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Abstract

The treasure hunt problem to determine how a computational agent can maximize its

ability to detect and/or classify multiple targets located in a region of interest (ROI)

populated with multiple obstacles. One particular instance of this problem involves

optimizing the performance of a sensor mounted on an unmanned aerial vehicle

(UAV) flying over a littoral region in order to detect mines buried underground.

Buried objects (including non-metallic ones) have an e↵ect on the thermal con-

ductivity and heat retention of the soil in which they reside. Because of this, objects

that are not very deep below the surface often create measurable thermal anomalies

on the surface soil. Because of this, infrared (IR) sensors have the potential to find

mines and minelike objects (referred to in this thesis as clutters).

As the sensor flies over the ROI, sensor data is obtained. The sensor receives

the data as pixellated infrared light signatures. Using this, ground temperature

measurements are recorded and used to generate a two-dimensional thermal profile

of the field of view (FOV) and map that profile onto the geography of the ROI.

The input stream of thermal data is then passed to an image processor that

estimates the size and shape of the detected target. Then a Bayesian Network (BN)

trained from a database of known mines and clutters is used to provide the posterior

probability that the evidence obtained by the IR sensor for each detected target was

the result of a mine or a clutter. The output is a confidence level (CL), and each

target is classified as a mine or a clutter according to the most likely explanation
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(MLE) for the sensor evidence. Though the sensor may produce incomplete, noisy

data, inferences from the BN attenuate the problem.

Since sensor performance depends on altitude and environmental conditions, the

value of the IR information can be further improved by choosing the flight path

intelligently. This thesis assumes that the UAV is flying through an environmentally

homogeneous ROI and addresses the question of how the optimal altitude can be

determined for any given multi-dimensional environmental state.

In general, high altitudes result in poor resolution, whereas low altitudes result

in very limited FOVs. The problem of weighing these tradeo↵s can be addressed

by creating a scoring function that is directly dependent on a comparison between

sensor outputs and ground truth. The scoring function provides a flexible framework

through which multiple mission objectives can be addressed by assigning di↵erent

weights to correct detections, correct non-detections, false detections, and false non-

detections.

The scoring function provides a metric of sensor performance that can be used

as feedback to optimize the sensor altitude as a function of the environmental con-

ditions. In turn, the scoring function can be empirically evaluated over a number of

di↵erent altitudes and then converted to empirical Q scores that also weigh future

rewards against immediate ones. These values can be used to train a neural network

(NN). The NN filters the data and interpolates between discrete Q-values to provide

approximate information about the optimal sensor altitude.

The research described in this thesis can be used to determine the optimal control

policy for an aircraft in two di↵erent situations. The global maximum of the Q-

function can be used to determine the altitude at which a UAV should cruise over

an ROI for which the environmental conditions are known a priori. Alternatively,

the local maxima of the Q-function can be used to determine the altitude to which

a UAV should move if the environmental variables change during flight.
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This thesis includes the results of computer simulations of a sensor flying over an

ROI. The ROI is populated with targets whose characteristics are based on actual

mines and minelike objects. The IR sensor itself is modeled by using a BN to create

a stochastic simulation of the sensor performance. The results demonstrate how Q-

learning can be applied to signals from a UAV-mounted IR sensor whose data stream

is preprocessed by a BN classifier in order to determine an optimal flight policy for

a given set of environmental conditions.
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1

Introduction

1.1 Motivation and Background

The performance of a sensor mounted on an aircraft flying over a field can be quite

di�cult to anticipate precisely because a number of environmental variables cannot

be carefully controlled or precisely measured. These variables include (but are not

limited to) weather factors such as wind speed distribution, ambient temperature,

humidity, air opacity, cloud cover, time of day, and precipitation, as well as ground

variables such as soil type, moisture distribution, and ground temperature. In addi-

tion to the impracticality of tracking all the variables that could influence detector

performance, their precise relationships to what a sensor will “see” at a given moment

from a given altitude are likely to be mathematically complex or incompletely un-

derstood. Given this lack of determinism, it is necessary for a system to make online

adjustments to its control policy in order to achieve near-optimal performance.

In order to optimize the use of sensor data, it is necessary to distinguish between

mines and mine-like objects based on sensor inputs. In the absence of single, ideal

(or near-ideal) indicators that could make high-probability or absolute distinctions
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between mines and clutters, it is possible to use Bayesian Networks (BNs) to infer

what a given target is more likely to be (Cai and Ferrari, 2009). This has been

proven possible in Ferrari and Vaghi (2006), where BNs were used both to model

what various types of sensors (including IR sensors) would perceive under di↵er-

ent environmental and operational conditions, and to infer from those perceptions

whether detected targets were more likely to be mines or clutters. This project used

examples taken from the Ordata Database, a collection of information about 5000

di↵erent mines and 3000 di↵erent clutters, along with the measurements taken of

them by electromagnetic induction, ground-penetrating radar, and IR sensors and

the conditions under which the measurements were taken (Explosive et al., 2006).

It then used that information to develop a sensor fusion model, where an inference

about the classification of a target was formed based on multiple sensor inputs (Fer-

rari and Vaghi, 2006). The research performed for this thesis makes use of the same

data set and the same IR sensor model.

Given a stochastic model that relates control decisions to sensor performance,

one must find a way to optimize future control decision based on this information.

In cases where reward is quantified a priori as a function of the state of a system,

it is sometimes possible to use dynamic programming (DP) to work backwards from

a finite planning horizon to determine an optimal control sequence. When the plan-

ning horizon is discretized into some number of stages and the state space of the

system is discretized into a finite number of accessible states for the given boundary

conditions, optimal path planning is assured (White and Jordan, 1992). However,

dynamic programming can become computationally unrealistic for multidimensional

state spaces (according to the “curse of dimensionality”). When DP implementa-

tions are infeasible, various methods in approximate dynamic programming (ADP)

can often find near-optimal solutions in a more reasonable amount of time (Werbos,

2004).
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ADPmethods are also better-suited to many problems where little is known about

the consequences of various control actions a priori. One such method comes from

the doctoral thesis of Christopher Watkins. He used a lengthy set of parallels with

animal behavior to explore the general problem of learning optimal behavior when

the consequences of an agent’s actions are not precisely predictable (Watkins, 1989).

Watkins applied this to the “two-armed bandit problem.” The idea of the problem

is that an agent sitting in front of a slot machine that is equipped with two levers,

each of which dispenses a reward according to some probability distribution. There

is a dilemma because the agent is unaware of what the probability distributions are,

so it must spend some time experimenting in order to determine which lever tends

to give a greater amount of reward, but the number of times any lever can be pulled

is limited. Ergo, the agent must learn some way to balance the tradeo↵s. One way

to accomplish this is by modeling the policy by which future actions are chosen as a

Markov Decision Process (MDP, described in Bellman (1957)), and then mixing trial

and error with exploitation of the best expected action using an algorithm called

Q-Learning (Watkins, 1989).

In the context of the problem at hand, Q-Learning can be used to choose whether

an aircraft should ascend, descend, or cruise at its current altitude in order to opti-

mize sensor performance. The primary strength of this method is that the airborne

agent does not require an a priori model about the relationship between the sys-

tem variables and the sensor performance; based on empirical data, the agent can

estimate what the optimal control policy will be.

One problem with the basic Q-Learning algorithm, however, is that estimation

of a Q-score requires an algorithm that uses value iteration to compute the rela-

tive values of finite (and therefore discrete) numbers of states or state-action pairs.

This thesis endeavors to estimate the optimal control policy over a continuous state

variable. Ergo, it is necessary to generalize the Q-function over a continuous state
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space using a set of empirically measured values. Since Cybenko (1989) proved that

two-layer feedforward neural networks (NNs) can serve as universal function approx-

imators, NNs can be adapted for this purpose.

For online Q-Learning, researchers sometimes use a coe�cient ✏ (where 0 ✏ 1)

to balance between exploration of the state space and exploitation of the expected

rewards. In such a case, one may act randomly (or otherwise against the greedy

policy) with probability ✏ and follow the greedy policy strictly with probability 1 ✏

(Watkins, 1989). However, the research completed thus far focuses on o✏ine learning,

so the exploration/exploitation tradeo↵ is not important. This is because the research

uses a supervised learning process to determine the values of Q assessed by a neural

network. In further research, this information can be used with an ✏-greedy policy or

to initialize an actor-critic architecture (as described in Jensensius (2005); Si et al.

(2004)), either of which would adapt online.

1.2 Research Objectives

Airborne mine detection can be used to cover a large land area in a short amount

of time. Ground robots often must plan paths that skirt around impenetrable ob-

stacles (Cai and Ferrari, 2009), whereas airborne sensors can pass right over, giving

them much more flexibility to explore regions as desired, bounded only by the flight

envelope of the platform. However, not all airborne detector systems are created

equal, and any way of changing an aircraft’s trajectory within its flight envelope in

order to improve sensor performance will increase the strategic value of the system.

The research presented here endeavors to serve this purpose by showing how neural

network Q-learning can be used to find a near-optimal flight policy.

Despite any measure of optimization, airborne demining is bound to be an imper-

fect undertaking. An aircraft cannot carry as wide an array of sensors as a ground

vehicle can; nor can fixed-wing aircraft stop over a field to investigate points of in-
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terest more closely. Therefore, this research is of greater interest to someone seeking

to form some general characterization of characteristics of a minefield than some-

one seeking to pinpoint every possible location of a mine or clear a path over which

ground vehicles or personnel will travel without further demining e↵orts. Within

this framework of general minefield observation, the research presented here seeks to

improve sensor performance by helping the aircraft to find its optimal observation

altitude automatically.

Furthermore, the research develops a flexible framework by which di↵erent ob-

jectives may be served by adjusting the weights given to the performance function.

For instance, if an aircraft’s mission is intended to seek out mine locations in an area

as a preliminary e↵ort to locate mine clusters for removal, then a greater numerical

emphasis may be placed on correct detections and false negatives than false positives

or correct negatives. In short, di↵erent missions may have di↵erent optimal policies,

and the model presented seeks to optimize not only performance within a situation,

but also the spectrum of the system’s usefulness.

Within the scope of this research, it is assumed that the ground truth of the

objects evaluated is known in order to provide some feedback either in the field

or immediately after a set of flights has been made. One might object that if the

complete ground truth were known in a given situation, then there would be little

reason to deploy the aircraft for additional observations. However, the algorithms

explained in the pages that follow can easily be extended to the real world through

actor-critic architectures or semisupervised learning.

1.3 Thesis Organization

The main body of this thesis is comprised of six chapters. Chapter 2 includes a

basic introduction to the inner workings of Bayesian and neural networks, as well as

an overview of Q-Learning. Chapter 3 formally describes the airborne treasure-hunt
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problem and outlines the steps used to solve it. Chapter 4 contains some specific

details of the methodology implemented in this research. Chapter 5 presents and

analyzes the outcomes of the simulated implementations of the algorithms. Chapter

6 contains conclusions of the research and recommendations for the future.
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2

Bayesian Networks, Neural Networks, and
Q-Learning

2.1 Bayesian Network Interpretation

Fundamentally, Bayesian networks use a priori information about relationships be-

tween variables to calculate the likelihood of an unknown variable’s possible states,

given some information about known variables that a↵ect the unknown’s likelihood.

There are many variations on BNs. The ones used in research for this thesis allow

each variable to have a small number of discrete states as inputs. For the example

that will follow shortly, the variables will be binary; that is, each one will have two

possible states. The example is similar in structure to one that is used for demon-

stration by Murphy (2007) and Baumgartner (2005).

In a BN, variables are placed into positions called nodes (Murphy, 2007). Each

node can be observed or unobserved, meaning that knowledge might exist about the

actual state of the variable, or it might not. In either case, it is assumed that prior

information has been gathered that provides information on how the state of each

variable a↵ects the probability distributions of the others.
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Drawing a BN involves depicting nodes and the relationships between them.

These relationships are represented by arrows called arcs. If an arc is drawn from

one node to another, then the source node is a parent, and the end node is a child.

Portrayal of an arc means that information about the status of a parent will a↵ect

the probability mass function (PMF) of the child. Every possible contingency for

the PMF given the possible states of the parents is given as a conditional probability

distribution (CPD) and, for discrete cases like the ones treated here, can be listed in

a conditional probability table (CPT) (Murphy, 2007).

Consider, for instance, an example in which one wishes to describe the probabilis-

tic dynamics between the maintenance of an old car, the functionality of some of its

components, and whether a cold start is easily manageable. The graphic relationships

among the variables are shown in Figure 2.1.

 
Maintenance 

Battery Fuel Pump Starter Motor 

Car Starts 

Figure 2.1: Simple BN

As stated previously, the arcs identify parents and children. If M is taken to

stand for complete and regular maintenance, F for the function of the fuel pump,

B for the strength of the battery, S for the function of the starter motor, and C for
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whether or not the car will start, then F , B, and S are the children of M , and C is

the child of F , B, and S. Examples of CPTs that would describe these variables are

given in Tables 2.1, 2.2, 2.3, 2.4, and 2.5.

Table 2.1: CPT for M

P(M = T) P(M = F)

0.4 0.6

Table 2.2: CPT for F

M P(F = T) P(F = F)

T 0.95 0.05
F 0.55 0.45

Table 2.3: CPT for B

M P(B = T) P(B = F)

T 0.8 0.2
F 0.7 0.3

Conditional probabilities like those in the tables can be expressed in the form

P X x Y y , where the lowercase letters represent exact states and the capital

letters represent variables. In this format, one could write P C T F T,S T,B

T 0.995 after looking at the CPTs. It is important to make a few observations

here. One is that directed cycles are prohibited in BNs. Because of this, BNs are

directed acyclic graphs, or DAGs. Another is that, though CPTs only show the direct

influence of parents on the probability distributions of their children, observed chil-

dren can a↵ect unobserved parents’ PMFs. This can occur through Bayes’s Theorem,

expressed as

P Y X
P X Y P Y

P X
, (2.1)
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Table 2.4: CPT for S

M P(S = T) P(S = F)

T 0.85 0.15
F 0.65 0.35

Table 2.5: CPT for C

F B S P(C = T) P(C = F)

T T T 0.995 0.005
T T F 0.4 0.6
T F T 0.2 0.8
T F F 0.1 0.9
F T T 0.55 0.45
F T F 0.25 0.75
F F T 0.15 0.85
F F F 0.001 0.999

where X and Y are two separate variables. If X is observed but Y is not, then,

given information about the prior probability of Y and the conditional probability

P X Y , it is possible to produce a likelihood of Y conditioned onX (Murphy, 2007).

The architecture just described allows for simple inferences to be made about

some variables even when not all the remaining variables in a graph are known. This

makes it a highly flexible tool for probabilistic reasoning.

2.2 Bayesian Network Formulation

A Bayesian network is a graph-theoretic construct that describes dependencies among

a set of random variables X X1, X2, ..., Xn when those distributions are interre-

lated. This thesis will generally use capital letters (e.g., X) to refer to unknown

variables and lowercase letters (e.g., x) to refer to particular instances of those vari-

ables. Let F be the space of all possible instantiations of X , and let P be the

probability distribution of X over F . In addition, let S be the set of all dependen-

cies among variables in X . Then ⌦ X ,S represents the probability space of the

BN.
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The graphic representation of the Bayesian-network model is given by ⌦. That

is, X specifies the nodes of the network, and S specifies the structure connecting the

nodes (i.e., the arcs between the nodes). In order to derive any useful information

from the network, it is necessary that we provide specific information about the

conditional probability distribution of each node. For each node Xi, this is given

by a parameter ✓i. Let ⇡i represent the set of parents of Xi. Then each ✓i provides

information about P Xi ⇡i , which specifies a CPT. Examples of CPTs are given in

Tables 2.1, 2.2, 2.3, 2.4, and 2.5. The set ✓1, ✓2, ..., ✓n will be represented by ⇥.

Building a BN requires one to process statistical information from some dataset

D. A dataset is composed of some number of samples, where each sample provides a

single, simultaneous instance of every variable in X . Once a BN is trained (explained

in fuller detail below), one can use it to make guesses about the states of variables

in the graph whose actual instantiations are not known. In order to relate parents

and children to one another, we can use instances of Bayes’s rule (shown generally

in Equation 2.1) given by

P Xi µi
P µi Xi P Xi

P µi

, (2.2)

where µi represents the set of children of Xi, P Xi is the prior probability (i.e., un-

conditioned probability distribution over all possible states ofXi ( xi,1, xi,2, ..., xi,r i ,

where r i gives the number of possible states for Xi), and P µi is the prior proba-

bility of the states of Xi’s children.

One might notice that this probability distribution is not especially straightfor-

ward to calculate, but if the children of Xi are d-separated whenever Xi is observed

(i.e., as long as observations about the state of some children do not a↵ect the PMFs

for any of the unobserved children as long as the state of Xi happens to be known),

then the distribution can be determined in two steps. First, it is necessary to find a
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distribution for P µi Xi . Since this is not related to a single variable, one cannot

take it directly from a CPT. Instead, one must use the equation

P µi Xi

p

j 1

P µi,j Xi , (2.3)

where p is the total number of Xi’s children, and µi,j is the value of the jth child

of Xi (Jensen, 2001). The quantity P µi Xi is known as the likelihood of µi. Note

here that the necessary values of P µi,j Xi can be taken from the CPTs for µi; this

means that the likelihood is directly obtainable from D. Once one has calculated

P µi Xi , one can find P µi by marginalizing over all possible states of Xi. This

can be done by computing

P µi

r i

k 1

P Xi xi,k P µi Xi . (2.4)

Once P µi is known, P Xi µi quickly follows from Equation 2.2 (Heckerman, 1995;

Baumgartner, 2005). This is known as the posterior probability, and it is useful for

finding out what value of Xi would have “caused” the values observed among its

children. In order to make a best guess about the value of xi when Xi is unobserved,

one would choose a value of k to maximize P Xi xi,k µi . This process is known

as inference.

2.3 Training Bayesian Networks

2.3.1 Training and Validation Sets

When a Bayesian-network methodology is applied to a set of raw data, the structure

and parameters of the network (represented as B S,⌦ ) are often not known a

priori. Therefore, it is necessary to train the network to model the data provided.

But first, it is necessary to divide the data to be modeled into a training set and a

12



validation set. The reason is because the training process requires a search of a large

space of possible instances of B, and some scoring heuristic is helpful in this search.

To that end, one set will be used to estimate the dependencies among the variables,

and the other set (i.e., the validation set) will be used to compare the quality of

those estimates with one another. The reason that the two sets must be separate is

because BNs are intended to be used for extrapolation to cases not contained in the

training set. If the predictions of a BN were scored against the same data used to

train it, then the network would almost surely overfit the training data, and would

therefore generalize poorly (Murphy, 2007).

2.3.2 Structural Training

For any grouping of variables taken from a dataset, it is necessary to determine what

configuration of nodes best represents the dependencies among the variables. In

other words, it is necessary to find a directed acyclic graph (DAG) that maximizes

the statistical significance of variable correlations. This can be di�cult, given that

the number of possible DAGs grows quickly as a function of the number of input

variables, according to the equation

G n
n

k 1

1 k 1 n
k

2k n k G n k (2.5)

According to this equation, only 3 di↵erent DAGs can be formulated using 2

variables. However, 10 variables can have 4.2 quintillion configurations (Murphy,

2007). Scoring functions exist for estimating the likelihood of a dataset, but because

of Equation 2.5, an exhaustive search of the space of possible DAGs is often not

possible. In order to fix this, there are a few common search algorithms. One, called

K2, adds node connections according to a greedy policy; at each step, the algorithm

generates all possible graphs that result from the addition of a single arc to the
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current graph. Each DAG is then judged by a Bayesian scoring criterion, and the

best in the group becomes the new reference point (Cooper and Herkovits, 1992).

Another algorithm that is commonly used for searching the DAG structure space

is hill climbing. This method defines “neighbors” as all DAGs that can be generated

by modifying one arc (or lack of arc) (Murphy, 2007). This algorithm (as well as

K2 and practically all other non-exhaustive techniques) is likely to wind up in a

local maximum. With the hill-climbing algorith, users can often edge closer to the

global maximum by running each algorithm a large number of times with randomly

initialized structures. In that case, the highest-scoring result subject to the acyclicity

constraint would become the working DAG structure.

Other search-and-score techniques exist, but there is one more thing to keep

in mind: Though the direction of a BN arc is often conceptualized as the parent

“causing” the children, empirical search-and-score structural training can only be

expected to produce a result that is Markov-equivalent to a “correct” model. In other

words, while BNs are excellent tools for identifying correlations among variables and

using those correlations for purposes of statistical inference, correlation does not

determine causation (Murphy, 2007).

2.3.3 Parameter Training

Once a BN structure is determined, it is necessary to estimate the prior and condi-

tional probabilities that will populate the CPTs. Given the structural dependencies

of the BN, an algorithm can search for the position in the parameter state space that

maximizes the likelihood of the dataset provided for training. The result (ideally) is

the most likely explanation (MLE) of the training set. More realistically, a param-

eter training algorithm will search the parameter space and return the most likely

instance of ⌦ that it finds (Murphy, 2007).
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2.4 Neural Network Structure

Neural networks (NNs) commonly serve one of two purposes: classification or func-

tion approximation. In the former case, networks called perceptrons can be trained

to distinguish between linearly separable groups of data points (Demuth et al., 2010),

but these will not be discussed in detail here. The latter case is more important for

the purposes of this thesis, for reasons that will be described shortly.

First, it is necessary to describe the workings of a single neuron. Figure 2.2

depicts a single neuron. Here, x represents a single, two-component input vector, b

is a scalar bias, and y is the output. The first block performs a weighted summation

using a weight vector W. The linear graph at the right side of the figure indicates

that the neuron has a linear transfer function, so its output will be given simply by

y Wx b (2.6)

(Demuth et al., 2010).

Exercise 1 (Continues): Training a single-node Perceptron network 

Comparison with a single-layer linear network
To solve the same classification problem using the linear network,
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This can be done by updating the training matrices X and Y in the file 
sep_perceptron.m.  Verify on the Training-Blue that the training error 
does not go to zero for any number of epochs.  Try adding neurons by 
increasing m: you will find that there does not exist a number of neurons 
that solves the exclusive-or problem.

!"

#
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1100X

[ ]0110=Y

modify sep_perceptron.m substituting the line net = newp (pr, m)
with net = newlin(pr, m).  The initialization and training functions 
self-adjust to the change by switching to the appropriate learning rules. 
How are the two networks different?

Two-Input Classification - Nonseparable Set
An inherent weakness of single-layer perceptrons is that they are only 

capable of classifying sets of vectors that are linearly separable (i.e., can 
be separated by a straight line, a plane, etc...).  One can see this by 
attempting to train a two-input single-layer perceptron to simulate the 
boolean exclusive-or, using the following input and target matrices:

( )
( )2
1

x
x

!

1
b

                      y

Figure 2.2: Single neuron with linear transfer function (taken from Ferrari (2000)).

Not all neurons are the same. Most importantly, di↵erent transfer functions are

possible. The most important alternative to the linear transfer function (for the

purposes of this thesis) is the sigmoid transfer function. The two types of sigmoid

transfer function are tan-sigmoid and log-sigmoid. Their respective functions are

given in Equations 2.7 and 2.8 (Demuth et al., 2010).
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y tanh Wx b (2.7)

y
1

1 e Wx b
(2.8)

If inputs are fed to a set of sigmoid neurons in parallel, whose outputs are in

turn connected to linear neurons, the result is referred to as a two-layer feedforward

neural network. This architecture is depicted in Figure 2.3. The layer that is not

connected directly to the outputs of the network (in this case, the array of sigmoid

neurons) is referred to as the “hidden” layer.

Exercise 2: Training a two-layer feed-forward network for function 
approximation 

Function approximation is one of the most powerful uses of neural 
networks.  This exercise deals with training a two-layer feed-forward 
architecture to approximate a one-dimensional nonlinear function 
based on sample data.  This two-layer feed-forward architecture with 
a (hidden) layer of sigmoidal neurons has been proven to be capable 
of approximating any function with a finite number of discontinuities, 
in any dimension (i.e., with any number of inputs n), provided 
"enough" neurons are present in the hidden layer.  In general, a more 
complex function requires more sigmoidal neurons (i.e., larger m1).  
The typical two-layer architecture is shown below: 

W1

Input Hidden or 1st -layer Output

b1(1)
( )
( )
( )

( )nx

x
x
x

!

3
2
1

...

!

1

!

1

!

1

...

!

1

!

1

...
...

2 nd -layer

W2

y(m2)

y(1)

b1(2)

b1(m1)

b2(1)

b2(m2)

m1-nodes m2-nodes / outputsn-inputs

W1 = input weight matrix of 1st -layer;  b1 = vector bias of 1st -layer

W2 = input weight matrix of 2 nd -layer;  b2 = vector bias of 2 nd -layer

Figure 2.3: Two-layer feedforward neural network (from Ferrari (2000)).

16



2.5 Neural Network Training

Cybenko (1989) proved that a feedforward network containing a su�cient number

of sigmoidal neurons in a single hidden layer connected to a linear output layer can

approximate any function that has a finite number of discontinuities. Hence, NNs

can be very useful as function approximators. In particular, they can be used to

estimate the shape of an unknown function that underlies an observed set of data.

Since empirical observations are necessarily discrete and finite, NNs can help to

interpolate between data points. Also, since observational data often su↵ers from

some amount of noise, NNs can work as filtering systems.

Neural networks can only accomplish these tasks if they are given the right pa-

rameters to do it. That is, the vectors b1 and b2, as well as the matrices W1 and

W2, must be populated with the correct values to approximate the unknown func-

tion T f x , where T is taken from the set of observationally determined targets

and is related (by unknown dynamics) to the set of input vectors. Finding these

parameters requires a training algorithm to search the parameter space for a good

match.

However, given the needs of plausible interpolation and noise filtering, NN train-

ing is not a simple matter of good search algorithms; size matters. If the sigmoidal

layer contains too few neurons, then the range of possible function outputs may not

be su�ciently dynamic to model the underlying function with acceptable accuracy.

On the other hand, using too many neurons can lead to overfitting, where noise is not

filtered out, and the user receives little or no new and useful information. In severe

cases of overfitting, arbitrary curves may appear between empirical data points that

have no connection to reality. Preventing this systematically is not simple. Some

rules of thumb exist, such as using approximately one-fifth as many sigmoid neurons

as one has input-target pairs. More formally, a few algorithms address the issue
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probabilistically. For the purposes of this thesis, a technique known as Bayesian reg-

ularization is notable; given a larger-than-necessary NN, it uses Bayesian-statistical

methods to formalize Occam’s Razor and determine how many network parameters

are necessary, nullifying the rest (MacKay, 1992a,b).

2.6 Q-Learning

Approximate dynamic programming (ADP) methods, such as Q-Learning, are valu-

able tools for solving optimal control problems online, subject to partial or imperfect

knowledge of the system state and models (Ferrari and Stengel, 2004). Optimal

control problems involve a dynamic system (or process) that is either stochastic or

deterministic. Although various notations are in use in the ADP literature (Si et al.,

1992), in this thesis, we will adopt the notation that is typically used in the optimal

control and dynamic programming community (see Bertsekas (1995) for a detailed

description and introduction). Assuming time can be discretized and indexed by k,

a deterministic dynamical system may be modeled by the di↵erence equation,

xk 1 f xk, uk, k (2.9)

where the state xk at time k is an element of the state space X , and the control

uk at time k is an element of the space A of admissible actions or decisions. If the

dynamical system is stochastic, then it may be modeled as an MDP (Bertsekas and

Tsitsiklis, 2002). An MDP is a tuple M X ,A, T, R representing a random and

sequential decision process. In this case, the state space is a finite set of possible

state values, denoted by X s1, . . . , sn , and the space A a1, . . . , am is a

finite set of admissible actions or decisions. T is the transition probability function,

T : X A P X , which describes the MDP state transitions, such that whenever

the state at time k has value xk si and the decision is uk aj, there is a probability
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P xk 1 sl xk si, uk aj that the next state value is xk 1 sl. In many

real-world applications of optimal control, however, the exact form of the di↵erence

equation (2.9) or the transition matrix T are unknown or approximate, and can only

be determined online.

In optimal control problems, there exists a reward associated with the dynamic

system that may be represented by the reward function, R : X A R, specifies the

value of the immediate reward, rk R xk, uk , received after executing the action

decision uk in state xk. A policy is a mapping of state values to actions, ⇡ : X A.

Let the value function V ⇡ xk denote the expected discounted return of a policy ⇡,

defined as:

V ⇡ xk E
i 0

�irk i ⇡, xk (2.10)

where rk i is the reward received i steps into future, and the discount factor 0

� 1 modulates the e↵ect of future rewards on present decisions, with small values

emphasizing near-term gain and larger values emphasizing later rewards. Then,

an optimal policy ⇡ is one that maximizes V ⇡ xk for all possible states xk X .

The Markov property guarantees that an optimal policy exists, though it may not

be unique, and, thus, it is associated with an optimal value function V xk

max⇡ V ⇡ xk . The optimal policy of an MDP, M, is a fixed point of Bellman’s

equation, which can be determined iteratively using policy iteration or value iteration

algorithms (Russell and Norvig, 2003, Chapter 5).

In value iteration, the value of a state V xk is the total expected discounted

reward accrued by a policy starting at xk X . The Q function of a state-action pair,

Q xk, uk , is the total expected discounted reward accrued by a policy that produces

uk ⇡ xk (Russell and Norvig, 2003, Chapter 5). The Bellman equation can be

formulated in terms of the aforementioned functions, such that the state-action value
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function is

Q xk, uk E R xk, uk �V xk 1 (2.11)

V xk 1 max
uk 1 A

Q xk 1, uk 1 . (2.12)

If two functions Q and V satisfy the above Bellman equation, then they

specify an optimal greedy policy

⇡ xk argmax
uk A

Q xk, uk (2.13)

Value-iteration algorithms use eq. (2.11) to iteratively determine Q and V

and, subsequently, determine ⇡ .

The primary di↵erence between pure value iteration and Q-learning is versatility.

Value iteration can be used to determine the optimal policy of an MDP, M, provided

that the rewards to be gained by following a given policy from a given state are

predictable. If this is not the case, then Q-Learning can be utilized to learn an

approximate state-action value function Q xk, uk that is iteratively updated by the

rule,

Q xk, uk 1 ↵ Q xk, uk

↵ rk � max
uk 1 A

Q xk 1, uk 1 (2.14)

where ↵ is the learning rate, and 0 ↵ 1. In this thesis, Q-Learning is implemented

using NNs in order to solve a new sensor planning problem described in the next

section, which consists of obtaining the optimal guidance policy for an IR sensor

deployed onboard an UAV for mine detection and classification.
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3

Problem Formulation

3.1 Environmental Model

The problem considered in this thesis consists of learning an optimal guidance policy

for a UAV with an onboard infrared (IR) sensor that flies over a minefieldW R2, or

region of interest (ROI), for the purpose of detecting and classifying buried landmines

and unexploded ordnance (UXOs). Each bin in W is randomly selected to be either

empty or seeded with a mine or a piece of minelike clutter (CLUT). Any subset of

the environmental conditions E (enumerated in Table 3.1) can vary from one bin

to another, or from one set of bins to another. However, for the purposes of the

research performed for this thesis, it is assumed that the environmental conditions

are uniform across the entire ROI.

It is assumed that all components of the state of E are reliably knowable. It is also

assumed, for training purposes, that the “ground truth” of the bin classification (i.e.,

whether a bin contains a mine, a clutter, or nothing), can be determined after a flight

has been completed for purposes of evaluating the scoring function. However, during

a flight, target existence, characteristics Fi, and classification are not assumed to be
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known and are subject to measurement errors. These errors are described further in

Section 3.4.

3.2 Modern Control Theory and Linear State Space Decomposition

In recent decades, microprocessors have revolutionized control system design. In

modern control theory, various aspects of a system’s behavior are formulated as a set

of vectors and matrices. These mathematical constructs lend themselves particularly

well to automated computations (Nelson, 1998). As Nelson (1998) describes, we can

describe relevant components of a system’s state as a vector, x. The vector x can

include a number of specific system state metrics; but in order for the model to be

linearizable, the evolution of variables included in x needs to be determinable (or

nearly determinable) based on information about the states of and controls applied

to the rest of the variables in x. In order to make this possible for a wide variety of

di↵erent systems, x often includes both a variable and one or more of its derivatives

with respect to time (Nelson, 1998).

In order to describe the natural evolution of the system with time (that is, with

neutral control inputs), it is necessary to use a plant matrix, A. In particular, when we

have neutral contol inputs, the di↵erential equations governing the system dynamics

can be written as

x Ax (3.1)

Given this information, it is then possible to use the additivity of linear systems

to account for the e↵ect of control inputs. This requires that we first quantify the

way in which each control input a↵ects each of the state variables. We can manage

this by formulating the control inputs themselves as a vector ⌘ and their e↵ects on

the state variables as a matrix B. This yields the equation
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x Ax B⌘ (3.2)

The vector y represents a generic output of the system (as described in Nelson

(1998) and Scruggs (2010)), which relates the actual state of the system to the

measured output according to the equation

y Cx D⌘ (3.3)

In cases where the values of the state variables are assumed to be precisely know-

able (and where these variables are exactly what we want to observe), then C is an

identity matrix and D is populated with zeroes.

The reason that this modeling technique is so applicable to a wide variety of

systems is because the state-space decomposition method can accommodate any set

of linear di↵erential equations with constant coe�cients. This includes di↵erential

equations of arbitrarily high order; as Nelson (1998) shows, any equation of the form

dnc t

dtn
a1

dn 1c t

dtn 1
a2

dn 2c t

dtn 2
... an 1

dc t

dt
anc t r t (3.4)

can be transformed into a state space formulation by using c t as an output and r t

as an input, then choosing the state variables such that x1 t c t , x2 t dc t
dt

,

x3 t d2c t
dt2

, etc. This yields the decomposition
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A

0 1 0 0 0 . . . 0
0 0 1 0 0 . . . 0
0 0 0 1 0 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . 1
an an 1 an 2 an 3 an 4 . . . a1

B

0
0
0
...
1

C 1 0 0 . . . 0

D 0 (3.5)

Given this, any set of di↵erential equations that can each be written in the form of

Equation 3.4 can therefore be used to construct a linear state space. Therefore, any

system whose behavior is describable as a system of such di↵erential equations can

be modeled in this way.

3.3 UAV Dynamics

Given a state-space decomposition, there are a few ways that the dynamics of a

system can be simulated. One way (a rather simplistic way) is to use some small

timestep �t and the definition of the derivative (i.e., x lim
�t 0

f x �t f x

�t
) to

estimate the evolution of the system (for the time series t 0, t �t, t 2�t, ...)

for which the initial conditions (i.e., the initial state of the system) are known, using

linear interpolation:

xt �t xt �t xt xt �t Axt B⌘t (3.6)
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As one might imagine, for any linearizable system, this modeling technique becomes

increasingly precise as the timestep �t decreases; errors due to linear interpolation

disappear in the limit as �t 0.

The trouble with simulations based on linearizations of the state space compo-

sition (as described above) is that, for any value of �t, there exists some small

inaccuracy in each step of the simulation, and this e↵ect will be compounded over a

large number of timesteps. Reducing the size of the timestep improves the accuracy

of a simulation but increases the computational burden. Alternatively, it is possible

in many cases to solve the relevant initial-value problems of the ordinary di↵erential

equations governing a system.

The flight dynamics of a UAV, for instance, can be simulated using the state-

space decomposition method to model the kinetics of the airframe. In particular, we

can apply a six-degree-of-freedom equation of motion derived from Newton’s second

law using an inertial- and a body-reference frame (Stengel, 2004). The full aircraft

state consists of the 12-dimensional vector xa u v w xr yr zr p q r � ✓  T

where u, v, w, and p, q, r are the UAV velocities and angular rates in the reference

frame of the UAV body, respectively, and xr, yr, zr, and �, ✓,  , are the UAV

translational and angular positions in the terrestrial inertial frame, respectively. The

body state accelerations, denoted by Xb, Yb, Zb, Lb, Mb, and Nb are a function of

the available thrust, and of the aerodynamic force and moment coe�cients produced

by the controls for the present aircraft state and wind field. The model estimates

low-angle-of-attack Mach e↵ects, power e↵ects, and moments and products of inertia

by using available full-scale wind tunnel data and physical characteristics, according

to the methods described in Stengel (2004). The moments of inertia Ixx, Iyy, Izz, and

product of inertia Ixz are estimated using simplified mass distributions, and are held

fixed at all times. Then, using the classical aircraft angles definitions and coordinate

transformations described in Stengel (2004), the following UAV equation of motion
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can be obtained:

u Xb gx rv qw

v Yb gby pw ru

w Zb gbz qu pv

xr u cos ✓ cos v sin� sin ✓ cos cos� sin 

w cos� sin ✓ cos sin� sin 

yr u cos ✓ sin v sin� sin ✓ sin cos� cos 

w cos� sin ✓ sin sin� cos 

zr u sin ✓ v sin� cos ✓ w cos� cos ✓

p
q

IxxIzz I2xz
IzzLb IxzNb p Ixz Iyy Ixx

Izz r I2xz Izz Izz Iyy

q
Mb pr Ixx Izz Ixz p2 r2

Iyy

r
q

IxxIzz I2xz
IxzLb IzzNb r Ixz Iyy Ixx

Izz p I2xz Ixx Ixx Iyy

� p q sin� r cos� tan ✓

✓ q cos� r sin�

 
q sin� r cos�

cos ✓
(3.7)

The aircraft control inputs consist of the throttle �T , the elevator �E, the aileron

�A, and rudder �R, i.e., ua �T �E �A �R T . As shown in Ferrari and Stengel

(2002), the UAV can be fully controlled by means of a reduced state vector xUAV

V � q ✓ r � p µ T , which is formulated in terms of the aircraft speed V , sideslip
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angle �, and path angle �, where

V u2 v2 w2 (3.8)

� sin 1 v V (3.9)

� sin 1 w V (3.10)

and in terms of the bank angle µ, defined in Stengel (2004). All of these variables

are specified individually in Appendix A.

3.4 IR Sensor Modeling

The field-of-view (FOV) of the onboard IR sensor is assumed to be a closed and

bounded subset of a Euclidian space, S 0, LIR
2 R2, with the square geometry

illustrated by the grey area in Figure 3.1. It can be easily shown using planar

geometry that the size of the FOV is a function of the aircraft altitude H zr,

LIR H sin ✓IR (3.11)

where zr is defined positive downward by convention (Stengel, 2004), and ✓IR is the

sensor’s aperture angle. In this thesis, it is assumed that ✓IR is held constant, and

that the orientation of the IR sensor is fixed with respect to the UAV flight direction,

but that it always points perpendicularly towards the ground. It follows that the

position and size of the FOV are a function of time, S S t , and change based on

the aircraft trajectory or path. For simplicity, it is assumed that the centroid of S t

coincides with the UAV coordinates in inertial frame, xr t and yr t at any time t.

As illustrated in Figure 3.1, the position and geometry of the FOV determine

which regions of the minefield can be measured by the airborne IR sensor. The

IR sensor measurements are influenced by its height above the ground (H), and by
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Figure 3.1: Problem description.

the environmental conditions in the minefield. A two-dimensional grid is superim-

posed on the minefield dividing it into unit-square cells. Soil characteristics, vegeta-

tion, and time-varying meteorological conditions, modeled according to MacDonald

(2003); Dam (2003), are assigned to each cell, either at random or at user-specified

positions. Buried targets are modeled as anti-tank mines (ATM), anti-personnel

mines (APM), unexploded ordnance (UXO), and clutter objects (CLUT) that are

sampled and reproduced using the Ordata Database (Explosive et al., 2006), which

contains over 5,000 explosive items and 3,000 metallic and plastic objects that resem-

ble anti-personnel mines. Each target i occupies one or more cells in the minefield

depending on its size zi, and is characterized by a depth di, and shape si (Table

3.1). The IR sensor mode, vIR, is given by the UAV altitude (H) in km, which is

discretized in a set of m possible values a1, . . . , am . At any given time, the space

of admissible values of vIR depends on the UAV speed, and is known from aircraft

flight envelope. The aircraft flight envelope, denoted by E , is the set of altitudes and

velocities for which the aircraft can be trimmed (an example is shown in Figure 4.1).

The envelope’s boundary is designed by considering the stall speed, the thrust/power

required and available, compressibility e↵ects, and the maximum allowable dynamic

pressure to prevent structural damage Stengel (2004).
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Figure 3.2: BN model of IR sensor (taken from Cai and Ferrari (2009)).

Table 3.1: IR Sensor Variables and Environmental Conditions

Symbol: Nodes: Range:

yi Target classification mine (1), not mine (0)

vIR IR mode a1, . . . , am ah h 0.2km
E Soil moisture (%): sr dry [0, 10], wet (10, 40], saturated ( 40)

Soil composition: sc very-sandy, sandy, high-clay, clay, silt
Soil uniformity: su yes, no
Vegetation: g no-vegetation, sparse, dense
Weather: w clear, overcast, raining
Illumination: i low (7-10 a.m. and 6-9 p.m.), medium (10-1

p.m.), high (1-6 p.m.)
Fi Depth (cm): di surface [0], shallow-buried (0, 12], buried (12,

60], deep-buried ( 60)
Size (cm): zi small (2, 13], medium (13, 24], large (24, 40],

extra-large ( 40)
Shape: si cylinder, box, sphere, long-slender, irregular

An IR sensor detects anomalies in infrared radiation and, based on its height

above the ground, builds an image of the FOV that includes measurements of shape

and size for shallowly buried targets. Because they rely on temperature variations,

their performance is highly influenced by illumination, weather, vegetation, and soil

properties. As shown in Ferrari and Vaghi (2006), an IR sensor can be modeled

by the Bayesian network (BN) in Figure 3.2, based on data and on the IR working
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principles and detailed studies of Agema Thermovision 900 sensors (Dam, 2003). In

particular, measurement errors are estimated by determining the spatial resolution

of the sensor wth respect to the ground (based on the sensor’s angular resolution

and H). The ratio of resolution to object size is used to categorize the expected

sensor performance into a small number of states, each of which has a prescribed

conditional probability distribution for what the sensor will see (with respect to Fi),

given the reality of what is on the ground. The category of sensor performance is

then used to determine a probability distribution for the sensor measurements. In

addition, limiting parameters of the sensor are incorporated into the model using

cuto↵s (e.g., a maximum depth below which nothing will be detected).

All BN nodes represent variables that influence the IR measurement process,

and are defined as shown in Table 3.1. The IR BN model approximates the joint

probability mass function (PMF) underlying the IR sensor measurements in terms

of the recursive factorization

P vIR, E,Mi, Fi, yi P Mi vIR, E, Fi P Fi yi

P yi P vIR P E , i (3.12)

where Fi di, zi, si is the set the features of the ith target, Mi dmi
, zmi

, smi

are the measured target features extracted from sensor images, and yi denotes the ith

target classification with the range Y mine, not mine . In this thesis it is assumed

that the environmental conditions Ei are constant and uniform everywhere in W ,

but are possibly unknown. The factors in (3.12) are conditional PMFs given by the

BN conditional probability tables (CPTs) (see Jensen (2001) for a comprehensive

review of BNs). By this approach, non-Gaussian sensor models can be obtained and

used for sensor planning, as shown in Chapter 4.

As shown in previous research (Ferrari and Vaghi, 2006; Cai and Ferrari, 2009),
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when a sensor is installed on a mobile platform, the measurement gathering process

can be modeled as a Markov decision process (MDP), under proper assumptions.

Although the MDP transition probability matrix of the UAV-IR system could poten-

tially be obtained from the nonlinear dynamic equation (3.7), the BN sensor model,

environmental maps, and weather forecasts, it would be computationally prohibitive

to determine it for every minefield, weather, UAV, and IR sensor characteristics.

Therefore, the goal of this thesis is to develop a Q-Learning technique that can learn

the UAV-IR guidance policy from the sensing reward, without explicit knowledge of

the transition probability matrix. By this approach, the same guidance algorithm

can be applied to di↵erent airborne sensors and minefields, without redesigning the

algorithm or modeling every system component.
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4

Q-Learning Approach to the Treasure-Hunt
Problem

4.1 Overview

The problem of determining the optimal sensor path for searching and classifying

hidden targets, known as treasure hunt problem, was first formulated as an MDP in

Ferrari and Cai (2009). An e↵ective Q-learning technique for solving treasure hunt

problems was presented in Cai and Ferrari (2008), and demonstrated through the

benchmark problem of the game of CLUEr. In this thesis, Q-learning is applied to

the new UAV-IR demining problem described in Chapter 3, which can be viewed as

a new application example of treasure hunt. Since the sensor is installed onboard a

UAV, the UAV path determines what cells can be intersected by the sensor’s FOV,

and measured by the IR sensor at any time.

Given the UAV dynamic model described in Chapter 3, it is possible to estimate

a time-dependent, stochastic reward function for any feasible flight path. However,

if mines are assumed to be randomly placed in the ROI according to a uniform

probability density, then the reward per distance traveled along the ground will be
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a↵ected only by the altitude at which the UAV operates; low altitudes su↵er from a

small FOV, and high altitudes su↵er from progressively poor detector and classifier

performance. For simplicity, this thesis assumes that the aircraft maintains a straight

flight path with respect to the ground, and that it flies at a constant velocity within

the flight envelope shown in Figure 4.1. These simplifications make it possible to

optimize the flight path with respect to one dimension: altitude.

4.2 Definition of Q-Learning State and Control Vectors

As a first step, the aircraft dynamics (3.7) are evaluated at N equally-spaced discrete

points in time, tk t0 k�t, k 0, . . . , N 1 , over the interval t0, tf , where

�t tf t0 N is the discretization interval. Between any two points in time,

the control is assumed to be piecewise-constant and the UAV dynamics (3.7) are

integrated by a 3rd order Runge-Kutta integration routine (Stengel, 1986, pg. 77).

In order to apply the Q-Learning technique in Chapter 2, the MDP state xk must

be observable, and may be defined as a subset of the full system state. Thus, based

on the problem formulation in Chapter 3, the xk xr tk yr tk zr tk V tk
T ,

since this subset of state variables determines the IR-sensor FOV’s size, position,

and orientation at tk. The FOV’s size and position, in turn, determine the hidden

target characteristics in cell i, denoted by the set ⇣i di, zi, si, yi , and the hidden

environmental conditions Ei, through the subset of cells that are intersected by the

FOV, with index set Ik. The environmental conditions may or may not be known

depending on the scenario. The set ⇣i of hidden variables can be estimated only after

the FOV has intersected cell i.

The objective of the optimal greedy guidance policy, uk ⇡ xk , is to compute

the next UAV position, at tk 1, such that the IR sensing performance over time

is maximized. Therefore, the control vector is defined as the next waypoint, i.e.,

uk xr tk 1 yr tk 1 zr tk 1
T , where zr k 1 determines the next IR sensor mode
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vIR tk 1 . In this approach, the Q-learning technique is said to provide an outer-loop

algorithm, whose output can be followed by means of the inner-loop proportional-

integral (PI) controller described in Ferrari and Stengel (2002).

4.3 Definition of Reward

After the IR measurements are obtained from all the cells inside the sensor’s FOV,

the IR BN model (3.12) is used to estimate (or infer) the target classification based

on the measured target features (Mi) extracted from sensor images, the sensor mode

vIR and, possibly, known environmental conditions. In this thesis, BN inference is

performed by a junction-tree algorithm available through the Matlabr BN-Toolbox

commands jtree inf engine, enter evidence, andmarginal nodes (Murphy, 2007). The

inference algorithm provides the posterior PMF P yi, di, zi, si vIR, dim , zim , sim , Ei ,

and the target classification is estimated by choosing the value of highest posterior

probability, i.e.:

ŷi arg max
yki Yi

P yi vIR, dim , zim , sim , Ei (4.1)

The estimated target classification is then accompanied by the certainty level

(CL), denoted by ci P ŷi vIR, dim , zim , sim , Ei , which represents the confidence

in the estimated value and, for a binary variable, is 0.5 ci 1.

Let yi denote the actual classification of the target in cell i. Then, the classifica-

tion error defined as,

ei ŷi yi (4.2)

also is binary, and takes a value of 0 when the estimate is correct, and a value of 1

when the estimate is incorrect. If the estimate is correct, a higher CL is desirable,

but if the estimate is incorrect, a lower CL is desirable because it indicates that
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the estimate is uncertain. Thus, the IR sensor performance is reflected in the clas-

sification error (4.2) and in the CL. Additionally, the sensor performance depends

on application-specific objectives for deploying the UAV-IR. For example, in some

applications it may be of interest to minimize the number of false alarms, whereas

in others it may be of interest to find cells without targets, in order to determine a

safe path through W . In this thesis, the application’s objectives are characterized

by a discrete risk function defined as,

⇢i

w1 if ŷi 1, yi 0 (false alarm)

w2 if ŷi 0, yi 1 (misclassification)

w3 if ŷi 1, yi 1 (mine detection)

w4 if ŷi 0, yi 0 (void-cell detection)

(4.3)

where w1, . . . , w4 are user-defined positive constants that weigh the relative impor-

tance of the four cases listed in (4.3). If in a mission a false alarm poses a much

greater risk than a misclassification, then w1 w2. If, in addition, it is of secondary

importance to correctly classify mines, then w1 w3 w2, w1, and so on.

Then, the immediate reward from cell i can then be defined as a tradeo↵ between

the measurement value and error,

ri Wv 1 ei ci⇢i We eici⇢i (4.4)

where Wv and We are user-defined positive constants that represent the desired

tradeo↵ between the measurement value of obtaining correct classifications of mines

or void cells, and the measurement error of incorrectly classifying mines or false

alarms. At every time tk, the IR sensor obtains measurements from a set of cells in

its FOV, S tk and, thus, the total value of the immediate reward is

rk R xk, uk

i S tk

Wv 1 ei ci⇢i We eici⇢i (4.5)
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and can be computed from the IR sensor measurements and the actual target

classification yi .

In this thesis, the Q function is approximated by a feedforward sigmoidal NN

Q xk, uk W2� W1 xT
k uT

k
T b1 b2 (4.6)

by means of the update rule (2.14) as the UAV explores the state and control spaces.

The s-dimensional operator � represents one hidden layer of s log-sigmoidal functions

of the form � n 1 1 e n . The NN weights W1 Rs n m , W2 R1 s, b1 Rs,

and b2 R2, are determined by the Bayesian regularization algorithm (‘trainbr’

(MacKay, 1992a,b)). A training set for (4.6) is formed according to the Q-learning

approach. As a first step, the Cartesian product of the state and control spaces X A

is discretized. With the state and control definitions in Section 4.2, this is achieved

by discretizing the flight envelope (e.g., see crosses in Figure 4.1). As a second step,

the rule in (2.14) is applied iteratively over the discrete time tk, while exploring W

(already discretized into cells) by flying the UAV at every feasible pair of altitudes

and velocities.

After the reward (4.5) is evaluated for every pair of state and control values

explored by the UAV-IR, the data can be used to learn the Q function using (4.6).

Then, the optimal policy, uk ⇡ xk , is determined by maximizing the learned

Q function using the greedy rule in (2.13). The e↵ectiveness of this approach is

demonstrated in the next chapter, using the system models described in Chapter 3.

4.4 Epistemology of the Field

Training the NN requires some form of evaluation of a given state/action pair. Section

4.3 describes a specific way to quantify this mathematically, but not how to know

the input data needed to determine ⇢i for any i that passes into the FOV.
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4.1 Linear Design 

Linear controllers that satisfy established engineering criteria [67-66] are designed for 

a family of linearized models obtained at the set OP of equilibria, providing for the 

desired performance targets to be matched by the neural network controller.  The 

nonlinear aircraft model is approximated as a linear-parameter-varying system over the 

two-dimensional flight envelope, shown in Fig. 15, assuming steady-level flight, i.e., 

γ0 = µ0 = β0 = 0. 
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Figure 15. Business jet aircraft steady-level flight envelope (IR) and set OP of design 
operating points used for the neural network pre-training phase. 

The flight envelope is designed by considering the stall speed, the thrust/power required 

and available, compressibility effects, and the maximum allowable dynamic pressure to 

prevent structural damage [64].  The set OP consists of thirty-four design points chosen 

from the boundaries and the interior of the flight envelope, corresponding to the region 

IR, and both sets are shown in Fig. 15.  As introduced in Section 2.2, eq. 1 can be 

Figure 4.1: Aircraft Flight Envelope, taken from Ferrari and Stengel (2002).

This question is easy to answer if the NN that describes the Q-function is trained

o✏ine. In particular, the process would start by choosing a state-action pair and

simulating it repeatedly within a given set of environmental conditions. Given the

aircraft’s observations over the training inputs, we can then assume that the ground

truth is precisely known and score the state-action pair accordingly. This procedure

can then be repeated for a number of state-action pairs.

For the special case of straight, level flight, this can be achieved by simulating

a flight over a given field, with the altitude held constant as the ground-translation

variables change. Given the aircraft’s observations of the ROI, we can then assume

that the ground truth is precisely known and score the state/action pair using Equa-

tion 4.5 and

rf

k 0,1,...,
tf t0
�t

R xk, uk (4.7)

37



It is worth noting here that, for the case of straight, level flight, ground speed

is not considered as a factor. In the sensor simulation used for this thesis, ground

speed does not have an e↵ect on the performance of the sensor. However, speed can

still have a (roughly) linear e↵ect on a time-dependent scoring measure since higher

speeds result in coverage of more new landmass per unit time. Using this model,

then, one could optimize the time-dependent score for a given altitude by assuming

that the aircraft flies at the highest speed possible for the given state-action pair.

For the case of straight, level flight, this is determinable from Figure 4.1, and one

can see that flying at higher altitude o↵ers the advantage of a higher maximum

airspeed. For the sake of this thesis, however, it is assumed that the aircraft flies at

a uniform speed for any of the altitudes sampled. This is acceptable because there

does exist a velocity interval of the flight envelope that is feasible for all the altitudes

measured. Given a constant velocity, we then know that Equation 4.7 is related to

a time-dependent scoring function through a simple proportionality constant that

is invariable across all altitudes, which means that the relative evaluations of the

di↵erent altitudes are described su�ciently.

Returning to the general case, the result of the training-set generation technique

described above is a stochastic estimate of the relative performance of one state-

action pair versus all the others. Using a procedure that is described further in

Chapter 5, this can be transformed into a score Q xk, uk , which can in turn be used

to batch-train the NN.

This o✏ine-training policy gives us information about a control policy that we

can expect to be near-optimal if we send the UAV to scout an unexplored but similar

ROI. But what if we want to learn from experiences in the field? O✏ine learning

can provide a strong initialization to guide an online learning algorithm in the early

stages of exploration of the ROI, but, by definition, it will be blind to any dissim-

ilarities between the new field and the field(s) used for training. Online training
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requires a di↵erent training technique for the NN (incremental training instead of

batch training), but, more critically, it requires a completely di↵erent feedback sys-

tem.

The reason for this is because the o✏ine-training system described above assumes

that the ground truth for the entire ROI is determined with certainty and then used

to score the performance of the sensor for various state-action pairs. But if the ground

truth is available for the online-training case, then the UAV flight is pointless because

its observations do not provide any new information about the ROI. However, if

we can assume that some subset of the measurements we want to make is known,

then state-action pairs can be scored using direct comparisons between the known

information and the corresponding sensor measurements. In this case, we say that

much of the dataset from the field is ”unlabeled,” and the exploration of the ROI

becomes a Partially-Observable Markov Decision Process (POMDP).

Methods for evaluating POMDPs will not be covered in-depth in this thesis.

However, to put things shortly, the context at hand would require us to develop

some method of estimating the sensor’s performance over the full set of observations

rather than just the set whose ground truth is known. A simple model might assume

that sensor will perform similarly over the unlabeled bins as it does over the labeled

ones. A more sophisticated model would include some way of quantifying a PDF or

PMF of the score, given the most recent performance measures.

4.5 Simplifying Assumptions

All of this forms a generalized framework that can be used to optimize a number

of parameters of the flight path (within bounds of feasibility) by optimizing the

aircraft control policy. For this thesis, a simplified version of the problem described

in Chapter 3 and refined in Section 4.2 is used to demonstrate the e�cacy of the

Q-learning algorithm.
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As mentioned in Section 4.1, one of the assumptions is that we are looking at

straight, level flight. This gives us the luxury of optimizing the altitude of the aircraft

by itself rather than over multiple parameters. Given the assumption that the flight

path under consideration is being executed within the flight envelope (Figure 4.1),

this also means that we can look directly at the impact that being at a given altitude

has over the scoring function, rather than optimizing the elevator controls directly.

Extension of this methodology to higher-dimensional optimization problems is left

to future research.

Another simplifying assumption is that we are using o✏ine training to determine

an optimal policy for future flights. The alternative would be online learning of

the optimal policy, which requires incremental training of the NN that describes the

Q-function. It would also require some tinkering to find a promising value of the

exploration coe�cient, ✏, as well as some type of immediate feedback, such as the

partial ground measurements described in Section 4.4.

The next chapter describes the results obtained from the application ofQ-learning

to this simplified problem.
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5

Results

5.1 Implementation and Simulation

The UAV is simulated by integrating the ODE in Equation 3.7, using the Matlabr

program FLIGHT, developed in Stengel (2004). This program simulates the aircraft

flight and determines the trim conditions for any nominal altitude and velocity that

lie inside the aircraft flight envelope E , illustrated in Figure 4.1. In this thesis, it

is assumed that the UAV maintains steady-level longitudinal flight along a diagonal

path, and that the Q-guidance algorithm must determine the optimal nominal alti-

tude H , based on the UAV-IR sensing reward obtained by flying over a minefield W

with an arbitrary but homogeneous set of geometric and environmental conditions,

and known targets.

The UAV-IR sensor, and the minefield W are simulated numerically, using the

mathematical models described in Chapter 3. In the simulation, as soon as the

FOV of the IR sensor, F , intersects a cell containing a target, measurements are

reproduced and deteriorated based on the target features, the sensor’s mode and

working principles, and the environmental conditions in the cell (Ferrari and Vaghi,
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2006). As an example, the set of cells measured by the UAV-IR sensor at a sample

moment in time, and an altitude a8 1.6 km is shown by purple bins in Figure

5.1. Red bins represent undetected targets (mines or clutter), green bins represent

detected targets, and black bins represent obstacles.
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Figure 5.1: Instantaneous UAV-IR sensor’s FOV at a8 1.6 km.

In this thesis, the environmental conditions in Table 3.1 are assumed to be uniform

in W and, therefore, the UAV-IR can learn the Q-function by flying over W at

various altitudes and velocities in E . At higher altitudes, the IR measurements are

typically less accurate, but more cells are measured because the FOV is larger. At

lower altitudes, the FOV is smaller, translating to fewer cells being measured by

the sensor, but the IR measurements are more accurate. As an example, the cells

measured by the UAV-IR sensor along a path at a8 1.6 km, and during the time

interval t0, tf , are shown by the purple bins in Figure 5.2, using the same color

legend used in Figure 5.1. For comparison, the cells measured along the same path
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at a32 6.4 km is shown in Figure 5.3.
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Figure 5.2: Cells measured by UAV-IR during t0, tf , at a8 1.6 km.

As shown in Figure 5.7, the percentages of mines (red bins) and clutter-targets

(yellow bins) that are correctly classified is higher at a8, whereas the percentage

of targets that were undetected (blue bins, labeled by “U”) is higher at a32. The

CL (%) of the classifications, plotted on each target detected in Figure 5.7, also

tends to be higher at lower altitudes. While the UAV-IR explores the state space,

its measurements and the actual classification of the targets are used to compute

the reward in (4.5), and to learn the Q-function from (2.14). In this thesis, the

weights in the risk function (4.3) are chosen as w1 120, w2 90, w3 250, and

w4 1 for false alarms, false negatives, correct mine classifications, and correct

void-cell detections, respectively. This places the primary emphasis on correct mine

detections, as might be the case for a mission focused on detecting mine clusters.
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Figure 5.3: Cells measured by UAV-IR during t0, tf , at a32 6.4 km.

5.2 Stochasticity in the Sensor Model

When pushing the limits of sensor performance, one will often come across the prob-

lem of noisy signals; in the real world, sensor data may not be the result of a simple

deterministic relationship between the ground truth and the known variables. There-

fore, though the given ROI is identical with respect to environmental conditions and

target placement for all flights performed for this thesis, almost no two flights over

the ROI will be the same. This is because of the probabilistic nature of the sensor

simulation, which can be summarized as follows.

Given the ground truth of a situation, there are several ways in which the detector

can be expected not to see a target at all. For instance, if a target lies deeper than

10 m underground, there will be no detection. Alternatively, if it lies more than 2

m underground but the weather is rainy and the local vegetation is dense, there will

be no detection.
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Assuming an object (either a mine or a mine-like object) is detected, an image

contrast will be assigned to it depending on the specific combination of environmen-

tal conditions. This designation is selected from the set of “poor,” “low,” “medium,”

“high,” and a null value. In order to produce the data used in this thesis, a minefield

was generated with homogeneous environmental conditions; those conditions were

clear skies, high illumination, clay soil, dense vegetation, and 30 percent ground

moisture (considered “wet,” as opposed to“dry” or “saturated”). Given these con-

ditions, the image contrast is labeled as “low” for all detectable targets on the field.

The image contrast takes a null value for all empty bins and undetectable targets.

The simulation model is intended to mimic the behavior of an Agema Thermo-

vision 900 infrared sensor. This sensor is known to have a spatial resolution of 1.5

milliradians; given this number, the altitude of the UAV, and a small-angle approx-

imation, the sensor resolution ⇠IR is given by

⇠IR H 0.0015 (5.1)

Given the value of ⇠IR, noise is introduced into the measured size and shape

variables (smi and zmi, respectively). In the case of the shape measurement, this is

done through a series of steps. First, a coe�cient for the shape error is generated

in accordance with Table 5.1. Then, for each target, a random number is generated

from a uniform distribution on 0, 1 . This is a luck factor, intended to introduce

stochasticity to the sensor measurements. If it happens to exceed the shape error

coe�cient, then the correct shape will be reported to the detector. If not, the detector

will receive a signal based on the di↵erence between the two and the actual grund

truth, zi. For instance, if the luck factor is lower than the shape error coe�cient,

but happens to be within 0.2 of it, then a cylindrical shape will be reported as a box

shape.
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Given that object size is taken from a continuous state space rather than a small

set of enumerated shapes, it is possible to create noise more elegantly. For this thesis,

a program was used in which the measured size, smi, is generated by adding the real

size, si, using the following equation

smi si 0.01 B � Random 0, 1 (5.2)

where B represents a deterministic measurement bias, and � represents a scaling

coe�cient for a random variable. For a given target, values for B and � are assigned

based on image resolution and target size, in much the same way that the shape

error coe�cient was determined. The multiplier of 0.01 can be tweaked to simulate

more or less noise, but it is not meant to depend on environmental variables.

Table 5.1: Relationship Between Actual Target Size and Shape Error Coe�cient

Poor Low Medium High

zi 8⇠IR 0.5 0.4 0.2 0.1
8⇠IR zi 5⇠IR 0.6 0.5 0.3 0.15
5⇠IR zi 3⇠IR 0.7 0.6 0.4 0.25

3⇠IR zi 0.8 0.7 0.45 0.3

These noisy signals are plugged into the sensor BN described in Chapter 3, in

order that a target classification yi may be determined as the most likely explanation

(MLE) of the inputs, based on information from the ORDATA database. Now that

the framework has been developed for modeling the target environment and the

measurements taken of it, the Q-learning stochastic optimization method will be

described explicitly.

5.3 Score Estimation

For the special case of o✏ine training treated here, we want to find a strong estimate

of the expected reward for a wide variety of the altitudes contained in the flight enve-

46



lope, and then use these numbers to estimate the Q-value for all altitudes contained

in the flight envelope. The phrase “expected reward” refers to a modified concept of

the instantaneous reward rk described by Equation 4.5. In particular, it is intended

to provide an estimate of the expected of the reward returned per unit time.

More explicitly, for the given ROI consider the set of all measured cells for a given

altitude ⇤H , and assume that the sample flight path of the UAV with respect to W

is does not change from one trial flight to another. Then the scoring estimate rH is

given by

rH
i ⇤H

Wv 1 ei ci⇢i We eici⇢i (5.3)

Equation 5.3 is nearly identical to Equation 4.5 except that the domain of the

sum includes the rewards for an entire flight (i.e., over the sets highlighted in Figures

5.2 and 5.3) rather than just the reward at a particular instant.

The benefit of this scoring function within the context of o✏ine learning (as

opposed to adding or averaging all the values of rk for a given flight across the field)

is that it avoids double-counting cell measurements. Given that the sensor model

does not include a means to improve sensor performance for longer exposure times,

Equation 5.3 provides a way to avoid granting high altitudes with unjustifiably high

scores for getting a right answer counted repeatedly, or low scores for having missed

detections and incorrect classifications counted more times than they would be at

lower altitudes.

Given the set of measures rH , H 1, 2, ..., 50 , one can try to filter some of the

measurement noise by repeating the measurement several times and averaging the

measurements. For this thesis, the measurements were repeated ten times, and the

average value of rH is designated by R H . Given a constant flight velocity for each

altitude tested, R H acts as an estimate of the expected reward per unit time for
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a flight at a given altitude over a field, with the exception of a constant factor that

does not vary with respect to H. This factor is equivalent to the amount of time

needed to cross the field at the measurement velocity; since it is held constant for

all of the measured altitudes, it does not a↵ect the relative score of each altitude for

the given environmental conditions and ROI.

For one set of these measurements (i.e., the estimates of expected reward R H ),

the raw reward estimates are shown in Figure 5.4. An NN function approximation

is also shown in that figure, but only for purposes of demonstrating the di�culty of

filtering this noisy data.

5.4 Q-Learning Implementation

The Q-learning algorithm used for this thesis is based on the application of Equation

2.14 to the reward function described in Chapter 4. Specifically, the algorithm’s

actions followed these steps:

1. Simulate a series of flights at di↵erent altitudes above the ROI. Keep the flight

path constant, and vary only the altitude between flights.

2. For each possible altitude, simulate ten passes along the same flight path and

record all sensor outputs.

3. Score each flight (to produce rH) and average the scores for flights at the same

altitude to produce R H .

4. For each altitude mode h, initialize Vold h R h .

5. Update: For each altitude, set Vnew h R h �max
u A

Vold h u , where u

A 0, 1 for the lowest altitude tested, u A 1, 0 for the highest

altitude tested, and u A 1, 0, 1 for all altitudes in between.
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6. Further update: Vold h 1 ↵ Vold h ↵Vnew h . Repeat updates a large

number of times (e.g., 105).

7. By Equation 2.11, this will provide the value of Q for each altitude, maximized

over the possible control actions (ascend, descend, remain level).

8. The Q values can be interpolated over the continuous state space described

by the flight envelope (within the bounds of the trials made) using a 2-layer

feedforward NN.

9. For an aircraft in any given state within the domain of the resulting curve, the

optimal control policy is to approach the nearest peak as quickly as possible.

0 5 10 15 20 25 30 35 40 45 50
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-6000
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-2000

0

2000

 Sensor mode index, h 

Reward 

Figure 5.4: Raw score data (0 iterations performed, yielding reward scores, not
Q-scores) as a function of altitude. An NN function approximation (10-neuron hid-
den layer with 300 epochs of Bayesian-regularized training) is able to detect some
pattern, but that pattern is extremely noisy, and the reward function is myopic.

The two-fold function of value iteration is apparent when comparing Figure 5.4

with Figure 5.8. One such function is to filter out noise. The other is simple policy
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determination; given a tradeo↵ coe�cient � that quantifies the value of future rewards

relative to immediate gains, this value iteration procedure tells us when it is or is

not beneficial to move to the altitude that globally maximizes the iterated value

function. The reason is that the optimal policy is always to choose the action that

maximizes Q xk, uk for the given state xk at timestep k. Here, the only choices

are to ascend or descend by some minimal increment, or to remain level. Ergo, the

Q-learning algorithm transforms the policy determination problem into a question

of hill climbing.

The value of ↵ is primarily important for purposes of online Q-learning. For

this o✏ine procedure, it is su�cient to set it equal to 1 in order to facilitate quick

convergence. If it is instead set to another value 0, then, for the case of o✏ine

training, the shape (i.e., all the information needed for determining the optimal

policy) of the resulting curve will be practically indistinguishable from the case where

↵ equals 1 for a su�ciently large number of iterations. Case in point, one may

compare Figure 5.5 with Figure 5.9. Both are interpolated by similar NNs (Bayesian-

regularized with a 10-neuron hidden layer, trained for a few hundred epochs). For

the former case, the y-axis appears to be scaled di↵erenly, but the two graphs have

identical shapes.

5.5 Determining the Optimal Policy

Figure 5.8 shows the Q-value for each altitude. One might object that, according

to the Bellman Equation (Equation 2.11), Q is a function of state and action, not

the state alone. As noted in the figure caption, however, the value on the y-axis

is actually given by max
uk A

Q hk, uk . The reason that it is fair to label this as the Q

value for a given state is because the expectation of the instantaneous rewards, based

on the methods used for this thesis, is not dependent on the current control value;
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Figure 5.5: Plot of Q-values (given by max
uk A

Q hk, uk ) for a reduced value of ↵ (0.5

instead of 1), given � 0.99.

instead, the control value is relevant for purposes of determining V xk 1 , but since

V xk 1 maxuk 1 A Q xk 1, uk 1 , it is acceptable in this context to measure Q as

max
uk A

Q hk, uk .

Exactly how this information should be used depends on the exact context in

which the UAV is operating. If the operators know a priori that the aircraft will fly

over a field with environmental conditions very similar to the ones over which the

IR sensor was tested to create this graph, then the operator should have the aircraft

cruise over the ROI at the global optimum of the interpolated graph, which happens

here close to altitude mode h 34, or about 6.8 km above the ground.

This case is not terribly interesting. If, however, the situation is that a UAV has

entered an ROI of the type used for this training, then the use of the figure changes.
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We might ask the question of whether it is worth passing through altitude modes

whose expected returns are relatively low in order to reach an altitude mode whose

expected reward is higher than that of the current state. This is where the value of

the discount factor � makes a di↵erence to the optimal policy.

Equation 2.13 describes how the optimal policy is determined from theQ-function.

In the simplified, discretized state-action space (i.e., where hk 1, 2, ..., 50 and

uk 0, 1 for hk 1, uk 1, 0, 1 for hk 2, 3, ..., 49 , uk 1, 0 for hk 50),

this tells us that, given an estimate of the Q-value of each of the altitude modes

examined, the optimal policy requires us dictates that the UAV must ascend or de-

scend towards the highest-valued neighbor available unless it already happens to be

operating at a locally optimal altitude (i.e., an altitude for which Q h, 1 Q h, 0

and Q h, 1 Q h, 0 ).

In the continuous case, the answer is not as simple. The Q-function interpolation

provided by the NN tells us that if the slope of the Q-function is positive for the

current altitude mode, then the UAV should ascend. If the slope is negative, the

UAV should descend. This means that the optimal policy for the UAV is to hone in

on a local maximum of Q.

In the simplified action ascend/descend/maintain level flight action space, the

graph suggests a simplistic notion of moving toward a local minimum with the as-

sumption that each move will be made in some standard time period �t. This

corresponds to a model in which an aircraft quickly establishes a standard rate of

climb, moves to the altitude with the locally optimal Q-value, and quickly levels

o↵ the aircraft. But the idea of considering a continuously valued state space begs

questions about a continuously valued action space A as well as continuously valued

time.

Consider, for instance, Figure 5.6. This figure was generated using a longitudinal

simulation of a short-takeo↵-and-landing (STOL) aircraft with an elevator whose
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actions are determined by a state feedback controller, as described in Nelson (1998).

The controller is built to maintain level flight against any unexpected displacements

of the aircraft. The state being controlled is the displacement of the aircraft from

that level flight. Initially, the model is set such that for an altitude of 3000 m, this

displacement is zero. Then, at time t = 2 seconds, the displacement is artificially

lowered to -100 m so that the new equilibrium altitude is 3100 m.
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Figure 5.6: Altitude transition from 3000 m to 3100 m, based on simulation of an
STOL vehicle with elevator controls determined by a state-feedback controller, as
described in Nelson (1998).

The point of this graph is to demonstrate the type of altitude profile that may

be expected if an aircraft controller is simply commanded to move the aircraft from

one altitude to another, as is suggested above. Note the nonlinear ascent rates as the

transition begins and ends. As the aircraft levels o↵, it even overshoots the target

altitude by a small margin. These e↵ects can be accounted for if the action space is

mapped directly to a range of feasible elevator angles for the UAV and the model of

the aircraft dynamics is used to determine at what altitude the aircraft will be flying
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at time t0 �t, what its rate of climb or fall will be, the rate climb or fall, the rate

of change of the aircraft pitch, etc.

Note, however, that this approach increases the dimension of the state vector,

thereby increasing computational burden. Note also that the graph shows a nearly

straight line between the altitudes of 3020 m and 3080 m (i.e., the segment of the

transition that is separated by the initial and final states by 20 m), and that the

range of altitudes considered for this thesis is 9800 m wide. Because of this, it is

assumed that the simplified transition model is su�cient to determine the optimal

aircraft motions accurately, and that the precise elevator control sequence needed to

make the transition can be determined using a state feedback controller like the one

described in Nelson (1998).

5.6 Choosing �

Figures 5.8 and 5.9 represent two di↵erent versions of the Q-function learned by

UAV-IR, and approximated by the NN in Equation 4.6. Each is a nonlinear function

of vIR, derived from the same simulation dataset, with all the same weights in the

risk function; the di↵erence is that Figure 5.8 is based on a stepwise discount factor

of � 0.9, whereas Figure 5.9 is based on a stepwise discount factor of � 0.99.

Once learning is completed, the greedy policy in (2.13) is computed by maximizing

the learned Q-function. This policy provides the optimal sensor’s altitude at time

t k 1 as a function of the present aircraft state (altitude and velocity) at tk. In this

study, the optimal altitude is found to be H a34 6.8 km. Thus, as verified by

the sensing performance comparison in Table 5.2, when the UAV-IR sensor flies at

this altitude, it obtains the highest reward value, as specified by the risk function

(Equation 4.3).

Choosing the discount factor � depends on how much the aircraft operator values

long-term results against possible short-term tradeo↵s. Note that there is a local
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Figure 5.7: Classification results for the UAV-IR at a8 1.6 (a), and at a32 6.4
km (b), during a sample time interval. The red boxes indicate a mine classification,
and the yellow boxes are clutter classifications. The numbers contained in those
boxes are the corresponding confidence levels. The blue boxes mark targets that the
sensor failed to see entirely.

maximum of Q near H for Figure 5.8 as well as Figure 5.9. This means that, as

long as the UAV is su�ciently close to the optimal altitude, the optimal greedy policy

will always dictate that it move to that altitude. But how close “su�ciently close”

is a function of �; if � is large enough (as in Figure 5.9), then the optimal policy will

be to move to the global optimum, no matter what the aircraft’s initial altitude is.

In general, one should choose high values of � when the length of time that

will be spent flying over the ROI is much greater than the time that will likely be

needed to transition between the current altitude and one that is locally optimal

with respect to Q. Conversely, one should choose low values of � when flying over

small fields, where the amount of time that will likely be needed to transition may

be substantial compared to the length of time that will be spent flying over the field.

However, further research is needed to develop a formal, mathematical framework

for determining � automatically.

55



0 5 10 15 20 25 30 35 40 45 50
-4

-3

-2

-1

0

1

2
x 10

4

 Sensor mode index, h 

Q 

Figure 5.8: Q-values given by max
uk A

Q hk, uk , learned by UAV-IR system as a

function of vIR, with � 0.9.

Table 5.2: Performance Comparison

UAV-IR
Mode

Total
Bins

Mine
Detections

(CL)

Clutter
Detections

(CL)
Undetected
Targets

a8 515 13 (63%) 7 (67%) 17

a32 1551 29 (68%) 23 (76%) 50

a34 1610 32 (66%) 24 71%) 54
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Figure 5.9: Q-values given by max
uk A

Q hk, uk , learned by UAV-IR system as a

function of vIR, with � 0.99.
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6

Conclusions and Recommendations

6.1 Conclusions

This thesis develops a system whereby an aircraft can use o✏ine, supervised learning

to determine its optimal control policy as a function of state in a particular environ-

ment. It also provides a novel framework for applying Q-Learning to geometric path

planning problems. The research demonstrates how a BN can be used to provide

a computational model of sensor performance when its readings are influenced by

large numbers of variables that cannot be fully measured or analytically understood.

Additionally, it is worth noting that the BN classifier inevitably improves the value

of the Q function by filtering out some of the mine-like objects in the field, and

the Q-Learning algorithm provides a basis for evaluating the tradeo↵ between data

accuracy and data collection rate. Ergo, the research demonstrates a novel method

for combining di↵erent learning architectures.

The algorithm is flexible enough to lend itself to a number of di↵erent objectives

and environmental expectations. If the primary purpose of the UAV mission is to

find as many mines as possible, then the weight placed on correct classification can
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be very high, as it was for the experiments described here. However, other goals

(such as finding mine-free regions) can easily be emphasized by changing the risk

parameters.

6.2 Future Research

There are a few ways to build on this research methodology. In particular, one could

develop an online Q-Learning system such that the Q function would evolve with new

observations using an actor-critic architecture and a greedy policy. Such a system

could be initialized based on the supervised training techniques employed here and

could use incremental NN training algorithms to morph the Q function. This would

allow the system to train e�ciently for various environments. At this point, employ-

ing an ✏-greedy policy might be beneficial for carefully-chosen values of ✏, on account

of increased exploration of the state space. From there, possible extensions include

semisupervised learning, where the ground truth is not fully known, but some subset

of the observed environment is known or is assumed to be accurately determinable,

potentially enabling the UAV to adjust its control policy while deployed in the field.
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Appendix A

Flight Model Variables

In Chapter 3, some of the variables in Section 3.3 are described in groups for the sake

of brevity. The variables are re-presented here with their individual descriptions.

h Altitude mode

xa Twelve-dimensional aircraft state vector

ua Four-dimensional aircraft control vector

u Velocity in the x-direction of the UAV body reference frame

v Velocity in the y-direction of the UAV body reference frame

w Velocity in the z-direction of the UAV body reference frame

xr North position in the terrestrial reference frame

yr East position in the terrestrial reference frame

zr Altitude indicator; zr h

p Roll rate in the UAV body reference frame

q Pitch rate in the x-direction of the UAV body reference frame

r Yaw rate in the x-direction of the UAV body reference frame

� Roll angle in the terrestrial reference frame
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✓ Pitch angle in the x-direction in the terrestrial reference frame

 Yaw angle in the x-direction in the terrestrial reference frame

Xb Acceleration in the x-direction in the UAV body reference frame

Yb Acceleration in the y-direction in the UAV body reference frame

Zb Acceleration in the z-direction in the UAV body reference frame

Lb Angular roll acceleration in the UAV body reference frame

Mb Angular pitch acceleration in the x-direction of the UAV body
reference frame

Nb Angular yaw acceleration in the x-direction of the UAV body
reference frame

Ixx Moment of inertia about UAV body x-axis

Iyy Moment of inertia about UAV body x-axis

Izz Moment of inertia about UAV body x-axis

Ixz XZ product of inertia

V Scalar aircraft speed

� Sideslip angle

� Path angle; not to be confused with � used in the Bellman equa-
tion

µ Aircraft bank angle

�T Throttle position

�E Elevator angle

�A Aileron angle

�R Rudder angle
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Appendix B

MATLAB Code

For reasons of explicitness, the program used to generate Figures 5.5, 5.8, and 5.9 is

shown below.

clear

Gamma = 0.99; %Time discount coefficient

Alpha = 0.5;

load QMineMultiFlightResults;

%This file determines the Q function using iteration over the reward

%estimates.

CorrectReward = 10; %Specifying W v

IncorrectPunishment = 10; %Specifying W e

for index = 1:50

AverageScore(index) = 0;

end

%In this section, individual flight records are checked and scored. The

%original simulation records include a set of values rho i for each bin

%measured, but this program is constructed so that those rho i values can

%easily be revised from those of the original sensor simulation.

for Flight=1:10

for ParcelNum = 1:50

RewardRecord(ParcelNum) = 0;
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ComparisonMatrix = ComparisonSuperCell{Flight}{ParcelNum};
for i =1:size(ComparisonMatrix,1)

if ComparisonMatrix(i,7)==0.04 %Correct non detection

ComparisonMatrix(i,7)= 1;

elseif ComparisonMatrix(i,7)== 1 %False positive

ComparisonMatrix(i,7)= 120;

elseif ComparisonMatrix(i,7)== 2 %False negative

ComparisonMatrix(i,7)= 90;

elseif ComparisonMatrix(i,7) == 3 %Correct detection

ComparisonMatrix(i,7) = 250;

end

RewardRecord(ParcelNum)=RewardRecord(ParcelNum) + ...

((CorrectReward

*

(1 ComparisonMatrix(i,6))

*

...

ComparisonMatrix(i,5)

*

ComparisonMatrix(i,7)) ...

(IncorrectPunishment

*

ComparisonMatrix(i,6)

*

...

ComparisonMatrix(i,5)

*

ComparisonMatrix(i,7)));

end

end

for index = 1:50

AverageScore(index) = AverageScore(index)+RewardRecord(index)/10;

end

end

% Initialization with reward values

for Altitude=1:50

Q old(Altitude) = AverageScore(Altitude);

end

for Altitude=1:50

Q new(Altitude) = AverageScore(Altitude);

end

% This is the value iteration process. For sufficiently high numbers of

% iterations, a smooth looking set of data points emerges.

for Iteration = 1:100000

for Altitude=1:50

if Altitude > 1 && Altitude < 50

if Q old(Altitude)>=Q old(Altitude 1) && Q old(Altitude)>=...
Q old(Altitude+1)

Q new(Altitude) = AverageScore(Altitude) + ...

Gamma

*

Q old(Altitude);

elseif Q old(Altitude 1)>=Q old(Altitude) && ...

Q old(Altitude 1)>=Q old(Altitude+1)

Q new(Altitude) = AverageScore(Altitude) + ...

Gamma

*

Q old(Altitude 1);

else

Q new(Altitude) = AverageScore(Altitude) + ...

Gamma

*

Q old(Altitude+1);

end

elseif Altitude == 1
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if Q old(Altitude)>=Q old(Altitude+1)

Q new(Altitude) = AverageScore(Altitude) + ...

Gamma

*

Q old(Altitude);

else

Q new(Altitude) = AverageScore(Altitude) + ...

Gamma

*

Q old(Altitude+1);

end

else

if Q old(Altitude)>=Q old(Altitude 1)

Q new(Altitude) = AverageScore(Altitude) + ...

Gamma

*

Q old(Altitude);

else

Q new(Altitude) = AverageScore(Altitude) + ...

Gamma

*

Q old(Altitude 1);

end

end

end

for Altitude = 1:50

Q old(Altitude) = (1 Alpha)

*

Q old(Altitude) + ...

Alpha

*

Q new(Altitude);

end

end

% Given the Q values of the 50 discrete altitude modes, it remains only to

% interpolate between them using a neural network.

% M file to train and simulate a single input, two layer,

% feed forward backpropagation neural network.

X = 1 : 1 : 50;

for i=1:50

Y(i) = Q new(i);

end

pr = [ 16000 4000];

m1 = 10; m2 = 1;

%Initialize 2 layer feed forward network:

% net = newff (X,Y,5);

net = newff(X, Y, [m1 m2], {'logsig','purelin'}, 'trainbr');

net = init (net); %Default Nguyen Widrow initialization

%Training:

net.trainParam.goal = 10;

net.trainParam.max fail=200;

net.trainParam.mu inc=1.1;

net.trainParam.epochs = 300;

net = train(net, X, Y);

%Simulation:

X sim = 1 : 0.001 : 50;

Y nn = sim (net, X sim);

figure

plot(X, Y, '+'); hold on

plot(X sim, Y nn, 'r '); hold off
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set(findobj(gca,'Type','line','Color','red'),'LineWidth',2);
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