
VISIBILITY-CONSTRAINED PATH PLANNING
FOR UNMANNED AERIAL VEHICLES

A Thesis

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Master of Science

by

Vaibhav Bisht

August 2023

© 2023 Vaibhav Bisht

ALL RIGHTS RESERVED

ABSTRACT

Visibility-constrained path planning refers to problems in which a robot must

navigate an environment populated by obstacles and occlusions (e.g. opaque

objects) whereby avoiding line-of-sight (LOS) detection by one or more sen-

sors. Example applications are unmanned aerial vehicles (UAVs) used to per-

form tasks like warehouse inventory monitoring where the UAV must avoid

detection by the warehouse security system. This thesis presents a visibility-

constrained path planning framework for a quadcopter with an onboard camera

to navigate in partially known environments, avoiding collisions with obstacles

and LOS detection inside sensor visibility regions created using key concepts

of visibility theory. A probabilistic roadmap (PRM) is used to find a path on

the prior map with sensor visibility regions. Panoptic segmentation is used to

obtain a pixel-wise semantic mask to identify obstacles in the RGB frames cap-

tured online. The inverse projection method is then used to map these obstacles

on an online map of the workspace using ground truth depth maps and col-

lisions with the quadcopter’s path are checked. Additionally, findings on the

limitations of machine-learning based monocular depth estimation for online

mapping are also discussed. A hybrid path replanning algorithm is used that

locally replans the path to avoid collisions with obstacles identified online. If

local replanning fails to find a new local path, global replanning is performed

using an updated PRM. A simulation environment in Unreal Engine is used

to test the visibility-constrained path planning framework with the quadcopter

imported from AirSim.

BIOGRAPHICAL SKETCH

Vaibhav studied Mechanical Engineering in India where he pursued research

on automotive controls, computer vision and Industry 4.0. He joined Labora-

tory for Intelligent Systems and Control (LISC) after starting at Cornell in the

Fall of 2021 and got to work on a diverse set of projects on computer vision,

motion planning, active perception, robotics simulation, virtual reality and re-

inforcement learning.

Apart from academics and research, Vaibhav was awarded the GRASSHOPR

fellowship in 2022 and served as the treasurer of Robotics Graduate Student Or-

ganization (RGSO) at Cornell. He personally enjoys reading about geopolitics

and never misses a chance to go for running, especially on the bright and sunny

winter mornings of Ithaca.

iii

This document is dedicated to all Cornell graduate students.

iv

ACKNOWLEDGEMENTS

I would like to thank Dr. Silvia Ferrari for her guidance and mentorship

throughout my involvement in the varied research undertakings at LISC. I also

thank Dr. Tapomayukh Bhattacharjee for his insightful and critical comments

on my work, may it be for research or as part of his course on robot manipula-

tion.

Secondly, I thank all the members of LISC who created an environment of

discussion where you could approach anyone anytime, may it be for research,

coursework or general robotics discussion. I in particular thank Yucheng Chen,

Kyung Rak Jung, Suming Qiu and Sushrut Surve for their roles in work men-

tioned here including creating the simulation environment and devising the

probabilistic roadmap with the sensor visibility regions. I also appreciate mem-

bers of the robotics fraternity at Cornell University who were the like-minded

people I could spend time with.

Lastly, I thank all the members of my family at home in India and here in

the US, who ensured that I make the best of my time as a student at Cornell

University.

v

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vi
List of Tables . vii
List of Figures . viii

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Contribution . 3

2 Problem Formulation And Assumptions 4

3 Methodology 8
3.1 Simulation Environment Design 8
3.2 Workflow . 10

3.2.1 Offline Planning . 11
3.2.2 Online Update . 15

4 Simulation Results and Discussion 26

5 Conclusion 30

Bibliography 32

vi

LIST OF TABLES

3.1 RGB camera intrinsic parameters 9

vii

LIST OF FIGURES

2.1 Opaque object occludes the position b in workspace 6
2.2 Sensor visibility region (pink) in workspace with occlusions (grey) 6

3.1 Industrial city environment in Unreal Engine 8
3.2 Quadcopter from AirSim in industrial city environment 9
3.3 Offline planning and online update phases in visibility-

constrained path planning . 10
3.4 2-D prior map of industrial city . 12
3.5 2-D probability occupancy grid over prior map of industrial city 12
3.6 Probabilistic roadmap with visibility regions (pink) and arcs (blue) 13
3.7 Select RGB frame from Unreal Engine simulation environment-I 16
3.8 Panoptic segmentation result . 16
3.9 Depth map from monodepth2 (relative scale) 17
3.10 Depth network and pose network in monodepth2 18
3.11 Depth map from the Unreal Engine simulation environment . . . 18
3.12 Select RGB frame from Unreal Engine simulation environment-II 19
3.13 3-D point clouds (orthographic-view) 19
3.14 3-D point clouds (front-view) . 19
3.15 Elements of set P in grid environment 21
3.16 Candidate path segment generation 22
3.17 Local replanning results . 22
3.18 Local replanning around concave obstacle 24

4.1 Online map of workspace with drone navigating on prior path . 26
4.2 Previously unseen obstacle-I . 27
4.3 Online map of workspace with drone navigating on locally re-

planned path . 27
4.4 Previously unseen obstacle-II . 28
4.5 Online map of workspace with drone navigating on globally re-

planned path . 28

viii

CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Recent advancements in machine learning (ML), computer vision, embedded

sensing and communication systems are enabling robots with cognitive, sensing

and decision-making skills [1]. Autonomous robots equipped with sensors and

computer vision algorithms find promising use in domains of manufacturing

[2, 3], medical surgery [4, 5], agriculture [6], healthcare [7, 8] and food packaging

[9].

A quadcopter is a rotary-wing aircraft that operates using four rotors known

as rotor blades, two rotating in clockwise and the remaining two rotating in an

anti-clockwise direction. The autonomy and flexibility of these flying robots en-

able a wide range of indoor and outdoor sensing as well as navigation tasks

that include search-and-rescue operations, disaster response efforts and envi-

ronmental surveillance [10]. These robots also operate well in swarms where

they promise scalability in terms of the number of vehicles engaged and stabil-

ity for scenarios where some of the vehicles may fail to operate [11].

Visibility-constrained path planning can be referred to planning a path for

an autonomous robot avoiding LOS detection by one or more sensors in the

presence of occlusions (e.g. opaque objects). According to the concepts of visi-

bility theory discussed in [12], sensor visibility regions are subsets of the sensor

field-of-view (FOV) where the LOS visibility condition in presence of occlusions

is satisfied. Different approaches have been taken to perform such path plan-

1

ning, although the study in [13] shows that fairly less work has been done in

this domain, especially for UAVs.

The earlier efforts on visibility-constrained path planning use strategies that

do not directly focus on robot motion planning. Work in [14] uses insect-scale

ground robots to avoid detection. This approach suffers from limited operating

range of the robots and use of inadequate sensing hardware like micro-cameras

that capture only limited details. Another strategy developed by [15] uses light-

intensity sensors to identify dark locations where the robot could hide. This

approach lacks applicability as it significantly relies on the lighting conditions

of the workspace.

One of the initial studies focusing on planning the path for an aerial vehicle

uses the FOV of omnidirectional sensors as the visibility regions [16] but this

approach does not consider any obstacles in the workspace. Work in [17] cre-

ates a grid-based environment with a visibility-distance cost used to generate a

path using their novel search-based Dark Path algorithm that finds the steepest

descent path based on cost. Although this method is limited to use in known

environments. Work in [18] extends the previous work to partially known envi-

ronments by an online update of the visibility-distance cost by using a visibility

cost function. The Dijkstra’s algorithm [19] is identified to be more effective

than the Dark Path algorithm for shortest path search in this framework as it

iteratively updates the cost for reaching a node if a shorter path is found [20].

Detailed prior maps for many regions cannot be obtained due to their large

spatial scales and impracticable maintenance considering the rate at which

they change [21]. Obstacle avoidance is a major consideration for visibility-

constrained path planning in such environments that are only partially known a

2

priori. This is because the replanned path needs to be constrained to free space,

ensuring collision avoidance with other obstacles as well as preventing entry

into sensor visibility regions. A hybrid local and global path planning frame-

work can be adopted for such instances [22]. A global path can be created offline

using methods like PRM [23] using map of the entire workspace, followed by

local replanning to avoid collisions with any newly identified obstacles. If local

replanning fails, the roadmap updated on the online map can be queried to find

an alternate global path.

1.2 Contribution

This thesis presents a visibility-constrained path planning framework for a

quadcopter to navigate in a partially known environment without entering sen-

sor visibility regions. A combined online and offline data processing framework

is developed based on the robotics pipeline of perception, planning and control.

A prior map with sensor visibility regions is used to generate a path for the

robot using PRM. Panoptic segmentation and the inverse projection method are

used to map new obstacles in a probabilistic occupancy grid. A path replanning

algorithm is developed that performs local path replanning to locally modify

the path for avoiding collisions with newly detected obstacles. If local replan-

ning fails to find an alternate path in free space, global replanning is performed

where the updated roadmap is queried.

3

CHAPTER 2

PROBLEM FORMULATION AND ASSUMPTIONS

The visibility-constrained path planning framework considers a camera-

equipped drone navigating from defined start to end positions avoiding col-

lision with obstacles and entry into sensor visibility regions. For illustration

purposes, the drone is assumed to be operating in a closed, bounded and 2-D

workspace,W ⊂ R2.

The drone navigates in the workspace with a rigid geometryA ⊂W. Every

point in A can be represented by the position and orientation of the moving

body frame FA relative to an inertial frame FW having origin OW ∈ W. The

body frame FA is assumed to be embedded in A with the origin OA being the

onboard camera position. The robot configuration q = [sT , θ]T comprises of the

position, s ∈ W, and orientation, θ ∈ S1, of the onboard camera with respect to

FW. The configuration space is C =W × S1 and comprises of all possible robot

configurations with respect to FW.

The motion of the drone is based on models of the robot kinematic and dy-

namic constraints, governed by the ordinary differential

q̇(t) = f[q(t),u(t), t], q(t0) = q0 (2.1)

where the control vector is given by u(t) ∈ U and U ⊂ Rm is the m-dimensional

space of admissible control inputs. The vector function f(.) is assumed to obey

single-integrator dynamics.

The 2-D workspace is assumed to comprise of M opaque and solid objects,

B j ⊂ W, indexed by j ∈ J , J = {1, . . . ,M}, that act as obstacles. For obstacle B j,

4

C-obstacle is the set of configurations in which the drone with geometry A can

collide with obstacle B j, that is

CB j
△
=

{
q ∈ C |B j ∩A(q) , ∅

}
(2.2)

Therefore, the free configuration space, C f ree ⊂ W, the robot must travel in is

C f ree = C\

M⋃
j=1

CB j (2.3)

The workspace,W, also comprises of N omnidirectional sensors at positions,

vp ∈ W, indexed by p ∈ P, P = {1, . . . ,N}. For a sensor position vp, a visibility re-

gion is defined as a rigid object that can be described by the closed and bounded

subset Vp ⊂ W. The sensor visibility region model comprises of free space in-

side a circle of radius, r > 0, centered at vp, where any point inside the visibility

region satisfies the LOS visibility condition.

Given an opaque object, B j ⊂ W, a position, b ∈ W, can be observed from

vp ∈ W by LOS visibility if and only if

L(vp, b) ∩ B j = ∅ (2.4)

where L(vp, b) is a line segment connecting vp and b

L(vp, b) △= {(1 − γ)vp + γb | γ ∈ [0, 1]} (2.5)

As the drone navigates inW, it can identify and map new obstacles using the

onboard camera sensors. These obstacles,D ⊂W, can be of varying geometries

and therefore, a square occupancy grid, G, is used to map the new obstacles in

D on the 2-D workspace.

5

Figure 2.1: Opaque object occludes the position b in workspace

Figure 2.2: Sensor visibility region (pink) in workspace with occlusions (grey)

6

The drone’s start and end positions can be mapped to the configuration

space as q0 and q f . A path from q0 and q f can be depicted as a continuous

map

τ : [0, 1]→ Cfree (2.6)

where τ(0) = q0 and τ(1) = q f .

This path can be expressed as a piecewise-linear path, also called a poylgonal

chain [12] having vertices (q0, q1, ..., qn).

Therefore, the aim of visibility-constrained path planning framework is to:

”Plan a path τ for the drone to navigate inW, avoiding collision with obsta-

cles and LOS detection inside sensor visibility regions.”

7

CHAPTER 3

METHODOLOGY

This chapter presents the methodology developed for the visibility-constrained

path planning framework. Elements of the robotics pipeline, perception, plan-

ning and control [24, 25] are used to implement the offline planning and online

update phases.

3.1 Simulation Environment Design

A simulation environment is created in Unreal Engine due to it’s capable

physics engine, the PhysX, developed by NVIDIA [26] and high quality of ren-

dering graphics [27, 28]. The industrial city environment pack in Unreal Engine

4.27 is chosen. A representation of the simulation environment can be seen in

Figure 3.1.

Figure 3.1: Industrial city environment in Unreal Engine

8

A quadcopter is added to the environment using AirSim [29], an open-source

platform based on Unreal Engine offering physically and virtually realistic sim-

ulations. AirSim is primarily designed for use in autonomous system devel-

opment that includes mobile robotics, deep learning, reinforcement learning,

computer vision and robot manipulation [30, 31]. It also has a comprehensive

physics engine offering suitable rigid body dynamics and functionalities like

high-frequency real-time hardware-in-the-loop (HITL) simulations.

Figure 3.2: Quadcopter from AirSim in industrial city environment

Figure 3.2 shows a quadcopter from AirSim in the Unreal Engine industrial

city environment. The AirSim plug-in for Unreal Engine is used to create a

”Quadcopter” actor for the Unreal Engine environment. Drone control is sub-

sequently accomplished using the AirSim library in Python 3.

Table 3.1: RGB camera intrinsic parameters

Parameter Dimension
Focal Length 4.9152 mm

Sensor Height 8.12 mm
Sensor Width 8.12 mm

9

An RGB camera is mounted on the front of the quadcopter to capture input

frames and their corresponding ground truth depth maps are obtained from

the simulation environment. The intrinsic parameters of the RGB camera are

shown in Table 3.1. An Alienware Aurora R13 gaming desktop with 12th Gen

Intel® Core™ i7-12700F and 32 GB RAM is used to run these simulations.

3.2 Workflow

The offline planning phase creates a prior map of the workspace that represents

the position of previously known solid and opaque obstacles, B, and sensor

visibility regions,V. This map is used to generate a prior path for the drone.

Figure 3.3: Offline planning and online update phases in visibility-constrained
path planning

10

The online update phase is implemented when the drone starts traversing

the workspace. At time, t, for a drone configuration, qt, the sensor measurement

from the RGB camera is a 3-channel 8-bit RGB frame, whereas the ground truth

depth maps from the Unreal Engine simulation environment are 1-channel 16-

bit. The sensor measurements are used to generate 3-D point clouds from which

obstacles are mapped to avoid collisions in real-time.

The constituent elements of the offline planning and online update phases

can be seen in Figure 3.3.

3.2.1 Offline Planning

The offline planning phase comprises of two steps, prior map determination

and prior path generation.

Prior Map

The 2-D map of industrial city in Unreal Engine with convex and polygonal

obstacles along with the free configuration space, C f ree, is shown in Figure 3.4.

The representation of the 2-D workspace is expected to change over the on-

line update phase due to detection of new obstacles that were not mapped of-

fline. Therefore, a 2-D grid, G, is imposed over the workspace where a grid cell,

g ∈ G, can have occupancy δg ∈ {0, 1}, that is used to represent g being occupied

(δg = 1) or unoccupied (δg = 0).

The log odds value [32, 33] to mark occupancy of each grid cell, g ∈ G, in the

prior map is

11

lg(0) = log
(

p(δg = 1)
(1 − p(δg = 1))

)
(3.1)

where p(δg = 1) = 0.75 is the probability of g being occupied.

Figure 3.4: 2-D prior map of industrial city

Figure 3.5: 2-D probability occupancy grid over prior map of industrial city

12

The 2-D prior map layout of the grid world, G, can be seen in Figure 3.5. It

comprises of 4x4 grids created over the 2-D workspace of dimension 220x220.

Any grid cell that is partially occupied in layout from Figure 3.4 is marked un-

occupied, with the online update phase used to update occupancies.

Prior Path

A PRM is used to create the prior path for drone to navigate in the workspace.

PRMs are used because of being probabilistically complete [34], that is, the prob-

ability of finding a solution for a solvable problem converges to ones as time

goes to infinity. PRMs also generate shorter paths than the other sampling-

based method of rapidly-exploring random trees (RRT) [35]. RRTs also have an

uncertain convergance rate, leading to a suboptimal solution [36]. This is ac-

ceptable in high-dimensional spaces where alternate methods may fail but not

desirable in the chosen 2-D environment.

Figure 3.6: Probabilistic roadmap with visibility regions (pink) and arcs (blue)

13

A graph G = (N , E) is initialised whereN is the set of drone configurations in

free space called milestones and E is the set of arcs connecting these milestones

in the roadmap [10].

Each milestone, mk ∈ N , indexed by k ∈ K , K = {1, . . . ,K} is an indepen-

dent and identically distributed (iid) vector drawn from a Uniform PDF, gY(y),

where sensor configuration vector y is taken as a vector of the random variables

denoted by Y [10]. In this thesis, K = 2000 milestones are sampled from the PDF.

A maximum distance parameter, L = 15 m, is also chosen such that any two

milestones mk and ml that are neighbors in configuration space, that is

∥mk −ml∥ ≤ L (3.2)

are connected by an arc in the roadmap, such that

(mk,ml) ∈ E (3.3)

if the arc exists in C f ree.

Arcs are created by connecting each milestone, mk, to its nearest kmax = 20

neighbors. According to [10], kmax ≈ 20 allows creating a well-connected graph

while avoiding too many arcs that may affect computational complexity. The

cost of arc between milestones mk and ml is given by their Euclidean distance.

If the arc lies inside a sensor visibility region, a penalty of 1000 is added to this

cost.

The roadmap,N , is queried for milestones closest in distance to the start and

final 2-D positions for the drone, x0 and x f . Dijkstra’s algorithm [19] is used to

query a path from the identified milestones on the PRM.

14

3.2.2 Online Update

The RGB frames and depth maps are used to update the 2-D map and replan

path if collisions occur with the obstacles, along with avoiding LOS detection

inside sensor visibility regions.

Obstacle Detection and Mapping

Panoptic segmentation [37] is used to obtain pixel-wise labels for different se-

mantic classes [38] in the input RGB frames. Panoptic segmentation is a power-

ful tool that unifies the capabilities of instance segmentation [39] and semantic

segmentation [40] in computer vision. It generates a semantic mask identifying

different classes in the input RGB image, like semantic segmentation along with

providing unique Instance IDs for stuff classes comprising of countable entities

like cars and person [41].

Detectron2 [42], an open-source deep learning library was used for per-

forming panoptic segmentation. The library has trained models of different

neural network architectures to perform computer vision tasks like instance

segmentation [39], semantic segmentation [40] and person keypoint detection

[43]. Panoptic segmentation is performed in Detectron2 using a Panoptic Fea-

ture Pyramid Network (PFPN) [44] that uses a Convolutional Neural Network

(CNN) architecture combining the ResNet-101 [45] backbone with the Feature

Pyramid Network (FPN) [46] for feature extraction and object detection tasks.

Selected panoptic segmentation result on RGB frame in Figure 3.7 from the

Unreal Engine simulation environment can be seen in Figure 3.8.

Monocular depth estimation using deep learning was tested to assess the im-

15

Figure 3.7: Select RGB frame from Unreal Engine simulation environment-I

Figure 3.8: Panoptic segmentation result

plementation of the visibility-constrained path planning framework using RGB

cameras without ground truth depth maps from the simulation environment.

A self-supervised deep learning model, monodepth2 [47], was used to obtain

pixel-wise depth maps for the input RGB image frames.

Monodepth2 has a U-Net architecture-based depth network that outputs a

depth map given the input RGB frame, as shown in 3.9. The depth network

model chosen in this thesis was trained using stereo image pairs from the KITTI

Vision Benchmark Suite [48]. The training process uses the depth map and rel-

ative camera pose between the stereo images obtained from a pose network

16

shown in Figure 3.10. The combined loss function used for training the depth

network is

Lcombined = µ · Lp + λ · Ls (3.4)

where Lp is the per-pixel loss and Ls is the masked photometric loss [47]. µ ∈

{0, 1} is the per-pixel mask and λ is the smoothness term set to 0.001.

Figure 3.9: Depth map from monodepth2 (relative scale)

The depth map from the Unreal Engine simulation environment is also

shown in 3.11.

The pixel-wise depth maps are mapped to 3-D space by the inverse projec-

tion method [49] using the RGB camera’s intrinsic and extrinsic parameters.

The generated 3-D point clouds for another select RGB frame using depth

maps from monodepth2 and the simulation environment can be seen in Fig-

ure 3.13(a) and 3.13(b), and Figure 3.14(a) and 3.14(b). As observed, the 3-D

reconstruction from depth maps using monodepth2 has qualitative inaccura-

cies. This behavior is attributed to a lack of domain transferability of the mon-

odepth2 network [50]. Multiple monocular depth estimation networks also suf-

fer from a lack of suitable training datasets. It is desired to have depth maps

from sensors like LiDAR for training, however, only a few open datasets offer

17

Figure 3.10: Depth network and pose network in monodepth2

Figure 3.11: Depth map from the Unreal Engine simulation environment

18

such LiDAR depth data, which is also very sparsely annotated [51]. The depth

in monodepth2 also exists on a relative scale and requires a robust calibration

for use on the absolute scale, referring to work done by [52]. Therefore, ground

truth depth maps from the simulation environment are used in this thesis.

Figure 3.12: Select RGB frame from Unreal Engine simulation environment-II

(a) Using simulation environment’s depth
map

(b) Using monodepth2’s depth map

Figure 3.13: 3-D point clouds (orthographic-view)

(a) Using simulation environment’s depth
map

(b) Using monodepth2’s depth map

Figure 3.14: 3-D point clouds (front-view)

19

The occupancy grid map, G, was updated by mapping the points in the 3-D

point cloud to 2-D space. Assuming the grid cell occupancy probability distri-

butions are independent [53] at time step, t, the Baye’s rule can be used to denote

belief of grid cell, g ∈ G, being occupied as P(δg = 1 | z1:t, q1:t) and unoccupied as

P(δg = 0 | z1:t, q1:t). Here, zt is the sensor measurement at time, t.

The log odds value for grid cell, g ∈ G, at time step, t, is updated by

lg(t) = lg(t − 1) + log
(

p(δg = 1 | z1:t, q1:t)
1 − p(δg = 1 | z1:t, q1:t)

)
− lg(0) (3.5)

Path Replanning

A path replanning algorithm is devised to modify the path of drone if it inter-

sects with a newly identified obstacle. For grid map, G, there exists the set,

D ⊂ G, comprising of grid cells that the path of drone passes through. There

is the set of points, P, such that for each grid cell, Dk ∈ D, there exists Pk ∈ P,

P ⊂ W, which is the midpoint of the part of the path passing through Dk. An

example is shown in Figure 3.15 for a straight line path with the points in P

being highlighted.

When an obstacle is identified in the online update phase, the path replan-

ning algorithm finds set E ⊂ P comprising of points lying inside the occupied

grid cells along with n elements before and after the occupied grid cells in the

order of occurrence in P. The value of n is usually equal to 1 but may be changed

based on the type of environment. An example is shown in 3.16, where the set

E has a cardinality of 4, E = {E1, E2, E3, E4}, with E2 and E3 existing in occu-

pied grid cells. The elements create a polygonal chain called the intersecting

path segment (in red) which is a part of the prior path that intersects with the

obstacle.

20

Figure 3.15: Elements of set P in grid environment

Let the intersecting path segment be along the unit vector, v, defined by the

direction of line segment connecting E1 and E4 directly, L(E1, E4). Now, elements

of D are displaced in perpendicular directions defined by unit vectors v1 and v2

(v1 = -v2) by distance ζ. This gives sets E′ and E′′ where the cth element is

E′c = Ec + ζ · v1 (3.6)

E′′c = Ec + ζ · v2 (3.7)

The polygonal chains obtained by connecting elements of E′ and E′′ with

the original path are called candidate path segments (in green). If any of these

candidate path segments lies in C f ree, it is chosen as part of the new local robot

path, accomplishing local replanning. When both the candidate path segments

are in C f ree, one is picked at random. If none of the segments lies in free space,

global replanning is performed where the updated PRM is queried by Dijkstra’s

algorithm to obtain a new path to the goal point.

21

Figure 3.16: Candidate path segment generation

A constraint in the local replanning is that the occupied grid cells need to ex-

ist in successive order, or else it is performed multiple times as shown in Figure

3.17. The path is modified locally corresponding to the two different obstacles.

Figure 3.17: Local replanning results

Potential navigation functions [10] are also used for such tasks of avoiding

obstacles. These comprise of attractive and repulsive potentials, defined by

U(x) = Uatt(x) + Urep(x) (3.8)

22

where x represents the current robot configuration in workspace. The robot can

then be controlled by virtual forces

fpot(x) = fatt(x) + frep(x) (3.9)

where

fatt(x) = −∇Uatt(x) (3.10)

frep(x) = −∇Urep(x) (3.11)

The attractive force pushes the robot towards the goal whereas the repulsive

force prompts it to move away from the obstacles. For instance, to reach the

goal, x f , an attractive conic well [10] can be defined in terms of the Euclidean

distance between the current and goal configuration

d(x, x f) = ∥x − x f ∥ (3.12)

as follows

Uatt(x) = η · d(x, x f) (3.13)

where η is a scaling factor (η > 0).

The potential navigation function suffers from local minima where the func-

tion gradient at configuration x is 0, that is

∇U(x) = 0 (3.14)

The shape of obstacles and number of obstacles/targets primarily guide the

robot into a local minima. Harmonic steam functions can be used to ensure that

there is no local extrema in the workspace but these include solving the Laplace

equation and do not easily extend to account for obstacles and targets that may

be detected online [10]. Alternate approaches include filling the well in 2-D

and 3-D spaces or using methods like RRT when dimensionality increases [10].

23

Another case is of multi-target navigation where reaching any target position,

a, can be marked by information gain, Ja [10]. The potential in such cases is

modified to account for this information gain, being termed the information

potential. The information potential lets the robot move out of local minima

to move towards a target with greater information gain when the robot may

otherwise be stuck in minima using the Euclidean distance based potentials.

Figure 3.18: Local replanning around concave obstacle

An example of local minima when using potential navigation functions is

when the robot goes into a concave obstacle (eg. U-shaped obstacle) as part of

the path to reach the goal configuration [54]. In such a case, [10] shows how the

robot first moves inside the local minima, samples configurations to move out

of it and finally advances towards the target with greater information potential.

Using the local replanning framework for this scenario, a candidate path seg-

ment can be created to check if an alternate path around this obstacle exists, as

seen in Figure 3.18. If such a path exists, the robot can take that directly with-

out running into the local minima. If such an alternate path does not exist, the

method shall query the updated PRM.

24

The local replanning framework is useful for real-time implementation, pri-

marily in less cluttered environments. Methods like D* [55] also modify the

path locally but it’s search time grows exponentially with grid resolution and

size of the graph. RRTs can also be used to sample configurations for moving

around the obstacle locally, but the path will be suboptimal [22] and smoothing

may affect the real-time applicability. Work in [56] uses the global planner only

to create the prior path and then runs the local planner for obstacle avoidance

that may fail at times [22]. The discussed path replanning algorithm also up-

dates the PRM using the online map to find a new global path when the local

replanning fails.

25

CHAPTER 4

SIMULATION RESULTS AND DISCUSSION

This chapter presents the visibility-constrained path planning framework run

in the Unreal Engine simulation environment.

Figure 4.1: Online map of workspace with drone navigating on prior path

Figure 4.1 shows drone navigating in workspace following the prior path

generated using the PRM in the offline planning phase.

Figure 4.2 shows an input RGB frame with a previously unknown obstacle

in the workspace. Here, local replanning is performed to obtain candidate path

segment in C f ree, as shown in Figure 4.3.

The online update phase identifies an obstacle that requires global replan-

ning due to not having free space to locally replan the path around it, shown in

Figure 4.4.

26

Figure 4.2: Previously unseen obstacle-I

Figure 4.3: Online map of workspace with drone navigating on locally re-
planned path

27

Figure 4.4: Previously unseen obstacle-II

Therefore, the PRM is updated using the online map and queried using the

Dijkstra’s algorithm to obtain a new global path. The path shown in Figure 4.5

is subsequently created.

Figure 4.5: Online map of workspace with drone navigating on globally re-
planned path

A sampling of 2000 nodes in the PRM has been able to provide a smooth

28

path unlike methods like RRT. This can be observed in the prior and the globally

replanned paths. The PRM queried by the Dijkstra’s algorithm for the global re-

planning framework can be time intensive. Computation time can be improved

by incorporating parallel processing in path computation [57], optimizing node

sampling strategies [58] or iterating over roadmap density to reduce the number

of nodes that still ensure desired smoothness of path.

29

CHAPTER 5

CONCLUSION

This thesis presents a visibility-constrained path planning framework for a

quadcopter with an onboard camera. The Unreal Engine simulation environ-

ment has been critical to this effort due to it’s photorealistic simulation and dy-

namics modeling of the quadcopter’s motion.

The key concepts of visibility theory have been used to create sensor visi-

bility regions in presence of the occlusions identified in prior map where the

LOS visibility condition is satisfied. A PRM is used to generate a path in the

prior map with the visibility regions and convex obstacles. The prior map is

also divided into a 2-D probabilistic occupancy grid to update the position of

previously unseen obstacles in the workspace during the online update phase.

Panoptic segmentation is used to identify obstacles in the input RGB frames.

The inverse projection method is subsequently used to create 3-D point clouds

that are mapped to the 2-D probability occupancy grid. A hybrid path replan-

ning algorithm is discussed that performs local replanning for the drone to ma-

neuver around newly identified obstacles. If the local replanning fails to find a

local path in free space, the algorithm performs global replanning using the up-

date PRM. The global replanning is expected to find a path as it uses the PRM

and will be probabilistically complete. Monocular depth estimation was also

used to implement the visibility-constrained path planning framework with

only an RGB camera. The limitations of monodepth2 were identified that pri-

marily included inadequate training data and a lack of domain transferability.

Future work in this area includes exploring prior map generation methods

30

that better approximate the shape of obstacles on the map. The quadtree data

structure may also be used to improve the time complexity for updating the

online map. The panoptic segmentation pipeline can also be augmented to label

classes based on their trafficability, aiding the path modification methodology

too. This framework can also be extended to a 3-D space with cubic voxels used

in place of the 2-D square grids.

31

BIBLIOGRAPHY

[1] Zahraa Bassyouni and Imad H. Elhajj. Augmented reality meets artificial
intelligence in robotics: A systematic review. Frontiers in Robotics and AI, 8,
2021.

[2] Marı́a Teresa Ballestar, Ángel Dı́az-Chao, Jorge Sainz, and Joan Torrent-
Sellens. Impact of robotics on manufacturing: A longitudinal machine
learning perspective. Technological Forecasting and Social Change, 162:120348,
2021.

[3] Andrea Maria Zanchettin, Nicola Maria Ceriani, Paolo Rocco, Hao Ding,
and Björn Matthias. Safety in human-robot collaborative manufacturing
environments: Metrics and control. IEEE Transactions on Automation Science
and Engineering, 13(2):882–893, 2016.

[4] Russell H. Taylor, Arianna Menciassi, Gabor Fichtinger, Paolo Fiorini, and
Paolo Dario. Medical Robotics and Computer-Integrated Surgery, pages 1657–
1684. Springer International Publishing, Cham, 2016.

[5] Kerstin Denecke and Claude R. Baudoin. A review of artificial intelligence
and robotics in transformed health ecosystems. Frontiers in Medicine, 9,
2022.

[6] Chris Lytridis, Vassilis G. Kaburlasos, Theodore Pachidis, Michalis Manios,
Eleni Vrochidou, Theofanis Kalampokas, and Stamatis Chatzistamatis. An
overview of cooperative robotics in agriculture. Agronomy, 11(9), 2021.

[7] Arshia Khan and Yumna Anwar. Robots in healthcare: A survey. In Kohei
Arai and Supriya Kapoor, editors, Advances in Computer Vision, pages 280–
292, Cham, 2020. Springer International Publishing.

[8] Mark Wehde. Healthcare 4.0. IEEE Engineering Management Review,
47(3):24–28, 2019.

[9] Peter J. Wallin. Robotics in the food industry: an update. Trends in Food
Science Technology, 8(6):193–198, 1997.

[10] Silvia Ferrari and Thomas A. Wettergren. Information-Driven Planning and
Control. Cyber Physical Systems Series. MIT Press, illustrated edition, 2021.

32

[11] Ying Tan and Zhong yang Zheng. Research advance in swarm robotics.
Defence Technology, 9(1):18–39, 2013.

[12] Jake Gemerek, Bo Fu, Yucheng Chen, Zeyu Liu, Min Zheng, David van
Wijk, and Silvia Ferrari. Directional sensor planning for occlusion avoid-
ance. IEEE Transactions on Robotics, 38(6):3713–3733, 2022.

[13] E. Birgersson, A. Howard, and G.S. Sukhatme. Towards stealthy behaviors.
In Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2003) (Cat. No.03CH37453), volume 2, pages 1703–1708 vol.2,
2003.

[14] Mohamed S. Marzouqi and Ray A. Jarvis. New visibility-based path-
planning approach for covert robotic navigation. Robotica, 24(6):759–773,
2006.

[15] Paul E. Rybski, Sascha A. Stoeter, Michael D. Erickson, Maria Gini, Dean F.
Hougen, and Nikolaos Papanikolopoulos. A team of robotic agents for
surveillance. In Proceedings of the Fourth International Conference on Au-
tonomous Agents, AGENTS ’00, page 9–16, New York, NY, USA, 2000. As-
sociation for Computing Machinery.

[16] S.A. Bortoff. Path planning for uavs. In Proceedings of the 2000 American
Control Conference. ACC (IEEE Cat. No.00CH36334), volume 1, pages 364–
368 vol.1, 2000.

[17] Mohamed S. Marzouqi and Ray A. Jarvis. Covert path planning for au-
tonomous robot navigation in known environments. 2003.

[18] Mohamed S. Marzouqi and Ray A. Jarvis. Accommodating uncertainty in
covert and overt robot path planning. In TENCON 2005 - 2005 IEEE Region
10 Conference, pages 1–5, 2005.

[19] Edsger W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1(1):269–271, 1959.

[20] Mohamed S. Marzouqi and Ray A. Jarvis. New visibility-based path-
planning approach for covert robotic navigation. Robotica, 24(6):759–773,
2006.

[21] Teddy Ort, Liam Paull, and Daniela Rus. Autonomous vehicle navigation

33

in rural environments without detailed prior maps. In 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 2040–2047, 2018.

[22] H. Du, B. Hao, J. Zhao, J. Zhang, Q. Wang, and Q. Yuan. A path planning
approach for mobile robots using short and safe q-learning. PLoS ONE,
17(9):e0275100, 2022.

[23] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Probabilis-
tic roadmaps for path planning in high-dimensional configuration spaces.
IEEE Transactions on Robotics and Automation, 12(4):566–580, 1996.

[24] Zhongli Wang and Guohui Tian. Hybrid offline and online task planning
for service robot using object-level semantic map and probabilistic infer-
ence. Information Sciences, 593:78–98, 2022.

[25] José Ricardo Sánchez-Ibáñez, Carlos J. Pérez-del Pulgar, and Alfonso
Garcı́a-Cerezo. Path planning for autonomous mobile robots: A review.
Sensors, 21(23), 2021.

[26] Janelle Resch, Ireneusz, Ocelewski, Judy Ehrentraut, and Michael Barnett-
Cowan. Gamified automation in immersive media for education and re-
search, 2018.

[27] Chaitya Vohera, Heet Chheda, Dhruveel Chouhan, Ayush Desai, and Vijal
Jain. Game engine architecture and comparative study of different game
engines. In 2021 12th International Conference on Computing Communication
and Networking Technologies (ICCCNT), pages 1–6, 2021.

[28] Xiaowei Chen, Meihong Wang, and Qingfeng Wu. Research and devel-
opment of virtual reality game based on unreal engine 4. In 2017 4th In-
ternational Conference on Systems and Informatics (ICSAI), pages 1388–1393,
2017.

[29] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Air-
sim: High-fidelity visual and physical simulation for autonomous vehicles,
2017.

[30] Bruno J. Souza, Lucas C. de Assis, Dominik Rößle, Roberto Z. Freire, Daniel
Cremers, Torsten Schön, and Munir Georges. Aimotion challenge results:
a framework for airsim autonomous vehicles and motion replication. In
2022 2nd International Conference on Computers and Automation (CompAuto),
pages 42–47, 2022.

34

[31] Manav Khambhayata. A comparative analysis of carla and airsim sim-
ulators: Investigating implementation challenges in autonomous driv-
ing. May 2023. Available at SSRN: https://ssrn.com/abstract=4477130
or http://dx.doi.org/10.2139/ssrn.4477130.

[32] Hongjun Li, Miguel Barão, and Luı́s Rato. Gaussian random field-based
log odds occupancy mapping. In 2018 IEEE International Conference on Au-
tomation, Quality and Testing, Robotics (AQTR), pages 1–4, 2018.

[33] Jugesh Sundram, Duong Van Nguyen, Gim Song Soh, Roland Bouffanais,
and Kristin Wood. Development of a miniature robot for multi-robot oc-
cupancy grid mapping. In 2018 3rd International Conference on Advanced
Robotics and Mechatronics (ICARM), pages 414–419, 2018.

[34] L. Lulu and A. Elnagar. A comparative study between visibility-based
roadmap path planning algorithms. In 2005 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pages 3263–3268, 2005.

[35] Steven M. LaValle. Rapidly-exploring random trees : a new tool for path
planning. The annual research report, 1998.

[36] Bhaavin K. Jogeshwar and K. Lochan. Algorithms for path planning on
mobile robots. IFAC-PapersOnLine, 55(1):94–100, 2022. 7th International
Conference on Advances in Control and Optimization of Dynamical Sys-
tems ACODS 2022.

[37] Alexander Kirillov, Kaiming He, Ross Girshick, Carsten Rother, and Piotr
Dollár. Panoptic segmentation, 2019.

[38] Shijie Hao, Yuan Zhou, and Yanrong Guo. A brief survey on semantic
segmentation with deep learning. Neurocomputing, 406:302–321, 2020.

[39] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-
cnn, 2018.

[40] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional
networks for semantic segmentation, 2015.

[41] Edward H. Adelson. On seeing stuff: the perception of materials by hu-
mans and machines. In Bernice E. Rogowitz and Thrasyvoulos N. Pappas,
editors, Human Vision and Electronic Imaging VI, volume 4299, pages 1 – 12.
International Society for Optics and Photonics, SPIE, 2001.

35

[42] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross
Girshick. Detectron2. https://github.com/facebookresearch/detectron2,
2019.

[43] Yuanhao Cai, Zhicheng Wang, Zhengxiong Luo, Binyi Yin, Angang Du,
Haoqian Wang, Xiangyu Zhang, Xinyu Zhou, Erjin Zhou, and Jian Sun.
Learning delicate local representations for multi-person pose estimation,
2020.

[44] Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr Dollár. Panoptic
feature pyramid networks, 2019.

[45] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition, 2015.

[46] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan,
and Serge Belongie. Feature pyramid networks for object detection, 2017.

[47] Clément Godard, Oisin Mac Aodha, Michael Firman, and Gabriel Brostow.
Digging into self-supervised monocular depth estimation, 2019.

[48] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for au-
tonomous driving? the kitti vision benchmark suite. In 2012 IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 3354–3361, 2012.

[49] Jeffrey Delmerico, Stefan Isler, Reza Sabzevari, and Davide Scaramuzza.
A comparison of volumetric information gain metrics for active 3d object
reconstruction. Autonomous Robots, 42(2):197–208, 2018.

[50] Qiyu Sun, Gary G. Yen, Yang Tang, and Chaoqiang Zhao. Learn to adapt
for monocular depth estimation, 2022.

[51] Armin Masoumian, Hatem A. Rashwan, Julián Cristiano, M. Salman Asif,
and Domenec Puig. Monocular depth estimation using deep learning: A
review. Sensors, 22(14), 2022.

[52] Nicolas Mellado, Matteo Dellepiane, and Roberto Scopigno. Relative scale
estimation and 3d registration of multi-modal geometry using growing
least squares. IEEE Transactions on Visualization and Computer Graphics,
22(9):2160–2173, 2016.

36

[53] Tobias Gindele, Sebastian Brechtel, Joachim Schroder, and Rudiger Dill-
mann. Bayesian occupancy grid filter for dynamic environments using
prior map knowledge. In 2009 IEEE Intelligent Vehicles Symposium, pages
669–676, 2009.

[54] Y. Koren and J. Borenstein. Potential field methods and their inherent lim-
itations for mobile robot navigation. In Proceedings. 1991 IEEE International
Conference on Robotics and Automation, pages 1398–1404 vol.2, 1991.

[55] A. Stentz. Optimal and efficient path planning for partially-known envi-
ronments. In Proceedings of the 1994 IEEE International Conference on Robotics
and Automation, pages 3310–3317 vol.4, 1994.

[56] Aboelmaged Noureldin, Pablo Marin-Plaza, Ahmed Hussein, David Mar-
tin, and Arturo de la Escalera. Global and local path planning study in a
ros-based research platform for autonomous vehicles. Journal of Advanced
Transportation, 2018:6392697, 2018.

[57] Soheil Younesi, Bahman Ahmadi, Oguzhan Ceylan, and Aydogan
Ozdemir. Optimum parallel processing schemes to improve the computa-
tion speed for renewable energy allocation and sizing problems. Energies,
15(24), 2022.

[58] Qiang Li, Yan Xu, Shizhong Bu, and Jian Yang. Smart vehicle path planning
based on modified prm algorithm. Sensors, 22(17):6581, Aug 2022.

37

