides a poor target to the action network. The training of the

action network causes the system to have suboptimal performance. As the critic

network adapts, the action network is provided with better targets and the system

response becomes optimal again. Figure 5.14 shows the control usage during the 10

seconds after the step command is issued. Due to incorrect costate values provided

by the critic network, the adaptive control system operates suboptimally during the

first second of the simulation. After the first second, the system is quickly able to

recover and converge on the desired states. In figure 5.15, a spike in incremental cost

can be seen corresponding to the beginning of the simulation. After three seconds,

the incremental cost falls to the same level as the non-adapting neural controller.

73

Figure 5.13: System output values at the interpolation point with a longitudinal
command (at [145m/s, 6000m] with a command of [+3m/s, �5�, +0�, +0�]). The
ideal controller is represented by the solid line. The non-adapting neural controller
is represented by the dashed line. The adaptive neural controller is represented by
the dotted line.

74

Figure 5.14: System control values at the interpolation point with a longitudinal
command (at [145m/s, 6000m] with a command of [+3m/s, �5�, +0�, +0�]). The
ideal controller is represented by the solid line. The non-adapting neural controller
is represented by the dashed line. The adaptive neural controller is represented by
the dotted line.

75

Figure 5.15: Incremental and cumulative cost at the interpolation point with a lon-
gitudinal command (at [145m/s, 6000m] with a command of [+3m/s, �5�, +0�, +0�]
). The ideal controller is represented by the solid line. The non-adapting neural con-
troller is represented by the dashed line. The adaptive neural controller is represented
by the dotted line.

76

5.2.2 Lateral-Directional Maneuver

The aircraft response is tested when given a lateral-directional command correspond-

ing at an interpolation point. At time t = 0, the aircraft is given a command to bank

at 60�. At such a large command, the nonlinear and coupled e↵ects are significant.

Figure 5.16 shows the system response. The system with the adaptive neural con-

troller has a faster settling time than the non-adapting neural controller and the

linear controller. Figure 5.17 shows the control usage during the 15 seconds after

the step command is issued. The system with the adaptive neural controller has a

much lower control usage than the systems with the non-adapting neural controller

and the linear controller. The cost graphs in figure 5.18 are the most revealing about

the flight simulation. The adapting neural controller performs far better than both

the non-adapting neural controller and the linear controller.

77

Figure 5.16: System output values at the interpolation point with a lateral-direc-
tional command (at [145m/s, 6000m] with a command of [+0m/s, +0�, +60�, +0�]).
The ideal controller is represented by the solid line. The non-adapting neural con-
troller is represented by the dashed line. The adaptive neural controller is represented
by the dotted line.

78

Figure 5.17: System control values at the interpolation point with a lateral-direc-
tional command (at [145m/s, 6000m] with a command of [+0m/s, +0�, +60�, +0�]).
The ideal controller is represented by the solid line. The non-adapting neural con-
troller is represented by the dashed line. The adaptive neural controller is represented
by the dotted line.

79

Figure 5.18: Incremental and cumulative cost at the interpolation point
with a lateral-directional command (at [145m/s, 6000m] with a command of
[+0m/s, +0�, +60�, +0�]). The ideal controller is represented by the solid line. The
non-adapting neural controller is represented by the dashed line. The adaptive neural
controller is represented by the dotted line.

80

5.2.3 Coupled Longitudinal-Lateral-Directional Maneuver

The aircraft response is test when given a coupled command at an interpolation

point. At time t = 0, the aircraft is given a command to increase speed to 150m/s

and bank at 45�. Figure 5.19 shows the system response. At the interpolation point,

the adaptive neural controller undergoes training as evidenced by the system output.

The system with the non-adapting neural controller has a near optimal response.

Figure 5.20 shows the control usage during the 15 seconds after the step command is

issued. Figure 5.21 shows the incremental and cumulative costs associated with the

flight. As with the longitudinal case, a suboptimal critic network initially worsens

system performance. Based on incorrect costate values, the system chooses to overuse

the rudder and to use the stabilator in a non-optimal manner. As the critic network

improves its approximation of the costate function, the action network returns to near

optimal performance. The cost increase over the comes mostly from correcting the

stabilator and rudder mistakes. The adaptive neural controller ends the simulation

with almost the same cost as the non-adapting neural controller.

81

Figure 5.19: System output values at the interpolation point with a coupled
longitudinal-lateral-directional command (at [145m/s, 6000m] with a command of
[+5m/s, +0�, +45�, +0�]). The ideal controller is represented by the solid line. The
non-adapting neural controller is represented by the dashed line. The adaptive neural
controller is represented by the dotted line.

82

Figure 5.20: System control values at the interpolation point with a coupled
longitudinal-lateral-directional command (at [145m/s, 6000m] with a command of
[+5m/s, +0�, +45�, +0�]). The ideal controller is represented by the solid line. The
non-adapting neural controller is represented by the dashed line. The adaptive neural
controller is represented by the dotted line.

83

Figure 5.21: Incremental and cumulative cost at the interpolation point with a cou-
pled longitudinal-lateral-directional command (at [145m/s, 6000m] with a command
of [+5m/s, +0�, +45�, +0�]). The ideal controller is represented by the solid line.
The non-adapting neural controller is represented by the dashed line. The adaptive
neural controller is represented by the dotted line.

84

5.3 Extrapolation Point

The system is tested at an extrapolation point to observe the performance of the

adapting neural controller when the system encounters unmodeled dynamics. The

performance of the adapting neural controller is compared to the non-adapting neural

controller and to the linear controller. Because the test point selected is outside of

the design envelope, the non-adapting neural controller is expected to perform sub-

optimally. It is expected that the adapting neural controller will improve performance

in all cases. For large command inputs, it is expected that the adapting neural

controller will perform better than the linear controller due to the nonlinear nature

of the plant. At the extrapolation point selected, the aircraft is initially flying 160m/s

at an altitude of 12000m.

5.3.1 Longitudinal Maneuver

The aircraft response is tested when given a longitudinal command at an extrapo-

lation point. At time t = 0, the aircraft is given a command to decrease speed to

159m/s and to climb at 6�. Figure 5.23 shows the system response. The adaptive

neural controller pursues a slightly di↵erent path than the non-adapting neural con-

troller and the linear controller. Figure 5.24 shows the control usage during the 10

seconds after the step command is issued. The controls chosen by the adaptive neural

controller are almost identical to those chosen by the non-adapting neural controller

until the very end of the simulation. At the end of the simulation, the adapting neural

controller reduces thrust sooner than the non-adapting neural controller. The cost

accrued by each controller is shown in figure 5.25. The adapting neural controller

performs better for the simulation than both the non-adapting neural controller and

the linear controller.

85

Figure 5.22: The design point [160m/s, 12000m] at which the current set of simula-
tions take place.

86

Figure 5.23: System output values at the extrapolation point with a longitundinal
command (at [160m/s, 12000m] with a command of [�1m/s, +6�, +0�, +0�]). The
ideal controller is represented by the solid line. The non-adapting neural controller
is represented by the dashed line. The adaptive neural controller is represented by
the dotted line.

87

Figure 5.24: System control values at the extrapolation point with a longitundinal
command (at [160m/s, 12000m] with a command of [�1m/s, +6�, +0�, +0�]). The
ideal controller is represented by the solid line. The non-adapting neural controller
is represented by the dashed line. The adaptive neural controller is represented by
the dotted line.

88

Figure 5.25: Incremental and cumulative cost at the extrapolation point with a lon-
gitundinal command (at [160m/s, 12000m] with a command of [�1m/s, +6�, +0�, +0�]
). The ideal controller is represented by the solid line. The non-adapting neural con-
troller is represented by the dashed line. The adaptive neural controller is represented
by the dotted line.

89

5.3.2 Lateral-Directional Maneuver

The aircraft response is tested when given a lateral-directional command at an ex-

trapolation point. At time t = 0, the aircraft is given a command to bank at 60�. At

such a large command, the nonlinear and coupled e↵ects are significant. Figure 5.26

shows the system response. The adaptive neural controller responds much faster than

the non-adapting neural controller. Figure 5.27 shows the control usage during the 20

seconds after the step command is issued. The controls chosen by the adaptive neural

controller di↵er significantly from those chosen by the non-adapting neural controller.

The adaptive neural controller uses the stabilator and the throttle to maintain speed

during the banking maneuver. Additionally, the ailerons are used more aggressively

by the adaptive neural controller than by the non-adapting neural controller. The

cost graphs in figure 5.28 reveal that the adapting neural controller performs much

better than the non-adapting neural controller and the linear controller.

90

Figure 5.26: System output values at the extrapolation point with a lateral-direc-
tional command (at [160m/s, 12000m] with a command of [+0m/s, +0�, +60�, +0�]).
The ideal controller is represented by the solid line. The non-adapting neural con-
troller is represented by the dashed line. The adaptive neural controller is represented
by the dotted line.

91

Figure 5.27: System control values at the extrapolation point with a lateral-direc-
tional command (at [160m/s, 12000m] with a command of [+0m/s, +0�, +60�, +0�]).
The ideal controller is represented by the solid line. The non-adapting neural con-
troller is represented by the dashed line. The adaptive neural controller is represented
by the dotted line.

92

Figure 5.28: Incremental and cumulative cost at the extrapolation point
with a lateral-directional command (at [160m/s, 12000m] with a command of
[+0m/s, +0�, +60�, +0�]). The ideal controller is represented by the solid line. The
non-adapting neural controller is represented by the dashed line. The adaptive neural
controller is represented by the dotted line.

93

5.3.3 Coupled Longitudinal-Lateral-Directional Maneuver

The aircraft response is test when given a coupled command at an extrapolation

point. At time t = 0, the aircraft is given a command to decrease speed to 155m/s

and to bank at 45�. At such a large command, the nonlinear and coupled e↵ects are

significant. Figure 5.29 shows the system response. The system with the adaptive

neural controller reaches its target values faster than the other controllers. Figure 5.30

shows the control usage during the 10 seconds after the step command is issued. The

adaptive neural controller uses the ailerons excessively during the first two seconds of

the simulation. The non-optimal usage of controls in the presence of a near optimal

non-adapting controller indicates a suboptimal critic network. As the critic network

improves its approximation of the costate function, the adaptive neural controller

returns to optimality. The incremental and total cost graphs in figure 5.31 reveal

that after the first two seconds of simulation, the adaptive neural controller performs

better than the non-adaptive controller and the linear controller.

94

Figure 5.29: System output values at the extrapolation point with a coupled
longitudinal-lateral-directional command (at [160m/s, 12000m] with a command of
[�5m/s, +0�, +45�, +0�]). The ideal controller is represented by the solid line. The
non-adapting neural controller is represented by the dashed line. The adaptive neural
controller is represented by the dotted line.

95

Figure 5.30: System control values at the extrapolation point with a coupled
longitudinal-lateral-directional command (at [160m/s, 12000m] with a command of
[�5m/s, +0�, +45�, +0�]). The ideal controller is represented by the solid line. The
non-adapting neural controller is represented by the dashed line. The adaptive neural
controller is represented by the dotted line.

96

Figure 5.31: Incremental and cumulative cost at the extrapolation point with a cou-
pled longitudinal-lateral-directional command (at [160m/s, 12000m] with a command
of [�5m/s, +0�, +45�, +0�]). The ideal controller is represented by the solid line.
The non-adapting neural controller is represented by the dashed line. The adaptive
neural controller is represented by the dotted line.

97

5.4 Constrained and Unconstrained Training

The performance of a constrained adapting neural controller is compared to that

of an unconstrained neural controller at an interpolation point with a large lateral-

directional command. The neural controllers are then held fixed while the aircraft

is flown at a design point and given a small coupled command to demonstrate the

constrained neural controller’s ability to preserve design point optimality.

5.4.1 Interpolation Point

The aircraft response is tested at a interpolation point when given a lateral-directional

command. Initially, the aircraft is flying 145m/s at an altitude of 6000m. At time

t = 0, the aircraft is given a command to bank at 60�. At such a large command, the

nonlinear and coupled e↵ects are significant. Figure 5.32 shows the system response.

Figure 5.33 shows the control usage during the 10 seconds after the step command

is issued. Figure 5.34 shows the accrued cost of the controllers. The constrained

adaptive neural controller clearly performs better than the unconstrained controller

and the linear controller. The outputs and gradients of each neural controller’s action

neural network are compared at the design points with the outputs and gradients of

the linear controller. Table 5.4.1 shows the mean squared error of each controller’s

output and gradient values during the simulation. The constrained training algo-

rithm succeeds in preserving these values while the unconstrained algorithm does not

preserve the values.

98

Figure 5.32: System output values at the interpolation point with a lateral-direc-
tional command (at [145m/s, 6000m] with a command of [+0m/s, +0�, +60�, +0�]).
The ideal controller is represented by the solid line. The unconstrained adapting
neural controller is represented by the dashed line. The constrained adaptive neural
controller is represented by the dotted line.

99

Figure 5.33: System control values at the interpolation point with a lateral-direc-
tional command (at [145m/s, 6000m] with a command of [+0m/s, +0�, +60�, +0�]).
The ideal controller is represented by the solid line. The unconstrained adapting
neural controller is represented by the dashed line. The constrained adaptive neural
controller is represented by the dotted line.

100

Figure 5.34: Incremental and cumulative cost at the interpolation point
with a lateral-directional command (at [145m/s, 6000m] with a command of
[+0m/s, +0�, +60�, +0�]). The ideal controller is represented by the solid line. The
unconstrained adapting neural controller is represented by the dashed line. The con-
strained adaptive neural controller is represented by the dotted line.

101

Action Neural Network T = 0 T = 5 T = 10
Constrained Output MSE 2.729x10�7 2.404x10�7 5.555x10�7

Unconstrained Output MSE 2.729x10�7 1.770x1012 3.168x1011

Constrained Gradient MSE 8.470x10�28 7.545x10�26 4.057x10�27

Unconstrained Gradient MSE 8.470x10�28 7.868x10�4 1.373x10�4

Table 5.1: The mean squared error between the constrained action neural network
values and the equivalent linear gain matrix values during a simulation.

5.4.2 Design Point

After adapting at the interpolation point mentioned above, the constrained and un-

constrained adapting neural controllers are held fixed and tested at a design point.

The response of the aircraft with a linear optimal controller is also included for

comparison. The performances of the systems with the linear controller and the

constrained adaptive neural controller are identical while the the system with the

unconstrained adaptive neural controller has a suboptimal response. Training at the

interpolation point involved a large roll command and, as seen in figure 5.35, the

unconstrained adaptive neural controller overcompensates when faced with a smaller

command.

102

Figure 5.35: System output values at the design point with a coupled lon-
gitudinal-lateral-directional command (at [90m/s, 3000m] with a command of
[+3m/s, �2�, +5�, +0�]). The ideal controller is represented by the solid line. The
unconstrained adapting neural controller is represented by the dashed line. The con-
strained adaptive neural controller is represented by the dotted line. During this
simulation, the neural controllers adaptation functions are turned o↵. The linear and
constraining adapting neural controller have identical performance.

103

Figure 5.36: System control values at the design point with a coupled
longitudinal-lateral-directional command (at [90m/s, 3000m] with a command of
[+3m/s, �2�, +5�, +0�]). The ideal controller is represented by the solid line. The
unconstrained adapting neural controller is represented by the dashed line. The con-
strained adaptive neural controller is represented by the dotted line. During this
simulation, the neural controllers adaptation functions are turned o↵. The linear and
constraining adapting neural controller have identical performance.

104

Figure 5.37: Incremental and cumulative cost at the design point with a cou-
pled longitudinal-lateral-directional command (at [90m/s, 3000m] with a command
of [+3m/s, �2�, +5�, +0�]). The ideal controller is represented by the solid line.
The unconstrained adapting neural controller is represented by the dashed line. The
constrained adaptive neural controller is represented by the dotted line. During this
simulation, the neural controllers adaptation functions are turned o↵. The linear and
constraining adapting neural controller have identical performance.

105

5.5 Chapter Summary

In this chapter, the performance of the neural control system obtained in chapter

4 is examined at a design point, an interpolation point and an extrapolation point

(figure 5.38). The performance of the adapting neural controller is compared with the

performances of a linear controller and a non-adapting version of the neural controller.

At the design point, all three controllers perform identically, which is to be expected

given the algorithm used to build the networks. At interpolation points the adapting

neural controller experiences a period of suboptimal performance at the beginning of

two of the simulations due to a suboptimal critic network. The critic network quickly

adapts and the adaptive neural controller returns to optimality. At extrapolation

points, the adaptive neural controller significantly improves performance.

The constrained adapting neural controller is also compared against an uncon-

strained version of the neural controller. After flying large angle maneuvers at an

interpolation point, the performance of the unconstrained controller does not match

the performance of the linear controller at a design point. The constrained controller

performs better at the interpolation point, retains the qualities of the gain-scheduled

design at the design points and matches the linear controller in performance at the

design point.

106

Figure 5.38: The flight envelope with design points and test points. Test points:
(1) a design point, (2) an interpolation point, (3) an extrapolation point

107

Chapter 6

Conclusions

This research investigates the design of an adaptive neural controller applicable to

plants described by nonlinear ordinary di↵erential equations that can be designed and

optimized online in order to improve the performance of the system while retaining the

qualities of a gain-scheduled design at the design points. This dissertation provides

the theoretical framework for the online training of such a controller. A dual-heuristic

programming adaptive critic is used for adapting the control system subject to the

online nonlinear plant dynamics. Sigmoidal neural networks are used to approximate

the optimal control law and the costate values for the DHP controller. The neural

networks are gain-scheduled based on the proportional-integral control laws obtained

at fourteen design points. Construction functions are used to initialize and constrain

the network by defining the constrained weights as a function of the unconstrained

weights. The auxiliary input weights are determined using dual-point hyperspherical

initialization. In training the neural networks, the gradient transformation is used to

determine the error gradient with respect to the weights given that the weights are

constrained by the construction functions. The resulting constrained error gradient

is fed to a modified version of the resilient backpropagation algorithm that updates

the weights to improve the approximation of the control law (in the action network’s

case) or the costate values (in the critic network’s case).

As shown in chapter 5, the resulting controller performs very well. For a near-

optimal controller, the performance is slightly degraded upon commencement of

training. This is to be expected when the DHP adaptive critic architecture tries

to training the near-optimal action network by means of a suboptimal critic network.

108

Once the critic network is appropriately trained, the control systems rapidly adjusts

its performance accordingly. In scenarios where unmodeled, nonlinear dynamics are

encountered, the controller provides greatly improved performance compared to the

non-adapting neural controller and, when given large commands, performs better

than the linear controller optimized for the test point. Throughout the entire simu-

lation, the controller retains the qualities of the gain-scheduled design at the design

points. This, along with the improvements made by the controller during simulation,

indicates that the controller is optimizing the interpolation and extrapolation capa-

bilities of the controller. Thus, an adaptive neural controller can be designed and

optimized online such that the controller retains the qualities of a gain-scheduled

design.

6.1 Recommendations for Future Research

The gain-scheduled design used to constrain the adaptive neural controller is based

on an o✏ine model of the aircraft. During flight, control failures or other problems

can cause changes to the aircraft dynamics at the design points. Therefore, one

recommendation for future research is the investigation of the use of a neural network

to model the aircraft dynamics. Online changes to this model could then be used

to update neural controller constraints. Another recommendation is to investigate

the cost savings realized by using a parallel hardware implementation. This is a

necessary step towards a real-world implementation of the control design. Lastly,

the performance of the controller is suboptimal during the start of a few simulations

because of poor interpolation by the critic network. An investigation of various

node functions should be done to determine the best function for interpolating the

critic network. Better interpolation of the costate function will result in improved

performance from the constrained adaptive neural controller.

109

Appendix A

Hyperspherical Initialization

The spherical initialization algorithm is based on two observations relating a neural

network layer with normalize inputs and an n-dimenional unit sphere. The first

observation is that that a uniform distribution of p points on an n-dimensional unit

sphere corresponds to a uniform distribution of a layer’s weights when there are p

nodes in the layer and n nodes in the previous layer. The second observation is that

the uniform distribution of p dual-points on an n-dimensional unit sphere corresponds

to a p x n matrix with condition number 1. A dual-point is defined as two points

that are separated by a distance of twice the hypersphere’s radius. A matrix with

condition number of 1 can be used, as in section 3.2.3, to evenly distribute the layer’s

sigmoids across the input or output space. Therefore, an algorithm used to determine

the coordinates for such point and dual-point distributions can be used to generate

layer weights.

The following sections detail how to uniformly distribute points and dual-points

over a hypersphere. The algorithms work by setting up a dynamic system which has

stable equilibriums with points uniformly distributed or nearly uniformly distributed.

A.1 Distributing points on a unit hypersphere

The process outlined in this section is called Hyperspherical Initialization and abbre-

viated HSI. Let there be p points to be distributed on an n-dimensional hypersphere.

The first step is to generate p n-dimensional points. This can be accomplished by

letting individual coordinate values to be picked randomly from a uniform distribu-

tion over [�1, 1]. Other methods can also be used to generate the coordinates, such

110

as the Nguyen-Widrow (NW) initialization algorithm [21] or the method presented

by Ferrari in [20].

A vector, VP
i

from the origin can be computed for each point Pi. Scaling VP
i

to

be a unit vector places Pi on the surface of a unit n-dimensional sphere. Let there

be a force caused by the presence of Pj which acts on Pi, where Pi 6= Pj, such that

FP
i

,P
j

=
VP

i

� VP
j����VP

i

� VP
j

����3 (A.1)

Let no point induce a force upon itself. This system may have more than one stable

equilibrium, but all equilibriums will involve an almost uniform distribution of points.

Non-uniform equilibriums become possible when the number of points greatly exceeds

the number of dimensions. In these cases, hyperrings can form on the hypersurface

which keep points from entering the interior of the hyperring. Even so, outside of

any hyperrings, the points will be uniformly distributed.

To compute the equilibrium positions of all the points, it is possible to assign

each point a mass and numerically integrate, cancelling out all forces which are nor-

mal to the hypersphere’s surface. Alternatively, the system can be thought of as

discrete-time in which the forces change only at discrete intervals in time. Addition-

ally, assuming that after each interval, all velocities are zero implies that the path

each point travels in each time interval is line in the direction of the net force on the

particle. Computing the new location of the point no longer requires the numerical

integration of a complex system. After each interval, the position of each point is

scaled so that the point is back on the surface of the hypersphere. These assump-

tions about the system dynamics do not change the stable equilibrium where all

points are evenly distributed on the surface, however they make such an equilibrium

computationally simpler to obtain.

111

A.2 Distributing dual-points on a unit hypersphere

The process outlined in this section is called Dual-point Hyperspherical Initialization

and abbreviated DPHSI. Uniformly distributing dual-points is equivalent to uniformly

distributing vectors in n-dimensions. A matrix of uniformly distributed vectors has a

condition number of one. Therefore, this process is useful when seeking a randomized

matrix of condition number one. The process for distributing p dual-points on an

n-dimensional sphere is almost identical to the above process. The only di↵erence

between the two is the definition of the forces acting between points. The definition

used in DPHSI allows a point Pi to be e↵ected by both Pj and the reflection of

Pj where the reflection of Pj is a point with coordinates �VP
j

. Reflections are not

a↵ected by other points or by other reflections. Thus the force equation becomes

FP
i

,P
j

=
VP

i

� VP
j����VP

i

� VP
j

����3 +
VP

i

+ VP
j����VP

i

� VP
j

����3 (A.2)

Using the discrete-time assumptions as made in the previous section allow the system

to progress towards an equilibrium in which a matrix composed of the coordinates of

the points has condition number one.

A.3 E↵ectiveness

Feedforward neural networks with single hidden layers of various size are used to

compare the e↵ectiveness of HSI with random initialization, NW initialization and

a combination of HSI and NW initialization where NW is used to provide the ini-

tial point coordinates for HSI. The neural networks are then trained to imitate the

function f(x, y) = x2 + y2 + x ⇤ y + 3. Thirty random inputs are selected from

�4 < x < 4 and �4 < y < 4 and paired with their the corresponding outputs to

form the training set. Thirty additional random inputs and corresponding outputs

112

are selected in the same manner to form the test set. The input weights are generated

using one of the above algorithms and the output weights are all set to initially be

zero. This gives each network the same starting error amount. Using the Neural

Networks package for Matlab, the networks are each trained for 1000 epochs using

the Levenberg-Marquardt algorithm. The mean squared error for the training set

and the means squared error for the test set are measured for each neural network

and compared. For each hidden layer size, this routine is performed 30 times. Fig-

ures A.1-A.6 show histograms of the orders of magnitude of the mean squared error

for training and test sets. For small numbers of hidden layer nodes, all algorithms

perform equally well. However, as the number of hidden layer nodes grow, the HSI-

based neural networks perform much better on the test sets and the non-HSI neural

networks much better on the training sets. This implies that the HSI-based networks

are less suspectable to overfitting their data.

A.4 Conclusion

The hyperspherical initialization algorithm does much better job at protecting from

overfitting than the Nguyen-Widrow initialization algorithm does. Less overfitting

translates into better global optimization during training. The benefits of hyper-

spherical initialization clearly outweigh the extra computational cost.

113

Figure A.1: A comparison of the training set MSE after 1000 epochs for di↵erent
weight initialization algorithms (10 hidden layer nodes)

114

Figure A.2: A comparison of the test set MSE after 1000 epochs for di↵erent weight
initialization algorithms (10 hidden layer nodes)

115

Figure A.3: A comparison of the training set MSE after 1000 epochs for di↵erent
weight initialization algorithms (50 hidden layer nodes)

116

Figure A.4: A comparison of the test set MSE after 1000 epochs for di↵erent weight
initialization algorithms (50 hidden layer nodes)

117

Figure A.5: A comparison of the training set MSE after 1000 epochs for di↵erent
weight initialization algorithms (100 hidden layer nodes)

118

Figure A.6: A comparison of the test set MSE after 1000 epochs for di↵erent weight
initialization algorithms (100 hidden layer nodes)

119

Appendix B

Gradient Transformation

The gradient transformation is the extension of the chain rule to matrix algebra.

The gradient transformation is used to determine the value of one gradient matrix

based on another, related gradient matrix. This is useful in computing gradients in

a situation where many dependencies exist between variables. For instances let e be

some scalar values determined from the matrices A and B. Then let A be defined

as a function of B.

A = f(B) (B.1)

The derivatives of e with respect to each element of B can be determined using

scalar algebra and the chain rule. This is a tedious process and is unnecessary. The

gradient transformation defines how to compute all the derivatives at once. Borrowing

notation from section 2.5.1, the unconstrained gradient of e with respect to A is Ă

and with respect to B is B̆. However, B̆ does not reflect the actual gradient of e

because of the dependency in equation B.1. Since the value of A is constrained by

this equation, the constrained error gradient is the value that will give the true error

gradient. The constrained error gradient with respect to B is expressed as

B̂ = B̆ + G [A,B, Ă] (B.2)

where the final term is called the gradient transformation of A with respect to B given

the unconstrained gradient Ă. The gradient transformation is applied recursively.

For instance, if

B = g(C) (B.3)

then

Ĉ = G [B,C, B̂] = G [B,C, B̆ + G [A,B, Ă]] (B.4)

120

Note that because e is not directly a function of C, there is no C̆ in the equation for

Ĉ. For all of the following cases it is assumed that the matrix A does not directly

a↵ect the scalar value.

B.1 Matrix Transpose

The transpose is the simplest function of which to compute a gradient transformation.

Let the gradient B̂ be known and let B be defined as

B = AT (B.5)

Since the element B(i,j) = A(j,i), the chain rule implies that Â(j,i) = 1B̂(j,i). Thus,

the gradient with respect to A is

Â = B̂T (B.6)

B.2 Linear Functions

The gradient transformation of a linear function is also fairly simple to compute. Let

the gradient B̂ be known and let B be defined as

B = CA (B.7)

The element B(i,j) =
P

k C(i,k)A(k,j). Thus, the chain rule implies that Â(i,j) =

P
i C(i,k)B̂(i,j). Therefore, the gradient with respect to A is

Â = CT B̂ (B.8)

Similarly, for the function

B = AC (B.9)

the gradient with respect to A is

Â = B̂CT (B.10)

121

This can easily be extended to functions like

B = AA (B.11)

where the gradient with respect to A is

Â = B̂AT + AT B̂ (B.12)

B.3 Matrix Inverse

The gradient transformation of the inverse function is much more complex than the

transformation over the a linear function. Consider the adjoint matrix method of

computing the inverse of a matrix

B = A�1 =
adj(A)

|A| =
cof(A)T

|A| (B.13)

where adj(A) is the adjoint matrix of A, cof(A) is the cofactor matrix of A and | |

is the determinant of the enclosed matrix. The cofactor matrix is defined as

cof(A)(i,j) = �1(i+j) |Cij| (B.14)

where Cij equals the matrix A with row i and column j removed. From this definition,

B(j,i) = �1(i+j) |Cij|
|A| (B.15)

Now, the derivative of B(j,i) with respect to A(k,l) can be expressed as

dB(j,i)

dA(k,l)
= �1(i+j)

d|C
ij

|
dA(k,l)

|A|� |Cij| d|A|
dA(k,l)

|A|2
(B.16)

From the definition of the determinant and the definition of Cij,

d |Cij|
dA(k,l)

=

8
>>>><

>>>>:

cof(Cij)(k,l) k < i and l < j
cof(Cij)(k�1,l) k > i and l < j
cof(Cij)(k,l�1) k < i and l > j
cof(Cij)(k�1,l�1) k > i and l > j
0 otherwise

(B.17)

122

and

d |A|
dA(k,l)

= cof(A)(k,l) (B.18)

Let Dij be equal to cof(Cij) with an extra row of zeros is inserted as the ith row

and an extra column of zeros is inserted as the jth column. Now assuming that B̂ is

known, Â can be expressed as

Â =
X

i

X

j

�1(i+j)B̂(j,i)

Dij |A|� |Cij| cof(A)

|A|2

�
(B.19)

Let Eij be equal to C�1
ij with an extra row of zeros is inserted as the ith row and an

extra column of zeros is inserted as the jth column. Equation B.19 simplifies to

Â =
X

i

X

j

B(j,i)B̂(j,i)

⇥
Eij �A�1

⇤T
(B.20)

This is the gradient with respect to A given B̂. In the event that the matrix Cij has

a derivative of zero, equation B.19 may be used. Note that computing the gradient

transformation over an inverse is a computationally expensive task. Computing the

gradient transformation of the inverse of an n x n matrix requires n2 inversions of an

(n� 1) x (n� 1) matrix.

B.4 Positional Function

Positional functions are functions that concatenate, split, or otherwise rearrange the

position of elements in a matrix. For instance, consider the function

B =
⇥

A1 A2 A1

⇤
(B.21)

Let B1 be the left portion of B which corresponds to A1. Let B2 be the center portion

of B which corresponds to A2. Let B3 be the right portion of B which corresponds

123

to A1. If B̂ is known, then

Â1 = B̂1 + B̂3 (B.22)

and

Â2 = B̂2 (B.23)

Now consider the function

A =
⇥

A1 A2

⇤
(B.24)

If Â1 and Â2 are known, then

Â =
⇥

Â1 Â2

⇤
(B.25)

B.5 Element-wise Functions

This section deals with functions that act on the individual elements of a matrix.

Consider the following equation, where ⌦ signifies element-wise multiplication.

B = A⌦C (B.26)

Assume that B̂ is known. Applying the chain rule on the individual elements yields

Â = B̂⌦C (B.27)

Another type of element-wise function is

B = f(A) (B.28)

where f operates on each element individually. In this case, assuming f is di↵eren-

tiable at every element and that B̂ is known, the chain rule yields

Â = B̂⌦ f 0(A) (B.29)

where f 0 is the derivative of the scalar function f with respect to its argument.

124

B.6 Concluding Remarks

Each of the individual gradient transformations mentioned above is relatively straight-

forward. The power of the gradient transformation comes from its ability to handle

any function which is a combination of these functions. The gradient transformation

is also not limited to the types of functions listed above. The above list is given to

cover the types of functions used in this thesis.

125

Appendix C

Aircraft Model

This appendix reviews the equations of motion and the state elements for the sim-

ulated aircraft. The aircraft is a business jet with two turbojet engines providing a

total of 26, 423N of thrust at sea level and 11, 735N of thrust at 10, 000m. The aircraft

has a gross cruising weight of 4, 536kg and a nominal cruising Mach number of 0.79.

The service and performance ceilings (from [23]) are 15, 315m and 15, 275m, respec-

tively. A full explanation of the physical and performance characteristics modeled

by the business jet simulation appears in [23]. The simulation models estimate low-

angle-of-attach Mach e↵ects, power e↵ects and the moments and products of inertia

by using data from full-scale wind tunnel tests according to the methods outlined in

[23].

The following nonlinear equations govern the motion of the aircraft [23]. Note

that the velocities and angular rates are with respect to the aircraft body-axes and

the position is relative to an inertial frame of reference.

u̇ = Xb + g
x

+ rv � qw (C.1)

v̇ = Yb + gb
y

+ pw � ru (C.2)

ẇ = Zb + gb
z

+ qu� pv (C.3)

ẋr =

+

u cos ✓ cos + v(sin� sin ✓ cos � cos� sin)

w(cos� sin ✓ cos � sin� sin)
(C.4)

ẏr =

+

u cos ✓ sin + v(sin� sin ✓ sin + cos� cos)

w(cos� sin ✓ sin � sin� cos)
(C.5)

żr = �u sin ✓ + v sin� cos ✓ + w cos� cos ✓ (C.6)

126

ṗ =
q (IzzLb + IxzNb � p (Ixz (Iyy � Ixx � Izz)) + r (I2

xz + Izz (Izz � Iyy)))

IxxIzz � I2
xz

(C.7)

q̇ =
(Mb � pr (Ixx � Izz)� Ixz (p2 � r2))

Iyy

(C.8)

ṙ =
q (IxzLb + IzzNb + r (Ixz (Iyy � Ixx � Izz)) + p (I2

xz + Ixx (Ixx � Iyy)))

IxxIzz � I2
xz

(C.9)

�̇ = p + (q sin�+ r cos�) tan ✓ (C.10)

✓̇ = q cos�� r sin� (C.11)

 ̇ =
q sin�+ r cos�

cos ✓
(C.12)

The body-axis gravity components are a function of the state. The state accelerations,

Xb, Yb, Zb, Lb, Mb, and Nb are functions of both the state and the control values. The

moments and products of inertia are estimated using simplified mass distributions

and have fixed values during the simulation. References [23], [25] and [26] contain

detailed descriptions of the aircraft angles and the coordinate transformations.

The state vector used during the simulation is x = [V � q ✓ r � p µ]T .

This state values not specified in the above set of equations can be obtained through

the following set of equations.

V =
p

u2 + v2 + w2 (C.13)

� = sin�1 (v/V) (C.14)

� = sin�1 (�w/V) (C.15)

µ = sin�1

✓
cos ✓ sin� cos � + (cos↵ sin ✓ � sin↵ cos ✓ cos�) sin �

cos �

◆
(C.16)

where ↵ is the angle of attack and is defined as

↵ = cos�1

✓
cos � cos ✓ + sin � sin ✓

cos �

◆
(C.17)

127

Figure C.1: Definition of path angle, angle of attack and sideslip from [17] (adapted
from [26]).

128

References

[1] Aude Billard and Auke Jan Ijspeert. Biologically inspired neural controllers for
motor control in a quadruped robot. In Proceedings of the International Joint
Conference on Neural Networks, volume 6, pages 637–641, Como, Italy, 2000.
IEEE Press.

[2] Siri Weerasooriya and Mohamed A. El-Sharkawi. Laboratory implementation of
a neural network trajectory controller for a DC motor. IEEE Transactions on
Energy Conversion, 8(1):107–113, 1993.

[3] Won Seok Oh, Bimal K. Bose, Kyu Min Cho, and Hee Jun Kim. Self tuning
neural network controller for induction motor drives. In IECON Proceedings (In-
dustrial Electronics Conference, volume 1, pages 152–156, Sevilla, Spain, 2002.
IEEE Computer Society.

[4] S. Ferrari and R.F. Stengel. An adaptive critic global controller. In Proceedings
of the American Control Conference, volume 4, pages 2665–2670, New York,
NY, 2002. IEEE Press.

[5] Silvia Ferrari and Robert F. Stengel. Handbook of Learning and Approximate
Dynamic Programming, chapter Model-based Adaptive Critic Designs. IEEE
Press and John Wiley & Sons, Piscataway, NJ, 2004.

[6] David A. White and Donald A. Sofge, editors. Handbook of Intelligent Control:
Neural, Fuzzy, and Adaptive Approaches. Van Nostrand Reinhold, New York,
1992.

[7] Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford Uni-
versity Press, Great Britain, 2003.

[8] R. Howard. Dynamic Programming and Markov Processes. MIT Press, 1960.

[9] Torkel Glad and Lennart Ljung. Control Theory: Multivariable and Nonlinear
Methods. Taylor & Francis, 2000.

[10] Ralph W Rietz and Daniel J. Inman. Comparison of linear and nonlinear control
on a distributed parameters system. ASME Design Engineering: Vibration and
Control of Mechanical Systems, 61:43–58, 1993.

[11] Hassan Bevrani, M. Abrishamchian, and N. Safari-shad. Nonlinear and linear
robust control of switching power converters. In Proceedings of the IEEE Con-
ference on Control Applications, volume 1, pages 808–813, Kohala Coast-Island
of Hawaii, HI, 1999. IEEE Press.

129

[12] Je↵ S. Shamma and James R. Cloutier. Linear parameter varying approach to
gain scheduled missile autopilot design. In Proceedings of the American Control
Conference, volume 2, pages 1317–1321, Chicago, IL, 1992. American Automatic
Control Council.

[13] Valery A. Ugrinovskii and Ian R. Petersen. Time-averaged robust control of
stochastic partially observed uncertain systems. In Proceedings of the IEEE
Conference on Decision and Control, volume 1, pages 784–789, Tampa, FL,
1998. American Automatic Control Council.

[14] R.F. Harrison. Non-linear stabilization and regulation via an optimal gain sched-
ule. IEE Colloquium (Digest), (521):9/1–9/3, 1998.

[15] E. Prempain. New two-degree-of-freedom gain scheduling method applied to the
Lynx MK7. Journal of Systems and Control Engineering, 214(4):299–311, 2000.

[16] Dynamic modeling and computer control of a retort for thermal processing.
Journal of Food Engineering, 11(4):273–289, 1990.

[17] S. Ferrari. Algebraic and Adaptive Learning in Neural Control Systems. PhD
thesis, Princeton University, Princeton, NJ, 2002.

[18] Robert F. Stengel. Optimal Control and Estimation. Dover Publications, 1994.

[19] S. Ferrari and R.F. Stengel. Classical/neural synthesis of nonlinear control sys-
tems. Journal of Guidance, Control, and Dynamics, 25(3):442–448, 2002.

[20] S. Ferrari and R.F. Stengel. Smooth function approximation using neural net-
works. IEEE Transactions on Neural Networks, 16(1):24–38, 2005.

[21] D. Nguyen and B. Widrow. Improving the learning speed of 2-layer neural
network bychoosing initial values of the adaptive weights. In Proceedings of the
IEEE First International Joint Conference on Neural Networks, volume 3, pages
21–26, San Diego, CA, 1990. IEEE Press.

[22] Martin Riedmiller and Heinrich Braun. Direct adaptive method for faster back-
propagation learning: The RPROP algorithm. In IEEE International Confer-
ence on Neural Networks, pages 586–591, New York, NY, 1993. IEEE Press.

[23] Robert F. Stengel. Flight Dynamics. Princeton University Press, Princeton, NJ,
2004.

[24] Chien Y. Huang and Robert F. Stengel. Restructurable control using
proportional-integral implicit model following. Journal of Guidance, Control,
and Dynamics, 13(2):303–309, 1990.

130

[25] Marcello R.M. Crespo da Silva. Intermediate Dynamics: Complimented with
Simulations and Animations. McGraw-Hill Science/Engineering/Math, New
York, NY, first edition, 2003.

[26] Robert C. Nelson. Flight Stability and Automatic Control. McGraw-Hill Sci-
ence/Engineering/Math, New York, NY, second edition, 1997.

131

