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ABSTRACT

Maritime surveillance system installed on-board is crucial in protecting com-

mercial vessels worldwide, which suffer potential losses due to the maritime

piracy assault. On-board camera provides a way of monitoring suspicious ac-

tivities at a low cost. However, the maritime environment poses challenges in

detecting mobile targets because the water background is highly dynamic. This

thesis addresses the problem of detecting and tracking mobile targets in the

maritime environment utilizing an on-board camera. An approach based on

optical flow is used to detect mobile targets presented in the camera scene. The

camera measurement model and target kinematics model are proposed such

that targets can be tracked utilizing the Bayesian filtering technique. A sensor

planning strategy based on expected entropy reduction (EER) is developed to

select optimal sensor field of view (FoV) locations such that the expected en-

tropy reduction is maximized.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Maritime piracy continues to threaten the sailors’ safety and brings substantial

economic losses to commercial vessels worldwide. It is crucial for people on-

board to detect suspicious activities at sea in an early stage to reduce the risk

of robbery [1]. Visual sensor surveillance system provides a way of detecting

and tracking mobile targets in the sensor field of view at sea. Mobile sensors

are utilized frequently in several applications such as surveillance system [2, 3]

and environmental monitoring [4, 5]. Sensor planning considers the problem of

developing a strategy that satisfies a sensing objective based on sensor measure-

ments [6]. However, due to the dynamic nature of the water background caused

by wakes, foams, etc, the maritime environment presents several challenges in

mobile object detection and tracking. This thesis addresses the problem of de-

tecting and tracking mobile objects in the maritime environment.

Maritime visual surveillance becomes a crucial topic in response to the rise

of maritime piracy and possible collisions between vessels. Visual camera sen-

sors installed on-board are considered for maritime surveillance purposes due

to their affordable cost and efficiency in detecting smaller targets compared

with radar sensors. The general framework of object detection applications con-

sists of three major steps: horizon detection, background subtraction, and fore-

ground segmentation [7]. However, typical approaches in detection and track-

ing utilizing background modeling and subtraction could perform poorly due

to the dynamic background in the maritime environment [8]. Compared with

the stationary background, water background poses challenges for several rea-

sons. According to [9], background subtraction methods assume that the back-
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ground is either spatially restricted or temporally restricted. In contrast, the wa-

ter background caused by waves is changing continuously in both spatial and

temporal dimensions. Secondly, dynamic background subtraction approaches

indicate highly spatial and temporal corrections as foreground objects, which is

not suitable for water background [10]. Thirdly, typical background subtraction

methods show wakes and foams generated by vessels as foreground detection

whereas in maritime environment those are background [9].

Several approaches have been developed to address the challenge presented

in dynamic water background. Modified Boolean Map Saliency method with

adaptive hysteresis thresholding introduced in [1] reduces the false detection

generated by dynamic backgrounds such as waves and foams, but has prob-

lems detecting objects that are dark and far away. The foreground detection

method utilizing the region-based Mixture of Gaussians modeling introduced

by [11] reduces false positives presented in the dynamic scenes, which improved

the typical Mixture of Gaussian modeling method. In [12], an improved opti-

cal flow and segmentation algorithm is developed based on the combination of

color and motion information. Given the dynamic nature of the background, an

object detection and segmentation algorithm is developed by [8] that utilizes a

robust Kalman filter algorithm to model the dynamic textures presented in the

background. This thesis addresses the mobile object detection problem under

the dynamic maritime environment by using the Lucas-Kanade method from

optical flow estimation [13].

After detecting the mobile object in the image frame from the video se-

quence, it is crucial to estimate the location and motion of the moving target

in the world coordinates system based on those measurements. Tracking esti-
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mates the state of moving targets based on measurements obtained by one or

more sensors [14]. The Bayesian approach is studied to solve the tracking prob-

lem. The Bayesian approach takes the state as a random variable. The posterior

probability density function (PDF) of state can be obtained from the state’s prior

PDF using Bayes’ formula. Several typical tracking approaches have been de-

veloped such as Kalman filter [14] and particle filter [15]. Filtering refers to the

problem of estimating the state of a dynamic system [14]. Estimation of the

state could be obtained by filtering out the noisy measurement data. Kalman

filter is a linear system estimator that requires both of its kinematics and mea-

surement model to be linear. On the other hand, the Extended Kalman filter

relaxes the linearity assumption such that it allows nonlinear kinematics and

measurement model. Particle filter, one of the nonparametric Bayes filters, does

not need a Gaussian representation of the states. Nonparametric filters could

represent the posterior PDF by a set of random samples, which is capable of

representing a broader state distribution compared with Gaussian based filters.

However, those methods are more computationally expensive as the sample

size increases. A review for visual tracking utilizing Kalman Filter is developed

by [16]. A real-time video surveillance system developed by [17] that detects

mobile objects based on a background model of water and tracks targets utiliz-

ing multiple hypothesis tracking by a set of Kalman filters. A target detecting

and tracking method for a video surveillance system under the stationary back-

ground is developed by [18] where it utilizes extended Kalman filter algorithm

for tracking purposes.

Given a region of interest, where the mobile target might be, the objective is

to develop a sensor planning strategy such that the target can be tracked within

the mobile sensor field of view (FoV) given imperfect sensor measurements [2].
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Mobile sensors have the advantage of covering a larger area of region of interest

(ROI) compared with static sensors, and their paths can be planned for possible

target locations in the future [3]. The sensor FoV is a closed and bounded sub-

set of ROI. The information about mobile targets within FoV provides a way of

updating targets’ state estimates by the Bayesian approach [19]. Tracking mo-

bile targets with the sensor can be seen as a decision-making problem where the

sensor needs to decide what to measure based on measurement information to

optimize its tracking performance [20]. The information-driven approach pro-

vides a way of planning sensor decisions based on expected information value

[2]. The information-theoretic functions are intended to measure the uncertainty

presented in a random variable where in the case of tracking, the uncertainty

of the target state is measured. The information-driven approach was intro-

duced in [21] in solving sensor selection and object tracking problems where

several measures of information utility were discussed such as entropy [22],

Mahalanobis distance [23], and expected posterior distribution [24]. A greedy

algorithm based on information value function introduced in [25] is used for

sensor planning that allows sensing location to be selected based on maximiz-

ing the information value function given the measurement. The performance of

several information-driven search strategies has been investigated using a tar-

get classification problem by [26], and the quadratic entropy-driven approach

outperforms the others in terms of rates of correct-classification and the rate

of false alarms. The performance of several information-theoretic functions is

evaluated in solving the problem of sensor planning for tracking maneuvering

targets, and the conditional mutual information-based objective function gen-

erates the most effective sensor planning approach [20]. A camera control ap-

proach is presented by [27] to follow unknown numbers of targets given limited
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information by maximizing DP-GP information value function.

In this thesis, an optical flow estimation method is used to detect mobile tar-

gets in the maritime environment. The Bayesian approach is applied to track

the mobile targets based on the estimated sensor measurement model and tar-

get kinematics model. A sensor planning strategy based on expected entropy

reduction is presented to select sensor FoV location optimally so that the uncer-

tainty of the target state could be minimized.

In Chapter 3, the optical flow method for detecting mobile targets presented

in video sequences is discussed. As demonstrated in Chapter 4, a camera mea-

surement model and the target kinematics model are proposed for the video

surveillance system. A cost function is defined such that a set of optimal model

parameters can be obtained given limited information from the video dataset.

In Chapter 5, a Bayesian filtering algorithm based on the Extended Kalman fil-

ter is developed for tracking mobile targets. A sensor planning strategy based

on expected entropy reduction (EER) is developed such that optimal sensor lo-

cations can be selected to minimize the target state uncertainty. As shown in

Chapter 6, the proposed method allows the sensor to detect and track mobile

targets in the maritime environment effectively.
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CHAPTER 2

PROBLEM FORMULATION AND ASSUMPTIONS

This thesis considers the problem of detecting and tracking mobile targets in the

maritime environment using an on-board pan and tilt camera. A sensor plan-

ning strategy based on expected entropy reduction is utilized to select optimal

sensor locations.

The targets are moving in a workspaceW ⊂ R2. Let FW represents a fixed

Cartesian frame in W. Let Ti, i ∈ {1, ..., n} denotes ith target. The targets are

modeled by Markov motion models, where the PDF of current target states at

time step k can be calculated only from target states at the previous time step (k−

1). The target Ti’s trajectory can be described as following by a time-invariant

nonlinear ordinary differential equation:

ẋi(t) = fi[xi(t)] , vi(t) (2.1)

where xi =

[
xi yi

]T

∈ W and vi =

[
ẋi ẏi

]T

∈ R2 denote the position and velocity

of target i in inertial frameW.

The target’s state is defined as xT =

[
x y ẋ ẏ

]T

. Assuming each target

preserves constant velocity, the kinematics model of target i can be described as

following equation where the target state transition is established between kth

step and (k − 1)th step.

xT (k) = FxT (k − 1) (2.2)
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where,

F =



1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1


(2.3)

∆t denotes the constant time interval.

A pan and tilt camera installed on a vessel at sea is assumed to be at a fixed

location with respect to inertial frame W. The sensor field of view (FoV) is

a closed and bounded subset of the region of interest (ROI) where its size is

largely reduced compared with the camera scene [19], denoted as S ⊂ Fp, where

the W is projected onto a virtual image plane Fp that can obtain the measure-

ment of mobile targets. According to the pinhole camera model [28], camera

images are projected onto the virtual image plane Fp, where the distance be-

tween the image plane Fp and pinhole is denoted as λ (the focal length). Let FA

denotes the Cartesian frame of the camera sensor, and OA, the pinhole location,

indicates the origin of this frame. Camera measurements of mobile targets can

be obtained within ROI by optical flow estimation at each time step k given a

video sequence. A measurement model based on pan-tilt camera model can be

described as following,

y(k) =


h(x(k)) + wk if pT (k) ∈ S(k)

∅ if pT (k) < S(k)
(2.4)

where h(·) denotes the measurement function and wk ∈ R2 indicates the additive

Gaussian noise with zero mean and pT =

[
px py

]T

denotes the location of target

in image frame Fp.
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In order to track mobile targets in the sensor FoV, the Bayesian filtering tech-

nique based on the extended Kalman filter is utilized. Unknown camera mea-

surement model parameters and target kinematics model parameters are esti-

mated from the ground truth dataset. Gaussian distribution is assumed for the

target states. Current target states can be estimated in two steps by the target

states at the previous time step (k−1). First, the predicted distribution of the tar-

get state is calculated based on state posterior distribution at the previous time

step (k − 1) given the target dynamics. Secondly, the state posterior distribution

at the current time step k is updated by the measurements observed from the

camera sensor.

To select sensor FoV (largely reduced) location optimally inside the camera

scene to obtain measurements that maximize the target information based on

prior target distribution, a sensor planning strategy utilizing expected entropy

reduction (EER) is proposed. Given a camera scene, the objective is to place the

simulated FoVS to an optimal location where it can obtain the most information

of the target. The expected entropy reduction [2] can be represented as following

over the time interval [ti, t f ]. The problem is formulated to maximize the cost

function J.

J =

f∑
k=i

∫
Zk

p(z(tk) |Mk−1)R[z(tk)]dz(tk) (2.5)

where Zk indicates the range of measurement z(tk). The conditional measure-

ment PDF is denoted as p(z(tk) | Mk−1) and the set of available measurements at

time tk is Mk−1. The reward function denoted as R[z(tk)] measures the reduction

in differential entropy.

The primary dataset investigated in this thesis is from PEST 2016 dataset
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[29], where a video sequence is generated from the visual sensor in the maritime

environment. A specific video frame is shown in Figure 2.1, and a simulated

FoV is presented in the red bounding box.

Figure 2.1: An example of a camera scene in the video sequence where the
red bounding box represents the simulated sensor’s FoV.
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CHAPTER 3

TARGET DETECTION VIA OPTICAL FLOW ESTIMATION

Marine piracy brings considerable costs to the economy and humans on-board

over the years, making the on-board sensor surveillance critical in detecting

suspicious activities. This chapter considers the problem of detecting mobile

targets in the maritime environment. One of PETS 2016 datasets [29] provided

camera video recording that serves the purpose of detecting and tracking mo-

bile targets at sea. The optical flow estimation method is used for detecting

moving targets. A bilateral filter is applied to smooth the image and reduce the

noise due to the dynamic background caused by waves.

3.1 Description of Video Data Sets

In this video dataset, two speedboats (moving targets) appear from the top-right

corner together. They separate in the middle of the video with one leading the

other. Finally, they disappear from the left side.

Figure 3.1: The snapshot of the video where two speedboats are in the re-
gion of interest.
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3.2 Optical Flow Estimation for Boat Detection

Motion estimation, known as optical flow, can be performed given sequences of

time-ordered images where the velocity vector for each pixel is calculated from

one frame to another frame. In order to detect the speedboats in each image

frame, gradient based Lucas-Kanade method [13] from optical flow estimation

is used. The Lucas-Kanade method performs fast calculation with precise time

derivatives compared with other methods [30]. The Lucas-Kanade method as-

sumes that the displacement of the image between two nearby frames is small

and it solves the basic optical flow equations for all the pixels. The local image

velocity (Vx, Vy) should satisfy the following equation [13].

Ix(q1)Vx + Iy(q1)Vy = −It(q1)

Ix(q2)Vx + Iy(q2)Vy = −It(q2)

...

Ix(qn)Vx + Iy(qn)Vy = −It(qn) (3.1)

where q1, q2, ..., qn are pixels inside the neighborhood, and Ix(qn), Iy(qn), It(qn)

indicate the partial derivatives of image I with respect to position x, y and time

t at point qn.

These equations could be written in terms of matrix form Av = b. The Lucas-

Kanade method then solve these equations by the least squares criterion.

AT Av = AT b

v = (AT A)−1AT b (3.2)
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Vx

Vy

 =

 ΣiIx(qi)2 ΣiIx(qi)Iy(qi)

ΣiIy(qi)Ix(qi) ΣiIy(qi)2


−1 −ΣiIx(qi)It(qi)

−ΣiIy(qi)It(qi)

 (3.3)

For the boat video dataset described above, the background noise generated

by sea foams and waves is relatively large so that the image needed to be filtered

to reduce the noise. Figure 3.2 shows the velocity field of the unfiltered image.

Figure 3.2: The snapshots of the video at two different moments, where
velocity field vectors are extracted shown in red arrows.

Water background, one of the dynamic backgrounds, provides a compli-

cated environment for foreground detection where the sea foams and wakes

that have relatively large motions should be considered as background. In this

specified video dataset, two types of background noises (white foams generated

by speedboats and sea foams that moving in a constant direction) should be

considered. The sea foams have a consistent moving direction, which is moving

away vertically in the video. Therefore, given the flow orientation calculated

by the Lucas-Kanade method at each pixel, the effect of white foams could be

largely eliminated. The white foams generated by the speedboats should be

taken as the background, although given its relatively large motion compared

with sea foams. A bilateral filter is used to reduce the noise and to smooth the

image before calculating the optical flow. Compared with domain filters such as

12



Gaussian low-pass filter that averages the pixel value within a neighborhood at

every pixel so as to average the noise presented in image away, the bilateral fil-

ter is a nonlinear noise reduction filter that preserves edge in a given image [31].

The intensity value of each pixel is replaced by the weighted average intensity

value of the nearby pixels while preserving edges by considering the difference

in color between the current pixel and neighbor pixels.

Once the bilateral filter is applied to reduce the noise and velocity vector

field is calculated by the Lucas-Kanade method, foreground segmentation can

be made by assigning rectangular bounding boxes to different groups of veloc-

ity vector which indicate the moving targets given an image frame. The center

of the bounding box is taken as the location of moving targets.

Figure 3.3: The snapshots of the video at two different moments, where
two speedboats were detected. Green rectangles indicate
bounding boxes.
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CHAPTER 4

PARAMETER ESTIMATION FOR CAMERA MEASUREMENT AND

TARGET KINEMATICS MODEL

In this chapter, the camera measurement model and the target kinematic model

are defined so that the target can be tracked using the Bayesian filtering tech-

niques. The camera is located on a moving vessel given the video dataset de-

scription given in the previous chapter. A pan-tilt camera model is assumed.

Given the dynamics of the moving targets from the dataset, a unicycle kine-

matics model is assumed. Given that the camera model parameters and target

kinematic model parameters are unknown in this scenario, a cost function is de-

fined such that a set of optimized parameters can be found based on the ground

truth measurement data.

4.1 On-board Camera Sensor

2016 PETS (Performance Evaluation of Tracking and Surveillance) datasets con-

sider the problem of protecting mobile assets via the on-board multi-sensors

surveillance approach. Two datasets are provided, land-based dataset and mar-

itime dataset. This thesis adapts the maritime dataset, where the on-board cam-

era shows the moving boat targets that need to be detected and tracked. An

AXIS P1427-E Network camera was installed at the stern of the recording vessel

[29]. Figure 4.1 shows the sensor locations on the recording vessel.

14



Figure 4.1: PESTS2016 dataset sensor location. Source: Adapted from [29].

4.2 Image Distortion Correction on Video Dataset

A fish-eye lens is equipped such that the field of view is wider compared with

the standard lens. However, the image may be distorted due to the effect of de-

viation from the rectilinear projection. In the case of this maritime video dataset,

barrel distortion occurred in the images. As shown in Figure 4.2, the sea level in

the field of view is curved, which should be a straight line if there is no image

distortion. An iterative optimization algorithm for lens distortion correction is

proposed by [32] and used for finding distortion parameters.

Figure 4.2: Image distortion presented in the camera field of view.
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The general equation for lens distortion model is given by following equa-

tion, x̂ − xc

ŷ − yc

 = L(r)

x − xc

y − yc

 (4.1)

where (xc, yc) represents the distortion center. (x, y) indicates pixel coordi-

nates in the original image where the point is distorted. (x̂, ŷ) denotes the undis-

torted pixel coordinates. L(r) defines the type of distortion model function and

r = ‖(x, y) − (xc, yc)‖ [33]. The polynomial model and the division model are two

commonly used radial distortion models [32]. The polynomial model is used

here to correct the distorted image and is shown in the following equation,

L(r) = 1 + k1r2 + k2r4 (4.2)

where k1 and k2 are the distortion parameters.

Additional parameters p1 and p2 are introduced instead such that k1 and

k2 can be normalized [32], where p1 represents percentage of correction from

the furthest point in the image to the distortion center and p2 indicates same

percentage of correction but uses half the distance between furthest point and

distortion center. The equations that describe the relationship between two sets

of parameters are shown below,

(1 + p1)r1 = r1(1 + k1r1
2 + k2r1

4)

(1 + p2)r2 = r2(1 + k1r2
2 + k2r2

4) (4.3)

Where r1 denotes the distance between the center of the distorted image, and

furthest point in the image and r2 indicates the distance that is half of r1. The
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Equation 4.3 can be simplified as,

p1 = k14r2
2 + k216r2

4

p2 = k1r2
2 + k2r2

4 (4.4)

k1 and k2 can be further expressed in terms of p1, p2 and r2,

k1 =
p1 − 16p2

−12r2
2 , k2 =

4p2 − p1

−12r2
4 (4.5)

This automatic radial distortion correction algorithm is achieved in four

steps [32]. First, the canny edge detector is used to extract edge points in the

image so that the distorted lines can be located. Second, a modified Hough

transform method is proposed to detect the straight line in the original image.

Third, an iterative optimization algorithm is performed to optimize the lens dis-

tortion model parameters and to detect points that were not considered before

using the Hough transform. Forth, given the optimized lens distortion model

parameters, the corrected image is calculated based on the inverse of the distor-

tion model.

Given an uncorrected boat image, a set of optimized lens distortion model

parameters are calculated using the automatic distortion correction algorithm

described in [32], and the corrected image is shown in Figure 4.3. By applying

lens distortion model parameters to each image frame, a corrected image dis-

tortion target trajectory is obtained based on the ground truth boat detection

dataset, which can be shown in Figure 4.4.
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(a) (b)

(c) (d)

Figure 4.3: (a) presents the distorted boat dataset image; (b) shows the
canny edge detector result; (c) demonstrates lines detection us-
ing Hough transform; and, (d) indicates the corrected image.

Figure 4.4: Blue line indicates the original boat trajectory in the image
frame. Red line demonstrates the corrected distortion trajec-
tory in the image frame.
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4.3 Sensor Measurement Model

Sensor modeling is an essential step in detecting and tracking mobile targets [2].

In order to model the video surveillance system in the maritime environment as

described in the previous section, a pan-tilt camera model is assumed [34]. The

camera sensor is assumed to be at a fixed position with respect to the world

inertial frame W. The field of view of the camera denoted as S(k) ⊂ Fp is the

bounded region that allows the camera to take measurements at each time step

k. A pinhole camera model allows points presented in 3D inertial frame to be

transformed into a virtual image frame, which is illustrated in Figure 4.5. The

focal length λ is the distance between the virtual image plane and the optical

center of the camera. Let x0 =

[
x0 y0 z0

]T

denotes the pinhole position [34]

with respect to the inertial frame and xi ∈ W denotes the location of the moving

target i. The pan and tilt angle of the camera are denoted as yaw (ψ) and roll

(φ) angles according to Euler angle representation which can be illustrated in

Figure 4.6. The position of target i with respect to camera coordinates is shown

below,

qi = RφRψ(
[
xT

i 0
]T

− x0) =

[
qx qy qz

]T

, (4.6)

where Rψ and Rφ are transformation matrices corresponding to pan and tilt an-

gle that are defined by,

Rψ ,


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 . (4.7)

and

Rφ ,


1 0 0

0 cos φ sin φ

0 − sin φ cos φ

 (4.8)
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Figure 4.5: Pinhole camera model. Source: taken from [34] with permis-
sion.

Figure 4.6: Rotation matrix. Source: taken from [34] with permission.

Next the target position qi with respect to camera fixed frame can be pro-

jected onto virtual image plane as shown below,

pi =

[
px py

]T

= λ
[

qx
qz

qy

qz

]T

(4.9)

where px and py are pixel coordinates in image plane.

The origin of the virtual image plane is at the intersection between the cam-

era z axis and image plane, where the digital image has the origin at lower left

corner of the image. Therefore, there should be a translation vector
[
cx cy

]T

to

encounter the offset [35]. The mapping becomes,

pi =

[
px py

]T

=

[
λqx

qz
+ cx λ

qy

qz
+ cy

]T

(4.10)

20



The points in the digital image have the unit of pixel, while points described

by the transformation above have the unit of physical measurement (e.g. such

as centimeters). Two parameters k and l are introduced to count the unit change

between two axes of image plane [35]. The mapping is adjusted to be:

pi =

[
px py

]T

=

[
λk qx

qz
+ cx λl qy

qz
+ cy

]T

=

[
α qx

qz
+ cx β

qy

qz
+ cy

]T

(4.11)

This coordinate transformation which allows a target location xi in world

inertial frame to be projected into camera virtual image plane Fp defines the

measurement function: h(·) such that it measures the target location in the image

virtual frame. The objective is to learn the camera model and boat kinematics

parameters from the observation data (ground truth boat trajectory).

h(xi(k)) = pi(k) (4.12)

4.4 Target Kinematics Model

Targets such as boats usually preserve a constant heading and velocity mo-

tion for an extended period of time in the maritime environment. The pri-

mary dataset investigated by this Thesis obtains a similar target motion. There-

fore, it is appropriate to assume a unicycle kinematics model with constant ve-

locity and heading for the targets of interests. A configuration is denoted by

x =

[
x y

]T

. Let xinit =

[
xinit yinit

]T

denotes the prior position of the target. The

motion of the targets could be described by following set of equations.

x(k) = x(k − 1) + vc cos θc · ∆t

y(k) = y(k − 1) + vc sin θc · ∆t (4.13)
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where vc ∈ (0, 12.85)[m/s] is the constant velocity of the target [29] and θc ∈ (0, 2π)

is the constant heading angle of the target. We assume a constant time interval

∆t.

4.5 Camera and Boat Kinematics Parameters Estimation

In order to optimize camera and boat kinematic model parameters for future

boat location estimation, a cost function is defined as follows. The error be-

tween the boat trajectory obtained from the ground truth dataset and estimated

trajectory by the measurement function needs to be minimized.

Jp = min
n∑

k=1

‖h(xi(k)) − zgt(k)‖2 (4.14)

where h(·) is the measurement function defined in Equation 4.12, n represents

number of observations, xi(k) represents the position of the target i in inertial

frame W and zgt(k) indicates the pixel coordinates of the boat location in kth

camera frame from ground truth dataset.
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CHAPTER 5

TARGET TRACKING VIA EXPECTED ENTROPY REDUCTION

In this chapter, the Bayesian filtering techniques are studied in order to track the

mobile targets presented in the maritime environment given the sensor mea-

surement model and target kinematics model defined in the previous chapter.

Once the conditional PDF is derived by one of the recursive Bayesian state es-

timators such as Kalman filter or particle filter, an information-driven sensor

planning strategy, expected entropy reduction (EER), is applied such that the

optimal sensor location is obtained to minimize the uncertainty of target states

at each time step [2].

5.1 State Estimation Utilizing Bayesian Filtering Techniques

To predict the state of targets in the maritime environment, the Bayesian filter-

ing techniques are applied. The Extended Kalman filter relaxes the linearity

assumption of the Kalman filter that it allows the system to be nonlinear. In the

boat tracking problem, the camera measurement function is nonlinear so that

an extended Kalman filter is suitable for the tracking purpose.

5.1.1 Kalman filter and Extend Kalman filter

A brief review of the Kalman filter and Extended Kalman filter is presented

here. For Kalman filter, the dynamic and measurement model are assumed to
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be linear Gaussian which is given by the following equations,

xk = Fk−1xk−1 + νk−1

yk = Hkxk + wk (5.1)

where xk ∈ Rn represents the state vector, yk ∈ Rm denotes the measurement vec-

tor. νk−1 ∼ N(0,Qk−1) denotes the Gaussian process noise and wk ∼ N(0,Rk)

represents the Gaussian measurement noise. The matrix Fk−1 represents the

state transition matrix of the dynamic model and matrix Hk is the measurement

model matrix. There are two crucial steps in applying the Kalman filter, namely

the prediction step and the update step. In the prediction step, the predicted

distribution of state xk is calculated by integrating the posterior distribution at

state xk−1 given the dynamic model via Chapman-Kolmogorov equation [36].

p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (5.2)

where y1:k−1 represents all prior measurements up to time step k − 1. In the

update step, the posterior distribution of state xk given the measurement yk at

time step k can be computed using Bayes’ rule [36].

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)∫

p(yk|xk)p(xk|y1:k−1)dxk
(5.3)

Since the measurement function of the camera sensor model defined in the

previous chapter is nonlinear, we need to consider using extended Kalman filter

to do the state estimation, where state transition function and the measurement

function are represented by nonlinear functions denoted as f and h.

xk = f(xk−1) + νk−1 (5.4)

yk = h(xk) + wk (5.5)
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Due to nonlinearity of the function f and h, the extended Kalman filter cal-

culates a Gaussian approximation to the true filtering distribution [37]. The

extended Kalman filter linearized the nonlinear functions f and h by means of

(first-order) Taylor expansion. Therefore the functions f and h can be described

as following,

f(xk−1) ≈ f(mk−1) + Fk(xk−1 −mk−1) (5.6)

h(xk) ≈ h(m−k ) + Hk(xk −m−k ) (5.7)

where mk−1 denotes the mean of posterior distribution and m−k indicates the prior

distribution. State transition and measurement matrices, Gk and Fk, are defined

by following Jacobians,

Fk =
∂f(xk−1)
∂xk−1

∣∣∣∣∣
xk−1=mk−1

(5.8)

Hk =
∂h(xk)
∂xk

∣∣∣∣∣
xk=m−k

(5.9)

The extended Kalman filter algorithm is shown below [36].

The prediction step:

m−k = f(mk−1),

P−k = Fk(mk−1)Pk−1FT
k (mk−1) + Qk−1 (5.10)

where m−k is the mean of prior state estimate and P−k is prior covariance matrix.

The update step:

Sk = Hk(m−k )P−k HT
k (m−k ) + Rk,

Kk = P−k HT
k (m−k )S−1

k ,

m+
k = m−k + Kk(yk − h(m−k )),

P+
k = (I −KkHk)P−k (5.11)
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where m+
k is updated state estimate and P+

k is updated covariance matrix.

5.1.2 Extended Kalman filter Implementation

Given the optimized camera sensor model parameters and target kinematics

model parameter found in the previous chapter, tracking through extended

Kalman filter can be formulated as follows. Let xT =

[
x y ẋ ẏ

]T

denotes the

dynamic state of the boat, where x =

[
x y

]T

∈ W is the target position in world

inertial frame. The boat dynamic equation can be expressed in state-space form

in the following,

xT (k) = FxT (k − 1) + ν(k − 1) (5.12)

F =



1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1


(5.13)

where ν(k − 1) ∼ N(0,Q) and F denotes the state transition matrix assuming a

constant time interval ∆t.

Measurement function for the camera model is nonlinear that was defined in

Equation 4.12 and is shown explicitly in below. y(k) = h(x(k)) + w(k), where

w(k) ∼ N(0,R).

h(x(k)) =

 α
cos(φ)·x+sin(ψ)·y

sin(φ) sin(ψ)·x−sin(φ) cos(ψ)·y−sin(φ)·z0
+ cx

β− cos(φ) sin(ψ)·x+cos(φ) cos(ψ)·y−sin(φ)·z0
sin(φ) sin(ψ)·x−sin(φ) cos(ψ)·y−sin(φ)·z0

+ cy

 (5.14)

Because of the non-linearity of the measurement function, prior state estimate

is calculated via Taylor Expansion. The Jacobian matrices for measurement and

state transition function H(k) and F(k) are shown below.
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F(k) =
∂f(xT (k − 1))
∂xT (k − 1)

=



1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1


(5.15)

H(k) =
∂h(x, y)
∂xT (k)

=


∂h1(x,y)
∂x

∂h1(x,y)
∂y

∂h1(x,y)
∂ẋ

∂h1(x,y)
∂ẏ

∂h2(x,y)
∂x

∂h2(x,y)
∂y

∂h2(x,y)
∂ẋ

∂h2(x,y)
∂ẏ

 (5.16)

where h1(·) represents the first term and h2(·) represents the second term in the

measurement function h(x(k)).

5.2 Optimal Sensor Placement via Expected Entropy Reduction

Given imperfect sensor measurements, sensor planning is crucial in placing sen-

sor locations optimally to reduce the state’s uncertainty. Once the conditional

PDF of the target state is updated by the Bayesian filtering technique described

above, the Expected Entropy Reduction method is used to select optimal sen-

sor locations given the prior state estimates at each time step so that the un-

certainty of the state can be minimized [2]. The posterior distribution is not

available before obtaining the sensor measurements and thus the actual entropy

reduction can not be calculated [6]. Therefore, the expected information value

is calculated for the sensor to decide which measurement to take in the future

[20]. Information-theoretic functions are used to quantify the information value

of sensor measurement. Entropy is a common way of measuring information

value [26]. Shannon entropy is defined as the following,

H(X) = −

∫
X

p(X) log2 p(X)dX (5.17)
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where X is a continuous random variable with range X ⊂ R and the probability

density function is denoted as p(X).

From state estimation point of view, the uncertainty in target state x(tk),

based on prior measurements Mk−1, should be decreased by the measurement

z(tk) [2]. The conditional entropy at time tk can be represented as following,

H(x(tk) |Mk−1) = −

∫
X

p(x(tk) |Mk−1) log2 p(x(tk) |Mk−1)dx(tk) (5.18)

A reward function, which is also called conditional mutual information, is

defined such that the reduction of entropy can be measured given measurement

z(tk).

R[z(tk)] = H(x(tk) |Mk−1) − H(x(tk) |Mk−1, z(tk)) (5.19)

The expected differential entropy reduction [2] for a time interval [t0, t f ] is

defined as following,

J =

f∑
k=1

{
H(x(tk) |Mk−1) −

∫
Zi

[p(z(tk) |M0)H(x(tk) |Mk−1, z(tk))]dz(tk)
}

(5.20)

where Mk−1 denotes the available measurement set at time tk.

The information gain at each time step which needs to be maximized can be

written as,

Jk = H(x(tk) |Mk−1) −
∫
Zk

[p(z(tk) |Mk−1)H(x(tk) |Mk−1, z(tk))]dz(tk) (5.21)

The measurement is obtained only if the target is in the FOV S(x(tk)). Let

q(x(tk)) = P[x(tk) ∈ S(x(tk)) | Mk−1] indicates the probability that x(tk) is in FOV

S(x(tk)). The expected differential entropy reduction at time tk can be simplified

as following,

Jk = q(x(tk))[H(x(tk) |Mk−1) − H(x(tk) |Mk−1, z(tk))] (5.22)
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For a multivariate Gaussian PDF, the differential entropy is a function of

covariance matrix [22] given in the following,

H(x) =
n
2

+
n
2

ln(2π) +
1
2

ln[det(Σ)] (5.23)

where n is the dimension of the state vector x.

The camera scene for the boat tracking problem is chosen to be Fp = [0, L1] ×

[0, L2] where L1 = 960[pixel] and L2 = 540[pixel]. The sensor FoV is modeled as

a rectangle with width of 80[pixel] and height of 60[pixel]. Initially, sensor lo-

cations are generated randomly within Fp because no information about target

location is available. A optimal sensor location is selected based on prior target

state PDF which maximizes the expected entropy reduction. A sensor measure-

ment is used to update the information state of the target if the target is inside

the optimal sensor FoV S.
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CHAPTER 6

SIMULATIONS AND RESULTS

In this chapter, an EER target tracking approach presented in the previous chap-

ter is tested on a video dataset from PETS 2016 workshop. Maritime target

detection results using the optical flow estimation are presented. The camera

model and target model parameters estimation results are shown and discussed.

Optimal sensor locations are selected to minimize the target state uncertainty.

Simulation results from optimal sensor locations selection are discussed. The

simulated sensor FoV is controlled such that it could track the targets in both

single object tracking and multiple object tracking scenario.

6.1 Results from Optical Flow Estimation

In this section, the optical flow estimation described in the previous chapter is

tested on PETS 2016 maritime video dataset. The locations for both targets are

extracted at each frame based on detected bounding boxes. Bounding boxes are

generated for groups of velocity vectors that reach a threshold and are close to

each other. The center of the bounding box is assumed to be the location of the

detected target. The detection results are demonstrated in Figure 6.1. The target

trajectory is then extracted from the video dataset. The results are shown below

for the leading boat target and following boat target trajectories in the region of

interest in Figure 6.2 and 6.3. The noise generated by detection data compared

with ground truth data is caused by dynamic background where water foams

and waves have major effects.
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Figure 6.1: The snapshots of the video at different moments, where two
speedboats were detected. Green rectangles indicate bounding
boxes.

Figure 6.2: Boat trajectory from detection algorithm and ground truth data
set for the leading boat.
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Figure 6.3: Boat trajectory from detection algorithm and ground truth data
set for the following boat.

6.2 Results from Parameters Estimation

In this section, optimized camera measurement model parameters and target

kinematics model parameters are presented for the leading boat target and fol-

lowing boat target shown in the video dataset. Since no information is available

regarding the camera model and target kinematics model parameters other than

the video dataset, those parameters are learned from the ground truth measure-

ment dataset by minimizing the cost function defined in the previous chapter.

Due to the image distortion effect presented in the video dataset, the first step

is to correct the image distortion such that the corrected observation data can

be used to estimate the parameters. Figure 6.4 shows the corrected observation

dataset using image distortion parameters for both targets. As can be seen from

the figure, the linearity of the corrected trajectories becomes more significant

compared with original uncorrected trajectories.
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(a) (b)

Figure 6.4: Results from distortion correction, (a) presents the distortion
correction for the leading boat trajectory; (b) shows corrected
following boat trajectory

Given the distortion corrected observation dataset, the cost function defined

in the previous chapter is minimized to obtain optimized parameters for the

camera measurement model and target kinematics model. Two sets of parame-

ters are shown in Table 6.1.

Table 6.1: Optimized sets of parameters for both mobile targets

target i xinit[m] yinit[m] θc[rad] vc[m/s] ψ[rad] φ[rad] α[pixel] z0[m]

1 515.54 186.85 3.56 12.85 3.63 2.97 13.5 4.5

2 591.41 200.14 3.54 12.85 3.60 2.98 13.37 4.56

Figure 6.5 and 6.6 demonstrate the predicted target trajectory against the

ground truth observation data. Two sets of data are not perfectly aligned with

each other because of the linear motion assumption made in the target kine-

matics model. However, in order to track the target using Bayesian filtering
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techniques, the optimized parameters provide a reasonable initial guess for the

target state such that tracking can be performed in the next step.

Figure 6.5: Predicted boat trajectory using corrected distortion dataset for
the leading boat target.

Figure 6.6: Predicted boat trajectory using corrected distortion dataset for
the following boat target.
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6.3 Simulations for Single Target Tracking via EER Apporach

In this section, optimal sensor location results for single target tracking are

shown. A sensing control strategy based on EER is implemented such that the

uncertainty presented in the target state can be minimized by placing the sensor

FoV optimally. The sensor location is selected based on target prior PDF at each

time step so that the location could obtain most information for planning the

future measurements. The single object tracking problem is considered, and the

results for the leading boat and following boat are shown separately.

The sensor trajectory and trajectory of means of target PDF are plotted in

Figure 6.7. As can be seen from the plot, the sensor is able to track the target in

image frame Fp.

(a) (b)

Figure 6.7: Sensor trajectory and trajectory of means of predicted target
PDFs for the leading boat (a) shown in red and following boat
(b) shown in green.

The information gain Jk is plotted in Figure 6.8 to show information gain

at each time step. The information gain rises in the end for the leading boat,

where it became less certain about the target state. This is caused by the error
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presented in the measurement dataset shown in Figure 6.2 where the trajectory

deviates from the ground truth dataset. However, the sensor’s FoV is capable

of tracking the target with small error given the dynamics of the target is linear.

For the following boat, the information gain increases due to the presence of

false detection and decreases to a constant level in the end.

(a) (b)

Figure 6.8: Information gain at each time step for the leading target (a) and
the following target (b).

Means of posterior state estimates are plotted against the ground truth boat

position in the image frame in Figure 6.9. By using the EER approach for track-

ing targets, the sensor can move to the optimal location at each time step where

it can obtain the most information from the targets. Overall, the EER method

fulfilled the requirement of tracking mobile targets separately while making the

sensor location selection optimally.

State estimation error for each target is shown in Figure 6.10. The state es-

timation error is calculated within the image plane where means of posterior

distribution of state x and y are projected onto image plane Fp. The state esti-

mation error in state y of the leading target increases because of the detection

errors presented in the measurement dataset.
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(a) (b)

Figure 6.9: Means of posterior state estimation in image frame for leading
boat (a) and following boat (b).

(a) (b)

Figure 6.10: State estimation error compared with ground truth for leading
boat (a) and following boat (b) where red line represented 3
sigma bound.
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The posterior target PDF at different time step and corresponding selected

FOV location are showed in Figure 6.11 and 6.12. The sensor’s FoV is controlled

to obtain information from prior distribution for each target, and it can track the

mobile object sufficiently.

(a) (b)

(c) (d)

(e) (f)

Figure 6.11: The posterior state PDFs and selected sensor FOV at different
time steps for the leading boat are shown in (a), (c), (e). Corre-
sponding original image frames with selected FoV are shown
in (b), (d), (f).
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(a) (b)

(c) (d)

(e) (f)

Figure 6.12: The posterior state PDFs and selected sensor FOV at differ-
ent time steps for the following boat are shown in (a), (c), (e).
Corresponding original image frames with selected FoV are
shown in (b), (d), (f).

39



6.4 Simulations for Multiple Target Tracking via EER Appo-

rach

Simulation results for tracking both targets are presented in this section. The

simulated FoV can choose one target to observe at each time step k. The EER

approach allows the sensor’s FoV to be selected for the target that obtains the

most information.

Figure 6.13: The posterior state PDFs and selected sensor FOV at differ-
ent time steps for the both targets are shown in the first col-
umn. Corresponding original image frame with selected FoV
are shown in the second column.
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As shown from Figure 6.13, the FoV location is controlled at each time step to

select the target that is less certain in terms of its PDF compared with the other

target and thus obtain more information. The simulated FoV would switch be-

tween two targets over time such that both targets can be tracked.

The state estimation error for both targets is shown in Figure 6.14. For the

leading target, the estimation error presented in state y increased due to the de-

tection accuracy. The spikes presented in 3σ bound for one target indicate that

the simulated FoV is observing the other target. Overall, the purposed method

has demonstrated the effectiveness in tracking both targets while maintaining

low estimation errors.

(a) (b)

Figure 6.14: State estimation error compared with ground truth for leading
boat (a) and following boat (b) where red line represented 3
sigma bound.

41



CHAPTER 7

CONCLUSION AND FUTURE WORK

This thesis introduces a mobile target detection and tracking algorithm with

a sensor planning strategy via expected entropy reduction (EER) to minimize

the target state’s uncertainty in the maritime environment. First, an optical

flow estimation is used for detecting mobile targets under the maritime envi-

ronment. Despite the dynamic background of the maritime environment and

the noise presented in the video sequence, the proposed method can detect

moving targets with a small number of false detection. Secondly, a cost func-

tion is designed so that the proposed kinematics parameters can be estimated

and optimized from the ground truth measurement dataset. Thirdly, a Bayesian

approach based on extended Kalman filter is employed for tracking detected

targets. A sensor planning strategy based on expected entropy reduction (EER)

is developed so that the optimal sensor location is selected to minimize the un-

certainty of the target states.

Future work should focus on improving detection accuracy given a dynamic

maritime environment. Currently, false detection would occur when wakes gen-

erated by the mobile target are highly dynamic. Dynamic background models

that can precisely separate the wakes or waves in the background from the tar-

gets should be studied. In this thesis, a known number of mobile targets is

assumed for tracking purposes while in future work an unknown number of

targets should be considered. The proposed method should be compared with

other available methods on a broader range of maritime datasets.
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