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Abstract

Sensor path planning and control refer to the problems of determining the trajectory

and feedback control law that best support sensing objectives, such as monitor-

ing, detection, classification, and tracking. Many autonomous systems developed,

for example, to conduct environmental monitoring, search-and-rescue operations,

demining, or surveillance, consist of a mobile vehicle instrumented with a suite of

proprioceptive and exteroceptive sensors characterized by a bounded field-of-view

(FOV) and a performance that is highly dependent on target and environmental

conditions and, thus, on the vehicle position and orientation relative to the target

and the environment. As a result, the sensor performance can be significantly im-

proved by planning the vehicle motion and attitude in concert with the measurement

sequence. This dissertation develops a general and systematic approach for deriving

information-driven path planning and control methods that maximize the expected

utility of the sensor measurements subject to the vehicle kinodynamic constraints.

The approach is used to develop three path planning and control methods: the

information potential method (IP) for integrated path planning and control, the op-

timized coverage planning based on the Dirichlet process-Gaussian process (DP-GP)

expected Kullback-Leibler (KL) divergence, and the optimized visibility planning for

simultaneous target tracking and localization. The IP method is demonstrated on a

benchmark problem, referred to as treasure hunt, in which an active vision sensor is

mounted on a mobile unicycle platform and is deployed to classify stationary targets
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characterized by discrete random variables, in an obstacle-populated environment.

In the IP method, an artificial potential function is generated from the expected

conditional mutual information of the targets and is used to design a closed-loop

switched controller. The information potential is also used to construct an infor-

mation roadmap for escaping local minima. Theoretical analysis shows that the

closed-loop robotic system is asymptotically stable and that an escaping path can be

found when the robotic sensor is trapped in a local minimum. Numerical simulation

results show that this method outperforms rapidly-exploring random trees and clas-

sical potential methods. The optimized coverage planning method maximizes the

DP-GP expected KL divergence approximated by Monte Carlo integration in order

to optimize the information value of a vision sensor deployed to track and model

multiple moving targets. The variance of the KL approximation error is proven to

decrease linearly with the inverse of the number of samples. This approach is demon-

strated through a camera-intruder problem, in which the camera pan, tilt, and zoom

variables are controlled to model multiple moving targets with unknown kinematics

by nonparametric DP-GP mixture models. Numerical simulations as well as physical

experiments show that the optimized coverage planning approach outperforms other

applicable algorithms, such as methods based on mutual information, rule-based sys-

tems, and randomized planning. The third approach developed in this dissertation,

referred to as optimized visibility motion planning, uses the output of an extended

Kalman filter (EKF) algorithm to optimize the simultaneous tracking and localiza-

tion performance of a robot equipped with proprioceptive and exteroceptive sensors,

that is deployed to track a moving target in a global positioning system (GPS) denied

environment.

Because active sensors with multiple modes can be modeled as a switched hierar-

chical system, the sensor path planning problem can be viewed as a hybrid optimal

control problem involving both discrete and continuous state and control variables.
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For example, several authors have shown that a sensor with multiple modalities is a

switched hybrid system that can be modeled by a hierarchical control architecture

with components of mission planning, trajectory planning, and robot control. Then,

the sensor performance can be represented by two Lagrangian functions, one function

of the discrete state and control variables, and one function of the continuous state

and control variables. Because information value functions are typically nonlinear,

this dissertation also presents an adaptive dynamic programming approach for the

model-free control of nonlinear switched systems (hybrid ADP), which is capable of

learning the optimal continuous and discrete controllers online. The hybrid ADP

approach is based on new recursive relationships derived in this dissertation and is

proven to converge to the solution of the hybrid optimal control problem. Simu-

lation results show that the hybrid ADP approach is capable of converging to the

optimal controllers by minimizing the cost-to-go online based on a fully observable

state vector.
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1

Introduction

Autonomous sensor control for active information gathering utilizes information the-

oretic functions to assess the value of sensor measurements as a function of sensor

control inputs, random environment variables, and unknown target variables. Sub-

sequently, the expected value of the information function can be optimized with

respect to the sensor mode, the measurement sequence, or the position and orien-

tation of FOV [19, 117, 39, 40, 112]. As a result, the e↵ectiveness of autonomous

sensor systems can be greatly improved in a variety of applications, including mine

hunting [85, 80]; classification and tracking [39, 40]; and the monitoring of urban

environments [28], underwater objects [33], manufacturing plants [22], and endan-

gered species [44]. Furthermore, in many sensor applications, such as monitoring,

maintenance, or surveillance, the set of all measurements that could be acquired

by a sensor significantly exceeds its available power, time, and computational ca-

pabilities [22], such that it is also desirable to minimize distance traveled or energy

consumption. Then, the sensor controller can be designed to account for the FOV

geometry and the robot kinodynamic constraints, such that the sensor configura-

tions that enable the most informative measurements with the minimum energy can
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be determined [111, 100]. Thus, in this dissertation, the sensor is viewed as an

information-gathering agent that must make decisions on its configuration (position,

orientation, and mode), in order to maximize the sensor performance and minimize

the robot energy consumption.

A key challenge in sensor path planning is to assess the sensor performance that

will result from the sensor decisions before obtaining the future sensor measure-

ments [16, 19, 117]. The sensor performance can be shown to depend on the amount

of information or conversely on the uncertainty associated with a set of unknown

target variables to be inferred from repeated sensor measurements. Thus, the util-

ity of future measurements may be represented by their expected information value

conditioned on the prior measurements and on the environmental variables. Infor-

mation theoretic value functions can be used to quantify the amount of information

associated with the probabilistic model of one or more unknown random variables.

The uncertainty of the random variables can then be minimized by optimizing the

information value functions [101, 51, 52, 86, 93]. Computing information theoretic

functions for one or more random variables in a stochastic process requires knowledge

of their joint probability mass (or density) functions. Because the posterior belief

state in the sensor planning problem is typically unknown, a general approach was

recently presented for estimating the expected information value of the future sensor

measurements, where the expectation is with respect to the future measurements

[23].

In Chapter 3, a systematic approach for estimating information theoretic func-

tions for future sensor measurements is reviewed [111]. Several information value

functions have been proposed in the literature to measure the information value in

sensor planning and management problems. Relative entropy was used to solve a

multisensor-multitarget assignment problem in [82]. The expected discrimination

gain (EDG) derived from the Kullback-Leibler (KL) divergence was used to manage
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agile sensors with Gaussian models for target detection and classification in [45]. Re-

cently, mutual information for sensor planning was studied in multi-target detection,

classification, and feature inference by ground-penetrating radars and infrared sen-

sors in [16, 112]. In [23], an approach based on mutual information was also presented

for adjusting the configuration of a camera in an object recognition application. In

Chapter 3, the approach taken from [111] is extended to develop a new information

value function for the DP-GP models based on the expected KL divergence. This

new information value function quantifies the expected utility associated with fu-

ture measurements for updating the current DP-GP mixture model and is defined as

the expectation of KL divergence between the current (prior) and posterior DP-GP

models over future measurements given sensor control inputs, in situations where

discretization is not feasible due to high computational complexities. The DP-GP

mixture model provides the necessary flexibility to capture spatial phenomena from

data without overfitting [43].

Because robot motion planning approaches deal with the intersections of dis-

crete geometric objects that are possibly moving, subject to a kinematic or dynamic

equation, many sensor path planning methods are inspired by existing robot mo-

tion planning approaches. Chapter 4 reviews three existing sensor motion planning

approaches originally presented in [15], [113], and [66]: the information cell decompo-

sition approach, the information probability roadmap deploy (IPD), and the rapidly

exploring random information trees (RRIT) approach. However, these existing meth-

ods cannot be implemented in sensor planning when sensor kinodynamic constraints

are considered, the targets are moving and their model is complex, or the proprio-

ceptive and exteroceptive sensor are deployed, respectively. To this end, in Chapter

4, three sensor planning methods are developed, which are the information poten-

tial method (IP) for integrated path planning and control, the optimized coverage

planning based on the DP-GP expected KL divergence, and the optimized visibility
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planning for simultaneous target tracking and localization. The IP method is demon-

strated on a benchmark problem, referred to as treasure hunt, in which an active

vision sensor is mounted on a mobile unicycle platform and is deployed to classify sta-

tionary targets characterized by discrete random variables, in an obstacle-populated

environment. In the IP method, an artificial potential function is generated from

the expected conditional mutual information of the targets and is used to design a

closed-loop switched controller. The information potential is also used to construct

an information roadmap for escaping local minima. Mutual information is a measure

of the information contained in one random variable about another random variable,

and the information value is represented by a conditional mutual information func-

tion that is developed in [27].

Although many potential navigation functions have been developed for robot mo-

tion planning, they are not applicable to sensor path planning because they do not

take into account the geometries of the targets or sensor FOV, nor do they consider

the target information value [77, 87, 47, 91, 53]. Additionally, the e↵ectiveness of

classical potential field methods is limited by their inability to escape local minima,

their lack of stabilization, and their inability to enter narrow passages [50]. In this

dissertation, a switched control approach based on switched potentials [76] is used

to integrate sensor path planning and control. The resulting switched controller can

be proven to be asymptotically stable and is guaranteed to converge to the target

with the highest information value. Additionally, the same information potential

function is utilized to build a local roadmap for escaping local minima. The nu-

merical simulation results show that the IP controlled robotic sensor is capable of

obtaining measurements from the most valuable targets, entering narrow passages,

and escaping local minima, while avoiding obstacles online. Numerical simulation

results also show that this method outperforms rapidly-exploring random trees and

classical potential methods.
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The above sensor planning approaches typically assume that a measurement is

obtained if the sensor FOV intersects with the geometry of a stationary target. In

the problem of monitoring moving targets, however, the locations of these targets are

unknown and are estimated by time-varying probability density functions (PDFs).

Therefore, it is di�cult to formulate a target with rigid geometry. The next two

approaches are designed to obtain measurements from moving targets. The opti-

mized coverage planning approach maximizes the DP-GP expected KL divergence

(approximated by Monte Carlo integration) in order to obtain optimal sensor control

for learning a DP-GP model. This type of problems is derived from problems that

require learning spatial phenomena, such as a temperature function over a given

workspace, a set of velocity fields, or mappings between two spaces. For exam-

ple, the camera intruder problem requires determining the optimal camera control

to collect informative measurements of targets for estimating unknown target kine-

matics, which are modeled with a DP-GP mixture. The objective is to maximize

the estimation accuracy of the learned target kinematics, i.e., the accuracy of the

DP-GP mixture model. By assuming the camera’s position is fixed and its FOV is

a free-flying object without rotation, the optimized coverage planning is designed

to generate the sensor control by maximizing the DP-GP expected KL divergence

at each time step. The proposed DP-GP expected KL divergence can be approxi-

mated via Monte Carlo integration, and the variance of the KL approximation error

is proven to decrease linearly with the inverse of the number of samples. Numerical

simulations as well as physical experiments show that the optimized coverage plan-

ning approach outperforms other applicable algorithms, such as methods based on

mutual information, rule-based systems, and randomized planning.

The optimized visibility motion planning approach uses an extended Kalman

filter (EKF) to simultaneously track the target and localize the robotic sensor [120,

118, 121]. Within this estimation framework, a controller is derived analytically by
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assuming the FOV of the exteroceptive sensor can be approximated by a sector with

a fixed orientation and a fixed aperture with respect to the robot. The proposed

optimized visibility approach is applicable to any robot equipped with exteroceptive

sensors, such as a laser scanner or camera, for tracking and localizing moving targets,

and with proprioceptive sensors, such as an odometer, for providing ego-motion

information. The results show that the proposed method is e↵ective at tracking and

localizing a moving target with low target loss rates and outperforms a state-of-the-

art potential method.

Because active sensors with multiple modes can be modeled as a switched hierar-

chical system, the sensor path planning problem can be viewed as a hybrid optimal

control problem involving both discrete and continuous state and control variables.

For example, several authors have shown that a sensor with multiple modalities is a

switched hybrid system that can be modeled by a hierarchical control architecture

with components of mission planning, trajectory planning, and robot control. Then,

the sensor performance can be represented by two Lagrangian functions, one function

of the discrete state and control variables, and one function of the continuous state

and control variables. Because information value functions are typically nonlinear,

this dissertation also presents an adaptive dynamic programming approach for the

model-free control of nonlinear switched systems (hybrid ADP), which is capable of

learning the optimal continuous and discrete controllers online.

A switched hybrid system consists of time-driven and event-driven kinematics.

Event-driven kinematics are described by discrete states and control inputs that are

represented by finite alphabets. Time-driven kinematics (di↵erential or di↵erence

equations) are used to represent systems with continuous states and control in a

Euclidean space. The optimal control of switched systems seeks to determine an op-

timal discrete controller that decides the system mode (event-driven kinematics) and

multiple optimal continuous controllers that regulate the system motion (time-driven
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kinematics) given the system mode. The discrete and continuous optimal controllers

are determined such that a scalar objective function of the hybrid system states

and control is minimized over a period of time [12]. Switched hybrid systems have

been used to model centralized multi-agent networks in [29, 34] and decentralized

multi-agent networks in pursuit-evasion games in [110]. The optimality conditions

for the optimal control of switched systems are derived in [78] using the Pontryagin

Minimum Principle [79]. A master-slave procedure (MSP) that provides an open-

loop solution for a given initial state and a switching table procedure (STP) based

on dynamic programming were developed in [83] for a switched a�ne system with a

piecewise quadratic cost function. A parametric-optimization method was proposed

in [109] to optimize the continuous controller and switching time instants for a given

(predesigned) fixed switching sequence. However, these existing approaches cannot

adapt to the uncertainty in system modeling and environment.

Adaptive Dynamic Programming (ADP) is an e↵ective approach for solving non-

linear optimal control problems in the absence of a dynamic model in closed form

that optimizes the performance in the face of unforeseen changes and uncertainties

[31, 73, 75, 84, 59]. In recent decades, ADP has been implemented in a number

of applications involving the optimal control of systems described by continuous

state and control variables [107, 98, 97, 106, 72, 41, 24, 3, 74] or by stochastic sys-

tems characterized by discrete-event state and decisions [99, 7]. ADP has also been

used to determine model-free optimal controllers for zero-sum multi-agent games in

[115, 61, 96, 94] and for a�ne nonlinear systems in [62, 114]. Despite its successful

implementation and guaranteed convergence [107, 1, 97], the applicability of ADP

to hybrid systems has yet to be fully demonstrated in the literature.

In the remainder of this dissertation, a general hybrid ADP approach is presented

for the model-free control of switched sensor systems, where the optimal continuous

and discrete controllers are determined via online learning. The proposed approach is
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based on new recursive relationships derived in this dissertation and is proven to con-

verge to the solution of the hybrid optimal control problem. Simulation results show

that the hybrid ADP approach is capable of converging to the optimal controllers by

minimizing the cost-to-go online based on a fully observable state vector.

This dissertation is organized as follows. Chapter 2 presents the autonomous

sensor planning and control problem for active information gathering. The pro-

posed DP-GP expected KL information function is introduced, after a review on

information value functions, in Chapter 3. Three proposed sensor motion planning

approaches are presented in Chapter 4, and the results from the numerical simula-

tions are summarized in Chapter 5. In Chapter 6, the optimal planning problem for

a sensor with multiple modalities is generalized into an optimal control problem of a

switched hybrid system and a proposed hybrid ADP approach is introduced to solve

this problem. Finally, the conclusions are given in Chapter 7.

8



2

Problem Formulation and Assumptions

This dissertation considers the problem of autonomous sensor control for active in-

formation gathering with the objective of decreasing the uncertainty of one or more

random variables. The sensor performance can be greatly enhanced by using control

and data processing methods that consider the sensors, platforms, and their envi-

ronment as an integrated sensor system. The sensor or sensor network is deployed

in a workspace W P Rd, where d is either 2 or 3. The workspace is populated with

M rigid targets that are denoted by T
1

, . . . , T
M

, where T
i

is a compact subset of W .

The set of targets is represented by an index set I
T

. Each target T
i

, where i P I
T

, is

characterized by a random state vector ✓
i

, which may vary with time. For example,

✓
i

can be used to denote the position and velocity of a target T
i

that is moving. Let �

denote the vector consisting of the random variables whose values are to be inferred

or classified by the sensor. The vector � is also referred to as the random vector of

interest. The vector could simply be a vector consisting only of ✓
i

, i P I
T

, or it could

be any other unknown vector relating to the targets’ characteristics, measurements,

or environment conditions through a model (e.g., the DP-GP model).

Let a compact set S P Rd denote the geometry of the sensor FOV and FW denote
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a fixed Cartesian frame with origin OW and embedded in W , and let FS denote a

moving Cartesian frame with origin OS and embedded in S. Assuming S is rigid, the

FOV configuration q “ rx y ✓sT can be used to specify the position and orientation

of every point in S with respect to FW , where x, y, and ✓ are the coordinates and

orientation of FS with respect to FW . Let C denote the configuration space and Spqq
denote the subset of W occupied by S for configuration q; this subset represents the

set of all points in W that can be measured by the sensor when the sensor FOV is

at q. It then follows that the sensor can obtain measurements z
i

from a target T
i

i↵

T
i

X Spqq ‰ H.

For a mobile robotic sensor, the geometry of its platform is described by a rigid

object, A, that is a compact subset of a workspace W Ä Rd. Assuming A is fixed

with respect to S, let Apqq denote the subset of W occupied by A at configuration

q. Here, A must be considered during planning in order to avoid collisions with any

of the N rigid obstacles, which are denoted by B
1

, . . . ,B
N

. An example of a mobile

robotic sensor is shown in Fig. 2.1. The following definitions are then adopted from

[16] and [55] :

Definition 1 (C-target). The target T
i

in W maps in the robot’s configuration space

C to the C-target region CT
i

“ tq P C | Spqq X T
i

‰ ?u.

Definition 2 (C-obstacle). The obstacle B
i

in W maps in the robot’s configuration

space C to the C-obstacle region CB
i

“ tq P C | Apqq X B
i

‰ ?u.

The configuration of FOV q is usually controlled by an mechatronical system. For

example, when the sensor is mounted on a mobile platform and fixed with respect

to the platform, the change of the FOV configuration is realized by controlling the

mobile platform, perhaps through the linear acceleration and angular velocity of the

platform. Therefore, the configuration of FOV q must also satisfy certain kinematic

equation imposed by the mechatronical system. This kinematic equation can be
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Figure 2.1: A robotic sensor with vehicle geometry A and sensor FOV A (d “ 2).

described by

9qptq “ f
⌫ptqrqptq,uptqs, (2.1)

where uptq is the control input and ⌫ptq P E is the discrete mode control. Note that

this kinematic equation can be relaxed when the FOV is modeled as a free-flying

object [55].

The target state ✓
i

, the sensor measurement z
i

, and the sensor parameter/mode

or environmental condition e
i

are assumed to be continuous random vectors. Then,

the measurement process can be described by a joint PDF that, typically, can be

factorized as

pp✓
i

, z
i

, e
i

q “ ppz
i

| ✓
i

, e
i

qpp✓
i

qppe
i

q, (2.2)

because both ✓
i

and e
i

are independent random vectors. The conditional PDF of

z
i

given ✓
i

and e
i

is usually referred to as the sensor model. This PDF is obtained

from the physical principles characterizing the measurement process. The PDFs of

✓
i

and e
i

, known as priors, are computed from available prior environmental infor-

mation. These PDFs are assumed to be uniformly distributed if no prior information

is available. Various sensors have been modeled by (2.2), either from first principles

or from data [32, 17]. A sensor measurement z
i

is obtained when the sensor FOV

intersects the ith target geometry, i.e., T
i

X Spqq ‰ H under condition e
i

, where e
i

is assumed to be known for simplicity.
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If the unknown vector of interest � only consists of p✓
1

, ¨ ¨ ¨ ,✓
M

q and the targets

are independent and time invariant, then the original problem is reduced to inferring

✓
i

for all i in I
T

. The posterior PDF of ✓
i

can be obtained from the measurement

model (2.2) and Bayes’ rule,

pp✓
i

| z
i

, e
i

q “ ppz
i

| ✓
i

, e
i

q pp✓
i

q≥
⇥

ppz
i

| ✓
i

, e
i

q pp✓
i

qd✓
i

, (2.3)

for i “ 1, . . . ,M , where ⇥ is the value space of ✓
i

because (2.2) holds for all targets.

In other cases, a statistical model is required to build the relation between � and

z
i

for all i in I
T

. For example, as shown in Chapter 3, the DP-GP mixture model

assumes that � and z
i

for all i in I
T

follow an unknown Gaussian process. The

DP-GP model is used to infer � and to design an information value function.

The problem considered in this dissertation is to determine the optimal control

for the autonomous sensor such that (I) the uncertainty of � is minimized, (II) the

energy consumption or distance traveled is minimized, and (III) collisions with all

obstacles are avoided for autonomous sensors with mobile platforms. A block diagram

of this sensor system is summarized in Fig. 2.2. The sensor can be viewed as an

information-gathering agent that must make decisions on its configuration (position,

orientation, and mode), in order to optimize the sensor performance. The sensor

performance prior to obtaining the sensor measurements depends on the amount

of information, or lack thereof, associated with these variables and is quantified by

information value functions. A systematic approach for generating information value

functions is reviewed in Chapter 3. These information value functions are used to

design motion planning approaches in Chapter 4.

Three types of problems that cannot be solved by existing sensor planning meth-

ods are now presented, which will be separately used to demonstrate that the ap-

proaches developed in Chapter 4. In the first problem, the sensor is mounted on a
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Controller 

Output 

Figure 2.2: Block diagram of autonomous sensor control

mobile platform and is deployed in a workspace populated with position-fixed tar-

gets and obstacles. This problem is referred to as the treasure hunt problem. The

second problem is referred to as the camera intruder problem. This problem involves

a position-fixed camera monitoring multiple moving targets to learn unknown target

kinematics, where the camera FOV can only cover a portion of the entire workspace

at any given time. This problem assumes that the FOV is a free-flying object. The

third problem involves one mobile robotic sensor with a bounded FOV tracking a

moving target where GPS is unavailable. Thus, the mobile robotic sensor is required

to not only optimally track the moving target but also localize itself.

2.1 Problem 1: Mobile Sensor Planning for Target Classification

This problem considers integrated navigation and control for a robotic sensor to

classify multiple targets in an obstacle-populated environment. The robotic sensor

consists of an unmanned ground vehicle (UGV) equipped with an on-board sensor.

As schematized in Fig. 2.3, the sensor FOV, denoted by S Ä R3, is defined as a

compact subset of W from which the robot can obtain sensor measurements. The

configuration vector q must also satisfy the robot kinematic equation that, in this
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dissertation, is given by the unicycle model in four-dimensional phase space [57],

9� “

»

——–

9x
9y
9✓
9v

fi

��fl “

»

——–

v cos ✓
v sin ✓
w
a

fi

��fl “ fp�,uq (2.4)

where � P R4 is the robot state, v is the linear velocity, w is the angular velocity,

and a is the linear acceleration. The robot control vector is u “ ru
1

u
2

sT “ ra wsT P
U Ä R2, where U represents the space of admissible control inputs.

 
FS 

OS 

A 

S 

FW OW 
Figure 2.3: A robotic sensor with vehicle geometry A and sensor FOV A.

The target state ✓
i

, the sensor measurement z
i

, and the sensor parameter/mode

or environmental condition e
i

are assumed to be discrete random vectors. Note

that, in this problem, the random vector of interest � in Chapter 2 is given as

� “ r✓T

1

, . . . ,✓T

M

sT . The problem is to plan the path and control for the robotic sensor

in (2.4) such that (I) the uncertainty of � is minimized, (II) the energy consumption

or distance traveled is minimized, and (III) no collisions with any obstacles occur.

Additionally, in order to reduce the algorithm complexity, it is also assumed that A
is a right prism with the base face adjacent to the xy-plane and that S is a three-

dimensional cone. Obstacles and targets are assumed to be right prisms with their

base faces parallel to the xy-plane. Chapter 4 presents an IP integrated path planning

and control method that achieves (I)-(III) and guarantees asymptotic closed-loop

stability for the robotic sensor.
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2.2 Problem 2: Camera Control for Learning Nonlinear Target Kine-
matics

This problem consists of determining the control input, denoted by u, for a camera

with two possible FOV zoom levels, L “ t1, 2u, to monitor a two-dimensional convex

workspace, W Ä R2. The first zoom level enables the sensor to measure a small

area with high accuracy, and the second zoom level enables the sensor to observe a

larger area with less accuracy. As illustrated in Fig. 2.4, if the position of O
s

with

respect to F
w

is denoted by qptq P W and the FOV is assumed to translate in W
without rotation as a free-flying object, the control vector that fully determines the

configuration of the sensor FOV is uptq “ rqT ptq lptqsT , where lptq P L denotes the

choice of zoom level. The set of points covered by the FOV at time t is denoted by

Sruptqs Ä W . Then, at any time t, the noisy vector measurement of the jth target

position, x
j

ptq P W , and velocity, 9x
j

ptq P R2,

m
j

ptqfi
„
y
j

ptq
z
j

ptq
⇢

“
„
x
j

ptq ` n
x

9x
j

ptq ` n
v

⇢
,
n
x

„ N t0,⌃
x

rlptqsu
n
v

„ N t0,⌃
v

rlptqsu, (2.5)

for j “ 1, . . . ,Mptq, is obtained i↵ x
j

ptq P Sruptqs, where Mptq is the number of

targets that have entered the workspace up to time t and “„” denotes “is distributed

as”. Velocity measurements are obtained though target position di↵erence in two

consecutive video frames. When x
j

ptq R Sruptqs, the measurement of target j at

t is an empty set, i.e., m
j

ptq “ H. Additionally, it is assumed that data-target

association is perfect. The covariance of noise vector n
x

(⌃
x

) is assumed to be 0,

and n
v

is assumed to be normally distributed with zero mean and zero covariance;

thus, the covariance matrix ⌃
v

P R2ˆ2 has zero o↵-diagonal entries. For the two

zoom levels, ⌃
v

p1q † ⌃
v

p2q, where † denotes an element-wise matrix comparison.

An unknown number of targets are allowed to travel through W . Although the

true target states are unknown, it can be assumed that all target behaviors can be
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Figure 2.4: Illustration of the camera system, where one FOV is zoomed in and
the other is zoomed out.

modeled by a possibly nonlinear time-invariant system,

9x
j

ptq “ f
i

rx
j

ptqs, j “ 1, . . . ,Mptq. (2.6)

The vector function f
i

: R2 Ñ R2, referred to as a velocity field, is also unknown and

is drawn from a set F “ tf
1

, . . . , f
N

u of unknown velocity fields to be learned from

data, where N is unknown. For simplicity, it is assumed thatMptq can be determined

without error. Note that there does not exist a one-to-one correspondence between

F and the set of targets. This is because one or more targets in W may be described

by the same velocity field in F , while some velocity fields in F may not describe any

of the targets in W .

The problem is to determine both F and the association between the velocity

fields in F and the targets in W based on the sensor measurements obtained up to

the present time according to the model in (2.5). Let a discrete random variable

g
j

, with range I “ t1, ¨ ¨ ¨ , Nu denote the index of the velocity field that describes

the behavior of the jth target. The event tg
j

“ iu represents the association of

target j with velocity field f
i

P F , as shown in (2.6). It is assumed that g
j

obeys

an unknown N -dimensional categorical distribution [8] denoted by Catp⇡q, where
⇡ “ r⇡

1

. . . ⇡
N

sT describes the prior probabilities of every possible outcome of g
j

,

for any j “ 1, . . . ,Mptq, that are assumed independent and identically distributed
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(i.i.d.) such that

Prtg
j

“ iu “ ⇡
i

, @i, j, (2.7)

where Prtg
j

“ iu is the probability of event tg
j

“ iu.
Let ⇠

i

, i “ 1, . . . , L, denote the L points of interest selected to represent the

velocity field over the workspace. For example, the points can be L evenly spaced

grid points in the workspace. Let X “ r⇠
1

. . . ⇠
L

s be shorthand notation for the

points of interest such that

f
i

pXq “ rf
i

p⇠
1

qT . . . f
i

p⇠
L

qT sT . (2.8)

Then, the random vector of interest is given by

� fi rf
1

pXqT . . . f
N

pXqT sT . (2.9)

Chapter 3 introduces the DP-GP model connecting �, the measurements, and the

DP-GP expected KL divergence that is used in the optimized coverage planning

approach in Chapter 4 in order to determing the optimal control, u˚ptq, that enables
the sensors to collect the most valuable measurements for learning t�,⇡u.

2.3 Problem 3: Mobile Sensor Planning for Target Tracking and Lo-
calization

This problem considers a mobile robotic sensor deployed to track a moving target in

a two-dimensional workspace, W Ä R2. The objective is to obtain a controller for the

robotic sensor such that its ability to track and localize the target is optimized with-

out losing the target, based on proprioceptive and exteroceptive measurements. Let

the target state, position, and velocity be respectively denoted by q
t

“ rx
t

y
t

9x
t

9y
t

sT ,
x
t

“ rx
t

y
t

sT , and 9x
t

“ r 9x
t

9y
t

sT . Note that the random vector of interest is given

by � “ q
t

pk ` 1q. The target motion in W is assumed to be governed by a lin-

ear stochastic motion model that, in discrete time, can be written as a di↵erence
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equation,

q
t

pk ` 1q fi f
t

rq
t

pkqs ` Gw “ �
t

q
t

pkq ` Gw, (2.10)

where w is zero-mean Gaussian white noise with covariance matrix Q
t

, �
t

is the

state transition matrix, and G is the noise Jacobian matrix. Both �
t

and G are

assumed to be time-invariant and known a priori.

Let q
r

“ rx
r

y
r

✓
r

sT denote the robot configuration or state with respect to an

inertial (or global) frame of reference FW , and let u
r

“ rv
r

!
r

sT denote the robot

control vector, where v
r

is the translational speed and !
r

is the angular velocity,

where u
r

P U and U is the space of admissible control inputs. The kinematics of this

robotic sensor in W can be described by the unicycle motion model [105],

q
r

pk`1q fi f
r

rq
r

pkq,u
r

pkq, ks“q
r

pkq`B
r

pkqu
r

pkq, (2.11)

where

B
r

pkq “
»

–
cos ✓

r

pkq�t 0
sin ✓

r

pkq�t 0
0 �t

fi

fl , (2.12)

and �t is the time step size.

The proprioceptive sensor (e.g. odometer) obtains noisy measurements of the

control vector,

z
r

pkq fi h
r

ru
r

pkqs “ u
r

pkq ` v
r

pkq, (2.13)

where v
r

pkq is white Gaussian noise with a time-invariant and known covariance

matrix Q
r

, i.e., v
r

pkq „ N p0,Q
r

q. The exteroceptive sensor is characterized by a

sector-shaped FOV, denoted by S Ä W , that is rigidly connected to the robot and

has an aperture or central angle ↵ and a range or radius �, as shown in Fig.2.5. Then,

the motion of any point in S can be described by the robot configuration vector q
r

,

which includes the robot inertial position x
r

“ rx
r

y
r

sT and heading ✓
r

. When the

target is inside the FOV, the exteroceptive sensor can measure its relative distance
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Figure 2.5: FOV of exteroceptive sensor.

and bearing according to the model,

z
t

fi h
t

pq
r

,q
t

q“
$
&

%

r⇢
t

✓
t

sT ` v
t

, x
t

P Spq
r

q
H, x

t

R Spq
r

q
(2.14)

where ⇢
t

“ }x
r

´ x
t

} denotes the Euclidean distance between x
r

and x
t

, ✓
t

is the

angle between the robot heading and the direction from robot to target, and v
t

is

zero-mean Gaussian noise with covariance R
t

.

The workspace W is populated with L stationary landmarks with positions x
l

“
rx

1

y
1

. . . x
L

y
L

sT that can be used to aid localization. The measurement of the

landmarks also consists of the relative distance and bearing,

z
li fi h

l

pq
r

,x
liq“

$
&

%

r⇢
li ✓lisT ` v

l

, x
li P Spq

r

q
H, x

li R Spq
r

q
(2.15)

for i “ 1, . . . , L, where ⇢
li “ }x

r

´ x
li}, ✓li is the relative angle between the robot

heading and the ith landmark location and v
l

is zero-mean Gaussian noise with

covariance R
l

.

Based on the above robot and target motion model and on the most recent

proprioceptive and exteroceptive measurements, z
r

pkq, z
t

pkq, and z
l

pkq, the goal is
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to obtain a controller such that its ability to track and localize the target is optimized

without losing the target.
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3

Information Gain

Information theory addresses the quantification of the amount and the quality of

information, which is accomplished by evaluating the uncertainty of one or more

random variables based on their PMF or PDF and on the environment condition.

Information theoretic functions are a natural choice for representing the information

value because they measure the absolute or relative information content of PMFs

or PDFs. In sensor planning and control problems, the utility of the sensor control

may be represented by the expected information value, where the expectation is with

respect to future sensor measurements. The expected information value can then be

used to estimate the utility of the sensor control prior to obtaining the measure-

ments and therefore be used to determine the sensor control. Because the posterior

belief state in sensor planning is typically unknown, a general approach is reviewed

in this chapter that utilizes information theoretic functions to estimate the expected

information value of a measurement resulting from the sensor control prior to ob-

taining the actual sensor measurements and the posterior belief. The information

theoretic functions are first reviewed in the next section. An approach for deriving

the expected information value functions is subsequently reviewed, followed by its
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new extension that can be used to derive the expected KL divergence information

function for the DP-GP model.

3.1 Information Theoretic Functions

Information theoretic functions are widely used in many applications to evaluate

the information value of sensor measurements. One such function is the Shannon

entropy, which measures the uncertainty of a discrete random variable ✓ with a range

⇥. From the PMF pp✓q for all ✓ P ⇥, the Shannon entropy is defined as

Hp✓q “ ´
ÿ

✓P⇥
pp✓q log pp✓q. (3.1)

Similarly, the di↵erential entropy (also referred to as the continuous entropy) extends

the Shannon entropy to PDF and is defined as

Hp✓q “ ´
ª

⇥

pp✓q log pp✓qd✓ (3.2)

where ✓ is a continuous random variable and ⇥ is the value space of ✓.

The Rény information or ↵-divergence measures the di↵erence (also called dis-

tance) between two PMFs (or PDFs). According to [20], the Rény divergence of

order ↵ for discrete random variables is defined as

D
↵

pp } qq “ 1

↵ ´ 1
log

ÿ

✓P⇥
p↵p✓q q1´↵p✓q (3.3)

where p and q are two PMFs of ✓. The Rény divergence for a continuous random

variable is obtained by replacing the summation in (3.3) with an integral, as follows:

D
↵

pp } qq “ 1

↵ ´ 1
log

ª

⇥

p↵p✓q q1´↵p✓qd✓. (3.4)

In the sensor motion planning literature, p is the posterior belief of ✓ given new and

prior measurements, while q is the prior belief of ✓ given prior measurements. As ↵
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converges to 1, (3.3) and (3.4) reduce to the KL divergence, as follows:

D
KL

pp } qq “
ÿ

✓P✓
pp✓q log pp✓q

qp✓q (3.5)

for discrete random variables, and

Dpp } qq “
ª

⇥

pp✓q log pp✓q
qp✓qdqp✓q (3.6)

for continuous random variables, respectively.

As shown in [20], mutual information is a measure of the information content

of one random variable regarding another random variable. The conditional mutual

information of two random variables ✓ and z, given y, represents the reduction in

uncertainty in ✓ due to knowledge of z when y is given; it is defined as

Ip✓; z | yq “ Hp✓ | yq ´ Hp✓ | z,yq

“
ÿ

⇥

ÿ

Y

ÿ

Z
pp✓,y, zq log pp✓, z | Zq

pp✓ | yqppz | yq
(3.7)

where Hp✓ | yq denotes the conditional entropy of ✓ given y. Similarly, the condi-

tional mutual information of continuous random variables is obtained by replacing

the summation with a triple integral, as follows:

Ip✓; z | yq “ Hp✓ | yq ´ Hp✓ | z,yq

“
ª

⇥

ª

Y

ª

Z
pp✓,y, zq log pp✓, z | yq

pp✓ | yqppz | yqd✓dzdy
(3.8)

The Cauchy-Schwarz divergence is quite useful when qp✓q and pp✓q are in non-

parametric forms and is based on the Cauchy-Schwarz (CS) inequality. The Cauchy-

Schwarz divergence is also a measure of the di↵erence between two probability dis-

tributions pp✓q and qp✓q and is defined for discrete random variables as

D
CS

pp, qq “ log

∞
✓P⇥ p2p✓q∞✓P⇥ q2p✓q
r∞✓P⇥ pp✓qqp✓qs2 , (3.9)
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while for continuous random variables, it is defined as

D
CS

pp, qq “ log

≥
⇥

p2p✓qd✓ ≥
⇥

q2p✓q✓
“≥

⇥

pp✓qqp✓qd✓‰
2

. (3.10)

The entropy, the ↵-divergence, the KL divergence, and the Cauchy-Schwarz di-

vergence require knowledge of the posterior pp✓q. Therefore, they cannot be used

to compute the expected information value because the posterior PMF is unknown

prior to obtaining the measurements [117]. A general approach for designing infor-

mation value function based on expected information theoretic functions is reviewed

in the next section.

3.2 Information Value Functions for Sensor Planning

As shown in the previous section, computing these information theoretic functions

requires knowledge of the PMFs that represent the prior and posterior belief state

of ✓. Although it is assumed that the sensor parameters are known a priori, the

approach can be easily extended to the case in which they must also be controlled.

For simplicity, let the random variables of interest be denoted by � “ r✓T

1

¨ ¨ ¨✓T

M

sT .
The following derivation assumes that ✓T

1

¨ ¨ ¨✓T

M

are independent, continuous random

variables. Therefore, without loss of generality, the general approach for deriving the

information value function of a measurement z
i

with respect to ✓
i

proceeds as follows.

If z
i

is known, the information acquired through z
i

can be represented by the KL

divergence between the prior belief state, pp✓
i

| Mk´1, e
i

q, and the posterior belief

state, pp✓
i

| z
i

,Mk´1, e
i

q, as
D

KL

rpp✓
i

| Mk´1, z
i

, e
i

q } pp✓
i

| Mk´1, e
i

qs, (3.11)

where Mk´1 denotes the accumulated measurement up to time k´1. At time k, the

expected change in belief state brought about by z
i

can be estimated by taking the

24



expectation with respect to z
i

. Then, from (3.11), the expected KL divergence can

be represented by

'̂
DKLp✓

i

; z
i

| Mk´1, e
i

q
” E

zi

 
D

KL

rpp✓
i

| z
i

,Mk´1, e
i

q } pp✓
i

| Mk´1, e
i

qs(

“
ª

Z
D

KL

rpp✓
i

| z
i

,Mk´1, e
i

q } pp✓
i

| Mk´1, e
i

qsppz
i

| Mk´1, e
i

qdz
i

. (3.12)

The KL divergence can be computed from Mk´1 and the sensor model as follows.

When a measurement zk´1

i

is obtained from the target T
i

at time pk ´ 1q, the
PDF of ✓

i

given Mk´1 and e
i

can be updated using Bayes’ rule,

pp✓
i

| Mk´1, e
i

q “ pp✓
i

| zk´1,Mk´2, e
i

q

“ ppzk´1 | ✓
i

,Mk´2, e
i

qpp✓
i

| Mk´2, e
i

q
ppzk´1 | Mk´2, e

i

q

“ ppzk´1 | ✓
i

, e
i

qpp✓
i

| Mk´2, e
i

q≥
⇥

ppzk´1 | ✓
i

, e
i

qpp✓
i

| Mk´2, e
i

qd✓
i

,

(3.13)

because measurements can be assumed to be conditionally independent given the

target state, i.e.,

ppzk´1 | ✓
i

,Mk´2, e
i

q “ ppzk´1 | ✓
i

, e
i

q. (3.14)

Because pp✓
i

| Mk´2, e
i

q is known from the previous time step pk´2q and additional

measurements are obtained at subsequent time steps, (3.13) can be implemented

iteratively. Finally, the posterior belief inside the expectation in (3.12) is computed

by applying Bayes’ rule for every possible value of z
i

as follows:

pp✓
i

| z
i

,Mk´1, e
i

q “ ppz
i

| ✓
i

, e
i

qpp✓
i

| Mk´2, e
i

q≥
⇥

ppz
j

| ✓
i

, e
i

qpp✓
i

| Mk´2, e
i

qd✓
i

. (3.15)

Similarly, the expected ↵-divergence can be obtained by replacing the KL diver-
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gence with the ↵ divergence as follows:

'̂
D↵p✓

i

; z
i

| Mk´1, e
i

q
” E

zi

 
D

↵

rpp✓
i

| z
i

,Mk´1, e
i

q } pp✓
i

| Mk´1, e
i

qs(

“
ª

Z
D

↵

rpp✓
i

| z
i

,Mk´1, e
i

q } pp✓
i

| Mk´1, e
i

qsppz
i

| Mk´1, e
i

qdz
i

(3.16)

where pp✓
i

| z
i

,Mk´1, e
i

q and ppz
i

| Mk´1, e
i

q can be obtained from (3.13) and (3.15).

The conditional mutual information consists of an expectation of the unknown

measurement in nature and is used to represent the reduction in the uncertainty of

✓
i

caused by z
i

, which is given by

'̂
I

p✓
i

; z
i

| Mk´1, e
i

q ” E
zi

 
Ip✓

i

; z
i

| Mk´1, e
i

q(

“ Hp✓
i

| Mk´1, e
i

q ´ E
zi

 
Hp✓

i

| z
i

,Mk´1, e
i

q(

“ Hp✓
i

| Mk´1, e
i

q ´
ª

zj

Hp✓
i

| z
i

,Mk´1, e
i

qppz
i

| Mk´1, e
i

qdz
i

(3.17)

where the entropyHp✓
i

| z
i

,Mk´1, e
i

q is computed from (3.15). The expected Cauchy-

Schwartz information function is defined as

'̂
CS

p✓
i

; z
i

| Mk´1, e
i

q ” E
zi

 
D

CS

rpp✓
i

| z
i

,Mk´1, e
i

q, pp✓
i

| Mk´1, e
i

qs(

“
ª

Z
log

≥
⇥

p2p✓
i

| z
i

,Mk´1, e
i

qd✓ ≥
⇥

p2p✓
i

| Mk´1, e
i

qd✓
“≥

⇥

pp✓
i

| z
i

,Mk´1, e
i

qp✓qpp✓
i

| Mk´1, e
i

qd✓‰
2

dz
i

,

(3.18)

and it can be used to obtain an alternative measure of the distance between the prior

and the posterior belief states.

As shown in [103], the expected KL divergence can be specialized to the DP-GP

expected KL divergence, where the random vector of interest � does not consist of

✓
i

. Instead, � is a vector of other random variables defined as follows:

� fi rf
1

pXqT . . . f
N

pXqT sT , (3.19)
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where f
i

is an unknown velocity field function. The DP-GP model is used to connect

� and the measurements that are denoted by mpkq.
The DP-GP mixture model for describing target behaviors is studied in [43].

Based on the model of the targets’ kinematics (2.6), every velocity field, f
i

, projects

the jth target position, x
j

pkq, to the target velocity, v
j

pkq, and it can thus be viewed

as a two-dimensional spatial phenomenon, which can be modeled by multiple-output

Gaussian processes (GPs) [38]. Then, a PMF ⇡ describing the prior probability of an

association between a target and a velocity field (GP) is learned from data to cluster

the velocity fields using Dirichlet processes (DPs) [9]. DPs can be successfully applied

to data clustering without specifying the number of clusters a priori because they

allow the creation and deletion of clusters when necessary as new data is obtained

over time. The DP-GP mixture model taken from [43] is given as follows:

t✓
i

,⇡u „ DPp↵,GP
0

q, i “ 1, . . . ,8
G

j

„ Catp⇡q, j “ 1, . . . ,M

f
Gjpxq „ GPp✓

Gj , cq, @x P W , j “ 1, . . . ,M,

(3.20)

where the strength parameter is denoted by ↵ [92]. For a rigorous definition and a

comprehensive review of DPs, the reader is referred to [25]. In this dissertation, the

base distribution is chosen to be a Gaussian process, GP
0

“ GPp0, cq. Let a Gaussian

process GP
i

represent the distribution of velocities over the workspace specified by

the ith velocity field, f
i

, such that

f
i

pxq „ GP
i

, @x P W , (3.21)

for i “ 1, . . . , N . The Gaussian process, GP
i

, is completely specified by its mean

function ✓
i

: R2 Ñ R2,

✓
i

pxq “ Erf
i

pxqs, @x P W , (3.22)
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and its covariance function,

c
i

px
ı

,x
|

q “ E
 rf

i

px
ı

q ´ ✓
i

px
ı

qsrf
i

px
|

q ´ ✓
i

px
|

qsT(
fi

„
c
xx

px
ı

,x
|

q c
xy

px
ı

,x
|

q
c
yx

px
ı

,x
|

q c
yy

px
ı

,x
|

q
⇢

(3.23)

for all x
ı

,x
|

P W .

Similar to the approach for deriving the information function previously intro-

duced, the proposed DP-GP expected KL divergence is the expectation of the utility

of m
j

pk ` 1q for updating the current DP-GP model. In this case, the future mea-

surement m
j

pk` 1q and the association between the target and the velocity field are

unknown. Let Epkq denote the measurement histories of all of the targets already

used for updating the DP-GP model, and let E
i

pkq denote the measurement history

assigned to the ith velocity field by the DP-GP mixture model.

Then, following (3.16), the DP-GP expected KL divergence for a future measure-

ment m
j

pk ` 1q can be defined as

'̂
j

r�;m
j

pk ` 1qs “
Nÿ

i“1

w
ij

E
mjpk`1qDKL

!
prf

i

pXq|m
j

pk̀ 1q,M
j

pkq, E
i

pkqs } prf
i

pXq|M
j

pkq, E
i

pkqs
)

(3.24)

where w
ij

is the probability of the target j following f
i

and M
j

pkq denotes the

measurements from target j up to time k.

The DP-GP expected KL divergence (3.24) requires w
ij

and a PDF of m
j

pk ` 1q
that is a function of x

j

pk ` 1q and y
j

pk ` 1q, which are also unknown. The PDF

of m
j

pk ` 1q is obtained as follows. When G
j

“ i and x
j

pk ` 1q P Srupk ` 1qs, the
estimated measurement distribution is obtained by marginalizing the measurement

model over the estimated target position distribution such that

prm
j

pk ` 1q|M
j

pkq, E
i

pkqs “
ª

X
prm

j

pk ` 1q|M
j

pkq, E
i

pk,x
j

pk ` 1qs

ˆ prx
j

pk ` 1q|M
j

pkq, E
i

pkqsdx
j

pk ` 1q (3.25)
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where prx
j

pk ` 1q|M
j

pkq, E
i

pkq,upkqs is obtained from the current DP-GP model

and the current target position estimation as follows. Recalling (2.6), the target

kinematics can be integrated using the Euler method for a time interval �t such that

x
j

pk ` 1q “ x
j

pkq ` v
j

pkq�t (3.26)

where v
j

pkq is from the current DP-GP model given x
j

pkq. Therefore, the estimated

target position distribution at k ` 1 is obtained by the following integral:

prx
j

pk ` 1q|M
j

pkq, E
i

pkqs “
ª

V
f
X

rx
j

pk ` 1q ´ v
j

pkq�tsf
V

rv
j

pkq,x
j

pkqsdv
j

(3.27)

where f
X

and f
V

represent the probability density functions of the target position

and velocity at time step k, respectively:

f
X

rx
j

pkqs fi prx
j

pkq|M
j

pkq, E
i

pkqs, (3.28)

f
V

rv
j

pkq,x
j

pkqs fi N rv
j

pkq;µ
j

pkq,⌃
j

pkqs, (3.29)

where the mean and variance of the jth target velocity at position x
j

pkq are given

by

µ
j

pkq “ ✓
i

px
j

pkqq ` Cpx
j

pkq,P
i

pkqqrCpP
i

pkq,P
i

pkqq ` �2

v

Is´1rV
i

pkq ´ ✓
i

pP
i

pkqqs,
(3.30)

and

⌃
j

pkq “ crx
j

pkq,x
j

pkqs ´ Crx
j

pkq,P
i

pkqsrCpP
i

pkq,P
i

pkqq ` �2

v

Is´1CrP
i

pkq,x
j

pkqs.
(3.31)

Here, the matrices of the position and velocity measurements in E
i

pkq are defined as

P
i

pkq fi ry
1

p1q . . . y
j

p`q . . . y
M

pkqs, @ryT

j

p`q zT
j

p`qsT P E
i

pkq, (3.32)

and

V
i

pkq fi rz
1

p1q . . . z
j

p`q . . . z
M

pkqs, @ryT

j

p`q zT
j

p`qsT P E
i

pkq. (3.33)
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The probability of target j following velocity field i can be inferred from Bayes’

theorem,

w
ij

fi prG
j

“ i|M
j

pkq, Epkqs “ prM
j

pkq|E
i

pkqsprG
j

“ i|Epkqs
∞

M

i“1

prM
j

pkq|E
i

pkqsprG
j

“ i|Epkqs (3.34)

where the prior PMF of G
j

given Epkq and upkq is the categorical distribution of

the current DP-GP model. Taken from [43], the likelihood prM
j

pkq|E
i

pkq,upkqs is

obtained from the ith GP (velocity field) of the current DP-GP model:

prM
j

pkq|E
i

pkqs “
kπ

`“k

1
N rz

j

p`q; µ̂
j

p`q, ⌃̂
j

p`qs, (3.35)

where the estimated mean, µ̂
j

p`q, and covariance, ⌃̂
j

p`q, are calculated by replacing

x
j

pkq with y
j

p`q in both (3.30) and (3.31). When x
j

pk ` 1q R Srupk ` 1qs, no

measurement is obtained and the prior and posterior DP-GP models are the same;

in this case, the DP-GP expected KL divergence (3.24) is zero.

From the above analysis, with the given probability models of m
j

pk ` 1q, (3.24)
becomes

'̂
j

r�;m
j

pk ` 1qs

“
Nÿ

i“1

w
ij

ª

Srupk`1qs

ª

Z

D tprf
i

pXq|M
j

pk ` 1q, E
i

pkqs } prf
i

pXq|M
j

pkq, E
i

pkqsu

ˆ N rz
j

pk ` 1q;µ
j

pk ` 1q,⌃
v

sdz
j

pk ` 1q
ˆ prx

j

pk ` 1q|M
j

pkq, E
i

pkqsdx
j

pk ` 1q. (3.36)

The calculation of (3.36) involves a 6th-order integral (including an implicit double

integral in D) that is reduced to a double integral in Chapter 4 with proper assump-

tions. Then, the optimized coverage approach is used to maximize the proposed

DP-GP expected KL divergence information function to obtain the optimal sensor

control for the camera intruder problem.
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4

Motion Planning

In many applications, the sensors are mounted on platforms that consist of au-

tonomous mobile robots or mechatronic structures whose kinematics can be mod-

eled by di↵erential equations. To optimize the sensor performance, the sensor motion

planning and control must consider the stochastic measurement process and filters

for estimation, classification, and prediction. Additionally, sensor motion planning

must take into account the geometry of the sensor’s platform and FOV as well as the

geometry and location of targets and obstacles to determine a path that optimizes

the sensing objectives while avoiding collisions with obstacles and other sensors.

Because robot motion planning approaches deal with the intersections of dis-

crete geometric objects that are possibly moving, subject to a kinematic or dynamic

equation, many sensor path planning methods are inspired by existing robot mo-

tion planning approaches. Chapter 4 reviews three existing sensor motion planning

approaches originally presented in [15], [113], and [66]: the information cell decompo-

sition approach, the information probability roadmap deploy (IPD), and the rapidly

exploring random information trees (RRIT) approach. However, these existing meth-

ods cannot solve sensor planning problems when sensor kinodynamic constraints are
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considered, the target model is complex, or the proprioceptive and exteroceptive

sensor are deployed, respectively. The IP approach is presented for generating a

potential navigation function and roadmap based on a probabilistic model of the

measurement process and on the geometries of targets and sensor FOV [68]. The

above approaches assume that a measurement is obtained once the sensor FOV in-

tersects with the geometry of the stationary target. For the problem of monitoring

moving targets, the locations of these targets are unknown and are estimated by

time-varying probability distributions. Therefore, it is di�cult to formulate a target

with a rigid geometry. To this end, two sensor motion planning approaches are de-

veloped for problems where positions of mobile targets are unknown: the optimized

coverage planning based on the DP-GP expected KL divergence and the optimized

visibility planning for simultaneous target tracking and localization.

4.1 Information Cell Decomposition

Cell decomposition is a well-known approach for decomposing the obstacle-free robot

configuration space into a finite collection of non-overlapping convex polygons that

are referred to as cells, with the purpose of obtaining a robot path without collisions

with obstacles. In classical cell decomposition, the union of these non-overlapping

cells is equivalent to the free configuration space through a line-sweeping algorithm.

Then, a connectivity graph is constructed based on these cells by adding an arc

between two cells if the two cells are adjacent. The connectivity graph can then be

searched for the shortest path between the two cells containing the desired initial and

final robot configurations. One advantage of cell decomposition is that it guarantees

collision avoidance between a robot with any discrete geometry and obstacles of any

shape that are not necessarily convex. One commonly used decomposition method

is known as approximate-and-decompose [119].

The cell decomposition approach for sensor motion planning was proposed in
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[16]; it modifies the classical cell decomposition approach by taking into account the

presence of the targets and the sensors’ FOV. This approach maps the information

values of position-fixed targets into the cells formed by decomposing the free configu-

ration space, with the goal of classifying the targets located in an obstacle-populated

workspace. Then, similar to the classical cell decomposition approach, a connectivity

graph is built to represent the connectivity relationship between cells and is further

transformed into a decision tree from which an optimal sensor path can be found.

Contrary to classical cell decomposition approaches, the free configuration space

is decomposed into two types of cells. The first type, called an observation cell, is

a convex polygon D
z

and a sensor at any configuration in this observation cell can

make an observation of at least one target. In other words, the information value

of an observation cell is positive. The remaining cells are referred to as void cells

that have zero information values, meaning that a sensor at any configuration in a

void cell cannot take measurements of any target. The cell decomposition approach

for sensor planning consists of three steps. The first step is to generate a convex

polygonal decomposition, D
void

, of the configuration space that is not covered by

any C-obstacles or C-targets. Then, the second step generates a convex polygonal

decomposition, D
i

, of each obstacle-free C-target, constructing D
z

. In the last step,

a connectivity graph G using all cells in D “ D
void

YD
z

is constructed. Note that the

presence of obstacles and targets makes the decomposition in the first step NP-hard

[60]. The cells containing the initial configuration q
0

and the final configuration q
f

are referred to as the initial cell (m
0

) and final cell (m
f

), respectively. Examples of

the polygonal decomposition and connectivity graph are illustrated in Fig. 4.1.

As shown in [2], the A˚ algorithm is the most e↵ective in searching for the path

of minimum total distance in G. The A˚ algorithm explores G iteratively, starting

at m
0

and visiting every neighbor node m
i

, where a cost function is assigned by

estimating the minimum-cost path from m
0

to m
f

, through m
i

. After a node in G
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Figure 4.1: Example of cell decomposition with void (white) and observation (grey)
cells and C-obstacles (green) (a), and connectivity graph G (b).

is visited, the algorithm stores only the path of minimum cost and labels the node

as visited, assigning it a pointer to its parent node. This process forms a spanning

tree of the subset of G that has already been explored and produces considerable

computational savings compared to other graph-searching algorithms [55, 80].

4.2 Information Roadmap Deployment

Probability Roadmap Method (PRM) algorithms have been shown to be very e↵ec-

tive at planning collision-free paths for robots with many degrees of freedom [90, 11].

The PRM method samples milestones from the free configuration space and con-

structs a roadmap graph. Then, a collision-free path from the initial configuration

to the final configuration is determined from the roadmap by searching the resultant

roadmap graph [46]. An information value-based probabilistic roadmap method,

referred to as the Information Probability Roadmap Deploy (IRD) approach, was

proposed in [112]. The IRD approach samples a roadmap using a hybrid sampling

method for a robotic sensor deployed to classify multiple position-fixed targets in a

workspace populated with obstacles. The hybrid sampling method consists of a PDF

constructed from an information theoretic function that favors samples with a high

expected value of information, a Gaussian distribution covering narrow passages, and
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a uniform distribution covering wide-open regions.

The information value of the measurements that can be obtained from a robotic

sensor at configuration q is the cumulative information values of these C-targets,

denoted by V pqq. Then, the sampling PDF based on the information value function

is given by

p
V

pqq “ V pqq≥
CT V pqqdq . (4.1)

It can be shown that this PDF favors milestones with higher information values.

The above PDF is used together with a uniform PDF p
U

pqq and a Gaussian PDF

p
G

pqq to form a hybrid sampling approach. The probability of using p
V

, p
U

, and

p
G

to sample a given milestone is v
1

, v
2

, and 1 ´ v
1

´ v
2

, respectively. The IRD

approach first samples one index from t1, 2, 3u with categorical probabilities v
1

, v
2

,

and 1 ´ v
1

´ v
2

, then the corresponding distribution is used to sample a milestone

m
i

. This sampling process iterates L times to create the nodes of the roadmap

G “ pM,Eq. Subsequently, the set of arcs E is obtained by a local planner that

connects every milestone m
i

P M with its k nearest milestones. The arc from m
i

to its neighbor m
j

is associated with a traveling distance }W rm
i`1

´ m
i

s}, where
} ¨ } represents the Euclidian norm [88]. The constant parameter k is a user-defined

parameter that is chosen based on N
m

and on the complexity of W .

Let ⌧ denote a trajectory; then, the total path distance is given by the sum of all

weighted Euclidian norms along a path ⌧ :

Dp⌧q “
f´1ÿ

i“0

}W rqpiq ´ qpi ` 1qs}, (4.2)

where qpiq is the robot configuration at i along ⌧ . The total reward is defined as

V p⌧q “
f´1ÿ

i“0

V rqpiqs. (4.3)
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Because the goal of the robotic sensor is to maximize the measurement information

profit and minimize the traveling distance, after connecting the initial configuration

and final configuration in G, the objective function to be maximized is given by

Rp⌧q “ w
V

V p⌧q ´ w
D

Dp⌧q (4.4)

where the user-defined constants w
V

and w
D

weigh the trade-o↵ between V p⌧q and

Dp⌧q. As shown in [2], the A˚ algorithm is the most e↵ective algorithm in searching

for the path of minimum total distance in G.

4.3 Rapidly Exploring Information Random Trees

Rapidly-Exploring Random Trees (RRTs) provide an e�cient way to search for a path

in a configuration space online and have been successfully applied to nonholonomic

robots in high-dimensional workspaces. Using the initial robot configuration, the

tree is expanded by iterating incrementally over the discrete time index t
k

“ 1, 2, . . .

as follows. First a configuration q is randomly sampled from the free configuration

space using a PDF ppqq, possibly uniform or Gaussian. Then, based on a distance

metric, the closest node to q in the tree is computed and extended toward q within a

predefined distance ✏ to obtain q1. If the path lies in the free configuration space, q1

and this path are added to the tree; otherwise, they are discarded and a new random

configuration is re-sampled.

The modified RRT method with a new sampling method is presented for sensor

path planning [66], where the PDF ppqq is generated based on the geometry and

information value of the target using a normal mixture. The sampled configura-

tions are ordered based on the robotic sensor state (exploration or exploitation), the

expected information value of the target assigned to the sensor, and the distance

to the target. The RRTs are expanded by verifing the feasibility of these sampled

configurations and connecting feasible milestones to the current trees.
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Let ⇥
i

“ p✓1
i

, ✓2
i

, . . . , ✓n
i

q P R denote the directions of all the rays emitted from

the center of FA
i

, and let µj

i

denote the orientation of ✓j
i

in FA. Let L
i

pqq “
pl1

i

, l2
i

, . . . , ln
i

q P < denote the magnitude for each ray. Assume the distribution of ✓s
i

is a mixture of normal distributions with n components. Each normal distribution

corresponds to an orientation of the vector of the 2-dimensional FOV. Then, for the

ith robotic sensor, the direction of the sth ray is given by

✓s
i

„
nÿ

j“1

mj

i

Npµj

i

, �2

1i

q (4.5)

where mj

i

is the weight for the jth normal distribution, µj

i

is the mean and is set

to the direction of the jth reflex, and �
1i

is the standard deviation. Similarly, the

magnitudes of L
i

pqq can also be sampled.

Once a number of milestones are sampled for the ith sensor, they are ordered

based on their importance (or priorities). When the robotic sensor is in the explo-

ration state, the importance of a milestone is proportional to the distance between

the sample and the robot’s current state, given by

Rpqq “ ⇢
i

pqq (4.6)

where ⇢
i

pqq is the distance between q and the agent. From the above definition, the

robotic sensor favors a milestone that is far away from its current configuration. For

the robotic sensor in the exploitation state (i.e., the priority is to make a measurement

from a nearby target), the importance is defined as

Rpqq “ k
2

e
´ 1

2f⇢ipqq2 ` k
1

ÿ

jPNi

e
´ ⇢jpqq2

2eV pjq2 (4.7)

where k
1

and k
2

are two constant representing the weight, N
i

is the index of targets

that is assigned to the ith robotic sensor, ⇢
j

pqq is the distance between q and the

jth target, and V pjq is the information value of the jth target. Thus, the sampler
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prefers to generate a sample with a large distance from its current configuration and

a small distance from its assigned targets.

During online sensor path planning, a global RRIT does not exist and is not

necessary for each robotic sensor. A local RRIT is constructed and updated for

each robotic sensor during its movement. Because the robotic sensor always moves

towards sub-root of the subtree expanded to the milestone with highest value of R,

it is not necessary to keep other sibling trees. The tree of milestones is updated

when the robotic sensor reaches the root of the tree. The tree is updated online by

iterating between the following three steps. In the first step, a number of milestones

(configurations) are sampled and are sorted in descended order of their importance

values. Then, the feasibility of the sampled milestone is checked by computing the

expected path to the selected milestone q from the nearest milestone (measured

with the Euclidian distance) stored at the nodes of the tree. In other words, this

step verifies that the entire expected path lies in the free configuration space. During

the last step, the feasible node of the highest importance value is chosen as the goal

configuration. Then, the robotic sensor navigates to this node by the controller used

to check the path feasibility. One example is shown in Fig. 4.2.

4.4 Information Potential Approach for Integrated Control and Nav-
igation

This section presents an approach for building a potential navigation function and

roadmap based on the information value and geometry of the targets, referred to

as the information potential (IP) method. A novel information potential function

is introduced, followed by a switched feedback controller for integrated sensor path

planning and control and an information roadmap algorithm for escaping local min-

ima.
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Tree Expansion Example

T2

T1

B2

B1

W

A1
S1

T3

D1

Figure 4.2: Example of RRIT with milestones, trees, and actual path.

4.4.1 Information Potential Function

Because the number of targets correctly classified by a sensor cannot be established a

priori, objective (I) is achieved by maximizing the expected information value of the

measurements, defined as the reduction of uncertainty in the target state ✓
i

brought

about by z
i

. As shown in Chapter 3, prior to obtaining a noisy measurement value

z
i

, the expected information value of target T
i

can be measured by the expected

conditional mutual information,

V
i

fi E
zitIp✓

i

; z
i

| e
i

qu “ Hp✓
i

| e
i

q ´ E
zi tHp✓

i

| z
i

, e
i

qu

“ Hp✓
i

q ´
ÿ

zi

ppz
i

| e
i

qHp✓
i

| z
i

, e
i

q (4.8)

where Hp✓
i

| e
i

q “ Hp✓
i

q because x
i

and e
i

are independent. This information value

is mapped onto the C-target to construct a potential field.

Similar to classical potential approaches, the robotic sensor’s potential function

is the sum of the attractive and repulsive potentials,

Upqq “ U
att

pqq ` U
rep

pqq, (4.9)
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where the total attractive potential is obtained by multiplying attractive potentials

from all targets together, given by

U
att

pqq fi
Mπ

i“1

U i

trg

pqq. (4.10)

In the proposed IP approach, the attractive potential is obtained by mapping the

information value of a target onto the C-target region of this target in W , given by

U i

trg

pqq fi ⌘
1

�V b

i

"
1 ´ exp

„
´⇢

i

pqq2
2�V b

i

⇢*
, i “ 1, . . . ,M (4.11)

where ⇢
i

pqq denotes the minimum Euclidian distance between q and T
i

in C. The

constant ⌘
1

is positive, representing the importance of targets relative to other path

planning objectives, such as avoiding collisions with obstacles. The influence distance

of the target is determined by � and b that are two positive constants. It can be

shown that every C-target in C is a local minimum.

The total repulsive potential consists of two di↵erent repulsive potentials that are

defined for fixed and moving obstacles and is given by

U
rep

pqq fi
ÿ

lPB0

U l

obs

pqq `
ÿ

jPR0

U j

rob

pqq, (4.12)

where sets B
0

and R
0

are the index sets of the considered obstacles and robots.

For fixed obstacles, a potential barrier is generated around the C-obstacle region to

prevent collisions and, at the same time, to allow the robot to obtain measurements

from nearby targets. For a fixed obstacle B
l

Ä W , the C-obstacle CB
l

“ tq P
C | Apqq XB

l

‰ ?u is computed and used to determine the minimum distance from

q in the configuration space:

%
l

pqq “ min
q

1PCBl

}q ´ q1}. (4.13)
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Let B denote the index set of fixed obstacles detected in W up to the present time.

Then, the repulsive potential for B
l

, l P B, is

U l

obs

pqq fi

$
&

%
1

2

⌘
2

´
1

%lpqq ´ 1

d0

¯
2

U
att

pqq if %
l

pqq § d
0

0 if %
l

pqq ° d
0

(4.14)

where ⌘
2

is a positive scaling factor that represents the importance of fixed obstacles

relative to other path-planning objectives and d
0

is the obstacle distance of influence

[55].

The repulsive potential of a moving obstacle creates a virtual barrier in C re-

gardless of the presence of targets within the distance of influence. Let R denote

the index set of moving obstacles detected in W up to the present time. Then, the

repulsive potential for B
j

with j P R is

U j

rob

pqq fi

$
&

%
1

2

⌘
3

´
1

%jpqq ´ 1

d0

¯
2

if %
j

pqq § d
0

0 if %
j

pqq ° d
0

(4.15)

where ⌘
3

is a positive scaling factor that represents the importance of moving obsta-

cles relative to other path-planning objectives.

As in classical potential field methods [55], a virtual force proportional to the

negative gradient of the potential function (4.9) is used to control the robotic sensor

and is comprised of the sum of an attractive and a repulsive force, generated by

the corresponding potentials. The gradient of the potential function (4.9) can be

obtained as follows:

rUpqq “ rU
att

pqq ` rU
rep

pqq

“
ÿ

lPB0

F
l

pqqv
l

pqq `
Mÿ

i“1

rN
i

pqq ` A
i

pqqsn
i

pqq ´
ÿ

jPR0

⌘
3

ˆ
1

%
j

pqq ´ 1

d
0

˙
v
j

pqq
%
j

pqq2
(4.16)
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where

A
i

pqq fi 1

2
⌘
1

⌘
2

«
ÿ

lPB0

ˆ
1

%
l

pqq ´ 1

d
0

˙
2

�
π

i‰j

U j

trg

pqq⇢
i

pqq exp
„

´⇢
i

pqq2
2�V b

i

⇢
, (4.17)

N
i

pqq “
π

j‰i

U j

trg

pqq⌘
1

⇢
i

pqq exp
„

´⇢
i

pqq2
2�V b

i

⇢
, (4.18)

F
l

pqq fi ⌘
2

ˆ
1

%
l

pqq ´ 1

d
0

˙
U
att

pqq
%
l

pqq2 , (4.19)

and v
l

p¨q fi r%
l

p¨q is a vector supported by a vector between q and the closest point

in CB
l

, pointing away from CB
l

. As can be seen, in the proposed IP approach, the

attractive force is proportional to the information value of the target that generated

it.

4.4.2 Switched Controller

Several issues arise when a nonholonomic robot is controlled by the negative gradient

of the potential function, which are i) trapping in local minima; ii) the goals are non-

reachable due to nearby obstacles; iii) stabilization. Other issues include oscillations

and no passages between closely spaced obstacles. A switched controller is designed

to ensure closed-loop stability while also enabling sensor measurements, based on

the following observation. When the robotic sensor is far away from the target, the

position vector plays a dominant role in control, whereas the robotic sensor heading

should be considered when it is close to the target in order to obtain measurements.

This is accomplished by introducing a vector h
i

P W that points from OA to the

target T
i

. Then, every vector,

h
i

fi targ min
yPCT i

}y ´ x} ´ xu, i P I
T

, (4.20)

specifies a goal orientation �
i

defined as the angle that the projection of h
i

onto

the inertial xy-plane makes with the x-axis. As illustrated in Fig. 4.3, the goal of
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the switched controller is to navigate the robot into the cylinder defined as the set

�
i

“ tpx, y, ✓q : rx ysT “ ⇠
i

, 0 § ✓ § 2⇡u and then to adjust the sensor to meet the

desired heading.
 

  

  
 

θ 

x 

y 

є 

Ei 

Oi 

O
W

 

2π 

O
A

 

[i 

Figure 4.3: Goal of switched control law for a given inscribed circle with center ⇠
i

and a positive constant ✏.

When the sensor is not in a cylinder of any target, i.e., }h} ° ✏ where h fi

argmint}h
i

}, i P I
T

u, the potential function U is defined in terms of the distance,

⇢
i

pqq “ }⇠
i

´ x}, (4.21)

to bring q within an ✏ of �
i

. Then, the potential-based controller is given by

«
u
1

u
2

�
“

«
a
w

�
“

«
´SpqqTrUpqq ´ k

1

v
9↵rUpqqs ` k

0

t↵rUpqqs ´ ✓u
�
, (4.22)

where Spqq fi rcos ✓ sin ✓ 0sT , k
0

and k
1

are a positive constants, and ↵ is the

orientation angle of vector B
x

U fi rB
x

Upqq B
y

UpqqsT in the inertial xy-plane. The

orientation angle, ↵, and its time derivative can be obtained from the components

of (4.16) as follows:

↵rUpqqs “ 2 arctan

¨

˝
BUpqq

Byb
pBUpqq

By q2 ` pBUpqq
Bx q2 ` BUpqq

Bx

˛

‚` ⇡, (4.23)
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9↵rUpqqs “
BUpqq

Bx
pBUpqq

Bx q2 ` pBUpqq
By q2

ˆB2Upqq
BxBy 9x ` B2Upqq

By2 9y
˙

´
BUpqq

By
pBUpqq

Bx q2 ` pBUpqq
By q2

ˆB2Upqq
BxBy 9y ` B2Upqq

Bx2

9x
˙
. (4.24)

When the robot is in a cylinder of a target, i.e., }h} § ✏, the heading �
i

is

considered to construct the controller. The distance between the robot and the

target is computed with respect to the geometric dilatation of the C-target,

CT 1
i

fi tq P R3 | x “ �
r

px1 ´ ⇠
i

q ` ⇠
i

, @x1 P PT
i

, 0 § ✓ § 2⇡u, (4.25)

where

�
r

“ pr
i

´ Cq{ max
xPPT i

}h
i

} (4.26)

is the scale factor and C P p0, r
i

q is a constant chosen by the user. Then, for }h} § ✏,

the potential-based control law is switched to

«
u
1

u
2

�
“

«
a
w

�
“

«
´k

p

SpqqTrUpqq ´ k
1

v
k
0

p�
i

´ ✓q
�
, (4.27)

where k
0

, k
1

, and k
p

are positive constants.

4.4.3 Information Roadmap for Escaping Local Minima

When there exist multiple targets and obstacles in W , a well-known limitation of po-

tential field methods is that the robot can be trapped in local minima of U [55]. This

subsection presents a PRM-based method for escaping local minima while increasing

the probability of obtaining sensor measurements. The method uses the information

potential function defined in (4.9) to construct a PDF for sampling milestones and

then builds a local roadmap representation of the free configuration space. Con-

trary to traditional sampling methods for path planning [46], the method uses the

robot kinematics (2.4) and the switched controllers to verify connectivity between
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milestones. As a result, after escaping a local minimum, the robotic sensor’s config-

uration can be proven to asymptotically converge to the milestone with the lowest

potential (or highest information value).

Similar to the sampling approach in the RRT method, a milestone m
l

is sam-

pled from the PDF of a three-dimensional continuous random vector, given by a

nonnegative function f
q

such that

Ppq P Qq “
ª

Q

f
q

pqqdq (4.28)

for any subspace Q Ä C randomly chosen, where

f
q

pqq “
#

expr´Upqqs≥
Q expr´Upqqsdq , q P Q

0, q R Q
. (4.29)

From (4.29), it can be seen that the probability of a sample falling in a region of Q is

higher (or lower) where the value of U is lower (or higher). As a result, configurations

in Q that are close to, or inside, C-targets with high information value and that are

far away from obstacles are sampled with higher probability.

Following a direct sampling approach [18],  milestones are sampled from (4.29)

and used to construct an ordered set M “ tm
0

, . . . ,m


u. A local roadmap is then

constructed, as shown in Fig. 4.4, starting with the local minimum m
0

P Q and

using a local planner to connect m
0

to other milestones in M until no reachable

milestones remain in M. At every step of the algorithm, all of the milestones in M
that can be connected to a milestone already in G are added to G and are deleted

from M (Fig. 4.4.b-c). The algorithm continues until there are no more milestones

in M, and milestones that remain unconnected (Fig. 4.4.d) are discarded. As shown

in the next section, after building the roadmap G, an escape path leading to a target

can be obtained in a finite number of iterations. Also, through this path, the robotic
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sensor has a higher probability of converging to a target with higher information

value.

m �M 
m � G 

m0 

Figure 4.4: Roadmap Construction: (a) initial milestones; (b) first step; (c) second
step; (d) final step. Dash circle: local minimum; white circle: milestones; black area:
C-obstacles.

4.4.4 Propterties of Information Potential Method

The information potential presented satisfies the properties of potential navigation

functions [35]: i) U i

trg

is an increasing function of ⇢
i

; ii) as ⇢
i

Ñ 8, U i

trg

converges to

a finite positive value. Also, it is shown that the switched controller is asymptotically

stable, that the information roadmap method is guaranteed to find an escape path

to a C-target using a finite number of iterations, and that the target with the highest

information value has the highest probability of being measured by the robotic sensor.

Closed-loop Stability of Switched Feedback Control Law

The switched controller can be proven to be asymptotically stable under the following

simplifying assumptions: (i) q is within the influence distance of only one target T
i

;

and (ii) there are no obstacles within a distance d
0

, i.e. B
0

“ R
0

“ H. Let PT
i
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denote the intersection of CT
i

with the horizontal plane tx, y, �
i

u, as shown in 4.5.

Now, let ⇠
i

and r
i

denote the center and radius of the inscribed circle for PT
i

,

respectively, and let ✏ P p0, r
i

q denote a positive constant chosen by the user.

PTi 

[i 
є 

ri 

Figure 4.5: Inscribed circle for polygon PT
i

, with center ⇠
i

and radius r
i

.

Proof. When }h} • ✏, consider the Lyapunov function candidate

Vp�q “ Upqq ` 1

2
v2 ` 1

2
t↵rUpqqs ´ ✓u2. (4.30)

It can be shown that Vp�q ° 0 for all � P R4, because Upqq ° 0 and the term

v2 ` t↵rUpqqs ´ ✓u2 • 0. Under assumptions (i)-(ii), the gradient of the potential

function (4.16) is

rUpqq “ “
Kp⇠

i

´ xq 0
‰
T

, (4.31)

where K fi ⌘
1

expr´⇢
i

pqq2{p2�V b

i

qs. Then, the time derivative of V for the closed-
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loop system can be shown to be non-negative, as follows:

9Vp�q “ rUpqqT 9q ` v 9v ` t↵rUpqqs ´ ✓ut 9↵rUpqqs ´ wu

“ rUpqqT
»

–
cos ✓ 0
sin ✓ 0
0 1

fi

fl
„
v
w

⇢

` v
“´SpqqTrUpqq ´ k

1

v
‰ ´ k

0

t↵rUpqqs ´ ✓u2

“ rUpqqTSpqqv

´ SpqqTrUpqqv ´ k
1

v2 ´ k
0

t↵rUpqqs ´ ✓u2

“ ´k
1

v2 ´ k
0

t↵rUpqqs ´ ✓u2 § 0. (4.32)

Because Vp�q is radially unbounded, given any positive constant c, the set ⌦
c

“ t� P
R4 | Vp�q § cu is a compact, positively invariant set, where the value of c, and thus

the region of attraction, can be determined based on the maximum linear velocity

v
max

.

It can be shown, as follows, that every trajectory starting in ⌦
c

approaches the

equilibrium set E “ t� P R4 | � “ r⇠T
i

↵rUp⇠
i

qs 0sT u as t Ñ 8. The set ⌥ of all

points in ⌦
c

where 9Vp�q “ 0 is ⌥ “ t� P ⌦
c

| ✓ “ ↵rUpqqs, v “ 0u. Let t⌥zEu
denotes the complement set of E in ⌥. Then, it can be shown that E is the largest

invariant set in ⌥ because for any � P t⌥zEu, as

9v “ u
1

“ ´SpqqTrUpqq ´ k
1

v

“ rcost↵rUpqqu sint↵rUpqqu 0srUpqq

“ rUpqqT
||rUpqq||rUpqq “ ||rUpqq|| ‰ 0. (4.33)

Thus, any trajectory starting from t⌥zEu cannot stay identically in ⌥. Additionally,

any trajectory starting from E will remain identically in ⌥ because 9� “ 0. Then E
is the largest invariant set in ⌥ and, according to LaSalle’s Invariance Principle [49,

pg. 128], every trajectory starting in ⌦
c

approaches E as t Ñ 8.
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When }h} § ✏, another candidate Lyapunov function is considered,

Vp�q “ k
p

Upqq ` 1

2
v2 ` 1

2
p�

i

´ ✓q2, (4.34)

and it is true that Vp�q is non-negative. From the unicycle model (2.4) and the

controller (4.27), the time derivative of V for the closed-loop system can be written

as

9Vpqq “ ´k
1

v2 ´ k
0

p�
i

´ ✓q2 § 0. (4.35)

Because ✏ † r
i

any time }h} § ✏, the state of the closed-loop system is a point in

the set ⌦
r

“ t� P R4 | }h} § r
i

, 0 § ✓ § 2⇡, }v} † v
max

u. Let � “ min}h}“ri Vp�q
in ⌦

r

, where it can be easily shown that � ° 0. Take c P p0, �q and let ⌦
c

“ t� P
⌦

r

| Vp�q § cu.
Then, as t Ñ 8, every trajectory starting in ⌦

c

approaches the equilibrium set

E “ t� P ⌦
c

| rcos �
i

sin �
i

sB
x

U “ 0, ✓ “ �
i

, v “ 0u. The set ⌥ of all points in ⌦
c

where 9Vp�q “ 0 is ⌥ “ t� P ⌦
c

| ✓ “ �
i

, v “ 0u. The set E is the largest invariant

set in ⌥ because, for any � P t⌥zEu,

9v “ u
1

“ ´k
p

SpqqTrUpqq ´ k
1

v

“ ´k
p

rcos �
i

sin �
i

0srUpqq
“ ´k

p

rcos �
i

sin �
i

sB
x

U ‰ 0 (4.36)

by definition of E . Because any trajectory starting in t⌥zEu cannot remain identically

in ⌥, E is the largest invariant set in ⌥. On the other hand, any trajectory starting

at a point in E will remain identically in ⌥, because 9� “ 0. It follows from LaSalle’s

Invariance Principle [49, pg. 128] that every trajectory starting in ⌦
c

approaches E
as t Ñ 8.
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Expected Number of Iterations of Information Roadmap Algorithm

The roadmap G containing an escape path leading to a C-target can be obtained in

a finite number of iterations, when a robot is trapped in a local minimum. Assume

there exists a finite number of local minima in U and that all of the configurations

in Q Ä C are reachable under the switched controllers (4.22)-(4.27). Then, partition

Q into pm ` nq compact subspaces, g
1

, . . . , g
m

and h
1

, . . . , h
n

, such that for any

q P g
j

Ä Q, the robot will converge to a configuration q P CT
j

Ä Q, and for any

q P h
l

Ä Q, the robot will converge to local minimum q̃
l

P Q.

Because all of the milestones in G are reachable, they are connected. Let pph
i

, g
j

q
denote the probability that the robot will converge from q̃

i

to CT
j

, and let pph
i

, h
l

q
denote the probability that it will converge from q̃

i

to another local minimum q̃
l

.

Because pph
i

, g
j

q and pph
i

, h
l

q are independent of the robot position, the movement of

the robotic sensor can be modeled as a Markov chain, as shown in [54]. In particular,

for a robot controlled by the IP method, the transition matrix, denoted by M, can

be written as

M “

»

———————–

ppg
1

, g
1

q . . . ppg
1

, g
m

q ppg
1

, h
1

q . . . ppg
1

, h
n

q
...

. . .
...

...
. . .

...
ppg

m

, g
1

q . . . ppg
m

, g
m

q ppg
m

, h
1

q . . . ppg
m

, h
n

q
pph

1

, g
1

q . . . pph
1

, g
m

q pph
1

, h
1

q . . . pph
1

, h
n

q
...

. . .
...

...
. . .

...
pph

n

, g
1

q . . . pph
n

, g
m

q pph
n

, h
1

q . . . pph
n

, h
n

q

fi

�������fl

, (4.37)

where for a robot trapped at q̃
i

the probability of sampling a milestone m in g
j

is

pph
i

, g
j

q fi pptm P g
j

u | tq “ q̃
i

uq “
ª

q

1Pgj
f
q

pq1q dq1, (4.38)

and the probability of sampling a milestone m in h
i

is,

pph
i

, h
l

q fi pptm P h
l

u | tq “ q̃
i

uq “
ª

q

1Phl

f
q

pq1q dq1. (4.39)
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It can be shown that (4.37) can be partitioned as follows,

M “
„
I
m

R
A B

⇢
, (4.40)

where I
m

is an mˆm identity matrix. Under the stated assumptions, R P Rmˆn is a

zero matrix because when q̃
i

P g
j

no sampling is necessary. A P Rnˆm and B P Rnˆn

are matrices with nonnegative entries because f
q

p¨q is a nonnegative function. Then,

based on the properties of probability functions, the sum of the entries in every row

of B is less than one, i.e., every element of the vector Bn is less than one, where

n fi 1
nˆ1

. From Gershgorin’s theorem [95] it follows that all eigenvalues of B are

less than one [89] and lim
◆Ñ8 B◆ Ñ 0, where B◆ represents the matrix B raised to

the ◆ power. It also follows that the matrix inverse pI
n

´ Bq´1 fi C exists and can

be written as C “ CB ` I
n

. The expected number of times that the Markov chain

will visit h
k

prior to g
j

when starting at h
i

is equal to Cpi,kq, by using the approach

in [58]. Then, since Cpi,kq • 0, whenever sampling starts at the event tq “ q̃
i

u, the
sampling event tm P h

l

u is expected to take place c
i

times prior to event tm P g
j

u,
where c

i

fi
∞

n

k“1

Cpi,kq. Multiplying C by n, and letting c fi rc
1

¨ ¨ ¨ c
n

sT , we have

Cn “ CBn ` I
n

n “ CBn ` n “ c ® �Cn ` n “ �c ` n, (4.41)

where � denotes the largest element in Bn. For two matrices A and B with the same

dimensions, the inequality A ® B means that Api,jq § Bpi,jq for all pi, jq . Thus, the

expected number of iterations c
i

is finite for all i and has the upper bound 1{p1´�q.

Properties of Information Roadmap Method

It can be shown that given two targets, T
j

and T
`

, with the same geometry but

di↵erent information values (say, e.g., V
j

° V
`

), the robot configuration has a higher

probability of converging to CT
j

than to CT
`

, assuming the two paths from q̃
i

to

the targets are otherwise equivalent. Then, according to (4.29), the PDF f
q

pqq is
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an increasing function of the information value associated with q. Additionally, the

information value for all q P CT
j

is V
j

, and the information value for all q P CT
`

is

V
`

. Because g
j

and g
`

have the same geometry, it follows from (4.38) that pph
k

, g
j

q °
pph

k

, g
`

q for any h
k

P Q.

From (4.37), the probability that the robotic sensor will move from a milestone

in g
j

to a milestone in h
i

is

P
G

ph
i

, g
j

q “
nÿ

k“1

pph
i

, h
k

qP
G

ph
k

, g
j

q ` pph
i

, g
j

q. (4.42)

Then, we have

P
G

ph
i

, g
j

q “
nÿ

k“1

Cpi,kqpph
k

, g
j

q °
nÿ

k“1

Cpi,kqpph
k

, g
`

q “ P
G

ph
i

, g
`

q. (4.43)

Therefore, by using the information roadmap G to escape a local minimum q̃
i

P h
i

,

the robotic sensor has a higher probability of converging to target T
j

than to T
`

,

when V
j

° V
`

.

4.5 Optimized Coverage Planning

The approaches previously introduced assume that a measurement is obtained once

the sensor FOV intersects with the geometry of the stationary target. For the prob-

lem of monitoring moving targets, the locations of these targets are unknown and

are estimated by time-varying probability distributions. Therefore, it is di�cult to

formulate a target with a rigid geometry. Additionally, the information value func-

tions for this type of problem are di�cult to evaluate. For example, the DP-GP

expected KL divergence consists of a 6th order integral. This section presents the

optimized coverage planning approach for a sensor, where the FOV is assumed to

be a free-flying object. The DP-GP expected KL divergence is first approximated
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by Monte Carlo integration based on a set of particles sampled from the prior (pre-

dicted) target position distribution at k ` 1 in order to reduce the computational

complexity. The variance of the resulting approximation error is shown to shrink at a

rate inversely proportional to the number of samples. Then, these sampled particles

are used to facilitate the searching for the optimal FOV configuration.

4.5.1 Particle Filter

The position of the FOV centroid and zoom levels of all cameras must be planned in

advance in order to obtain measurements of the moving targets. Thus, the estima-

tion of every target’s position propagated one time step ahead (at k`1), denoted by

x
j

pk`1´q, must be obtained for planning purposes, where k`1´ denotes the moment

immediately before k`1 when m
j

pk ` 1q is not available. When the camera loses

sight of targets, measurements can be empty sets, resulting in a nonlinear obser-

vation model. Therefore, a classical particle filter algorithm, sequential importance

resampling (SIR) [37], is adopted to estimate prior and posterior target position dis-

tribution using a Gaussian mixture model as a proposal distribution. This Gaussian

mixture model is the transition probability distribution of the targets’ positions at

k ` 1´, which is built upon the learned DP-GP model and particles representing the

posterior distributions of the targets’ positions at k. The position propagation of

target j under the estimated DP-GP model (tF ,⇡u) from k to k ` 1 is

x
j

pk ` 1q “ x
j

pkq ` f
gj rxj

pkqs�t. (4.44)

The particle filter consists of three steps. In the first step, the samples from the

posterior distribution of the jth target position at time step k given M
j

pkq and E
i

pkq
are represented by a set of particle and weight pairs,

P
ji

pkq fi
 `
!
jis

pkq,�
jis

pkq˘
: 1 § s § S

(
, (4.45)

where S is the number of particles for each velocity field, �
jis

pkq represents sth
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particle for velocity field j and target i, and !
jis

pkq represents the associated weight,

such that

Sÿ

s“1

!
jis

pkq “ w
ji

, (4.46)

where w
ji

is given by (3.34).

In the second step, utilizing the target position prorogation (4.44) and the DP-GP

model, x
j

pk ` 1´q can be obtained and is represented by a Gaussian mixture,

x
j

pk`1´q „
Nÿ

i“1

Sÿ

s“1

!
jis

pkqN r⌘
jis

pk`1́ q,⇤
jis

pk`1́ qs,

where

⌘
jis

pk`1́ q “ �
jis

pkq`µ
jis

pkq �t, (4.47)

⇤
jis

pk`1́ q “ ⌃
jis

pkq �t2. (4.48)

Here, µ
jis

and ⌃
jis

are the mean and variance of the sth Gaussian component of

target j for velocity field i at �
jis

pkq, which can be calculated from (3.30-3.31) by

replacing x
j

pkq with �
jis

pkq. This Gaussian mixture is used as the optimal proposal

distribution to sample transient particles representing the probability distribution of

x
j

pk ` 1´q, as follows:

�
jis

pk`1 q́ „
Sÿ

s“1

"
!
jis

pkq
w

ji

N r⌘
jis

pk`1́ q,⇤
jis

pk`1́ qs
*
, (4.49)

and the transient particle sets are denoted by

P
ji

pk ` 1´q fi
 `
!
jis

pk ` 1´q,�
jis

pk ` 1´q˘
: 1 § s § S

(
, (4.50)

where

!
jis

pk ` 1´q “ w
ji

{S. (4.51)

Finally, when an empty measurement of target j is obtained, i.e., m
j

pk` 1q “ H,

!
jis

pk`1q is set to zero if �
jis

pk`1 q́ P Srupk`1qs. Then, the weights of all of the
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particles for target j are normalized. The particles stay the same as the transient

particles, such that �
jis

pk ` 1q “ �
jis

pk ` 1´q. Therefore, similar to (4.45), the

samples from the posterior probability distribution of target j at time k ` 1 can also

be represented by the weighted particles:

P
ji

pk ` 1q “  `
!
jis

pk ` 1q,�
jis

pk ` 1q˘
: 1 § s § S

(
.

If a non-empty measurement m
j

pk ` 1q is obtained, the weights associated with the

particles are updated via the measurement model (2.14) as follows:

!
jis

pk ` 1q “ w
ji

!
jis

pk`1 q́N rz
j

pk`1q;�
jis

pk`1 q́,⌃
j

pk`1qs
∞

S

s“1

!
jis

pk`1 q́N rz
j

pk`1q;�
jis

pk`1 q́,⌃
j

pk 1̀qs . (4.52)

In the following sections, all of the transient particle sets obtained by (4.49), de-

noted by P
ji

pk`1´q, are utilized to facilitate the calculation of the DP-GP expected

KL values for the search of the optimal camera control.

4.5.2 Approximation of DP-GP Expected KL Divergence

The calculation of (3.36) involves a 6th-order integral (including an implicit double

integral in D), which can be reduced to a double integral. Let h
i

rx
j

pk ` 1qs denote
the multiple integral of the KL divergence over y

j

pk ` 1q and z
j

pk ` 1q:

h
i

rx
j

pk ` 1qs “
ª

yj

ª

zj

D tprf
i

pXq|M
j

pk ` 1q, E
i

pkqs } prf
i

pXq|M
j

pkq, E
i

pkqsu

ˆ N rz
j

pk ` 1q;µ
j

pk ` 1q,⌃
v

sN ry
j

pk ` 1q;x
j

pk ` 1q,⌃
x

sdz
j

pk ` 1qdy
j

pk ` 1q.
(4.53)

If prf
i

pXq|M
j

pk ` 1q, E
i

pkq,upkqs and prf
i

pXq|M
j

pkq, E
i

pkqs in Dr¨}¨s are Gaussian

distributions, then for any x
j

pk ` 1q P Srupk ` 1qs

h
i

rx
j

pk ` 1qs “ 1

2

„
tr

`
⌃´1

1

⌃
2

˘ ´ ln

ˆ |⌃
2

|
|⌃

1

|
˙

´ 2L ` trpQ´1RT⌃´1

1

RQ´1qtrp⌃
v

q{2
⇢

(4.54)
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where trp¨q denotes the trace of a matrix and

⌃
1

“ CpX,Xq ´ CrX,PpkqstCrPpkq,Ppkqs ` ⌃
v

u´1CrPpkq,Xs (4.55)

⌃
2

“ CpX,Xq´CrX,Ppk̀ 1qstCrPpk̀ 1q,Ppk̀ 1qs ` ⌃
v

u´1CrPpk̀ 1q,Xs (4.56)

R “ CrX,xpk̀ 1qs ´ CrX,PpkqstCrPpkq,Ppkqs ` ⌃
v

u´1CrPpkq,xpk̀ 1qs (4.57)

Q “ ⌃
j

pkq ` ⌃
v

(4.58)

Therefore, the evaluation of the DP-GP expected KL value function becomes

'
j

r�;mpk ` 1q | M
j

pkq, Epkq,upkqs

“
Nÿ

i“1

w
ji

ª

Srupk`1qs
hrx

j

pk ` 1´qs prx
j

pk ` 1´q|M
j

pkq, E
i

pkqsdx
j

pk`1´q, (4.59)

and it is maximized with respect to upk ` 1q to optimize the sensor performance.

Unfortunately, the remaining integral of h
i

rx
j

pk`1qs over Srupk`1qs does not have
a closed form because x

j

pk ` 1q is contained in the covariance matrix in (4.57). This

remaining integral can be evaluated by discretizing the integral domain Srupk ` 1qs.
Note that the computational complexity in calculating h

i

rx
j

pk ` 1qs is Opn3

i

q, where
n
i

is the dimensionality of P
i

pkq and is usually large. Therefore, it is infeasible to

obtain the optimal control by evaluating (4.59) for all upk ` 1q P R2. An alternative

approach to reduce the computational burden is to discretize the entire workspace

W and evaluate the integrand in (4.59) at each grid once. Then, for any control

upk ` 1q, the integral in (4.59) is approximated by multiplying the grid area with

the summation of the integrand values at grids inside Srupk ` 1qs.
However, the integrand value at x

j

pk ` 1q is almost zero when the probability of

target j being at x
j

pk`1q, i.e. (3.27), goes to 0 and h
i

rx
j

pk`1qs is bounded . Then,

it is not necessary to calculate the integrand values at locations where (3.27) goes to

0. Therefore, by using the weighted particles, P
ji

pk ` 1´q, Monte Carlo integration
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is utilized to evaluate (4.59):

'̂
j

r�;mpk̀ 1q | M
j

pkq, Epkq,upkqs «
Nÿ

i“1

ÿ

�jispk̀ 1́ qPSpk̀ 1q
hr�

jis

pk̀ 1´qs !
jis

pk`1´q, (4.60)

where Srupk`1qs is abbreviated as Spk`1q. Then, the total information value from

all targets can be approximated as

'̂r�;mpk ` 1qs “
Mÿ

j“1

'̂
j

r�;m
j

pk ` 1qs «
Mÿ

j“1

Nÿ

i“1

w
ji

S

ÿ

�jispk̀ 1́ qPSpk̀ 1q
h
i

rxpsq
j

pk ` 1qs.

(4.61)

We have the following theorem with respect to (4.61).

Theorem 1. The Monte Carlo integration (4.60) is an unbiased estimator of the

DP-GP expected KL divergence (4.59), and the variance of the error between (4.60)

and (4.59) decreases linearly with 1{S.

The proof of the above theorem is given for the case when ⌃
v

“ �2

v

I
2ˆ2

, with the

help of three lemmas. The first gives the element-wise boundary of matrix Q, the

second shows the relationship between ⌃
1

and ⌃
2

, and the third gives the bound of

trpRTRq. The proof for the case with varying diagonal entries will be similar.

Lemma 1. �

2
vp1`k`�

2
vq

k`�

2
v

I
2ˆ2

® Q ® p1 ` �2

v

qI
2ˆ2

, where ® denotes element-wise com-

parison.

Theorem 1. First, we prove that Q ® p1 ` �2

v

qI
2ˆ2

. Defining A, B, and D as

⌃´1

2

“
„

CrP
i

pkq,P
i

pkqs ` ⌃
v

CrP
i

pkq,x
j

pk ` 1qs
Crx

j

pk ` 1q,P
i

pkqs Crx
j

pk ` 1q,x
j

pk ` 1qs ` ⌃
v

⇢´1

(4.62)

fi
„
A B
B D

⇢´1

“
„
A´1 ` A´1BQ´1BTA´1 ´A´1BQ´1

Q´1BTA´1 Q´1

⇢
, (4.63)

it follows that

Q “ D ´ BTA´1B. (4.64)
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The addition of the symmetric positive semi-definite covariance matrixCrP
i

pkq,P
i

pkqs,
and the symmetric positive definite regulation term �2

v

I, results in the symmetric pos-

itive definite matrix A. Therefore, A´1 is well-defined and is also positive definite.

Hence, 0
2ˆ2

® BTA´1B for all B P Rkˆ2, which shows that Q ® D. Note that

the covariance matrix Crx
j

pkq,x
j

pkqs “ I
2ˆ2

for all x
j

pk ` 1q P R2. Then, by as-

suming the x and y directions of the velocity fields are independent, it is true that

D “ p1 ` �2

v

qI
2ˆ2

and that

Q ® p1 ` �2

v

qI
2ˆ2

. (4.65)

Second, we prove that �

2
vp1`k`�

2
vq

k`�

2
v

I
2ˆ2

® Q. Because the covarianceCrP
i

pkq,P
i

pkqs
is real, symmetric, and positive semi-definite, there exists an eigenvalue decomposi-

tion, CrP
i

pkq,P
i

pkqs “ U⇤U´1, with orthogonal eigenvectors such that UTU “ I,

where

⇤ fi diagr�
1

, ¨ ¨ ¨ ,�
k

sT and U fi ru
1

. . . u
k

sT . (4.66)

Because x
j

pkq is the same as the last column of P
i

pkq, it is true that

B “ X⇤u
k

. (4.67)

where u
k

“ ra
1

. . . a
k

sT . Substituting (4.67) into (4.64), Q is rewritten in terms

of the eigenvalues as follows:

Q “ p1 ` �2

v

qI ´ pU⇤u
k

qTA´1pU⇤u
k

q
“ p1 ` �2

v

qI ´ uT

k

⇤UTUp⇤ ` �2

v

Iq´1UTU⇤u
k

“
˜
1 ` �2

v

´
kÿ

`“1

�
`

�
`

` �2

v

�
`

a2
`

¸
I. (4.68)

Because CrP
i

pkq,P
i

pkqs is symmetric and positive semi-definite, all its eigenval-

ues are greater than or equal to zero: �
`

• 0, ` “ 1, . . . , k. Moreover, the fact that

uT

k

⇤u
k

“ 1 yields

kÿ

`“1

�
`

a2
`

“ 1. (4.69)
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Substituting (4.69) into (4.68) yields the following inequality,

Q ©
„
1 ` �2

v

´ max

ˆ
�
`

�
`

` �2

v

˙⇢
I “

„
1 ` �2

v

´ maxp�
`

q
maxp�

`

q ` �2

v

⇢
I. (4.70)

For a real and symmetric matrix, the trace equals the sum of the eigenvalues:

trtCrP
i

pkq,P
i

pkqsu “
kÿ

`“1

�
`

. (4.71)

Because the diagonal elements ofCrP
i

pkq,P
i

pkqs all equal one, it is true that∞k

`“1

�
`

“
k. Recalling that �

`

• 0, the maximum value of the eigenvalue is bounded by k:

maxt�
`

u § k. Therefore, the entries in matrix Q are also bounded from below,

0 ®
„
1 ` �2

v

k ` �2

v

⇢
I ® Q, (4.72)

which completes the proof of Lemma 1.

Lemma 2. 0 † ⌃
2

® ⌃
1

.

Proof. Because ⌃
1

and ⌃
2

are the covariance matrices for two conditional Gaussian

distributions obtained from a Gaussian process with a non-zero noise term, they are

positive definite. From the block inversion of ⌃
2

, it is true that

⌃
1

´ ⌃
2

“ RQ´1RT . (4.73)

From Lemma 1,
”
1 ` �

2
v

k`�

2
v

ı
I ® Q. Because Q is a diagonal matrix and the x and

y directions of the velocity fields are assumed to be independent, it is su�cient to

claim that Q is positive definite. Therefore, ⌃
2

® ⌃
1

.

Lemma 3. 0 § trpRRT q § 4k.

Proof. First, we prove that 0 § trpRTRq. Because RTR is a positive semi-definite

matrix, its eigenvalues are either positive or zero. Utilizing the property that the
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trace of a positive semi-definite matrix is equal to the summation of its eigenvalues,

it can be shown that

0 § trpRRT q. (4.74)

Second, we show the existence of the upper bound. Recalling the definition of R

in (4.57) and that the covariance function (3.23) is non-negative, it is true that

R ® CrX,xpk ` 1qs. (4.75)

From the property that the trace of a product can be rewritten as the sum of entry-

wise products of elements, it is true that

trpRRT q “
ÿ

ij

pRT ˝ RT q
ij

, (4.76)

where ˝ denotes the Hadamard product [116]. Observing that all of the elements

in R are outputs from the covariance function (3.23), it can be claimed that the

elements are less than or equal to one. Therefore, pRT ˝ RT q ® I
2kˆ2

, which shows

that trpRRT q § 4k.

Proof. From the linearity of the expectation, it is true that

E
#

Mÿ

j“1

Nÿ

i“1

w
ji

S

Sÿ

s“1

h
i

“
xpsq
j

pk ` 1q‰
+

“
Mÿ

j“1

Nÿ

i“1

w
ji

S

Sÿ

s“1

E
!
h
i

“
xpsq
j

pk ` 1q‰)
. (4.77)

Because the samples xpsq
j

pk ` 1q, where s “ 1, . . . , S, are drawn identically and

independently from the predicted target position distribution (3.27), it is true that

E
!
h
i

“
xpsq
j

pk ` 1q‰)
“ E

 
h
i

“
x
j

pk ` 1q‰(
, @s “ 1, . . . , S. (4.78)

Therefore,

E
#

Mÿ

j“1

Nÿ

i“1

w
ji

S

Sÿ

s“1

h
i

“
xpsq
j

pk ` 1q‰
+

“ '̂r�;mpk ` 1qs, (4.79)
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which means that the estimator (4.61) is unbiased.

Let varp¨q denote the variance of a random variable. Then, because the samples

are drawn independently and identically, the following statement is true:

var

#
Mÿ

j“1

Nÿ

i“1

w
ji

S

Sÿ

s“1

h
i

“
xpsq
j

pk ` 1q‰
+

“ 1

S
var

#
Mÿ

j“1

Nÿ

i“1

w
ji

h
i

“
x
j

pk ` 1q‰
+
. (4.80)

Therefore, the variance of the estimator (4.61) decrease linearly with the inverse of

the number of samples [14] if the value of h
i

rx
j

pk ` 1qs is bounded for all x
j

P R2.

The bound of h
i

rx
j

pk ` 1qs is determined by examining the upper bound and lower

bound of every term in h
i

rx
j

pk ` 1qs as follows. First, we prove that h
i

rx
j

pk ` 1qs is
lower-bounded by zero. Recall that h

i

is calculated by integrating the weighted KL

divergence by a Gaussian distribution. Because D • 0 and N rµ
j

pk ` 1q, �2

v

I
2

s • 0,

the integral is greater than or equal to zero, and thus

h
i

rx
j

pk ` 1qs • 0. (4.81)

With the help of the three lemmas, we can now prove that h
i

rx
j

pk ` 1qs is also

bounded from above. From Lemma 2, it is true that

trp⌃´1

1

⌃
2

q “ trr⌃´1

1

p⌃
1

´ RQ´1RT qs “ trpI
2Lˆ2L

´ ⌃
1

RQ´1RT q § 2L. (4.82)

Also from Lemma 2, it follows that 0 † |⌃
1

| and 0 † |⌃
2

|, because the two matrices

are both positive definite. Because ⌃
1

and ⌃
2

are Hermitian and ⌃
1

° ⌃
2

, |⌃
1

| °
|⌃

2

|, it also follows that 0 † |⌃
2

|{|⌃
1

| † 1, which means that 0 † ´ lnp|⌃
2

|{|⌃
1

|q †
8.

By adopting the concept of the Frobenius norm (which can be viewed as the Eu-

clidean norm if the matrix is treated as a vector), the Cauchy-Schwarz inequality can

be utilized to prove that the trace of the products of positive semi-definite matrices

of the same size is less than or equal to the product of traces:

trrQ´1RT⌃´1

1

RQ´1s § trpQ´1qtrpRT⌃´1

1

RqtrpQ´1q “ trpQ´1q2trp⌃´1

1

RRT q
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§ trpQ´1q2trpRRT qtrp⌃´1

1

q § 4k

„
k ` �2

v

�2

v

p1 ` k ` �2

v

q
⇢
2

trp⌃´1

1

q (4.83)

Therefore, from (4.81) and (4.83), h
i

is shown to be bounded both from below and

from above:

0 § h
i

rx
j

pk ` 1qs † 4k

„
k ` �2

v

�2

v

p1 ` k ` �2

v

q
⇢
2

trp⌃´1

1

qtrp⌃
v

q{2, (4.84)

Hence, according to [14], Theorem 1 is true and the decrease rate of the variance of

the Monte Carlo estimator in (4.61) is proportional to 1{S.

4.5.3 Strategy for Searching the Optimal Coverage

Utilizing all of the weighted particles, the DP-GP expected KL information value

function to be maximized at each step can be written as

J “
Mÿ

j“1

Nÿ

i“1

ÿ

�jispk̀ 1́ qRSpk̀ 1q
hr�

jis

pk`1´qsw
jis

pk`1´q (4.85)

where hr�
jis

pk`1´qs is precalculated for every particle. Given a zoom level, the

optimal control u˚pk ` 1q is obtained by the reduction to the following geometric

covering problem: Given a set of NMS points,

YM

j“1

YN

i“1

YS

s“1

t�
jis

pk ` 1´qu,

in a two dimensional plane, each associated with a weight,

!
jis

pk ` 1´q ˆ hr�
jis

pk ` 1´qs, (4.86)

find the position of an axis-parallel rectangle of given size L
x

(horizontal size) and

L
y

(vertical size) such that J in (4.85) is maximized [5].

Analogous to the method in [5], the approach optimizing u˚pk`1q consists of five
steps. In Step 1, the x coordinates of entire particles are sorted for the sweeping step

(Step 4). Step 2 builds a segment tree in OpMNS logMNSq time for all vertical
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segments of length L
y

with their bottom edges at the y coordinates of the particles;

In Step 3, a value variable is associated with each vertical segment and is initialized

at zero; In the 4th step, the sorted x coordinates are swept with a horizontal segment

of length L
x

and infinite height, and added (deleted) particles whose x coordinates

are newly covered (newly uncovered) by this horizontal segment are recorded. Values

associated with the retrieved vertical segments that contain y coordinates of added

(deleted) particles are added (subtracted) with the weights associated with these

particles. In the last step, the maximum value of all of the updated segments is

obtained. Steps 1 through 5 are repeated for all zoom-levels in order to obtain the

maximum value.

The search for the optimal u˚pk ` 1q for each zoom level at each time step can

be done in OpMNS logMNS ` Kq time, where K is the total number of retrieved

segments. It is worth pointing out that, because the measurement noise and the

size of the FOV is determined by the zoom level, the pre-calculated quantities stay

the same for di↵erent zoom levels except for hr�
jis

pk ` 1´qs. A geometric covering

problem is formulated and solved for each zoom level. Finally, the optimal control

for each zoom level is compared in time Op|L|q to obtain the optimal control that

maximizes (4.85), where |L| denotes the number of zoom levels.

4.6 Optimized Visibility Motion Planning

In many cases, the ability to track and localize the target is limited by the absence of

a GPS and by the presence of a bounded FOV, which may cause the sensor to lose the

target completely. These di�culties are exacerbated by the need for tracking moving

targets in complex unstructured environments. Furthermore, because the position

and orientation of the sensor FOV is determined by the control inputs, the motion

of the robotic sensor must be planned in concert with its measurement sequence for

both the sensing and the navigation objective to be optimized. To address the these
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issues, an optimized-visibility motion planning approach is proposed using the EKF

to simultaneously track the target and localize the robotic sensor [120, 118, 121].

Note that the proposed optimized-visibility approach is applicable to any robot that

is equipped with exteroceptive sensors, such as a laser scanner or camera, for tracking

and localizing moving targets and with proprioceptive sensors, such as an odometer,

for providing ego-motion information.

In GPS-denied environments, the quality of the target state estimates depends

on the estimates of the robot state obtained from the EKF algorithm. Therefore,

the overall target tracking and localization performance can be represented by the

expected power of the error between the true and estimated robot-target joint states.

For sensors with a limited FOV, it is possible to obtain an empty target measurement.

Therefore, two situations are considered for calculating the joint state error: when

the target measurement is available, the posterior estimate of the joint state, q̂pk `
1|k`1q, is used; otherwise, the prior estimate, q̂pk`1|kq, is employed. Let P

d

denote

the probability that the target measurement is available. The error power can be

obtained as follows:

Jru
r

pkqs “ E
“
epk ` 1|kqTepk ` 1|kq‰ ˆ p1 ´ P

d

q
` E

“
epk ` 1|k ` 1qTepk ` 1|k ` 1q‰ ˆ P

d

, (4.87)

where Ep¨q denotes the expectation and

epk ` 1|kq “ qpkq ´ q̂pk ` 1|kq, (4.88)

epk ` 1|k ` 1q “ qpkq ´ q̂pk ` 1|k ` 1q. (4.89)

The probability P
d

can be obtained by integrating the target state distribution

over the robotic sensor’s FOV:

P
d

rq
r

pkqs “
ª

Srqrpkqs

f
t

rx
t

pkqsdx
t

pkq, (4.90)

64



where f
t

rx
t

pkqs is the probability density function of target state distribution. Also,

f
t

rx
t

pkqs can be approximated by a Gaussian distribution, as follows:

f
t

rx
t

pkqs “ N rx
t

pkq; x̂
t

pk|k ´ 1q,P
t

pk|k ´ 1qs
fi N rx

t

pkq;µ
t

pkq,⌃
t

pkqs,
(4.91)

where µ
t

pkq and ⌃
t

pkq are introduced to simplify notations. Then (4.87) can be

rewritten as

Jru
r

pkqs “ trrPpk ` 1|kqs ´ P
d

 
trrPpk ` 1|kqs ´ trrPpk ` 1|k ` 1qs(,

where trp¨q denotes the trace of a matrix. Because the propagation step of EKF only

produces a prior estimate of the joint state, here we focus on controlling the robot

to obtain the most informative measurements to reduce the uncertainty of the joint

state. Therefore, it is assumed that the prior estimates are optimal with respect to

the robot control. In addition, for the priori and posteriori state estimates in the

EKF, it is true that

trrPpk ` 1|kqs ´ trrPpk ` 1|k ` 1qs • 0. (4.92)

As a result, minimizing the error of the joint state (4.87) can be achieved by maxi-

mizing the probability of detection (4.90), and the robot controller can be obtained

by solving the following constrained optimization problem in u
r

pkq:
max
urpkq

P
d

rq
r

pk ` 1qs (4.93)

s.t. q
r

pk ` 1q “ q
r

pkq ` B
r

pkqu
r

pkq�t (4.94)

4.6.1 EKF for Tracking and Localization

In this type of problem, the robot and the target state must be simultaneously

estimated from data. Therefore, consider an augmented state vector containing both
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the robot and the target state and the augmented control vector, respectively, given

by

qpkq “ rqT

r

pkq qT

t

pkqsT , (4.95)

and

upkq “ ruT

r

pkq 0sT . (4.96)

Then, based on the robot state propagation equation (2.11) and the target state

propagation equation (2.10), the joint state propagation of the robot and the target

is

qpk ` 1q “ f rqpkq,upkq, ks “
„
f
r

rq
r

pkq,u
r

pkq, ks
f
t

rq
t

pkqs
⇢
, (4.97)

and the Jacobian matrix of the state transition function for the joint state is

� “
„
�

r

pkq 0
0 �

t

⇢
, (4.98)

where �
t

is the target state transition matrix and

�
r

pkq fi B
Bq

r

pkqtf
r

rq
r

pkq,u
r

pkq, ksu “
»

–
1 0 ´ sin ✓

r

pkqv
r

pkq�t
0 1 cos ✓

r

pkqv
r

pkq�t
0 0 1

fi

fl . (4.99)

Similar to the classical Kalman filer, the EKF posterior estimates are taken from

[108]:

ỹpk ` 1q “
„
zT
r

pk ` 1q
zT
l

pk ` 1q
⇢

´hrq̂pk`1|kqs, (4.100)

Spk ` 1q “ Hpk ` 1qPpk ` 1|kqHpk ` 1qT `
„
R

r

0
0 diagprR

t

. . . R
t

sq
⇢
, (4.101)

Kpk ` 1q “ Ppk ` 1|kqHpk ` 1qTS´1pk ` 1q, (4.102)

q̂pk`1|k`1q “ q̂pk ` 1|kq ` Kpk ` 1qỹpk ` 1q, (4.103)

Ppk`1|k`1q “ rI ´ Kpk ` 1qHpk ` 1qsPpk ` 1|kq. (4.104)
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Here, diagp¨q denotes the square diagonal matrix with the blocks of matrices on the

main diagonal. In the above EKF, the prediction of the joint state and its covariance

before the measurements is given by

q̂pk`1|kq“ f rq̂pk|kq,upkq, ks, (4.105)

Ppk`1|kq“�Ppk|kq�T `
„

B
r

pkqQ
r

BT

r

pkq 0
0 GQ

t

GT

⇢
, (4.106)

and the Jacobian matrix of the measurement function h fi rhT

t

hT

l

sT is given by

[120]:

Hpkq“

»

——————————–

2pxr´xtq
}xr´xt}

2pyr´ytq
}xr´xt} 0 2pxt´xrq

}xr´xt}
2pyt´yrq
}xr´xt} 0

0 0 1 0 0 1
2pxr´x1q
}xr´xl1

}
2pyr´y1q
}xr´xl1

} 0 0 0 0

0 0 1 0 0 0
...

2pxr´xLq
}xr´xlL

}
2pyr´yLq
}xr´xlL

} 0 0 0 0

0 0 1 0 0 0

fi

����������fl

. (4.107)

4.6.2 Robot Motion Planning

The robot controller considers the tracking and localization performance while main-

taining a low computational complexity; thus, realtime implementation can be ob-

tained as follows. At any discrete time step k, the robot control inputs are computed

to maximize the probability of detection at the next time step, pk ` 1q, subject to

the robot kinematics. Similar to potential methods, the solution of the constrained

optimization problem (4.93-4.94) can be obtained by moving in the direction of the

adjoined gradient, which can be obtained analytically, thus providing the controller

in closed form. As a first step, the Jacobian for (4.93) can be written as

BP
d

rq
r

pk ` 1qs
Bu

r

pkq “ BP
d

rq
r

pk ` 1qs
Bq

r

pk ` 1q
Bq

r

pk ` 1q
Bu

r

pkq , (4.108)
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Figure 4.6: Illustration of the changes of the robot FOV due to the translation and
rotation of the robot.

where

BP
d

rq
r

pk ` 1qs
Bq

r

pk ` 1q “

»

————–

B
Bxr

tP
d

rq
r

pk ` 1qsu
B

Byr tP
d

rq
r

pk ` 1qsu
B

B✓r tP
d

rq
r

pk ` 1qsu

fi

����fl
. (4.109)

Each term of the above expression (4.109) is computed by derivatives of integrals, as

shown in Fig. 4.6.

The first entry of (4.109) can be calculated as follows:

B
Bx

r

P
d

rq
r

pk ` 1qs “ B
Bx

r

ª

Srqrpk`1qs
f
t

px
t

qdx
t

“
ª

Srqrpk`1qs

B
Bx

r

f
t

px
t

qdx
t

`
¿

BSrqrpk`1qs

pv
x

nqf
t

px
t

qdx
t

,

(4.110)

where BS denotes the boundary of S, v
x

“ r1 0sT is the velocity of the robot FOV,

and n represents the outward-pointing unit normal vector along the boundary of the

robot FOV. The outward-pointing unit normal vectors can be obtained through the

heading of the robot and the opening angle of the robot FOV, as shown in Fig. 4.6
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(a). Thus, we have

n
1

“ Cp⇡{2 ` ↵{2qrcos ✓
r

sin ✓
r

sT ,
n
2

“ rcos ✓
r

sin ✓
r

sT ,
n
3

“ Cp´⇡{2 ´ ↵{2qrcos ✓
r

sin ✓
r

sT ,
(4.111)

where Cp¨q is the 2 ˆ 2 rotation matrix. Moreover, because f
t

px
t

q is not a function

of q
r

, we have

B
Bq

r

f
t

px
t

q “ 0. (4.112)

In addition, (4.91) contains the analytical form of f
t

. Then, the partial derivative in

(4.110) can be simplified as follows:

B
Bx

r

P
d

rq
r

pk ` 1qs

“
ª

AB

pv
x

¨ n
1

q expr´1

2
px

t

´ µ
t

qT⌃´1

t

px
t

´ µ
t

qsdx
t

`
ª

BC

pv
x

¨ n
2

q expr´1

2
px

t

´ µ
t

qT⌃´1

t

px
t

´ µ
t

qsdx
t

`
ª

CA

pv
x

¨ n
3

q expr´1

2
px

t

´ µ
t

qT⌃´1

t

px
t

´ µ
t

qsdx
t

.

(4.113)

Similarly, the second entry of (4.109) can be obtained in the process, except that
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v
y

“ r0 1sT :
B

By
r

P
d

rq
r

pk ` 1qs

“
ª

AB

pv
y

¨ n
1

q expr´1

2
px

t

´ µ
t

qT⌃´1

t

px
t

´ µ
t

qsdx
t

`
ª

BC

pv
y

¨ n
2

q expr´1

2
px

t

´ µ
t

qT⌃´1

t

px
t

´ µ
t

qsdx
t

`
ª

CA

pv
y

¨ n
3

q expr´1

2
px

t

´ µ
t

qT⌃´1

t

px
t

´ µ
t

qsdx
t

.

(4.114)

Let sign(¨) denote the sign function and ` denote the distance from a point on

the boundary of the FOV to the point A. Then, the third entry of (4.109) can also

be calculated analytically as follows:

B
B✓

r

P
d

rx
r

pk ` 1qs (4.115)

“
ª

AB

´signpd✓
r

q` expr´1

2
px

t

´ µ
t

qT⌃´1

t

px
t

´ µ
t

qsdx
t

`
ª

CA

signpd✓
r

q` expr´1

2
px

t

´ µ
t

qT⌃´1

t

px
t

´ µ
t

qsdx
t

.

The second term of (4.108) is essentially the robot motion model, i.e.,

Bq
r

pk ` 1q
Bu

r

pkq “ B
r

pkq�t. (4.116)

Thus, we have computed the Jacobian (4.113)-(4.116). The optimized-visibility

method is summarized in Algorithm A.1, where ⌘ is the learning rate and ✏ is a

predefined threshold [36]. Notice that Algorithm A.1 handles the situation when the

target is out of the FOV for multiple steps. It is worth pointing out that, when

the sensor FOV is far away from the estimated position of the target, the gradient
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obtained from (4.108) is usually relatively small. A potential field method based on

the distance between the sensor and the target could be used to provide extra force

to drive the sensor towards the target.
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5

Simulations and Results

This chapter summarizes results generated using the approaches introduced in Chap-

ter 4 to solve the problems in Chapter 2. The information potential method for

integrated control and navigation was tested in the first problem, where the sensor

is mounted on a mobile platform and is deployed in a workspace populated with

position-fixed targets and obstacles. Then, the optimized coverage planning ap-

proach was demonstrated through the second problem, which is referred to as the

camera intruder problem. In this problem, a position-fixed camera is deployed to

monitor multiple moving targets to learn unknown target kinematics, with a FOV

that can only cover a portion of the entire workspace at any given time. After that,

the optimized visibility planning approach was tested in the third problem, in which

one mobile robotic sensor with a bounded FOV is used to track a moving target,

where the GPS signal is unavailable.
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5.1 Information Potential Approach for Robotic Sensor Classifying
Targets

The information potential (IP) method is demonstrated through a simulation envi-

ronment developed using MATLABr. All sensors are characterized by the geometric

objects in Fig. 2.3, and their motion is simulated by integrating the unicycle dynam-

ics (2.4) with control inputs provided by the switched controller (4.22)-(4.27). The

closed-loop dynamics are integrated using a fourth-order Runge-Kutta integration

method [56] over a time interval rt
0

, t
f

s with t
0

“ 0 (s) and t
f

“ 20 (s). Addition-

ally, the following bounds on the control and state are imposed to make the robot

kinematics more realistic: |a| † 5 (m/s2), |v| † 2(m/s), and |w| † ⇡{10 (rad/s2).

The probabilistic model of sensor measurements (2.2) is a Bayesian Network (BN)

model of a ground-penetrating radar (GPR) taken from [32]. The non-observable

target classification variable ✓
i

has two mutually-exclusive values ⇥ “ t⇣
1

, ⇣
2

u. The
prior target PDF, pp✓

i

q, is given by prior measurements obtained by a simulated

airborne Agema Thermovision 900 infrared (IR) sensor [32, 112]. The prior ppe
i

q of

the environment condition is assumed to be uniform, and e
i

is assumed to be known

for all i “ 1, . . . ,M . When the sensor FOV, S, intersects a target, T
i

, the noisy

measurement value, z
i

, is obtained, and x
i

is inferred from ✓
i

using Bayes’ rule in

(2.3). Let N
IR

denote the number of targets that are correctly classified by the IR

sensor prior to deploying the robotic GPR sensor, and let N
GPR

denote the number of

targets that are correctly classified after the GPR measurements have been obtained.

Then,

N
c

“ N
GPR

´ N
IR

(5.1)

represents the classification performance of the robotic sensor. The overall robotic

sensor e�ciency, defined as the correct classification rate per unit distance, can then
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be computed as follows:

⌘ “ N
c

D
ˆ 100, (5.2)

where

D “
ª

tf

t0

r 9qptqT 9qptqs1{2dt (5.3)

is the distance traveled by a sensor. The performance metrics N
c

, D, and ⌘ are used

to evaluate the e↵ectiveness of the information potential method.

The simulation results first show that the method is capable of controlling the

robotic sensor in narrow passages without oscillations. Then, the closed-loop stability

and properties of the IP method are verified in simulation with multiple targets,

multiple obstacles, and bounds on the control. Finally, the IP method is shown to

outperform both the RRT method discussed above [66] and a classical potential field

(PF) method.

IP Multi-Sensor Path Planning and Control in Narrow Passages

A workspace composed of a narrow passage and two targets T
1

and T
2

(Fig. 5.1) is

used to illustrate that collisions with other robotic sensors can be avoided in a narrow

passage. In this example, the two targets are manually assigned to two robotic

sensors for the purpose of forcing them to approach each other inside the narrow

passage. The results show that IP allows the two robots to measure their assigned

target while avoiding a collision with one another when the two sensors are in the

same narrow passage. Therefore, the repulsive force defined in (4.15) is e↵ective at

preventing collisions between moving obstacles online and the IP approach is capable

of controlling the robotic sensor in narrow passages.
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Figure 5.1: Simulation results for two robotic sensors in a workspace with two
targets, two obstacles, and one narrow passage.

Stability of Information Potential-Switched Control Law

In Section 4.4.4, the IP-switched control law (4.22)-(4.27) was proven to be closed-

loop stable, under proper simplifying assumptions. Extensive numerical simulations

showed that the IP-switched controller remains stable even when these assumptions

are violated by imposing bounds on the linear acceleration a, linear velocity v, and

angular velocity w. The time histories of the state and control inputs are plotted in

Fig. 5.2, where t
✏

denotes the time at which ||⇠
i

´ x|| “ ✏, i.e., when the controller

is switched. These results confirm that, with the IP-switched controller, ⇢
i

, defined

in (4.21), goes to zero at t
✏

and subsequently, for t ° t
✏

, ✓ converges to �
i

and thus

a measurement is obtained. As can be seen, ||⇠
i

´ x|| decreases at all times, so the

sensor remains inside the cylinder illustrated in Fig. 4.3 after t
✏

.

Information Roadmap Method for Escaping Local Minima

The information roadmap method was demonstrated through the example in Fig.

5.3, which contained one concave obstacle and two targets: T
1

with information

value V
1

“ 0.2 and T
2

with information V
2

“ 0.1. The two targets are forced to
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Figure 5.2: Time histories of sensor orientation (a), linear velocity (b), distance
from C-target (c), and control inputs (d)

be symmetrically positioned above and below the obstacle and to have the same

geometry. The concave shape of the obstacle is chosen to create a local minimum in

the potential function, encouraging the robot to become trapped at q̃
i

. As shown

in Fig. 5.3, configurations in CT
1

have a higher probability of being sampled than

configurations in CT
2

. From the set M of the sampled configurations, a roadmap G

containing a collision-free path from q̃
i

to CT
1

is constructed (Fig. 5.3) such that the

robot can successfully escape q̃
i

and obtain measurements from the most valuable

target T
1

.

Performance Comparison

In this subsection, IP is compared to an information-driven RRT method [66] and

to a classical potential field (PF) method. Average values of the classification per-

formance (5.1), distance traveled (5.3), and sensor e�ciency (5.2) are obtained by

computing several paths and controllers for three sensors that are simultaneously

deployed in five workspaces. For every simulation, the positions and geometries of

the targets and obstacles are generated randomly, as are the initial configurations
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Figure 5.3: Potential field contour and information roadmap generated to escape
local minima.

of the robotic sensors and the information value of the targets. In simulations, the

workspaces are obtained by first considering a medium obstacle density, coupled

with a low (M “ 15), medium (M “ 27), or high (M “ 40) target density. Then,

a medium target density is considered, coupled with a low (N “ 10), medium (N “
17), or high (N “ 24) obstacle density.

The average sensor e�ciency obtained by IP is summarized in Table 5.1. As can

be expected, for the same target density, the sensor performance increases when the

obstacle density decreases because the sensor can travel a shorter distance to reach

the same targets. Table 5.2 compares the performance of IP with the performance

of classical PF and RRT, showing that sensors controlled by IP outperform sensors

controlled by PF and RRT not only in average sensor e�ciency (⌘̄) but also in the

number of targets correctly classified (N
c

). Also, as can be expected, the distance

traveled (D) by IP-controlled sensors may be higher than that by sensors controlled

by PF, as PF-controlled sensors are often trapped in local minima, as shown in Fig.

5.4. Additionally, IP produces lower values of D than RRT because it allows the

robotic sensors to avoid unnecessary routes and produces smoother paths. However,

when the obstacle density is high, D may be higher for IP because the sensors move
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to obtain measurements from approximately 75% of their assigned targets, while

RRT typically measures only 50% of the targets.

Table 5.1: Average e�ciency of IP method

Obstacle density Target density ⌘̄
Medium Low 0.0223
Medium Medium 0.0240
Medium High 0.0482
Low Medium 0.0439
High Medium 0.0148

Table 5.2: Average performance comparison for M “ 27

Obstacle density Performance IP RRT PF

Low
⌘̄ .0439 .0143 .0126
D̄ 296.6 420 318
N̄

c

13 6 4

Medium
⌘̄ .024 .0139 .0132
D̄ 513 397 190
N̄

c

12.3 5.5 2.5

High
⌘̄ .0148 .0043 .0055
D̄ 575 460 109.5
N̄

c

8.5 2 0.6

Finally, it can be seen from Fig. 5.4 that IP allows the sensor to favor targets with

higher information values. For example, in Fig. 5.4, the IP-controlled robotic sensor

measures T
2

instead of T
1

and T
4

instead of T
3

, despite each pair being a similar

distance from the sensor path. On the other hand, as shown in Fig 5.4, the PF-

controlled sensor measures T
2

instead of T
1

, despite T
1

having a highest information

value.
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Figure 5.4: Details of sensor path obtained by IP method (left) and by classic PF
method (right)

5.2 Optimized Coverage Planning for a Camera Monitoring Moving
Targets

The performances of four algorithms in solving the camera intruder problem are com-

pared in Chapter 2. The first algorithm is the optimized coverage planning approach

that obtains the sensor control by maximizing the DP-GP expected KL divergence

at each time step, and its result is labeled as “DP-GP EKL”. The second algorithm is

a greedy approach maximizing the mutual information of the target position estima-

tion and a future measurement, and its performance is labeled as “MI”. The third

algorithm is a heuristic that determines the position of the FOV by tracking the

mean of the position distribution for the nearest target that is not observed at the

last time step, and its result is labeled as “Heuristic”. The last algorithm randomly

chooses the FOV position and its result is referred to as “Random”.

The sensor problem is simulated by designing four velocity fields, which are uti-

lized to specify the target motions. Examples of simulated target trajectories with

respect to each velocity field are shown in Fig. 5.5, where the red dots in the trajec-

tory figures are examples of targets’ initial positions. In the simulations, the details

and number of the velocity fields are hidden from the sensors. The points of interest,
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i.e., X, are known to the sensors and are the same for all simulations, indicated by

yellow dots in Fig. 5.7. During simulations, at most four targets are allowed to travel

simultaneously in the workspace. Every target uniformly chooses one velocity field

from the set at random. The DP-GP model is updated once the sensor collects 5 new

target trajectories. The Markov Chain Monte Carlo (MCMC) sampling algorithm

is adopted to estimate the DP-GP model from measurements, where the number of

burn-ins is 200, the number of samples is 40, and the sampling interval is set to be

every 5 samples. A snapshot of a simulation is shown in Fig. 5.6.
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Figure 5.5: Examples of target trajectories following the first velocity field; plots
of the velocity vectors on a regular grid. (a) f

1

, (b) f
2

, (c) f
3

, and (d) f
4

.

The algorithm performance is evaluated using the root mean square (RMS) error,

denoted by ", between the estimated velocity from the DP-GP model and the actual

underlying velocity fields. The relative RMS error of velocity, denoted by ⇠, is

the RMS error, ", normalized by the velocity 9x
j

pkq at each point. To obtain ",
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Figure 5.6: Simulation snapshot

N
A

“ 500 new test trajectories (distinct from those observed by the camera) tT
j

u, j “
1, . . . , N

A

, are generated according to the motion patterns, where T
j

“ tx
i

pkq, 9x
j

pkqu,
k “ 1, . . . , N

Tj , represents the jth new trajectory and N
Tj is the length of the jth

trajectory. These trajectories are compared with the evolving DP-GP model. By

utilizing µ
ji

rx
j

pkqs to denote the mean speed at x
j

pkq by the ith Gaussian process

component in the DP-GP model, ⇠ can be expressed as follows:

"“ 1

NA

∞
NA

j“1

∞
M

i“1

w
ji

c
1

NTj

∞
NTj

k“1

} 9x
j

pkq´µ
ji

px
j

pkqq}2
2

(5.4)

where M is the estimated number of Gaussian process components in the DP-GP

model and w
ji

is updated according to (3.34). The performance is evaluated once

the DP-GP model is updated in order to determine the algorithm performance as a

function of time. Multiple simulations are conducted in order to obtain statistics of

the results.

Three scenarios with di↵erent the prior information about the velocity fields are

used to examine four strategies. The first scenario is referred to as “more informative

prior” (MIP), where a large number (15) of sampled trajectories from the first velocity

field and a small number (3 or 4) of sampled trajectories from the remaining velocity
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fields are utilized to train the prior DP-GP model. The second scenario is referred

to as “intermediate informative prior” (IIP), where a few (2 ´ 4) trajectories from

each velocity field are used to train the prior DP-GP model. The third scenario is

referred to as “less informative prior” (LIP), where no sampled trajectories from the

first velocity are utilized to obtain the prior knowledge. Each scenario is tested 50

times with each algorithm.

More Informative Prior Scenario

In the first scenario, the trained DP-GP model provides an estimation of the first

velocity field with low uncertainty and an estimation of the remaining velocity fields

with high uncertainty. To further illustrate the prior DP-GP model, the prior tra-

jectories and the DP-GP expected KL divergence for each possible position of the

future measurement in the entire workspace at k “ 1 is plotted in Fig. 5.7. The

absolute RMS error of the velocity obtained by the four algorithms versus time is

shown in Fig. 5.8. As can be seen, the “DP-GP EKL” algorithm outperforms the

other algorithms as the error decreases the fastest and reaches the lowest value at the

end of the simulation. In addition, the smaller error bar by the “DP-GP EKL” algo-

rithm indicates that its performance is more stable compared to the other methods.

The “DP-GP EKL” algorithm is able to follow a target with a motion pattern with

higher uncertainty in the current DP-GP model, which explains the faster reduction

in error. Figure 5.9 shows that “DP-GP EKL” is able to obtain fewer observations

of the targets following the first type of velocity field, as these observations are less

informative to the DP-GP model than other observations.
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Figure 5.7: DP-GP expected KL divergence against each possible position of the
future measurement in the workspace at initial time. Red curves: the training tra-
jectories for obtaining MIP; Yellow dots: points of interest.
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Figure 5.8: The mean and variance of the RMS error of thevelocity, ", obtained by
“DP-GP EKL” (blue, cross line), by “MI” (red, circle line), by “Heuristic” (green,
triangle line), and by “Random” (yellow, square line), given MIP.
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Figure 5.9: The percentage of trajectories belonging to the first velocity type
observed by the sensor during the simulation given MIP.

Intermediate and Less Informative Prior Scenarios

The second scenario is the “intermediate informative prior” (IIP) simulation. Thus,

the trained DP-GP model has an estimation of all of the velocity fields with high

uncertainty, while in the “less informative prior” (LIP) scenario, no sampled trajec-

tory from the first velocity is utilized to obtain the prior DP-GP model. As a result,

the trained DP-GP model has no knowledge of the first velocity and has only an

estimation of the other three velocity fields with high uncertainty.

From Fig. 5.10, we can see that the “DP-GP EKL” algorithm outperforms the

other algorithms, as the error decreases the fastest and reaches the lowest value at

the end of the simulation. In addition, the smaller error bar by the “DP-GP EKL”

algorithm indicates that its performance is more stable compared to other methods.

The “DP-GP EKL” algorithm is able to follow a target displaying a motion pattern

with higher uncertainty in the current DP-GP model, which explains the faster error

decrease rate. Figure 5.11 shows that the “DP-GP EKL” is able to obtain fewer

observations of the targets following the first type of velocity field in the “MIP”

84



scenario, as these observations are less informative to the DP-GP model than other

observations. While in the “LIP” scenario, the “DP-GP EKL” algorithm is able to

obtain more observations of the targets following the first type of velocity field, of

which the information is missing in LIP, leading to a better performance.
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Figure 5.10: The mean and variance of RMS error of velocity, ", obtained by “DP-
GP EKL” (blue, cross line), by “MI” (red, circle line), by “Heuristic” (green, triangle
line), and by “Random” (yellow, square line), given IIP (left) and LIP (right).
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Figure 5.11: The percentage of trajectories belonging to the first velocity type
observed by the sensor during the simulation Given IIP (left) and LIP (right).

By examining all of the results from the three scenarios shown in Fig. 5.8 and

5.10, we can see that, for all di↵erent priors, the “DP-GP EKL” algorithm is more

e↵ective at evaluating the expected utility of a future measurement and thus leads to
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more informative measurements and a more accurate target model estimation than

the “MI”, “Heuristic”, and “Random” algorithms.

5.3 Optimized Visibility Motion Planning for Robotic Sensor Track-
ing and Localizing Targets

To validate the e↵ectiveness of the proposed approach, we conduct various simula-

tions under di↵erent conditions and compare the performance to that of a state-of-

the-art potential field approach. Specifically, the potential approach first calculates

a force,

f
p

pkq “ c
p

rx
p

pkq ´ µ
t

pkqs, (5.5)

proportional to the distance between the center of the inscribed circle of the FOV,

x
p

pkq, and the estimated mean of the target position distribution, µ
t

pkq, where c
p

is

a constant. Then, the potential approach projects the force along the robot heading.

Let ✓
p

pkq denote the angle between the robot heading and the direction from x
p

pkq
to µ

t

pkq. The control is determined as a linear function of the projections:

v
r

pkq “ a
p

}f
p

pkq} cos ✓
p

pkq (5.6)

!
r

pkq “ b
p

}f
p

pkq} sin ✓
p

pkq (5.7)

where a
p

and b
p

are constants.

In the simulations, the robot and the target are assumed to move in a workspace

of W “ r´50, 50s ˆ r´50, 50s m2. The sensor’s FOV is assumed to have a radius of

� “ 2.5 m and an opening angle of ↵ “ ⇡{6 rad. This choice of parameters results in

a relatively small sensor FOV as compared to the workspace, so the target may easily

be outside of the FOV. The sampling time, �t, is assumed to be 0.2 sec; thus, the robot

makes both proprioceptive measurements, z
r

pkq, and exteroceptive measurements,

z
t

pkq, every 0.2 second. For the proprioceptive measurements, the noise is 2% of the

maximum speed of the robot and ⇡{180 rad/sec for the angular speed measurement.
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In all of the tests, it is assumed that the maximum speed that the robot is able to

achieve is 3 m/sec and the maximum angular speed for the robot is 0.5 rad/sec. As a

result, the proprioceptive noise covariance isR
r

« diagpr36 3sqˆ10´4. Note that we

did not restrict the robot to travel forward, which means that the robot can travel

backward at a maximum speed of 3 m/sec. For the exteroceptive measurements,

the noise level is 3% of the maximum detection radius of the FOV for the range

measurement and ⇡{36 rad for the bearing measurement and the noise covariance is

R
t

« diagpr81 76sq ˆ 10´4.

Additionally, the moving target follows a constant velocity model:

�
t

“

»

——–

1 0 �t 0
0 1 0 �t
0 0 1 0
0 0 0 1

fi

��fl . (5.8)

The noise in the target state propagation equation (2.10) causes the target move

randomly in the workspace. It is assumed that G “ I and the noise of the target

position is correlated with its speed. The noise matrix is assumed to be

Q “

»

——–

�t3�2{3 0 �t2�2{2 0
0 �t3�2{3 0 �t2�2{2

�t2�2{2 0 �t�2 0
0 �t2�2{2 0 �t�2

fi

��fl , (5.9)

where � is chosen to be 0.5 m/sec, which is large enough to prevent the target

from moving in a straight line. The initial state of the target is assumed to be

q
t

p0q “ r0 0 0 0s, which enables the target to move in every direction with the

same probability.

Figure 5.12(a) shows the tracking performance of the proposed gradient descent

approach for one particular realization with ⌘ “ 1 and ✏ “ 10´3, from which it is clear

that the robot is able to track the target throughout the simulation. The tracking

result of the potential method with an identical setup is shown in Fig. 5.12(b). As
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evident, the robot lost the target at time step k “ 170, while the proposed optimized

visibility approach reliably tracks the target (see Fig. 5.12(a)).
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Figure 5.12: An example of the simulation result where the visibility-optimized
approach enables the robot to keep the target in its FOV at all times while the
potential field method loses the target around the 200th time step, for a FOV with
↵ “ ⇡{6 rad and � “ 2.5 m.

To further justify the conclusion drawn from Fig. 5.12, we have performed var-

ious simulations with di↵erent parameters. In particular, we studied the impact of

the FOV opening angle ↵ and the radius � on the e�ciency of the potential and

the proposed optimized visibility methods. In order to evaluate the tracking perfor-

mance, the percentage of target detection, �, is defined as the number of successful

target detections divided by the total number of simulation steps. The parameter ⌘

is set to one for all of the simulations and ✏ is 10´3. Ten simulations are conducted

for each scenario. The mean and one standard variance are summarized in Fig. 5.13,

which show that the optimized visibility approach outperforms the potential method

with a higher detection percentage.
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Figure 5.13: Percentage of detections obtained by the proposed optimized visibility
and the potential approaches for various opening angles and edge lengths
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6

Hybrid ADP for Switched Systems

Because active sensors with multiple modes can be modeled as a switched hierarchical

system, the sensor path planning problem can be viewed as a hybrid optimal control

problem involving both discrete and continuous state and control variables. For

example, several authors have shown that a sensor with multiple modalities is a

switched hybrid system that can be modeled by a hierarchical control architecture

with components of mission planning, trajectory planning, and robot control. This

architecture can be modeled by a well-known three-layer hybrid framework with

tractable computational complexity. This framework typically involves both discrete

state (e.g., the sensor mode) and continuous state (e.g. position and orientation of

the robot platform). Additionally, this framework also consists of discrete control

(decision on the sensor mode) and continuous control (force, acceleration, or angular

speed acting on the robot platform). Such hybrid systems are described by both

time-driven and event-driven kinematics. Event-driven kinematics are described by

discrete states and controls that are expressed by finite alphabets, while time-driven

dynamics (di↵erential or di↵erence equations) are used to represent systems with

continuous states and controls in a Euclidean space.
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The optimal control of switched hybrid systems seeks to determine an optimal

discrete controller that decides the system mode and multiple optimal continuous

controllers that regulate the system motion given the system mode, such that a

scalar objective function of the hybrid system state and control is minimized over a

period of time [12]. The sensor performance can be represented by two Lagrangian

functions, one function of the discrete state and control variables, and one function

of the continuous state and control variables. Because information value functions

are typically nonlinear, this dissertation also presents an adaptive dynamic pro-

gramming approach for the model-free control of nonlinear switched systems (hybrid

ADP), which is capable of learning the optimal continuous and discrete controllers

online. The hybrid ADP approach is based on new recursive relationships derived

in this dissertation and is proven to converge to the solution of the hybrid optimal

control problem. Simulation results show that the hybrid ADP approach is capable

of converging to the optimal controllers by minimizing the cost-to-go online based

on a fully observable state vector.

6.1 Optimal Control Problem of Switched Systems

The optimal control of switched hybrid systems arises in a wide variety of fields, such

as mobile manipulator systems, unmanned robotic sensor planning, and autonomous

assemble lines. In these applications, both the discrete and the continuous control are

crucial to system performance. The switched system considered in this dissertation

has E discrete modes, and its mode at time k is denoted by ⇠pkq P E , where E “
t1, . . . , Eu, and it is known a priori. The discrete control at time k is denoted

by ⌫pkq P E . The system continuous state is denoted by xpkq P W Ä Rn, while

the continuous control for the system under the discrete control ⌫pkq is denoted by

u
⌫

pkq P U
⌫

Ä Rm⌫ . Let c
⌫

rxpkq, ks and arxpkq, ⇠pkq, ks denote the continuous and

discrete controllers, respectively. In the remainder of this dissertation, the continuous
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controller c
⌫

and the discrete controller a are referred to as a policy, which is defined

by a tuple defined as ⇡ “ ta, c
1

, ¨ ¨ ¨ , c
E

u, and the controller approximations are

referred to as actor networks.

The system starts at initial state x
0

and at the initial system mode ⇠
0

, and the

(fixed) final time index N is assumed known a priori. The objective function of the

optimal control problem is given by

J fi �rxpNqs `
N´1ÿ

j“0

L
⌫pjqrxpjq,u

⌫pjqpjqs, (6.1)

where L
⌫

: Rn ˆ U
⌫

Ñ R is the Lagrangian of the system. The objective function is

to be minimized with respect to the continuous control u
⌫

and the discrete control

⌫, subject to the system kinematics, given by

xpk ` 1q “ f
⌫pkqrxpkq,u

⌫

pkqs, ⇠pk ` 1q “ ⌫pkq P E . (6.2)

Here, f
⌫

is the nonlinear kinematic equation of the switched system under mode ⌫,

u
⌫

pkq “ c
⌫

rxpkq, ks, and ⌫pkq “ arxpkq, ⇠pkq, ks. Additionally, it is assumed that (i)

the switching between modes can occur at any time, and it is fully controlled by the

discrete control ⌫pkq, where the cost of switching is zero and switching only a↵ects

the system mode; (ii) the system state x is fully observable and error-free.

6.2 Hybrid ADP Approach

This section presents the proposed Hybrid ADP approach derived from the Bellman

Equations. At any time k, the value function for the switched hybrid system is

defined as

V rxpkq, ⇠pkq, ks fi �rxpNqs `
N´1ÿ

k“0

L
⌫pkqrxpkq,u

⌫pkqpkqs. (6.3)

The value function is also referred to as the “cost-to-go”, as it sums the instantaneous

cost (the Lagrangian) from the current time k to the final timeN . Note that at k “ 0,
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given the initial conditions x
0

and ⇠
0

, the value function V rx
0

, ⇠
0

, 0s is equal to the

cost function J in (6.1). Let the optimal switching mode sequence be denoted by

t⇠
0

, . . . , ⇠˚
N´1

u and the optimal continuous state be denoted by x˚pkq. Then, the

optimal value function at any k has the following recursive form:

V ˚rx˚pkq, ⇠˚pkq, ks “V ˚rx˚pk ` 1q, ⇠˚pk ` 1q, k ` 1s ` L
⌫

˚pkqrx˚pkq,u˚
⌫pkqpkqs,

(6.4)

where ⇠˚pk`1q “ ⌫˚pkq. This recursive value function is called the Bellman equation

[42].

The optimal continuous controller can be obtained by setting the derivative of

the value function (6.4) with respect to (w.r.t.) u˚
⌫

˚pkq equal to zero:

BV ˚rx˚pk `1q, ⇠˚pk `1q, k`1s
Bx˚pk`1q

Bx˚pk`1q
Bu˚

⌫

˚pkq ` BL
⌫

˚pkqrx˚pkq,u˚
⌫

˚pkqs
Bu˚

⌫

˚pkq “ 0. (6.5)

Here, the Hessian of the value function at u˚
⌫

˚pkq must be positive definite.

Note that the gradient of the value function w.r.t. the continuous state is required

to evaluate the optimality condition (6.5) in order to obtain the optimal u˚
⌫

pkq. Let
B
x

˚pk`1qV
˚rx˚pk ` 1q, ⇠˚pk ` 1q, k ` 1s fi �˚rx˚pk ` 1q, ⇠˚pk ` 1q, k ` 1s, (6.6)

where �˚ is approximated by a neural network, referred to as a critic network. Note

that �˚ is also known as the costate or adjoint vector in the Hamilton-Jacobi-Bellman

(HJB) equation. The critic network is adapted by the critic recurrence relationship,

which is derived by taking the derivative of both sides of (6.4) w.r.t. the continuous

state, as follows:

�˚rx˚pkq, ⇠˚pkq, ks “ BV ˚rx˚pkq, ⇠˚pkq, ks
Bx˚pkq

“ BL
⌫

˚rx˚pkq,u˚
⌫

˚pkqs
Bx˚pkq ` BV ˚rx˚pk ` 1q, ⇠˚pk ` 1q, k ` 1s

Bx˚pkq

“ BL
⌫

˚rx˚pkq,u˚
⌫

˚pkqs
Bx˚pkq ` �˚rx˚pk ` 1q, ⇠˚pk ` 1q, k ` 1sBx˚pk ` 1q

Bu˚
⌫

˚pkq
Bc˚

⌫

˚rxpkq, ks
Bx˚pkq
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` �˚rx˚pk ` 1q, ⇠˚pk ` 1q, k ` 1sBx˚pk ` 1q
Bx˚pkq ` BL

⌫

˚rx˚pkq,u˚
⌫

˚pkqs
Bu˚

⌫

˚pkq
Bc˚

⌫

˚rxpkq, ks
Bx˚pkq .

(6.7)

where u
⌫

˚ is a function of x˚pkq. The boundary condition for �˚ at the end time N

is given by

�˚rx˚pNq, ⇠˚pNq, N s “ B
x

�rxpNqs, (6.8)

where � is the terminal cost function in (6.1).

The objective function (6.1) can be written as

J “
kÿ

j“0

L
⌫

˚pjqrx˚pjq,u˚
⌫

˚pjqpjqs ` V rx˚pk ´ 1q, ⇠˚pk ´ 1q, k ´ 1s

´ V rx˚pkq, ⇠˚pkq, ks ` V rx˚pkq, ⇠˚pk ` 1q, k ` 1s, (6.9)

because V rx˚pk´1q, ⇠˚pk´1q, k´1s ´V rx˚pkq, ⇠˚pkq, ks is equal to L
⌫

˚pk´1qrx˚pk´
1q,u˚

⌫

˚pk´1qpk ´ 1qs. Because V rx˚pkq, ⇠˚pkq, ks and V rx˚pkq, ⇠˚pk ` 1q, k ` 1s are

di↵erentiable w.r.t. x˚pkq, J is also di↵erentiable w.r.t. x˚pkq. Therefore, at the

optimal state x˚pkq, BJ
Bx˚pkq is zero (otherwise, x˚pkq is not optimal). Then, the

transversality condition of �˚,

�˚rx˚pkq,⇠˚pkq,ks“�˚rx˚pkq,⇠˚pk ` 1q,ks, (6.10)

can be obtained from taking the derivative of both sides of the above equation with

respect to x˚pkq and setting it to zero.

The optimal discrete control is obtained by minimizing the Hamiltonian, following

the discrete minimum principle [78]:

⌫˚pkq “ argmin
⌫

H
⌫

rx˚pkq,u
⌫

˚,�˚, ks, (6.11)

where the Hamiltonian is given by

H
⌫

rx˚pkq,u˚
⌫

,�, ks “ L
⌫

rx˚pkq,u˚
⌫

pkqs ` �˚rx˚pk`1q, ⌫, k`1sf
⌫

rx˚pkq,u˚
⌫

pkqs.
(6.12)
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The optimality conditions (6.5), (6.7), (6.10), and (6.11) are used to adapt �,

a, and tc
1

, ¨ ¨ ¨ , c
E

u online. Each of these functions is approximated by a neural

network (NN). Then, NN⇠

�

pw⇠

�q « �˚rx, ⇠, ks is called the critic network, NN⌫

c

pw⌫

c

q «
c˚
⌫

rxpkq, ks is called the actor network for each mode, and NN
a

pw
a

q « arxpkq, ⇠, ks
is also called an actor network. The adjustable parameters of NN⌫

c

, NN⇠

�

, and NN
a

are denoted by w⇠

�, w⌫

c

, and w
a

, respectively. As schematized in Fig. 6.1, the

hybrid ADP approach cycles between critic network adaptation and actor network

adaptation, as summarized in Appendices B.1-B.2. Each cycle contains T iterations

of the critic network adaptation and M iterations of the actor network adaptation,

where iterations are indexed by k.

At each cycle of the hybrid ADP algorithm, indexed by l, a new improved pol-

icy ⇡l “ tal, cl
1

, ¨ ¨ ¨ , cl
E

u is obtained by holding the critic parameters fixed and by

adapting the actor parameters as follows:

�w⌫

c

“ ´ ✏

"Bx⌫pk ` 1q
Bu

⌫

pkq �rx⌫pk`1q, ⇠pk`1q, k`1s ´ BL
⌫

rxpkq,u
⌫

pkqs
Bu

⌫

pkq
*
c
⌫

rxpkq, ks
Bw⌫

c

,

(6.13)

where ✏ is a positive, user-defined learning rate. The actor parameters of the discrete

controller at time k are trained through supervised learning with training examples.

Each example is a pair consisting of an input vector (rxpkq, ⇠pkq, ks) and a desired

discrete control value (⌫pkq) obtained from (6.11), as shown in Appendix B.2.

Then, holding the actor parameters fixed, a new improved critic network �l is

obtained by adapting its parameters. From the critic recurrence relationship (6.7),

at each time step k, the critic parameters can be updated according to the learning

rule,

�w⇠

�

“ ⌘́

"
�rxpkq, ⇠pkq, ks ´ BL

⌫

rxpkq,u
⌫

pkqs
Bu

⌫

pkq
Bc

⌫

pkq
Bxpkq ´ BL

⇠

rxpkq,u
⌫

pkqs
Bxpkq
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´ �rxpk ` 1q, ⇠pk ` 1q, k ` 1s
”Bxpk ` 1q

Bxpkq ´ Bxpk`1q
Bu

⌫

pkq
Bc

⌫

pkq
Bxpkq

ı*�rxpkq, ⇠pkq, ks
Bw⇠

�

,

(6.14)

where u
⌫

pkq “ c
⌫

rxpkq, ks and ⌘ is a positive user-defined learning rate.

 

Actor 
networks 
adaptation 

Critic 
networks 
adaptation 

 

T 
iterations 
Index, (𝑘) 

 Cycle  
Index, (𝑙) 

M 
iterations 
Index, (𝑘) 

Figure 6.1: Critic and actor network adaptation in hybrid ADP.

The number of hidden neurons (N
h

) in each critic network depends on the size of

training samples (N
s

), which is further determined by the shape of � and c
⌫

. With

the assumption that � and c
⌫

have Lipschitz-continuous gradients with respect to

x with modulus L, the su�cient sample size is volpWqL{p"qn [10], where " is a

targeted approximation error, volpWq is the volume of W , and n is the number of

workspace dimensions. An empirical number of hidden neurons is given by N
h

“
pn ` ?

N
s

q{N
L

[48], where N
L

is the number of hidden layers. Because two neural

networks are adopted to approximate the controller and critic for each mode, the

total number of neural networks is 2E. Then the computational complexity of each

updating step (6.14) or (6.13) is OpN2

h

`nN
h

q, and thus the total complexity of each

cycle is OrEpNL

h

` nN
h

qpM ` Nqs.
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6.3 Hybrid ADP for Optimal Control Problem of Linear Switched
Systems

The hybrid ADP algorithm is demonstrated on a hybrid linear-quadratic (LQ) opti-

mal control problem for which an exact solution can be obtained by solving a switched

di↵erential Riccati equation (SDRE) numerically, as was first shown in [78]. The hy-

brid system considered in this study consists of a power system with two modes, one

gasoline-driven and one electric-driven. Each can be represented by a linear time-

invariant (LTI) system with a continuous state vector x “ rx 9xsT , where x P X Ä R.

It is assumed that the state x is fully observable and that the measurements are

error-free. It is also assumed that the system mode can switch to any of the two

power systems at any time from a discrete time index set t0, 1, ¨ ¨ ¨ , Nu, where N is

given, and that the two power systems are independent and supplied with su�cient

fuel.

The mode of the power system is represented by a discrete, binary state variable

⇠ P E , where E “ t1, 2u; ⇠ “ 1 denotes the gasoline-driven model, and ⇠ “ 2 denotes

the electric-driven mode. The system dynamics can be modeled by a set of di↵erent

LTI subsystems:

xpk ` 1q “
#
A

1

xpkq ` B
1

upkq, for ⌫pkq “ 1

A
2

xpkq ` B
2

upkq, for ⌫pkq “ 2
, (6.15)

where u P R2 is the continuous control input, and the initial continuous state, xp0q “
x
0

, is given. The system matrixes are given as follows:

A
1

“
ˆ

1 0.05
´0.05 0.95

˙
,A

2

“
ˆ

1 0.05
´0.05 0.975

˙
,B

1

“ r0 0.05sT ,B
2

“ r0 0.04sT .

(6.16)

At any time k P t0, . . . , N ´ 1u (N “ 100), the system mode ⇠ can be fully

controlled at no cost by a switching signal ⌫ P E provided by the discrete controller.
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Thus, the objective function to be minimized is represented by a switched integral

cost,

J “ xT pNqP
f

xpNq `
N´1ÿ

j“0

xT pjqQ
⌫

xpjq ` uT

⌫

pjqR
⌫

u
⌫

pjq, (6.17)

where R
1

“ 400, R
2

“ 50,

Q
1

“
ˆ
100 0
0 200

˙
,Q

2

“
ˆ
250 0
0 200

˙
, and P

f

“
ˆ

1500 ´1500
´1500 3000

˙
. (6.18)

Then, from [78], the switched di↵erential Riccati equation is given by

Ppk ´ 1q “ Q
⌫

` AT

⌫

´
Ppkq ´ PpkqB

⌫

pR
⌫

` BT

⌫

PpkqB
⌫

q´1BT

⌫

Ppkq
¯
A

⌫

, (6.19)

where the discrete controller is obtained by

⌫pkq “ argmin
⌫

tH
⌫

rPpkq,xpkq, ⇠pkq,upkqsu. (6.20)

With an initial condition xp0q “ r0.5596 ´0.6387sT and a final condition xpNq “
r0.01 0sT , the solution from solving the SDRE numerically is plotted in Fig. 6.2,

where the gasoline-driven mode is shown by red dashed lines with square markers

and the electric-driven mode is shown by blue dashed lines with point markers. The

switching mode and instants can be identified by the change in color, curve style,

and “`” along the trajectory.

The hybrid ADP algorithm is applied to the same optimal control problem. The

critic network is initialized to satisfy the terminal condition on the costate vector

�pNq “ P
f

xpNq “ r0 0sT , while the actor network is trained to satisfy

u
⌫

pkq “ ´
´
R

⌫

` BT

⌫

B
⌫

¯´1

”
BT

⌫

pI ` A
⌫

qxpkq
ı
, (6.21)

such that (6.5) holds. Subsequently, the hybrid ADP recurrence relationships pre-

sented in Section 6.2 are used to adapt the critic and the actor networks online,

while the resultant actor networks are used to control the power system. Unlike the
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Figure 6.2: Optimal state trajectory obtained from SDRE solution.

SDRE approach, hybrid ADP only uses online evaluations of the state and immediate

reward that could be obtained by a simulation or real system.

In this example, the critic (actor) neural networks have two hidden layers with 30

(10) hyperbolic tangent (or sigmoidal) functions, and the learning rates ⌘ and ✏ are

both chosen to be equal to 5 ˆ 10´2. The learning steps are T “ 400 and M “ 100.

The value of the cost function (6.17) is evaluated at every cycle and plotted in Fig.

6.3, where it is shown to converge to the optimal cost known from the SDRE solution

(dashed line). In this simulation, the learning rates ⌘ and ✏ are deliberatively chosen

to be greater than 1{pL
1

L
2

`L
3

qL
4

in order to accelerate convergence; therefore, the

cost function does not decrease at every cycle of the algorithm.

The optimal trajectory and the state trajectories obtained by the hybrid ADP

algorithm are indicated by the dashed and solid lines in Fig. 6.4 for five cycles,

respectively. When l “ 5, the state trajectories converge to the optimal state tra-

jectory obtained from the SDRE solution in Fig. 6.2. For the trajectory obtained

by ADP, the switching mode and instants can be identified by the change in color,

curve style, and “ˆ” along the trajectory. The gasoline-driven mode is indicated by
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Figure 6.3: Hybrid ADP cost function convergence to optimal solution obtained
by SDRE.

red solid lines with diamond markers, and the electric-driven mode is indicated by

blue solid lines with circle markers.

These results demonstrate that the hybrid ADP algorithm is capable of learning

the optimal controller for a switched LQ problem online, using state observations

obtained over time from a simulation of the system. Because the algorithm does not

rely on the LQ structure of the system dynamics and cost function, hybrid ADP can

be similarly applied to nonlinear (and/or time-varying) switched systems, for which

SDER solutions are not typically available.

6.4 Convergence Analysis

The hybrid ADP algorithm can be guaranteed to converge to a global or local optimal

solution under the following assumption:

Assumption 1. Assume V px, ⇠, kq, xpk ` 1q, L
⌫

rx,u
⌫

s, and NN⌫

c

pw⌫

c

q each have

Lipschitz-continuous gradients with respect to x, u
⌫

pkq, u
⌫

pkq, and w⌫

c

, with modulus

L
1

, L
2

, L
3

, and L
4

, respectively.

Four lemmas are presented prior to presenting the convergence proof. The first
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Figure 6.4: State trajectory optimization for five cycles of the hybrid ADP algo-
rithm and convergence to optimal solution obtained by SDRE.

two lemmas build connections among the recurrence relationship, the value function,

and the updating rules for the weights (6.14). Then, the last two lemmas establish

the progression of the policy and value function updates at consecutive iterations.

This is schematized in Fig. 6.5, where critic or actor network adaptation is denoted

by an arrow, such that, for example, �l Ñ ⇡l`1 denotes a network ⇡l`1 that is

adapted by holding �l fixed.

𝜋𝑙  

𝝀𝑙  

𝑉𝑙(𝐱, 𝜉, 𝑘) ≥  
≥ 

𝜋∞  

𝝀∞    …
.  

…
.  
…
.  

…
.  

…
.  

…
.  

≈  

𝑉𝑙+1(𝐱, 𝜉, 𝑘) ≥ 
≥ 

𝝀𝑙+1  

𝜋𝑙+1  

≈  

𝑉∞(𝐱, 𝜉, 𝑘) ≈  
≥ 

𝑉∞+1(𝐱, 𝜉, 𝑘)  

𝜋∞+1  

𝝀∞+1   

Figure 6.5: Iterations between actor network adaptations and critic network adap-
tations.
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Lemma 1. Let ⇡l denote a control policy obtained by the update in (6.14) while fixing

�l´1rx, ⇠, ks. Then, for T " 1, the critic costate vector �lrx, ⇠, ks obtained from the

recurrence relation (6.7), while fixing ⇡l, satisfies

�lrxlpkq, ⇠lpkq, ks “ BL
⌫

lrxpkq,ul

⌫

pkqs
Bxpkq �̀lrxlpk̀ 1q, ⇠lpk̀ 1q, k̀ 1sBxlpk̀ 1q

Bul

⌫

pkq
Bcl

⌫

rxpkq, ks
Bxpkq

` BL
⌫

lrxpkq,ul

⌫

pkqs
Bul

⌫

pkq
Bcl

⌫

rxpkq,ks
Bxpkq ` Bxlpk`1q

Bxpkq �lrxlpk`1q,⇠lpk`1q,k`1s,
(6.22)

where xlpk ` 1q and ⇠lpk ` 1q denote the state of the switched system at the pk ` 1qth
time step, obtained by implementing the control policy ⇡l at time step k.

Proof of Lemma 1. Given xp0q “ x
0

, the trajectory xlpkq, k “ 1, . . . , N , obtained by

the control policy ⇡l is fixed. Then, at time step k, the coe�cient of �lpk`1q and the

remaining term in (6.7) are all constant matrices or vectors evaluated at xlpkq and

can be denoted by Apkq and bpkq, respectively. Hence, the recurrence relationship

(6.7) can be expressed as

�lpkq “ Apkq�lpk ` 1q ` bpkq, (6.23)

which is the kth equation in a linear system of equations. The Nth equation in

this system of equations is �lpNq “ B
x

�rxlpNqs. Thus, (6.14) follows the successive

over-relaxation (SOR) method with relaxation factor ⌘ [81]. The eigenvalue of the

iteration matrix for this linear system is 1 ´ ⌘, the absolute value of which is less

than unity. Therefore, when T " 1, the solution to (6.23) can be computed by SOR

[95]. Therefore, �lrx, ⇠, ks can be obtained from (6.14), satisfying (6.22).

Remark 1. The boundary condition of �lrxpNq, ⇠pNq, N s is also satisfied when

�lrx, ⇠, ks is computed from (6.14), such that �lrxpNq, ⇠pNq, N s “ B
x

�rxlpNqs.

Lemma 2. Obtained on the lth cycle of the hybrid ADP algorithm, given ⇡l, the

critic network, �lrx, ⇠, ks, and its corresponding value function, V lpx, ⇠, kq, have the
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following properties.

V lrxlpkq, ⇠lpkq, ks “ L
⌫

lrxlpkq,ul

⌫

pkqs ` V lrxlpk ` 1q, ⇠lpk ` 1q, k ` 1s,
V lrxlpNq, ⇠lpNq, N s “ �rxpNqs,
BV lrxlpkq, ⇠lpkq, ks

Bxlpkq “ �lrxlpkq, ⇠lpkq, ks, (6.24)

for all xlpkq and ⇠lpkq and at any time step k. The proof is neglected here.

Lemma 3. Given �lpx, ⇠, kq, cl`1

⌫

px, kq updated by (6.13) with a learning rate ✏ “
1{pL

1

L
2

` L
3

qL
4

, we have

V lrxl`1pk ` 1q, ⇠pk ` 1q “ ⌫pkq, k ` 1s ` L
⌫

rxpkq,ul`1

⌫

pkqs
§ V lrxlpk ` 1q, ⇠pk ` 1q “ ⌫pkq, k ` 1s ` L

⌫

rxpkq,ul

⌫

pkqs, @⌫pkq P E , (6.25)

where ul

⌫

pkq “ cl
⌫

rxpkqs and ul`1

⌫

pkq “ cl`1

⌫

rxpkqs.

Proof of Lemma 3. When xpkq and ⌫pkq are given, the control input ul

⌫

pkq is a func-

tion of the actor network weights w⌫

c

plq. Thus, the system state at the next time step,

xlpk ` 1q, is a function of w⌫

c

plq and, for fixed V lpx, ⇠, kq, so is V lrxlpk ` 1q, ⌫pkq, ks.
It follows that the expression tV lrxlpk ` 1q, ⌫pkq, ks ` L

⌫

rxpkq,ulpkqsu fi Glrw⌫

c

plqs
is a function of w⌫

c

plq and that Glrw⌫

c

pl ` 1qs is only a function of the actor network

weights at the next iteration cycle, i.e., w⌫

c

pl ` 1q.
Based on Assumption (1), the values of Gl evaluated at w⌫

c

plq and w⌫

c

pl`1q obey
the inequality

|Glrw⌫

c

plqs´Glrw⌫

c

pl`1qs|
“ |V rxlpk`1q, ⌫pkq, ks`L

⌫

rxpkq,ulpkqs´V rxl̀ 1pk`1q, ⌫pkq, ks´L
⌫

rxpkq,ul̀ 1pkqs|
§ |V rxlpk ` 1q, ⌫, ks ´ V rxl`1pk ` 1q, ⌫, ks| ` |L

⌫

rxpkq,ulpkqs ´ L
⌫

rxpkq,ul`1pkqs|
§ L

1

|xlpk ` 1q ´ xl`1pk ` 1q| ` L
3

|ulpkq ´ ul`1pkq|
§ pL

1

L
2

` L
3

q|ulpkq ´ ul`1pkq|
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§ pL
1

L
2

` L
3

qL
4

|w⌫

c

pl ` 1q ´ w⌫

c

plq|. (6.26)

Here, | ¨ | denotes the Euclidean norm and Gl is a function of w⌫

c

with the Lipschitz-

continuous gradient modulus pL
1

L
2

` L
3

qL
4

. Then, the following inequality holds:

Glrw⌫

c

pl ` 1qs

§ Glrw⌫

c

plqs` † rGlrw⌫

c

plqs,w⌫

c

pl`1q´w⌫

c

plq ° p̀L
1

L
2

`L
3

qL
4

2
|w⌫

c

pl`1q ´w⌫

c

plq|

“ Glrw⌫

c

plqs ´ ✏|rGlrw⌫

c

plqs|2 ` pL
1

L
2

` L
3

qL
4

✏2{2|rGlrw⌫

c

plqs|2, (6.27)

from the properties of functions with Lipschitz-continuous gradients [6] and the con-

troller update (6.13). Then, letting ✏ “ 1{pL
1

L
2

` L
3

qL
4

, the following inequality

holds:

Glrw⌫

c

pl ` 1qs § Glrw⌫

c

plqs. (6.28)

By using cl`1

⌫

px, kq, we have

V lrxl̀ 1pk̀ 1q, ⌫pkq, k̀ 1s̀ L
⌫

rxpkq,ul̀ 1

⌫

pkqs § V lrxlpk̀ 1q, ⌫pkq, k̀ 1s̀ L
⌫

rxpkq,ul

⌫

pkqs.
(6.29)

Remark 2. The equality in (6.25) holds i↵ |rGlrw⌫

c

plqs| “ 0, i.e., i↵ the optimality

condition (6.5) is satisfied. When ✏ § 2{pL
1

L
2

` L
3

qL
4

, (6.28) holds.

Lemma 4. Let ⇡l`1 “ tal`1, cl
1

, ¨ ¨ ¨ , cl
E

u denote the policy obtained in the pl ` 1qth
cycle of the hybrid ADP algorithm. Then, given �lrx, ⇠, ks, it follows from the discrete

and continuous controller updates (6.11) and (6.13) that

V lrxl`1pk ` 1q, ⌫ l`1pkq, k ` 1s ` L
⌫

l`1rxpkq,ul`1

⌫

l`1pkqs
§ V lrxlpk ` 1q, ⌫ lpkq, k ` 1s ` L

⌫

lrxpkq,ul

⌫

lpkqs, (6.30)

where the superscripts l and l ` 1 denote the use of policies ⇡l and ⇡l`1 in the lth

and l ` 1th cycles, respectively.
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Proof of Lemma 4. The discrete control at time k obtained from (6.11) minimizes

V lrxpkq, ⇠pkq, ks because

V lrxpkq, ⇠pkq, ks“xpkq�pkq`�rxpNqs´xpNq�pNq`
N´1ÿ

⌧“k

H
⌫

rxp⌧q,u
⌫

,�, ⌧ s´xp⌧q�p⌧q,
(6.31)

from [13], has only one term, H
⌫

rxpkq,u
⌫

,�, ks, that is a function of ⌫pkq. According
to Lemma 2, for any ⌫ P E , ul`1

⌫

pkq has the following property:

V lrxl`1pk ` 1q, ⌫, k ` 1s ` L
⌫

rxpkq,ul`1

⌫

s § V lrxlpk ` 1q, ⌫, k ` 1s ` L
⌫

rxpkq,ul

⌫

pkqs.
(6.32)

Therefore, the updated policy ⇡l`1 results in a lower cost, i.e.,

V lrxl`1

⌫

l`1pk ` 1q, ⌫ l`1pkq, k ` 1s ` L
⌫

l`1pkqrxpkq,ul`1

⌫

l`1pkqs
§ V lrxlpk ` 1q, ⌫ lpkq, k ` 1s ` L

⌫

l`1pkqrxpkq,ul

⌫

ls. (6.33)

The four Lemmas derived above are used to prove the following result on the

convergence of hybrid ADP:

Theorem 1 (Convergence). Under Assumptions 1, and T " 1, the policies obtained

by the hybrid ADP algorithm 6.11 and (6.14)-(6.13) at every cycle l, l “ 1, 2, . . .,

are characterized by V l`1rxpkq, ⇠pkq, ks § V lrxpkq, ⇠pkq, ks, for all x, ⇠, k. As l Ñ 8,

they converge to their stationary counterparts, i.e., V l Ñ V 8, ul Ñ u8, ⌫ l Ñ ⌫8,

and ⇡l Ñ ⇡8. When the Hamiltonian of the system is a convex function in x and u,

the stationary policy is an optimal solution.

Proof of Convergence. According to Lemma (2), the value function at the lth cycle

is

V lrxpkq, ⇠pkq, ks “L
⌫

lpkqrxpkq,ul

⌫

lpkqs ` V lrxlpk ` 1q, ⇠lpk ` 1q, k ` 1s, (6.34)
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and the value function at the pl ` 1qth cycle is

V l`1rxpkq, ⇠pkq, ks “L
⌫

l`1pkqrxpkq,ul`1

⌫

l`1pkqs ` V l`1rxl`1pk ` 1q, ⇠l`1pk ` 1q, k ` 1s.
(6.35)

Then, the change in the value function during one cycle can be obtained by subtract-

ing (6.34) from (6.35):

V l`1rxpkq, ⇠pkq, ks ´ V lrxpkq, ⇠pkq, ks
“ L

⌫

l`1pkqrxpkq,ul`1

⌫

l`1pkqs ´ V lrxlpk ` 1q, ⇠lpk ` 1q, k ` 1s
` V l`1rxl`1pk ` 1q, ⇠l`1pk ` 1q, k ` 1s ´ L

⌫

lpkqrxpkq,ul

⌫

lpkqs. (6.36)

From Lemma (4), the change in the value function during one cycle can be shown to

have the following upper bound:

V l`1rxpkq, ⇠pkq, ks ´ V lrxpkq, ⇠pkq, ks
§ L

⌫

l`1pkqrxpkq,ul`1

⌫

l`1pkqs ´ V lrxl`1pk ` 1q, ⇠l`1pk ` 1q, k ` 1s
` V l`1rxl`1pk ` 1q, ⇠l`1pk ` 1q, k ` 1s ´ L

⌫

l`1pkqrxpkq,ul`1

⌫

l`1pkqs
“ V l`1rxl`1pk ` 1q, ⇠l`1pk ` 1q, k ` 1s ´ V lrxl`1pk ` 1q, ⇠l`1pk ` 1q, k ` 1s. (6.37)

We have

V lrxl`1pNq, ⇠l`1pNq, N s “ V l`1rxl`1pNq, ⇠l`1pNq, N s “ �pxl`1pNqq. (6.38)

from the boundary condition (6.8). Thus, from (6.37) it can be concluded that

V l`1rxpkq, ⇠pkq, ks ´ V lrxpkq, ⇠pkq, ks
§ V l`1rxl`1pNq, ⇠l`1pNq, N s ´ V lrxl`1pNq, ⇠l`1pNq, N s “ 0, (6.39)

and V l`1rxpkq, ⇠pkq, ks § V lrxpkq, ⇠pkq, ks for all xpkq and all ⇠pkq. Therefore, the

value function obtained during the pl`1qth cycle is lower in value than that obtained

during the lth cycle and is said to be improved. According to the definition of the

value function (6.3), V lrxpkq, ⇠pkq, ks is non-negative for all xpkq and all ⇠pkq.
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Because V lrxpkq, ⇠pkq, ks is non-negative and tV lu is decreasing as l Ñ 8, a

stationary policy is obtained and is further denoted by ⇡8. According to the discrete

minimum principle, when H
⌫

rx,u,�, ks is convex in x, the stationary solution is an

optimal solution i↵ ⇡8 minimizes H
⌫

rx,u,�, ks, given that conditions (6.2) and (6.7)

are satisfied. Based on Remark (1), when ⇡8 is stationary, the equality in (6.25)

must hold, and thus this stationary policy satisfies the optimality condition (6.5).

Therefore, for each discrete action, c8
⌫

minimizes H
⌫

rx,u,�, ks if H
⌫

rx,u,�, ks is

also convex in u.

From the above discussion, if H
⌫

rx,u,�, ks is convex for each mode in x and u,

⇡8 is an optimal solution. In all other cases, when H
⌫

rx,u,�, ks is non-convex, ⇡8

is a local optimal solution. For this type of problem, multiple proper initializations

are usually provided by [71] or [30] for searching a better local optimal solution.

The algorithm terminates when the change in the critic networks (6.36) is below a

predefined tolerance.

Remark 3. Then, following the above analysis, if ✏ § 2{pL
1

L
2

` L
3

qL
4

as l Ñ 8,

ul Ñ u8, and ⌫ l Ñ ⌫8, the proposed approach provides a local or global optimal policy

⇡8. When ✏ “ 1{pL
1

L
2

`L
3

qL
4

, the maximum convergence rate is achieved, according

to Remark 2, while the convergence cannot be guaranteed if ✏ ° 2{pL
1

L
2

`L
3

qL
4

. The

algorithm terminates when the changes in (6.13) and (6.14) are below a predefined

tolerance.
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7

Conclusions

This dissertation develops a general and systematic approach for deriving information-

driven path planning and control methods that maximize the expected utility of the

sensor measurements subject to the vehicle kinodynamic constraints. This approach

is used to develop three path planning and control methods: the IP method for in-

tegrated path planning and control, the optimized coverage planning based on the

DP-GP expected KL divergence, and the optimized visibility planning for simulta-

neous target tracking and localization.

The IP method is based on a potential function defined from conditional mutual

information that is used to design a switched feedback control law, as well as to

generate a local PRM for escaping local minima, while obtaining valuable sensor

measurements. Theoretical analysis shows that the closed-loop robotic system is

asymptotically stable and that an escaping path can be found when the robotic

sensor is trapped in a local minimum. Numerical simulation results show that this

method outperforms rapidly-exploring random trees and classical potential methods.

The optimized coverage planning method maximizes the DP-GP expected KL

divergence approximated by Monte Carlo integration. The variance of the KL ap-
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proximation error is proven to decrease linearly with the inverse of the number of

samples. Numerical simulations as well as physical experiments show that the opti-

mized coverage planning approach outperforms other applicable algorithms, such as

methods based on mutual information, rule-based systems, and randomized planning.

The optimized visibility motion planning approach uses the output of an EKF

algorithm to optimize the simultaneous tracking and localization performance of

a robot equipped with proprioceptive and exteroceptive sensors, in a GPS denied

environment. Numerical simulation results demonstrate that the optimized visibility

motion planning approach outperforms the state-of-the-art potential approach.

Because active sensors with multiple modes can be modeled as a switched hierar-

chical system, the sensor path planning problem can be viewed as a hybrid optimal

control problem involving both discrete and continuous state and control variables,

where the sensor performance can be represented by two nonlinear Lagrangian func-

tions. This dissertation also presents new recurrence relationships, proof of con-

vergence, and computational complexity for a hybrid ADP approach applicable to

switched hybrid systems that are possibly nonlinear. Simulation and theoretic re-

sults show that the hybrid ADP approach is capable of converging to the optimal

controllers by minimizing the cost-to-go online based on a fully observable state

vector.
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Appendix A

Algorithms for Optimized Visibility Planning

A.1 Robot Controller

Require: f
t

px
t

q, U , and ✏
1: u

r

“ u
0

2: while 1 do

3: u1
r

– u
r

` ⌘ B
BurpkqtP

d

rq
r

pk ` 1qsu
4: if u1

r

R U then Break

5: else if }u1
r

´ u
r

} § ✏ then Break

6: else

7: u
r

– u1
r

8: end if

9: end while

10: Return u
r
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Appendix B

Algorithms for Hybrid ADP

B.1 Hybrid ADP Critic Network Adaptation

1: Critic Networks Adaptation (T Iterations)
Require: Fix Controller and Actor Networks ⇡l

Require: j “ 1, xpkq,⇠pkq,k
2: while j § T do
3: �rxpkq, ⇠pkq, ks “ NN⇠pkq

� rxpkq, k,w⇠pkq
� s

4: ⌫ lpkq “ NN⇠pkq
a

rxpkq, k,w⇠pkq
a

s
5: ul

⌫

lpkq “ NN⌫

l

c

rxpkq, k,w⌫

lpkq
c

s
6: xlpk ` 1q “ f

⌫

lrxpkq,u
⌫

lpkqs
7: ⇠lpk ` 1q “ ⌫ lpkq
8: if k § N ´ 1 then �rxlpk ` 1q, ⇠lpk ` 1q, k ` 1s
9: “ NN⇠

lpk`1q
� pxlpk ` 1q, k,w⇠

lpk`1q
� q

10: else k “ 0
11: �rxlpk ` 1q, ⇠lpk ` 1q, k ` 1s “ B

x

�rxlpk ` 1qs
12: end if
13: Update w⇠pkq

� according (6.14)
14: j “ j ` 1, k “ k ` 1
15: end while
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B.2 Hybrid ADP Actor Network Adaptation

1: Actor Networks Adaptation (M Iterations)
Require: Fix Critic Networks �l

Require: j “ 1, xpkq,⇠pkq,k
2: while j § M do
3: for all ⌫ l P E do
4: ul

⌫

pkq “ NN⌫

l

c

rxpkq, k,w⌫

l

c

s
5: ⇠lpk ` 1q “ ⌫ lpkq
6: xlpk ` 1q “ f

⌫

lrxlpk ` 1q,ul

⌫

pkqs
7: �rxlpk ` 1q, ⇠lpk ` 1q, k ` 1s “ NN⇠

lpk`1q
� rxlpk ` 1q, k,w⇠pk`1q

� s
8: Update w⌫

c

according to (6.13)
9: end for

10: Obtain ⌫pkq and update w⌫

a

according to (6.11)
11: u

⌫

pkq “ NN⌫pkq
c

rxpkq, k,w⌫

c

s
12: xpk ` 1q “ f

⌫

rxpkq,u
⌫

pkqs
13: ⇠pk ` 1q “ ⌫pkq
14: j “ j ` 1
15: end while
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