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Recent developments in manufacturing, processing capabilities, and sensor de-

sign point to a future in which sensor-equipped robots will assist humans by

autonomously performing difficult, hazardous tasks such as visually inspect-

ing utilities and infrastructure, locating a missing person, or monitoring poten-

tially hazardous environmental conditions. To achieve this, perception algo-

rithms must be developed which use data from on-board exteroceptive sensors

to gather information on targets while navigating autonomously through un-

known environments. Often, these tasks are best performed by highly maneu-

verable aerial robots which can easily avoid obstacles and access unique van-

tage points, but also require computationally efficient perception algorithms

and power-efficient sensors due to their limited power budgets. Insect-scale

flapping-wing robots represent an extreme, motivating example of aerial robots

which, although highly maneuverable due to their extreme reduction in size

and weight, also require high frequency sensing and control loops that oper-

ate on just milliwatts of power. However, conventional sensing and percep-

tion frameworks operate using too much data to operate at the high frequencies

required by these robots. Energy-efficient, biologically inspired neuromorphic

processors and sensors present a potential solution to this challenge. Neuromor-

phic chips and their software analog, spiking neural networks (SNNs), can be

trained to approximate arbitrary functions while learning and adapting online.



Neuromorphic cameras consume only milliwatts of power despite operating

with microsecond temporal precision. However, existing neuromorphic percep-

tion algorithms either collect only sparse information about the environment or

do not account for a moving sensor and are thus inapplicable to flapping-wing

robot navigation.

This work presents a framework of computationally efficient methods for

neuromorphic perception and control to enable autonomous obstacle avoidance

and target detection using highly agile micro aerial vehicles (MAVs). The SNN-

based control method presented here is developed using a comprehensive, full-

envelope flapping-wing flight dynamics model also presented in this work. This

approach models flapping flight based on blade-element theory and is used to

determine a broad class of set points, trim conditions, and quasi-steady ma-

neuvers including coordinated turns. The model, analysis, and stability results

are successfully validated experimentally for both stable and unstable modes.

The SNN-based control approach is shown to be capable of controlling maneu-

vers including takeoff, landing, and coordinated turns throughout the flight en-

velope while adapting online to account for unmodeled parameter variations

and disturbances. Computationally efficient neuromorphic visual perception

techniques for obstacle avoidance and target detection are also developed com-

prising methods for dense optical flow estimation, dense monocular depth esti-

mation, and independent motion detection. These methods leverage the high

sensing rate of neuromorphic cameras to enable simple, linear assumptions

which lead to improved accuracy and reduced computational cost compared

with existing methods. In total, the methods presented here represent a compu-

tationally efficient framework for target tracking and obstacle avoidance with

autonomous micro aerial vehicles.
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CHAPTER 1

INTRODUCTION

Significant recent developments in manufacturing, processing capabilities,

and sensor design have created the foundation of a future in which sensor-laden

robots assist human activities by autonomously performing tasks in remote and

hazardous environments. Such tasks frequently involve gathering information

about a target. For example, visually inspecting utilities and infrastructure, lo-

cating a missing person in need of assistance, or monitoring potentially haz-

ardous environmental conditions in a specific area. To enable robots to reliably

perform these tasks in unknown, cluttered environments requires tightly inte-

grated perception and control methods which maximize the information ob-

tained about a target while maintaining stability in the presence of potential

disturbances and unexpected conditions.

The ability of a robot to gather information on a target in cluttered environ-

ments increases significantly if it can be made more maneuverable. For instance,

flying robots such as quadcopters can view targets from additional perspectives

which are not available to ground-based robots. However, the maneuverability

of a robot depends not only on the physical capabilities of the robot, but also

on control methods which are effective throughout the robot’s operational en-

velope. Such methods must be based on accurate models of the robot dynamics

to guarantee stability and performance during maneuvers required for obsta-

cle avoidance and information gathering. This is especially true for small, agile

robots due to the rapid timescales of their dynamics, which can quickly lead to

instability and crashes if unaccounted for.

Recently, micro aerial vehicles (MAVs) have been developed on the insect-
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scale, which have the potential advantages demonstrated by their biologi-

cal counterparts of accessing small, confined spaces and flying safely even

in the event of collisions. These insect-scale flapping-wing robots represent

an extreme, motivating example of highly maneuverable robots which, when

equipped with power-efficient exteroceptive sensors, can effectively gather in-

formation on targets in cluttered environments which may be impassible to

larger robots and humans. However, autonomous flight at the insect scale poses

several challenges which must first be overcome. Insect-scale flapping robots

are challenging to stabilize due to their fast dynamics, sensitivity to unmod-

eled parameter variations such as wing asymmetries, and the periodic nature of

their control input. On-board controllers should be capable of adapting to unex-

pected disturbances while operating on just milliwatts of power. Similarly, on-

board sensors such as cameras must operate on the same power budget while

maintaining a sufficiently high sensing rate to cope with the rapid movement of

the robot during flight.

Neuromorphic, or event-based hardware presents a potential solution to

these challenges through energy-efficient, adaptable hardware inspired by bi-

ological nervous systems. Energy efficient neuromorphic chips have been de-

veloped which mimic networks of biological neurons and can be trained to ap-

proximate arbitrary functions while rapidly adapting online to improve perfor-

mance. The term “Neuromorphic sensors” encompasses many different classes

of sensors, all of which are similarly inspired by biological nervous systems.

Generally, neuromorphic sensors communicate information through events that

indicate the change in a measured value, such as the light intensity in a vision

sensor or an acoustic signal [67] for a spatial audition sensor. These sensors

eliminate the redundancy in measured and transmitted data by signaling only

2



changes in the measured value, typically in an asynchronous fashion and at a

far lower power requirement than their more traditional counterparts. In par-

ticular, neuromorphic cameras have been demonstrated which consume only

milliwatts of power while measuring changes in the camera field of view (FOV)

with microsecond precision [12,25,66,83,121]. Despite the high temporal resolu-

tion of these cameras, they typically generate on the order of 1/10th the amount

of data produced by a traditional frame-based camera operating at 30Hz.

This work presents a framework of computationally-efficient methods for

neuromorphic perception and control to enable autonomous obstacle avoid-

ance and target detection in agile mobile robotic platforms. To facilitate the

application of these methods to insect-scale flapping-wing robots, a method for

modeling the full-envelope flight dynamics of flapping wing aerial vehicles is

also presented. Although there exists a large variety of robot and actuation de-

signs, some commonalities have begun to emerge in recent years because of the

effectiveness and feasibility of minimally actuated flapping flight control. Ag-

ile full-envelope flight, however, requires the development of comprehensive

dynamic models able to capture all dominant flight modes and regimes of the

robot. This paper presents a novel approach for modeling the full-envelope

dynamics of periodic flapping flight based on blade-element theory. By this

approach, a broad class of set points, trim conditions, and quasi-steady maneu-

vers, including coordinated turns are determined. A new approach based on

dominant eigenplanes is also developed for analyzing the stability and domi-

nant linear modes of the periodic dynamic model. Using the dominant eigen-

planes, the new model, analysis, and stability results are successfully validated

experimentally for both stable and unstable modes, including flight conditions

leading to rapidly uncontrolled tumbling.
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An adaptive flight control method using spiking neural networks (SNNs)

is developed based on the full-envelope flight dynamics model. This adap-

tive SNN control approach is shown to be capable of controlling maneuvers

throughout the flight envelope of a flapping-wing robot. Furthermore, it is ca-

pable of rapidly adapting online to unmodeled parameter variations such as

asymmetries in the physical parameters of the robot wings and actuators. The

controller is shown to adapt rapidly during a simulated flight test and requires a

total of only 800 neurons, allowing it to be implemented with minimal power re-

quirements in neuromorphic hardware. The control method is then extended to

enable full-envelope flight control, including takeoff, landing, and coordinated

turns.

Finally, computationally-efficient visual perception methods for au-

tonomous obstacle avoidance and target tracking with event cameras are devel-

oped. First, an approach for event-based dense optical flow estimation is devel-

oped, which can be used directly for obstacle avoidance or motion-based image

segmentation. The approach presented here demonstrates improved accuracy

over existing methods while being implementable entirely through efficient lin-

ear convolutions. The underlying assumptions from the optical flow method

are then extended to enable the computation of dense monocular depth estima-

tion. In contrast to existing methods, the depth estimation method computed

by this approach remains accurate near the focus of expansion (FOE), which

corresponds to the direction of travel, and is thus directly usable for real time

obstacle avoidance in autonomous aerial vehicles. To facilitate the detection of

moving targets in the FOV of a translating and rotating event camera mounted

to an aerial vehicle, an approach for independent motion detection is presented.

This approach uses the estimated depth of points in the FOV to segment station-
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ary and moving objects while accounting for the motion of the camera. In total,

the methods presented here represent a computationally-efficient framework

for real-time obstacle avoidance and target tracking with autonomous aerial ve-

hicles using a single event-based camera.
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CHAPTER 2

MODELING AND ANALYSIS OF MINIMALLY ACTUATED

FULL-ENVELOPE FLAPPING-WING FLIGHT DYNAMICS

2.1 Introduction

New fabrication techniques have recently enabled the miniaturization of flap-

ping micro aerial vehicles (MAVs) to insect-scale robots that present many ad-

vantages and potential future applications [1, 3, 24, 41, 43, 51, 55, 58, 61, 62, 68,

69, 113]. Besides being lower in cost and allowing access to highly confined

spaces, these insect-scale robots are safer to operate near people and more ag-

ile than larger MAVs [43]. As the scale of the robot decreases, however, con-

ventional propulsion methods, such as propellers, become extremely inefficient

because low Reynold’s numbers and increased losses in the electromagnetic

motors cause significant reductions in lift-to-drag ratio [43, 55]. Flapping-wing

robots provide a biologically inspired alternative that, especially at very small

size and weight, increases both maneuverability and survivability and repli-

cates the power-efficient and agile flight observed in many insects.

Although many flapping flight controllers have been successfully demon-

strated in recent years, their effectiveness has been largely confined to the hov-

ering regime and has otherwise been hindered by the lack of accurate full-

envelope flight dynamics models and open-loop stability results [16, 17, 19, 21,

27,31,34,47,80,82]. Historically, full-envelope modeling and analysis of conven-

tional fixed-wing or rotary-wing flight dynamics have enabled a detailed under-

standing and analysis of all vehicle flight modes and, as a result, the develop-

ment of full-envelope robust and stable flight controllers [40, 77, 99, 100]. As for
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conventional aircraft, a full-envelope flapping-wing flight model must capture

the vehicle’s dominant dynamics for all possible quasi-steady flight conditions,

also known as set points [99, 100].

Existing flapping-wing flight models to date have assumed prescribed kine-

matic wing motions that could not always be accurately tracked by flapping

wings and required precise measurements of wing kinematics [32, 80] or aero-

dynamic forces [16, 88]. As a result, existing approaches cannot be extended to

full-envelope flight dynamics modeling of flapping robots, such as minimally

actuated designs, that lack direct control authority over wing pitch angles.

The approach presented in this paper enables the accurate modeling and

analysis of flapping-wing robots by capturing the dominant forces produced

by periodic flapping wing motions using a blade-element approach origi-

nally proposed for insect flight modeling in [28]. The approach accounts

for all six body degrees-of-freedom (DOF) as well as the two rotational DOF

of each wing, by assuming a quasi-steady aerodynamic model of forces and

moments that has been shown to significantly lower the computational com-

plexity when compared to computational fluid dynamics (CFD) approaches

[2, 30, 41, 79, 91, 92, 103, 109, 111, 114, 118].

Many flapping-wing flight models also ignore the instantaneous coupling

between the wings and the body by averaging the aerodynamic forces over a

flapping period [46, 104]. So called stroke-averaged models, for example, av-

erage an assumed wing kinematic trajectory or measure average forces exper-

imentally. Consequently, the stability analysis of these models fails to account

for the effects of perturbations in the body configuration on the wing dynam-

ics and, by extension, on the aerodynamic forces on the system. Conversely,
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(a) (b)

Figure 2.1: The method presented in this paper is directly applicable to dual-
wing, minimally actuated designs such as (a) and can be easily extended to
accommodate designs with fixed tails (b) and multiple pairs of wings.

the approach developed in this paper can lead to more accurate stability anal-

ysis and results by including the passive dynamics of wing pitching and their

instantaneous coupling with the body dynamics.

Previous stability and dominant-mode results were also limited to hovering

set points or ascending flight [14,15,54,65,88,102,105,115,117,124]. Recent stud-

ies extended these approaches to forward level flight but were unable to provide

useful results for other flapping-flight regimes [39, 102, 116, 117]. In addition to

providing a full-envelope dynamic model that is experimentally validated in a

broad range of stable and unstable modes, the approach presented in this paper

also enables the determination of the robot full flight envelope and all of the

quasi-steady set points in it. By analyzing the dynamic model at a broad range

of set points, including hovering, forward flight, steady turns, ascending, and

descending flight, the dominant modes and corresponding stability results are

determined throughout the robot flight envelope.

The new dynamic modeling and analysis approach presented in this paper

is successfully demonstrated both numerically and experimentally on the two-

wing minimally actuated insect-scale flapping robot known as as the RoboBee

[42, 68]. It is also directly applicable to many other popular flapping robots
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such as the Cox piezo flier [24], the CMU flapping-wing robot [57, 58], the

AFRL piezo-driven flapping-wing robot [3], and many others insect-like robots

[63, 98, 126]. As explained in Section 2.3, the approach can be easily extended

to other flapping-wing configurations characterized by additional wings (Fig.

2.1) [86] or rigid tails [89]. Because it accounts for passive wing-pitch dynamics,

the approach can be applied to robots characterized by piezoelectric, electro-

magnetic, and motor-driven drive mechanisms [24,42,57,58,63,68,81,89,98,126].

Finally, although flapping-robot designs employ a variety of control strate-

gies, some commonalities have begun to emerge in recent years demonstrating

the effectiveness and feasibility of minimally actuated control of flapping-wing

flight [24,119]. Other robot designs operate both wings at a fixed frequency and

control pitch and roll torque by varying the mean stroke angle and stroke ampli-

tude of each wing independently, as shown in Figs. 2.3b and 2.3c, substantially

improving power efficiency [107]. The modeling approach presented in this pa-

per can accommodate all of these actuator designs, as well as emerging ones

recently proposed by the authors [34, 68, 80]. Additionally, the flapping-wing

yaw control method presented in Section 2.3 avoids drawbacks such as unde-

sirable vibrations by allowing the robot to operate at a fixed frequency without

requiring wing rotation stops.

2.2 Problem Formulation and Assumptions

This paper presents an approach for modeling and analyzing the full-envelope

3D flight dynamics of a class of flapping-wing robots that are minimally-

actuated, have a single pair of periodically-flapping wings, and have a single
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rigid frame. For simplicity, and as an example case, the model presented here

has no additional fixed wings, tails or other fixed aerodynamic surfaces. The

model easily includes robots with additional wing pairs or tails, shown in Fig.

2.1, as discussed in section 2.3. This paper develops an approach for deriving

flapping robot dynamic models in standard form,

ẋ(t) = f
[
x(t),u(t),p, t

]
, x(t0) = x0 (2.1)

where x ∈ Rn is the state, u ∈ Rm is the control input, p ∈ Rl are the physical

parameters of the robot, and the initial conditions, x0, are known. The present

paper does not include feedback control. The model has a 12-dimensional con-

figuration space, which is represented with variables which specify the geome-

try of the robot at any instant. Three configuration variables specify body trans-

lation, three specify body position, and three for each wing specify the wing

orientation (for a total of six variables for the wings). Kinematic constraints on

the wings reduce the system degrees of freedom down to 8, which are repre-

sented by the dynamic state variables comprising the robot body position and

orientation as well as the pitch angle of each wing. These degrees of freedom

are represented in the generalized coordinate vector q ∈ R(n/2) which, together

with its derivative, comprise the state vector x = [q q̇]T . The position of the

robot body and its yaw angle comprise the ignorable coordinates or symmetry

variables, so called because any solution to (2.1) is valid for any choice of values

in these variables.

Four right-handed reference frames, shown in Fig. 2.2, are used to describe

the motion of the robot. The inertial frame F f is fixed to the ground and does not

move, the body frame Fb is fixed to the robot body, and the right and left wing

reference frames Fr and Fl are fixed to the respective wings. The orthonormal

basis corresponding to each reference frame is defined as {ei
1, e

i
2, e

i
3}, where the
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subscript of the reference frame is substituted for i. The left and right wings

are modeled as thin, rigid plates of negligible thickness, and are denoted by the

rigid objects L and R, respectively. The wings are attached to the robot body,

which is modeled as a 3D rigid object B, at the point A, which is located at a

distance d from the body center of gravity G in the −eb
3 direction.

The model presented here is applicable to minimally-actuated flapping-wing

robots, for which only the right and left wing stroke angles are actuated, and

where wing pitch varies passively. In other words, the non-zero elements in the

Jacobian ∂f/∂u are only in the rows corresponding to the governing equations

for the right and left stroke angle accelerations (φ̈r and φ̈l), with

rank
(
∂f(x,u,p, t)

∂u

)
= 2, ∀ x, u, p, t (2.2)

The three translational degrees of freedom in the system are represented by

the inertial coordinates x, y, and z of the body center of gravity, G, defined with

respect to F f as rG = xe f
1 + ye f

2 + ze f
3 . The three rotational degrees of freedom of

the robot body are represented by three Euler angles: yaw φ, roll θ, and pitch ψ.

The sequence of Euler angle rotations from the inertial frame to the body frame

begins with a rotation about e f
3 by φ, followed by a rotation about an inertial axis

coincident with the intermediate eb
1 axis by θ, and finally a rotation about eb

2 by ψ.

The orientation of each wing relative to the body is defined using the nominal

stroke plane, defined as the set of all points rP such that eb
3 · (rP − rA) = 0. As

shown in Fig. 2.2, the orientation of the right wing relative to the body frame is

given by three Euler angles: the stroke angle φr ∈ [−π, π], stroke-plane deviation

θr ∈ [−π, π], and the wing pitch angle ψr ∈ [−π, π]. The orientation of Fl relative

to the body frame is defined similarly, but begins with a rotation about eb
3 by π

so that el
2 points in the positive span-wise direction of the left wing.
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Figure 2.2: Wing Euler angles and reference frames for the robot body and each
wing are shown on the robot, as well as the body center of gravity and wing
rotation point.

The stroke angle of each wing (φr and φl) is assumed to be determined en-

tirely by the control input and the actuator dynamics and does not depend on

other state variables. The stroke-plane deviation angles (θr and θl) are assumed

to be uniquely determined from the corresponding stroke angle (φr or φl) and

physical parameters p through a continuous and differentiable mapping Γ:

θr = Γ(φr,p), θl = Γ(φl,p) (2.3)

This mapping is typically the same for both the left and right wings and is de-

termined by the geometry of the actuators and hinge mechanisms particular to

the design of a given robot. The wing pitch angles (ψr and ψl) are functions of

the control input u and the other robot state variables, i.e. they are determined

by dynamics instead of kinematics and thus are included in the state vector x.

The complete state vector is written in terms of the generalized configuration

coordinates as

x =

[
q q̇

]T

, q =

[
x y z︸  ︷︷  ︸

body position

φ θ ψ︸   ︷︷   ︸
body rotation

φr ψr φl ψl︸            ︷︷            ︸
wing rotation

]T

(2.4)

12



The control input directly affects the amplitude and mean offset of the right

and left wing stroke angles through a forcing function on the actuator dynamics

described in section 2.3. It comprises the amplitude input ua, the pitch input up,

the yaw input uy, and the roll input ur

u(t) =

[
ua(t) up(t) uy(t) ur(t)

]T

(2.5)

The model developed here is used to analyze the open loop dynamics of

insect-scale flapping-wing flight at M quasi-steady set points P = {(x∗(t),u∗)i :

i = 1, . . . ,M}. Each set point comprises a constant control input u∗ and a pe-

riodic trajectory x∗(t), which is a solution to (2.1). The non-ignorable dynamic

variables in x∗(t), which comprises the complete state vector except for the body

position and yaw angle and is denoted by χ∗(t), must be periodic with the flap-

ping period T :

χ∗(t + jT ) − χ∗(t) = 0, ∀ j ∈ N (2.6)

The concept of steady flight is defined for this paper as flight where the non-

ignorable dynamic variables are periodic with the flapping period T . The analy-

sis is performed within the steady flight envelope, which is the set of conditions

where steady flight is possible within the range of allowable physical param-

eters of the system. In this paper, a method for computing the steady flight

envelope based on the physical parameters of the system is shown, a method

of solving for the set points within the flight envelope is presented, and the

dynamic stability and dominant modes of motion are analyzed at several rep-

resentative points. Additionally, a simple method for yaw control is proposed

and the model is validated against experimental data collected from open loop

tests with a physical flapping wing robot.
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2.3 Flight Dynamics Modeling

We use the Newton-Euler equations for linear and angular momentum balance

as applied to the body and to each flapping wing to derive the equations of

motion for the system. The model developed here accounts for the coupling

between body dynamics and passive wing pitching dynamics in minimally-

actuated flapping-wing robots to facilitate accurate stability analysis and flight

envelope computations. The forces acting on the system are written in terms of

the mass m of the robot body, the masses ml and mr of the left and right wings,

the gravity vector g, and the total aerodynamic forces Fl and Fr acting on the

left and right wings. Following previous models of insect flight such as [14],

the model presented here neglects aerodynamic forces acting on the robot body

and interactions between the wings. This assumption is motivated by previ-

ous work on modeling insect flight which has shown that the net aerodynamic

forces and moments over a stroke are accurately computed by properly tuning

the coefficients of the rigid-wing model [2]. External moments on the system in-

clude rotational damping moments Mrd,l and Mrd,r from the left and right wings.

The external moments depend on the position vectors rGPl and rGPr from G to the

centers of pressure Pl and Pr of the left and right wings, and the position vectors

rGL and rGR from G to the centers of gravity L and R of the left and right wings.

Linear momentum balance for the system is written in terms of these forces,

the acceleration aG of the robot body center of gravity G located at rG, and the

accelerations aL and aR of the centers of gravity of the left and right wings

(m + ml + mr)g + Fr + Fl = maG + mlaL + mraR (2.7)

Angular momentum balance of the entire system about G is

Mrd,l + rGPl × Fl + rGL × mlg + Mrd,r + rGPr × Fr + rGR × mrg = Ḣb + Ḣl + Ḣr (2.8)
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where Ḣb, Ḣl, and Ḣr are the time rate of change in angular momentum of the

body, left, and right wings, respectively, about G. Note that G is a non-inertial

point, so the acceleration of each point relative to the inertial frame must be

included in the angular momentum terms as shown in (2.9)-(2.11). Each of these

vector derivatives can be written using the inertia of the corresponding rigid

body about its own center of gravity (Ib, Il, and Ir) and the angular rates of each

rigid body (ωb, ωl, and ωr),

Ḣb =��>
0rGG × mbaB + Ibω̇b + ωb × Ibωb, (2.9)

Ḣr =rGR × mraR + Irω̇r + ωr × Irωr (2.10)

Ḣl =rGL × mlaL + Ilω̇l + ωl × Ilωl (2.11)

where the aerodynamic forces and moments (Fr, Fl, Mrd,r, and Mrd,l) are derived

in Section 2.4.

Independent equations for the stroke angles, stroke-plane deviation angles,

and wing pitch angles are obtained in order to model the motion of the wings.

As noted, the flight model in this paper assumes no direct control authority

over the wing pitch angles, which are each modeled as a degree of freedom. To

determine their values, angular momentum balance is computed for each wing

about the wing attachment point A in the span-wise direction (el
2 and er

2),

el
2 ·

(
Mrd,l + rAPl × Fl + rAL × mlg + Mk

)
= el

2 · (rAL × mlaL + Ilω̇l + ωl × Ilωl) (2.12)

er
2 ·

(
Mrd,r + rAPr × Fr + rAR × mrg + Mk

)
= er

2 · (rAR × mraR + Irω̇r + ωr × Irωr)

(2.13)

where rAPl and rAPr are the position vectors from A to the centers of pressure of

each wing, rAL and rAR are the position vectors from A to the centers of gravity of

each wing, and Mk,l = −kwψl and Mk,r = −kwψr are moments caused by torsional

springs in the hinges of each wing with spring constant kw.
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The stroke-plane deviation angles of the wings are constrained by the ge-

ometry of the wing hinge and actuator assembly, characterized by the mapping

Γ in (2.3). In many common flapping-wing designs, there is no stroke plane

deviation and thus Γ(t,p) = 0. Alternative forms of Γ include common wing

kinematic forms found in insect flight literature. One such form from [14] char-

acterizes oscillations in the stroke-plane deviation,

Γ(t,p) = θ0 + θm cos(N ·
2π
T

t + δθ) (2.14)

which depends on the nominal offset θ0, the deviation amplitude φm, the phase

shift δθ, and N ∈ {1, 2}. A single vertical oscillation occurs per stroke with N = 1,

whereas N = 2 results in the wing tip tracing a figure-eight motion.

The stroke angle for each wing is modeled as a decoupled second-order lin-

ear system. Previous studies have demonstrated that linear models can capture

key aspects of the wing and actuator dynamics, and eliminate the need to ac-

curately measure a large number of physical parameters of the hinge mecha-

nism [41]. Note that the validity of decoupling these equations from external

forces depends on the advance ratio, defined as the ratio of the flight speed

to the mean wingtip velocity, remaining small. Thus, the assumption becomes

invalid as the advance ratio approaches unity. However, with only rare excep-

tions, the advance ratio for flapping-wing flight remains less than unity even

when the robot or insect is flying at its top speed [36]. The model includes the

parameters ωw and ζw, which can be chosen to match the natural frequency and

damping ratio of the physical system

φ̈r(t) + 2ζwωwφ̇r(t) + ω2
wφr(t) = fr[u(t),p] (2.15)

φ̈l(t) + 2ζwωwφ̇l(t) + ω2
wφl(t) = fl[u(t),p] (2.16)

The forcing functions fr(u,p) and fl(u,p) represent the actuator drive signals and
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are determined by the forcing frequency ω f and the control inputs u. The form

of the forcing functions used in this work are given in (2.17) and (2.18). In gen-

eral, the chosen functional form of the forcing function, such as the split-cycle

approach from [33, 68, 80, 95], depends on the control inputs and the actuator

design for a given robot.

An alternate functional form for the drive signals is proposed here, which

is capable of affecting roll, pitch, and yaw torques by adjusting only the mean

stroke angle and stroke amplitude of both wings. In this Raibert-like control

method, pitch and roll are controlled similarly to many existing designs, such

as [68], but yaw torque is controlled by adjusting the mean stroke angle of the

right and left wings in opposite directions as shown in Fig. 2.3. This method

generates a yaw torque by affecting the relative phase shift between the pitch

angles of the left and right wings [87], as will be shown in section 2.8. This

method is advantageous because it allows the system to flap at the resonant fre-

quency of the wing and actuator assembly to increase efficiency and does not

require wing rotation stops, which can cause unwanted vibrations and thus fur-

ther reduces efficiency [3, 122]. The amplitude of both forcing functions used in

this method are affected equally by ua. The roll input ur increases the amplitude

of the force on one wing while decreasing the amplitude on the other. The forc-

ing frequency ω f is typically fixed near the resonant frequency of the actuator

assembly to increase efficiency. The pitch input up biases the stroke angles sym-

metrically, and the yaw input uy biases one stroke angle forwards and the other

rearwards. In terms of these control inputs, the forcing functions are

fr(u(t),p) =
ua(t) − ur(t)

2
sin(ω f t) − up(t) − uy(t) (2.17)

fl(u(t),p) =
ua(t) + ur(t)

2
sin(ω f t) − up(t) + uy(t) (2.18)
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(a) Hover (b) Pitch

(c) Roll (d) Yaw

Figure 2.3: Body torque is controlled by introducing a bias into the wing stroke
for pitch control, using asymmetric stroke amplitudes for roll control, and intro-
ducing opposite biases to the right and left wings (RW and LW) for yaw control.
The insets show lateral views of each wing during a flapping period T for each
control torque.

The method proposed here assumes the wing pitch kinematics ψr and ψl are

monotonic in the corresponding mean stroke angle (φ̄r and φ̄l), which can be

achieved by designing an actuator which follows a stroke-plane trajectory such

as (2.14). Under this assumption, a positive change to the mean stroke angle of

both wings creates a positive yaw torque on the body by simultaneously cre-

ating a net positive aerodynamic force FN(t) in the eb
1-direction on the left wing

and a net negative aerodynamic force on the right wing during a complete wing

stroke. It will be shown that the integral of FN(t) on the right wing in the eb
1 di-

rection over the total period T of a stroke is monotonic in the mean stroke angle,

and a similar argument can be made for the left wing.
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For the right wing, the net aerodynamic force in the eb
1-direction over the

course of a wing stroke is

F1 ,
∫ T/2

0
FN(t) · eb

1dt +

∫ T

T/2
FN(t) · eb

1dt (2.19)

It will be shown that F1 is a strictly decreasing function of φ̄r by showing that

individually, F1,d ,
∫ T/2

0
FN(t) · eb

1dt and F1,u ,
∫ T

T/2
FN(t) · eb

1dt are both strictly

decreasing functions of φ̄r. It is conventient to split the wing stroke into the

downstroke Td = [0, T/2), during which the stroke angle φr(t) ∈ [−π/2, π/2]

is strictly decreasing and the upstroke Tu = [T/2, T ), during which the stroke

angle φr(t) is strictly increasing. For this analysis, assume hovering flight with

no body velocity.

Restricting the analysis to hovering flight, it is reasonable to assume that the

wing pitch ψr(t) ∈ [−π/2, 0] for all t ∈ Td and that ψr(0) = ψr(T/2) = 0. With these

assumptions, the force FN(t) · eb
1 is a strictly decreasing function of the angle of

attack αr ∈ [−π/2, π/2]. For small stroke-plane deviations, the right wing angle

of attack is approximately

αr ≈ −atan[cos(ψr)/ sin(ψr)] = ψr + π/2, ∀ t ∈ Td (2.20)

If ψr is a strictly decreasing function of φ̄r, then, by extension, αr is strictly de-

creasing in φ̄r for all t ∈ Td. Any positive changes to φ̄r will increase F1,d and any

negative changes to φ̄r will decrease F1,d and F1,d is a strictly decreasing func-

tion of φ̄r. Similarly for the upstroke, F1,u is a strictly decreasing function of φ̄r.

Assuming that ψr(t) ∈ [0, π/2] for all t ∈ Tu and that ψr(T/2) = ψr(T ) = 0. With

the small stroke-plane deviation assumption, the angle of attack during the up-

stroke is αr ≈ ψr − π/2 for all t ∈ Tu. If ψr is a strictly decreasing function of φ̄r,

then by extension αr is strictly decreasing in φ̄r for all t ∈ Tu. Thus, F1,u is also a

strictly decreasing function of φ̄r, as is F1.
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To extend the model to designs with more than one wing pair, the equations

of motion are to be augmented to account for the two additional degrees of

freedom in each additional wing. Note that the model presented in this paper

assumes no aerodynamic interactions between wings, which may not be valid

for robots with many closely-spaced wing pairs. For each additional wing, the

robot equations of motion are augmented with two scalar equations to account

for the wing stroke and pitch angles, similarly to the equations developed for a

single pair of wings in this section. The state vector must also be augmented to

include the stroke and pitch angle for each wing, along with their derivatives.

To extend the model in this paper to flapping-wing robots with fixed, rigid tails,

the tail planform is modeled as a flat plane rigidly attached to the body of the

robot. The equations for linear and angular momentum balance of the robot

about its center of gravity developed in this section are modified to include the

aerodynamic forces and moments acting on the tail, with the forces acting at the

center of pressure on the tail. The aerodynamic forces, moments, and center of

pressure for the tail planform are computed using the blade element method

in Section 2.4. The fixed tail planform does not impart any additional degrees

of freedom to the system, and so the number of equations of motion and state

vector remain as presented in this section.

Equations (2.7) - (2.13), (2.15), and (2.16) constitute the equations of motion of

the robot in standard form (2.1). Using the definition of the state x and general-

ized configuration coordinates q from (2.4), it can be seen that the equations are

linear in q̈, and can be expressed in terms of the mass matrix M(q) ∈ R(n/2)×(n/2),

the nonlinear terms C(q, q̇) ∈ R(n/2), and the input matrix B(t) ∈ R(n/2)×m as fol-

lows:

M(q)q̈ + C(q, q̇) = B(t)u (2.21)
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Solving Equation (2.21) for q̈(t), an expression is obtained for the state derivative

ẋ(t) q̇q̈
 =

0 I

0 0

 x(t) −

 0

M(q)−1C(q, q̇)

 +

 0

M(q)−1B(t)

 u(t) (2.22)

Thus, the dynamics take the affine form,

ẋ(t) = f(x) + G(x, t)u(t) (2.23)

where all expressions for kinematic terms in equations (2.7) - (2.13) are shown

in Appendix A.1.

2.4 Blade-Element Calculations of Aerodynamic Forces and

Moments

The modeling of wing aerodynamic forces and moments greatly influences the

accuracy of the flight dynamics. The model of wing aerodynamic forces for

flapping-wing robots is complicated due to the periodic nature of flapping and

the presence of unsteady aerodynamic effects caused by the acceleration of the

wing during stroke reversal. During flapping, wings periodically experience

high angles of attack, stall, and high rates of rotation. Therefore, many studies

have been performed to characterize the aerodynamic forces and moments dur-

ing flight, including experiments on both insects and robotic wings [111] and

numerical experiments [103]. Alternatively, simplified models which capture

the most significant forces and moments have been proposed in [2, 32, 92, 111].

When properly tuned, these so-called quasi-steady models can accurately predict

the net forces and moments acting on the wings throughout a wing stroke [75]
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without the high computational cost associated with computation fluid dynam-

ics (CFD) approaches. Thus, this paper uses a quasi-steady model to compute

the aerodynamic forces during flight. Quasi-steady models [2, 111] obtain local

wing lift and drag forces by computing forces acting on differential elements of

the wing, as shown in Fig. 2.4, and integrating the forces over the entire wing

surface. For simplicity, only the translational aerodynamic forces are included in

the model presented here. The forces are dependent on lift and drag coefficients

CL(α) and CD(α) that each depend on the angle of attack αi for the ith wing. The

equations for the lift and drag coefficients determined from experiments and

numerical calculations are,

CL(αi) = CL0 sin(2αi) (2.24)

CD(αi) = CD0 −CD1 cos(2αi) (2.25)

as shown in [30, 111]. What follows is the computation of aerodynamic forces

and moments for each wing i, where i is substituted by r or l for the right or left

wing, respectively. A point Q is defined to lie in the span-wise center of each

differential element on the ei
2 axis. The angle of attack αi is defined as the angle

between the velocity vQ relative to the surrounding fluid and ei
3 in the plane

normal to the span-wise direction of the wing ei
2

αi = −atan(vT
Qei

1/v
T
Qei

3) (2.26)

The differential lift force dFL acting on a differential element of the wing is,

dFL =

(
1
2
ρvT

QvQCL(αi)c(y)dy
)

eL (2.27)

where ρ is the density of the surrounding fluid, c(y) is the chord length of the

element, and dy is the span-wise width of the element. The lift force acts in the

eL direction, which is normal to the relative velocity v:

eL = − cos(αi)ei
1 − sin(αi)ei

3 (2.28)

22



Integrating (2.27) along the wing span, the total lift force acting on the wing is

FL =

(
1
2
ρCL(αi)

∫ y f

y0

vT
QvQc(y)dy

)
eL (2.29)

The local velocity can also be written as the sum of the velocity vA at the hinge

point A and the velocity vAQ of the differential element relative to the hinge, such

that v = vA +vAQ. Substituting this expression for local velocity into (2.29) yields,

FL =
1
2
ρCL(αi)

(
vT

AvA

∫ y f

y0

c(y)dy +

∫ y f

y0

(2vT
AvAQ + vT

AQvAQ)c(y)dy
)

eL (2.30)

where both integrals in (2.30) depend on the wing geometry and vQ, and thus

must be repeatedly evaluated based on the robot operating conditions, leading

to burdensome computations. Using the notation vA1 , vT
Aei

1 for the wing-frame

components of the velocity and ωw1 , ωT
wei

1 for the wing-frame components of

the wing angular rate, the integrals can be decomposed and simplified to,

FL =
1
2
ρCL(αi)

(
vT

AvAC1 + 2(vA3ωw1 − vA1ωw3)C2 + (ω2
w1

+ ω2
w3

)C3

)
eL (2.31)

where,

C1 ,
∫ y f

y0

c(y)dy, C2 ,
∫ y f

y0

yc(y)dy, C3 ,
∫ y f

y0

y2c(y)dy (2.32)

Similarly, the drag is computed following the same procedure,

FD =
1
2
ρCD(α)

(
vT

AvAC1 + 2(vA3ωw1 − vA1ωw3)C2 + (ω2
w1

+ ω2
w3

)C3

)
eD (2.33)

where the drag force acts in the direction given by the unit vector,

eD = − sin(αi)ei
1 + cos(αi)ei

3 (2.34)

which represents the direction of the velocity of the surrounding fluid relative

to the wing. The total aerodynamic force acting on the wing is simply the sum-

mation of the lift and drag, Fi = FL + FD.
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Figure 2.4: A 2D view of the left wing showing a single differential blade ele-
ment used for the calculation of aerodynamic forces on the wing.

The lift and drag forces both act at the wing’s center of pressure. The position

vector of the left wing center of pressure relative to the wing hinge as used in

(2.12) and (2.13) is,

rAPi = Ycpei
2 + Zcp(αi)ei

3 (2.35)

where Ycp and Zcp are the span-wise and chord-wise locations of the center of

pressure, respectively. Previous studies in fruit flies [31] and robotic wings [114]

have found that Ycp remains relatively constant with angle of attack and that Zcp

varies with the angle of attack according to the relationship,

Zcp(αi) =

∫ y f

y0

c(y)
(
0.82|αi|

π
+ 0.05

)
dy (2.36)

found empirically [31].

Finally, local aerodynamic forces also causes rotational damping acting

about the span-wise direction of the wing (ei
2) [2, 31, 114]. The rotational damp-

ing moment Mrd is found by integrating the local drag on a rectangular differ-

ential element of the wing in both the chord-wise and span-wise directions

Mrd,i =

(
1
2
ρCD(π/2)

∫ z1

z0

∫ R

0
|vT

Qei
1|v

T
Qei

1zdrdz
)

ei
2 (2.37)

Together, the equations (2.31), (2.33), (2.35), and (2.37) describe the aerodynamic

forces and moments acting on the wings during flight and the locations of the

center of pressure. They are used in the equations of motion (2.23) to determine
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the response of the robot to a given set of initial conditions and sequence of

control inputs.

2.5 Steady Maneuvers

The model developed in Sections 2.3-2.4 is used here to analyze the open loop

dynamics of insect-scale flapping-wing flight, including the range of conditions

in which steady flight is possible, the dominant linear modes of flight, and its

open-loop stability. The analysis is completed at M set points P = {(x∗(t),u∗)i :

i = 1, . . . ,M}, each comprising a constant control input u∗ and a periodic trajec-

tory x∗(t), which is a solution to (2.1) that also satisfies the constraints defined

for the maneuver. The definition of the state which is used for the analysis pre-

sented in this section comprises the Euler angles and angular rates for the right

and left wings, the inertial coordinates of the body x, y, and z, the body Euler

angles φ, θ, and ψ, the components of the robot velocity in the body frame u, v,

and w, and the components of the robot angular rate in the body frame p, q, and

r. The complete state of the flapping-wing robot is

x =

[
φr ψr φl ψl φ̇r ψ̇r φ̇l ψ̇l x y z φ θ ψ u v w p q r

]T

(2.38)

Each set point falls within the steady flight envelope. This paper develops a

method for computing the steady flight envelope based on the physical param-

eters of the system and for computing the robot set points within the flight en-

velope. The dynamic stability and dominant modes of motion are analyzed in

Section 2.7. This analysis of linear modes provides a foundation for stabilizing

controller design and an understanding of the range of flight conditions which
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Figure 2.5: The trajectory followed by a robot during a steady coordinated turn.

require an active controller for stable flight.

Earlier work has examined the unstable modes of flapping-wing flight in

hovering, vertical, and forward flight [14, 88, 116, 124], but here a more gen-

eral analysis is presented which includes a range of climb angles and turning

flight. The steady coordinated turn is the most general steady maneuver for the

flapping-wing model, where a steady maneuver is defined as a solution to (2.1)

for which the body-frame components of v and ω have a minimum period of

T . After defining the trajectory constraints for the steady coordinated turn, the

important special cases of longitudinal flight, lateral flight, and hovering are de-

fined. In longitudinal flight, the robot motion is confined to the robot’s sagittal

plane, defined as the plane which passes through G and is normal to eb
2. In lat-

eral flight, motion is confined to the robot’s coronal plane, defined as the plane

which passes through G and is normal to eb
1. Hovering flight is the special case

where x(t + T ) − x(t) = 0 for all t.

The command vector y∗ is used to define the parameters of a coordinated

turn, and comprises the commanded speed u∗ ∈ R+, the commanded climb an-

gle γ∗ ∈ R, a commanded sideslip angle β∗ ∈ R, and the commanded turn rate
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ξ̇∗ ∈ R. The commanded speed u∗ is the non-negative speed of the robot. The

commanded climb angle γ∗ is the angle measured from the ground plane to the

body velocity vector v. The sideslip angle β∗ ∈ R is the angle measured from the

body velocity vector v to the sagittal plane of the robot body. The commanded

turn rate ξ̇∗ is the rotation rate of Fb about e f
3 , and is equivalent to the yaw rate,

with the command vector written as

y∗ =

[
u∗ γ∗ ξ̇∗ β∗

]T

(2.39)

When the turn rate ξ̇∗ is non-zero, it can be used in conjunction with the com-

manded speed to define a turning radius ρ∗

ρ∗ =
u∗

ξ̇∗
(2.40)

The general case of a steady coordinated turn is shown in Fig. 2.5, including

important reference frames and command variables.

2.5.1 Flapping-wing Robot Set Points

To determine the feasibility of these maneuvers, a direct transcription method is

used to convert the ODE root finding problem into a set of algebraic equations to

be solved numerically. This method was more successful in practice than alter-

native methods, such as shooting methods which solve the root finding problem

using only the end point constraint. The robot’s trajectory x(t) is discretized in

time on the interval [0, T ] using a step size of ∆t, such that xk = x(k∆t) where

k ∈ N. Using the Hermite Simpson rule, the trajectory is constrained to satisfy

the dynamics ẋ = f(x,u, t) at each point xk as well as at the midpoints between

the discretized points, denoted by x̄k+1 = x(k∆t + ∆t/2). The constraints for each
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point can be written as

0 = x̄k+1 −
1
2

(xk+1 + xk) −
∆t
8

(fk − fk+1) (2.41)

0 = xk+1 − xk −
∆t
6

(fk+1 + 4f̄k+1 + fk) (2.42)

The dynamic constraints cd for the entire interval [0,T ] can be expressed as

a set of Nd linear equations written as,

cd(x,u) , Gx + Hd(x,u) (2.43)

where,

d , ∆t
[
fT
1 f̄T

2 fT
2 fT

3 . . . f
T
M

]T

(2.44)

and expressions for the constant matrices G ∈ RNd×Nd , H ∈ RNd×Nd are given

in Appendix A.3. The dynamic constraints given in (2.43) constrain the state

at every discretized point in time tk except for the initial conditions at t = 0.

Maneuver constraints are also used, and are only satisfied when the state at the

end of a period is equal to the desired state x∗:

cm(x) , x(T ) − x∗(T ) (2.45)

The constraints for each maneuver will be specified in the following sections.

Once the constraints are defined, a numeric solver can be used to find the roots

of the constraint function

c(x,u) ,
[
cT

d (x,u) cT
m(x,u)

]T

(2.46)

2.5.2 Maneuver Definitions

Steady maneuvers are defined by choosing the appropriate definition of the de-

sired state x∗ for each maneuver. The desired state is first defined for a steady
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coordinated turn, followed by the definition of the desired state for other steady

maneuvers. The wing state xw ∈ R8, comprising the Euler angles and angular

rates of both wings, is constrained to be periodic with the flapping period T for

every steady maneuver. Otherwise, any deviation from a periodic wing state

will cause a change in aerodynamic forces and torques, preventing the condi-

tions in (2.45) from being satisfied. In a steady coordinated turn, the velocity v

and body angular rateωb vectors are constrained to rotate about e f
3 at the desired

turn rate ξ̇∗. This rotation is computed using the rotation matrix R∗ , R(e f
3 ,T ξ̇

∗),

where the general expression for computing the terms of the rotation matrix

is given in Appendix A.2. Constraints on the body Euler angles and the body

position vector follow from the constraints on body angular rate and velocity,

and are written using an intermediate frame Fh which coincides with the in-

ertial frame F f rotated about eb
3 by the yaw angle φ(0) at the beginning of the

maneuver. The desired state for a steady coordinated turn is,

x∗(T ) =

[
[xw(0)]T [R∗ωb(0)]T [R∗v(0)]T [Θ∗(T )]T [r∗(T )]T

]T

(2.47)

where the desired orientation is Θ∗(T ) = Θ(0) + [T ξ̇∗ 0 0]T , the desired position

is,

r∗(T ) = r(0) − u∗T sin(γ∗)e f
3 + ρ∗ cos(γ∗)(eh

2 − R∗eh
2) (2.48)

and where eh
2 = R[e f

3 , φ(0)]e f
2 .

Steady longitudinal flight is a special case of a steady coordinated turn corre-

sponding to a nonzero commanded speed u∗, zero turn rate ξ̇∗, and zero sideslip

angle β∗. In other words, steady longitudinal flight is a steady coordinated turn

where the command input satisfies the conditions

u∗ > 0, ξ̇∗ = 0, β∗ = 0 (2.49)
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The desired state for a steady coordinated turn given in (2.47) must be rewritten

for longitudinal flight, because the desired position (2.48) is written in terms of

the turn radius, which is ρ∗ = ∞ for longitudinal flight. The desired position is

decomposed into its eh
1 and eh

2 components

r∗(T ) = r(0) − u∗T sin(γ∗)e f
3 + ρ∗ cos(γ∗)[eh

2 − eh
2 cos(ξ̇∗T ) + eh

1 sin(ξ̇∗T )] (2.50)

The desired position can now be reformulated in terms of the commanded

speed u∗ by subtracting r(0) from both sides and taking the inner product of

the result with eh
1 to obtain

[r∗(T ) − r(0)] · eh
1 = ρ∗ cos(γ∗) sin(ξ̇T ) (2.51)

The Taylor Series expansion of sin(ξ̇T ) is then used along with (2.40) to obtain

[r∗(T ) − r(0)] · eh
1 = u∗T cos(γ∗)(1 −

(ξ̇T )2

3!
+

(ξ̇T )4

5!
+ . . .) (2.52)

Applying the longitudinal flight constraint ξ̇ = 0 yields the final expression for

the desired position in the eh
1 direction:

[r∗(T ) − r(0)] · eh
1 = u∗T cos(γ∗) (2.53)

Taken together with the e f
3 component of the desired position from (2.48) gives

the desired position for longitudinal flight:

r∗(T ) = r(0) − u∗T sin(γ∗)e f
3 + u∗T cos(γ∗)eh

1 (2.54)

Together with the remaining constraints from (2.47) and the longitudinal flight

constraint ξ̇∗ = 0, the desired state for steady longitudinal flight is

x∗(T ) =

[
xT

w(0) ωT
b (0) vT (0) ΘT (0) [r∗(T )]T

]T

(2.55)

Steady lateral flight is similar to steady longitudinal flight, but with a

sideslip angle β = π/2. Thus, the command input for steady lateral flight must
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satisfy

u∗ > 0, ξ̇∗ = 0, β∗ =
π

2
(2.56)

The desired state for lateral flight is identical to the longitudinal case, except

that the velocity vector must be pointed in the eh
2 direction:

r∗(T ) = r(0) − u∗T sin(γ∗)e f
3 + u∗T cos(γ∗)eh

2 (2.57)

Hovering flight is a special case of longitudinal flight where u∗ = 0. In hovering,

the state is perfectly periodic in T and the desired state is thus

x∗(T ) = x(0) (2.58)

2.6 Flight Envelopes

The physical parameters of the robot limit the range of static and dynamic con-

ditions within which steady flight is possible. This range of conditions, called

the steady flight envelope, is used in this paper to provide reasonable boundaries

on the set points to be analyzed for stability and other flight characteristics. Fur-

thermore, by analyzing the sensitivity of the flight envelope boundaries to the

physical parameters of a robot, the flight envelope can be a useful tool to aid

in the design of new robots to ensure that they are capable of achieving their

performance requirements. In designing autonomous controllers for flapping-

wing robots, the steady flight envelope defines the range of conditions within

which a suitable flight controller should be capable of maintaining the robot at

a set point. Once a robot is built and operational, the flight envelope is used

to determine what conditions the robot can safely operate in without damaging

the actuators.
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It is assumed that the primary limiting factors for most flapping wing robots

are the joint limits affecting the maximum wing stroke angle required to achieve

a desired set point. To determine boundaries of the steady flight envelope, it is

necessary to evaluate the wing trajectories required to achieve steady flight at

a given set point. For the desired set point, the equations of motion (2.59) are

solved to determine the maximum stroke angle, max(|φi|), required for steady

flight for each wing i. The maximum stroke angle required for longitudinal

and lateral flight is plotted as a function of the commanded speed u∗ and climb

angle γ∗ in Fig. 2.6. The radial distance from the center of the plot indicates

the commanded speed u∗ and the angular coordinate indicates the commanded

climb angle γ∗ as shown in Fig. 2.7. A contour on each plot is highlighted

corresponding to the assumed maximum allowable stroke angle of each wing.

Figure 2.6a shows that the imposed joint limits constrain the maximum flight

speed in ascending flight to approximately 1.5m/s, with larger flight speeds

possible in descending flight. For lateral flight, the maximum stroke angle pri-

marily limits the maximum vertical speed of flight, and is only a weak function

of lateral velocity. This is noticeably different from the longitudinal case, in

which the non-zero mean pitch angle required for forward flight limits longitu-

dinal flight speed more significantly.

2.7 Stability and Dominant Linear Modes

With the exception of hovering flight, all steady maneuver set points are qua-

sistatic equilibria: the body-frame velocities, body-frame angular rates, and

wing state variables are constant, but other elements of the state vector are al-
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(a) Longitudinal flight envelope
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(b) Lateral flight envelope

Figure 2.6: The maximum stroke amplitude required to achieve a desired set
point in both longitudinal and lateral flight

Figure 2.7: A key for reading the flight envelope plots, where the speed is the
radial coordinate and the climb angle is the angular coordinate.

lowed to change over time. Using the state vector x defined in (2.38), which

expresses the robot velocity and angular rate in the body frame, only four of

the state variables will have a non-zero rate of change during a general coordi-

nated turn. These so-called ignorable state variables comprise the yaw angle φ

and the body position coordinates x, y, and z. The remaining non-ignorable state

variables are independent of the body position or yaw angle, so any solution to

(2.1) found at one position and yaw angle is equally valid for any other position

and yaw angle.

Due to the periodic nature of flapping-wing flight, stability is analyzed by

first discretizing (2.23) by sampling at an interval equal to the flapping period
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T . Adopting the notation tk , kT and xk , x(tk) for any non-negative integer k,

the sampled system is,

xk+1 = h(xk,uk,p) + xk (2.59)

where

h(xk,uk,p) ,
∫ tk+1

tk
f[x(t),u(t),p, t]dt (2.60)

An equilibrium point consists of a point in state space x∗ and a corresponding

constant control input u∗. An equilibrium point must satisfy

h(x∗,u∗,p) = 0 (2.61)

The Jacobian matrix ∇h|x∗,u∗ is used to analyze the linear modes of the system

and its stability at a given equilibrium point. The sampled equations of motion

(2.59) are approximated by the linear system

xk+1 = ∇h|x∗,u∗xk (2.62)

Eigendecomposition is used to express the solution to (2.62) in terms of the

eigenvalues λi = σi ± iωi and eigenvectors vi = ui ± iwi of the Jacobian,

xk =

n∑
i=1

κiλ
k
i vi (2.63)

where κi ∈ R are coefficients that depend on the initial conditions x0.

The linearized equations of motion are analyzed here using parameters from

the flapping-wing robot in [68], including a flapping frequency of T = 120Hz.

Throughout the flight envelope, there are two dominant linear modes which

may be either stable or unstable depending on the regime of flight:

1. A generally oscillatory motion dominated by pitching and forward veloc-

ity terms called the longitudinal mode.
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Figure 2.8: The unstable longitudinal mode in hovering flight depicted as a tra-
jectory along with the body-frame components of the velocity and angular rate.

2. A generally oscillatory motion dominated by lateral velocity and body roll

oscillations called the lateral mode, which also couples with yaw and pitch

in forward flight.

All other modes damp out relatively quickly and are stable throughout the flight

envelope. Thus, the discussion in this paper will focus exclusively on the longi-

tudinal and lateral modes outlined above. Figures 2.8 and 2.9 illustrate the un-

stable motions associated with these modes at the hovering equilibrium point.

The trajectories plotted in these figures are solutions to (2.62) given initial con-

ditions that lie in the spaces of the longitudinal and lateral eigenvectors (vo and

va) respectively. As plotted in these figures, the longitudinal mode is generally

characterized by oscillations in pitch rate q and forward velocity u. The lateral

mode near hovering is characterized by oscillations in lateral body velocity v

and roll rate p [39]. As forward flight speed increases, the lateral mode also

couples with pitch rate q, and yaw rate r.

To visualize changes in the eigenvalues for the longitudinal mode through-

out the flight envelope, the longitudinal damping ratio ζo = − cos[∠ ln(λo)]
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Figure 2.9: The unstable lateral mode in hovering flight depicted as a trajectory
along with the body-frame components of the velocity and angular rate.

(where ∠ denotes the angle in the complex plane, e.g. ∠λi = atan(ωi/σi)) is

plotted for longitudinal flight as a function of flight speed u∗ and climb angle γ∗

in Fig. 2.10a (with ξ̇∗ = β∗ = 0) and for a level coordinated turn as a function of u∗

and turn rate ξ̇∗ in Fig. 2.10b (with γ∗ = β∗ = 0). Near hovering flight and in most

regimes of low-speed flight and climbing flight, the longitudinal mode is unsta-

ble, having two complex conjugate eigenvalues each with a magnitude greater

than unity. As indicated by the red region in Fig. 2.10a, the longitudinal mode

becomes a stable, underdamped mode at moderate flight speeds when γ∗ ≤ 0. A

third regime exists for nearly vertical high-speed flight, outlined in the upper-

right hand corner of Fig. 2.10a approximately where γ∗ > 60◦ and u∗ > 1.3m/s.

In this regime, the longitudinal mode is characterized by an unstable exponen-

tially divergent motion and has two distinct purely real eigenvalues. For level

turning flight, the longitudinal mode is unstable except for low turn rates at

high speed (ξ̇∗ < 120◦/s and u∗ > 1m/s), where it is characterized by under-

damped stable oscillations, plotted as the red area in Fig. 2.10b. The transition

from unstable to stable flight occurs at higher flight speeds as ξ̇∗ increases.

Similarly, the eigenvalues of the lateral mode throughout the flight envelope
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Figure 2.10: The damping ratio of the longitudinal mode in longitudinal flight
level turning flight, with unstable regions highlighted in blue and stable regions
in red.

are visualized by plotting the lateral damping ratio ζa = − cos[∠ ln(λa)] in Fig.

2.11. Stability of the lateral mode in the longitudinal flight regime is divided

into two regions, plotted in Fig. 2.11a. Throughout the majority of the flight en-

velope, the lateral mode is unstable, having two complex conjugate eigenvalues

with magnitude greater than unity. Above moderate forward flight speeds, the

lateral mode is characterized by stable underdamped solutions, highlighted by

the red region in Fig. 2.11a. The stability boundary for the lateral mode in level

turning flight, plotted in Fig. 2.11b, trends in the opposite direction of the lon-

gitudinal mode stability boundary, with the transition from unstable to stable

flight occurring at lower flight speeds as ξ̇∗ increases.

An important special case of longitudinal flight is level forward flight, where

u∗ > 0 and γ∗ = 0. In level forward flight, the lateral mode is stable above

flight speeds of u∗ ≈ 0.7 m/s, and the longitudinal mode is stable above flight

speeds of u∗ ≈ 1.0 m/s. At forward flight speeds greater than 1.0 m/s, all linear

modes of forward level flight are stable. The regions of stability for all regimes

of longitudinal flight and level turning flight are found by taking the union of
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Figure 2.11: The damping ratio of the lateral mode in longitudinal flight and
level turning flight, with unstable regions highlighted in blue and stable regions
in red.
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Figure 2.12: Regions of stable and unstable flight in steady longitudinal flight
and steady level turning flight, where the stable regions are simply the union of
the stable regions from Figs. 2.10 and 2.11.

the stable regions for both the longitudinal and lateral modes from Figs. 2.10

and 2.11. The result of this union is plotted in Fig. 2.12.

In stable flight regimes, the longitudinal and lateral modes exhibit different

motions compared with their motions near hovering (Figs. 2.8 and 2.9). Figures

2.13 and 2.14 illustrate the stable motions associated with the longitudinal and

lateral modes for forward level flight with u∗ = 1.5m/s. Compared with the
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Figure 2.13: The longitudinal mode in forward level flight at 1.5m/s depicted as
a trajectory along with the body-frame components of the velocity and angular
rate.

mode shape at hovering, the longitudinal mode in forward flight couples more

strongly with the eb
3-component of body velocity, w, such that the magnitude

of oscillations in w is roughly twice the magnitude of the oscillations in u. For

the flight speed plotted (u∗ = 1.5m/s), the longitudinal mode is lightly damped,

requiring on the order of hundreds of wingbeats to damp out to steady state.

In forward flight, the lateral mode resembles the dutch roll mode present in

fixed-wing aircraft [100], exhibiting coupled rolling and yawing motions that

result in passively stable banked turns. In forward flight, the oscillations in

p and r in the lateral mode are approximately 180◦ out of phase, whereas the

same oscillations are nearly in phase with one another near hovering flight (see

Fig. 2.9). The lateral mode in forward flight is more highly damped than the

longitudinal mode and settles to steady-state in under 100 wingbeats.

2.8 Experimental Results and Validation

Validating the model against experimental data is complicated by the unstable

nature of flapping-wing flight near hovering and its sensitivity to initial condi-

tions and disturbances. One way to validate the model is to examine the dom-
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Figure 2.14: The lateral mode in forward level flight at 1.5m/s depicted as a
trajectory along with the body-frame components of the velocity and angular
rate.

inant linear modes present near hovering in experimental data and to compare

them with the modes predicted by the model. Several open loop flight trials

were conducted using a flapping-wing robot operating near hover. For each

test, the robot began with zero body velocity and was oriented vertically. The

constant control signal sent to the robot during each trial corresponds with the

signal to approximate hovering flight. Fifteen tests were conducted in this man-

ner, with a sequence of images from two trials shown in Figs. 2.15a and 2.16a.

Figures 2.15b and 2.16b show a sequence of images rendered from the model

using the same initial conditions and parameters from the experimental trial.

The system is sensitive to initial conditions and disturbances caused by the thin

wire tether used to send power and control signals to the robot, which resulted

in significant variations between successive tests. Although it is impossible to

exactly recreate the set of initial conditions and disturbances present in each ex-

perimental trial, the model shows strong qualitative similarity to the trajectories

from the open loop flight experiments.
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(a) (b)

Figure 2.15: A visual comparison of the open loop longitudinal instability in the
physical robot (a) and the model (b), showing qualitatively similar behavior.

(a) (b)

Figure 2.16: A second comparison of the open loop instability in the physical
robot (a) and the model (b), showing qualitatively similar behavior. Video avail-
able at https://youtu.be/qj-VbJiVVk4

Dynamic Mode Decomposition [64] is used to extract the dominant linear

modes of the robot dynamics from the collected data. Assuming the dynamics

are approximately linear near hovering, the data points at one time step are

related to the data points from the previous time step by the dynamics matrix A

through the relationship,

X2 = AX1 (2.64)

where the data collected from the fifteen experimental trials consists of N data

points xi ∈ Rn that are arranged into the matrices

X1 =

[
x1 x2 . . . xN−1

]
, X2 =

[
x2 x3 . . . xN

]
(2.65)

The eigenvalues and eigenvectors of A correspond to the linear modes of the

physical robot near hovering flight, and can be compared to the linear modes of

the model obtained from the Jacobian matrix ∇h|x∗,u∗ to evaluate the similarity
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of the model to the physical robot. The matrix A is computed from the collected

data using Singular Value Decomposition (SVD),

A = X2VΣ−1U∗ (2.66)

where ∗ denotes the conjugate transpose, U ∈ Cn×r, Σ ∈ Cr×r, V ∈ CN×r, and r ≤ n

is the rank of the SVD approximation to X1. Noise in the data is suppressed

by restricting the rank r so that the decomposition includes only the dominant

singular modes.

Two of the eigenvectors of the A matrix computed from the experimental

data correspond to the longitudinal and lateral modes found in the model. The

longitudinal mode is comprised predominantly of terms corresponding to the

state variables ψ, vx, and dψ/dt. Let vo ∈ R3 and ṽo ∈ R3 be the vectors consist-

ing of the entries of the longitudinal mode eigenvectors corresponding to these

terms from the model and the data, respectively. The real and imaginary parts

of these vectors span planes which pass through the origin and have the normal

vectors given by,

no = Re(vo) × Im(vo), ño = Re(ṽo) × Im(ṽo) (2.67)

where Re(·) and Im(·) denote the real and imaginary parts of the vector, respec-

tively. The experimental trajectories lie near the plane normal to ño, as shown in

Fig. 2.18b. This occurs because the longitudinal mode dominates the evolution

of ψ, vx, and dψ/dt near hovering, which implies that the trajectories of these

state variables must remain near the space spanned by the real and imaginary

parts of the longitudinal mode eigenvector. Similarly, the lateral mode contains

dominant terms corresponding to the state variables θ, vy, and dθ/dt, implying

that the trajectories of these variables must remain near the space spanned by

the real and imaginary parts of the lateral mode eigenvector. Let va ∈ R3 and
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ṽa ∈ R3 be the vectors consisting of the entries of the lateral mode eigenvectors

corresponding to these terms from the model and the data, respectively. The

real and imaginary parts of these vectors span planes which pass through the

origin and have normal vectors given by

na = Re(va) × Im(va), ña = Re(ṽa) × Im(ṽa) (2.68)

The trajectories from the experimental data are plotted in the longitudinal and

lateral subspaces in Fig. 2.17. The planes normal to ño and ña are plotted in Figs.

2.18a and 2.18b alongside the trajectories, where it is clear that the trajectories

lie near to the planes defined by these modes.

To assess how well the dominant modes of the model match the dominant

linear modes of the physical robot flight dynamics near hovering, the orienta-

tion of the longitudinal and lateral mode planes is compared between the model

and the data by computing the dot product of their normal vectors from (2.67)

and (2.68). The planes are well-aligned between the model and the data, as is

shown by the values of the dot products, which are very nearly unity:

nT
o ño = 0.98, nT

a ña = 0.99 (2.69)

Additionally, the natural frequency ωi = | ln(λi)/T | and damping ratio ζi =

− cos(∠ ln(λi)) of each mode computed from the model is compared with the

same value computed from the data, shown in Table 2.1.

As discussed in section 2.7, an important aspect of flapping-wing flight pre-

dicted by the model is the coupling between roll and yaw within the lateral

mode. Experimental trials were conducted with a flapping-wing robot to vali-

date this behavior. The robot was clamped vertically and its wings were com-

manded to flap at a constant amplitude corresponding to hovering flight, while
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Figure 2.17: Trajectories plotted in state space obtained through simulations us-
ing the model, shown in (a) and (b) are qualitatively similar to trajectories ob-
tained from the experiment shown in (c) and (d)
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Figure 2.18: Phase portraits of experimental flight trajectories taken near open
loop hovering lie near the dominant eigenplane defined by the linear and lateral
modes, shown as black lines in plots (c) and (d)
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ω [rad/s] ζ

Longitudinal (data) 22.8 -0.35
Longitudinal (model) 19.0 -0.17

Lateral (data) 11.1 -0.67
Lateral (model) 14.3 -0.61

Table 2.1: Comparison of the natural frequency and damping ratio of the domi-
nant modes between the model and the data.

Figure 2.19: A comparison between the wing trajectories with a 0.5m/s head-
wind at a 0◦ sideslip angle (shown in grayscale) and at a 30◦ sideslip angle
(shown in red)

a high-speed camera mounted above captured wing stroke and pitch angles. To

measure the effects of forward flight on wing pitch angles, ten baseline trials

were conducted with a headwind of v = 0.5m/s along the eb
1 axis. Ten more

trials were conducted at the same wind speed, but at a sideslip angle of β = 30◦.

Figure 2.19 shows several still frames from the baseline, with the wing from the

sideslip case overlayed in red. These images show that the right and left wing

pitch angles are affected asymmetrically when the sideslip angle between the eb
1

axis and the wind direction is non-zero.

The projected angle between the first wing spar and the leading edge is used

to compute the wing pitch angle from the high-speed video using the known

geometry of the wing. Figure 2.20 shows how the mean pitch angles ψ̄r and ψ̄l

computed from the video change between the baseline case with a direct head-

wind and the 30◦ sideslip case, with the mean values across all trials shown in
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Figure 2.20: The mean right and left wing pitch angles (ψ̄r and ψ̄l) over ten trials
for the cases of a 0.5m/s headwind (β = 0◦) and the same wind speed at a β = 30◦

sideslip angle

red. As the wind direction shifts to the side and the sideslip angle increases,

the magnitude of the left wing mean pitch angle decreases towards zero and

the right wing mean pitch angle remains largely unchanged. For a given wind

speed, the model predicts that the magnitude of the mean pitch angles (|ψ̄r| and

|ψ̄l|) for both wings are largest when there is a direct headwind, i.e. β = 0◦. The

magnitude of the mean pitch angles decrease for both wings asymmetrically as

the sideslip angle increases, with |ψ̄l| decreasing more than |ψ̄r|, matching the

experimental test results shown in Fig. 2.20.

To further explore the lateral coupling with increased forward flight speed,

the model is used to plot the mean pitch angles for the right and left wing as

a function of increasing wind speed at β = 30◦, with the results shown in Fig.

2.21a. These mean wing pitch values directly affect the stroke-averaged aero-

dynamic forces for each wing, and thus the stroke-averaged aerodynamic roll

and yaw torques acting on the robot body in flight. The relative stroke-averaged

aerodynamic forces between the right and left wings are given by

∆Fi ,
∫ T

0
[Fr(t) − Fl(t)] · eb

i dt, i = 1, 2, 3 (2.70)

For a positive sideslip angle β, figure 2.21b shows that both ∆F1 and ∆F3 de-
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Figure 2.21: As the headwind velocity increases with a sideslip angle β = 30◦,
the mean pitch angle of the right wing is more affected than that of the left
wing, resulting in less force in the eb

3 direction on the right side than the left and
a larger negative force in the eb

1 direction on the right than the left

crease as a function of increasing wind speed, resulting in positive roll and yaw

torque acting on the robot body. This explains the increased coupling between

roll and yaw observed in the lateral mode, as any perturbation to lateral veloc-

ity vy induces sideslip, which simultaneously generates restorative roll and yaw

torque on the robot body.

2.9 Conclusion

The potential of flapping-wing robots can only be fully realized through a

foundational understanding of flapping-wing flight dynamics and maneu-

vers, enabling the design of full-envelope flight control. This paper presented

the derivation of a nonlinear flight dynamics model for minimally-actuated

flapping-wing robots which captures the six body degrees of freedom as well as

two rotational degrees of freedom in each wing during flight. A simplified yaw

control method was proposed which maintains a constant flapping frequency

during maneuvers for more power-efficient flight. As a basis for understand-

ing the dominant linear modes of flight, detailed definitions were presented

for quasi-steady aerodynamic maneuvers along with a method for solving the
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equations of motion for quasi-steady set points.

Steady flight envelopes for flapping-wing flight, given in terms of wing

stroke angle limits imposed by the robot geometry, were presented using the set

point solutions based on the maneuver definitions. The quasi-steady maneuver

set points were used to analyze the dominant linear modes and the stability of

flight for a specific flapping-wing robot, which revealed stable flight regimes

at moderately high speeds of forward level and descending flight. The mode

shapes of the two dominant linear modes throughout the flight envelope were

shown for both hovering and forward level flight. Finally, the model was val-

idated against experimental data from a physical flapping-wing robot, which

showed good agreement between the dominant modes in the model and the

experimental data. Finally, experimental results were presented validating the

model’s predicted coupling between roll and yaw.
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CHAPTER 3

ADAPTIVE FULL-ENVELOPE SPIKING NEURAL CONTROL

3.1 Introduction

Insect-scale flapping robots have recently demonstrated the ability to hover and

perform basic trajectory following and other maneuvers through the implemen-

tation of modular PID and adaptive controllers [18,53,68]. Due to their size and

weight, these robots have a wide variety of potential applications, including

search and rescue and remote monitoring in confined spaces or hazardous en-

vironments. Generating lift through flapping as opposed to more traditional

fixed-wing or rotary designs is inherently more efficient at this scale [68]. Ad-

ditionally, it provides a great deal of agility, as can be observed in many flying

insects [30, 45].

Stabilizing and controlling these robots remains a challenging problem,

however, due to a number of factors. A successful controller must be robust

to uncertain physical parameters caused by manufacturing errors such as wing

asymmetries, which result in a noticeable torque bias during flight that rapidly

destabilizes the robot. Additionally, actuator dynamics vary between robots,

leading to variations in flapping kinematics. Analytic models of aerodynamic

forces are imperfect, and their accuracy can degrade during rapid maneuvers

or in other poorly modeled flight regimes. The controller must be able to react

quickly to stabilize the system’s naturally fast, unstable dynamic modes. Ad-

ditionally, the model and control law must account for the periodic flapping

nature of the system. This periodicity means that the system has limit cycles in-

stead of equilibrium points, and that linearizations thus result in time-varying
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instead of time-invariant systems. These systems are also severely underactu-

ated, possessing between 10 and 12 degrees of freedom but only 3 or 4 control

inputs. This limits the effectiveness of some common techniques such as feed-

back linearization.

Recent work has shown that spiking neural networks (SNNs) are capable of

being used as adaptive controllers for a wide variety of systems. They have been

used to stabilize longitudinal fixed-wing aircraft dynamics [44], perform trajec-

tory following on robot arms [29], perform navigation and control for terrestrial

insect-like robots [71, 123], and stabilize simplified longitudinal dynamics for

insect-scale flapping robots [19]. Building on these previous efforts, the work

presented here develops an adaptive SNN controller capable of stabilizing hov-

ering flight of a simulated flapping insect-scale robot. The robot model used in

this work computes aerodynamic forces on the wings during flight with blade-

element theory and includes 6 degrees of freedom in the main robot body [20].

An important consideration for the design of an adaptive controller for

insect-scale flight is the maximum allowable rate of adaptation, which affects

how quickly the controller can account for an unmodeled parameter variation

online. In general, the adaptation rate for insect-scale flight control must be

quite fast to correct for instabilities which can otherwise lead to a crash in just

a few hundred milliseconds during open loop flight. However, instability can

be induced in the closed-loop system by the controller if the adaptation rate is

set too high [60, 120], although there currently is a lack of analytical quantifica-

tion of the relationship between the rate of adaptation, the transient response,

and the dominant timescales of open-loop instability [60]. Nonetheless, there

is some evidence that SNN-based controllers may be able to adapt online more
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quickly than their conventional counterparts without inducing instability from

rapidly changing control gains. For instance, in [19], an SNN-based controller

was used to successfully stabilize a simple 2D model of flapping-wing flight

through rapid online adaptation from a random initialization of the network.

The adaptive SNN-based controller developed here is capable of rapid adap-

tation while controlling the full 3D model of flapping-wing flight presented in

Chapter 2.

SNN-based controllers have several additional desirable properties for con-

trolling insect-scale flapping robots. Hardware implementations of SNNs have

shown to be very power efficient [10], an important consideration given the

small power and weight budgets for robots at this scale. For instance, the

power budget for the RoboBee is around 20mW [68], most of which is required

to power the actuators. Additionally, event-based sensors are available which

yield low-latency feedback on the order of 15µs [66]. The output from these

sensors must be processed before being used with most existing control algo-

rithms however, thus reducing the inherent benefits of low latency and low

power consumption. Integrating the event-based output from these sensors

with SNN-based control algorithms has the potential to provide low latency

and low power feedback control if SNN control algorithms can be developed

which demonstrate robust performance for complex unstable systems. To this

end, this paper presents an adaptive SNN-based controller capable of stabilizing

a realistic model of an insect-scale flapping robot while adapting for unknown

parameter variations.

Due to a lack of sufficient rotational damping, open loop hovering flight is

unstable for many insect-scale flapping robots, including the RoboBee shown in
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Figure 3.1: The RoboBee, with the wing stroke plane shown in blue.

Fig. 3.1 [46,110]. In systems such as the RoboBee, open loop flight tests often re-

sult in a crash in less than 0.3 seconds, leaving very little time for a poorly tuned

controller to adapt to uncertain physical parameters. If the adaptive controller

is not initially robust to uncertainties in physical parameters prior to any online

learning, it will be unable to stabilize hovering flight long enough to learn the

parameters of the robot. To achieve this, a portion of the SNN control signal

is tuned offline to approximate a linear controller which was developed for the

idealized robot model. A separate term in the control law is used to adapt online

to any errors caused by parameter variations in the system.

Several distinct control methods have been implemented to stabilize hover-

ing flight for flapping-wing robots previously. A hierarchical approach to de-

signing flight controllers for insect-scale flapping robots proposed in [27]. The

design calls for a stabilizing controller to compute desired forces and torques,

which are passed on to a wing trajectory controller, responsible for generating

periodic signals to be sent to the wings. This modular approach has been ex-

tended to several control methods for insect-scale flapping robots.

A modular PID approach was used to stabilize hovering and perform basic
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trajectory following for the RoboBee, shown in Fig. 3.1, in [68]. A similar ap-

proach in [17] used the same modular architecture, but included adaptive terms

to estimate wing torque biases and improve tracking performance. This design

was augmented with an iterative learning scheme to perch on vertical surfaces

in [18]. The adaptive approach in [16] is an extension of [18], but also accounts

for wind disturbance rejection based on feedback estimates.

The SNN controller proposed here is shown to be capable of stabilizing an

insect-scale flapping robot in the presence of unknown parameter variations,

achieving improved performance over the linear controller on which a portion

of the SNN control law is based. This is demonstrated by controlling a simula-

tion of the RoboBee which has been previously validated against experimental

data [20].

3.2 Dynamic Model

The SNN control method developed here is applicable to linear dynamic sys-

tems of the form

ẋ(t) = A(t)x(t) + B(t)u(t) (3.1)

where x ∈ Rn is the state, u ∈ Rm is the control input, A is the dynamics matrix,

and B is the control input matrix. As an example case, the control design is

applied here to the flapping-wing robot design presented in Chapter 2.

For the class of flapping-wing robots considered here, thrust is provided by

two wings mounted to the top of the main body, as shown in Fig. 3.1. Each

wing is independently actuated, and only the stroke angle of each wing can

be directly controlled. Piezoelectric actuators drive transmissions that flap the
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wings to generate lift. Torque control is achieved by changing the wings’ rela-

tive stroke amplitudes for roll and the mean stroke angle for pitch, as shown in

Fig. 2.3. This follows the control strategy described in Section 2.3, in particular

(2.17) and (2.18).

Just as for many biological insects, the robot is unstable in hovering flight

[46, 110] as described in Section 2.7. The instability arises because of net drag

forces acting high above the robots center of mass. This unstable mode arises in

both the longitudinal and lateral directions, destabilizing the robot in both pitch

ψ and roll θ. The dynamics are neutrally stable in yaw, so for simplicity, yaw

control is not considered in the design of the adaptive SNN hovering controller.

This assumption is later relaxed for the development of a full-envelope SNN

controller, where yaw control is necessary to execute coordinated turns.

The SNN control design is applied here to the flight model described in Sec-

tion 2.3. If the equations of motion given in (2.23) can be linearized about hov-

ering without significant loss of accuracy, then control design is greatly simpli-

fied. Linearization about a single point in state space will yield a poor model

for control design however, as the wing states vary greatly during flight. On the

other hand, linearizing about the periodic hovering trajectory should provide

a good approximation for relatively small deviations from hovering. This will

yield a linear time varying solution in terms of deviation from the hovering tra-

jectory. The steady hovering trajectory is characterized by a time-varying state

denoted by x∗(t) and a constant control input u∗. As described in Section 2.5,

the values for this trajectory can be computed by solving (2.23) for the initial

conditions and constant control inputs that produce a periodic trajectory so that

x∗(t) = x∗(t + T ), where the period T = 120Hz is equal to the flapping frequency.

54



After defining the state deviation x̃(t) = x(t) − x∗(t) and the control deviation

ũ(t) = u(t) − u∗, the linearized equations of motion are given by

˙̃x = A(t)x̃ + B(t)ũ (3.2)

where, for ẋ = f(x,u, t),

A(t) =
∂f
∂x

∣∣∣∣∣
x∗(t),u∗

, B(t) =
∂f
∂u

∣∣∣∣∣
x∗(t),u∗

(3.3)

Due to the periodic nature of flapping flight, the model (3.2) is periodic with

period T , such that

A(t) = A(t + T ), B(t) = B(t + T )

The linear time-varying model shown in (3.2) is far more suitable for controller

design than the full non-linear time-varying equations of motion. The equa-

tions in this form do not accurately represent the system responsiveness to all

control inputs however, even near the equilibrium trajectory. This is caused by

the inclusion of the actuator dynamics in the full equations of motion (2.23). Lin-

earizing the equations of motion directly, for instance by measuring the value

of ẋ in response to small perturbations in x and u, captures the response of

the system to an instantaneous control input, which depends on the transient

wing response instead of the steady state response. The transient response is,

in some cases, significantly different than the steady state response and thus

causes the linearized control input matrix B(t) to inaccurately represent the sys-

tem response to control inputs.

The most noticeable case of the transient wing response differing from the

steady state response is after a step change to the roll input ur, which induces

roll torque in the steady state, but also couples with yaw torque in the transient

response. The instantaneous response of the wings to a step change in roll input
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ur is, briefly, quite different from the steady state response. As one wing accel-

erates and the other decelerates, a yaw torque is generated and the body very

slightly rolls opposite the desired direction. Flapping one wing faster than the

other is known to theoretically cause yaw torque [68,80]. The impact on the con-

trol input matrix B(t) is significant. The instantaneous response to a roll control

input is captured by the linearization, which then indicates that a roll control

works in the opposite of the desired direction and causes significant yawing.

Figure 3.2a plots the coefficients of the B(t) matrix that couple the roll input ur to

the body Euler angle accelerations when the B(t) matrix is calculated using the

linearization shown in (3.2).

Since the desired effect of the linearization is to capture the response of the

body due to the steady state motion of the actuators, the steady state wing mo-

tion must be computed for any control input used when numerically computing

the Jacobian shown in (3.3). The state vector must first be divided into the wing

states xw and the body states xb. The steady state wing motion can then be com-

puted by integrating the equations of motion for the wing states, ẋw = fw(x,u, t),

while assuming the body remains in the equilibrium trajectory defined by x∗b.

Applying this to the linearization results in a much improved representation of

the LTV system. The coefficients of the B(t) matrix computed using the steady

state wing trajectories are shown in Fig. 3.2b. These now correctly indicate that

a positive roll control input will result in a positive roll torque. The yawing ef-

fect remains, but if the control is held constant throughout the flapping period,

the yaw torque generated on the upstroke will be negated by the yaw torque

generated on the downstroke.
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Figure 3.2: The coefficients of the control input matrix which couple the roll
input ur to body Euler angles differ significantly when considering the steady-
state response instead of the transient response.

3.3 Proportional Integral Filter (PIF) Compensator Reference

Control Design

A successful controller design for flapping wing robots must stabilize a non-

linear system using periodic control inputs in the presence of unmodeled aero-

dynamic forces and uncertain parameters. Blade element theory gives a good
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estimate of aerodynamic forces during flight, but does not account for many

unsteady effects that are present during flapping flight. Additionally, physical

parameters vary between robots due to manufacturing defects, which creates

noticeably different flight characteristics which must be accounted for by the

controller. The fast dynamic response of flapping flight at an insect scale creates

additional challenges. Small body oscillations during flapping create an unde-

sirable high-frequency component in the control law which, if applied to the

system without filtering, could damage actuators and excite undesirable modes

of the system dynamics. The SNN controller design which will stabilize flight

in the presence of these uncertainties and disturbances must first approximate

a suitably robust reference control design, after which it will adapt online for

improved performance.

Proportional-integral-filter compensation [99, p.528] is an approach that ad-

dresses the issues mentioned above and can be tuned to be suitably robust to

both parameter variations and unmodeled disturbances. This approach aug-

ments the state error x̃ with both the control error ũ and the integral of the output

error ξ(t) = ξ(0) +
∫ t

0
ỹ(τ)dτ ∈ Rr. Including the control input u in the state vector

introduces a low-pass filter on the resulting control law which is incorporated

into the optimization problem. Steady-state error due to constant disturbances

is addressed through the output integral ξ. The resulting controller is used to

stabilize the robot about a pre-computed trajectory consisting of a possibly time-

varying state x∗(t) and a constant control input u∗. Control gains are chosen to

minimize the quadratic cost function,

J = lim
t f→∞

1
2t f

∫ t f

0
{χT (t)Q′χ(t) + u̇T (t)R′u̇(t)}dt (3.4)
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where the augmented state vector is χ = [x̃T (t) ũT (t) ξT (t)] ∈ Rq and the matrix,

Q′ =


Q1 0 0

0 R1 0

0 0 Q2


weights state error x̃ through Q1, control error ũ through R1, and the integral

of the output error ξ through Q2. The cost function (3.4) corresponds to the

dynamic constraint given by,

χ̇(t) = A′(t)χ(t) + B′(t)χ(t) (3.5)

where the dynamic matrix A′(t) and input matrix B′(t) for the augmented state

equation are given by,

A′(t) =


A(t) B(t) 0

0 0 0

Hx 0 0

 , B′(t) =


0

I

0

 (3.6)

and the matrix Hx relates the state to the output.

For simplicity, a subset xc of the complete state vector is used for the con-

troller design. The wing states, body position, and yaw are all ignored. The

state subset includes the roll θ, pitch ψ, roll rate θ̇, pitch rate ψ̇, body x veloc-

ity vx, the body y velocity vy, and the body z velocity vz. The output for the

controller design is defined to contain only roll and pitch, so that

xc =

[
θ ψ θ̇ ψ̇ vx vy vz

]T

y =

[
θ ψ

]T

In the dynamics matrix A′(t) and input matrix B′(t) in (3.5), only the coefficients

corresponding directly to this subset of state variables are used.
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Given a cost function of the form (3.4), the minimizing control law is

u̇(t) = −K(tp)χ(t)

u̇(t) = −R′−1B′T S(tp)χ(t)
(3.7)

where the period time tp = t mod T is the amount of time elapsed since the

beginning of the current flapping period. The control law given in (3.7) gives

an optimal policy for the time derivative of the control law. Equation (3.7) must

be integrated to find the control input u(t) to be provided to the plant. The gain

K(t) is dependent on S(t), which is the periodic solution to the matrix Riccati

equation

Ṡ(t) = − A′T (t)S(t) − S(t)A′(t) −

Q′ + S(t)B′(t)R′−1B′T (t)S(t)
(3.8)

A closed-form solution to the continuous periodic Riccati is not available,

but its solution can be found by integrating (3.8) until it satisfies S(t) = S(t + T )

within a specified tolerance. The final period of the resulting solution can then

be used to calculate the periodic gain K(t). This computation is performed of-

fline for each trajectory, but can be computationally expensive. Care must be

taken to ensure that the resulting solution is symmetric, which can be enforced

during integration by periodically replacing the calculated solution Sc(t) with

the symmetric result S(t) = 1/2[Sc(t) + ST
c (t)]. Additional methods are available

which can reduce the computation time, including general methods for numer-

ical solutions to differential equations [9] as well as algorithms specifically for

the Riccati equation [99].

Computing the solution to the periodic Riccati equation (3.8) is in general

quite inefficient. This in turn makes it difficult to fine-tune the augmented state
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and input weighting matrices Q′ and R′. An alternative is to average the dy-

namics over an entire flapping period and then neglect the motion of the wings.

This so-called stroke-averaging technique is commonly used as a method of

simplifying the dynamics of insect flight for analysis [88, 110]. Although this is

a difficult task for the complete equations of motion (2.23) due to the passive

degree of freedom in wing pitch, the linear time-varying system (3.2) can easily

be stroke-averaged. Beginning with the augmented dynamic equation (3.5), the

stroke-averaged model takes the form,

χ̇(t) = Ā′χ(t) + B̄′u̇(t) (3.9)

where

Ā′ =
1
T

∫ T

0
A′(t)dt, B̄′ =

1
T

∫ T

0
B′(t)dt (3.10)

The frequency of the control gains computed in (3.7) is much higher than

the bandwidth of the actuators. The settling time for the stroke angle in re-

sponse to a step input is typically at least 5 complete flapping periods. Thus,

the stroke-averaged control inputs computed using the model (3.9) will yield

similar performance to the time-varying model (3.5) in practice.

Because the stroke-averaged model is time-invariant, the optimal control law

becomes,

u̇(t) = −R′−1B′T Sχ(t)

= −K̄χ(t)
(3.11)

and the solution to the Riccati equation S is found by solving the algebraic Ric-

cati equation

0 = −Ā′T S − SĀ′ −Q′ + SB̄′R′−1B̄′T S (3.12)

The algebraic Riccati equation can be solved much more efficiently than the

differential Riccati equation (3.8). Thus, using the stroke-averaged linearized
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equations of motion significantly simplify the problem of finding the optimal

control gains for the control law.

3.4 Adaptive SNN Control Design

The control signal can be provided entirely by populations of spiking neurons

using an adaptation of the approach presented in [29]. Each individual popu-

lation of neurons is structured as a single-layer feed forward network. A total

of four separate neuron populations are used to compute the complete control

signal, which is the summation of two terms. One term approximates the signal

from a linear controller that is designed to stabilize the ideal model [20], and

the other is an adaptive term to account for parameter variations in the robot. A

total of 800 neurons are used across all four populations.

The PIF compensator described in the previous section is used as the refer-

ence linear controller for the SNN approximation. Integrating (3.11) yields the

reference control law

uPIF(t) =

∫ t

0
−Kχ(τ)dτ (3.13)

For simplicity, the control input error and integral of the output error are both

assumed to be zero for the SNN approximation. The most significant terms in

the PIF control signal are dependent on the state error x̃(t) only.

To formulate the PIF approximation term u0 in terms of spiking neurons,

the Neural Engineering Framework (NEF) [35, 101] is used. The NEF provides

a framework for representing algorithms in terms of spiking neuron models,

and includes methods for both encoding time-varying vectors in populations
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of neurons and for decoding the output of spiking neurons into a continuous

signal.

The state x(t) is encoded in a population of neurons as a sequence of spikes

from each neuron. The nonlinear spiking neuron model of the ith neuron within

the population is Gi : J × T → R, which maps the input current Ji ∈ J ⊂ R and

time t ∈ T ⊂ R+
0 to the spike train ri ∈ R,

ri = Gi(Ji(x), t) (3.14)

The total current Ji into neuron i is written in terms of a gain term αi ∈ R, the

neuron’s preferred direction vector ei ∈ Rn, and a fixed background current

Jbias
i ∈ R,

Ji(x) = αieT
i x(t) + Jbias

i (3.15)

The nonlinear spiking neuron model Gi used in this work is the leaky

integrate-and-fire model [52]. This models the voltage Vi across the membrane

of a neuron as an RC circuit governed by the first-order ODE

τRC
dVi

dt
= −Vi(t) + RiJi(x), Vi(0) = V0 (3.16)

where τRC is the decay time constant and Ri is the resistance in the circuit and

accounts for the passive “leak” of the current. The spike train ri of the neuron

can be written as a summation of Dirac delta functions indexed by k. A spike

time tik is defined when the voltage reaches a threshold Vth, following which the

membrane potential Vi is set to the reset value Vr < Vth. Expressed formally,

tik = {τ : Vi(τ) = Vth} (3.17)

lim
t→t+ik

Vi(t) = Vr (3.18)
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Following a spike, neuronal activity is held at the reset value Vr for a refractory

period τre f , after which the membrane potential Vi(t) again follows (3.16).

The spiking activity contained in ri can be expressed using the spike times tik

as,

ri =
∑

k

δi(t − tik) (3.19)

where δi(t) denotes the Dirac delta function. To decode a continuous estimate

of the state x(t) from the spiking activity ri, the filtered postsynaptic activity

is used. In this model, synapses act as linear filters hi(t) on the spike trains.

This can be explicitly stated using the postsynaptic time constant τPS C as hi(t) =

(1/τPS C)e−t/τPS C . The activity ai of neuron i is thus the summation of impulse

responses from linear filters, which can also be written as the convolution of the

synaptic filters hi(t) with the spike train,

ai(x, t) = hi(t) ∗Gi(Ji(x), t)

=
∑

k

hi(t − tik)
(3.20)

where “∗” denotes the convolution operator. The activity of the population of

neurons can be used to represent the PIF control signal through the use of care-

fully chosen linear decoders di ∈ Rm,

u0(t) =
∑

i

ai(x, t)di (3.21)

The linear decoders which give the optimal representation of the PIF con-

trol signal are found using standard least squares optimization over a set B of

sampled data,

di = argmin
mi

∫
x∈B
‖ g(x) −

∑
i

āi(x)mi ‖
2 dx (3.22)

where g(x) is the output of the PIF control law for a given point in state space and

āi(x) is the time-averaged steady-state neuron activity for the same point. The
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elements of B are sampled from a subset of the state space near the hovering

condition, where the neuron population is expected to be capable of approxi-

mating the PIF control law.

The domainA ⊂ Rn is a subset of the state space near the hovering condition.

The sampled data includes all points in state space where the neuron population

is expected to be capable of approximating the PIF control law. The desired

output of the neuron population at any point x is the output of the PIF control

law at the same point.

The control input u0(t) closely approximates the signal from the PIF com-

pensator, which is designed to control a linearized model of a flapping-wing

robot [20]. In reality however, the robot is subject to manufacturing defects

which are not present in the model. These defects include variations in the

wing hinges and asymmetries between the actuators that result in anomalous

torque generation during flight. An adaptive control input uadapt(t) accounts for

this and other unmodeled dynamics present in the system. The computation of

uadapt(t) follows a direct adaptive method similar to that outlined in [29, 93, 96].

The adaptive term uadapt(t) contains three scalar quantities: an amplitude in-

put ua(t), a pitch input up(t), and a roll input ur(t),

uadapt(t) =

[
ua(t) up(t) ur(t)

]T

(3.23)

Each of these scalars are computed from a separate population of neurons, as

shown in Fig. 3.3. Each population is trained online to zero out an error signal

that depends on the error ∆x(t) = x(t) − xre f (t) between the state x(t) and the

reference state xre f (t), a constant gain term α ∈ R+
0 , and the constant vector Λ ∈

Rn

E(t) = ΛT [∆x(t) + α∆ẋ(t)] (3.24)
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Plant

Figure 3.3: The SNN control architecture, where clusters of circles represent
neuron populations.

In general, variations in actuator performance between robots result in con-

stant biases to the effective gain of the amplitude input and state-dependent

biases to the effective gain of the pitch and roll inputs. The adaptive amplitude

input ua(t) is computed by decoding the neuron activity through linear decoders

da,i ∈ R,

ua(t) =
∑

i

aa,i(t)da,i(t) (3.25)

where the activity of the neurons in this population is

aa,i(t) = hi(t) ∗Gi(Jbias
i , t) (3.26)

This can be written more compactly by defining the activity for the amplitude

population as aa = [aa,1, aa,2, . . . , aa,N]T and the corresponding population de-

coders da = [da,1, da,2, . . . , da,N]T . The amplitude control signal (3.25) can now

be rewritten as

ua(t) = aT
a (t)da(t) (3.27)

The linear decoders da(t) for the amplitude population are continuously up-

dated based on an adaptation rate γ ∈ R+
0 , the population activity, and the error
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signal (3.24),

ḋa(t) = γaa(t)E(t) (3.28)

For the amplitude input ua(t), the vector Λ is chosen so that the error function is

only a function of the body z velocity error ∆vz(t) and its derivative.

The adaptive pitch input up(t) and adaptive roll input ur(t) are computed sim-

ilarly to the adaptive amplitude input (3.27). Pitch and roll torques experienced

during flight are in general a function of the state, because drag on the wings

varies as a function of the robot’s angular and linear velocity. This is accounted

for in both up(t) and ur(t) by incorporating the state in the neural activity, as

shown in (3.20)

up(t) = aT
p (x, t)dp(t) (3.29)

ḋp(t) = γap(x, t)E(t) (3.30)

The pitch input is computed to reduce the error in body x velocity vx(t) by choos-

ing Λ in the error function (3.24) so that the error depends only on vx(t) and its

derivative.

The roll input ur(t) is computed identically to the pitch input (3.29), except

that Λ in the error function is chosen so that the error depends only on the body

y velocity vy(t) and its derivative,

ur(t) = aT
r (x, t)dr(t) (3.31)

ḋr(t) = −γar(x, t)E(t) (3.32)

The sign difference between the right hand side of (3.30) and (3.32) results from

differences in sign convention between the two control inputs.

In summary, the adaptive amplitude input (3.27) is designed to zero out any

error in body z velocity, the pitch input (3.29) is designed to zero out error in
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Figure 3.4: Block diagram of the PIF compensator.

the body x velocity, and the roll input (3.31) will zero out the error in body y

velocity. The complete control signal sent to the plant is the sum of (3.21) and

(3.23),

u(t) = u0(t) + uadapt(t) (3.33)

The first term u0(t) is trained offline to control the ideal model, and the adaptive

term uadapt(t) is trained online to minimize the steady-state error ∆x(t) caused by

parameter variations and constant disturbances.

3.5 Full-Envelope SNN Control Design

The PIF gain matrix K ∈ Rm×(n+m+r) can be partitioned into K1 ∈ Rm×n, K2 ∈ Rm×m,

and K3 ∈ Rm×r. Using these partitioned matrices, the PIF control law (3.11) can

be written as

˙̃u(t) = −Kχ(t) = −K1x̃(t) −K2ũ(t) −K3ξ(t) (3.34)

The third term, K3ξ(t) is the integral term designed to minimize steady-state

error and account for discrepancies between the linearized model and the phys-

ical plant. Since the SNN controller will later be modified to include an adaptive
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term designed to account for the same errors, this term is neglected in the PIF

approximation. Neglecting this term, the transfer function for the PIF control

law becomes

G(s) ,
U(s)
X(s)

= −(sI + K2)−1K1 (3.35)

This transfer function is simply a low-pass filtered gain matrix. Using the final

value theorem, the steady-state PIF gain matrix is

G(0) = −K−1
2 K1 , Kss (3.36)

A single-layer feed-forward SNN is used to approximate the PIF control law

over the entire flight envelope, using y∗ as the input to the network and taking

the output of the network as the approximate gain matrix. The transfer function

for the SNN from the vector of spike trains P(s), generated by the nodes in the

network, to the post synaptic current R(s) can be written as

R(s)
P(s)

= H(s)W (3.37)

The PIF gains are approximated by tuning the network output weights W so

that the steady-state post synaptic current matches the steady-state PIF gain

matrix Kss for all desired values of the command input y∗. The post-synaptic

filter H(s) can then be tuned to match the gain of the low-pass filter from the

original PIF control law.

3.5.1 Adaptive SNN-based Hovering Control Results

Closed loop flight test simulations were conducted using both the SNN con-

troller (3.33) and the PIF compensator (3.13) to control the model from Chapter

2. Compared to previous stroke-averaged models, this model more accurately
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represents the coupling between various degrees of freedom in the robot by us-

ing blade element theory to compute instantaneous aerodynamic forces during

flapping. The model was compared with experimental data to validate its effec-

tiveness at representing the flight dynamics of the physical robot. To verify the

ability of each controller to compensate for parameter variations in the model,

wing asymmetry was introduced in both simulations by applying a static ampli-

tude bias between the right and left wings of the model for roll and a static mean

stroke angle offset for pitch. In both cases, the controllers were commanded to

control hovering flight.

The attitude and body velocity during the flight simulation using the PIF

compensator are shown in Fig. 3.5 and Fig. 3.6. Although the integral term in

the PIF compensator does work to eliminate steady-state error in vx and vy as

shown in Fig. 3.6, it does so slowly, and at the end of the 6 second test flight

the robot maintains a significant non-zero velocity. Due to the positional drift,

the robot continues yawing throughout the simulation as shown in Fig. 3.5.

However, the PIF compensator is able to quickly stabilize pitch and roll to near

zero.

The same initial conditions and wing biases were used to simulate another

closed loop flight, this time using the adaptive SNN (3.33) to control the simu-

lated robot. The parameters for the adaptive input uadapt(t) were tuned using a

grid parameter search. The search varied the parameters of the decoder update

laws to find the values that lead to the smallest total deviation from the start-

ing hover position in meters. The attitude and body velocity from a trial with

simulated wing bias and random initial conditions are shown in Fig. 3.7 and

Fig. 3.8, respectively. During this simulated flight test, the RoboBee remained
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Figure 3.5: For comparison with the SNN controller, the PIF compensator
quickly stabilizes roll θ and pitch ψ, but the yaw angle φ is not stabilized.
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Figure 3.6: For comparison with the SNN controller, the PIF compensator suc-
cessfully stabilizes vz, but only slowly stabilizes vx and vy, resulting in significant
drift from the initial position.
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Figure 3.7: During a simulated hovering flight, the adaptive SNN success-
fully stabilizes roll θ and pitch ψ about zero despite parameter variations in the
model, while the yaw angle φ stabilizes at a constant non-zero value.

within 10cm of its starting position.

The body attitude and velocity are both stabilized by the adaptive SNN con-

troller. The yaw angle φ settles at a non-zero constant in Fig. 3.7 and the pitch

angle ψ and roll angle θ both stabilize near zero. The yaw angle was not included

in the set point and thus was not expected to reach zero, since the controller

lacks direct yaw control authority. All components of the body velocity stabi-

lize near zero as shown in Fig. 3.8 after approximately 3 seconds. Comparing

the RoboBee attitude and velocity when controlled by the PIF compensator (Fig.

3.5 and Fig. 3.6) with the attitude and velocity when controlled by the adaptive

SNN (Fig. 3.7 and Fig. 3.8) demonstrates the ability of the adaptive SNN to

account for the unmodeled torque disturbances caused by the simulated wing

bias.
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Figure 3.8: During a simulated hovering flight, the adaptive SNN successfully
stabilizes all components of the body velocity near zero despite parameter vari-
ations.

3.5.2 Full-envelope SNN-based Flight Control Results

Here, the performance of the full-envelope SNN controller is compared against

a gain-scheduled PIF compensator for the task of controlling a simulated

flapping-wing robot as it performs a variety of maneuvers throughout the flight

envelope. The PIF controller provides a stabilizing control law for the RoboBee

over the entire flight envelope, including hovering, vertical flight, longitudi-

nal flight, and steady climbing turns. The SNN controller is trained offline to

approximate the PIF control law over the flight envelope. The closed-loop per-

formance for several maneuvers, shown in Table 3.1, is shown here for the SNN

controller, comparing it in each case to the closed-loop PIF performance.

Trial 1 tests the ability of the SNN controller to recover from an initial dis-

turbance and maintain hovering flight. Figure 3.9 compares the closed-loop re-

sponse of the PIF-controlled robot and the SNN-controlled robot with the same
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Trial Maneuver Figure
1 Hovering 3.9
2 Take-off 3.10
3 Steady lateral flight 3.11
4 Steady climbing turn 3.12
5 Up-and-over 3.13
6 Sinusoidal climb angle 3.14
7 Orbit around target 3.15

Table 3.1: A summary of the different trials used to test the performance of the
SNN controller.

initial conditions. Although the trajectories of each appear dissimilar, they each

drift by only a few centimeters from the origin. The velocity tracking perfor-

mance is good for both controllers, as shown in Fig. 3.9b. The control inputs

provided by the SNN controller are shown in Fig. 3.9d, in which they are com-

pared to the inputs the PIF controller would have provided given the same state

information. This plot shows that the primary difference between the two con-

trollers is the additional low-pass filtering of the control signal caused by the

synapses on the SNN controller.
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trol signals

Figure 3.9: The RoboBee attempting to hover after an initial disturbance. Both
controllers yield very similar velocity tracking performance. The synapses on
the SNN controller have been tuned to filter out the high frequency component
of the control signal present in the signal from the PIF.

Trial 2 (shown in Fig. 3.10) shows the closed-loop performance of both con-

trollers performing a vertical take-off maneuver at v∗ = 0.5m/s after an initial

disturbance. The SNN controller again performs very similarly to the PIF con-

troller.
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Figure 3.10: Closed-loop response of the RoboBee performing a vertical take-
off maneuver after an initial disturbance. Both controllers again perform very
similarly, and both maintain small velocity tracking errors.

Trial 3 (Fig. 3.11) shows the closed-loop performance of both controllers

performing steady-level flight with v∗ = 0.5m/s and β∗ = 90◦ after an initial

disturbance. The control input from the SNN closely follows the input that

would have been provided by the PIF, and the controller successfully executes

the maneuver with similar tracking performance to the PIF.
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(d) Comparison between PIF and SNN con-
trol signals

Figure 3.11: Closed-loop response of the RoboBee in steady level flight with
a sideslip angle of β = 90◦ after an initial disturbance. Both controllers again
perform very similarly and maintain small velocity tracking errors.

Trial 4 (Fig. 3.12) shows the closed-loop performance of both controllers

performing a steady climbing turn with v∗ = 0.5m/s, γ∗ = 30◦, and ξ̇∗ = 90◦s−1

after an initial disturbance. The SNN controller provides control inputs that are

very similar to the PIF and successfully executes the maneuver with very similar

velocity tracking performance (shown in Fig. 3.12b) to the PIF.
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trol signals

Figure 3.12: Closed-loop response of the RoboBee performing a steady climbing
turn after an initial disturbance, with v∗ = 0.5m/s, ξ̇∗ = 90◦s−1, and γ∗ = 30◦.
Both controllers again perform very similarly, and both maintain small velocity
tracking errors.

Trial 5 (Fig. 3.13) shows the ability of the SNN controller to cope with rapidly

changing command inputs. The robot is commanded to climb vertically from

t = 0 to t = 2, then to fly forward in steady level flight from t = 2 to t = 4, and

finally to descend vertically from t = 4 to t = 6. In each case, the desired speed
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is v∗ = 0.5m/s. In other words,

y∗ =



[
0.5 π/2 0 0

]T

, if 0 < t ≤ 2[
0.5 0 0 0

]T

, if 2 < t ≤ 4[
0.5 −π/2 0 0

]T

, if t > 4

(3.38)

The SNN successfully performs the maneuver, obtaining very similar tracking

performance to the PIF and generating similar control inputs.
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(d) Comparison between PIF and SNN con-
trol signals

Figure 3.13: Closed-loop response of the RoboBee performing three maneuvers
in quick succession. For the first two seconds, the robot is commanded to climb
vertically with v∗ = 0.5m/s and γ∗ = 90◦. From t = 2s to t = 4s, it is com-
manded to fly forward with v∗ = 0.5m/s, and γ∗ = 0. From t = 4s to t = 6s,
it is commanded to fly vertically downward with v∗ = 0.5m/s and γ∗ = −90◦.
Both controllers again perform very similarly, and both maintain small velocity
tracking errors after a short transient response following each command input
change.

To demonstrate another example of a changing command input, trial 6 (Fig.

3.14) shows the closed-loop performance of the SNN-controlled robot with a

constant commanded speed of v∗ = 0.5m/s and a sinusoidal climb angle follow-

ing γ∗ = (π/2) sin(2πt/3). The SNN-controlled robot executes the maneuver with

very similar tracking error to the PIF-controlled robot, as seen in Fig. 3.14b.

80



Again, the control inputs are also similar with the exception of the additional

low-pass filteing from the SNN synapses.
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trol signals

Figure 3.14: Closed-loop response of the RoboBee performing a maneuver with
a time-varying sinusoidal path angle, v∗ = 0.5m/s and γ∗ = (π/2) sin(2πt/3). Both
controllers are able to perform the maneuver, and again have similar control
inputs throughout the simulation. Neither controller is able to perfectly follow
the target velocity however, and the tracking error in this trial never reaches a
value as small as the other trials.

Trial 7 (Fig. 3.15) simulates a flight pattern that might occur during in a sens-

ing application. In this trial, the robot is commanded to take-off vertically for

1 second with v∗ = 0.5m/s and γ∗ = 90◦, after which it executes a steady-level

turn with v∗ = 0.5m/s, ξ̇ = 90◦s−1, and β = 90◦. Due to the sideslip angle in
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this maneuver, the robot remains facing towards the center of the circle while

executing the turn. This would allow, for example, a front-facing camera on the

RoboBee to collect information from multiple perspectives on a target located at

the center of the circle. After completing the circle, the robot is commanded to

land again with v∗ = 0.5m/s and γ∗ = −90◦. As in the other trials, the SNN main-

tains similar velocity tracking performance to the PIF, and successfully executes

the maneuver.
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(d) Comparison between PIF and SNN con-
trol signals

Figure 3.15: Closed-loop response of the RoboBee circling a target while main-
taining a heading such that the RoboBee is pointed towards the center of the
turn at all times. Both controllers again perform very similarly, and both main-
tain small velocity tracking errors.
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3.6 SNN-based Control Conclusions

Control using SNNs has several potential benefits, including the potential for

low latency control loops and low power consumption. This is especially true

when considering integrating SNN controllers with event-based sensors. This

paper presents an SNN-based control algorithm that is shown to be capable

of stabilizing an accurate model of an unstable insect-scale flapping robot de-

spite unknown parameter variations. One term in the control law approximates

the control signal from a linear controller designed for the idealized model,

while another term adapts online to account for parameter variations that are

unknown a-priori. The controller is able to adapt to the parameter variations

within 3 seconds and successfully stabilizes hovering flight. This demonstrates

the ability of SNN controllers to stabilize inherently unstable systems that re-

quire rapid, accurate feedback control.
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CHAPTER 4

EVENT-BASED VISUAL PERCEPTION

4.1 Introduction

Significant recent developments in manufacturing, processing capabilities, and

sensor design form the foundation for a future in which robots autonomously

assist human efforts in remote and hazardous environments. A necessary com-

ponent of this vision is the development of algorithms which can interpret the

environment in real time, allowing robots to autonomously navigate an un-

known space while avoiding obstacles and gathering information on targets in

the environment. Such algorithms, together with the sensors they are paired

with, should be computationally efficient to enable their use in real time on

power-constrained mobile platforms.

Many algorithms have been developed to enable obstacle avoidance and

target tracking with conventional frame-based cameras. These include meth-

ods for localization and mapping [94,112], obstacle avoidance techniques based

on the perceived motion of objects in the scene [49, 76, 125], and target track-

ing methods based on deep neural networks [50, 72]. These techniques have

been successfully demonstrated in a variety of applications, but are fundamen-

tally limited by the large amount of redundant data which they must process

from conventional frame-based cameras. For instance, to enable rapid and ag-

ile flight, many birds and insects can perceive visual changes at up to 150Hz or

more [11,56,97]. However, many frame-based perception algorithms are limited

to operating closer to 30Hz due to the large amount of redundant data which

must be processed from each subsequent frame from a conventional camera.
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Recently, event-based sensors have been developed which eliminate the trans-

mission of redundant data by measuring and transmitting only changes in an

underlying signal as opposed to absolute values.

Event-based, or neuromorphic sensors encompasses many different classes

of sensors, all of which are inspired by biological nervous systems. Generally,

event-based sensors communicate information through events that indicate the

change in a measured value, such as the light intensity in a vision sensor [12,

25, 66, 83, 121] or an acoustic signal [67] for a spatial audition sensor. These

sensors reduce the redundancy in measured and transmitted data by signaling

only changes in the measured value, typically in an asynchronous fashion and

at a far lower power requirement than their more traditional counterparts.

Event-based vision sensors are particularly interesting for many robotics ap-

plications due to their low latency, low power requirements, and high tem-

poral resolution. The earliest event-based vision sensor was demonstrated in

1994 [70]. Modern sensors have relatively low spatial resolution compared to

frame-based cameras, but have temporal resolution on the order of 1µs with la-

tency on the order of 1ms or less [66,83]. Neuromorphic sensors are a natural fit

for many robotics applications due to their high temporal resolution, low power

requirements, and ability to easily extract motion from an image, but have only

recently become commercially available. Some examples demonstrating their

potential in robotics applications include tracking a moving ball on a field for

a robotic “goalie” arm [26], balancing a pencil using event-based vision sensors

to track its position [23], and several examples of obstacle avoidance and target

tracking for ground-based robots [73, 74] and aerial vehicles with constrained

motion [78]. Recently, event-based cameras have been used for visual odometry
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and state estimation on quadcopters in static environments [13, 85, 108].

One group of methods of particular interest for the development of obstacle

avoidance and target tracking is optical flow, in which the velocity of points in

the image plane is to be estimated. Several event-based optical flow methods

have been developed to-date, including sparse methods which track the motion

of a few key feature points [48] and dense methods which estimate the flow

over the entire field of view. Several algorithms exist to compute optical flow

from the output of a neuromorphic vision sensor, which can in turn be used

together with more traditional target tracking and obstacle avoidance methods.

Gradient-based methods are capable of computing optical flow in real time on

embedded systems [6,7,22], but compute only the component of the flow veloc-

ity normal to an edge. Other methods track contours or other salient points over

time, but require more complex algorithms, usually involve solving optimiza-

tion problems online, and thus cannot generally be run in real time on embed-

ded hardware [4, 5, 85]. Another recent development does not compute optical

flow directly, but is capable of tracking lines in the scene over time, however it

is limited to straight lines with no rotational motion in the image plane [37].

Another visual perception task which is critical for mapping and obstacle

avoidance is depth estimation, where the distances of points in the field of view

from the camera are to be estimated. Depth estimates can be computed from

stereo vision, where two cameras with overlapping fields of view are used to

observe points simultaneously from different perspectives, or from multi-view

stereo, where a single moving camera is used. In some mobile robotics appli-

cations, such as the flapping-wing robots described in Chapter 2, the multiple

cameras required by stereo vision techniques are in conflict with the extreme
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power and weight limits of the platform. The majority of the work in event-

based multi-view stereo is limited to estimating the depth of a set of sparse

features in the field of view [84]. It is also possible to compute depth from op-

tical flow measurements, but this approach has so far only been demonstrated

for estimating the distance of objects away from the direction of travel [125].

Target tracking from a moving platform and obstacle avoidance using neu-

romorphic vision sensors has only been explored in a limited fashion to-date.

Target tracking can be performed relatively simply with a stationary camera,

as the camera naturally detects only moving objects [26, 59]. In the presence of

camera motion, the problem becomes more difficult and has only been demon-

strated on ground robots and robotic arms using methods which are not directly

extensible to aerial vehicles [73, 74, 106].

Here, computationally-efficient methods visual perception methods for au-

tonomous obstacle avoidance and target tracking with event cameras are devel-

oped. First, a an approach for event-based dense optical flow estimation is de-

veloped, which demonstrates improved accuracy over existing methods while

being implementable entirely through efficient linear convolutions. The method

is then extended to compute dense monocular depth estimates from a moving

camera. In contrast to existing methods, the depth estimates computed by this

approach remain accurate near the direction of travel, and are thus directly us-

able for real time obstacle avoidance in autonomous aerial vehicles. The monoc-

ular depth estimates are then used directly to detect moving targets in the field

of view of a translating and rotating event camera on an aerial vehicle. In total,

the methods presented here represent a computationally-efficient framework

for real-time obstacle avoidance and target tracking with autonomous aerial ve-
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hicles using a single event-based camera.

4.2 Firing Rate-based Optical Flow

Event-based sensors have much higher temporal resolution and sensing rate

than traditional frame-based cameras, providing the potential for accurate op-

tical flow estimation without the need to track motion over large distances be-

tween frames. However, because event-based cameras do not measure the ab-

solute brightness of the image, traditional optical flow algorithms cannot be

used directly with event-based sensors. Here a new event-based optical flow

method is developed using information about the spatio-temporal firing rate of

events. The results are compared with existing methods, showing that the pro-

posed event-density method is computationally efficient, allowing for real time

operation, and offers improved accuracy despite being developed using simple

linearized assumptions.

(a) (b)

Figure 4.1: Events (a) generated when a horizontally translating circle crosses
the camera FOV are used to compute the spatio-temporal firing rate (b). The
ground truth optical flow v follows structures in the firing rate.
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An important assumption which allows for the measurement of optical flow

in a conventional camera is that the total derivative of brightness I in the image

with respect to time is equal to zero,

[∇ηI(x, y, t)]T v(x, y, t) = 0 (4.1)

where η = [x y t]T and

v(η) =

[
vx(η) vy(η) 1

]T

(4.2)

This implies that the motion of p must lie within a level set of brightness in the

image.

Although this assumption is commonly used for computer vision tasks with

conventional cameras, event-based cameras do not directly measure the bright-

ness, and reconstructing it from the events the camera produces is a complex

task and computationally-intensive task in and of itself [4]. Neuromorphic cam-

eras generate sequences of events ei = [ηT
i , pi]T due to changes in brightness in

the scene. Events are generated when the log of the intensity I at a given pixel lo-

cation changes beyond a fixed threshold θ. Each event comprises the xi ∈ X ⊂ R

and yi ∈ Y ⊂ R pixel coordinates of the event, the time ti ∈ T ⊂ R+ of the event,

and the polarity pi ∈ {−1, 1} of the event. The polarity of the event indicates the

sign of the intensity change:

pi =


1 if ln[I(xi, yi, ti)] − ln[I(xi, yi, ti−1)] ≥ θ

−1 if ln[I(xi, yi, ti)] − ln[I(xi, yi, ti−1)] ≤ −θ
(4.3)

The firing rate, approximately the number of events in a given period of time,

can be defined in terms of the log brightness I′ , ln(I) as

f (η) =
1
θ

∂I′

∂t
(4.4)
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In order to construct an analogous constraint to (4.1) which applies to neuro-

morphic cameras, some vector n ∈ R3 must be found which is written in terms

of f instead of I, such that

[n(η)]T v(η) = 0 (4.5)

It will be shown that a definition for n which satisfies (4.5) is

n , ∇η f (4.6)

Using this definition in (4.5) yields a relationship between the partial derivatives

of f and the motion field:
∂ f
∂x

vx +
∂ f
∂y

vy = −
∂ f
∂t

(4.7)

Under the assumption of constant brightness, the firing rate can be expressed

in terms of the spatial derivatives of brightness which, together with (4.4), can

be substituted into (4.7) to prove that (4.6) satisfies (4.5). It is possible to write

the constant brightness assumption in terms of the log of intensity as

[∇ηI′(η)]Tξ(η) = 0 (4.8)

Together with (4.4), this yields

∂I′

∂x
vx +

∂I′

∂y
vy + f θ = 0 (4.9)

Solving for f yields

f = −
1
θ

(
∂I′

∂x
vx +

∂I′

∂y
vy

)
(4.10)

Substituting (4.4) into the left-hand side of (4.7) and (4.10) into the right-hand

side yields

∂

∂x

(
1
θ

∂I′

∂t

)
vx +

∂

∂y

(
1
θ

∂I′

∂t

)
vy =

∂

∂t

[
1
θ

(
∂I′

∂x
vx +

∂I′

∂y
vy

)]
(4.11)
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Given the assumption that ∂/∂t(vx) = ∂/∂t(vy) = 0:

1
θ

∂

∂x

(
∂I′

∂t

)
vx +

1
θ

∂

∂y

(
∂I′

∂t

)
vy =

1
θ

∂

∂t

(
∂I′

∂x
vx +

∂I′

∂y
vy

)
(4.12)

∂

∂x

(
∂I′

∂t

)
vx +

∂

∂y

(
∂I′

∂t

)
vy =

∂

∂t

(
∂I′

∂x

)
vx +

∂

∂t

(
∂I′

∂y

)
vy (4.13)

∂2I′

∂x∂t
vx +

∂2I′

∂y∂t
vy =

∂2I′

∂t∂x
vx +

∂2I′

∂t∂y
vy (4.14)

Applying symmetry of second derivatives yields the final result,

∂2I′

∂x∂t
vx +

∂2I′

∂y∂t
vy =

∂2I′

∂x∂t
vx +

∂2I′

∂y∂t
vy (4.15)

which shows that the proposed definition for n given by (4.6) satisfies the con-

straint (4.5) under the stated assumptions.

Because (4.5) is a single scalar equation for each coordinate η, an additional

assumption is required to compute both vx and vy. A second assumption, which

will be shown to work well in practice, is that the orientation ψ = atan( fy/ fx)

of the firing rate’s spatial gradient remains constant along the trajectory of each

moving point. These two assumptions are used to find the direction of the ve-

locity at each point η in the spatio-temporal volume by solving

v(η) = arg min
ṽ

{[
ψ(η + ṽdt) − ψ(η)

]2
+

[
f (η + ṽdt) − f (η)

]2
}

(4.16)

The expression above can be significantly simplified by linearizing both ψ and

f about η. The linearization will be accurate for a sufficiently small dt, which is

possible due to the high sensing rate of event cameras. Linearizing (4.16) yields

v(η) = arg min
ṽ

{[(
∇ηψ(η)

)T
ṽdt

]2
+

[(
∇η f (η)

)T
ṽdt

]2
}

(4.17)

If ∇η f = 0, ∇ηψ = 0, or if the gradients are parallel, there are infinitely many

solutions for v. Otherwise, the solution to the minimization is any vector which

lies in the null space of both ∇η f and ∇ηψ,

v̂(η) =
(∇ηψ(η)) × (∇η f (η))
‖(∇ηψ(η)) × (∇η f (η))‖

(4.18)
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Figure 4.2: The orientation of the firing rate gradient, corresponding to the ex-
ample shown in Fig. 4.1.

where × denotes the vector cross product. From (4.2), the magnitude of v should

be set such that the third component is equal to unity. Thus, the velocity at each

point in the volume is equal to the unit directional vector v̂ normalized by its

third component v̂3:

v(η) =
v̂(η)
v̂3(η)

(4.19)

4.3 Event-based Dense Monocular Depth Estimation

In robotics applications, the velocity and angular rate of the camera are typ-

ically known from other on-board sensors and estimation techniques. In this

case, the gradient-based dense optical flow method presented in Section 4.2 can

be adapted to provide dense depth estimates of static objects in an environment

from monocular camera. Because the depth estimation method presented here

is based on the same linear assumptions as the optical flow method, it is com-

putationally simple, entirely implementable through convolutions in real time.
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The camera used for depth estimation is modeled using the pin-hole camera

model as shown in Fig. 4.3. Every stationary point Q in the camera field of

view (FOV) is projected onto the image plane at a corresponding point P. The

position of Q relative to the camera origin C expressed in the camera frame Fc

is q = [qx qy qz]T . The position of P is written in terms of q as,

p =


px

py

pz

 =


λ
qz

qx

λ
qz

qy

λ

 (4.20)

where λ ∈ R+ is the camera focal length. Any relative motion between the cam-

era and Q causes the position of P to change according to,

ṗ =


vx

vy

vz

 =


λ
qz

q̇x −
λ
q2

z
q̇zqx

λ
qz

q̇y −
λ
q2

z
q̇zqy

0

 (4.21)

where ˙(·) denotes the time derivative. The velocity of P depends on q̇, which

expressed in terms of the camera velocity vc and angular rate ωc is,

q̇ = vc − ω × q (4.22)

where × denotes a cross product. Evaluating equation (4.22) and substituting

into (4.21) yields the final expression for the velocity of the projected point in

the image plane, vx

vy

 =
1
qz

Gvc + Hωc (4.23)

where the matrices G and H depend exclusively on intrinsic camera parameters:

G ,

λ 0 −px

0 λ −py

 , H ,


px py

λ
−(λ +

p2
x
λ

) py

(λ +
p2

y

λ
) −

px py

λ
−px

 (4.24)
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Figure 4.3: The pinhole camera model

This expression relates the depth of objects in the scene to the camera velocity

and the optical flow (vx and vy) on the camera image plane.

The assumption that flow is oriented along level sets of the firing rate f , used

previously in the development of optical flow, can now be used together with

(4.23) to estimate the depth of stationary points in the scene. The constant firing

rate constraint is written as,

[
fx fy

] vx

vy

 = − ft (4.25)

where the subscript on f denotes a partial derivative, e.g. fx = ∂ f /∂x. Substitut-

ing the expressions for the image plane velocities (4.23) into (4.25) yields

1
qz

[
fx fy

]
Gvc +

[
fx fy

]
Hωc = − ft (4.26)

Solving (4.26) for depth yields:

qz = −

[
fx fy

]
Gvc

ft +

[
fx fy

]
Hωc

(4.27)
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4.4 Event-based Independent Motion Detection

To track moving targets through an environment, it is necessary to first detect

the targets using a method which either detects patterns of colors and shapes

via object detection or instead detects patterns of movement through the envi-

ronment. Here, a method is developed which detects any motion relative to the

environment in FOV of a rotating and translating event camera.

As with the depth estimation method described in Section 4.3, the camera is

modeled using the pin-hole camera model shown in Fig. 4.3 and it is assumed

that the state of the camera is known. First, the method described in Section

4.3 is used to estimate the depth qz associated with each event ηi = [xi, yi, ti],

where xi and yi are the image-plane coordinates of the event. Using the esti-

mated depth, the position qi of the point Q in the world frame corresponding to

the point ηi in the image plane is computed as,

qi = w(xi, yi, ti) = R


xi

qz(xi,yi,ti)
λ

yi
qz(xi,yi,ti)

λ

qz(xi, yi, ti)

 + rc(ti) (4.28)

where R ∈ SO(3) is a rotation matrix from the camera frame to the world frame

and rc is the position of the camera expressed in the world frame. The density ρ

of points in the world frame is then computed by convolving a Gaussian kernel

with Dirac delta functions δ. The Dirac delta functions are located at the points

qi corresponding to events which occurred within a given time window defined

by the parameters τ2 > τ1 > 0,

ρ(q, t) =
∑

qi∈Q1

exp[−(q − qi)TΣ−1(q − qi)] (4.29)
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where,

Q1 = {qi = w(xi, yi, ti) | ti ∈ [t − τ2, t − τ1)} (4.30)

the diagonal matrix Σ = I3σk, I3 ∈ R3×3 is the identity matrix, and σk > 0 defines

the width of the kernel. In practice, the event density can be efficiently approx-

imated by computing the sum in (4.29) only for the subset of points qi which

lie within a distance 2
√
σk of q. This subset can be found efficiently using a k-d

tree [8].

Stationary objects in the camera FOV are located in regions of high event

density ρ, because the world-frame point estimates qi associated with points on

the object will accumulate in the same location over time, distributed according

to the estimation error. World-frame point estimates associated with points on

moving objects however, will follow the motion of the object throughout the

world, and thus do not accumulate at a single world-frame location over time.

Therefore, point estimates qi which correspond to points on moving objects gen-

erally exist in regions of low world-frame event density and high values of the

inverse density function h,

h(xi, yi, t) = exp[−ρ(qi, t)/α], ∀qi ∈ Q2 (4.31)

where the parameter α controls the smoothness of the function and

Q2 = {qi = w(xi, yi, ti) | ti ∈ [t − τ1, t]} (4.32)

4.5 Optical Flow Results

To demonstrate the ability of the firing rate-based optical flow method to com-

pute both components of the optical flow vector accurately, the method is
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demonstrated on an example with a diagonally-translating square in Fig. 4.4.

While many existing event-based optical flow methods can only compute the

normal component of the optical flow [90], the firing rate-based method pre-

sented here computes both components of the flow around the entire perimeter

of the square. The average angular error (AAE) φ̃ is a common metric used to

evaluate the accuracy of optical flow methods. It measures the average angular

difference between the computed optical flow vectors (vx, vy) and the ground

truth optical flow (v∗x, v∗y) at all points where the computed optical flow is non-

zero:

φ̃ = cos−1

 vxv∗x + vyv∗y√
v2

x + v2
y

√
(v∗x)2 + (v∗y)2

 (4.33)

By only computing the component of optical flow which is locally normal to

any of the translating edges of the square, existing methods explored in [90]

effectively have an AAE of approximately 45◦. By contrast, the AAE of the op-

tical flow computed for the translating square with firing rate-based method

presented here is only 14.2◦.
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(a)

(b)

Figure 4.4: The firing rate-based optical flow method computes the optical flow
vectors (b) along the entire edge of a diagonally-translating block (a) with an
AAE of only 14.2◦.

Although it is useful to compare the firing rate-based optical flow method

with existing event-based optical flow algorithms, it is also useful to compare

the performance of the method presented here with commonly used frame-

based optical flow methods used in the majority of computer vision and robotics

applications today. The Farneback algorithm [38] is an algorithm for dense opti-

cal flow estimation which is still widely in use today. The Farneback algorithm

is compared to the firing rate-based method developed here for the case of the

three diagonally translating shapes shown in Fig. 4.5. As reported in Table 4.1,

the firing rate-based method more than halves the AAE of the Farneback al-

gorithm despite running four times faster in a single-threaded implementation

on an Intelr Xeonr E5-2623 3GHz CPU. Both algorithms have very low error

rates on the translating sphere shown in Fig. 4.5. However, the firing rate-based

method does not compute flow at two extreme edges of the sphere due to the
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Farneback Firing Rate-based Flow
AAE [degrees] 38.7 14.9

Approximate operating frequency [Hz] 30 120

Table 4.1: The proposed firing rate-based optical flow method presented here is
approximately four times faster than the commonly used Farneback algorithm
and has less than half of the angular error.

low number of events in those locations. The firing rate-based method however

is able to compute the flow along the straight edges of the translating cubes

more accurately than the Farneback algorithm, which leads to its overall lower

error rate.

4.6 Depth Estimation Results

The depth estimation method presented here is used to estimate the depth of

stationary objects in two different examples, shown in Figs. 4.7 and 4.9. In

the first example, a camera views several stationary objects while translating

laterally at a constant speed, as shown in Fig. 4.6. As can be seen in Fig. 4.7, the

largest errors are observed at the top of the blue sphere. This is due to the lack

of events in that region, which cause a poor depth estimate. The depth error

is computed as a percentage difference between the estimated depth qz and the

ground truth depth d:

d̃ =

∣∣∣∣∣qz − d
d

∣∣∣∣∣ (4.34)

The depth estimate elsewhere in the field of view remains near 5%, with a me-

dian depth error of 5.9%. This compares favorably with existing monocular

event-based depth estimation algorithms, which report median depth errors of

9.4% when viewing the straight walls of a 4m-wide corridor [125].
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Figure 4.5: The firing rate-based optical flow algorithm developed here is com-
pared with the well-known Farneback algorithm. The scene consists of three
shapes translating at an angle through the FOV. The firing rate-based optical
flow (c) has a lower average angle error than Farneback (d), especially on the
flat edges of the cubes, but does not compute flow at two edges of the sphere
due to a low firing rate in that region (b).
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Figure 4.6: The depth estimation algorithm is applied to the data taken from
the FOV of a laterally translating camera (shown in yellow), as it observes an
otherwise static scene.

The depth estimation method presented here is also examined on a more

complex example in which a camera flies forwards and laterally through a set

of obstacles in Fig. 4.9, with the scene and camera trajectory shown in Fig. 4.8.

The depth estimation error is higher in this example, primarily due to the large

distance to the background of the image, which is over 35m away in places. The

error shown in Fig. 4.9 is high for the sky, because the true depth is infinite in

that region. Overall, the median depth error in this example is 9.3%.

This example demonstrates the ability of the proposed algorithm to estimate

scene depth near the focus of expansion (FOE). The FOE is the point in the im-

age plane where all ground truth optical flow vectors due to camera transla-

tional motion intersect, and corresponds to direction of travel projected into the

image plane. The FOE is a singularity where no translational optical flow ex-

ists. Near the FOE, the signal-to-noise ratio of most algorithms becomes too

low to be of practical use in obstacle avoidance. For instance, the monocular

depth estimation used in [125] is limited to the sides of the quadcopter travel-

ing forwards down a corridor. With the method presented here, the region near

the focus of expansion which results in unusable depth estimates is limited to

approximately 25◦ of the horizontal FOV.
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Figure 4.7: The depth estimation algorithm is applied to the data taken from
the FOV of a laterally translating camera (a). As shown by the depth estima-
tion error (e), the depth estimate (d) is generally within 5% of the ground truth
depth (c), except near the top of the blue sphere, where a lack of contrast yields
insufficient information to obtain any estimate in that region, as seen by the
correspondingly low firing rate value (b).
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Figure 4.8: The depth estimation algorithm is applied to the data taken from the
FOV of a longitudinally and laterally translating camera (shown in yellow), as
it observes an otherwise static scene.

4.7 Independent Motion Detection Results

The independent motion detection method presented here is used to detect a

bouncing ball in the field of view of a translating camera in Fig. 4.10. This

task is challenging due to the translational motion of the camera, which creates

relative motion between the camera and every point in its FOV, including both

stationary and moving objects. By comparing the depth estimates at each time

step to the world-frame estimates of points in the FOV, as described in Section

4.4, the inverse world-frame point density function h is obtained. As shown in

Fig. 4.10, high values of h correspond to moving objects in the FOV which are

moving relative to the fixed world frame.

It is interesting to note that not only the ball in Fig. 4.10 is detected by this

method, but also the moving shadows cast by the ball as it moves through the

environment. In the first frame shown in the example, the shadow of the ball is

visible just below it and to the left against the brick wall. As the ball approaches

the ground, the shadow on the ground becomes visible and is detected by the

algorithm as well.
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Figure 4.9: The depth estimation algorithm is applied to the data taken from the
FOV of camera as it moves forward and laterally through an environment (a).
The depth estimation error percentage (e) is high at large distances, such as the
sky at the top of the image. For closer objects, the depth estimate (d) is generally
within 5-10% of the ground truth (c).
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Figure 4.10: The independent motion detection algorithm is used to detect a
moving ball in the FOV of a moving camera (a). The firing rate (b) yields depth
estimates, which are projected into the world frame to determine the inverse
world-frame point density function h (c). High values of h correspond to move-
ment in the world frame. The algorithm detects both the moving ball and its
moving shadows (d).
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Additionally, the independent motion detection method presented here is

used to detect a moving butterfly in the FOV of a translating camera in Fig. 4.11.

The difficulty in this particular scenario is that the butterfly has little relative

velocity to the camera, as it translates together with the camera in the same

direction at the same speed. Despite this complication, the algorithm presented

here is nonetheless able to consistently detect the motion of the butterfly, as

shown by the high values of h at the location of the butterfly in the FOV in Fig.

4.11.

4.8 Conclusions

A visual perception framework was presented for event-based cameras which

takes advantage of the high sensing rate of event cameras to enable compu-

tationally efficient, complimentary methods for optical flow estimation, depth

estimation, and independent motion detection from a monocular camera. The

optical flow method is shown to have reduced error rates compared to com-

monly used event-based and frame-based dense optical flow methods, with re-

duced computational cost compared to common frame-based methods. The

depth estimation method leverages the assumptions developed for the optical

flow algorithm to enable dense monocular depth estimation with applicability

to obstacle avoidance and mapping. Finally, a method is developed which uses

the depth estimates to detect objects which are moving relative to the world

frame from point of view of a translating and rotating event camera. Together,

these three methods form a foundation for autonomous obstacle avoidance and

target tracking in power- and weight-constrained mobile robotics applications.
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Figure 4.11: The independent motion detection algorithm is used to detect a
butterfly in the FOV of a moving camera, which moves with almost zero relative
velocity with the camera (a). The firing rate (b) yields depth estimates, which
are projected into the world frame to determine the inverse world-frame point
density function h (c). High values of h correspond to movement in the world
frame. The algorithm detects the butterfly despite no relative motion between
the camera and the butterfly (d).
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CHAPTER 5

CONCLUSIONS

The potential of flapping-wing robots can only be fully realized through

a foundational understanding of flapping-wing flight dynamics and maneu-

vers, enabling the design of full-envelope flight control. This work presented

the derivation of a nonlinear flight dynamics model for minimally-actuated

flapping-wing robots which captures the six body degrees of freedom as well as

two rotational degrees of freedom in each wing during flight. A simplified yaw

control method was proposed which maintains a constant flapping frequency

during maneuvers for more power-efficient flight. As a basis for understand-

ing the dominant linear modes of flight, detailed definitions were presented

for quasi-steady aerodynamic maneuvers along with a method for solving the

equations of motion for quasi-steady set points.

Steady flight envelopes for flapping-wing flight, given in terms of wing

stroke angle limits imposed by the robot geometry, were presented using the set

point solutions based on the maneuver definitions. The quasi-steady maneuver

set points were used to analyze the dominant linear modes and the stability of

flight for a specific flapping-wing robot, which revealed stable flight regimes

at moderately high speeds of forward level and descending flight. The mode

shapes of the two dominant linear modes throughout the flight envelope were

shown for both hovering and forward level flight. Finally, the model was val-

idated against experimental data from a physical flapping-wing robot, which

showed good agreement between the dominant modes in the model and the

experimental data. Finally, experimental results were presented validating the

model’s predicted coupling between roll and yaw.
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This work also developed a framework of computationally-efficient meth-

ods for neuromorphic perception and control to enable autonomous obstacle

avoidance and target detection in flapping-wing robots and other agile mobile

robotic platforms. An adaptive flight control method using spiking neural net-

works (SNNs) was developed based on the full-envelope flapping-wing flight

dynamics model. The controller was demonstrated to be capable of accounting

for parametric variations in the model through rapid online adaptation, which

resulted in improved stabilizing performance in hovering flight compared with

a more conventional linear optimal controller. The control method was also ex-

tended to perform quasi-steady maneuvers such as coordinated turns, take-off,

and landing throughout the flight envelope. It was demonstrated that it could

effectively control these maneuvers with reduced error compared with a gain-

scheduled optimal controller.

Finally, computationally-efficient neuromorphic visual perception methods

were developed for dense optical flow estimation, dense depth estimation, and

independent motion detection. These methods use simple, linearized assump-

tions about the firing rate of events, which work well due to the high sensing

rate of event-based cameras. The firing rate-based optical flow method is shown

to have reduced angular error and improved computational performance com-

pared to existing methods. It is shown that the underlying assumptions used

for the optical flow method also enable dense depth estimation from a moving

event camera. Finally, the depth estimates were used in a new event-based in-

dependent motion detection approach which facilitates the detection of moving

targets in the FOV of a translating and rotating event camera.

In total, the methods presented here represent a computationally-efficient
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framework for real-time obstacle avoidance and target tracking with au-

tonomous aerial vehicles using a single event-based camera.
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APPENDIX A

CHAPTER 1 OF APPENDIX

A.1 Kinematic Terms

The position vectors used in the equations of motion are,

rGA = −deb
3 (A.1)

rAL = l1el
2 + h1el

3 (A.2)

rAR = l1er
2 + h1er

3 (A.3)

where d ∈ R, l1 ∈ R, and h1 ∈ R are distance parameters that that are determined

by the robot geometry. The angular rates of the body, left and right wings with

respect to the fixed frame are,

ωb = φ̇e f
3 + θ̇e f ′

1 + ψ̇eb
2 (A.4)

ωl = φ̇leb
3 + θ̇lel′

1 + ψ̇lel
2 + ωb (A.5)

ωr = φ̇reb
3 + θ̇rer′

1 + ψ̇rer
2 + ωb (A.6)

where the basis vectors of the intermediate frames are e f ′

1 = R(e f
3 , φ)e f

1 , el′
1 =

R(eb
3, φl)eb

1, and er′
1 = R(eb

3, φ)eb
1. The rotation matrices, denoted with R, are de-

scribed in Appendix A.2. The relative velocity vectors are obtained by using the

expressions for the position vectors and angular rate vectors for the correspond-

ing rigid bodies:

vGA = ωb × rGA (A.7)

vAL = ωl × rAL (A.8)

vAR = ωr × rAR (A.9)
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The acceleration of the body center of gravity G, the left wing center of gravity

L, and the right wing center of gravity R are written in terms of (A.1) - (A.9):

aG = ẍe f
1 + ÿe f

2 + z̈e f
3 (A.10)

aL = aG + ω̇b × rGA + ωb × vGA + ω̇l × rAL + ωl × vAL (A.11)

aR = aG + ω̇b × rGA + ωb × vGA + ω̇r × rAR + ωr × vAR (A.12)

A.2 Rotation Matrices

A rotation matrix R ∈ SO(3) can be computed the axis of rotation n ∈ R3 and the

angle of rotation η ∈ R, where ‖n‖ = 1 and η is expressed in radians. The rotation

matrix is,

R(n, η) = [1 − cos(η)]nnT + cos(η)I3 + sin(η)S (n) (A.13)

where I3 ∈ R3×3 is the identity matrix and S denotes the skew-symmetric matrix:

S (n) =


0 −n3 n2

n3 0 −n1

−n2 n1 0

 (A.14)

A.3 Dynamic Constraint Matrices

Expressions for the matrices in (2.43) are obtained by writing the sequence of

equations from (2.41) and (2.42) at every collocation point as a set of linear ex-
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pressions, which results in,

G ,



−1
2I I −1

2I 0 0 . . .

−I 0 I 0 0

0 0 −1
2I I −1

2I

0 0 −I 0 I
...

. . .


(A.15)

and

H ,



1
8I 0 −1

8I 0 0 . . .

1
6I 2

3I 1
6I 0 0

0 0 1
8I 0 −1

8I

0 0 1
6I 2

3I 1
6I

...
. . .


(A.16)
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