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Directional sensors, such as vision, infrared, ultrasound, and active acoustic

sensors, are characterized by a preferred sensing direction, such that

measurements are obtained only for a bounded subset of all possible aspect

angles. By such approach, directional sensors can obtain information about the

target’s relative orientation, in addition to its distance. Common applications

include cameras mounted on autonomous vehicles that may be used for

urban surveillance or target recognition by means of on-board computer vision

algorithms. One of the major challenges in planning the motion of directional

mobile sensors is that an important target of interest may be occluded by the

presence of obstacles in the sensor’s line-of-sight. This thesis addresses this

path-planning problem for an Unmanned Ground Vehicle (UGV) equipped

with a vision sensor for the purpose of classifying multiple static targets in an

obstacle-populated environment. An approach is developed for determining

a UGV path that enables observations from all targets with known locations

in minimum time. The approach guarantees that the UGV is able to classify

every target previously localized, while avoiding collisions with obstacles

and occlusions that prevent line-of-sight visibility. The approach consists of

mapping targets into the UGV configuration space, thus obtaining C-targets,

using complexity reduction techniques that take into account shadow regions

caused by the presence of obstacles. An information roadmap method (IRM)



algorithm is used to build a connectivity graph from the C-target regions,

and a solution with the least translation distance is obtained. Comprehensive

simulations performed in MATLAB and Webots - a professional robot simulator

that provides modules for sensors, robots, and their interactions with a

3-D virtual environment - demonstrate the effectiveness and performance

improvement of the proposed approach when compared to existing methods,

based on ”nearest neighbor” and classical traveling salesman problem (TSP)

algorithms.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Sensor planning is to develop a strategy to gather measurements for a

sensing objective, such as target classification [1]. When solving this problem

with mobile sensors mounted on robotic platforms, planning the sensor path is

one of the essential tasks [1, 2]. Existing works, such as [3–6], have provided

abundant solutions to robot navigation in dynamic or unknown environments

with obstacle avoidance. In those studies, the onboard sensors are mostly used

for assisting the navigation, while this thesis focuses on utilizing the sensors to

support a sensing objective.

This thesis addresses the problem of path planning of an Unmanned

Ground Vehicle (UGV) with an onboard directional sensor to classify multiple

fixed targets in an obstacle-populated environment in minimum time. In

this problem, the sensor serves as an information gathering agent along

the path traveled by the robotic platform. This problem is also known

as a variant of the treasure hunt problem, a coupled problem of robotic

sensor motion and measurement planning [7]. It is highly relevant to many

modern sensors and advanced surveillance systems, with potential applications

including real-world landmine detection [8], wildlife tracking for biology

research [9] and environmental monitoring [10]. In addition, it provides

a benchmark optimization solution to active satisficing experiments, where

human or animal subjects seek for targets and complete classification tasks

in immersive environments, sometimes under environmental pressure such as

time pressure [11, 12]. The term satisficing refers to the approach of stopping

the search as soon as a solution that meets the expectation is achieved [13].
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The satisficing studies are performed to understand and approximate the

high-paced real-world decision making process with uncertain information and

limited resources [11]. The solution to the proposed problem in this thesis

is able to provide a comparison with human navigation and decision making

strategies, and thus a better understanding in such field.

Directional sensors, such as vision, infrared, ultrasound, and active acoustic

sensors, only allow measurements for a bounded subset of all possible aspect

angles. For such sensors, information about a target’s relative orientation can

be obtained, in addition to its distance. A major challenge in planning the

motion of directional mobile sensors is that an important target of interest

may be occluded by the presence of obstacles in the sensor’s line-of-sight.

The planning problem thus requires knowledge of the targets’ geometry and

position and sensor’s field-of-view (FOV) [14]. Therefore, the UGV path

solution to the proposed problem must enable measurements of every target

previously localized in the minimum time, while avoiding collisions with

obstacles and occlusions that impair line-of-sight visibility.

The following discussion will examine the methods presented in previous

literature and their applicability to the proposed problem. Solutions to coverage

path planning allow observations from every necessary target. For instance,

approaches of complete coverage and random coverage introduced in [2, 15]

allow the robotic sensor to pass over all possible points of a field. Although they

demonstrate capability in tasks like floor cleaning, demining and painting [2,15,

16], these methods do not utilize priorly known workspace information, so that

the result paths are often cost inefficient. Alternatively, several approaches to

the information-driven sensing problem are developed, where the information
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of the workspace and sensor’s FOV geometry are well represented. Information

roadmap method (IRM) introduced in [1] combines probabilistic roadmap

method (PRM) and information-driven sensor planning, aided by information

theoretic functions that allow estimation on the measurements’ value before

deploying the sensor. With a hybrid sampling strategy, the approach is able

to generate an efficient path with obstacle avoidance in a workspace that has

both wide-open regions and narrow passages. Information potential method

(IPM) in [17] generates a potential navigation function from conditional mutual

information to maximize the information value gain along the sensor path while

escaping local minima using a local roadmap. However, neither of the above

approaches guarantees the coverage of all targets with a path of the minimum

time cost.

On the other hand, target coverage with path optimization is well discussed

in the problem of wireless sensor networks data collection [18–20]. In this

problem, a vehicle needs to efficiently collect data from a set of sensors, and

each has a limited communication range. It is very relevant to the proposed

sensor planning problem, where the mobile sensor collects measurements along

an optimal path with its FOV represented by a closed and bounded subset of a

Euclidean space. Many methods in existing studies abstract the data collection

problem into a traveling salesman problem with neighborhoods (TSPN) or

group-TSP, a discrete variant of TSPN [18]. TSPN is a variant of traveling

salesman problem (TSP). The two problems seek for the shortest path under

different requirements for coverage. While a TSP solution needs to visit a set

of points, each point exactly once, TSPN requires that at least point in each of

the given connected region be visited [21], rendering the problem even more

complex. Previous research on TSPN such as [22] provides approximation
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algorithms of the optimal solution for the case that the regions are fat objects

with possibly varying size. Other works also present approaches using genetic

algorithm (GA), a meta-heuristic method developed based on the process of

natural selection, for its capability of generating a high-quality solution from a

large set of possible permutations [18, 23, 24]. For example, [18] has proposed

a combination of Euclidean-distance based clustering algorithm and GA for

data-gathering route design. However, the above methods are formulated

on the Euclidean plane assuming that the environment is free of obstacles.

The regions geometry is also highly limited to circles or convex fat objects.

Therefore, these methods can not yet provide a general approach for sensor

path planning in an obstacles-populated workspace.

To overcome the limitations of the methods discussed above, this thesis

presents a novel and practical approach seeking for an optimal path with

obstacle avoidance, while allowing measurements on every necessary target.

It achieves the objective by representing the planning problem for sensing

objective with a connectivity graph, which can be solved as a TSP with the

aid of PRM and pruning operations to reduce optimization search space. One

advantage over other techniques is that the method can take into account the

obstacles in the workspace and in the sensor’s line-of-sight. In addition, it is

able to efficiently generate paths with low time cost, while fulfilling the sensing

objective.

As Chapter 3 would elaborate, the approach applies an information theoretic

function, the expected conditional entropy reduction (EER), to determine the

targets from which valuable measurements can still be obtained. Then it

constructs the corresponding directional target configurations (C-target) with

4



careful attention to the presence of obstacles. A series of C-target pruning

techniques are then applied for complexity reduction. A connectivity graph

from the C-target regions is constructed by incorporating special problem

properties, and a solution with the least translation distance is obtained.

As demonstrated in Chapter 4, the proposed approach meets the sensing

objective with less time cost than the traditional TSP algorithms and an

alternative method that utilizes cell-decomposition and integer programming

[25]. Through a series of comprehensive simulations, the proposed method

demonstrates its capability in generating a high-quality solution as well as the

adaptability to different workspace complexities.
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CHAPTER 2

PROBLEM FORMULATION AND ASSUMPTIONS

This thesis considers the problem of planning the path of a robotic sensor

comprised of an Unmanned Ground Vehicle (UGV) for the purpose of

classifying multiple targets in an obstacle-populated workspace.

A directional sensor is mounted on the geometric center OA of a robotic

platform, whose geometry is denoted by A. The directional sensor only obtains

measurements in a bounded subset of all possible aspect angles, so that it can

provide information about the target’s orientation relative to the sensor, in

addition to its distance. Let FW denote a fixed Cartesian frame in workspace

W , whose origin is denoted as OW . Due to its properties, the robotic sensor has

a configuration vector q that includes both x and y coordinates of OA and the

sensor’s orientation in FW . Thus there is q = [x, y, θ]T ∈ C, where C denotes all

possible robot configurations in the workspaceW ⊂ R2, i.e., C ⊂ W × (−π, π).

The sensor’s field-of-view (FOV) is a closed and bounded subset of the

workspace, S(q) ⊂ W , in which target measurements can be obtained. Let

FA be a moving Cartesian frame embedded inA. Assume thatA and S are both

rigid, and S is fixed with respect to A. Then the robot configuration q can fully

specify the position and orientation of every point in A(q), and every point in

S(q). The UGV is subject to the unicycle robot kinematics with

q̇(t) =


ẋ(t)

ẏ(t)

θ̇(t)

 =


cos θ(t) 0

sin θ(t) 0

0 1


v(t)

w(t)

 = g[q(t)]u(t) (2.1)

where the control input is u = [v, ω]T ∈ U = {(v, ω )| 0 ≤ v ≤ vm, 0 ≤ ω ≤ ωm}
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with vm, ωm as the maximum permissible velocity and angular velocity. g [·]

denotes a nonlinear vector function of the configuration.

The workspace is assumed to be a compact subset of a Euclidean space. It

is populated with n fixed and rigid obstacles B = {B1, ...,Bn}, whose position

and dimensions are known. The workspace also contains r targets, denoted as

T = {T1, ..., Tr}. The target geometry is simplified as a point, and its coordinate

can be described by vector x = [x y]T . The obstacles and targets are placed

following the assumption that Bi ∩ Tj = ∅ for ∀i ∈ IB and ∀j ∈ IT , where IB an

IT are the index sets of B and T .

In order to be observed by the sensor, a target Ti must be in the sensor’s

FOV at the given robot configuration, i.e., S(q) ∩ Ti 6= ∅. In addition, possible

occlusions caused by obstacles in the directional sensor’s line-of-sight (LoS)

must be taken into account. Let xT denote the coordinate of a target of interest

Ti. The relative position of xT with respect to the sensor is rT = (xT − q). Then

at configuration q, xT is in the sensor’s LoS if there is no point in the obstacle

region B that are co-directional with rT and closer to q than xT , or

@ ξ ∈ B s.t. ξ · rT = ‖ξ‖ ‖rT‖ and ‖ξ‖ < ‖rT‖ (2.2)

where ξ is defined with respect to FA, the frame embedded on the robotic

platform A.
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Figure 2.1: Onboard sensor with FOV S (green region) is mounted on the robotic
platformA. A target with coordinate xT is not in the sensor’s line-of-sight, since
there is a point ξ ∈ B (marked by the red cross) that is in the same direction as
xT with respect to to the sensor’s configuration, and is closer to the sensor than
xT .

In order to perform path planning with obstacle avoidance, the free

configuration is determined as the following. A C-obstacle is a subset of C that

has collisions with at least one obstacle, denoted as CBi ≡ {q ∈ C|A(q)∩Bi 6= ∅},

where A(q) denotes the subset ofW occupied by A with UGV configuration q.

Then, the union of all C-obstacles obtained from B is defined as the C-obstacle

region, i.e., CB =
⋃
i CBi. The free configuration is the complement of the

C-obstacle region, i.e., Cfree = C \ CB [26]. The robotic sensor is free to rotate

and translate in this free configuration space.

The robotic sensor needs to obtain additional measurements to properly

classify a subset of targets in T . Observations on a target is obtained sequentially

at a constant cost cr using the onboard active sensor camera. The sensor

measurement process on each target Ti ∈ T is modeled by a joint probability

mass function (PMF) of the relevant variables. In this thesis, the PMF is
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represented by a Bayesian Network (BN) model. Many existing works adopted

such model, since it captures the conditional dependencies between multiple

variables, and provides a convenient factorization of the joint PMF [1, 7, 17].

A BN model utilizes a directed acyclic graph (DAG), G = (N , E), and a set

of conditional probability tables (CPTs) to represent the multivariable joint PMF

of a set of discrete and random variables. For each target Ti ∈ T , the node set

N consists of a categorical random variable Yi and L discrete feature random

variables, denoted by {Xi,1, ...Xi,L}. The categorical random variable has a finite

range of classification, Yi = {y1i , y2i }. Yi is hidden and must be inferred from

the target feature measurements. Each feature measurement variable Xi,k has a

finite range, i.e., Xi,k =
{
x1i,k, ...x

Nk
i,k

}
, with xqi,k denotes the qth value in Xi,k, the

range of the variable representing the kth level measurement for target Ti. Note

that for each target, L is a constant, and so is every Nk for k = 1, ..., L. Also,

before the robotic sensor is deployed, each target is associated with li levels of

features that has been given, denoted as Fi =
{
xv1i,1, ...x

vf
i,li

}
, where xvji,k denotes

the jth value in the range of the kth level of feature variable.

9



Shape
X1

Color
X2

Texture
X3

Type
Y

??

Figure 2.2: Example of the BN model used in this thesis. The feature
discrete random variables are X1 (shape), X2 (color), and X3 (texture), and the
categorical random variable is Y , representing Treasure, Non-treasure.

The arc set E represents the conditional probability relationships between

the variables. For target Ti, the BN model specifies the joint PMF underlying the

sensor measurements as

P (N ) = P (Yi, Xi,1, ..., Xi,L) = P (Yi|pa(Yi))
L∏
j=1

P (Xi,j|pa(Xi,j)) (2.3)

where pa(Xi,j) is the parent set of a node Xi,j , and all P (Yi|pa(Yi)) and

P (Xi,j|pa(Xi,j)) can be obtained from the BN CPTs.

Given a set of values known from available observations F ′i , which either

is obtained directly from Fi or with additional sensor measurements, the

target classification can be decided using the posterior PMF. One of the

most commonly used rules for classification decisions, maximum a posteriori
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probability rule (MAP) decides the most probable value of Y from Yi based on

F ′i as

Ŷi = y∗i , iff P (Ŷi = y∗i |F ′i) > P (Ŷi = ylii |F ′i),∀y
li
i ∈ Yi, y

li
i 6= y∗i (2.4)

The path planning objective is to allow the robotic sensor to gather

all necessary information value through target measurements, with a robot

trajectory that is collision-free with obstacles and is of a minimum time cost.

The path of the UGV, defined as a continuous map τ : [0, 1], with the initial

and goal configurations defined as q0 and qf , is determined by the planning

methodology to be introduced. The initial configuration q0 is known, but the

goal configuration qf is not specified. Denote TI as a set of target that the UGV

must collect measurements from to achieve the desired information gain, the

representation of which will be introduced in the next Chapter.

The robot trajectory τ must meet the following objectives:

1. Avoid collisions with all obstacles inW .

2. The obtained trajectory must allow measurements on every target Ti ∈ TI , or

∀Ti ∈ TI , ∃ τ(s) = qi s.t. qi ∈ CT i (2.5)

where s ∈ [0, 1], and CT i is the set of target configurations of a target Ti.

3. Minimize the total time consumption throughout the path.

Objective 1 is met by planning a path in the free configuration space.

To achieve objective 2, a representation of information value using expected

entropy reduction (EER) method will be discussed in Chapter 3. To achieve

objective 3 with a simplification on the planning problem, several assumptions

are made. The first assumption is that the target locations, available target
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features, obstacle geometry and location are known, so that the planner can

perform the planning off-line. Secondly, the feature measurement time is

negligible compared to the motion time of the UGV, and revealing features

has no cost, i.e., cr = 0. Thus, the sensor system is assumed to reveal all the

features on a target once they are available at the given configuration. The

third assumption is that the effects of acceleration and deceleration throughout

the trajectory is assumed to be negligible. Therefore, the UGV is assumed

to translate with the maximum translational velocity vm and rotates with

the maximum angular velocity ωm, which are both constants. Furthermore,

translational time cost is assumed to dominate in the UGV motion time, i.e.,

dt
vm
� dθ

ωm
.

Let ttot be the total time consumption of the path with start configuration

q0 and end configuration qf . The total time consists of robot platform motion

time tm and target features measurement time to, i.e. ttot = tm + to, while to

is negligible comparing to tm per the second assumption made above. Then

to achieve a minimum ttot, the obtained path should have a minimum UGV

motion time tm. tm consists of the translational and rotational time cost, and per

the third assumption made above, there is

tm =
dt
vm

+
dθ
ωm

(2.6)

By these assumptions and transformation made above, the minimum-time path

planning problem is therefore to minimize dt and dθ. The methodology to be

presented will minimize dt first, and then dθ if possible, based on the assumption

that translation cost is dominant. The method first identifies a set of targets TI

to obtain measurements from based on expected entropy reduction, a selected

information theoretic function. Then, the method will determine a path for

the robotic sensor in the free configuration space, while the sensing objective

12



defined in Equation 2.5 is met.
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CHAPTER 3

METHODOLOGY

This chapter presents a set of systematic path planning approaches to determine

a minimum time path that allows measurements from all targets with

information values. The goal is achieved by constructing and operating on

directional target configuration (C-target) based on targets’ information value.

As one of the major challenges in this problem, a directional sensor only allows

measurements at preferred sensing direction, so that the sensor’s orientation

must be considered in the planning. On the other hand, as many existing

works of literature and practices have discussed [26–28], the time complexity

to solve a path planning problem increases quickly with the dimension of the

configuration space. To obtain a practical solution within a moderate runtime,

the reduction of dimension when possible is necessary and crucial. This thesis

hence proposes a technique using a switched focus of optimization in different

stages of path planning, based on the assumption that the cost of translation is

not less than that of rotation in the total time cost.

Firstly, the information value of each target’s available measurements is

described using expected entropy reduction, a practical information-theoretic

function. Then, C-target is constructed with careful consideration of

line-of-sight visibility constraint to ensure that a target of interest is not

subject to occlusion by obstacles. After that, the path planner will minimize

only the cost of translation based on the position vector x = [x y]T

that describes the robot’s coordinate in the workspace, while obtaining all

necessary measurements. A set of C-target regions is acquired after a pruning

operation that improves planning efficiency, and a traversal order is obtained
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with a traveling salesman problem (TSP) representation. Finally, waypoint

optimization is performed to minimize the cost of both translation and rotation.

Along the waypoints in the obtained path, the robotic sensor with configuration

q = [xT θ]T adjusts its orientation to follow the trajectory and allow target

measurements. The specially designed techniques make a high-quality solution

possible even with a complex workspace map, as demonstrated in Chapter 4.

3.1 Minimizing Expected Entropy Reduction

In information-driven sensor planning, the planner navigates the robotic sensor

to collect valuable sensor measurements for target classification. Although the

process of performing a measurement itself has no cost, the robot will still

approach a target and adjust its orientation for a measurement, consuming

time for both translation and rotation. Thus, it is crucial to estimate the quality

and quantity of measurements before obtaining them, so that the planning can

achieve better efficiency.

As introduced in Chapter 2, the sensor measurement process is modeled by

a joint probability mass function (PMF) of a set of discrete random variables

that describe target classification and features. This section introduces a

representation of information value by expected entropy reduction (EER) in

terms of the joint PMF. EER evaluates a measurement’s reward by the ability

to reduce the uncertainty in the classification variable. It is preferable as it

demonstrates the effectiveness and reliability in sensor planning for target

classification, even when the sensor models are not Gaussian [29]. Similarly,

other information-theoretic function such as discrimination gain [30], and
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the Entropy and the Mahalanobis distance measure [31], have shown their

applicability in other problems, such as multisensor-multitarget assignment

problem [30], or the problem of sensor collaboration in ad-hoc sensor networks

[31].

Entropy reduction is formulated using conditional entropy. The conditional

entropy of a discrete and random variable Y given another variable Z is

described by the expected value of the entropies of the conditional distributions

over the range of the conditioning random variable [32]

H(Y |Z) = −
∑
z

∑
y

P (y, z) log2 P (y|z) (3.1)

where H(·) denotes the Shannon entropy, and
∑

y denotes the marginalization

over the range of Y .

Then entropy reduction, which is shown to be additive in [29], describes the

reduction in uncertainty brought by a set of new measurements Zj with prior

information about Zi as

∆Ĥ(Y ;Zj|Zi) ≡ H(Y |Zi)−H(Y |Zi, Zj) (3.2)

For the problem discussed in this thesis, the EER is further specified for each

target Ti with L levels of features and a classification variable Yi. Recall that for

Ti, an a-priori evidence set containing the result of first li feature measurements

Fi =
{
xv1i,1, ...x

vf
i,li

}
is given before the sensor deployment. The measurement on

each target feature can only be made once, that is, measurement is only allowed

when li < L. Also, per the assumption previously made, the robotic sensor

will reveal all features on a target once they become available at the sensor’s

configuration. The process of the measuring the rest features from level li + 1
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to L can be described by Mi =
{
Xi,(li+1), ...Xi,L

}
, where each variable Xi,k has a

finite range Xi,k =
{
x1i,k, ...x

Nk
i,k

}
.

The entropy reduction will represent the information value brought by a

new set of measurements Mi. As mentioned above, it is important to note

that the actual entropy reduction ∆Ĥ(Yi;Mi|Fi) can not be determined without

knowing the result of the measurement set Mi. Instead, the expected entropy

reduction is applied to address this issue. Given a set of prior knowledge Fi,

the information value of a target is represented in terms of the EER brought by

measuring all of its remaining features

EER(Fi) =


H(Yi|Fi)− EMi

H(Yi|Fi,Mi) if li < L

0 if li = L

(3.3)

where EMi
H(Yi|Fi,Mi) =

∑L
k=li+1

∑Nk
q=1[H(Yi|xi,k = xqi,k)P (xi,k = xqi,k|Fi)].

The conditional entropy H(Yi|Fi) and H(Yi|xi,k = xqi,k) are computed using

the definition in Eq.3.2 and the posterior PMF introduced in Eq.2.3. All the

probabilities can be acquired using the BN CPTs.

The path planning thus needs to find a path that allows collection of

information value, or conversely, allows the reduction of entropy by measuring

target features. The workspace is populated with r targets, each with a set of

revealed features Fi. By the above information-theoretic function via EER, the

sensing objective of the path planning can be formulated by that
r∑
i=1

EER(Fi) = 0 (3.4)

Then, the planner will firstly identify a subset of all targets, whose

unrevealed features may still allow further entropy reduction that

TI = {Ti ∈ T : EER(Fi) 6= 0} (3.5)
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so that the goal is to measure all the features of the targets in TI . Then the

objective described by Eq. 3.4 is transformed into∑
Ti∈TI

EER(Fi) = 0 (3.6)

In the following few sections, the path planning methodology will focus on

planning a path that fulfills the goal in Eq. 3.6 with a minimum time cost.

3.2 Directional C-targets

As introduced in the previous subsection, the planner determines a set of

targets TI , each provides additional information value. The next task for the

planner is to specify a path to measure each target Ti ∈ TI . For a directional

sensor with a bounded field-of-view S , S must intersect with the target Ti to

make measurements. For the purpose of path planning, each target Ti in the

workspace is mapped to the robot’s configuration space C as its corresponding

target configuration (C-target), defined by CT i = {q ∈ C | S(q) ∩ Ti 6= ∅}. With

the obtained C-target, the path planning goal can be specified such that: for

every target Ti ∈ TI , there is at least one configuration qi in the path that falls in

the corresponding C-target region, i.e., qi ∈ CT i.

This subsection focuses on the construction of each C-target CT i for a

directional sensor with the presence of obstacles. A directional sensor can only

obtain measurements at specific preferred direction. Thus, when determining

the C-target, the orientation of the robotic sensor is as important as its

coordinate. In addition, ensuring target visibility is also a critical yet challenging

task, since a target of interest may be occluded by obstacles in the sensor’s

line-of-sight.
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Consider a target, T , whose coordinate in the workspace is described by a

position vector xT , [x y]T . Firstly, to ensure a target is visible, its coordinate

must fall into the sensor’s field-of-view (FOV). More specifically, consider the

2-dimensional sensor FOV S applied in this thesis. Its geometry is characterized

by a maximum open angle α with respect to the sensor’s orientation, a

minimum range rmin, and a maximum range rmax, as demonstrated in Figure

3.1. Let x denote the position of the robot’s geometry center (OA) in inertial

frame FW . The relative position of the target with respect to FA, a moving

Cartesian frame embedded in the sensor, is rT = (xT − x).

Figure 3.1: The FOV of a sensor at configuration q is S(q), a subset of the
configuration space. The FOV has a minimum and maximum range, rmin and
rmax, and a maximum open angle α. In this example, although the target (red
dot) with coordinate xT is in the FOV, it is not in the line-of-sight of the sensor.
Therefore, the robot current configuration does not belong to the C-target region
of this target.

The angle between the sensor orientation and rT is denoted as φ. The

target’s distance from the sensor is the target range ‖rT‖. To ensure that a target’s

coordinate is in the sensor’s FOV, the value of target range must be within the

minimum and maximum sensor detection range. and φ must be within the
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maximum open angle

rmin 6 ‖rT‖ 6 rmax and |φ| 6 α (3.7)

In addition, line-of-sight (LoS) visibility is another important constraint

that must be taken into account. Successful measurement of a target is made

only when the target is not occluded by any obstacles in the sensor’s LoS, as

described in Chapter 2, Equation 2.2. That is, the line segment between x and

xT does not intersect with any obstacle Bi ∈ B.

3.2.1 C-target with obstacle avoidance

In a workspace populated with obstacles B = {Bi, ...,Bn}, obstacle avoidance

is another fundamental requirement for the path planning. To achieve this

objective, the path planning must be performed in the free configuration space

Cfree, defined as the complement of the C-obstacle region in all possible robot

configurations C.

A C-obstacle is also a subset of C where the robot has collisions with at least

one obstacles,

CBi = {q ∈ C | A(q) ∩ Bi 6= ∅} (3.8)

where A(q) denotes the subset of W occupied by the robot geometry A at

configuration q. The union of such C-obstacle is called C-obstacle region, i.e.
n⋃
i=1

CBi. And the complement set of all C-obstacle regions is called the free

configuration space

Cfree = C\
n⋃
i=1

CBi = {q ∈ C | A(q) ∩ (
n⋃
i=1

Bi) = ∅} (3.9)
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Any configuration in Cfree is called a free configuration [26].

As introduced at the beginning of the chapter, to reduce the algorithm

complexity, the path planning approach minimizes only the translational

distance until the step of waypoint optimization. C-target pruning (Chapter

3.3) and the graph representation of C-target (Chapter 3.4) are both performed

on the 2-dimensional projection of the configuration space. Each coordinate

x , [x y]T in the 2-dimensional free configuration should allow the robot

to freely rotation, i.e., θ ∈ (−π, π). With this property, given a determined

translation trajectory, the robot can rotate freely to a desired orientation when

it needs to make target measurements. Under this consideration, a special

technique is applied to the construction of Cfree.

A commonly used technique to reduce a configuration space dimension,

such as θ, is to replace the robot platform A by the surface it sweeps out when

it moves along the independent axis of θ [26]. The robot platform geometry A

is rigid and non-elongated, such as a rectangular with a pair of similar width

and length and a geometric center OA. Then, such A can be replaced by a

disc A′ bounded by the minimum spanning circle of A, as demonstrated in

Figure 3.2. Let the free configuration in R2 to be C ′free. Similar to the idea in

Equation 3.9, when centered at each coordinate x ∈ C ′free, A′ must not intersect

with any obstacles, i.e., A′(x) ∩
n⋃
i=1

Bi = ∅. Then, at each robot orientation θ, the

robot coordinate x should be limited in the C ′free, which is also represented by a

cross-section of Cfree perpendicular to the θ axis.
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Figure 3.2: The robotic platformA is a rectangle with width w and length l, with
geometry center at OA. The disc (orange circle), A′, is obtained by sweeping A
around OA with all possible orientation. If at this coordinate, A′ is collision-free
with all the obstacles, such coordinate belongs to the 2-dimensional C-free C ′free.
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Obstacles 

Targets   
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π/2 

-π/2 

-π 

C-target 

(a) x− y view

(b) isometric view

Figure 3.3: Demonstration of Ctarget in 3-D configuration space. The test
workspace is the Webots R© immersive environment with 30 targets.
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3.3 Pruning of C-target regions

In the previous subsection, each 2-dimension C-target region for Ti is

determined as CT ′i, as shown in Figure 3.3(a). With a temporary reduction of

the third dimension θ, the planner is able to achieve a high planning efficiency

by firstly obtaining a path with the minimum translation distance.

Consider the robot’s path as a sequence of waypoint P = 〈x1, ..., xP 〉 that

allows the sensor to obtain measurements from CT ′i for every target Ti. The

sensor rotate to a proper orientation at a waypoint in order to make target

measurements. There are two types of waypoints. An observation waypoint

is a waypoint in one of the C-target regions at which the sensor can make

target measurements. The ith observation waypoint in P is denoted as xio.

A connecting waypoint is to help to build a feasible path between a pair of

observation waypoints, since sometimes there does not exist a straight line path

in the free space to connect them. It is assumed that sensor measurements are

not made on the connecting waypoints. The kth connecting waypoint in the

local path between xio and xjo is denoted by xk(i,j). The local connecting path is

determined using the approach introduced in Chapter 3.4.

An observation waypoint needs to be placed in each C-target region to

obtain target measurements. It is interesting to note that when the targets

are close to each other, there appear to be abundant intersections between the

C-target regions. At a waypoint located in one of such intersections, the sensor

is able to observe multiple targets when oriented at certain angles. Therefore, by

the assumption that rotation time cost is overall less than translation time cost,

placing waypoints in such regions is very likely to improve the path efficiency.
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Figure 3.4: A demonstration of the case where the number of waypoints needed
is less than the number of C-target regions. To make measurements on four
of the targets (red dot), a possible path is to visit waypoints sequence P1 =
〈x1
a, x2

a, x3
a, x4

a〉 (blue triangles), another is to visit P2 = 〈x1
b , x

2
b〉 (orange triangles).

The second path is more likely to have a lower cost.

Thus in this subsection, a set of pruning operation on the C-target region that

still fulfills the sensing objective is introduced. The pruning operation means

to decrease the number of C-target region needed to be traversed, so that the

resulting path is more likely to have smaller cost with fewer waypoints needed.

Meanwhile, it may also reduce the size of each C-target region, resulting in a

smaller search space thus less runtime in the optimization step.

In order to perform pruning, the original C-target regions obtained in

the previous section need to be decomposed into another set of non-overlap

independent C-targets GI . Each independent C-target Gi ∈ GI is a set of

coordinates that share a distinct set of observable targets, which is represented

using a mapping function as follows.

Recall the target set TI that is used to define the original C-target regions,

such that measurement from each Ti ∈ TI must be obtained. The power set of
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TI , denoted as P(TI), is the set of all subsets of TI , including the empty set and

TI itself. A mapping f : P(TI) 7→ RNTI is used to distinctly label each element in

this power set, where NTI is the cardinality of set TI . The range of the mapping

function is a finite set of vectors, denoted asRA = {r1, r2, ..., rnR}. Then, a set of

targets A ⊆ TI can be labeled by

f(A) = a = (a1, ..., aNTI ) (3.10)

where each element in vector a is an indicator that represents whether a target

Ti ∈ TI is in the target set by

ai =


1 if Ti ∈ A

0 if Ti /∈ A
(3.11)

Denote T C(x) as the set of targets that the robot can observe at a coordinate x

in the free space. Then an independent C-target region Gi is a set of coordinates

that

Gi = {x : f(T C(x)) = ri} (3.12)

and a Gi also has the property that T S(Gi) = ri, where notation T S(Gi) denotes

the set of targets that can be measured on every coordinate in Gi.

The pruning operation will make attempts to remove an independent

C-target region, if doing so still allows measurements from every target in TI .

That is, during the operation,
⋃NP
i=1 T S(Gi) = TI is maintained for the remaining

NP independent C-target regions. The proposed pruning approaches can be

described as the following three steps.

The approach first starts with the simplest case to capture the intersection

regions of two original C-targets. It is labeled as case 1 (Figure 3.5), where a
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region Ga is marked as redundant and should be pruned if

∃ Gb | T S(Ga) ⊆ T S(Gb) (3.13)

so that by visiting Gb, one can observe a target set T S(Gb) that contains all of the

targets in T S(Ga). Thus, visiting Ga is unnecessary.

Figure 3.5: The first step of C-target pruning approach. C-target regions Ga, Gc,
Ge are marked as redundant and should be pruned. The remained regions are
Gb and Gd, by visiting which the three targets, T1,T2 and T3 can all be observed.

After the first step, the regions remained are the intersections of the original

C-target regions. Yet there remain other cases with redundancy to be dealt with.

As observed, redundancy commonly appears when more than three C-targets

are chained. The redundancy with chained C-target can be divided into two

categories: with a cycle that is labeled as case 2 (Figure 3.6), and without cycle

labeled as case 3 (Figure 3.7). The pruning on case 2 attempts to remove a set

of regions together, thus it must be dealt with before case 3, where the pruning

checks for redundancy on every single region.
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For case 2, one challenging problem is that two sets of regions cover the

exact same set of targets. When the number of regions in each set is different,

the one with fewer regions is preferred, so that the number of waypoints needed

is likely to be smaller too. When the two sets have the same number of regions,

the planner greedily selects the pair of C-target regions with a larger size (Figure

3.6). This approach has demonstrated its good performance with a similar case

introduced in [18]. Although as a tradeoff, selecting the set with larger regions

may lead to runtime increase in the optimization step, this approach provides

more flexibility in the waypoint selection thus possibly a solution with lower

cost. In summary, a set of C-target regions are redundant and should be pruned

if

∃ {Gb1, ...,Gbm} |
n⋃
i=1

T S(Gai) ⊂
m⋃
j=1

T S(Gbj)

or

∃ {Gb1, ...,Gbm} |
n⋃
i=1

T S(Gai) =
m⋃
j=1

T S(Gbj) and n > m

or

∃ {Gb1, ...,Gbm} |
n⋃
i=1

T S(Gai) =
m⋃
j=1

T S(Gbj), n = m and
n∑
i=1

|Gai| <
m∑
j=1

|Gbj|

(3.14)
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Figure 3.6: Two pairs of independent C-target regions, each contains two
regions. The two pairs can observe the same set of targets. The pruning
approach selects the pair that contains a larger number of coordinates. By
visiting the selected regions, the four targets, T1,T2, T3 and T4 can all be observed.

The third case is similar to the first, where only two C-targets are involved

(Figure 3.5). Pruning of case 3 checks for redundancy in a single independent

C-target by whether its corresponding target set can be covered by a set of other

regions. As shown in Figure 3.7, a set of C-target regions are redundant and

should be pruned if

∃ {Gb1, ...,Gbm} |T S(Ga) ⊆
m⋃
j=1

T S(Gbj) (3.15)
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Figure 3.7: For the chained C-target regions, the pruning approach first selects
the intersecting regions as described in case 1. Then, at the third step, the
approach further checks the redundancy and discards unnecessary regions if
possible. By visiting the selected regions, the four targets, T1,T2, T3 and T4 can
all be observed.

The three-step C-target pruning approach performed so far can deal with

most of the commonly seem cases of C-target redundancy in this problem, and

more pruning techniques can be applied as future works. The result set of

independent C-target regions after the pruning is denoted as P = {G1, ...,GNP }.

By visiting each region, the sensor can obtain measurements from every target

in TI .
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(a) The test map has 30 targets. Thus there are 30 original
C-target regions, denoted in blue. The color for each independent
regions indicates the number of targets that can be observed from
any coordinate in the region.

(b) After the pruning, there remain 17 C-target regions, some
with smaller size compared to the original ones.

Figure 3.8: The effect of C-target pruning operation on the test workspace
for satisficing experiments performed in Webots R©. The operation greatly
reduces the number of C-target regions needed to be traversed, allowing an
improvement of planning efficiency.

31



3.4 Traversal of C-target with minimum translation

With the pruned independent C-target regions P = {G1, ...,GNP } obtained in the

previous section, the next task is to determine the actual waypoints needed to

traverse the elements in P with the minimum translation cost. Some crutial

issues need to be discussed to accomplish this goal, including the order of

visiting these C-target regions and the selection of waypoint in each of them.

It is also important to note that the placement of a waypoint may be highly

influenced by previous trajectory, which depends on the waypoint position in

the regions previously visited. Thus, the traversal order of C-target needs to be

addressed first.

Traveling salesman problem (TSP) representation is a convenient and

efficient problem abstraction when seeking for a traversal solution. The

problem requires a line traversal solution with minimum cost, often defined

by translational distance, that visits the targets each exactly once. Abundant

existing techniques are demonstrated to provide high-performance TSP

solutions in a reasonable runtime, including 2-opt heuristics [33], greedy

heuristic algorithm [34], genetic algorithm [33, 35], and ant colony algorithm

[33, 36, 37].

Although the TSP representation has the potential of providing efficient

solutions, the proposed problem has some essential properties so that special

techniques are required when transformed into a TSP. In the proposed problem,

the solution requires visiting at least a point in the target ”neighborhoods”, each

is a C-target region that consists of one or multiple points. However, with the

presence of obstacles in the workspace, the problem is by nature very different
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from the traditional traveling salesman problem with neighborhood (TSPN).

Thus its solutions cannot be directly applied. Instead, to be introduced in

Section 3.4.1, the proposed method provides techniques to describe the C-target

regions by nodes in a TSP connectivity graph. In addition, traditional TSP

algorithms require that the connectivity graph is complete, meaning that each

pair of nodes is connected by an edge. The task is challenging due to the

uncertainty of finding a direct path between C-targets with the presence of

obstacles. Section 3.4.2 thus focuses on the edge assignment in a complete

connectivity graph that can provide a proper estimation of the pairwise distance

between C-target regions.

3.4.1 C-target connectivity graph

As a combinatorial optimization problem, TSP is often modeled as an

undirected weighted graph G = {V , E}. For the proposed problem, a node

vi ∈ V represents a pruned C-target region Gi ∈ P , and the edge set

E = {(vi, vj)|vi, vj ∈ V} measures the distance between any unordered pair

of regions. The graph is weighted, meaning that for each arc between an

unordered pair of nodes (vi, vj), a weight is assigned by a function w(vi, vj),

which will be discussed in more details in the next section. The graph is also

undirected, since traveling in both direction between nodes is allowed, and has

the same cost.

Each node in the graph represents a C-target region Gi ∈ P , which is a set of

coordinates. Due to the presence of obstacles and the sensor’s FOV geometry, a

C-target region is not necessarily a connected area or a convex polygon. Also,
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some methods that measure the Euclidean distance between points sets are not

directly applicable, e.g., Euclidean Hausdorff distance method, since they do

not take obstacles into account. Instead, a technique in [18] uses the centroid

coordinate to represent each region, which is demonstrated as a convenient and

reasonable simplification.

Similarly, each C-target region Gi is associated with a coordinate denoted

as ri, which is used to determine the direct connectivity and distance between

node pairs. A pruned C-target region Gi is pruned from an original C-target

CT i. Constrained within the sensor’s FOV, each coordinate in CT i is not further

than rmax away from the target’s coordinate, where rmax, the sensor’s maximum

detecting range, is relatively small compared to the workspace size as assumed

in the problem formulation. Thus, the region’s centroid is a proper candidate for

its point representation ri. Yet it is also important to note that due to its complex

geometry, a C-target region Gi may not necessarily has its centroid located in

the free space. In such case, a new coordinate has to be sampled from Gi (Figure

3.9). Considering that the size of region is relatively small, uniform sampling is

able to achieve this goal properly with easy implementation.

In summary, the selection of the point representation for each node is as

follows. ri is the point representation for C-target region Gi consisting of NG

coordinates, each with coordinate with respect to the fixed Cartesian frame FW

that Gi = {(x1, y1), ..., (xNG , yNG)}. The centroid of this region is Ci = (x̄i, ȳi) =

( 1
NG

∑NG
i=1 xi,

1
NG

∑NG
i=NG

yi). Then there is

ri =


Ci if Ci ∈ C ′free

xi otherwise
(3.16)

where xi is a coordinate uniformly sampled from Gi.
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Last but not the least in the discussion on graph nodes, the planning problem

requires a fixed start. In the graph, a start node should properly represent

the given initial position as well. An extra node vinit is added to the graph if

the initial configuration does not belong to any C-target region (Figure 3.9).

Although the extra start node is not treated differently in this graph, target

measurements cannot be made on its corresponding coordinate, so it should

be properly labeled for convenience of waypoint optimization.

3.4.2 Edge weight for a complete connectivity graph

In the previous subsection, the node representation for C-target regions using

the TSP graph is introduced. This subsection discusses the edge cost assignment

regarding the problem’s special properties. As mentioned before, the graph

model for the TSP is undirected, weighted and complete. In order to determine

a traversal solution of C-target regions that has the minimum translation cost,

the graph needs to provide proper estimation of pairwise traveling distance of

the regions. That is, the weight for each arc needs to be assigned properly.

Consider a pair of unordered nodes (vi, vj) that associated with coordinates

ri = (xi, yi) and rj = (xj, yj) accordingly, as defined in the previous subsection.

Denote Li,j as the line segment with ri and rj as its endpoints. If Li,j is

collision-free with obstacles, (vi, vj) is known as directly connected, and the

edge weight is the Euclidean distance between the coordinates, i.e., w(vi, vj) =

‖ci − cj‖. Unfortunately, the majority of node pairs cannot be directly connected

in the problem. One technique to ensure the graph completeness is utilizing

existing edges. Any other nodes in the graph may be used as ”stepping stones”
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to find a free path between an un-connected node pair, with the assistance of

Dijkstra’s algorithm for example. However, the nodes available to assist the

connectivity are highly limited, and the resulting path no longer visits each node

exactly once. Thus, this approach may result in a solution with undesirably

high path cost, especially for a large workspace with many obstacles and sparse

target placement (Figure 3.9).

The methodology thus applies the probabilistic roadmap method (PRM) to

provide a better approximation of the distance between C-target regions. PRM

is a randomized motion planning algorithm for generating computationally

feasible solution in a relatively large workspace that has multiple obstacles, and

the given start and goal positions [38]. In a learning phase, the PRM planner

samples milestones in the free space to construct a roadmap. The roadmap is an

undirected graph with a set of milestones M = {m1, ...,mNm}, and a set of arcs

A = {(mi,mj) | mi,mj ∈ M}, with each arc representing a straight line path to

connect two milestones. The number of PRM nodes in the roadmap is denoted

as nPRM , which can be tuned to meet the need of workspaces with different size

and complexity. The milestones are uniformly sampled from any possible value

in the 2-dimensional free configuration (C ′free).

Then in the query phase, given a pair of arbitrary start coordinate c0 and goal

coordinate cf , the planner quickly constructs a feasible path using the roadmap

[1, 38]. One commonly used strategy is to connect c0 to milestones in the

roadmap by the order of increasing Euclidean distance. After c0 is successfully

connected to the roadmap, a similar approach is applied to connect cf [38]. Note

that once a path is found from ca to cb, the path from cb to ca can be obtained by

reversely traversing the same set of milestones. A smoothing algorithm based
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on Dijkstra is used to obtain a shorter path. The obtained path is a set of straight

lines in the free space linking the start and goal coordinates, stored using a

milestone sequence PPRM = {m1, ....,mNms}. The distance cost of such a path

d(PPRM) can be easily calculated as d(PPRM) =
∑Nms−1

k=1 ‖mk+1 −mk‖, the sum

of Euclidean distance of the path line segments.

With the assistance of PRM, the edge weight assignment of the complete

connectivity graph can be defined. For a pair of nodes vi and vj representing the

C-target regions Gi and Gj , Li,j is the line segment between their corresponding

coordinates ri and rj . In summary, the weight of the edge between vi and vj is

w(vi, vj) =


‖ci − cj‖ if Li,j is collision-free

d(P i,j
PRM) otherwise

(3.17)

where P
(i,j)
PRM is the path found by the PRM to connect vi and vj . The path

obtained is stored as the corresponding connection waypoints between two

observation waypoints, as introduced in Section 3.2.
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Figure 3.9: An example of the connectivity graph construction on the test
workspace. A blue dot represent an assigned coordinate ri for each C-target
region Gi. Point a is the start position. To estimate the distance cost between
point b and d, the approach using existing nodes, such as using point c, may
result in an inappropriate estimation. Instead, a path generated by PRM is used.
Point e denotes the coordinate for a region whose geometry is not connected.
Instead of its centroid, which does not belong to C ′free, an alternative point is
sampled from the region.

By this set of representation and approximation, the problem of traversing

C-target regions is transformed into a TSP. As introduced at the beginning of

the section, there are abundant existing methods to obtain a TSP solution. 2-opt

heuristics algorithm, which is also known as pairwise exchange algorithm, is

able to provide a fast and good-quality solution [33, 39]. On a complete graph,

it is shown to produce a solution no worse than the average cost of a tour in

a polynomial number of iterations [39]. It removes two arbitrary edges in the

path, then tries to reconnect the path using new edges. If such a move reduces

the total path cost, which is defined by the path length, the change is kept [40].
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The resulting solution is the optimal order of visiting all the required C-target

regions.

3.5 Waypoint optimization of translational and rotational cost

The techniques introduced previously provide an optimal order of visiting each

pruned C-target regions. The final step of the path planning is to determine

waypoints placements with the minimum cost in terms of translation and

rotation. As introduced in Section 3.2, the mobile sensor visits a sequence

of waypoint P = 〈x1, ..., xP 〉 in the free workspace and takes measurements

along the way to fulfill sensing objective. A waypoint is either an observation

waypoint where the sensor obtains measurement by rotating to the proper

direction, or a connection waypoint that ensures the path connectivity in free

space. Each observation waypoint is constrained in its corresponding C-target

region, while connection waypoints are constrained in the free space. The

performance of a candidate waypoint sequence is evaluated using the path’s

translational distance dt and rotational angle dθ. Each diθ is the minimum

rotation required to follow the path and measure all targets

dt =

nP−1∑
i=1

∥∥x(i+1) − xi
∥∥ , dθ =

nP−1∑
i=1

diθ (3.18)

Then the position of each waypoint is optimized for a minimum total cost J ,

defined as a weighted combination of translation cost dt and rotation cost dθ

J = (wt)dt + (1− wt)dθ (3.19)

where the weight of translation is wt, while (1 − wt) is the weight of rotation

correspondingly. The selection of wt is based on the translational and rotational
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velocity of the vehicle, such as ωm
vm+ωm

. When ωm is very large, the rotational

cost is negligible and wt is selected as 1. If the optimization on rotation is

encouraged, a smaller wt can be applied. The effect of this parameter will

be further discussed in the next chapter. The waypoints are optimized using

genetic algorithm, and is smoothed by discarding unnecessary intermediate

points to further improve the result.
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CHAPTER 4

SIMULATIONS AND RESULTS

In this chapter, the path planning approach introduced is tested on a set of

workspaces. Simulations are performed to examine the effectiveness of the

proposed method and the influence of relevant parameters. The selection of

the two parameters in the proposed approach and its corresponding effects

will be demonstrated and discussed. The proposed method shows significant

performance improvements when compared to existing methods, including the

”nearest neighbor” and 2-opt heuristics classical traveling salesman problem

(TSP) algorithm, and cell decomposition approach with integer programming

optimization.

4.1 Simulation workspaces and sensor parameters

In the simulation, the directional sensor has a FOV as described in Figure 3.1.

The detection range is bounded by rmax and rmin, which are 0.8 meters and 0.3

meters accordingly. The open angle α is π/6. Those parameters are determined

from the sensor applied in the immersive satisficing experiment introduced in

Chapter 1, which also supports the onboard computer vision algorithms for

target feature extraction.

For a comprehensive evaluation of the proposed algorithm, the three test

workspace maps applied have different complexities and characteristics. The

first map (Figure 4.1) is relatively simple and small-scale. It contains seven

obstacles and nine targets. The majority of target pairs are blocked by obstacles
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and cannot be connected by a straight line path. 

Initial position 

Obstacles 

Targets 

UGV 

Figure 4.1: Map 1 applied in the simulations. It is relatively small scale, with 9
obstacles and 7 targets.

Map 2 (Figure 4.2) is the abstraction of the environment used in the

immersive satisficing experiment. It contains twenty-five obstacles and has a

four-room layout, providing simulations of a complex real-life scenario. Some

of the obstacles populated have a non-polygon geometry, for example, a circular

shape. Thirty targets are placed in the four rooms evenly. A target is placed

under chairs and a table, each is represented by its four legs. Map 2 is tested

with two sets of targets. The two sets of targets are of different prior knowledge

of target features, such that all targets are of non-zero EER in the first set (Figure

4.2), and only 15 targets have non-zero EER in the second set (Figure 4.3).
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Obstacles 

Initial Position   

Targets 

Figure 4.2: Map 2 has 25 obstacles and 30 targets. It is associated with two sets
of targets of different prior feature knowledge. In the first set, 30 targets have
non-zero EER.
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Figure 4.3: Map 2 has 25 obstacles and 30 targets. It is associated with two sets
of targets of different prior feature knowledge. In the second set, 15 out of 30
targets have non-zero EER, marked as red dots, while the targets with zero EER
are marked by green dots.

Map 3 (Figure 4.4) has a larger dimension, and a more complex maze-like

layout. It has 27 targets, placed throughout the workspace. Similar to map 2,

this map also contains some circular obstacles. Despite of the large map size,

some targets are placed near each other to form a ”cluster” , for example, target

22, 23, 24 and 25.
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Figure 4.4: Map 3 is a large-scale maze. 27 targets are placed throughout the
map. Some targets, such as 22, 23, 24 and 25 are placed near each other to form
a ”cluster”.

The simulations are performed in MATLAB and Webot R©, a professional

robot simulator that provides modules for sensors, robots, and their interactions

with a 3-D virtual environment. The satisficing experiments introduced in

Chapter 1, which study the human navigation and decision making strategies,

are also performed based on Webot R©.

Figure 4.5: The top view of the Webot R© immersive environment along with
the view of sensor camera. The workspace setup corresponds to the second
map introduced above. 30 targets are placed in the environment, and they may
subject to different initial observable feature set Fi.
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4.2 Influence of important parameters in the planning approach

In the previous chapter, two important parameters are introduced, the selection

of whose value may have interesting effects on the obtained solution. This

section presents a series of comparisons of solution performance and algorithm

computation time on selected workspaces.

The first parameter to be discussed is nPRM , the number of nodes used

to construct the PRM roadmap for estimating the edge weight in the TSP

representation. As presented in Figure 4.6, if the nPRM used is far less than

necessary, the method may fail to achieve the solution with minimum cost,

since the edge weights assigned in the connectivity graph cannot represent

the pairwise distance between targets well. On the other hand, a tradeoff

is expected between the solution performance and the computation time.

Therefore, the final translational distance and the computational time spent on

constructing connectivity graph via PRM are plotted against a group of nPRM

(Figure 4.7). The time for edge assignment approximates the time consumption

of constructing the roadmap and answering several queries. The experiment is

performed on map 2, since it can provide a moderate workspace complexity

without taking too much computational time. The solution performance is

evaluated using the total translation distance when the weight on translation

wt is 1, meaning that translational cost dominates and the rotational cost is

negligible.
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Figure 4.6: A demonstration of the possible effect of nPRM on map 2. The plot on
the left has a number of nodes far less than needed given the map complexity.
Thus, the order of traversing the C-targets with the minimum cost may not be
obtained.

Overall, with the increase of nPRM , a decreasing trend is observed in the

translational distance and a significant increase in the PRM runtime. The

result shows that a finer roadmap density provides a better approximation

of pairwise distance in the connectivity graph, thus leads to a better solution

performance. The proper selection of nPRM according to the map complexity

is highly encouraged in order to obtain a satisfactory solution with a moderate

runtime.
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Figure 4.7: A summary of the effect of nPRM on map 2. The result is evaluated in
terms of the translational distance, plotted in blue with a scale on the left axis.
Their corresponding time consumptions of edge assignments via PRM is also
plotted in red. The standard deviation obtained from the experiment is shown
by the error bars.

The second important parameter is wt, the weight on translation in the

waypoint optimization. Although the cost of rotation is not considered in the

earlier steps of the proposed method, it can still be included in the waypoint

optimization step to adapt to the problem specifications. A set of experiments

are performed for the first two maps to examine the effect of wt on translational

distance and rotational angles in the solution (Figure 4.8). For each map, the

nPRM is fixed and set as the best fit for the corresponding map complexity. A

larger translation weight indicates a higher cost associated with translation in

the cost function to be optimized. Therefore, the optimization will encourage

the placement of a waypoint that helps reducing rotation with a sacrifice of

translation cost if necessary. Overall, such trend is observed in both maps.

However, since the algorithm has determined the C-target visiting order in the

previous steps, the ability to reduce rotational cost is limited. For example in

map 2, even with a wt less than 0.5, the change in rotational angles is trivial.
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Figure 4.8: Effect of wt in terms of rotational angle and translational distance
for map 1 and map 2. The standard deviation obtained from the experiment is
shown by the error bars.

Figure 4.9: Effect of wt demonstrated on map 2. The circles in each plot
highlights the interesting effect of the weight on translation. To observe the
two targets, the path on the right travels a significantly longer distance but with
less rotation, since it has less weight on translation.
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4.3 Simulations in MATLAB and Webots R© environment

This section demonstrates the effectiveness of the proposed method through

examples of MATLAB simulations of the three maps introduced. In

addition, screenshot images from the Webots R© simulations show the method’s

applicability to serve as a benchmark solution in the satisficing experiment and

to adapt to complex real-world scenarios.

The simulation from map 1 (Figure 4.10) shows that the proposed method

can reduce translational distance significantly by visiting a waypoint in the

pruned C-target region that allows measurements from multiple targets.

Although the rotational cost potentially increases, with the assumption that

translation cost dominates, the C-target pruning operation is shown to be

practical and efficient. The similar effects can be observed in the MATLAB

simulations for map 2 (Figure 4.11 and Figure 4.14) and map 3 (Figure 4.15),

and in the simulations performed in Webots R© (Figure 4.13).

The example solutions to map 2 also demonstrate the influence of applying

information-theoretic function EER. By identifying the targets with potential

information gain before sensor deployment, the obtained path can be highly

cost-efficient. For example in map 2, if without the information gain evaluation,

the robot has to visit all 30 targets even when some of them cannot provide any

additional information value. The result in Figure 4.14 shows the reduction in

path cost brought by minimizing EER, which is the first step of the proposed

method.

Overall, the proposed method has demonstrated its capability in providing a

highly efficient solution with obstacle avoidance in different environment. The
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solution allows the robot to avoid obstacles collisions and obtain measurements

with careful consideration of potential line-of-sight occlusions, even under

some complex and real-world scenarios, such as the target under the table in

map 2 (Figure 4.12) and map 3 (Figure 4.15).

Figure 4.10: An example result for map 1 performed using MATLAB, with wt =
1, nPRM = 200. The robot saves translational distance significantly by rotating
at certain waypoints to observe multiple targets. The total translation is 8.1 m
and total rotation is 19.8 rad.
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Figure 4.11: The optimal path for map 2, with 30 targets of non-zero EER,
determined by C-target pruning with wt = 1, nPRM = 1000. The robot rotates
at a waypoint in pruned C-target region to observe multiple targets if allowed.
In this manner, the translation will be greatly reduced. The total translation is
30.0 m and total rotation is 45.1 rad.
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(a) The mobile sensor is approaching the target under the
table and chairs to take measurements.

(b) The sensor has taken feature measurements from the
target under the table and can then make a classification.

Figure 4.12: Demonstrated in Webot R© simulations, the mobile sensor navigates
itself through a complex environment that is populated with multiple obstacles.
The figure shows the process of the sensor obtaining measurements from a
target under the table.
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(a) At a waypoint (rectangle UGV’s position),
the sensor is able to observe three targets (red
dots), following the labeled order.

(b) At the waypoint, the sensor rotates to make measurements on each target until it proceed to
the next waypoint.

Figure 4.13: An example solution to map 2 that has 30 targets with non-zero
EER, simulated in Webot R©. With the help of C-target pruning operation, the
mobile sensor reaches waypoints that may allow measurements on multiple
targets. By adopting this approach, the translational cost is significantly
reduced.
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Figure 4.14: The optimal path for map 2, with 15 targets of non-zero EER,
determined by C-target pruning with wt = 1, nPRM = 1000. The total translation
is 21.6m. By determine a set of target with additional information gain, the
translation cost is reduced by 28%.

Figure 4.15: The optimal path for map 3, determined by C-target pruning with
wt = 0.5, nPRM = 1200. The robot rotates at a waypoint in pruned C-target region
to observe multiple targets if allowed. Benefit from this behavior, the solution’s
translational cost is greatly reduced. The total translation is 76.6 m.
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4.4 Performance comparisons with benchmark methods

In this section, the solution obtained by the proposed method is compared with

those by three benchmark methods. The first two methods are the nearest

neighbor (NN) and 2-opt heuristics, subject to modification to accommodate

the specific problem with obstacles. The two algorithms, especially 2-opt, are

widely used approaches for traditional TSP because of their ability to provide

a good quality solution in short runtime [33, 39]. In these methods, the robot is

required to visit the exact location of a target, as the algorithms do not take the

geometry of the sensor’s FOV into consideration. NN is a straightforward tour

construction approach that always decides to approach the nearest unvisited

neighbor [41]. With the presence of obstacles, for each candidate target that

cannot be connected with the robot’s current coordinate by a straight path, a

path is generated using PRM. The algorithm iterates until all targets are visited.

As introduced in Section 3.4, 2-opt algorithm is a popular heuristics approach

to reduce the path cost generated by NN.

The third benchmark approach is an alternative method for this directional

sensor path planning problem that combines cell decomposition and integer

programming methods [25]. Even though cell decomposition requires relatively

high computational cost, it has the benefit of being a resolution complete [42].

Integer programming allows adding constraints iteratively and re-optimization,

so that it is applicable to solve a TSP [25, 43]. The method decomposes the free

configuration space into non-overlapping rectangular cells, and then constructs

a directed connectivity graph from the obtained cells. Then it transforms the

path planning problem into a graph problem with constraints, and obtain a

solution via integer programming, a method for making discrete decisions
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about edges under linear constraints. The method considers the geometry

and line-of-sight visibility of a directional sensor, and provides a good-quality

solution to the problem with a relatively low workspace complexity. It is

also able to adapt to different weight of translation, for example, the case

where translation or rotation dominates, as demonstrated in the result below.

However, cell decomposition has limitations such as high computational cost,

and it may not be able to handle non-polygon geometry easily [26]. Due to

the computational cost and constraints in obstacle geometry, the benchmark

method may not be perfectly applicable to some real-world scenarios.

The proposed method using C-target pruning is compared with the three

benchmark methods introduced above, denoted as CTP in the tables below.

It is tested with wt of both 1 and 0.5 in order to provide a comprehensive

understanding of its capability. The nearest neighbor method, denoted as NN,

and 2-opt heuristics method are tested with three of the workspaces. The same

nPRM is used for proposed method, NN and 2-opt to provide consistency for the

performance comparisons. The cell decomposition with integer programming

approach, denoted as IP, is performed on map 2 without circular obstacles

due to its limitations with obstacle geometry handling. Also, it is not tested

with map 3 since the runtime required for obtaining an integer programming

solution is very high for such a complex map. The performance of the methods

is evaluated in terms of translational distance and rotational angle, shown in

Table 4.1, Table 4.2, and Table 4.3.
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Table 4.1: Performance comparison of the proposed method and three
benchmark methods using map 1

CTP
wt = 1

CTP
wt = 0.5

IP
(Translation
Dominates)

IP
(Rotation

Dominates)
NN 2-opt

Distance(m) 8.1± 0.1 9.1± 0.4 11.1 14.0 16.7 13.0
Rotation(rad) 19.8± 0.2 13.1± 0.6 14.7 11.8 14.0 12.7

Table 4.2: Performance comparison of the proposed method and three
benchmark methods using map 2

CTP
wt = 1

CTP
wt = 0.5

IP
(Translation
Dominates)

IP
(Rotation

Dominates)
NN 2-opt

Distance(m) 30.2± 0.7 33.1± 1.4 39.2 48.6 60.8 45.2
Rotation(rad) 52.5± 2.3 44.2± 1.2 58.5 38.0 45.1 42.2

Table 4.3: Performance comparison of the proposed method and three
benchmark methods using map 3

CTP
wt = 1

CTP
wt = 0.5 NN 2-opt

Distance(m) 77.6± 1.5 77.8± 0.4 90.3 87.8
Rotation(rad) 59.5± 1.3 47.1± 0.4 49.0 49.8

As demonstrated in the three tables above, for map 1, the proposed method

is able to achieve 38% reduction of path distance compared to 2-opt heuristic

method, and 27% reduction of distance compared to cell decomposition

method. In map 2, the proposed method achieves 34% reduction of path

distance compared to 2-opt heuristic method, and 23% reduction of distance

compared to cell decomposition method. In map 3, the proposed method

achieves 11% reduction of path distance compared to 2-opt heuristic method. In

addition to its significant improvement of performance in translational cost, the

proposed method also demonstrates its ability of reducing rotation by tuning
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wt. In the three maps, the proposed method has achieved a rotational cost no

worse than any of the benchmark methods.

Figure 4.16: The optimal path determined by cell decomposition and integer
programming (IP) for map 2, with 30 targets of non-zero EER, and the
optimization assumption that translation dominates. The total translation is
39.2 m and total rotation is 58.5 rad, while with similar assumptions, the
translational distance of the proposed method (CTP) is 30.2 m, and rotational
angle is 52.5 rad.
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Figure 4.17: The optimal path for map 3, with nPRM = 1200, determined by
Heuristic TSP via 2-opt. Without benefiting from the sensor’s FOV, the robot
needs to visit at the exact location of every target. The total translation is 87.8
m. While with similar assumptions, the translational distance of the proposed
method (CTP) is 77.6 m.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

This thesis provides a systematic methodology based on target configuration

operation and probabilistic method for path planning for a mobile directional

sensor to classify targets in the obstacle-populated workspace within minimum

time. In the proposed method, the sensing objective is fulfilled by estimating the

target’s potential information value. The target configuration is determined and

pruned while maintaining the requirement of obtaining target measurements.

Then, a TSP representation of the problem is achieved using a connectivity

graph that adapts to the problem’s special properties, such as the presence of

obstacles. The methodology is also able to incorporate rotation cost in waypoint

optimization. Simulations on several workspaces of different complexity have

demonstrated the effectiveness and performance improvement of the proposed

approach when compared to benchmark methods, including traditional TSP

algorithms like ”nearest neighbor” and 2-opt heuristics, and a directional sensor

planning method using cell decomposition and integer programming.

The proposed method may be further improved with future works. For

example, the method may be able to incorporate rotational cost earlier, so

that the method is further applicable to such problem where rotation cost is

as important as translation cost. Some of works like [44] has investigated

the time-optimal trajectory problem in the unobstructed plane using optimal

control, providing inspirations that may be applied in the sensor path planning

as well. The method can be also developed to incorporate with different sensing

objective, for example, an objective of gaining information value subject to time

pressure, or gaining the most information with a limited time constraint. With
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such adaptability, the solution can provide more comprehensive comparisons

with human decision strategies in the satisficing experiments.
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