
HUMAN ROBOT COOPERATION IN VIRTUAL
ENVIRONMENT

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Fulfillment of the Requirements for the Degree of

Master of Science

by

Suming Qiu

Aug 2023

© 2023 Suming Qiu

ALL RIGHTS RESERVED

ABSTRACT

The rapid advancements in robotics, driven by technologies such as artificial in-

telligence, computer vision, and machine learning, have led to numerous appli-

cations in daily life. Real-world experiments for evaluating robotic performance

can be expensive and time-consuming, prompting a shift towards virtual simu-

lations. This essay explores the role of virtual simulations in robotics, focusing

on critical tasks such as path planning, obstacle avoidance, and target detec-

tion. We discuss the use of A* algorithm for path planning, segmentation maps

and depth maps for obstacle avoidance, and You Only Look Once (YOLO) for

target detection in drones. Additionally, we highlight the potential of digital

twin technology, which connects a physical drone with its virtual counterpart,

allowing researchers to optimize performance and evaluate behavior in vari-

ous environments. The increasing popularity of virtual simulations in robotics

research offers a cost-effective and efficient method for optimizing robot perfor-

mance and paves the way for new applications that can enhance our lives.

BIOGRAPHICAL SKETCH

Suming Qiu earned his Bachelor of Science degree in Theoretical and Applied

Mechanics from Lanzhou University and is currently pursuing a Master of Sci-

ence degree in Mechanical and Aerospace Engineering, with a minor in Com-

puter Science, at Cornell University. During his undergraduate studies, Suming

participated in seven research programs and published three papers. His re-

search interests span friction, finite element analysis (FEA), mechanical designs,

computer vision, and Unreal Engine applications.

Suming is deeply passionate about interdisciplinary pursuits that integrate

physics, computer science, and mathematics. His projects often demonstrate

his ability to merge diverse knowledge domains effectively. In the future, Sum-

ing aspires to delve further into interdisciplinary research, exploring novel and

intriguing intersections of these fields.

iii

This document is dedicated to all Cornell graduate students.

iv

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Table of Contents . v
List of Tables . vi
List of Figures . vii

1 Introduction 1

2 PROBLEM FORMULATION AND ASSUMPTIONS 3

3 AI Enabled Path Planning for Autonomous Vehicle 8
3.1 Obstacles Reconstructions . 8
3.2 Path Planning for Drones . 9

3.2.1 RRT Algorithm . 10
3.2.2 A* Algorithm . 11
3.2.3 Implementation on drones 13

3.3 Deep-learning based algorithms’ implementations 15
3.3.1 Detectron2 and Mask R-CNN 16
3.3.2 Mono-depth . 17
3.3.3 YOLO . 19
3.3.4 Path Re-planing with Imperfect Map Knowledge 21

3.4 Model Based target Detection and Tracking 23
3.4.1 Online Target State Estimation 23
3.4.2 Human Robot Cooperation Strategy 26
3.4.3 Tracking Utility Function 33
3.4.4 Simulation Results . 36

4 Future Work 40

5 Acknowledgement 43

Bibliography 45

v

LIST OF TABLES

3.1 Tracking Performance Comparison 39

vi

LIST OF FIGURES

2.1 Definition of the state of a robot. 5

3.1 Reconstruction of the virtual environment. 9
3.2 Illustration of the tracking . 13
3.3 Implement the deep learning algorithm on drones. 18
3.4 YOLO’s implementation on drones. 21
3.5 Find imperfect walls in the scene. 22
3.6 Find imperfect walls in the scene. 23
3.7 Cooperative tracking framework. 24
3.8 Illustration of the ray tracing method. 25
3.9 Vision-based online target estimation. 26
3.10 Human operator’s assistance in tracking. 30
3.11 Message exchange within the human-robot team. 33
3.12 The initial configuration of a testing instance. 37
3.13 Illustration of the MHRT tracking all targets at time step k = 17. 37

4.1 Illustration of the simultaneously obstacle avoidance. 41

vii

CHAPTER 1

INTRODUCTION

In recent years, the field of robotics has experienced remarkable advancements,

driven by the integration of cutting-edge technologies such as artificial intel-

ligence (AI), computer vision, and machine learning[8, 17]. These technolo-

gies have revolutionized various aspects of daily life, as demonstrated by the

widespread use of Roomba vacuum cleaners [12] and the development of au-

tonomous vehicles by companies like Waymo. As the technology continues to

progress, there is a growing demand for real-world experiments to assess per-

formance [18]. However, such experiments can be time-consuming and expen-

sive, prompting researchers to explore virtual simulations as a cost-effective al-

ternative [28].

Virtual simulations have become increasingly popular, with prevalent tools

such as Unreal Engine and the Robot Operating System (ROS) [39]. These tools

allow researchers to set parameters and simulate environments, enabling them

to evaluate and optimize robot performance [18]. The use of virtual simulations

has been shown to be particularly effective in addressing critical challenges in

robotics, such as ensuring optimal performance in the presence of sensor noise

and environmental noise [10].

Path planning is another essential task in robotics, involving determining

an optimal path for a robot to move from one point to another [31]. The A*

algorithm, a popular heuristic search algorithm, has been widely employed

for path planning in robotics, efficiently finding the shortest path while avoid-

ing obstacles [21]. Recent studies have also explored other methods for path

planning, such as Rapidly-Exploring Random Trees (RRT) [30] and Probabilis-

1

tic Roadmaps (PRM) [26], demonstrating the importance of this research area.

Obstacle avoidance is a critical challenge in robotics, with researchers using

segmentation maps and depth maps to generate obstacle maps that can be used

for real-time obstacle avoidance [38]. Techniques such as Mono-depth [15] and

Detectron2 [47] have been commonly used to generate these maps, providing a

comprehensive representation of the environment.

Target detection is another critical task in robotics, particularly for drones

[40]. Researchers have utilized You Only Look Once (YOLO) to detect targets

and track them using drones [5, 40], enabling applications such as surveillance,

agriculture, and search and rescue operations.

Digital twin technology has emerged as a promising research avenue in

robotics, connecting a physical drone to its virtual counterpart using optical

track equipment for virtual testing and simulation [37]. This technology allows

researchers to optimize performance and evaluate robot behavior in various en-

vironments, paving the way for the development of more efficient and effective

robots.

In conclusion, the literature highlights the increasing popularity of virtual

simulations in robotics as a cost-effective and efficient means of evaluating robot

performance. Technologies such as the A* algorithm, segmentation maps, depth

maps, YOLO, and digital twin technology exemplify the significant advance-

ments in robotics research. By optimizing robot performance, enhancing capa-

bilities, and developing new applications, these technologies have the potential

to greatly impact our lives.

2

CHAPTER 2

PROBLEM FORMULATION AND ASSUMPTIONS

The problem of human-robot interaction is quite complex. In this article, we di-

vide the problem into three parts: environment reconstruction, implementation

of machine learning algorithms, and model-based target detection.

Environment reconstruction: Many simulation environments do not have ad-

equate support from a physical engine. We choose to use Unreal Engine (UE) to

implement our simulation environment. We first test the algorithms in environ-

ments like MATLAB and Python, then port them to UE for simulation testing,

and finally validate our work in a lab test. In UE, we construct both a city en-

vironment and a test environment that matches our laboratory setting to verify

the accuracy of our work. If the virtual reality laboratory and the real laboratory

scenarios are similar, then the results obtained in the virtual city will be more

credible.

Implementation of machine learning algorithms: We essentially divide the algo-

rithm into two parts: path planning and AI-based detection. With these two

algorithms, the robot can plan the path when given the start and end points. It

can also detect surrounding areas and objects using the AI-based algorithm. For

path planning, we mainly test A* and Rapidly-Exploring Random Trees (RRT),

which are two traditional path planning methods. RRT is faster, while A* yields

better results.

Model-based target detection: The focus of this article is human-robot inter-

action. we address the problem of tracking multiple moving targets through

human-robot collaboration. This problem is highly relevant to various security

3

and surveillance applications where Unmanned Ground Vehicles (UGVs) and

Unmanned Aerial Vehicles (UAVs) team up with human operators to actively

observe a set of targets within a large region of interest.

Consider a team of mobile robots, denoted by R = R1, . . . ,RN, operating

within a closed and bounded two-dimensional (2D) workspace W = [0, Lx] ×

[0, Ly]. Here, Lx, Ly ∈ R+ represent the length and width of the workspace, and

N = 1, . . . ,N is the index set of the mobile robots. We define an inertial frame,

FW, with origin OW, embedded inW, such that the xy-plane aligns with the

ground plane.

Furthermore, a moving Cartesian frame, FAn, is embedded in each robot,

with the origin OAn located at the principal point of the robot’s camera. This

frame aligns with the robot camera frame, as described in [20]. Without loss of

generality, the state vector of the nth robot, Rn, is represented by sn = [pT
n θn]T ,

where pn = [xn yn]T and θn denote the 2D coordinates and orientation with

respect to FW, as illustrated in Fig. 2.1 [36].

The state vector sn complies with the robot dynamics equation, which in this

study is given by the unicycle model, as detailed in [36, 11]. This model effec-

tively captures the essential dynamics of the mobile robots and provides a suit-

able framework for the analysis and implementation of the proposed human-

robot collaborative tracking approach.

ṡn =


ẋn

ẏn

θ̇n

 =

vn cos θn

vn sin θn

ωn

 = f(sn,un), ∀n ∈ N (2.1)

4

where un = [vn wn]T ∈ R2 is the control vector for the robot. It consists of

linear velocity vn and angular velocity wn. Assuming ∆t is the sampling interval,

we can write the robot state and control vector at any discrete time k as sn(k) and

un(k) respectively.

𝑥𝑛

𝑦𝑛
𝜃𝑛

ℱ𝓐 𝒏

𝒪𝒜𝑛

𝒗𝒏 𝑣𝑛 sin 𝜃𝑛

𝒪𝒲 𝑥𝐼

𝑦𝐼

𝑣𝑛 cos 𝜃𝑛

ℱ𝒲

Figure 2.1: Definition of the state of a robot.

Assume a Multi-Human Robot Team (MHRT) tasked with tracking a set of

human targets denoted by T = T1, . . . ,TM, whereM = 1, . . . ,M represents the

target index set. We also assume that the number of targets is no less than the

size of the robot team, i.e., M ≥ N. The ith target’s state is represented by xi =

[xi yi vx, i vy, i]T ∈ R4×1, i ∈ M. We can also write all targets’ state as x =

[x1T , . . . , xT
M]T ∈ R4M×1. We assume that the target velocity remains constant

and is subject to process noise w(k), which is additive, Gaussian, and white.

Combined all these together, we can then have the target prediction model:

xi(k) = Fxi(k − 1) + w(k), w(k) ∼ N(0,Q) (2.2)

In this equation, F ∈ R4×4 represents the state transition matrix for the constant-

velocity model [3], and Q denotes the prediction covariance matrix. This model

5

effectively captures the essential dynamics of the moving targets and provides

a suitable framework for the analysis and implementation of the proposed

human-robot collaborative tracking approach.

Let P = P1, . . . ,PN denote the target assignment to the robot team, such

that Pn ∩ Pn′ = ∅, n , n′ and
⋃

n = 1NPn = P. To simplify, we assume that P

is known a priori and remains constant throughout the mission. However, we

will incorporate robot and target dynamics and adaptive assignment control

strategies in the future. zn,i(k) represents the measurements of the ith target by

the nth robot. This can be achieved once the robot ”sees” the target, denoted by

Sn. In contrast to conventional sensors that measure the range and bearing to

targets [13, 32], we derive a vision-based measurement model in Section 3.4.1,

which relies on images streamed by the robot camera and directly measures

target positions in the inertial frame FW as follows:

zn,i(k) =


Hxi(k) + v(k) if xi(k) ∈ Sv(k)

∅ if xi(k) < Sn(k)
(2.3)

where H = [I2 02] and v(k) ∼ N(0,Σ) is Gaussian noise.

Imagine a scenario in which robots collaborate with human operators in a

tracking mission, aiming to maximize the cumulative tracking time for all tar-

gets. Cooperation within the mixed team is facilitated through a two-way mes-

sage exchange mechanism to share mission-critical data. Both the robot message

qn, n ∈ N and the human message m, will be introduced in Section 3.4.2.

The tracking time of Ti, i ∈ Pn up to time k is defined as:

ti(k) =
k∑
τ=1

1(xi(τ) ∈ Sn(τ)) (2.4)

6

We can use a global utility function Ug to set the objective of the MHRT:

Ug =

M∑
i=1

ti(T f) (2.5)

We aim to maximize the robot control ability to achieve optimal tracking

performance by the task end time T f .

Optimizing a global utility in a multi-robot team necessitates accumulating

and processing information from all agents in the team [4, 2], which often results

in high communication and computational loads. This paper introduces a dis-

tributed approach where the global objective is achieved by individual robots

concurrently and efficiently optimizing a local utility function. The local utility

function Un,i(·) represents local measure of tracking performance which aligns

with Ug [2] and is also defined as a function of the robot’s state sn(k), the target

measurement zn, i(k), and the human message m in Section 3.4.3. Furthermore,

let B represent an obstacle map of the workspace, and let C(B) be the penalty

function for obstacle collision. The distributed cooperative tracking problem

will be discussed in details in 3.4.

7

CHAPTER 3

AI ENABLED PATH PLANNING FOR AUTONOMOUS VEHICLE

3.1 Obstacles Reconstructions

The reconstruction of obstacle maps is an essential process for creating optimal

paths for autonomous vehicles, robots, and drones. With the help of modern

software and tools, it has become easier to create accurate 3D models of complex

structures like big cities. In this essay, we will discuss how to reconstruct the

obstacle map using the example of the big city model from Unreal Engine 5.

Firstly, we need to select a street or area in the 3D city model and extract

its geometry. For this purpose, we can use software like Solidworks, which can

import 3ds files and export them to a more compatible format such as STEP.

This step is crucial as it allows us to work with the geometry of the selected area

more efficiently.

Next, we need to convert the STEP file into STL format. STL (STereoLithog-

raphy) is a widely used format for 3D printing and is also compatible with most

of the modern CAD software. To convert the STEP file into STL, we can use a

MATLAB function called 2STL, which converts the 3D model into an STL file.

This file can then be used to create an accurate 3D representation of the area we

selected.

After generating the 3D model, we need to simplify it to create a more man-

ageable layout for the obstacle map. This step is essential as the complex 3D

model can cause computational problems, making it challenging to create an

accurate obstacle map. By simplifying the 3D model, we can generate a 2D ob-

8

stacle map, which represents a bird’s eye view of the area. This 2D obstacle map

can be used to create optimal paths from one point to another within the area.

Finally, we can use the 2D obstacle map to create optimal paths. By using

algorithms such as A* and Dijkstra’s algorithm, we can find the shortest path

between two points in the area. These algorithms use the 2D obstacle map to

determine the optimal path while avoiding any obstacles in the area.

Reconstructing an obstacle map for a complex structure like a big city re-

quires multiple steps, including selecting the area, converting it to a more com-

patible format, simplifying it, and generating a 2D obstacle map. The process

described above can be used as a general guideline for reconstructing obstacle

maps for any complex structure.

Figure 3.1: Reconstruction of the virtual environment.

3.2 Path Planning for Drones

A* and RRT are used for path planning in our work. We choose A* as it produces

a more optimal path than RRT.

9

3.2.1 RRT Algorithm

The RRT algorithm works by randomly generating points in the search space

and connecting them with a tree structure to build a path towards the goal state.

The basic idea behind RRT is to start with a single root node and randomly

generate new nodes in the search space. The algorithm then connects the newly

generated node to its nearest neighbor in the tree and repeats this process until

a node is generated that is close enough to the goal state. The tree structure is

incrementally built over time as the algorithm explores the search space, and

once the goal node is reached, the algorithm can be used to backtrack from the

goal node to find the path from the start node to the goal node [31].

One of the key advantages of the RRT algorithm is its ability to handle high-

dimensional and complex environments. Unlike other pathfinding algorithms,

such as A* or Dijkstra’s algorithm, the RRT algorithm can be used to find paths

in environments with many obstacles and with a large number of dimensions.

Additionally, the RRT algorithm is probabilistically complete, meaning that it is

guaranteed to find a solution if one exists, provided that enough time is given

[25]. Another advantage of RRT is its simplicity and ease of implementation.

Unlike other pathfinding algorithms, the RRT algorithm does not require a grid-

based representation of the search space, which can be computationally expen-

sive for large and complex environments. Instead, the algorithm can be imple-

mented using a simple tree structure, making it easy to implement and modify

for different applications. However, the RRT algorithm also has some limita-

tions. For example, the quality of the path found by the RRT algorithm may not

be optimal, as the algorithm is based on a random sampling process and does

not take into account the distance between nodes or the cost of moving from

10

one node to another [31]. Additionally, the algorithm may not find the shortest

path between the start and goal states if there are many obstacles in the search

space.

3.2.2 A* Algorithm

A* is a popular pathfinding algorithm used in computer science and robotics to

find the shortest path between two points on a graph or grid. The algorithm

combines elements of both Dijkstra’s algorithm and greedy best-first search to

efficiently search through the space of possible routes and find the optimal so-

lution [21].

The A* algorithm works by maintaining two lists of nodes: the open list and

the closed list. The open list contains nodes that have been discovered but have

not yet been explored, while the closed list contains nodes that have already

been explored. The algorithm then evaluates each node on the open list and

selects the node with the lowest total cost, which is a combination of the cost to

reach the node from the starting point and an estimate of the cost to reach the

end point [7].

The estimate of the cost to reach the end point is calculated using a heuris-

tic function, which provides an optimistic estimate of the remaining distance

based on the characteristics of the graph or grid. For example, in a grid-based

maze, the heuristic function might be the Manhattan distance between the cur-

rent node and the end point[42], while in a map-based navigation problem,

the heuristic function might use the distance between two points as the crow

flies[43] .

11

The A* algorithm is both complete and optimal, meaning that it is guaran-

teed to find a solution if one exists and to find the shortest path between the

starting point and the end point. It is also relatively efficient[29], with a time

complexity of O(bd), where b is the branching factor of the graph and d is the

depth of the solution[45].

One of the key advantages of the A* algorithm is its versatility. It can be

used to solve a wide range of pathfinding problems, including maze naviga-

tion, robotic motion planning, and game AI. In addition, the algorithm can be

easily customized by adjusting the heuristic function to fit the specific problem

domain.

However, the A* algorithm does have some limitations. It can be sensitive

to the quality of the heuristic function, which can affect the efficiency and accu-

racy of the search. In addition, the algorithm can struggle with problems that

have a high degree of branching or that involve dynamic obstacles or changing

environments.

A* algorithm is a powerful and flexible tool for solving pathfinding prob-

lems in a variety of domains. Its ability to find optimal solutions efficiently

makes it a popular choice for robotics, game development, and other applica-

tions where efficient pathfinding is critical. While it does have some limitations,

the A* algorithm remains one of the most widely used and effective pathfinding

algorithms available today.

12

Figure 3.2: Illustration of the tracking

3.2.3 Implementation on drones

Due to the complexity of RRT and A* algorithms in three-dimensional space,

we assume that the unmanned aerial vehicle (UAV) does not encounter any

obstacles in the z-axis direction. Thus, we can simplify the obstacle map into a

13

two-dimensional form. This simplification makes it easier to apply pathfinding

algorithms and generates feasible routes for UAVs.

To implement this algorithm, we place the two-dimensional obstacle map

in Matlab and establish communication between Matlab and the UAV. Matlab

generates the route using the pathfinding algorithm and sends it to the UAV

control function. The UAV then follows the specified path until it reaches the

destination.

However, as the environment is dynamic, there may be moving obstacles

such as pedestrians and vehicles that cannot be anticipated beforehand. To

overcome this problem, we implement YOLO and Detectron2 algorithms on the

UAV to avoid real-time obstacles. The depth map algorithm provides informa-

tion on the distance to the nearest obstacle, while the segmentation algorithm

distinguishes between different objects in the environment. By using these al-

gorithms, the UAV can detect and avoid obstacles in real-time.

In conclusion, by simplifying the obstacle map into two dimensions, we can

apply pathfinding algorithms to generate feasible routes for UAVs. The integra-

tion of Matlab and UAV control functions enables the UAV to follow the speci-

fied route accurately. The addition of depth map and segmentation algorithms

enables the UAV to detect and avoid real-time obstacles, making the algorithm

applicable in dynamic environments.

14

3.3 Deep-learning based algorithms’ implementations

A depth map is a 2D representation of the distance between an object and a cam-

era or sensor. This information can be used to detect the presence of obstacles

and estimate their distance from the robot.

A segmentation map is a type of image processing technique used to sep-

arate an image into multiple segments or regions, each representing a distinct

object or part of the image. The goal of segmentation is to divide the image

into meaningful parts, based on certain features, such as color, texture, shape,

or depth, and to identify the objects or regions in the image.

By combining the depth map with a segmentation map, which segments

the image into different objects or regions, the robot can identify and classify

different types of obstacles. To perform obstacle avoidance, the robot would

use its depth map and segmentation map to identify obstacles in its path and

determine the best course of action to avoid them. For example, if the robot

encounters a large, stationary obstacle, it can use its depth map to determine

the distance to the obstacle and adjust its path to avoid it. On the other hand,

if the robot encounters a moving obstacle, such as a person or another vehicle,

it can use its segmentation map to identify the object as a moving obstacle and

adjust its path accordingly.

To improve the accuracy and reliability of the obstacle avoidance system,

the depth map and segmentation map can be combined with additional sen-

sors, such as lidar or radar, to provide a more comprehensive view of the envi-

ronment. The robot can also use machine learning algorithms, such as neural

networks or support vector machines, to analyze the data from the depth map

15

and segmentation map and make more informed decisions about how to avoid

obstacles.

3.3.1 Detectron2 and Mask R-CNN

Detectron2 is an open-source software library that provides a wide range of

computer vision algorithms for object detection, instance segmentation, and

other related tasks. It is built on top of the PyTorch deep learning framework

and provides a modular and flexible architecture that allows users to easily cus-

tomize and extend the existing models.

One of the key features of Detectron2 is its support for state-of-the-art ob-

ject detection models, such as Faster R-CNN and RetinaNet. These models use

a combination of region proposals and deep convolutional neural networks to

detect and classify objects in an image[41, 34]. The models are trained on large

datasets such as COCO, Pascal VOC, and ImageNet, which provide a rich vari-

ety of annotated images for training and testing[35, 9, 8].

The detection model in Detectron2 is based on the following formula:

Detection Score = Classification Score × Regression Score (3.1)

where the classification score is the probability of the object belonging to a cer-

tain class, and the regression score is the predicted bounding box coordinates

of the object. The detection score is used to rank the object proposals and select

the top-scoring proposals as the final detections.

Instance segmentation is another important task in computer vision, and

16

Detectron2 provides a wide range of models and algorithms for this task as

well. One of the popular models is Mask R-CNN[23], which extends Faster

R-CNN by adding a segmentation branch to the network. The segmentation

branch generates a binary mask for each object proposal, which is then used to

refine the object boundaries and improve the accuracy of the detection.

The instance segmentation model in Detectron2 is based on the following

formula:

Mask Score = Classification Score ×Mask Probability (3.2)

where the mask probability is the probability of each pixel belonging to the fore-

ground or background. The mask score is used to refine the object boundaries

and generate more accurate segmentation results.

3.3.2 Mono-depth

Monodepth is a popular algorithm used for depth estimation from single im-

ages. It is based on a deep neural network that is trained to predict the depth

map of a given image[16].

The core idea of Monodepth is to use a convolutional neural network (CNN)

to estimate the depth of each pixel in the input image. This is achieved by train-

ing the network on a large dataset of stereo images, where the depth information

is available for both the left and right camera views[48].

The Monodepth algorithm is based on the following formula:

17

Figure 3.3: Implement the deep learning algorithm on drones.

D = f ·
B
z

(3.3)

where D is the depth of the pixel, f is the focal length of the camera, B is the

baseline distance between the left and right cameras, and z is the distance of the

pixel from the camera.

18

The depth map is estimated by training the CNN to predict the inverse depth

of each pixel, which is proportional to the distance of the pixel from the camera.

The focal length and baseline distance are known values that can be set based

on the camera calibration, and are used to convert the predicted inverse depth

back into the actual depth of each pixel[16].

One of the key advantages of Monodepth is its ability to estimate depth from

a single image, without requiring a stereo camera setup. This makes it suitable

for a wide range of applications, such as robotics, autonomous vehicles, and

virtual reality[6].

In addition to depth estimation, Monodepth can also be used for 3D recon-

struction, by combining the depth maps from multiple images to generate a 3D

point cloud. This can be done using techniques such as Structure from Motion

(SfM) and Multi-View Stereo (MVS)[44].

3.3.3 YOLO

YOLO, short for You Only Look Once, is a popular object detection algorithm

that is widely used in computer vision applications. YOLO is known for its high

accuracy and speed, making it a popular choice for real-time object detection

tasks[40].

The core idea of YOLO is to divide the input image into a grid of cells and

predict the object class and location for each cell. This is achieved by using a

deep convolutional neural network (CNN) that is trained on a large dataset of

annotated images.

19

The YOLO model consists of two main parts: a feature extractor and a detec-

tion head. The feature extractor is typically a pre-trained CNN such as ResNet

[24] or Darknet [40], which is used to extract a set of high-level features from the

input image. The detection head is a set of convolutional layers that predict the

object class and location for each cell in the grid.

The YOLO algorithm is based on the following formula:

Detection Score = Objectness Score × Classification Score × Localization Score

(3.4)

where the objectness score is a measure of how likely the cell contains an ob-

ject, the classification score is the probability of the object belonging to a certain

class, and the localization score is the predicted bounding box coordinates of

the object.

The objectness score is computed based on the intersection over union (IoU)

between the predicted bounding box and the ground truth bounding box. The

classification score is computed using a softmax function over the predicted

class scores for each cell. The localization score is computed using a regression

function that predicts the offset between the center of the cell and the center of

the object.

One of the key advantages of YOLO is its speed. Since the detection is per-

formed on the entire image at once, YOLO can process images in real-time, mak-

ing it suitable for applications such as autonomous driving[14], robotics[19],

and surveillance. Additionally, YOLO is able to detect objects at different scales

and aspect ratios, making it robust to variations in object size and orientation.

20

Figure 3.4: YOLO’s implementation on drones.

3.3.4 Path Re-planing with Imperfect Map Knowledge

Utilizing the information provided, we aim to design a virtual robot that is ca-

pable of autonomously planning a path to its destination, while simultaneously

performing real-time target detection and obstacle avoidance. To evaluate the

drone’s ability to tackle invisible obstacles, we conduct two separate experi-

ments within the city environment designed earlier, which includes two 360-

degree cameras. The drone is tasked with planning a path that avoids detection

by any of the cameras within the city.

As depicted in the accompanying figure, the red dot represents the initial po-

sition, while the blue dot signifies the destination. The red region illustrates the

detection range of the cameras, and the green region demonstrates the drone’s

sensing area. Initially, the drone plans the blue path; however, upon detecting

an unanticipated obstacle in the scene that was not included in the obstacle map,

the drone updates its path. This new path takes advantage of the obstacle’s po-

sition within the camera’s view, providing the drone with a more discreet route.

21

In the second experiment, we introduce imperfections to the obstacle map by

Figure 3.5: Find imperfect walls in the scene.

removing a wall without recording the change in the strategy. Consequently,

the drone must autonomously locate the missing wall and replan its path to

avoid being detected by the cameras. As shown in the figure, the drone suc-

cessfully identifies the discrepancy in the map and adjusts its path accordingly

to achieve its goal. The second figure reveals that the drone manages to find

an improved path without significantly increasing the time needed to reach its

destination, effectively avoiding detection. These experiments demonstrate the

virtual robot’s ability to adapt and navigate within an environment containing

unexpected obstacles and imperfections in the obstacle map. By detecting and

replanning its path in real-time, the drone can evade detection by the cameras

while efficiently reaching its destination.

22

Figure 3.6: Find imperfect walls in the scene.

3.4 Model Based target Detection and Tracking

This section proposes a novel approach for multi-target tracking that achieves

human-robot cooperation, online sensing, and distributed control optimization

in a single framework, as shown in Fig.3.7. Because the robot states sn can be

easily estimated using onboard or external motion sensors, this section focuses

on introducing the vision-based target state estimation, the cooperation mech-

anism in the MHRT, and the tracking utility function for distributed optimiza-

tion.

3.4.1 Online Target State Estimation

Previous studies on vision-based target estimation often rely on a monocular

camera to gather measurements in the image frame or virtual image plane [46,

33], resulting in intricate non-linear sensor measurement models. Alternatively,

23

Figure 3.7: Cooperative tracking framework.

this paper fuses Convolutional Neural Network (CNN)-based target detection

with the ray-tracing technique (Fig.3.8) to estimate the target position in the

inertial frame FW directly, utilizing RGB-D images captured by the onboard

robot camera, as illustrated in Fig.3.9.

The discrete-time index k is omitted in this subsection for the sake of sim-

plicity. Let FI denote the image reference frame, and let xi|image represent the 2D

position of target Ti relative to FI. This 2D position can be approximated using

the image coordinate located at the center of the target’s bounding box, derived

from detection algorithms like MASK-RCNN [22]. With xi|image at hand, the tar-

get depth, di, can be determined by the corresponding pixel value in the depth

image. Following this, the target position with respect to the camera frame FAn

24

Figure 3.8: Illustration of the ray tracing method.

is expressed as:

xi|camera = diK−1[xi|image 1]T (3.5)

where K ∈ R3×3 represents the camera intrinsic matrix. The target measure-

ment zn,i in the inertial frame FW is acquired by transforming xi|camera from FAn

to FW:

zn,i = Rnxi|
T
camera + rT

n (3.6)

where Rn and rn are camera extrinsic parameters that can be estimated from

the robot state vector as follows:

Rn =


cosθn −sinθn 0

sinθn cosθn 0

0 0 1

 , rn = [xn yn 0]T (3.7)

In comparison to the true target state xi, the measurement zn,i does not in-

25

Figure 3.9: Vision-based online target estimation.

clude velocity terms and is assumed to be subject to white, additive Gaussian

noise v, which yields:

zn,i =

1 0 0 0

0 1 0 0

 xi + v (3.8)

3.4.2 Human Robot Cooperation Strategy

Integrating operators into the game setting requires several steps, including im-

plementing fixed cameras in the environment, defining the world coordinate

system, designing the operator interface, and updating the world coordinates

to the algorithm. These steps work together to enable players to interact with

the game environment in a meaningful way.

26

The first step in integrating operators into the game setting is to imple-

ment several fixed cameras in the environment. These cameras capture images

from different perspectives, providing players with different views of the game

world. By using multiple cameras, players can gain a better understanding of

the game environment and make more informed decisions about how to inter-

act with it.

The next step is to define the world coordinate system. This involves using

the pixel coordinates from the camera images and the corresponding real-world

coordinates in the virtual environment to create a transfer function from 2D

pictures to 3D world coordinates. This allows the game to map player actions

in the 2D camera images to the 3D game world, enabling players to interact with

the game environment more intuitively.

Once the world coordinate system is defined, the next step is to design an

interface for human operators. This interface allows players to click on objects

in the camera images, specifying their position in the game world. The interface

then analyzes these clicks and translates them into world coordinates, which are

passed to the game algorithm.

Finally, the world coordinates are updated to the algorithm, and the drone

will update its path and go to the target position specified by the player. Even in

foggy conditions where the drone may lose track of targets, the game algorithm

can use the world coordinates to keep track of the target and ensure that the

drone reaches its intended destination.

In conclusion, integrating operators into the game setting requires several

steps that work together to create a more immersive and interactive gaming

27

experience. By implementing fixed cameras, defining the world coordinate sys-

tem, designing the operator interface, and updating the world coordinates to

the algorithm, players can interact with the game environment more intuitively

and make more informed decisions about how to proceed.

Coordinate transform

The coordinate transform of here is same as illustrated in 2.4.1. We use Ray Trac-

ing methods to change the image frame coordinate to world frame coordinate.

Ray tracing is a rendering technique that is widely used in computer graph-

ics to create realistic images by simulating the behavior of light as it interacts

with objects in a scene. The method involves tracing the path of light rays as

they reflect and refract off surfaces in a three-dimensional space, in order to

determine which surfaces should be visible in a given image.

To perform ray tracing, a virtual camera is placed in the 3D space (Figure

2.2), and rays of light are traced from the camera through each pixel in the image

plane. These rays are then traced through the virtual environment, and at each

point where the ray intersects with an object or surface, various properties of

the material such as reflectivity, transparency, and color are calculated using

complex mathematical algorithms.

The method is computationally intensive, as it requires tracing a large num-

ber of rays for each pixel in the image. However, the resulting images can be

highly realistic, as ray tracing accurately models the way light behaves in the

real world, including the effects of reflections, refractions, shadows, and other

lighting phenomena.

28

In the context of autonomous driving, ray tracing can be used to detect and

track objects in the environment, as well as to plan and optimize the vehicle’s

path based on the properties of the objects in the scene.

We use the online figures captured by the fixed camera inside the virtual

environment for supervision window. Then we can click on the target which

will catch the position of our click point. Using the ray tracing algorithm, we

get the world coordinate.

Operator’s assistance in extreme environment

In order to enable effective cooperation between a human operator and robots

in the Multiple Human-Robot Teams (MHRT) system, it is necessary to establish

a two-way communication channel that enables message exchanging through a

shared network [1]. The communication network is assumed to have negligible

delays to ensure smooth and real-time interaction between the human operator

and the robots.

In the MHRT system, the tracking of targets is subject to uncertainties in

the target dynamics. As the time gap between the tracking intervals increases,

the accuracy of the robot’s prediction of the target’s position decreases, which

lowers the probability of successful recovery of the target. To mitigate this effect,

robot Rn proactively initiates the broadcasting of query messages to the human

operator, requesting information on the least tracked target. The index of this

target is expressed as

ın = arg max
i∈Pn

(k − ti) (3.9)

By doing so, the robot seeks to improve the accuracy of its target tracking

29

Figure 3.10: Human operator’s assistance in tracking.

performance and ensure timely recovery of targets even in the face of dynamic

uncertainties.

The missed-tracking time of the least tracked target is τn = max
i∈Pn

(k− ti), which

refers to the duration of time that has passed since the robot Rn lost track of the

30

target with the lowest tracking count. This metric is an important indicator of

the target’s importance and determines the priority of the robot’s request for

expert information from the human operator. The longer the missed-tracking

time, the less accurate the robot’s prediction of the target’s trajectory, and the

less likely it is for the robot to recover the target.

To facilitate the communication between the robots and the human operator,

a query message is sent by robot Rn to request information on the least tracked

target. This message is defined as qn ≜ [ın τn n]T , where the robot index

n serves as a unique identifier for the message, and the priority indicator τn

informs the operator of the importance of the requested information. The pri-

ority indicator is determined by the missed-tracking time of the least tracked

target, with larger values indicating higher priority for the operator to provide

expert information about the target. By providing this information, the human

operator can help the robot team improve their tracking time and increase the

likelihood of successfully recovering the target.

The coordination and communication between human operators and robots

are crucial for successful target tracking. Human operators can selectively up-

date the states of the least tracked target among all queried targets in response

to robot queries, and they can do so using update messages. These messages

are sent asynchronously, allowing the operator to decide when to update the

robot team without affecting the tracking task negatively. In addition, humans

can identify unexpected changes in the environment, such as the appearance of

new targets, or intruders, and designate robots to track them through intruder

messages.

To distinguish between these two types of messages, a binary variable

31

l ∈ {0, 1} is used, where l = 0 represents an update message and l = 1 rep-

resents an intruder message. The human message is then encoded as m ≜

[l n̂ ȷ χT
ȷ]

T . Here, n̂ is the index of the robot that will receive the message,

ȷ is the index of the human selected target, and χ ȷ ∈ R2 is the human observed

target position. By transmitting these messages, the human operator can effec-

tively guide the robots to track the most important targets and adapt to changes

in the environment.

The two-way message-exchange scheme is illustrated in Fig. 3.11, which

shows a user interface that has been developed specifically to facilitate commu-

nication between operators and robots. In order to update its estimation of the

target states, the robot relies on the information contained in update messages

that are received from the operator. These messages typically contain informa-

tion about the current state of the target, such as its position or velocity, as well

as any other relevant contextual information.

Once the update message is received, the robot updates its online estimation

of the target states, x̂n,i(k), as follows:

x̂n,i(k) =



χ ȷ if n̂ = n, l = 0, ȷ = i

zn,i(k) if n̂ , n, xn,i ∈ Sn(k)

Fxn,i(k − 1) otherwise

(3.10)

It can also updates its online estimation of the target states using a variety of

techniques, such as Kalman filtering or particle filtering. These methods enable

the robot to more accurately estimate the current state of the target, which in

turn can be used to improve the robot’s ability to track and interact with the

target.

32

When a robot receives an intruder message, its response is typically different

than in other types of human-robot communication. In particular, the robot will

append the new target index to its existing assignment matrix, which is denoted

as Pn = Pn ∪ { ȷ}, with the following initialization:

x̂n,|Pn |(k) = χ ȷ, if n̂ = n, l = 1 (3.11)

The intruder will then be actively tracked by robot Rn.

Figure 3.11: Message exchange within the human-robot team.

3.4.3 Tracking Utility Function

In cooperative multi-robot systems, distributed tracking of multiple targets is

a challenging task that requires the robots to work together effectively. In this

work, the authors propose a distributed cooperative tracking approach where

each robot maximizes a local utility function. The local utility functions are

designed to align with the global utility function which is aimed at achieving

the overall MHRT goal [2] of maximizing the cumulative tracking time of all

targets.

33

In the paper, they consider tracking scenarios where the number of targets

exceeds the number of robots, making it impossible to simultaneously and con-

sistently track all targets. To address this challenge, authors propose a novel

local utility function that captures the trade-off between the instantaneous im-

provement in tracking time and the exploration of missed targets.

The local utility function is designed as a combination of two components:

a tracking reward and a navigation reward. The tracking reward is a function

of the planned robot FOV Sn(k + 1) and the predicted target states x̂n,i(k + 1)

obtained by applying the prediction model on the target state estimates x̂n,i(k).

The tracking reward is defined as

Dn,i = γ · 1(x̂n,i(k + 1) ∈ Sn(k + 1)) (3.12)

where γ ∈ R+ is a reward that has been determined through empirical analysis

and is generated if the planned robot FOV is utilized to track a target in the

upcoming time step. Therefore, the tracking reward component of the local

utility function incentivizes the robots to make immediate improvements in the

tracking time of targets by prioritizing their movements and actions towards

those that can be detected within their FOV.

The navigation reward, on the other hand, encourages exploration of missed

targets by rewarding robots that move towards targets that are not currently

within their FOV. This reward is designed to incentivize robots to move towards

missed targets in order to improve the overall tracking performance.

By combining the tracking reward and the navigation reward, the authors

are able to design a local utility function that effectively captures the trade-off

between tracking time and exploration. This allows the robots to work together

to maximize the overall tracking time, while also exploring new areas of the en-

34

vironment in order to identify missed targets. By doing so, the authors demon-

strate the effectiveness of their approach in achieving the MHRT goal in chal-

lenging multi-target tracking scenarios.

Next, assume the workspaceW is tessellated into equally sized and disjoint

2D cells [27] represented by C = {C1, . . . ,Cq}. Letting yℓ ∈ R2 denote the 2D

centroid coordinate of the ℓth cell, an attractive potential for target Ti is defined

in terms of the Euclidean distance between the centroid of each cell and the

target’s predicted position

Mi(ℓ) = η(ti) · ∥yℓ − x̂n,i(k + 1)∥, ∀ℓ (3.13)

where η(ti) is a factor that is inversely proportional to the tracking time ti, hence

incentivizing exploration of the lesser tracked targets. Then, the navigation re-

ward for robot Rn is defined as the cumulative negative attractive potential of

the cells covered by the planned FOV Sn(k + 1)

Mn,i = −

q∑
ℓ=1

Mi(ℓ) · 1(Cℓ ∈ Sn(k + 1)) (3.14)

where the negative sign ensures consistency with the maximization framework

such that larger rewards pull the robot closer to the targets. Then, the local

utility is defined as

Un,i(zn,i, sn,m) = Mn,i + Dn,i (3.15)

Notice that the target observation zn,i, robot state sn, and human message m are

implicitly integrated to the utility function through x̂n,i(k) and Sn(k + 1) in (3.12-

3.14).

Finally, collision with static obstacles B ∈ W is avoided by incurring a

penalty ζ ∈ R+ on the planned robot state sn(k + 1) that will collide with the

obstacles

C(B) = ζ · 1(sn(k + 1) ∈ B) (3.16)

35

Combining (3.15-3.16) together gives the objective function for distributed opti-

mization that is solved locally and concurrently by each robot.

3.4.4 Simulation Results

The cooperative tracking approach presented in this paper is thoroughly as-

sessed via both simulation-based and real-world experimental scenarios. In

order to make a comparison, a weak-cooperative tracking algorithm and a

non-cooperative tracking algorithm are also implemented within the simulation

framework.

In the simulation environment, MHRT is set up within a 100m x 50m

workspace, where four mobile robots are randomly placed. A human operator

observes the workspace through a surveillance camera, tasked with tracking

six targets that move unrestrained throughout the same workspace. Fig.3.12-

3.13 display a sample testing instance, where targets are designated by the color

of the robot assigned to them, and the area observed by the human operator

is represented by a pink polygon. Although the initial tracking scenario in

Fig.3.12 presents a significant challenge, with no target in the robots’ Field of

View (FOV), the combined human-robot team effectively cooperates and suc-

cessfully tracks all targets by the time step k = 17, as shown in Fig.3.13.

A separate investigation compares the proposed Cooperative tracking ap-

proach against two alternative strategies: 1) Non-cooperative tracking, in which

robots individually optimize the local tracking utility function without any hu-

man operator involvement, and 2) Weak cooperative tracking, where robots trans-

mit query messages, but omit the priority indicator (explained in Section 3.4.2)

36

 Robots

Assigned

targets

 Target and its heading:

Robot and its FOV:

Human operator view:

𝒯3
𝒯4

𝒯1
𝒯2 𝒯6

𝒯5

𝒯1, 𝒯2 𝒯3 𝒯4 𝒯5, 𝒯6

ℛ1 ℛ2 ℛ3 ℛ4

Target and its heading:

Robot and its FOV:

Human operator view:

𝒯3
𝒯4

𝒯1
𝒯2

𝒯6

𝒯5

Human

operator view

Robot ℛ𝑛:

FOV:

Target 𝒯𝑖:

Target heading:

Surveillance

camera

ℛ1

ℛ3

ℛ2

ℛ4

Figure 3.12: The initial configuration of a testing instance.

ℛ2
ℛ4

ℛ1

ℛ3

𝒯3

𝒯4
𝒯1

𝒯2
𝒯6

𝒯5 ℛ2

ℛ4

ℛ1

ℛ3

Figure 3.13: Illustration of the MHRT tracking all targets at time step k =
17.

necessary for informing human operators about the least tracked target. This

comparison study comprises 20 testing instances for each of the three afore-

mentioned strategies. The outcomes are quantitatively appraised using two

time-based metrics: the Average Target Tracking Rate (ATTR), calculating the

ratio of average target tracking time to the total simulation time, and the Min-

imum Target Tracking Rate (MTTR), determining the ratio of tracking time for

37

the least tracked target to the total simulation time. Superior performance is

indicated by higher values for both metrics.

It’s shown that the performance vary a lot across various tracking strategies

as presented in Table 3.1. The low value of MTTR in non-cooperative tracking

suggests that a homogeneous robot team is likely to lose track of at least one tar-

get for the majority of the time. This occurs because the robots, having limited

and directional FOV, cannot guarantee simultaneous and consistent tracking of

a larger number of freely moving targets. Additionally, the increasing uncer-

tainty in target estimates as a target is lost makes it difficult for the robots to

recover the lost target.

The weak-cooperative tracking strategy offers a modest improvement over

non-cooperative tracking by facilitating communication within the mixed

human-robot team. However, the robots fail to share information about the

lesser tracked targets effectively, causing human operators to be short-sighted

about target priorities when deciding which targets to update.

In contrast, the cooperative tracking strategy consistently delivers the best

performance due to the implementation of a two-way cooperation mechanism.

On one hand, robots actively send messages containing priority indicators

about missed targets, which aids human decision-making. On the other hand,

the human operator selectively updates the target with the highest priority

based on the robot queries, guiding the robots to recover lost targets and ul-

timately improve the overall tracking time.

These findings underscore the importance of effective communication and

collaboration between human operators and robots in achieving optimal track-

38

ing performance. By addressing the limitations of the non-cooperative and

weak-cooperative strategies, the cooperative tracking approach proves to be a

more reliable and efficient solution for multi-target tracking applications.

Table 3.1: Tracking Performance Comparison

Methods ATTR MTTR

Non-cooperative tracking 44.2% 5.6%

Weak-cooperative tracking 50.6% 11.8%

Cooperative tracking 57.0% 26.5%

39

CHAPTER 4

FUTURE WORK

In the preceding sections, we have described the development of an au-

tonomous vehicle that can operate in a virtual environment. This virtual ve-

hicle is designed to perform several functions, including target detection, target

tracking, and path planning. The virtual vehicle is capable of operating in ex-

treme environments, with the aid of human operators who can intervene when

necessary to correct the vehicle’s path.

To further test and refine the capabilities of the virtual vehicle, we intend to

integrate it with a real robot car in our laboratory. This will enable us to eval-

uate the virtual vehicle’s performance in a more realistic setting, where it must

navigate a physical environment and interact with other objects and vehicles.

Specifically, we will use the virtual car to perform obstacle avoidance and send

control signals to the real car via a local area network as shown in figure 4.1. The

virtual robot will move around the box in the simulation environment. And the

real lab robot will do the same as the virtual robot.

By allowing the virtual car to control the real car autonomously, we can test

the system’s ability to handle unexpected situations and refine its algorithms for

more efficient and effective operation. This approach will enable us to identify

any limitations of the virtual car and to improve its functionality as necessary.

Ultimately, the goal of this research is to develop autonomous vehicle technol-

ogy that can enhance transportation safety, efficiency, and accessibility.

In this paper, we provide substantial evidence affirming the effectiveness of

virtual simulation as a viable tool for real robot simulation. Our research re-

40

Figure 4.1: Illustration of the simultaneously obstacle avoidance.

volves around successfully applying various AI algorithms to a virtual drone

and assessing their performance and reliability across several case studies.

Through this practical approach, we were able to underscore the utility of vir-

tual environments for developing, testing, and optimizing AI algorithms, thus

contributing to their improvement before transitioning to real-world applica-

tions.

The experimental findings demonstrated an impressive correlation between

the simulation predictions and the actual outcomes, reinforcing the validity of

our approach. Moving forward, our research intends to advance the scope of

this study by incorporating drones as agents in our simulations. This strategic

addition will introduce the complexities of a three-dimensional environment,

requiring considerations for the Z-axis.

Moreover, we aim to replace the virtual human avatar with a real human

avatar to further enhance the authenticity of the simulation. By leveraging the

capabilities of Virtual Reality (VR) headsets, we plan to simulate a human pres-

41

ence within the virtual environment. This immersive VR experience will help

us better understand the intricate dynamics between humans and robots in a

shared environment, enabling us to develop AI algorithms that are highly adap-

tive, responsive, and effective in real-world scenarios. These advancements are

projected to significantly contribute to the evolving field of robotics and AI.

42

CHAPTER 5

ACKNOWLEDGEMENT

I would like to take this opportunity to extend my heartfelt gratitude to several

individuals without whom this thesis would not have been possible.

Firstly, I would like to express my sincere appreciation to Silvia, whose ex-

ceptional projects have been a constant source of inspiration and learning for

me. Her challenging tasks have shaped my understanding and competence in

the field, for which I am truly grateful. I am pleased to report that I have com-

pleted the path planning implementations and transitioned them to the Unreal

Engine under her guidance. I have managed to reconstruct the 3D environ-

ment and human characters in the virtual environment for all the projects. I

also implement the Airsim package in the environment which give us the drone

platform for all the tasks.

My deep appreciation goes to Dr. Yuchen Chen for his invaluable theoreti-

cal guidance. His expertise and commitment have provided a robust academic

framework to my work, strengthening the overall quality of my thesis.

I am deeply thankful to Dr. Junyi Dong and Sushrut for their substantial

contributions to the robots’ collaboration framework, target state estimation, the

decentralized robots’ control, and online sensing. Their insights have greatly

enhanced the technical depth of my work.

Special thanks to Cong Liu and Rak for their significant role in establishing

the communication network between the lab robot and the virtual robot. Their

expertise in network communication has been crucial to the successful integra-

tion of our systems.

43

Lastly, I would like to acknowledge my own contributions to this project.

I am proud of the work I have put into the human-robot interface design, fog

system design, and the implementation of YOLO, Detectron 2, and Monodepth

on the drone.

Thank you all for your support, guidance, and invaluable contributions.

This journey would not have been as rewarding and fulfilling without your

help.

44

BIBLIOGRAPHY

[1] Marco Aggravi, Giuseppe Sirignano, Paolo Robuffo Giordano, and Clau-
dio Pacchierotti. Decentralized control of a heterogeneous human-robot
team for exploration and patrolling. IEEE Transactions on Automation Sci-
ence and Engineering, 2021.

[2] Gürdal ARSLAN, Jason R MARDEN, and Jeff S SHAMMA. Autonomous
vehicle-target assignment: A game-theoretical formulation. Journal of dy-
namic systems, measurement, and control, 129(5):584–596, 2007.

[3] M Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp.
A tutorial on particle filters for online nonlinear/non-gaussian bayesian
tracking. IEEE Transactions on signal processing, 50(2):174–188, 2002.

[4] Jacopo Banfi, Jérôme Guzzi, Francesco Amigoni, Eduardo Feo Flushing,
Alessandro Giusti, Luca Gambardella, and Gianni A Di Caro. An inte-
ger linear programming model for fair multitarget tracking in cooperative
multirobot systems. Autonomous Robots, 43(3):665–680, 2019.

[5] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4:
Optimal speed and accuracy of object detection, 2020.

[6] Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan Adeli, Yan
Wang, Le Lu, Alan L. Yuille, and Yuyin Zhou. Transunet: Transformers
make strong encoders for medical image segmentation, 2021.

[7] Rina Dechter and Judea Pearl. Generalized best-first search strategies and
the optimality of a*. 32(3), 1985.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-
genet: A large-scale hierarchical image database. In 2009 IEEE Conference
on Computer Vision and Pattern Recognition, pages 248–255, 2009.

[9] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John M.
Winn, and Andrew Zisserman. The pascal visual object classes (voc) chal-
lenge. International Journal of Computer Vision, 88:303–338, 2010.

[10] L. Feng, Bart Everett, and J. Borenstein. Where am i? : sensors and methods
for autonomous mobile robot positioning. 02 2006.

45

[11] Silvia Ferrari and Thomas A Wettergren. Information-Driven Planning and
Control. MIT Press, 2021.

[12] Jodi Forlizzi, Carl F. DiSalvo, and Francine Gemperle. Assistive robotics
and an ecology of elders living independently in their homes. Hu-
man–Computer Interaction, 19:25 – 59, 2004.

[13] Eric W Frew and Jack Elston. Target assignment for integrated search and
tracking by active robot networks. In 2008 IEEE International Conference on
Robotics and Automation, pages 2354–2359. IEEE, 2008.

[14] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vi-
sion meets robotics: The kitti dataset. The International Journal of Robotics
Research, 32:1231 – 1237, 2013.

[15] Clement Godard, Oisin Aodha, and Gabriel Brostow. Unsupervised
monocular depth estimation with left-right consistency. 07 2017.

[16] Clément Godard, Oisin Mac Aodha, and Gabriel J. Brostow. Unsupervised
monocular depth estimation with left-right consistency, 2017.

[17] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[18] Saurabh Gupta, James Davidson, Sergey Levine, Rahul Sukthankar, and
Jitendra Malik. Cognitive mapping and planning for visual navigation.
In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 7272–7281, 2017.

[19] Saurabh Gupta, Ross B. Girshick, Pablo Arbeláez, and Jitendra Malik.
Learning rich features from rgb-d images for object detection and segmen-
tation. ArXiv, abs/1407.5736, 2014.

[20] Christian G Harris, Zachary I Bell, Runhan Sun, Emily A Doucette,
J Willard Curtis, and Warren E Dixon. Target tracking in the presence of
intermittent measurements by a network of mobile cameras. In 2020 59th
IEEE Conference on Decision and Control (CDC), pages 5962–5967. IEEE, 2020.

[21] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for
the heuristic determination of minimum cost paths. IEEE Transactions on
Systems Science and Cybernetics, 4(2):100–107, 1968.

46

http://www.deeplearningbook.org

[22] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-
cnn. In Proceedings of the IEEE international conference on computer vision,
pages 2961–2969, Venice, 2017.

[23] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-
cnn. In 2017 IEEE International Conference on Computer Vision (ICCV), pages
2980–2988, 2017.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition, 2015.

[25] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for opti-
mal motion planning. CoRR, abs/1105.1186, 2011.

[26] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Probabilis-
tic roadmaps for path planning in high-dimensional configuration spaces.
IEEE Transactions on Robotics and Automation, 12(4):566–580, 1996.

[27] Asif Khan, Evsen Yanmaz, and Bernhard Rinner. Information exchange
and decision making in micro aerial vehicle networks for cooperative
search. IEEE Transactions on Control of Network Systems, 2(4):335–347, 2015.

[28] N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-
source multi-robot simulator. In 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), volume 3,
pages 2149–2154 vol.3, 2004.

[29] Richard E. Korf. Depth-first iterative-deepening: An optimal admissible
tree search. Artificial Intelligence, 27(1):97–109, 1985.

[30] J.J. Kuffner and S.M. LaValle. Rrt-connect: An efficient approach to single-
query path planning. In Proceedings 2000 ICRA. Millennium Conference.
IEEE International Conference on Robotics and Automation. Symposia Proceed-
ings (Cat. No.00CH37065), volume 2, pages 995–1001 vol.2, 2000.

[31] Steven M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[32] Su-Jin Lee, Soon-Seo Park, and Han-Lim Choi. Potential game-based non-
myopic sensor network planning for multi-target tracking. IEEE Access,
6:79245–79257, 2018.

[33] Keith A LeGrand, Pingping Zhu, and Silvia Ferrari. A random finite

47

set sensor control approach for vision-based multi-object search-while-
tracking. In 2021 IEEE 24th International Conference on Information Fusion
(FUSION), pages 1–8. IEEE, 2021.

[34] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár.
Focal loss for dense object detection, 2018.

[35] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Gir-
shick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick,
and Piotr Dollár. Microsoft coco: Common objects in context, 2015.

[36] Wenjie Lu, Guoxian Zhang, and Silvia Ferrari. An information potential
approach to integrated sensor path planning and control. IEEE Transactions
on Robotics, 30(4):919–934, 2014.

[37] Igiri Onaji, Divya Tiwari, Payam Soulatiantork, Boyang Song, and
Ashutosh Tiwari. Digital twin in manufacturing: conceptual framework
and case studies. International Journal of Computer Integrated Manufacturing,
35(8):831–858, 2022.

[38] Taihú Pire, Thomas Fischer, Gastón I. Castro, Pablo de Cristóforis, Javier
Civera, and Julio Jacobo-Berlles. S-ptam: Stereo parallel tracking and map-
ping. Robotics Auton. Syst., 93:27–42, 2017.

[39] Morgan Quigley. Ros: an open-source robot operating system. In IEEE
International Conference on Robotics and Automation, 2009.

[40] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only
look once: Unified, real-time object detection. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 779–788, 2016.

[41] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:
Towards real-time object detection with region proposal networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 39(6):1137–1149,
2017.

[42] S.J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson
series in artificial intelligence. Pearson, 2021.

[43] Hanan Samet. The Design and Analysis of Spatial Data Structures. Addison-
Wesley Longman Publishing Co., Inc., USA, 1990.

48

[44] Johannes L. Schönberger and Jan-Michael Frahm. Structure-from-motion
revisited. 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4104–4113, 2016.

[45] Nathan R. Sturtevant. Benchmarks for grid-based pathfinding. IEEE Trans-
actions on Computational Intelligence and AI in Games, 4(2):144–148, 2012.

[46] Hongchuan Wei, Pingping Zhu, Miao Liu, Jonathan P How, and Silvia
Ferrari. Automatic pan–tilt camera control for learning dirichlet process
gaussian process (dpgp) mixture models of multiple moving targets. IEEE
Transactions on Automatic Control, 64(1):159–173, 2018.

[47] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross
Girshick. Detectron2. https://github.com/facebookresearch/
detectron2, 2019.

[48] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G. Lowe. Unsu-
pervised learning of depth and ego-motion from video, 2017.

49

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

	Biographical Sketch
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	PROBLEM FORMULATION AND ASSUMPTIONS
	AI Enabled Path Planning for Autonomous Vehicle
	Obstacles Reconstructions
	Path Planning for Drones
	RRT Algorithm
	A* Algorithm
	Implementation on drones

	Deep-learning based algorithms' implementations
	Detectron2 and Mask R-CNN
	Mono-depth
	YOLO
	Path Re-planing with Imperfect Map Knowledge

	Model Based target Detection and Tracking
	Online Target State Estimation
	Human Robot Cooperation Strategy
	Tracking Utility Function
	Simulation Results

	Future Work
	Acknowledgement
	Bibliography

