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ABSTRACT

Understanding the interaction between people from images is yet a challenging

task in recent years. Several approaches attempted to address this challenge

by different proposed models and compact descriptors encoding the consis-

tency between people’s spatial-temporal body features or their overall activities.

Among all human body features, the head pose provides a distinct description

of an individual’s attention and is considered a key feature to interpret social in-

teractions. In this thesis, I present a novel approach to infer interaction among

a group of people in a group conversation scenario using the Markov Random

Field model. A novel interaction feature is proposed to represent the transac-

tional segment using the head pose. Furthermore, I extend the approach to infer

the hierarchical structure of a group with the contextual information, which im-

proves the leading method in the analysis of interactions among people and

detect the emergent leader of the group. The qualitative result shows the effec-

tiveness of interaction inference using a state-of-art dataset.
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CHAPTER 1

INTRODUCTION

Understanding the interaction between people from images is yet a challeng-

ing task in recent years. The application of inferring interaction between indi-

viduals is diverse from video surveillance systems to human-robot interaction,

even in understanding human behavior and personality in cognitive science.

The problem addressed in this thesis is how to identify the interaction between

people from their head pose as an interaction cue. This chapter discusses the

challenge of estimating head pose and interaction inference and provides an

overview of the thesis contributions.

1.1 Motivations

In many daily-live environments, people usually form groups to collaborate for

a certain goal to improve society’s efficiency. Interaction between people is an

important social contextual cue that contains rich cognitive information of each

participant. Modeling and tracking the interactions is useful for many appli-

cations: such as video surveillance [21], group activity recognition [16, 17, 22],

target tracking [15, 19, 52], and participant personality classification [54, 65].

Recently, sociologic reasoning has been incorporated into video surveillance al-

gorithms aiming to interpret social interaction rather than directly infer the in-

teraction result by deep learning. In cognitive science, social interaction can

be characterized by verbal cues, non-verbal cues, or both [18]. Concretely, re-

cent research shows interest in non-verbal cues such as vocal cues and visual

cues. Thanks to the development of convolutional neural network algorithms,
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non-verbal cues such as human gesture [48], human body orientation [12, 59],

especially head pose [49], even gaze [62], can be directly estimated from images

and be further used to infer interaction.

In this thesis, I will be focused on investigating the interaction between peo-

ple based on the head pose, concretely, the location and orientation of their head

with respect to a certain global coordinate system. The head pose contains rich,

interpersonal information in different forms. For example, a person indicates

the object of interest by pointing his head toward the target and maintaining

fixation for seconds. Similarly, during a conversation, the head pose of partici-

pants implies the current speaker and turn-taking of leadership which deduces

the emergent leader of the group [7]. Meanwhile, some head gestures convey

additional semantic information during a conversation. The nodding gesture

implies the consent to the current speaker’s opinion, and a repetitive horizontal

head movement indicates disagreement. The interpersonal interaction can be

observed by establishing the visual focus of attention (VFOA) from head pose

estimation. Research [64] proposed that in a meeting scenario, the head pose

alone tracks the VFOA in 89% of the time. If two people exchange visual atten-

tion on each other within a certain distance in an empty space, they are likely

to engage in a discussion. A person’s head pose also provides his perception of

the environment. When entering a new environment, people usually scan the

environment and memorize some space characteristics by shifting their head

towards some random direction or some specific objects of interest.

Conversational groups can be formalized in the form of F-formation, that is, as

defined by Kendon [37], a spatial and directional arrangement of people gath-

ered for conversation where each person has direct and unhindered contact with
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Figure 1.1: Configuration Space of F-formation (a), transactional segment of two
people (b), and three cases of F-formation (c-e)

other people, as shown in Fig 1.1a. The configuration space of F-formation is

split into three mutually exclusive sub-spaces, namely, o-space, p-space, and r-

space. The o-space is an empty and convex space where the interaction exhibits

and is surrounded by the narrow p-space that includes all the participants’ po-

sitions. The remaining space that lies outward p-space is called r-space. The

composition of configuration space is displayed in Fig 1.1c-e. Within the o-

space, a person’s transactional segment denotes the space in front of the person

that overlaps with other transactional segments when interaction occurs, which

is the overlapping area in Fig 1.1b. For the case of interaction between two

people, their F-formation can be categorized into three types of F-formation:

L-shape F-formation, side-by-side F-formation, and circular F-formation. Var-

ious non-verbal cues that utilize the theory of F-formation are proposed in

[79, 57, 34, 70, 58, 20, 38] to facilitate the sociologic reasoning of social interac-

tion. Non-verbal cues are categorized as follows: the low-level features which

describe the spatial configurations of each person in a scene such as the person’s

position and head/body orientation, and the high-level features that integrate

the low-level features to implement sociological and biological definitions such

as 3D subjective view frustum (SVF) [24] or transactional segment-based frus-

tum (TSbF)[70]. The interaction feature proposed in this thesis inherits the idea

of TSbF which will be introduced in chapter 5.
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1.2 Challenges

Previous research had attempted to cluster people by directly learning their in-

teractions in image by machine learning approaches. For example, [71] obtained

convincing result on the classification of group activities based on the consensus

of individual activity learnt by a fine-tuned CNN. However, analogous to other

deep-learning-based algorithms, the model suffer from lack of interpretability.

Meanwhile, feature-based models rely on the reliability of graphical models and

the representability of interaction features, and thus often only valid under cer-

tain conditions. In this thesis, I attempted to resolve the limitation of feature-

based models by a novel interaction feature based on head pose.

Meanwhile, in some cases, some social interaction cues are intractable be-

cause of noisy observation or unobserved communication between people. As

proposed by [71], social interaction cues take various forms: vocal behavior,

forward posture, mutual gaze, gesture, and height. However, not all cues are

tractable in most cases. For example, vocal behavior in video surveillance are

difficult to collect and associate to each person unless the experiment is con-

ducted thoughtfully as [3] where the participants’ speaking status are collected

by a microphones attached in front of them. Therefore, inferring interaction

with limited information is still an active area of research. In this thesis, only

image-based information can be obtained and is assumed to be tractable and

credible.
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1.3 Contributions

To address the above challenges, a novel baseline approach, i.e. interaction graph,

is proposed that inherits the benefit of graphical models uses Markov Random

Fields (MRFs) to represent social interaction by undirected probabilistic arcs. A

representative spatial-temporal feature describing pairwise interaction is then

proposed and contributes to an energy function which models the strength of

interaction associated with the undirected arcs. Based on the construction of

MRF model and the energy function, an optimal interaction configuration is

obtained by Maximum a Posteriori (MAP) algorithm. An experiment is per-

formed a benchmark dataset with conversational groups; the qualitative result

consistently shows the reasoning of inference result and the robustness to noisy

environment.

Meanwhile, the shortcoming and limitation of the baseline approach are an-

alyzed based on sociological reasoning. A revised approach, named attention

graph, relaxes the constraints enforced on the baseline approach and uses di-

rected probabilistic arcs and a discriminative feature that better describes each

individual’s transactional segment. The energy function is modified accord-

ingly. The qualitative result performed on the same dataset consistently shows

the superiority of the revised approach over the baseline approach.

1.4 Thesis Overview

The thesis is organized in the following order: in chapter 2, an overview of

state-of-art achievement on social interaction inference is presented. In chap-
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ter 3, the assumption and formulation of the head pose estimation problem are

introduced as a classical computer vision problem. The interaction graph and

attention graph are formulated using the graph theory of Markov Random field,

the observations based on the head pose estimation are collected under certain

assumptions. Chapter 4 defines the interaction feature and interaction energy

function as proposed, followed by the inference algorithm that searching for

the optimal interaction configuration. The selected state-of-art head pose esti-

mation algorithms are compared in chapter 5, and the corresponding numeri-

cal results demonstrate the accuracy and robustness of the algorithms. Finally,

the qualitative inference result of the interaction graph and attention graph are

compared under the same scenarios, demonstrates the characteristics of the two

graphical models.
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CHAPTER 2

BACKGROUND

Previous works has attempted to estimate head pose from single images or con-

secutive image sequences. Several literature proposed different approaches to

deduce the interaction from the detected head pose. This chapter will review the

state-of-art literature of head pose estimation followed by interaction modeling.

2.1 Head Pose Estimation

The human pose estimation from images has been a challenging task, among

which the head pose estimation is one of the most important area of research.

The high variance of human facial appearance (expression, race, and gender)

and environmental factors (occlusion and illumination) makes the task more

challenging. Early methods had attempted to solve the task in various ap-

proaches as organized in [49].

Recently, the nonlinear regression method captured the researcher’s attention as

the computation power explodes with the release of GPU. Various deep learn-

ing models model a nonlinear functional mapping from the image space to the

pose directions. Methods proposed in previous works estimate head pose ei-

ther from the original image [72, 46, 2, 10, 60, 51], the depth image [8], the

RGB-D image[77], or the optical flow of the image sequences [78]. Borghi [8]

concatenated a recurrent layer at the output of convolutional layers in a regres-

sion manner to capture the continuous 3D head pose angle values (roll, pitch

and yaw). Ruiz [60] attempted to jointly estimate the roll, pitch and yaw by
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training three separate layers after the output of ResNet [31], and obtained an

accurate estimation.

In this thesis, the head pose is reconstructed by the facial keypoints detec-

tion. Various network structures [11, 63, 66] attempted to extracted human body

key points by fine-tuned neural networks. Among those detection algorithms,

OpenPose [11] captures the position of eyes, nose, and ears in the images in real-

time. In this thesis, the position of facial keypoints in 2D images are computed

from OpenPose, and the head pose estimation problem is transformed into a

perspective-n-points problem.

2.2 Perspective-n-points Problem

The perspective-n-points (PnP) problem was first brought up by Fischler and

Bolles [28], it is to determine the position and orientation of a calibrated camera

with known camera intrinsic (e.g focal length, distortion factor) from n known

3D reference points with respect to a fixed frame and their corresponding 2D im-

age projections. In this thesis, the relative locations of facial points in a proposed

head frame are fixed and are known as a priori. To solve the six unknowns (the

3D position and orientation of the camera), at least six equations (three corre-

spondences) are required to obtain a closed-form solution. However, Fischler

and Bolles [28] observed that a maximum of four solutions is possible given

the three correspondences. They proposed a unique closed-form solution when

four points are given and not co-planar. Given the biological fact that the facial

keypoints are not co-planer, a minimum of four points is required to obtain a

closed-form solution to head pose estimation problem. Meanwhile, a set of con-
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straints is commonly adopted to formulate PnP solutions to find a closed-form

solution following reality conditions.

There are many existing solutions to solve the PnP problem considering ro-

bustness and time efficiency. The family of PnP solutions splits into two cate-

gories: iterative solutions and non-iterative solutions.

Iterative solutions find the solution by iteratively minimizing certain objective

functions. Fischler and Bollesv [28] proposed the RANSAC algorithm which

employs outlier rejection schemes that eliminate the effect of less-accurate

points. In the Procrustes PnP (PPnP) [29], the solution is obtained by iteratively

adjusting the depth and the estimated camera parameters until convergence by

minimizing the error of reference 3D points and the back-projection points com-

puted from 2D points. However, iterative methods usually find local optima

that may actually differ from the ground truth.

The early non-iterative PnP solutions proposed by Ansar, Quan, and Fiore are

computationally ineffective, all of which take at least quadratic computational

complexity, O(n2), given n correspondences. The first non-iterative solution with

linear computational complexity is EPnP [44], which reduces the complexity

by expressing the position of 3D points as a weighted sum of the position of

four virtual control points, and uses their coordinates to construct quadratic

equations in four cases to select the weights, and keeps the solution that yields

the smallest reprojection error.

Other non-iterative state-of-the-art solutions decouple PnP problems as a set

of low-dimensional polynomials and find the solution with minimal objectives:

Robust PnP (RPnP)[45] decomposes the PnP problem into a set of P3P prob-
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lems, and retrieved the solution by solving the fourth-order polynomial system

using Singular Value Decomposition (SVD). Direct-Least-Squares (DLS)[32] re-

laxes the solution by Cayley-Gibbs-Rodriguez (CGR) parametrization and find

the optimal solution among 27 sub-optimal solutions by minimizing the Mean

Squared Error (MSE) of reference images points and the projection of 3D points.

Recent literature Accurate and Scalable PnP (ASPnP)[81] and the Optimal PnP

(OPnP)[80] uses quaternion instead of rotation matrix to represent rotations of

the solution and uses Grobner basis technique to solve the polynomial system

to find the global optimal solution by minimizing projected error expressed in

forms of the quaternion. Robust Efficient Procrustes PnP (REPPnP)[26] inher-

its the idea of virtual control points proposed by EPnP [44], and incorporates an

outlier rejection scheme to remove the contribution of outliers to the virtual con-

trol points. Recently, the Covariant Efficient Procrustes PnP (CEPPnP)[27] and

Maximum-likelihood PnP (MLPnP) [69] are proposed that inherently incorpo-

rate observation uncertainty into the framework.

The various PnP algorithms are compared on simulated data and real data in

chapter 5, and the optimal algorithm is selected to estimate head pose, which

will be converted to interaction features.

2.3 Interaction Modeling

The interaction modeling task is generally analogous to group detection and

clustering, where usually the position and orientation of people in the image

or the real world are known as a priori. Most recent literature obtained fair

and accurate results on people detection and tracking [9, 6, 75, 39, 36]. Qin
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[56] proposed a probabilistic model that simultaneously performs multi-target

tracking, head pose/direction estimation, and social grouping in surveillance

video. The model jointly optimizes social grouping and multi-target tracking as

a constrained nonlinear optimization framework given the conditional indepen-

dence assumption on each other, and the head pose is estimated by maximizing

a posteriori likelihood of graph labeling modeled by conditional random field.

The group interaction inference can be partitioned in three categories:

1. The dynamic information based inference is where individuals are clus-

tered by individuals’ trajectories, including position, speed, the direction

of motion, destination, or tracklets.

2. The static information based inference, where individuals’ velocity is ir-

relevant to grouping within a time interval of interest, and the head/body

orientation and audio information dominate individuals’ interaction. The

visual attention can also be characterized by a frustum used to model the

transactional segment of individuals in a F-formation model.

3. Combined information based inference, where both kinetic information,

head/body orientation are considered simultaneously, and contextual in-

formation such as activity classification of individuals.

Dynamic information based inference In a crowded environment where most

people are moving individually, pedestrians’ head and body orientation are

less important as they can be represented by the direction of traveling most

of the time, as suggested by [5]. In this case, the term interaction is consid-

ered the consensus of motion, and the pairwise interaction between individuals

within the group is ignored. Existing methods attempted to track social group-

ing using either proximity [53, 43], position, speed. and direction of motion
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[13, 30, 74, 42, 23], and the linkage of tracklets [55].

Static information based inference In a narrow space where people tend to con-

duct a face-to-face conversation, the head/body orientation and audio infor-

mation are the deterministic cues that contribute to establishing an interaction.

Odobez et al. [50], Hung et al. [33], and Ba et al. [3] investigated the VFOA

in group meetings with multimodal features including head pose, position, the

participant speaking activity, and the slide activity. They proved that head pose

could be used to recognize the VFOA of meeting participants with sufficient

confidence [50], while audio and other contextual information improved the re-

sult of VFOA recognition performance by nearly 20% [33, 3].

Combined information based inference Leash [41] further extend his previous

work [42] with additional visual attention. A visual interest feature is intro-

duced, which promotes the pairs of individuals closer in proximity and ex-

change visual sights but punishes both of the pairs who are looking in the di-

rection of travel. Besides, other contextual information is incorporated as cues

to infer interactions. A group context activity descriptor proposed by Tran [68]

incorporates each individual’s activity and the relationship with ac- activities of

his neighbors to represent the similarity of neighboring activities, and a domi-

nant set based clustering algorithm is used to discover interacting groups based

on the proposed descriptor. Choi [14] discovered the structure of groups by

minimizing an energy function composed of potentials that encode the compat-

ibility between pairwise interaction patterns and the interaction labels learned

from training data, the individual appearance of being a singleton, the consen-

sus of interaction labels and individual patterns within the same group, and the

repulsion of interaction labels of being different groups. The framework pro-
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posed by Lan [40] jointly captures the connections between individual action

labels, the similarity of action among the group, and the group activity labels.

The group structure is learned from mixed-integer linear programming (MILP)

to find the optimal graph structure based on the weighted average of four po-

tential functions. The potential functions models the likelihood of the individ-

ual actions and its image feature, the compatibility between the group activity

and individuals’ action, the action compatibility between a pair of individuals,

and the likelihood of the group activity and root feature vector whole image,

respectively. Yoo [76] further explored the psychological cues to infer group

interaction by considering the spatial information of individuals and the emo-

tional correlation between individuals predicted by Social Relation Network.

In this thesis, the model I presented lies in the second category, which is im-

plemented in a static conversation group scenario using head pose and body

position.

2.4 Attention Modeling

Previous works attempted to simplify the redundant configuration features by

sociological theories and derived a high-level feature to model attention’s visual

focus. The simplest feature models the affinity between a pair of individuals as

a multivariate normal distribution with their relative distance and orientation

as variables [79]. Tran [67] represents the pairwise interaction by summarizing

two distance social force functions introduced by sociologist Was et al. [73]. The

distance social force can be modeled using a linear, step, power, or polygonal

function. Farenzena [24] proposed 3D Subjective View Frustum, namely SVF,
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Figure 2.1: (Left) The SVF model. (Right) An example of SVF delimited by the
scene constraints (in solid blue), the SVF orientation is estimated with respect to
the camera frame.

to represent the focus of attention. The Subjective View Frustum is viewed as a

space enclosed by three planes indicating the boundary of the view angles on

the left, right, and top sides illustrated by the pyramid in 2.1.

The intersection of the planes corresponds to the 3D position of the head and

feet, while the head pose determines the orientation of SVF. A later work of

Bazzani [4] suggests that SVF can be employed to discover the dynamic inter-

action of multiple people by the overlapped SVF over a specific time interval.

A similar definition of the interaction area called Transactional Segment-based

Frustum (TSbF) is inspired by the definition of the transactional segment [1].

The TSbF model proposed by Vascon [70] not only constraints the area where

interaction occurs but also represents the angular and longitudinal likelihood of

interaction as shown in Fig 2.2. For each person, a set of particles are sampled

from the TSbF model based on the head pose and position, and the particles are
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Figure 2.2: (Left) The TSbF based on sampling from two distributions proposed
in [70]. (Right) The TSbF descriptor, the intensity reflects the number of particles
that fall in each bin of the 2D histogram; the denser of the particles, the higher
the probability of interaction.

organized into a 2D histogram. The likelihood between the histograms of two

people quantifies the strength of interaction.

2.5 Emergent Leadership

Given the clustering of people, an emergent leader is determined as the person

with the maximum interaction with others that has a predominant effect on the

group. Several social signal processing studies investigated the detection of an

emergent leader in terms of the nonverbal features were extracted from audio

[25], video [7] and the fusion of audio and video [33, 61]. In this thesis, the

emergent leader is determined as the person who received the most attention

from others, referred to as the Attention Received (AR).
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CHAPTER 3

PROBLEM FORMULATION

This thesis attempted to develop an algorithm to infer interactions between de-

tected people from image sequences based on the 3D reconstruction of their

head pose defined as the 3D position and orientation relative to the camera.

The estimated head pose is further used to infer people’s gaze in a designated

scenario and determine the emergent leader of each group. This thesis assumes

that a human’s gaze is only affected by the head pose rather than eye movement

variation. In practice, the eye movement is difficult to capture as the head pose

conveys enough information on the focus of interest. Meanwhile, this thesis in-

vestigates a conversational-group scenario where the signs of communication

are predominant and exclusive.

3.1 Head Pose Estimation

In this thesis, the head pose estimation problem is modeled as a Perspective-n-

point (PnP) problem, originally used to estimate the position and orientation of a

pin-hole camera from known correspondences of 3D reference points and their

projected positions in the image. Since the camera’s position and orientation are

assumed to be fixed over the experiment, the position and orientation of the 3D

reference points can be inferred by the homogeneous transformation.

In a Perspective-n-point problem, a Cartesian camera frame C is attached to

an ideal pin-hole camera as shown in Fig. 3.1(Left), and a body frame B is at-

tached to the nose tip of the person of interest as shown in Fig. 3.1(Right). The
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Figure 3.1: (Left) Definition of pin-hole camera and camera frame C. (Right)
Definition of body frame B of a person

camera’s focal length and optical center are known as a priori, and the pin-hole

camera model does not account for pixel skew or lens distortion. The camera

parameters are given by the matrix product of the intrinsic and extrinsic matrix.

The intrinsic matrix K is characterized by the optical center (cx, cy) and focal

length f of the camera given by equation 3.1.

K =


f 0 cx

0 f cy

0 0 1


(3.1)

The extrinsic matrix is the concatenation of the orientation RC
B and position tC

B

of the body frame B with respect to the camera frame C, and is expected to be

recovered from the PnP algorithms.

In a PnP problem, it is assumed that we know n 3D reference points qi =[
Xi Yi Zi

]T

∈ R3×1, i = 1, 2, ..., n, in the body frame B, and their corresponding

projections pi =

[
ui vi

]T

∈ R2×1, such that the perspective projection equation

sipi = K(RC
Bqi + tC

B) i = 1, 2, .., n (3.2)
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holds for all points, in which si is a scaling factor to ensure that the projected

image point lies on the image plane.

The 3D reference points and the projected points are organized into the input

matrix, Q and P respectively, where Q ∈ R3×n and P ∈ R3×n is given by equation

3.3

Q =
[
q1 q2 ... qn

]
P =

[
p1 p2 ... pn

] (3.3)

The 3D reference points are predefined facial keypoints (i.e., left eye, right eye,

nose, left ear, and right ear) relative to the body frame B whose relative location

is known as prior knowledge from biological literature. The variation of facial

keypoints among individuals is ignored in this thesis. The location of facial key-

points in images are detected by OpenPose [11] 2D pose estimation algorithm.

The person with less than four detected facial keypoints is ignored because a

minimum of four points is required to obtain a closed-form solution to the es-

timation of head pose. Finally, the 3D reference points and the corresponding

image points are fed into the Perspective-n-Point algorithms to compute each

person’s head pose.

3.2 Graph-based Social Interaction Modeling

3.2.1 Interaction Graph Modeling

The Interaction Graph is modeled as a Markov random field represented by

an undirected graph G = (N ,A) where N is the set of nodes and A is a set
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of undirected arcs. A set of random variables X = {Xi, j|i, j ∈ N} is associated

with the arcs where Xi, j is associated with arc (i, j) ∈ A between node i and j.

Each node represents a person with index of i ∈ {1, 2, ...,N} separately where N

is the size of N . The value of random variable Xi, j, denoted as xi, j, is binary,

which indicates the occurrence of interaction between person i and person j

such that xi, j equals one when the interaction exists between person i and j, and

equals zero when the interaction does not exist, i.e., xi, j ∈ L, where L = {0, 1}.

The interaction configuration across all participants in a scene is denoted as

x = {xi, j|i, j ∈ N}, with domain X = LN2 .

For each person i, the head pose is transformed into a 3D directional vector

vi ∈ R3×1, and 3D position pi ∈ R3×1 relative to the camera frame. The 3D di-

rectional vector vi is perpendicular to the facial plane and points forward from

the tip of the nose, in the opposite direction of the z-axis in Fig 3.1 (Right). pi

is the position of the nose tip relative to the camera frame, which is equal to tC
Bi

.

vi is computed by Eq.3.4 where RC
Bi

and tC
Bi

is the calibrated camera rotation and

position with respective to the body frame Bi of person i.

vi = RC
Bi

[
0 0 −1

]T

(3.4)

The two measurements are organized into an observation vector zi ∈ R6×1 for

person i,

zi =

[
vT

i pT
i

]T

(3.5)

Then the observation vector of all people is concatenated to form an observa-

tion matrix Z ∈ R6×N ,

Z =
[
z1 ... zN

]
(3.6)
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Given the observation of all people in the frame, an energy function is de-

fined to model the interaction strength attached to each edge, and a constrainted

optimization algorithm is applied to infer the realization of x with the highest

confidence.

3.2.2 Attention Graph Modeling

The undirected interaction graph described in the previous section is unable to

describe people’s focus in a conversational group, yet it is not a good represen-

tation for monologue scenarios. To address these two problems, the attention

graph is proposed, where a node still represents a participant, but the outgoing

arcs are directed and point towards the focus of attention of the corresponding

node. As a result, the attention graph shows all participants’ attention, and the

node that receives the most attention is perceived as the emergent leader.

The attention model is represented by a directed graphH = (N ,E). The node

set is the same as in the interaction graph but the arc set E comprises of directed

arcs. A set of random variables describes attention is denoted as Y = {Yi, j|i, j ∈

N} where yi, j denotes the binary random variable associated with the directed

arc starting from node i and ending at node j. The value of the binary random

variable Yi, j indicates the attention from person i to person j such that yi, j equals

to one when person i exhibits attention to person j, and equals zero when the

attention does not exist, i.e., yi, j ∈ L, where L = {0, 1}.

In this model, the observation matrix for person i is measured in its body

frame attached to the nose tip, as is shown in Fig.3.1 (Right). Let pi j ∈ R3 =[
xi j yi j zi j

]
denote the relative position of person j with respect to person i, pi j
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Figure 3.2: Relative position and angle of person j with respect to person i

is transformed to a pan angle ωi j ∈ [−π, π], a tilt angle ξi j ∈ [−π/2, π/2], and the

distance di j ∈ R+ as shown in Fig.3.2.

The pan angles, tile angles and distances are computed by the equation below,

ωi j = arctan
[xi j

zi j

]
ξi j = arctan

[ yi j√
x2

i j + z2
i j

]

di j =

√
x2

i j + y2
i j + z2

i j

(3.7)

The pan angles, tile angles and distances of all people with respect to person

i are organized into an observation vector ẑi ∈ R3N ,

ẑi =

[
ωi1 ξi1 di1 ... ωiN ξiN diN

]T

(3.8)

Note that the hat mark is to distinguish from the observation zi of the inter-

action graph. Then the observations of all people are concatenated to form an
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observation matrix Ẑ ∈ R3N×N ,

Ẑ =
[
ẑ1 ... ẑN

]
(3.9)

Similarly, an energy function that models the attention strength is computed

using the proposed attention feature, and the connectivity of the graph is opti-

mized accordingly. The Attention Received (AR) factor for each person is cal-

culated by the number of connections to each node to determine the emergent

leadership of the group.
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CHAPTER 4

METHODOLOGY

4.1 Interaction Graph Modeling and Inference

4.1.1 Interaction Energy Function

An energy function is defined to model the interaction strength based on two

interaction features. The interaction feature used in this thesis is a interaction

potential characterized by the relative head pose θi j and the relative distance di j

for any node pair (i, j). The relative head pose θi j computed by Eq.4.1 measures

the angle (in radians) between the directional vectors of person i and person j,

θi j = cos−1
( vi · v j

‖vi‖
∥∥∥v j

∥∥∥
)

(4.1)

The relative distance di j is computed in Eq.4.2 as the Euclidean distance be-

tween the two people,

di j =
∥∥∥pi − p j

∥∥∥ (4.2)

Let φh(zi, z j) denote the head pose potential, which is a measure of interaction

strength with respect to θi j. The head pose potential is computed by a Gaussian-

shaped potential function with parameter π, which indicates that people having

interaction are more likely to oriented face-to-face (θi j = π) for the ease of com-

munication.

The value of φh(zi, z j) computed by,

φh(zi, z j) =
1

σh
√

2π
e−

1
2

(
θi j−π
σh

)2

(4.3)
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where the variance σ2
h is a hyperparameter preset to π2/36.

The proximity potential φd(zi, z j) measures the interaction strength in terms

of the normalized distance di j/L. L is the threshold, beyond which the distance

is too large that interactions will not be considered. The proximity potential is

computed by the following equation,

φd(zi, z j) =


1

B(α,β)

(di j

L

)α−1(
1 − di j

L

)β−1
di j ∈ (0, L]

0 di j ∈ (L,+∞)
(4.4)

where the hyperparameters α and β determine the shape of the potential func-

tion, and B(α, β), is a scaling constant determined by α and β.

The interaction potential φ(zi, z j) is determined by the product of two interac-

tion potentials given by Eq.4.5.

φ(zi, z j) = φh(zi, z j) ∗ φd(zi, z j) (4.5)

The energy function is constructed as the linear combination of the realiza-

tions of the random variables X and the interaction potentials for all people in

the scene,

E(Z, x) ,
∑
∀(i, j)∈A

φ(zi, z j)xi, j (4.6)

4.1.2 Interaction Inference

The Markov Random Field model is referred as a Gibbs random field under the

condition that the joint probability of the random variables is strictly positive.

According to the Hammersley–Clifford theorem, the joint posterior probability

P(x|Z) of a MRF model can be factorized over the cliques of the graph as the
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product of locally defined clique potentials φc(·) if the MRF model is a Gibbs

random field. The clique potentials are then parameterized as a log-linear func-

tion so that P(x|Z) can be written as the weighted sum of exponential family in

canonical form with feature function fc. The derivation is described in Eq.4.7.

P(x|Z) =
1

C(x)

∏
x∈X

φc(x,Z) =
1

C(x)
exp

(∑
x∈X

wcfc(x,Z)
)

(4.7)

The partition function C(x) is a normalizing factor given by Eq.17.

C(x) =
∑

Z̃

exp
(∑

x∈X

wcfc(x,Z)
)

(4.8)

The objective of interaction inference problem is to find a realization of X

denoted as x∗, given the observation matrix Z, that maximize the joint poste-

rior probability P(x|Z). The characteristic of the energy function proposed in

the previous section suggests that, the energy function defined in Eq.4.6 is min-

imized when the interaction is likely to occur. Therefore, the weighted sum

of feature functions in Eq.4.7 is replaced by negative of the energy function so

that the Maximum A Posteriori (MAP) inference is transformed into the energy

function minimization.

P(x|Z) =
1

C(x)
exp

(
− E(Z, x)

)
(4.9)

Then the optimal realization x∗ that best describes the interaction relationship

is the realization that maximizes the posteriori probability or minimizes the en-

ergy function.

x∗ = arg max
x∈X

P(x|Z) = arg min
x∈X

E(Z, x) = arg min
x∈X

∑
∀(i, j)∈A

φ(zi, z j)xi, j (4.10)
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Meanwhile, to enforce mutuality of interaction and restrict on maximum

number of interaction for each person, d, the following structure constraint is

applied during the selection of realizations,

xi, j ∈{0, 1} (4.11)

xi, j =x j,i (4.12)

1 ≤
∑
∀i∈N

xi, j ≤ d (4.13)

There is one trick for the structure constraint in equation 4.13. Since the objec-

tive of linear programming is to minimize the objectives given by equation 4.10,

and the interaction features are strictly positive, the optimization solver tends to

minimize the connection between people such that the total number of connec-

tions for each person will be limited to one. To enforce more interactions, d fake

nodes are added to the interaction graph which act like an interaction threshold.

By forcing the number of interactions for each person to d, the interaction will

occur between two people or between one person and a fake node. The interac-

tion graph is pruned to remove the fake nodes after interaction inference, and

in such case the structure constraint is met.

The solution of Eq.4.10 is the realization of X with the maximum interaction

strength and being mutually correlated to one another, whether the interaction

exists or not. By flatting the set of random variable X and the corresponding in-

teraction potential φ into 1D vectors, Eq.4.10 is reformulated to a mixed-integer

linear programming problem, which is mathematically equivalent to the orig-

inal problem. The flattened 1D vectors of interaction potentials φ f lat and the

flattened variables to be optimized x f lat is given by Eq.4.14
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φ f lat =

[
φ(z1, z1) φ(z1, z2) ... φ(z1, zN+d) φ(z2, z1) ... φ(zN+d, zN+d)

]T

x f lat =

[
x1,1 x1,2 ... x1,N+d x2,1 ... xN+d,N+d

]T (4.14)

The original optimization problem converted to a mixed-integer linear pro-

gramming problem given by Eq.4.15. The constraints given by 4.16 needs to

be converted according to the new shape of the optimizing variables x f lat and is

not expanded further here.

x∗ = min
x
φT

f latx f lat (4.15)

subject to

xi, j ∈{0, 1}

xi, j =x j,i∑
∀i∈N+d

xi, j = d

(4.16)

Finding the optimal solution of Eq.4.15 is an NP-hard problem, and easily be-

comes intractable to find a closed-form solution. Thus, Eq.4.15 is solved by the

MATLAB mixed-integer linear programming solver intlinprog with constraints

specified by Eq.4.16.
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4.2 Attention Graph Modeling and Inference

4.2.1 Attention Energy Function

The attention energy function is described by three attention potentials, the hor-

izontal attention potential ψh(ẑi, ẑ j), the vertical attention potential ψv(ẑi, ẑ j) and

the proximity potential ψd(ẑi, ẑ j).

ψh(ẑi, ẑ j) measures the attention strength from i to j in terms of the relative

pan angle ωi j. ψh(ẑi, ẑ j) is assumed to take the value of a zero-centered Gaussian-

shaped potential-function evaluated at ωi j, indicating that the attention strength

from i to j is stronger if the person j stands right in front of person i.

ψh(ẑi, ẑ j) =
1

σh
√

2π
e−

1
2

(
ωi j−0
σh

)2

(4.17)

Similarly, ψv(ẑi, ẑ j) measures the attention strength from i to j regarding the

relative tilt angle ξi j, and is defined as,

ψv(ẑi, ẑ j) =
1

σv
√

2π
e−

1
2

(
ξi j−0
σv

)2

(4.18)

which implies that the attention strength from i to j is stronger if ξi j is closer to

0.

The proximity potential ψd(ẑi, ẑ j) follows the same potential function as de-

fined in Eq. 4.4.

ψd(ẑi, ẑ j) =


1

B(α,β)

( di j

L

)α−1(
1 − di j

L

)β−1
di j ∈ (0, L]

0 di j ∈ (L,+∞)
(4.19)
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Finally, the attention potential ψ(ẑi, ẑ j), reflecting the attention strength, is the

product of the three attention potentials,

ψ(ẑi, ẑ j) = ψh(ẑi, ẑ j) ∗ ψv(ẑi, ẑ j) ∗ ψd(ẑi, ẑ j) (4.20)

Figure 4.1: Attention Strength: horizontal attention potential is Gaussian PDF,
proximity potential follows Beta distribution PDF (vertical attention is also
Gaussian and is omitted for clarity)

The pattern of ψ(ẑi, ẑ j) is shown in Fig.4.1 (noticed that the vertical attention

potential is set as a constant for the clarity of display).

The attention energy function is constructed as a linear combination of the

realizations of the random variables Y and the attention features for all people

in the scene,

Ê(Ẑ, y) ,
∑
∀(i, j)∈E

ψ(ẑi, ẑ j)yi, j (4.21)
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4.2.2 Attention Inference

The objective of attention inference is to find a realization of Y, denoted as y∗ =

{yi, j|i, j ∈ N} given the observations Ẑ that minimize the energy function, given

by E(Ẑ, y), using the same derivation as Eq.4.7-4.10:

y∗ = arg min
y∈Y

Ê(Ẑ, y) = arg min
y∈Y

∑
∀(i, j)∈E

ψ(ẑi, ẑ j)yi, j (4.22)

Because attentions are directed, the inference does not require the symmetric

constraints on arcs as that in the interaction graph. The constraints applied on

the attention model are as follows,

yi, j ∈{0, 1}

1 ≤
∑
∀ j∈N

yi, j ≤ d
(4.23)

where the first constraint specifies that yi, j is a binary-valued random variable

and the second constraint specifies the maximum number of attention received

by each person.

The optimal configuration y∗ is obtained by Mixed-integer linear program-

ming with attention potential ψ by similar approaches as the interaction infer-

ence under the different constraints given by equation 4.23.

4.2.3 Emergent Leadership

Given the optimal realization of the attention model y∗, the emergent leader (EL)

can be readily obtained by finding the person that receives the maximum at-

tention. Let AR j denote the total amount of attention received by a person j,
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then,

AR j =
∑

i∈N , j,i

yi, j

EL = arg max
j∈N

AR j
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CHAPTER 5

EXPERIMENTS AND RESULT

5.1 Accuracy of Head Pose Estimation

In this section, four state-of-art PnP algorithms, LHM [47], PPnP [29], RPnP[45]

and ASPnP[81], are evaluated in an Unreal Engine Synthetic dataset. The ob-

jective of this experiment is to select the PnP algorithms with minimal error to

estimated head pose from images for interaction inference.

The Unreal Engine Synthetic dataset is generated by Unreal Engine to capture

the human head motions using a fixed camera from different perspective views.

The videos are collected by a set of six monocular cameras surrounding the

subject, as shown in Fig. 5.1 , similar to the structural configuration of the CMU

panoptic studio [35].

The Unreal Engine Synthetic dataset consists of two data collections. The first

data collection contains the videos of two different human models performing

the head movements, as shown in Fig 5.2(a) and 5.2(b). The monocular camera

system show in Fig.5.1 captures the head movement of the human subject from

six different views. In total, 12 testing cases are generated to test the PnP algo-

rithms, and the algorithm with the highest accuracy is selected to compute the

3D head pose for interaction inference.

Additionally, three testing cases are organized in the second data collection

to perform a numerical analysis for each algorithm separately. Figure 5.3 shows

the testing cases with rotation about each axis of the body frame: in test case

YawHead shown in Fig. 5.3a, the human subject is turning head from left to
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Figure 5.1: Unreal Engine Synthetic dataset data collection

Figure 5.2: Data Collection 1: Head Movement of Two Different Human Models
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(a) YawHead Scenario

(b) PitchHead Scenario

(c) RollHead Scenario

Figure 5.3: Data Collection 2: Three Different Head Movement Scenarios of A
Human Subject: (a). YawHead, (b). PitchHead and (c). RollHead
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Figure 5.4: (Left) Sample result for OpenPose body keypoint detection. (Right)
An example of the detection result from the video, the facial keypoints lies in
the black box

right, in test case PitchHead shown in Fig. 5.3b, the human subject is raising

head upward and downward, and in test case RollHead shown in Fig. 5.3c, the

human subject is rotating head from left to right. This experiment is conducted

to evaluate the accuracy of the PnP algorithms when the camera location and

orientation varies along different axes of the human body frame.

The key points of human body in images are obtained by the estimation of

OpenPose [11] keypoint detection algorithm from the rendered video taken by

the camera in Unreal Engine. An example of OpenPose body keypoint detection

is shown in Fig 5.4. The facial keypoints of interest are listed as follows: nose

(node 0), right eye (node 15), left eye (node 16), right ear (node 17), and left ear

(node 18), and are enclosed by the black boxes in the figure.

The relative 3D location of facial keypoints in the body frame is extracted

from the human model’s corresponding relative location in the Unreal Engine.
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Table 5.1 shows the relative 3D location of the facial keypoints where the nose

tip is the center of the body frame. These 3D locations as well as the location of

the key points in images detected from OpenPose, are collected as the input to

the PnP algorithms.

Facial Keypoints X Y Z
Nose 0 0 0

Right Eye -3 -4.1 6.2
Left Eye 3 -4.1 6.2

Right Ear -7.5 -2.8 13.5
Left Ear 7.5 -2.8 13.5

Table 5.1: Location of Facial Keypoints (unit: cm)

For each algorithm, Mean Squared Error (MS ER) of Euler angles and Mean

Percentage Error (MPEt) of translation are considered as metrics to evaluate the

performance of each algorithm. The Mean Squared Error (MS ER) of Euler an-

gles measures the difference between the Euler angles in degrees correspond to

the estimated rotation matrix R and the ground-truth rotation matrix Rgt, and

Mean Percentage Error (MPEt) measures the percentage difference between the

estimated translation t and the ground-truth translation tgt. The ground truth

rotation and translation of the facial keypoints relative to the camera are col-

lected from the Unreal Engine internal functionalities.

The MS ER and MPEt are defined as:

MS ER =

3∑
k=1

[
arccos(rk

gt · r
k)
]2

(5.1)

MPEt =
∥∥∥tgt − t

∥∥∥
2
/
∥∥∥tgt

∥∥∥
2
× 100% (5.2)

Specifically, in equation (5.1), rk
gt and rk are the k-th column of Rgt and R, and

arccos(·) represents the arc-cosine operation. In equation (5.2), ‖·‖2 denotes the

L − 2 norm.
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LHM RPnP PPnP ASPnP
MS ER (degree2) 25.38 ± 7.59 28.77 ± 7.96 25.23 ± 7.50 25.11 ± 7.45

MPEt (%) 2.92 ± 0.46 3.60 ± 0.51 2.98 ± 0.48 2.96 ± 0.48

Table 5.2: First Data Collection. Comparison of PnP Algorithms: ASPnP algo-
rithm performs the best in estimating rotations, LHM algorithm estimated the
translation closest to the ground truth

Table 5.2 shows the numeric results of the PnP algorithms. The result is av-

eraged over the 2 human models with 6 cameras view for each human model.

For each evaluation metric, a 95% confidence interval is associated with the av-

erage error. For the estimation of rotation, ASPnP algorithm outperforms other

algorithms with minimal error and variance. For translation estimation, LHM

algorithm best tracks the position of the human subject by 2.92% error.

The test above generally sorted the PnP algorithm by their performance in

general. In the second data collection, the testing cases decoupled the relative

position and orientation between the camera and human subject into three axes

of the body frame. While fixing minor changes in position and orientation along

two axes, the rotation along one axis is varied so that the performance of the PnP

algorithms is evaluated by the estimation of rotation along each axis. For each

testing case, the same evaluation metrics are applied to each algorithm, and the

estimation of the best two algorithms is compared with the ground truth in a

separate plot.

LHM RPnP PPnP ASPnP
MS ER (degree2) 9.93 9.70 9.93 9.93

MPEt (%) 3.02 3.13 3.04 3.02

Table 5.3: Comparison of PnP Algorithms in YawHead scenario

Table 5.3 shows the numeric results of the PnP algorithms for the YawHead

test case. RPnP algorithm performs the best in the estimation of rotation against
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(a)

(b)

Figure 5.5: YawHead scenario: (a). Euler angles corresponding to the rotation
estimation, the roll and pitch angle hardly changed; (b). Translation Estimation,
the camera is placed 3000 mm in front of the human subject

other algorithms. The estimation error of translation for LHM and ASPnP algo-

rithms are equally minimal. It is worth noticing that all four algorithms capture

the rotation of the person with an average angle error of about 3 degrees, and

the location of the person is estimated within 3% confidence.

The estimated rotation of the best three algorithms, LHM, RPnP and ASPnP,

are plotted in Fig 5.5a along with the ground truth over the time window. The

rotation matrix is decoupled into Euler Angles for the clarity of the demonstra-

tion. The difference between the rotation estimation of LHM (red solid line),

RPnP (blue dashed line) and ASPnP(green dashed line) are minimal and are all
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close to the ground truth.

Fig 5.5b shows the translation estimation for LHM and ASPnP. In the Un-

real Engine Synthetic Dataset, the camera is placing 3 meters in the front of the

person and 0.2 meters below the center of the person’s body frame. Fig 5.5b

shows the estimation given by LHM(red solid line) and ASPnP(blue dashed

line); both algorithms recover the location of the human subject accurately. As

a brief summary, all four algorithms locate the orientation and position of the

human subject fairly when the human subject is glancing horizontally.

LHM RPnP PPnP ASPnP
MS ER (degree2) 11.95 28.48 11.99 12.44

MPEt (%) 4.29 4.29 4.32 4.37

Table 5.4: Comparison of PnP Algorithms in PitchHead scenario

Table 5.4 shows the numeric results of the PnP algorithms for the PitchHead

scenario. In PitchHead scenario, LHM algorithm performs the best in two cate-

gories against the other algorithms, the translation estimation from RPnP algo-

rithm is also the closest to the ground truth.

In PitchHead scenario, the person is looking upward then downward which is

demonstrated by the large angle variation in the middle plot in Fig 5.6a. Among

the best two solutions, LHM (red solid line) performs better than RPnP (blue

dashed line) with less noisy rotation estimation. Both algorithms perform worse

when the pitch angle approaches 40 degrees as the estimation of yaw angle dif-

fers from the ground truth. By making a proper assumption on the relative

pitch angle between the testing subject and the camera (e.g. placing the camera

at around the same height as the subject), the error can be minimized.

Fig 5.6b shows the translation estimation result of LHM (red solid line) and
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(a)

(b)

Figure 5.6: PitchHead scenario: (a). Euler angles corresponding to the rotation
estimation, the roll and yaw angle hardly changed; (b). Translation Estimation,
the camera is placed 3000 mm in front of the human subject

RPnP (blue dashed line). LHM outperforms RPnP by the less variance in esti-

mation. The poor performance of RPnP reveals that it is highly unstable when

it attempts to decouple the correspondences and solve the sub-problems sepa-

rately.

LHM RPnP PPnP ASPnP
MS ER (degree2) 11.94 28.30 11.97 12.42

MPEt (%) 4.28 4.28 4.31 4.36

Table 5.5: Comparison of PnP Algorithms in RollHead scenario

Table 5.5 shows the numeric results of the PnP algorithms for the RollHead sce-

nario. In the RollHead scenario, LHM algorithm outperforms other algorithms
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(a)

(b)

Figure 5.7: RollHead scenario: (a). Euler angles corresponding to the rotation es-
timation, the pitch and yaw angle hardly changed; (b). Translation Estimation,
the camera is placed 3000 mm in front of the human subject

in the estimation of translation and RPnP best estimated the rotation.

Among the four algorithms in Table 5.5, the top 2 accurate estimation of Euler

angles are plotted in Fig 5.7a, i.e., the estimation of LHM and RPnP (the results

of the other two methods are omitted for clarity purpose).

In the RollHead scenario, only the roll angle (Fig 5.7a) varies prominently over

the sampling period. LHM (red solid line) estimated the roll angle smoother

than RPnP (blue dashed line) where the later suffers some sudden changes in

the estimation. Both algorithms perform poorly at large roll angles, but under

the assumption that people usually will not roll their head by more than 20 de-
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grees in daily conversations, the estimation is accurate. As for the estimation of

translation as shown in Fig 5.7b, both algorithms suffer from the uncertainty of

2D keypoint detection which causes a drift in the translation estimation. RPnP

algorithm (blue dashed line) is less robust and suffer from the large variance of

estimation.

As a summary, the relative position and orientation can be estimated accu-

rately by LHM, which exhibits its robustness and accuracy in estimating a per-

son’s head location and orientation. This information is further used to infer

people’s gaze in a group-meeting scenario and determine the emergent leader

of a conversational group.

However, as the number of people in each image increases, extracting enough

facial keypoints for all people from a single image gets challenging and may

need more than one camera. Therefore, the data association problem across

different cameras raises, which will not be explored in this thesis.

5.2 Interaction Inference

The dataset used in this thesis to perform interaction and attention inference

is provided by the CMU Panoptic Dataset [35]. The CMU Panoptic Dataset

provided a massive multi-view camera system from 480 VGA cameras and 31

HD cameras, capturing full-body motion. The dataset contains multiple con-

versation scenarios where the participants acted naturally with no behavioral

restriction instructed. Meanwhile, the position movements of the participants

are minimal, that the dataset concentrates on the interaction within static con-

versation groups. The dataset provides an accurate estimation of the 3D location
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of the facial keypoints, which can be easily converted to the 3D head pose by

geometric transformations.

In this section, three representative scenarios are selected to illustrate the ef-

fectiveness and shortcoming of interaction inference. In scenario 1, 100 consec-

utive frames are extracted from the surveillance video; in scenario 2, 50 consec-

utive frames are extracted, and in scenario 3, the number of frames is 30. The

inference performance is evaluated over all test frames based on specific met-

rics compared to the hand-labeled ground truth interaction label. The yellow

lines between two participants in the left figures indicate that the interaction is

inferred as existing when the green line in the right figures indicate the ground

truth label of interaction.

Figure 5.8: Interaction Inference Result, Scenario 1: simple conversation with
one leader

In scenario 1 (Fig.5.8), four of the five participants face person 1 while the

attention of person 1 lies on person 2 and 3 where the model correctly infers the

interaction between them and interprets the other two people as singletons. The

result indicates the constraints applied to the inference of the interaction model
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enforced the reciprocity of interaction.

Figure 5.9: Interaction Inference Result, Scenario 2: simple conversation with
bystander

As for scenario 2 (Fig.5.9), person 1 and 2 are correctly inferred to have in-

teraction and others are singletons. Obviously, all three singletons participate

in the conversation as bystanders, yet the model does not capture this informa-

tion.

The circumstance in scenario 3 (Fig.5.10) is complicated where six participants

forms two groups playing rock-scissors-paper while one participant is consid-

ered as the bystander. The four people in the right side of figure 5.10 forms one

group where the interactions are inferred by the model, person 2 and person 4

belong to the other group. It is worth noticing that person 1 should be classified

as a singleton, yet the gaze of person 4 lies ambiguously between person 1 and

2. The misconnection between person 1 and person 4 reveals a shortcoming of

the interaction inference model that the symmetry of the interaction feature in

interaction graph sometimes blurs the distinctiveness of individual gaze differ-

ences. The attention graph refines this shortcoming.
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Figure 5.10: Interaction Inference Result, Scenario 3: two conversational group
with one bystander

Inference Result
Ground Truth Exists Does Not Exist

Exists TP = 514 FN = 124
Does Not Exist FP = 76 TN = 2350

Table 5.6: Confusion Matrix of The Inference Result

The inference result for all three test scenarios are summarized in Table 5.6 as

a confusion matrix. Most interaction does not exist because one human usually

cannot communicate with more than 2 individuals concurrently.

The terminologies are abbreviated as: TP: True Positive (The interaction exists

and is inferred correctly by the inference algorithm). FP: False Positive (The

interaction does not exist but is inferred as existing by the inference algorithm).

TN: True Negative (The interaction does not exist and is inferred correctly by

the inference algorithm). FN: False Negative (The interaction exists but is not

inferred by the inference algorithm)
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Precision Recall
Inference Result 0.8741 0.8056

Table 5.7: Inference Precision and Recall for the Testing Scenarios

Recall =
T P

T P + FN
(5.3)

Precision =
T P

T P + FP
(5.4)

Table 5.7 shows the performance of the inference algorithm in terms of precision

and recall. The inference precision and recall for all testing frames are averaged.

The precision of inference algorithm is high, indicating that the algorithm in-

tended to correctly infer all correct interactions but may miss some interactions

undetected.

The result demonstrated above shows the effectiveness of using the relative

head pose and proximity to infer interaction. The interacting pairs are the dom-

inant participants in the group, and singletons are side participants. However,

the results do not distinguish between singletons and may lose key information

of the group. For example, the result of scenario 1 ignores the fact that person 4

and person 5 focus on person 1, whereas in scenario 2, the three singletons have

their attention on person 1 and 2. The proposed attention graph resolves these

problems by providing a comprehensive understanding of all participants’ at-

tention, which is presented in the next section.

5.3 Attention Inference

As mentioned in the previous section, the undirected interaction graph cannot

describe the focus of singletons in a conversational group, yet it is not a good
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representation for monologue scenarios. To address these two problems, this

section proposes the result of attention graph, where a node still represents a

participant, but the outgoing arcs are directed and point towards the focus of

attention of the corresponding node. As a result, the attention graph shows

all participants’ attention, and the node that receives the most attention is per-

ceived as the emergent leader.

5.3.1 Inference Result

The arrows indicate the direction of attention received by the person of interest

inferred by the attention inference model. The inward arrows are colored in

the same color as the attention receiver. Interaction can also be inferred by the

attention graph, which is defined as mutual attention and is indicated by the

pair of opposite directional arrows next to each other.

Figure 5.11: Attention Inference Result, Scenario 1: simple conversation. The
emergent leader is highlighted

In scenario 1 (Fig.5.11), the mutual attention between person 2, person 3, and
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person 1 inferred by the model remains indicated by the opposite arrows. More-

over, singletons’ attention is also clearly indicated by directional arrows from

person 4 and 5. The directional arrows form a hierarchical structure of the group

where arrows point from the participants to the leader.

Figure 5.12: Attention Inference Result, Scenario 2: simple conversation with
bystander. The two emergent leader is highlighted

Similarly, as for scenario 2 (Fig.5.12), the attention of all three singletons are

involved so that they may consider as bystanders rather than participants who

are completely irrelevant to the conversation.

As for a complicated case, the attention graph is more robust when inferring

interactions by raising distinct attention feature for each person. The attention

model disconnects the interaction between person 1 and person 4 as well as

person 1 and person 7, represented by the uni-directional arrow shown in figure

5.13. Some predominant interactions inferred by the interaction graph remains

in the inference result of the attention model. In all, the attention model captures

the structure of the group and distinguishes between bystanders and singletons

while maintaining the ability to infer interaction.
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Figure 5.13: Attention Inference Result, Scenario 3: two conversational group
with bystander. Multiple emergent leaders exist

5.3.2 Emergent Leader

The emergent leader of a group is the person who receives the most attention

from either other leaders or bystanders. As shown in the attention inference

result of scenario 1 and 2 (Fig. 5.11, Fig. 5.12), the emergent leader is the person

with the maximum number of inward arrows. The emergent leadership detec-

tion is accurate in a small group as scenario 1 and scenario 2 where target of

communications are obvious. The emergent leadership is less significant in un-

derstanding the dominance of a person in a crowded scenes such as scenario 3

(Fig. 5.13), where most people have a similar number of attentions from each

other in a large group, yet the emergent leader of a smaller group receives less

attention and is less prominent. Nevertheless, emergent leadership is only one

metric evaluating the structure of the group; more information can be inferred

directly or indirectly from the attention graph.

Precision Recall
Inference Result 1.0 0.983

Table 5.8: Emergent Leadership Inference Precision and Recall
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As shown in Table 5.8, the attention graph’s emergent leadership detection is

accurate because the attention frustum successfully models each person’s atten-

tion in all circumstances, either in a simple group or in a complex scenario.
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CHAPTER 6

CONCLUSION

In this thesis, a novel baseline model using the Markov Random Field model

to represent social interaction is introduced based on head pose features. The

state-of-art algorithms which estimate head pose is compared by a simulated

dataset and real-world dataset, the algorithm with the highest accuracy and ro-

bustness are selected to estimate head pose from detected facial key points in the

image. A spatial-temporal feature describing social interaction is then proposed

and con-tributes to an energy function that models the interaction strength. The

optimal configuration of interaction is obtained by solving a Mixed-Integer Lin-

ear Programming optimization problem that minimizes the sum of energy func-

tion across the graph. Meanwhile, the shortcoming and limitations of the base-

line model are analyzed based on sociological reasoning. A revised attention

model relaxes the constraints enforced on the baseline model, which uses di-

rected arcs to represent social attention. A discriminative attention feature that

better describes the social gaze of each individual is introduced accordingly. The

qualitative result of the experiment conducted on a benchmark dataset consis-

tently shows inference results for both models. Comparing inference results for

both models, concretely shows the superiority of the revised attention model

over the baseline model to understand the group structure.

This thesis’s possible extension is to assign weights to head pose feature and

proximity feature and used machine learning approach to train the weight with

the ground truth hand-labeled the inference result. Additionally, since the ex-

periment is conducted in a static environment, the inference of group tructure

under a dynamic movement is another extension of this thesis. Other kinematic
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features may be involved in interpreting the scenes from a novel perspective.
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