
Indirect Training Algorithms for Spiking Neural

Networks Controlled Virtual Insect Navigation

by

Xu Zhang

Department of Mechanical Engineering and Materials Science
Duke University

Date:
Approved:

Silvia Ferrari, Supervisor

Craig Henriquez

Michael Zavlanos

Brian Mann

Thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science in the Department of Mechanical Engineering and Materials

Science
in the Graduate School of Duke University

2015

Abstract

Indirect Training Algorithms for Spiking Neural Networks

Controlled Virtual Insect Navigation

by

Xu Zhang

Department of Mechanical Engineering and Materials Science
Duke University

Date:
Approved:

Silvia Ferrari, Supervisor

Craig Henriquez

Michael Zavlanos

Brian Mann

An abstract of a thesis submitted in partial fulfillment of the requirements for
the degree of Master of Science in the Department of Mechanical Engineering and

Materials Science
in the Graduate School of Duke University

2015

Copyright c© 2015 by Xu Zhang
All rights reserved except the rights granted by the

Creative Commons Attribution-Noncommercial Licence

http://creativecommons.org/licenses/by-nc/3.0/us/

Abstract

Even though Artificial Neural Networks have been shown capable of solving many

problems such as pattern recognition, classification, function approximation, clinics,

robotics, they suffers intrinsic limitations, mainly for processing large amounts of

data or for fast adaptation to a changing environment. Several characteristics, such

as iterative learning algorithms or artificially designed neuron model and network

architecture, are strongly restrictive compared with biological processing in natural

neural networks. Spiking neural networks as the newest generation of neural models

can overcome the weaknesses of ANNs. Because of the biologically realistic prop-

erties, the electrophysiological recordings of neural circuits can be compared to the

outputs of the corresponding spiking neural network simulated on the computer,

determining the plausibility of the starting hypothesis. Comparing with ANN, it

is known that any function that can be computed by a sigmoidal neural network

can also be computed by a small network of spiking neurons. In addition, for pro-

cessing a large amount of data, SNNs can transmit and receive a large amount of

data through the timing of the spikes and remarkably decrease the interactions load

between neurons. This makes possible for very efficient parallel implementations.

Many training algorithms have been proposed for SNN training mainly based

on the direct update of the synaptic plasticities or weights. However, the weights

can not be changed directly and, instead, can be changed by the interactions of

pre- and postsynaptic neural activities in many potential applications of adaptive

iv

spiking neural networks, including neuroprosthetic devices and CMOS/memristor

nanoscale neuromorphic chips. The efficiency of the bio-inspired, neuromorphic pro-

cessing exposes the shortcomings of digital computing. After trained, the simulated

neuromorphic model can be applied to speaker recognition, looming detection and

temporal pattern matching. The properties of the neuromorphic chip enable it to

solve the same problem while using fewer energies comparing with other hardware.

The neuromorphic chips need applicable training methods that do not require direct

manipulations of the connection strength.

Nowadays, thanks to fast improvements in hardware for neural stimulation and

recording technologies, neurons in vivo and vitro can be controlled to fire precisely

in milliseconds. These improvements enable the study on the link between synaptic-

level and functional-level plasticity in the brain. However, existing training methods

rely on learning rules for manipulating synaptic weights and on detailed knowledge

of the network connectivity and synaptic strengths. New training algorithms that do

not require the knowledge of the synaptic weights or connections are needed while

they cannot require direct manipulations of the synaptic strength.

This thesis presents indirect training methods to train spiking neural networks,

which can both modeling neuromorphic chips and biological neural networks in vivo,

via extra stimulus without the knowledge of synaptic strengths and connections. The

algorithms are based on the spike timing-dependent plasticity rule by controlling

input spike trains. One of the algorithms minimizes the error between the synaptic

weight and the optimal weight, by stimulating the input neuron with an adaptive

pulse training determined by the gradient of the error function. Another algorithm

uses numerical gradient of the output error with respect to the weight change to

control the training stimulus, which are injected to the neural network for controlling

a virtual insect for navigating and finding target in an unknown terrain. Finally, the

newest algorithm uses indirect perturbation of the temporal differences between the

v

extra stimulus in order to train a large spiking neural network. The trained spiking

neural network can control both a unicycle modeled virtual insect and a virtual insect

moving in a tripod gait. The results show that these indirect training algorithms can

train SNNs for solving control problems. In the thesis, the trained insect can find

its target while avoiding obstacles in an unknown terrain. Future studies will focus

on improving the insect’s movement to using more complex locomotion model. The

training algorithms will also be applied to biological neural networks and CMOS

memristors. The trained neural networks will also be used for controlling flying

microrobots.

vi

Contents

Abstract iv

List of Tables ix

List of Figures x

List of Abbreviations and Symbols xiv

Acknowledgements xix

1 Background and Motivation 1

1.1 CMOS and Memristor . 2

1.2 Light-Sensitive Culture . 3

1.3 Spiking Neural Network Models . 6

1.4 Neuromorphic Systems . 8

1.5 Training Methods for Spiking Neural Networks 10

2 Spiking Neural Network Model 13

2.1 Integrate-and-Fire Model . 15

2.1.1 Synaptic Current . 16

2.1.2 Refractory Period . 18

2.2 Hebbian Learning . 21

2.3 Spike Timing-Dependent Plasticity(STDP) 22

3 Benchmark Training Problem: Virtual Insect Control and Naviga-
tion 27

vii

3.1 Unicycle Modeled Virtual Insect . 27

3.1.1 Sensor Models of the Virtual Insect Trained by Gradient Method 29

3.1.2 Virtual Insects Trained by Weights Perturbation 30

3.2 Biologically Modeled Virtual Insect 33

4 Indirect Training Algorithms 37

4.1 Analytic Gradient Training Algorithm 37

4.1.1 Deterministic Spike Model . 40

4.1.2 Derivation of Gradient Equations for Indirect Training 45

4.2 Numerical Indirect Gradient Method 52

4.2.1 Optimization of Radial Basis Function 52

4.3 Indirect Training by Weight Perturbations 55

5 Simulation Results 63

5.1 Seven Neurons Controlled Virtual Insect 63

5.1.1 Blank Terrain . 64

5.1.2 S-maze Terrain . 65

5.1.3 Cloud Terrain . 66

5.2 Insect Trace Controlled by Larger Neural Networks Trained by Weight
Perturbations . 67

5.2.1 S-maze . 70

5.2.2 Cloud Terrain . 70

5.3 Tripod Insect Controlled by a Large SNN 71

5.4 Strength of Large Size SNNs . 72

6 Conclusion 77

A Appendix 81

Bibliography 85

viii

List of Tables

3.1 Size of the SNN . 32

ix

List of Figures

2.1 Diagram of the IF model. The basic circuit is the module inside
the dashed square. The current I charges the circuit to increase the
voltage V ptq across the capacitance. Then it is compared with Vth.
If the voltage is equal or over the threshold, the neuron spikes and
generate an output pulse δpt � tfi q. The spike generates an input
synaptic current to the postsynaptic neuron. 16

2.2 Red line is the membrane potential gradient with respect to the mem-
brane potential. Blue dash line is the resting potential that equals to
-65mv. No current input is given. 17

2.3 Action potential of the neuron modeled by the HH model. 19

2.4 Neuron cannot fire during the refractory period. 20

2.5 Neuron can fire after the refractory period. 20

2.6 LIF neuron with a refractory period. 21

2.7 Change of synaptic weight wi,j only depends on the spikes of A and B. 22

2.8 STDP term as a function of the time delay between the last spike of
the postsynaptic neuron, and the presynaptic neuron. 24

3.1 Insect geometry and workspace coordinates. 28

3.2 Insect terrain sensors (red antennas) (A), and target sensors (green
antennas) (B). 28

3.3 SNN architecture with 7 neurons. 30

3.4 Target sensors and the distances between the sensors and the target. . 31

3.5 Terrain sensors and the obstacle touched by the left terrain sensor. . . 32

3.6 Sensor inputs to input sensory neurons. 33

x

3.7 3D structure of the SNN and two pairs of trained neurons. The train-
ing responses are shown in the Fig. 4.15. 34

3.8 Inputs to CPG Neurons. 35

3.9 SNN architecture of a subset of neurons in a large neural network with
550 neurons. 36

4.1 Model of two-node LIF spiking neural network. 38

4.2 Membrane potential of the two neurons in the SNN in Fig. 4.1. . . . 41

4.3 Deterministic Spike Model Signals . 43

4.4 Optimized input spike train, and indirect weight changes brought
about by STDP. 48

4.5 Optimized RBF spike model for the SNN in Fig. 4.1. 48

4.6 Square wave obtained by the LIF sampler, for the RBF spike model
in Fig. 4.5. 49

4.7 Indirect weight changes brought about by STDP, and the correspond-
ing deviation from w� � 2.8, for the SNN in Fig. 4.1 stimulated using
the input spike train in Fig. 4.5. 50

4.8 Model of three-node LIF spiking neural network. 51

4.9 Optimized RBF spike model for the SNN in Fig. 4.8. 52

4.10 Square wave obtained from the LIF sampler, using the optimized RBF
spike model in Fig. 4.9. 53

4.11 Indirect weight changes brought about by STDP, and corresponding
error functions, for the SNN in Fig. 4.8 stimulated using the input
spike train in Fig. 4.10. 54

4.12 Optimized input spike train, and indirect weight changes brought
about by STDP. 56

4.13 Insect locations for six training cases. 57

4.14 Flowchart of the training algorithm. 59

4.15 Action potentials of the pre and post-synaptic neurons and the weights
change by training inputs. 62

5.1 Error δ during training of the neural network with 7 neurons. 64

xi

5.2 Evolution of eight synaptic weights subject to STDP during train-
ing.The synapse between neuron 1 and 3 is labeled as synapse (1-3).
See Fig. 3.3 for all connections. 65

5.3 Trace of naive insect controlled by 7 neurons on blank terrain. 66

5.4 Trace of fully-trained insect controlled by 7 neurons on blank terrain . 66

5.5 Trace of the naive insect controlled by 7 neurons on an S-maze terrain
(see movie in Zhang and Xu (2013)). 66

5.6 Trace of the fully-trained insect controlled by 7 neurons on an s-maze
terrain (see Zhang and Xu (2013)). 66

5.7 Trace of the naive insect controlled by 7 neurons on the cloud terrain
(see movie in Zhang and Xu (2013)). 67

5.8 Trace of the fully-trained insect controlled by 7 neurons on cloud ter-
rain (see movie in Zhang and Xu (2013)). 67

5.9 Membrane potentials during tests for case 2 (no obstacle and target
right). (a). Test and training inputs injected to the neurons. (b -
e). Membrane potentials of the neurons in four different time instants
marked in (a). 68

5.10 Membrane potential of three layers before the training and after train-
ing. (a). Error change during the entire simulation. (b-c). Membrane
potentials of the neurons in three layers at the times pointed in (a). . 69

5.11 Naive insect on a blank terrain controlled by the neural network with
184 neurons. 70

5.12 Trained insect on a blank controlled by the neural network with 184
neurons. 70

5.13 Naive insect on an S-Maze controlled by the neural network with 184
neurons. 71

5.14 Trained insect on an S-Maze controlled by the neural network with
184 neurons. 71

5.15 Naive insect on a Cloud terrain controlled by the neural network with
184 neurons. 71

5.16 Trained insect on a Cloud terrain of controlled by the neural network
with 184 neurons. 71

xii

5.17 Error during training of the SNN with 550 neurons. 72

5.18 Trace of the untrained virtual insect controlled by 550 neurons on
cloud terrain. 73

5.19 Trace of the fully-trained virtual insect controlled by 550 neurons on
cloud terrain. 73

5.20 Distribution of membrane potentials when the neurons in the right
bottom receive sensory inputs. 74

5.21 Propagation of sensor inputs to other layers of the SNN. 74

5.22 Trained insect controlled by 7 neurons with sensor noise on a blank
terrain. 76

5.23 Trained insect controlled by 184 neurons with sensor noise on a blank
terrain. 76

xiii

List of Abbreviations and Symbols

Symbols

Cm Membrane capacity.

I Input current.

V Voltage.

ENa, EK , EL Reversal Potentials of Sodium, Potassium and leaking.

gNa, gK , gL Sodium conductance, Potassium conductance and leaking con-
ductance.

m,n, h gating variables correlated to Sodium, Sodium and Potassium.

αm, αn, αh voltage-dependent rate constant

βm, βn, βh voltage-dependent rate constant

τnpV q, τhpV q Time constants describing the dynamics of potassium channel
and sodium channel.

Vth Threshold of membrane potential.

tfi Firing time of neuron i.

αpt� tfj q Alpha function for modeling the synaptic current.

q : Total charge that is injected in a postsynaptic neuron via a
synapse with weight 1.

gij Synaptic conductance.

wij Synaptic weight from neuron j to i.

τrise, τdecay Two time constants describing the rising rate and decay rate of
the synaptic conductance.

τ�, τ� Two time constant related to the STDP rule.

xiv

tpre, tpost Firing times of presynaptic neurons and postsynaptic neurons.

A�, A� Maximum amplitude of weight change depend on the STDP rule.

∆tij The firing time difference between pre- and postsynaptic neu-
rons.

xj, yi Two local variable for a low-pass filtered version of pre- and
postsynaptic spike train.

A Object that is a compact subset of a workspace representing the
physical characteristics of the virtual insect.

W Workspace where the insect navigate.

B1, ...,BN Solid obstacles.

S, r Dashed circle and its radius.

FW , OW Initial reference frame and its origin.

FA, OA Moving reference frame and its origin.

x, y Cartesian coordinates in FW

θ Heading angle of the virtual insect.

C Insect’s configuration space.

Ti Geometry of the target.

vi ith motor speed.

L The distance between two motors.

τmotor Time constant describing a gradual decay of motor speed.

Sm Terrain sensor values.

γ A scaling constant for the intensity of sensor inputs.

Mpx, yq Grayscale value at px, yq.

St Target sensor values.

P px, yq, T px, yq Coordinates of the sensor and target, respectively.

gL, gR Target sensor values.

dL, dR Euclidean distances between the target position and the left and
right target sensors.

xv

λ A constant value chosen heuristically to amplify the target sensor
inputs differences between the left and right target sensor values.

α The scaling factor of sensor inputs.

hL, hR Left and right terrain sensors’ stimuli.

σ Roughness value.

fo Firing frequency of output neuron o.

CL, CR Number of left and right output neurons.

νL, νR Input Currents given to the left and right sets of CPG neurons.

α A constant current input to the neurons in the locomotion sys-
tem.

sptq RBF function given to LIF sampler

w� Desired weight.

ωk, ck, βk Height, center, width of the signal to IF neuron

Iinj Extra stimulus to training neurons.

V0 Resting potential of the neuron

θ The potential difference between the resting potential and thresh-
old.

Rm Resistance of the membrane potential.

τm Passive-membrane time constant.

τd Conductance delay of the synaptic current from presynaptic neu-
ron.

k0, kt Index of the spike of the presynaptic neuron, which occurs after
the previous spike of the second neuron; and the index of spike
of the presynaptic neuron, which provoke the firing time of the
second neuron.

θ potential difference between Vth and V0

τd constant that represents the conduction delay of the synaptic
current

uk,sptq Averaging function.

xvi

tk Timings when IF sampler reaches its threshold.

θ Threshold value for the IF sampler.

α The leakage of the IF integrator.

aE Change in potential due to a single synaptic event, and depend
on the weight of the synapse.

M Number of presynaptic’s spikes for the neural network with 2 or
3 neurons.

FR, FL Expected firing frequencies of the left and right motor neurons.

StrL, StL Left terrain sensor value, the left target sensor value.

StrR, StR Right terrain sensor value and the right target sensor value.

α, γ constants for scale the sensor values.

fpi ptlq The firing frequency of the neuron i during testing of case p at
time interval rtl�1, tls

δ Error during testing of virtual insect neural network with 7 neu-
rons.

dji Time difference between the centers of the RBF input to neuron
j and i.

ci, cj Center of the RBF pulses to pre- and postsynaptic neuron.

λ Learning rate for the 7-nodes neural network.

K Number of either left or right motor neurons.

ziptrq Total number of spikes of output neuron i within the time inter-
val rt� tr, ts

k, η constants for scale the sensor values for large neural network.

N A list of n possible ordered pairs selected to stimulate.

m The number of training cases.

pi,a Temporal center of the ath square pulse delivered to the ith input
neuron.

b0 Initial temporal difference between the training square pulse in-
puts to the pre and postsynaptic neurons.

xvii

M The number of training input pairings during each training epoch.

∆abs an absolute refractory time of the neuron

Jptq quadratic training-error function

Abbreviations

SNNs Spiking Neural Networks

CMOS Complementary metalCoxideCsemiconductor

RC circuit A resistorCcapacitor circuit

HH Model The first scientific model of a spiking neuron was proposed by
Alan Lloyd Hodgkin and Andrew Huxley in 1952

ANNs Artificial Neural Networks

STDP Spiking Timing Dependent Plasticity

LIF Leaky Integrate-and-Fire

ANNs Artificial Neural Networks

RBFs Gaussian Radial Basis Functions

XOR gate a digital logic gate that implements an exclusive or

PSTH Peri-Stimulus-Time Histogram

CISM Neural Circuit Simulator

xviii

Acknowledgements

This work was supported by the National Science Foundation, under ECCS Grant

0925407 and Mechanical Engineering and Materials Science department(MEMS) at

Duke University.

xix

1

Background and Motivation

Spiking neural networks are computational models of living neurons comprehended

of systems of differential equations that can duplicate some of the spike patterns

and dynamics examined in living neuronal networks.Jack et al. (1975); Hodgkin and

Huxley (1952a). They are also capable of simulating sigmoidal artificial neural net-

works (ANNs) and of solving small-dimensional nonlinear function approximation

problems through reinforcement learning Maass (1997b); Pennartz (1997b); Ferrari

et al. (2008a). Like all ANN learning methods, existing SNN training algorithms rely

on the direct manipulation of the synaptic weights Ferrari et al. (2008a); Pennartz

(1997b); Legenstein et al. (2005); Pfister et al. (2006); Florian (2007a); Wysoski et al.

(2006). In other words, those learning rules ordinarily incorporate a weight-upgrade

control by which the synaptic strengths are upgraded several times, based on the

reinforcement signal or network performance. However, in many potential SNN ap-

plications, such as neuroprosthetic devices, light-sensitive neuronal networks grown

in vitro, and CMOS/memristor nanoscale neuromorphic chips Jo et al. (2010), the

synaptic weights cannot be changed directly by the learning algorithm. In these

applications, the goal is to train a biological or artificial neural network to per-

1

form a complex function, for example processing an auditory signal or restoring a

cognitive function. In neuroprosthetic therapeutic implants, for instance, a manu-

factured device may comprise of a microelectrode array or integrated circuit that

empowers real neurons through spike trains. Therefore, the device cannot directly

change the synaptic efficacies of the biological neurons, as do existing SNN training

algorithms. However, it is possible to stimulate a subset of neurons by controlled

pulses of electrical currents. As an alternate case, light-sensitive neuronal systems

growed in vitro can be likely stimulated through controlled light patterns that cause

chosen neurons to fire at exact times to control plasticity. At the same time, their

output is being recorded progressively using a multielectrode array (MEA). For this

situation, a PC can be utilized to determine the desired stimulation patterns for an

in-vitro neuronal network with arbitrary connectivity, created by culturing dissoci-

ated cortical neurons from embryonic day E18 rat brain Van De Ven et al. (2005).

Thus, the cultures may be utilized to check biophysical models of the mechanisms by

which biological neuronal systems execute the control and storage of data by means

of temporal coding. In this case, the actual connectivities and synaptic plasticities

are regularly unknown and cannot be directly controlled as needed by existing SNN

learning algorithms. This thesis presents indirect learning algorithms that assume

synaptic weights cannot be updated or manipulated. The learning algorithms change

the SNN weights by modulating spike timing dependent plasticity (STDP) through

controlled input spike trains.

1.1 CMOS and Memristor

Complementary metal-oxide-semiconductor (CMOS) is a technology for construct-

ing integrated circuits, which is applied to microprocessors, microcontrollers, static

RAM, and other digital logic circuits. Low power requirements, high speed are the

main strengths of CMOS technology. Improvements on CMOS Very-Large-Scale-

2

Integration reduce transistors to a smaller size. Howevers, scaling the transistors

will not work forever because the CMOS circuits have process limitations on the

design such as lithography or the area constraints Kuhn (2009); Wong et al. (1999).

Therefore, memristor becomes an encouraging technology to conquer these lim-

itations Strukov et al. (2008). A memristor can be smaller than 10nm while offers

high speed, lower space and non-volatility features Yakopcic et al. (2010). Addition-

ally, Memristor is suitable for fabrication with CMOS for hybrid CMOS-Memristor

based circuits. Memristive circuits are applicable in many fields such as the logic

gate Borghetti et al. (2010), neuromorphic systems Kim et al. (2012), and analog

circuits Shin et al. (2011). The improving transistor integration density in CMOS

provides a good simulation of neural networks. The use of CMOS/memristors will

enable an approximated synaptic plasticity, device density, scalability, and fault tol-

erance inherent in biological neural networks. In general, CMOS/memristor-devices

have the potential for creation of adaptive, neuromorphic sensorimotor circuits for

intelligent robots and neuroprosthetic devices that can adaptively interact in uncer-

tain environments. The ultimate objective is not just a virtual realization of the

CMOS/memristor hardware but to solve issues related to CMOS and memristor in-

tegration and provide results relating to the effectiveness of such a computational

platform.

1.2 Light-Sensitive Culture

Amid the earlier years, systems for optical control of neuronal action have been

produced Zemelman et al. (2002); Banghart et al. (2004); Zhang et al. (2006). Op-

togenetics is the combination of genetics and optics to control well-defined events

within specific cells of living tissue. The improvement of combined optical/genetic

approaches now enables scientist to see genetically targeted neurons in animals and

to track and manipulate biochemical events within targeted cell types. One direc-

3

tion of the improvement of optogenetic methodologies is to target genetically optical

control of neural activity in behaving Drosophila.

Optical incitement of electrically volatile cells is better than established actua-

tion by microelectrodes. The purpose behind this is because of its high temporal-

spatial resolution. Optical stimulus can be attained by utilizing caged compound,

e.g. confined ATP, confined Glutamate, whereby the substrates for depolarizing par-

ticle channels are conveyed to membranes and initiated by the beats of UV-light to

the chemical photolabile cage in the micro and millisecond time scale. An enhanced

methodology is the utilization of light-switches connected to particle channels, which

permits to depolarize cells in a reversible way with high temporal and spatial reso-

lution. These methods, called chemical genetics, are useful for neural cells in little

creatures like drosophila and zebrafish. The finding of channelrhodopsin2 (ChR2)

from the unicellular alga Chlamydomonas reinhardtii was the beginning stage of

the optogenetic methodology. When transfected into mammalian cells and initiated

by blue light ChR2 works as an inwardly rectifying channel, depolarizing the cells.

Together with the light-initiated, hyperpolarizing Cl-pump Halorhodopsin from the

archea Natronomonas pharaonis, the two form a perfect pair for the activation and

inactivation of neural cells (at two separate wavelengths). ChR2 enacts the cells with

blue light by depolarization though NphR inactivates the cells with yellow light by

hyperpolarization of the cells. As opposed to the chemical approach the microbial

rhodopsins needn’t bother with any additional expansion of chemicals, in light of the

fact that the light sensing cofactor retinal is delivered by the host cells and ties effec-

tively to the opsins, structuring the rhodopsins. ChR2 and NphR can be expressed

in a more specific way in certain cell types of the neural system by utilization of

better tuned promoters and molecular biology protocol. Since ChR2 and NphR and

their variations can be effortlessly expressed in neural cells or used to structure trans-

genic creatures, these microbial rhodopsins have long been looking for apparatuses

4

for neurological research.

In general, for an experiment in-vivo, there are five steps. First of all, piece

together genetic construct with promoter to drive expression and gene encoding

opsin. Secondly, the construct is inserted into a virus. The third step is to inject

the virus into the animal brain; opsin is then expressed in targeted neurons. The

fourth step is to insert ’optrode’, fibre-optic cable plus electrode into mouse brain.

Finally, the laser light of a specific wavelength opens ion channel in neurons, which

can control neuron spikes.

For the implementation of optogenetics in-vitro, neural networks with random

connectivity can be obtained through a method known as Banker Cultures Fletcher

et al. (1991), which grows neurons on top of a monolayer of astrocytes. Individual

neurons can be labeled and visualized by transfecting neurons with Green fluorescent

protein (GFP) colors and by using fluorescence imaging. Through the MEA etched

onto the glass bottom the firing behavior of the culture output neurons can be

continuously recorded and processed by spike detection/sorting software, allowing

the real-time computation of firing rates or integrated signals. Output signals from

the cultures can then be fed into the computational models that, in turn, can optically

stimulate the cultures.

A Multi-Channel System recording hardware and software can acquire the raw

data continuously from neurons in each culture, corresponding to the channels of

each turnkey MEA system. Each neural channel can be amplified, filtered, and

digitized at 31.25 kHz. As shown in Boyden et al. (2005), this experimental setup

allows to record the neuronal activity on millisecond timescales, at the resolution of

single spikes. Therefore, it is possible to map inputs to outputs in a culture, e.g. for

training, and to utilize the output spike trains in real time, e.g. for control.

5

1.3 Spiking Neural Network Models

Artificial neural networks are as of now turning into an old model inside machine

learning; the first thoughts and models are more than fifty years of age. The original

of artificial neural networks comprised of McCulloch-Pitts neurons Maass (1997a), a

reasonably straightforward model: a neuron sends a binary ”high” output if the total

of its weighted input signals climbs over an edge value. Despite the fact that these

neurons can just give digital output, they have been effectively used in ANN like

multi-layer perceptrons and Hopfield nets. For instance, any function with Boolean

output can be processed by a multilayer perceptron with a single hidden layer.

The second-generation neuron model does not utilize a step or threshold function

to calculate their output signals, yet a continuous activation function, let them appli-

cable to analog in- and output. Regularly used actuation functions are the sigmoid

and hyperbolic tangent. Average cases of neural networks comprising of neurons of

these sorts are feed-forward and recurrent neural networks. These are more capa-

ble than the previous generation: when a threshold function at the output layer of

the network is added, they are universal for advanced calculations and do so with

fewer neurons than the previous model Maass et al. (1991). Furthermore, they can

estimate any analog function very well, making these networks universal for analog

calculations.

The third-generation neural network model raises the level of natural realism by

utilizing individual spikes. This model permits joining spatial-temporal data in com-

munication and processing, in the same way as real neurons do Ferster and Spruston

(1995). So as opposed to utilizing rate coding these neurons use spike coding; sys-

tems where neurons receive and send individual spikes, permitting multiplexing of

data as frequency and magnitude of sound Gerstner et al. (1999). Revelations in

the field of neurology have demonstrated that neurons in the cortex perform signal

6

processings at an extraordinary rate. Thorpe et al Thorpe et al. (2001) exhibited

that people process and recognize visual info (i.e. facial distinguishment) in shorter

than 100ms. It makes more than ten synaptic strides from the retina to the tempo-

ral lobe; this leaves around 10ms of integration time for every neuron. Such a time

window is much excessively little to permit an averaging method like rate coding

Gerstner et al. (1999). This does not imply that rate coding is not utilized, though

when quickness is an issue spike coding method are favored Thorpe et al. (2001).

For picking a spiking neural network model, we must discover bargains between

two apparently fundamentally prerequisites: The model of a neuron must be: 1)

computationally simple, yet 2) ready for creating many firing patterns showed by real

neurons. Utilizing biophysically precise Hodgkin�Huxley models is computationally

restrictive, since we can reproduce just a modest bunch of neurons continuously.

The Hodgkin-Huxley model is the beginning stage for detailed neuron models that

represent various particle channels, distinctive sorts of synapses, and the particular

spatial geometry of an individual neuron. The Hodgkin-Huxley model is additionally

an essential reference model for the derivation of simpler neuron models.

The behavior of high-dimensional nonlinear differential equations is hard to view

- and significantly harder to dissect. Two-dimensional differential equations, then

again, can be mulled over in a straightforward way by method for a phase plane

analysis. A reduction of the four-dimensional model of Hodgkin and Huxley to a two-

variable neuron model is accordingly profoundly alluring. Several two-dimensional

models by reduction from HH model include Morris-Lecar model, Fitzhugh-Nagumo

model, and Izhikevich model Morris and Lecar (1981); FitzHugh (1961); Izhikevich

et al. (2003).

However, intricate conductance-based neuron models can replicate electrophysio-

logical measures to a high level of accuracy, but since their complexity these models

are hard to dissect. Consequently, basic phenomenological spiking neuron models are

7

profoundly prevalent for the analysis of neural coding, memory, and system elements.

The leaky integrate-and-fire (LIF) neuron is presumably the best-known illustra-

tion of a basic spiking neuron model. Generally speaking, the leaky integrate-and-fire

model incorporate the nonlinear leaky integrate-and-fire model. All integrate-and-fire

model neurons can either be activated by external stimulation or synaptic currents

from presynaptic neurons. The integrate-and-fire neuron model has been created

as a canonical model for spiking neurons because it can be easily studied analyti-

cally while in the meantime being sufficiently plausible to catch large portions of the

essential characteristics of a neural system.

1.4 Neuromorphic Systems

Recently, although the digital computer is very powerful and can solve very com-

plex problems, the power requirement associated with the computer as the problem

becomes more complex becomes prohibitive. For example, the best supercomputer

cannot compare with the human brain (weighing around 1.5 kg). The brain can deal

with driving during rush hour traffic with a power budget of about 20 W. IBM state

of the art supercomputer, on the other hand, weighing 227 metric tons and taking

up 5500 ft2 of area, requires close to 3 MW to simulate a few seconds of rush hour

driving.

The efficiency of the bio-inspired, neuromorphic processing exposes the shortcom-

ings of digital computing. In 1980s, neuromorphic computing is a concept describing

the use of very-large-scale-integration(VLSI) systems containing electronic analog

circuits to mimic neuro-biological architectures in the nervous system. In recent

times, the term neuromorphic has been used to describe analog, digital, and mixed-

mode analog/digital VLSI and software systems that using models of neural systems

(for perception, motor control, or multisensory integration).

Implementing neural systems are the only thought to be neuromorphic on the

8

condition that they process in real time. Ongoing operation is a normal prereq-

uisite for sensory systems, and numerous neuromorphic systems have been focused

on sensory systems. Underneath, researchers study especially visual, sound-related,

olfactory and touching nerve neuromorphic systems.

In Mead and Mahowald (1988), a ”silicon retina” executes both the transduction

(a fundamental photoreceptor circuit that has a near-logarithmic reaction), and a

flat resistive layer that models the external plexiform layer of the retina. The first

retina had 48 by 48 pixels. The system gives an output that is the contrast between

the fovea intensity and a weighted normal of the enclosing intensities, which is truly

dissimilar to what happens on a computerized cam. The general impact is that

the reaction to a static edge is a spatial derivative, rather like what happens in a

natural retina. What’s more, the reaction to a featureless surface is zero free of the

luminance.

Numerous papers have built up the thoughts inside this paper. Better pho-

toreceptors are proposed and examined. These are utilized to make retinas more

contrast-sensitive Andreou et al. (1995). By performing extra processing at the sil-

icon retina, one can make the system ready to model particular visual capacities.

For instance, a period to crash detector Indiveri (1998), and a model of the fly rudi-

mentary movement monitor has been created Harrison and Koch (1998), and a fly

elementary motion detector model has been created Yang et al. (2006). One es-

pecially fascinating recent progress has been a system that distinguishes intensity

changes in a general luminance free way. In addition, it transmits these serially

utilizing AER, consequently empowering sensing of quickly changing visual scenes

without the gigantic information rates inferred by the need to process entire systems

Lichtsteiner et al. (2008).

In summary, after being trained by some learning algorithms, the neuromorphic

model on a computer can be applied to speaker recognition, looming detection and

9

temporal pattern matching Esser et al. (2013). However, the connection strengths

on the neuromorphic chip cannot be directly updated through those learning rules.

Biological plausible training algorithms are needed for training the neuromorphic

chip to solving control problems.

1.5 Training Methods for Spiking Neural Networks

The effectiveness of SNN training algorithms to date remain very limited compared

to artificial neural networks and has yet to be demonstrated on challenging control

problems. One of the main difficulties to overcome is that the response of an SNN is

not available in closed-form and must be obtained numerically by solving a system of

differential equations. Additionally, the complex spike patterns of SNNs need to be

decoded into reduced-order continuous signals for control or to assess the system-level

performance.

An early supervised learning algorithm for SNN training, called SpikeProp, is a

modification of the backpropagation ANN training method based on gradient de-

scent, and directly manipulates the network’s synaptic weights Bohte et al. (2002).

However, it is required that the neurons are defined such that they fire once per

signal, which severely limits the algorithm’s use for most spike patterns. Several

backpropagation approaches have expanded the capabilities of this method to more

diverse spike signals, such as those that are encoded and decoded using rate coding

Rowcliffe and Feng (2008); Ponulak and Kasinski (2010); Fiete and Seung (2006);

Burgsteiner (2006); Sporea and Grüning (2013). These methods allowed for SNNs

to be applied to more problems, such as classification and simple control problems,

but the network architectures and spike train encoding and decoding techniques are

unrealistic for biological neuronal networks in nervous systems or neuronal cultures

Pennartz (1997a). Other approaches have been presented that change the structure

of the network by adding and removing neurons during training, which allows for

10

adaptation of the SNN to new data without retraining Pfister et al. (2003); Dora

et al. (2014), but this is also far from a biologically-plausible method. Additionally,

the SNN weights, delays, and neuron numbers can be designed directly through op-

timization using genetic algorithms or linear programming to match spike rasters

or perform classification Saleh et al. (2014); Rostro-Gonzalez et al. (2012). These

approaches can match specific spike patterns and sequences well but also cannot be

applied to biological networks.

It has been shown through biological experiments and observations that biological

network plasticity is driven by Hebbian learning mechanisms Markram et al. (1997);

Dan and Poo (1992); Levy and Steward (1983); Meliza and Dan (2006), Wang et al.

(2014), such as spike-timing-dependent plasticity. The synaptic efficacy changes are

based on the temporal correlation of firing activity of a set of pre and postsynaptic

neurons. Several supervised learning approaches based on the STDP mechanism have

be developed that have been effectively applied to nonlinear function approximation

and classification problems Pfister et al. (2003); Dan and Poo (1992). This is also

true for other approaches that use reinforcement learning methods based on STDP,

which have been successful in nonlinear function approximation and classification as

well Pennartz (1997a),Legenstein et al. (2010); Ferrari et al. (2008b); Foderaro et al.

(2010); Florian (2007b). The reinforcement learning approaches use a global reward

to simulate a global neurochemical signal that influences the STDP rule that induces

synaptic weight changes within the network. It has also been recently shown that

spike driven synaptic plasticity (SDSP) can be used for pattern recognition if it is

assumed that the synaptic weights are known Kasabov et al. (2013). However, it is

not within the realm of current technological capabilities to measure the synaptic

weights and synaptic connections of in vivo neural networks. The SDSP rule in-

creases the synaptic weight slightly every time a new spike arrives at the synapse

and decreases slowly when there is no spike.

11

Many of the existing algorithms listed above are capable of performing function

approximation or classification well. However for an approach to be viable in the

training of biological neuronal networks or memristor-based neuromorphic computer

chips, an algorithm must not require the direct manipulation of synaptic weights or

knowledge of those weights, since the technology does not exist to do so. Instead

of directly changing the weights, approaches have been developed that uses only

input signals to perform supervisory training on the SNN Zhang et al. (2013, 2012).

By controlling the precise timing and magnitude of input training signals, the SNN

is trained to approximate a function and has been shown to serve effectively as a

controller in a robot navigation application.

12

2

Spiking Neural Network Model

In the case of modeling a biological neuron, physical analogs are used in place of

abstractions such as weight and transfer function. The input signal to a neuron is

defined by an ion current, through the neuron membrane that occurs when neuro-

transmitters lead to an activation of ion channels in the membrane. This is modeled

by a physical time-dependent current Iptq. The concentration of charged ions —

on either side of the cell membrane — determines a capacitance Cm. Finally, the

response of this neuron to the signal is a change in voltage between the neuron and

its environment. This voltage change sometimes causes an action potential. After

many experiments on a giant axon of the squid, Hodgkin and Huxley measured

and derives mathematical differential equations for describing the neural dynamics.

The Hodgkin-Huxley model is the primary reference for deriving the simple neuron

models. Several nonlinear ODEs below model the neurons,

Cm
dV

dt
� gNam

3hpENa � V q � gKn
4pEK � V q � gLpEL � V q (2.1)

where ENa, EK , and EL are the reversal potentials. Reversal potentials and

13

conductances are determined according to the experiments Hodgkin and Huxley

(1952b).

In Eqn. 2.1, m,n,h are gating variables. Their dynamics are based on the differ-

ential equations below,

9m � αmpV qp1 �mq � βmpV qm
9n � αnpV qp1 � nq � βnpV qn
9h � αhpV qp1 � hq � βhpV qh

(2.2)

where 9m � dm{dt, m,n,h can be considered as the probabilities of opening of sodium

channel, closing of sodium channel, opening of potassium channel. αm, αn, αh, βm, βn, βh

are the voltage-dependent rate constant.

Each equation in Eqn. 2.2 can be rewritten in the form,

9x � �
1

τxpV q
rx� x0pV qs (2.3)

where x stands for m, n, or h. For fixed voltage V , the variable x approaches the

value x0pV q with a time constant τxpV q. The asymptotic value x0pV q and the time

constant τxpV q are given by the transformation x0pV q � αxpV q{rαxpV q�βxpV qs and

τxpV q � rαxpV q � βxpV qs
�1.

The behavior of this high-dimensional neural network model is hard to visualize

and applied in detail while two-dimensional neural network models can be studied

by a phase plane analysis and easier to apply. Therefore, a reduction from Hodgkin-

Huxley model to low dimensional neuron model is especially useful.

For reduction, a fast gating variable m representing the probability of opening of

the sodium channel is treated as an instantaneous variable. Therefore, the equation

for describing the variablem’s dynamics are eliminated. Secondly, two time constants

describing the dynamics of potassium channel τnpV q and the sodium channel τhpV q

are approximately the same. Therefore, two equations for describing the closing of

14

sodium channel and opening of potassium channel can be reduced to one equation.

Therefore, the four dimensional neuron models can be reduced to two dimension

models such as Morris-Lecar Model Morris and Lecar (1981) and FitzHugh-Nagumo

Model FitzHugh (1961); Nagumo et al. (1962).

Hodgkin-Huxley model does not have a so-called firing threshold. However, in

a certain range of membrane potential, the neuron is very sensitive to the input

pulses for generating and action potential. Therefore, this property can be fairly

approximated by defining a threshold. Whenever a neuron’s membrane potential

reaches a threshold value, the neuron spikes transmit signals to other neurons.

2.1 Integrate-and-Fire Model

A systematic method to dimension reduction can be found in Kepler et al. (1992).

Abbott and Kepler (1990) describes further reduction from a two-dimensional model

to an integrate and fire model. The LIF SNN also provides the highest computational

efficacy compared to other neurons models. Dayan and Abbott (2003); Gerstner and

Kistler (2002).

In Fig. 2.1, an action potential happened from the left neuron can transfer the

signal through the synapse to the postsynaptic neuron on the right. In the dashed

square, the current I can be both synaptic current and external current. It is divided

into two input currents IR and IC . The first variable can be calculated by Ohm’s law

as IR � V {R. IC charges the capacitor C. Then capacitive current IC � CdV {dt.

Therefore,

Iptq � Cm
dV

dt
�
V ptq

R
(2.4)

After we use time constant τm � RC and multiply both sides by R, the standard

LIF equation is,

15

Figure 2.1: Diagram of the IF model. The basic circuit is the module inside the
dashed square. The current I charges the circuit to increase the voltage V ptq across
the capacitance. Then it is compared with Vth. If the voltage is equal or over the
threshold, the neuron spikes and generate an output pulse δpt � tfi q. The spike
generates an input synaptic current to the postsynaptic neuron.

τm
dV ptq

dt
� �V ptq �RIptq (2.5)

where V ptq is the membrane potential, τm is the membrane time constant of the

neuron. Whenever the V ptq in Eqn. 2.5 increases above the threshold value Vth, it

is reset to the resting potential. In Fig. 2.2, if the voltage is less than the resting

potential shown as blue dash line, the dV will be positive for increasing the voltage.

If the voltage is larger than the resting potential, dV will be negative to decrease the

potential.

2.1.1 Synaptic Current

The inputs to the neurons can be extra stimulus via light or electrical signal and

synaptic signals. Synaptic current is the main way for communications between

neurons. After the neurons fires, the signal transfers from soma to another neu-

ron’s dendrite through the axon. The synaptic current can model either electrical or

chemical signals. There are many different mathematical models for synaptic cur-

16

Figure 2.2: Red line is the membrane potential gradient with respect to the mem-
brane potential. Blue dash line is the resting potential that equals to -65mv. No
current input is given.

rents. Each neuron may receive synaptic currents from many neurons. Therefore,

the synaptic current each neuron receives is,

Iiptq �
¸
j

wij
¸
f

αpt� tfj q (2.6)

where wij is the synaptic weight between neuron i and j, f is the index of each spike,

j is the presynaptic neurons index, tfj is the fth firing time of neuron j.

We use two different models including Dirac δ-pulse and α-function to model the

αp�q in Eqn. 2.6.

Dirac δ-pulse Synaptic Current : If a presynaptic neuron j fired a spike at tfj , the

postsynaptic neuron receives current αpt� tfj q. The Dirac δ-pulse models the current

as αpsq � qδpsq, where s � t � tfj . q is the total charge that is injected in a

postsynaptic neuron via a synapse with weight wij � 1.

17

α-Function : According to Eqn. 2.6, the synaptic current from the presynaptic

neurons j to postsynaptic neuron i can be modeled as,

Iijptq � �wijgijpsqrV ptq � Eijs, where αpsq � �gijpsqrV ptq � Eijs (2.7)

where gijpsq is the synaptic conductance, and Eij is the reversal potential for the

synapse. A realistic synaptic current model has a finite duration. Therefore, gijptq

are modeled using this two-parameter alpha function for representing the rising and

decay phases Schutter (2009),

gijpsq � hpe
� s
τdelay � e

� s
τrise q (2.8)

where, to ensure that the alpha function’s amplitude equals 1, the normalization

factor in (2.8) is defined as,

h � p�e
�
tpeak
τrise � e

�
tpeak
τdecay q�1 (2.9)

and the conductance peaks at a time

tpeak �
τdecay τrise

pτdecay � τriseq
ln

�
τdecay
τrise

(2.10)

2.1.2 Refractory Period

In order to define the refractory period, HH model need to be mentioned again. In

HH model, before the membrane potential reaches a threshold, the neuron’s sodium

channel and potassium channel are open. Because the sodium channels opens instan-

taneous, the membrane potential increases because sodium ions flux into the neuron.

In the meantime, the potassium channel also starts to open slowly, and potassium

ions flow out of the neurons. After the sodium channel shutdown, the potassium ions

continue to flow out so that the membrane potential continues to decrease. Because

the potassium channels activate longer, the membrane potential decreases to below

18

the resting potential, which is called hyperpolarizes. During this hyperpolarization

and before the membrane potential goes back to its resting potential, it is almost

impossible to let the neuron fire again. This time range is called the refractory pe-

riod. The action potential and refractory period can be seen clearly in a simulated

Hodgkin-Huxley model in Fig. 2.3.

Figure 2.3: Action potential of the neuron modeled by the HH model.

The refractory period is after the membrane potential drops down below the

resting potential 0 mv in Fig. 2.3. In Fig. 2.4, if the second current stimuli is during

the refractory period, the neuron can’t fire even with a larger stimulus.

However, if the currents stimulate the neuron after its previous refractory period,

the neuron can fire again in Fig. 2.5.

In Fig. 2.6, LIF neuron model can also have this property by setting the mem-

brane potential at the resting potential for a certain period time.

19

Figure 2.4: Neuron cannot fire during the refractory period.

Figure 2.5: Neuron can fire after the refractory period.

20

Figure 2.6: LIF neuron with a refractory period.

2.2 Hebbian Learning

In most neural network models, a synaptic strength wi,j determines the amplitude

of the postsynaptic neuron’s membrane potential response to the incoming spike.

However, according to many biological experiments, the synaptic strength will change

over time. Hebb proposes hypothesis that describes how the connection strength

between two neurons will change according to its responses.

“When an axon of cell A is near enough to excite cell B or repeatedly or persistently

takes part in firing it, some growth process or metabolic change takes place in one

or both cells such that A’s efficiency, as one of the cells firing B, is increased.”

In Fig. 2.7, wi,j will only depend on the responses of neuron A and B. In other words,

the synaptic weights change based on the firings of pre- and postsynaptic neurons

called Hebbian learning.

After 20 years, the long-term synaptic weight changes are found during exper-

iment Bliss and Lømo (1973); Bliss and Gardner-Medwin (1973). The results of

21

Figure 2.7: Change of synaptic weight wi,j only depends on the spikes of A and B.

those experiments are consistent with Hebbian’s hypothesis; because the postsy-

naptic neuron is easier to be stimulated to fire after a period with many spikes of

pre- and postsynaptic neurons. In 1970s, Long-term depression (LTD) was found

among the synapses between the Schaffer collaterals and CA1 pyramidal cells in the

hippocampus Albus (1971).

Even though the Hebbian’s rule is proved, it does not explain how close the two

neurons’ spikes should be in order to increase the weight. Experiments start to study

the weights change according to temporal differences between the pre- and postsy-

naptic neurons. According to experiments Bi and Poo (1998), the synaptic strength

between two neurons can either increase or decrease according to the temporal dif-

ferences of the firing times of pre- and postsynaptic neurons. This property is named

Spike-Timing-Dependent Plasticity(STDP).

2.3 Spike Timing-Dependent Plasticity(STDP)

A persistent learning mechanism known as spike-timing-dependent plasticity, ob-

served in biological neuronal networks, is used in this thesis to model synaptic plas-

ticity in the LIF SNN. Synaptic plasticity refers to the mechanism by which the

synaptic efficacies or strengths between neurons are modified over time, typically as

22

a result of the neuronal activity. These changes are known to be driven in part by the

correlated activity of adjacently connected neurons. The directions and magnitudes

of the changes are dependent on the relative timings of the presynaptic spike arrivals

and postsynaptic firings.

If the presynaptic neuron fires shortly before the postsynaptic neuron, the strength

of the connection will be increased. In contrast, if the presynaptic neuron fires after

the postsynaptic neuron, the strength of the connection will be decreased as illus-

trated in Fig. 2.8. Two constants τ� and τ� determine the ranges of the presynaptic

to postsynaptic temporal differences over which synaptic strengthening and weak-

ening occurs. Let the synaptic efficacy or strength be referred to as weight, and

denoted by w. A � rA�, A�s is the maximum amplitude of the change of weight due

to a pair of spikes. tpre and tpost denote firing times of the presynaptic neuron and

the postsynaptic neuron respectively. Then, for each set of neighboring spikes, the

weight adjustment is given by,

∆w � Aerptpre�tpostqτ s (2.11)

such that, the synaptic weight increases when the postsynaptic spike is before the

presynaptic spike, and the weight decreases when the opposite happens. The am-

plitude of the weight change ∆w lessens as the time difference between the spikes

becomes larger as is illustrated in Fig. 2.8. For simplicity, in this thesis, all changes

in synaptic strengths are assumed to occur solely as a result of the spike-timing de-

pendent plasticity mechanism. Different methods can be used to identify the spikes

that give rise to the STDP mechanism. The nearest-spike STDP model Sjostrom

et al. (2001) means that for every spike of the presynaptic neuron, its nearest post-

synaptic spike is used to calculate the timing difference in (Eqn. 2.11), regardless of

whether it takes place before or after the presynaptic firing. Then, from (Eqn. 2.11),

23

Figure 2.8: STDP term as a function of the time delay between the last spike of
the postsynaptic neuron, and the presynaptic neuron.

the weight change due to one of the spikes of the ith neuron is modeled by the rule,

∆wip∆tiq �

#
A�e

∆ti
τ� if ∆ti ¤ 0

�A�e
�

∆ti
τ� if ∆ti ¡ 0

(2.12)

where,

∆ti � t1,i � argmin
t2,k

|t1,i � t2,k|. (2.13)

∆ti is the firing time difference between the two neurons, t1,i is the firing time of

the presynaptic neuron, and t2,i is the firing time of the postsynaptic neuron. The

constants used in this thesis are τ� � τ� � 20ms, A� � 0.05, and A� � 1.05A�,

where A� and A� determine the maximum amounts of synaptic modification that

occur when ∆t is approximately zero Song et al. (2000).

From (Eqn. 2.12), the firing time of the postsynaptic neuron is chosen such

that the absolute firing time difference between the presynaptic neuron and the

postsynaptic neuron, |t1,i � t2,k|, is minimized. Therefore, the postsynaptic spike

t2,k that is nearest the presynaptic firing time t1,i is used to calculate the firing time

24

difference ∆ti. The value of t2,k that minimizes |t1,i�t2,k| can be found by comparing

the firing time difference of the two neurons. In order to obtain an indirect learning

method that does not rely on the direct manipulation of the synaptic weights, in

this thesis, it is assumed that the weights can only be modified according to the

STDP rule (Eqn. 2.12). Also, the training algorithm cannot specify any of the

terms in (Eqn. 2.12) directly, but can only induce the firing times in (Eqn. 2.12) by

stimulating the input neurons, e.g. through controlled pulses of electric voltages or

blue light.

In this thesis, we also use all-to-all pairings on training neuron network to con-

trol virtual insect. For the all-to-all pairing, which means each presynaptic spike

is compared with all previous postsynaptic spikes to calculate depression, and each

postsynaptic spike is compared with all previous presynaptic spikes to calculate po-

tentiation, the pair-based STDP rule in (2.12) can be numerically implemented in the

LIF-SNN using two local variables, xj for a low-pass filtered version of the presynap-

tic spike train, and yi for the postsynaptic spike train Gerstner and Kistler (2006).

Let us consider the synapse between neuron j and neuron i. Suppose that each spike

from presynaptic neuron j contributes to a trace xj at the synapse,

dxj
dt

� �
xj
τx

�
¸
tfj

δpt� tfj q (2.14)

where tfj denotes the firing times of the presynaptic neuron. In other words, the

trace xj is increased by an amount of one at tfj and decays with time constant τx

afterwards. Similarly, each spike from postsynaptic neuron i contributes to a trace

yi,

dyi
dt

� �
yi
τy
�
¸
tfi

δpt� tfi q (2.15)

where tfi denotes the firing times of the postsynaptic neuron. When a presynaptic

25

spike occurs, the weight decreases proportionally to the momentary value of the

postsynaptic trace yi. Similarly, when a postsynaptic spike occurs, a potentiation of

the weight is induced, such that:

∆wijpt
f
i q � D�pwijq � xjpt

f
i q (2.16)

∆wijpt
f
j q � �D�pwijq � yipt

f
j q (2.17)

26

3

Benchmark Training Problem: Virtual Insect
Control and Navigation

3.1 Unicycle Modeled Virtual Insect

The two different spike-based indirect training approaches presented in this paper

is demonstrated on a path planning and control problem in which a virtual insect

equipped with target and terrain sensors, processes environmental autonomously via

SNNs. The physical characteristics of the virtual insect can be described by a rigid

object A that is a compact subset of a workspace W � R2. The workspace W

can either contain smooth or rugged territory, with roughness and solid obstacles,

denoted by B1, ...,BN , that must be avoided by A. The virtual insect uses two

antennas, shown in Fig. 3.1, where the dashed circle S of radius r represents the

field of view of the left (target) antenna, which depends on the terrain roughness,

and the red dot at the top of the red antenna is the field of view of the right (terrain)

antenna. Using sensory information obtained by the antennas, the virtual insect must

process the sensory inputs and adjust its current state according to the corresponding

target movement.

27

Figure 3.1: Insect geometry and
workspace coordinates.

Figure 3.2: Insect terrain sensors
(red antennas) (A), and target sensors
(green antennas) (B).

The position and orientation of the insect with respect to W are defined with

respect to an inertial reference frame FW with origin OW inW . The insect’s sensory

inputs are defined with respect to a moving reference frame FA, embedded in A,

and with origin OA. It is assumed that both A and S are rigid objects, and that

S has a fixed orientation and position with respect to A. Let q P R3 denote the

configuration of the virtual insect, such that q � rx y θsT , where x and y are the

Cartesian coordinates in FW , and θ is the heading angle of the virtual insect. Then,

Apqq denotes the compact subset ofW that is occupied by A when the insect is at a

configuration q P C, where C is the insect’s configuration space. Similarly, the subset

of W occupied by S at q can be denoted by Spqq, and is the set of all the accessible

sensor information that can be obtained by the insect when Ti X Spqq � H, where

Ti is the geometry of the target.

The objective of the virtual insect is to reach the target Ti, while avoiding rugged

terrain in W by using visual and terrain information obtained from its antennas.

Although the problem formulation and equations presented in this section are used

to describe the insect motion, they are not used to design the insect SNN controller.

28

Instead, the SNN is trained using the spike-based indirect algorithm presented in

Chapter 4, based on sensory inputs to which the insect responds at any time t ¡ t0.

The motion of the virtual insect is simulated using an adaptation of the unicycle

robot that can more closely represent insect locomotion LaValle (2004),

$''''&
''''%

9x � v cosθ
9y � v sinθ
v � v1�v2

2
9θ � v2�v1

L

9vi � � vi
τmotor

� η �Hpt� tif q

(3.1)

where v is the linear velocity, vi is the ith motor speed, 9θ is the angular velocity, L is

the distance between two motors, τmotor is the time constant that results in a gradual

decay of the motor speed following activation of the motor, tif is the firing time of

the output neuron i and Hp�q is the Heaviside function which is scaled by a constant

η.

3.1.1 Sensor Models of the Virtual Insect Trained by Gradient Method

The virtual insect uses terrain and target sensors, represented by the antennas in

Fig. 3.2 in order to detect the roughness of the terrain, and the distances, d1 and d2,

between the antennas and the target. The roughness of the terrain is represented by

grayscale values, where 255 (white) is the flat region, and 0 (black) is the roughest

region. Thus, the terrain sensor has an input,

Sm � γ|Mpx, yq � 255| (3.2)

where γ is a scaling constant for the intensity of sensor inputs, and Mpx, yq is the

grayscale value at px, yq.

The two target (e.g. vision) sensors determine the position of the target T by

calculating the Euclidean distance between each of the two (green) antennas, and

29

the target (star). Then, the sensory input from the target sensors is defined as,

St � µ}P px, yq � T px, yq} (3.3)

where µ is a scaling constant for the intensity of sensor inputs, and P px, yq and

T px, yq are the coordinates of the sensor and target, respectively.

A gradient training method is applied to train a 7-nodes neural network with

inhibitory and excitatory neurons for controlling a virtual insect. The SNN structure

is shown in Fig. 3.3. The blue neurons are the four sensor neurons that receive the

target and terrain sensor inputs. The two gray neurons are the output neurons that

control the movement of the insect. Neuron 3 is the only inhibitory neurons serving

as a computational neuron.

Figure 3.3: SNN architecture with 7 neurons.

3.1.2 Virtual Insects Trained by Weights Perturbation

For the perturbation training algorithm, in Fig. 3.2, the virtual insect used here has

four total sensors of two types–two olfactory sensors to detect the insect’s distance

to the target, and two terrain sensors to feel the roughness of nearby terrain. The

30

Figure 3.4: Target sensors and the distances between the sensors and the target.

measurements of these sensors are encoded into current stimuli for the sensory input

neurons of the SNN. Each sensor has a fixed position on the insect geometry, A,

as illustrated in Fig. 3.1 as antennae, where the terrain sensors are represented by

gray lines and the olfactory sensors by black lines. The measurements made by the

sensors are assumed to occur at the ends of the antennae, and the magnitudes of the

current stimuli are governed by sensor models described here.

The target sensors’ stimuli, denoted by gL and gR for the left and right antennas,

respectively, are modeled by,

gL � αpdLpxL, yLq � λrdLpxL, yLq � dRpxR, yRqsq

gR � αpdRpxR, yRq � λrdLpxR, yRq � dRpxL, yLqsq
(3.4)

where the R and L subscripts of x and y correspond to the xy-positions of the right

and left sensors, respectively, dL and dR are the Euclidean distances between the

target position and the left and right target sensors in Fig. 3.4, respectively, λ � 5 is

a constant value chosen heuristically to amplify the target sensor inputs differences

between the left target sensor value and the right target sensor value, and α � 10�9

is the scaling factor of the sensor inputs.

In Fig. 3.5, the terrain sensors’ stimuli, defined as hL and hR for the left and

right antennae, respectively, are governed by,

hL � αγ σ
rpxL,yLq�1

hR � αγ σ
rpxR,yRq�1

(3.5)

31

Figure 3.5: Terrain sensors and the obstacle touched by the left terrain sensor.

Table 3.1: Size of the SNN

Neurons Excitatory Inhibitory Total
Input Sensor Neurons 49 15 64
Hidden Neurons 80 20 100
Output Motor Neurons 14 6 20

where γ � 0.1 is a constant scalar chosen heuristically to bound the terrain sensor

inputs, and σ denotes a roughness value such that when r � σ, the measured terrain

is an obstacle.

The sensor data is applied to an input neuron layer of the SNN by injecting

currents to the input neurons. The input neurons are a subset of neurons in the

SNN that receive input signals. Within the input layer as illustrated in Fig. 3.6, the

neurons are divided into four groups, where each group corresponds to and receives

input signals from one of the four sensors at the same time. A 3-D structure of this

SNN is shown in Fig. 4.15, where all neurons are randomly connected. The three

layers are input layer, hidden layer or computational layer and output layer. The

number of inhibitory and excitatory neurons in each layer is shown in Table. 3.1.

32

Figure 3.6: Sensor inputs to input sensory neurons.

3.2 Biologically Modeled Virtual Insect

For the biological model of virtual insect, the sensor models are the same as the

unicycle model. However, the insect now is driven by another neural network con-

trolling the insect’s locomotion. In Fig. 3.9, the locomotion network receives the

control input from the trained SNN as the Central Nervous System (CNS), which

has 550 neurons in total. As the concept of mean firing rate has been used suc-

cessfully for SNN signal decoding over the last 90 years, and previous works have

33

Figure 3.7: 3D structure of the SNN and two pairs of trained neurons. The training
responses are shown in the Fig. 4.15.

shown a correlation between firing frequencies in muscle stretch receptor neural cells

and applied force Mountcastle (1957); Hubel and Wiesel (1959), it is the decoding

method used for control the biological locomotion model. The firing frequency of

one neuron is defined by,

fo �
npT q

T
(3.6)

where fo is the firing frequency of the output neuron o within the time interval, T .

Thus, the mean firing frequency is determined by,

fL �
Σo�1,...,CLfo

CL
(3.7)

fR �
Σo�CL�1,...,CL�CRfo

CR
(3.8)

where fL, fR are the average firing frequencies of the left and right output neurons

in Fig. 3.9, CL, CR are the numbers of left and right output neurons. The average

34

Figure 3.8: Inputs to CPG Neurons.

firing frequencies of the left and right output neurons are processed by a “winner

gets all” decoder, where the output from the decoder to the CPG is based on the

comparison between the left and right firing frequencies. If one side of the output

has a higher average firing frequency, then the outputs to the CPG are constant for

that side, while being zero for the other side. This is expressed in,

νL � π �HpfR � fLq (3.9)

νR � π �HpfL � fRq (3.10)

where νL, νR are the input currents given to the left and right sets of CPG neurons,

fL, fR are the average firing frequencies of the left and right output neurons. Hp�q is

the Heaviside function, which determines which side will get the constant output, π

, which is a constant current input to the neurons in the locomotion system.

In Fig. 3.8, νL is used for stimulating neurons 1, 5, 3, while νR is used to stimulate

neurons 4, 5, 6. Stimulation of neurons 1, 5, 3 causes the left legs to flex, similarly

neurons 4, 2, 6 flex the right legs. Additionally, neurons 4, 2, 6 are inhibited by the

stimulation of neurons 1, 5, 3, keeping them extended.

The CPG neurons stimulated by the decoder output, are one of five sets of neurons

that make up the locomotion neural network. The neurons model and network

35

connectivity among the CPG neurons, left and right motor neurons is discussed in ?.

All synapses in the CPG neurons are inhibitory, which is paramount for the plausible

Figure 3.9: SNN architecture of a subset of neurons in a large neural network with
550 neurons.

mechanism of the insects’ tripod leg movement. The inhibition of opposite legs, as

detailed above ensures that three legs are on the ground at any time to stabilize the

body of the insect, while the other three are executing a step.

36

4

Indirect Training Algorithms

4.1 Analytic Gradient Training Algorithm

Consider the two-node LIF SNN schematized in Fig. 4.1, modeled using the approach

described in Section 2.1.1. sptq represents the input given to the LIF sampler. In

Fig. 4.1, the SNN synaptic strength w21, representing the synaptic efficacy for a

pre-synaptic neuron, labeled by i � 1, and a post-synaptic neuron, labeled by i � 2,

w21 cannot be modified directly by the training algorithm but can only change as

a result of the STDP mechanism described in Section 2.3. In place of controlling

w21, the goal of the indirect training algorithm is to determine a spike train that

can be used to stimulate the input neuron (i � 1) using Iinj, thereby inducing it to

spike, such that the synaptic weight w21 changes from an initial (random) value to a

desired value w�.

For this purpose, we introduce a continuous spike model comprised of a superpo-

sition of Gaussian radial basis functions (RBFs),

sptq �
Ņ

k�1

wk expr�βkp||t� ck||q
2s (4.1)

37

Figure 4.1: Model of two-node LIF spiking neural network.

where wk determines the height of the kth RBF, which will decide the constant

current input Iinj. βk determines the width of the kth RBF, ck determines the center

of the kth RBF, where k � 1, . . . , N , and N is the number of RBFs. Thus, the

set of RBF adjustable parameters is P � twk, ck, βk | k � 1, . . . , Nu. A spike train

can be obtained from the continuous spike model (Eqn. 4.1) by processing s using

a suitable LIF sampler that outputs a square pulse function with the same heights,

widths, and centers, as the RBF spike model (Eqn. 4.1).

In this two-node SNN model, there is no synaptic current sent to the first neuron

because there are no pre-synaptic neurons connected to it. Rather, the input for the

first neuron is the square pulse function provided by the output of the LIF sampler.

Therefore, during one square pulse, the input, Iinjptq, to neuron i � 1 can be viewed

as a constant, which for our case is h, the height of the RBF. For a fixed threshold

and a constant input, the time it takes for the first neuron to fire (or a spike to be

generated) is,

T � �τm ln

�
1 �

ζ

hRm

�
pIRm ¡ ζq (4.2)

where ζ is the potential difference between the spike generating threshold, Vth, and

the resting potential, V0, i.e., ζ � Vth � V0, h is the height of input square pulse, Rm

is the resistance of the membrane, and τm is the passive-membrane time constant

Burkitt (2006). Thus, from (Eqn. 4.2), the value of T can be controlled by adjusting

h. We allow the first neuron to fire near the end of a square pulse by inputting a

38

spike sequence generated by an RBF model with a suitable width and height. Then,

the firing times of the first neuron can be easily adjusted by altering the centers of

the RBF.

In this simple example, it is assumed that the synapse is of the excitatory type.

Therefore, (Eqn. 2.6) can be written as,

Isptq � CmaE

kţ

k�k0

δpt� t1,k � τdq (4.3)

where aE is the change in potential due to a single spike from presynaptic excitatory

neurons, τd is a known constant that represents the conduction delay of the synaptic

current from neuron i � 1, and t1,k are the firing times of the first neuron. k0 is

the index of the spike of the first neuron, which occurs after the previous spike of

the second neuron, kt is the index of the spike of the first neuron, which provoke

the firing time of the second neuron. The only input to the second neuron is the

synaptic current defined in (Eqn. 4.3). Therefore, substituting (Eqn. 4.3) and (Eqn.

4.2) into (Eqn. 4.4),

Cm
dvptq

dt
� Ileakptq � Isptq � Iinjptq (4.4)

results in the following equation for the membrane potential:

Cm
dvptq

dt
� �

Cm
τm

rvptq � V0s � CmaE

kţ

k�k0

δpt� t1,k � τdq (4.5)

Solving (Eqn. 4.5) for the membrane potential of the second neuron provides the

response of neuron i � 2,

vptq � V0 �
kţ

k�k0

aE exp

�
�
t� t1,k � τd

τm

�
Hpt� t1,k � τdq (4.6)

39

where Hp�q is the Heaviside function. Whenever the membrane potential in (Eqn.

4.6) exceeds the threshold Vth, the second neuron fires, and the membrane potential

vptq is then set instantly equal to V0. It follows that the firing times of the second

neuron t2,j can be written as a function of the firing times of the first neuron,

t2,j � pt1,kt � τdq H

#
kţ

k�k0

aE exp

�
�
t2,j � t1,k � τd

τm

�
Hpt2,j � t1,k � τdq � pVth � V0q

+

(4.7)

where j is the index of the firing times. In addition, the membrane potentials of the

first neuron and the second neuron can be calculated using (Eqn. 4.6) and (Eqn.

4.2).

An example of the membrane potential time history for the two neurons is plot-

ted in Fig. 4.2, where the square pulse function S used to stimulate the first neuron

is plotted along with the neurons’ membrane potentials v1 and v2. The red points

denote the firing times and potentials for the two neurons. It can be seen from Fig.

4.2 that, with this input, the first neuron fires five times and the second neuron fires

one time. In this SNN, the input to the second neuron is given only by the synaptic

current caused by the firing of the first neuron. It can be seen that only when the

second and third firing times of the first neuron are very close, the membrane poten-

tial of the second neuron increases over the threshold, causing it to fire. Whereas,

the fourth and fifth firing times of the first neuron are too far apart to cause firing

of the second neuron.

4.1.1 Deterministic Spike Model

The deterministic spike model consists of a continuous RBF model in the form (Eqn.

4.1) combined with an LIF sampler that converts the RBF into a square wave func-

tion. The LIF sampler developed in Feichtinger (2010) for the approximate recon-

struction of bandlimited functions is adopted, which convert any continuous signal

40

0 10 20 30 40 50 60 70
0

0.5

1

t

S
(t

)

Square Pulse

0 10 20 30 40 50 60 70
0

50

t

V
1

membrane potential of neuron 1

0 10 20 30 40 50 60 70
0

50

t

V
2

membrane potential of neuron 2

Figure 4.2: Membrane potential of the two neurons in the SNN in Fig. 4.1.

fptq into a square wave function by integrating it against an averaging function

uk,sptq. The integrated result is compared to a positive threshold and a negative

threshold, such that when either one of the two thresholds is reached, a pulse is

generated at time tk � s. The value of the integrator is then reset, and the process

repeats. In this thesis, the averaging function uk,sptq is chosen to be the exponential

eεpt�sqXrtk,ss, where XI is the characteristic function of I, and ε ¡ 0 is a constant that

models the leakage of the integrator, as due to practical implementations Feichtinger

(2010). Then, the LIF sampler firing condition that generates the square wave (or

sequence of pulses) is,

� θ �

» tk�1

tk

fptqeεpt�tk�1qdt � f, uk ¡ (4.8)

where tk is the time instant of the sample, tk�1 is the next time instant of the

sample, uk is the averaging function, θ is the threshold value, and ε is the leakage of

the integrator. The output of the LIF sampler can be expressed in terms of the time

instants at which the integral reaches the threshold, tt0, ..., tnu, and by the samples

41

q1, ..., qn, defined as

qj �

» tj�1

tj

fpxqeεpx�tjqdx, for 1 ¤ j ¤ n (4.9)

From (Eqn. 4.8), it follows that |qj| � θ. By adjusting the parameters of the LIF

sampler, it is possible to convert the RBF signal in (Eqn. 4.1) to a square wave

comprised of pulses with the same width, height and centers as the RBFs in (Eqn.

4.1). Thus, by using the RBF spike model in (Eqn. 4.8) with suitable widths and

heights, it is possible to induce the first neuron to fire shortly before the end of

each pulse of the square-pulse function (also considering the refractory period of the

neuron). For simplicity, in this example, it is assumed that the heights wk and widths

βk are known positive constants of equal magnitudes for all k. Then, the centers of

the RBF comprise the set of adjustable parameters, P � tck | k � 1, . . . , Nu, to be

optimized. The same approach can be easily extended to the case where all of the

RBF parameters are adapted.

After adjusting the parameters of the RBF function, the firing times of the first

neuron satisfy the constraints,

t1,k ¤ ck �
β

2
(4.10)

t1,k � ∆abs ¥ ck �
β

2
(4.11)

where ∆abs is an absolute refractory time of the neuron. Then, the firing times of the

first neuron can be written as a function of the RBF centers, ck. By design, the first

neuron fires after the same time interval, relative to each square pulse (Fig. 4.2),

due to the chosen RBF heights and widths. Then, the firing times of the first neuron

can be written as,

t1,k � ck �
β

2
� T (4.12)

42

where, t1,k denotes the firing times of the first neuron, ck are the centers of the RBF,

β is the constant width of the RBF, and T is given by (Eqn. 4.2).

The RBF spike model is demonstrated in Fig. 4.3, where an example of RBF

output obtained from (Eqn. 4.1) is plotted and, after being fed to the LIF sampler,

produces a corresponding square wave which can be used as controlled pulse. It can

be seen that the centers of the RBFs precisely determine the times at which a pulse

occurs in the square wave and that the square wave maintains the desired constant

width and magnitude for all k. The next subsection illustrates how, by adapting the

continuous RBF spike model in (Eqn. 4.1), it is possible to minimize a desired error

function, and train the synaptic weight of the SNN without directly manipulating it.

Figure 4.3: Deterministic Spike Model Signals

As explained in Section 2.3, it is assumed that the synaptic weight w21 can only be

modified by controlling the activity of the SNN input neuron(s), with i � 1, and that

it obeys that the nearest-spike STDP model in (Eqn. 2.12). Over time, the synaptic

weight can repeatedly change and, therefore, its final value can be written as the

sum of all incremental changes that have occurred over the time interval rtι, tι�1s,

w21ptq �
M¹
i�1

w0p1 � ∆wiq (4.13)

43

where, for the two-neuron SNN in Fig. 4.1, ∆w1, ...,∆wM are due to M pairs of

pre- and post-synaptic spikes that occur at any time t P rtι, tι�1s. Every weight

increment ∆wi is induced via STDP and, thus, obeys equation (Eqn. 2.12). Since

the firing times in (Eqn. 2.12) depend on the centers of the RBF input, it follows

that every weight increment ∆wi is a function of the RBF centers. In this example,

the constraints (Eqn. 4.10)-(Eqn. 4.11) can be written as,

β

2
 c1, cN �

β

2
 tf , ck � β ck�1, for k � 1, . . . , N

where, from Fig. 4.3, N � 5.

A training-error function is defined in terms of the desired synaptic weight w�

and the actual value of the synaptic weight w21ptq. While different forms of the error

function may be used, the chosen form determines the complexity of the derivation of

the training gradients. It was found that the most convenient form of training-error

function can be derived from the ratio of the actual weight over the desired weight,

eptq �
w21ptq

w�
(4.14)

where w21ptq is the weight value at time t P rtι, tι�1s, obtained from all previous

spikes. The w� can be viewed as the weight that leads to desired output ŷ for a

given input ξ. It can be seen that when w21 is equal to w�, e is equal to one.

Plugging (Eqn. 4.13) into (Eqn. 4.14), the weight ratio can be rewritten as,

eptq �
1

w�

M¹
i�1

w0p1 � ∆wiq (4.15)

and the error between w21 and w� can be minimized by minimizing the natural

logarithm of the ratio (Eqn. 4.15),

Eptq � ln reptqs � lnpw0q � lnp1 � ∆w1q � . . .� lnp1 � ∆wMq � lnpw�q (4.16)

44

As is typical of all optimization problems, minimizing a quadratic form presents

several advantages Stengel (1986). Therefore, at any time t P rtι, tι�1s, the indirect

training algorithm seeks to minimize the quadratic training-error function,

Jptq � Eptq2 � tlnreptqsu2 � tlnpw0q � lnp1 � ∆w1q � . . .� lnp1 � ∆wMq � lnpw�qu2

(4.17)

Then, indirect training can be formulated as an unconstrained optimization problem

in which J is to be minimized with respect to the RBF centers, or P � tck : ck P

rtι, tι�1su. Any gradient-based numerical optimization algorithm can be utilized for

this purpose. The analytical form of the gradient BJ{Bck depends on the form of the

spike patterns. The following subsection derives this gradient analytically for one

example of spike patterns and demonstrates that, using this gradient, the synaptic

weight can be trained indirectly to meet the desired value w� exactly. The same

results were derived and demonstrated numerically for all other possible spike pat-

terns, but they are omitted here for brevity. Another representation of error e1ptq is

defined below to make the convergence of the error more understandable in figures,

e1ptq �
w21ptq

w�
(4.18)

4.1.2 Derivation of Gradient Equations for Indirect Training

Consider the case in which M � 5, w� � 1.72, and 2aE ¡ Vth�V0 ¡ aE, which results

in a two-node SNN (Fig. 4.1) in which neuron i � 1 must fire at least two times in

order for neuron i � 2 to fire. An example of such a spike pattern is shown in Fig.

4.4, where N1 and N2 denote spike trains of neuron i � 1 and i � 2, respectively.

In this case, the first neuron fires five times, and the second neuron fires two times.

The firing time of the first neuron is controlled by the RBF spike model described

in Section 4.1.1. In Fig. 4.4, ti,k denotes the kth firing time of the ith neuron with

k P Ii, where Ii � tk � 1, 2, ..., 5u is an index set for the firing times, and where

45

i is the index labeling the neurons. In this example, the second neuron fires after

t1,3 and t1,5, because t1,2, t1,3 and t1,4, t1,5 are close enough to cause the membrane

potential of the second neuron, v2, to exceed the threshold.

Initially, the synaptic weight is equal to 1.7. The weight change is discontinuous

due to the discrete property of spikes. As shown in Fig. 4.4, the weight increases

three times at t1,3 � τd, decreases at t1,4, and increases again at t1,5 � τd. For this

example, the synaptic weight changes in five increments

∆w1 � A� exp

�
t1,1
τ�

exp

�
�t1,3
τ�

exp

�
�τd
τ�

(4.19)

∆w2 � A� exp

�
t1,2
τ�

exp

�
�t1,3
τ�

exp

�
�τd
τ�

(4.20)

∆w3 � A� exp

�
�τd
τ�

(4.21)

∆w4 � �A� exp

�
t1,3
τ�

exp

�
�t1,4
τ�

exp

�
τd
τ�

(4.22)

∆w5 � A� exp

�
�τd
τ�

(4.23)

When the equations above are substituted in (Eqn. 4.17), the training-error function

can be written as,

J �

"
ln pw0q � ln

�
1 � A� exp

�
t1,1
τ�

exp

�
�t1,3
τ�

exp

�
�τd
τ�

�

� ln

�
1 � A� exp

�
t1,2
τ�

exp

�
�t1,3
τ�

exp

�
�τd
τ�

�
� ln

�
1 � A� exp

�
�τd
τ�

�

� ln

�
1 � A� exp

�
t1,3
τ�

exp

�
�t1,4
τ�

exp

�
τd
τ�

�

� ln

�
1 � A� exp

�
�τd
τ�

�
� ln pw�q

*2

(4.24)

46

Then, the gradients of J with respect to the RBF centers are given by

BJ

Bc1
�

BE2

Bc1
�

BE2

Bt1,1
� 2E

�
∆w1

τ� p1 � ∆w1q

�
(4.25)

BJ

Bc2
�

BpE2q

Bc2
�

BE2

Bt1,2
� 2E

�
∆w2

τ� p1 � ∆w2q

�
(4.26)

BJ

Bc3
�

BE2

Bc3
�

BE2

Bt1,3
� (4.27)

2E

�
�∆w1

τ� p1 � ∆w1q
�

�∆w2

τ� p1 � ∆w2q
�

∆w4

τ� p1 � ∆w4q

�
(4.28)

BJ

Bc4
�

BE2

Bc4
�

BE2

Bt1,4
� 2E

�
�∆w4

τ� p1 � ∆w4q

�
(4.29)

BJ

Bc5
�

BE2

Bc5
�

BE2

Bt1,5
� 0 (4.30)

Using the above gradients, the optimal values of c1, . . . , c5 can be obtained by mini-

mizing J using a gradient-based numerical algorithm such as Newton’s method.

An example of indirect learning algorithm implementation is shown in Fig. 4.4,

where the RBF adjustable parameters (which, in this case, coincide with the firing

times of neuron i � 1) are optimized to induce a change in the synaptic weight w21

from an initial value of 1.704, to a desired value w� � 1.72. Another example, for

which the gradient equations are omitted for brevity is shown in Figs. 4.5-4.7. In this

case, the desired weight value w� � 2.8 is far from the initial weight w21ptιq � 3.5,

and thus N � 43 spikes are required to train the SNN. The optimal RBF input, and

corresponding controlled pulse used to stimulate neuron i � 1, are shown in Figs.

4.5 and 4.6, respectively. The time history of the weight w21 is plotted in Fig. 4.7(a),

along with the corresponding deviation from w� plotted in Fig. 4.7(b).

A more general form of the gradient equations can be found by rewriting the

47

Figure 4.4: Optimized input spike train, and indirect weight changes brought about
by STDP.

Figure 4.5: Optimized RBF spike model for the SNN in Fig. 4.1.

48

Figure 4.6: Square wave obtained by the LIF sampler, for the RBF spike model in
Fig. 4.5.

response of the membrane potential for neuron i � 2 in (Eqn. 4.6), as follows,

vptq � V0 �
b̧

k�a

aE exp

�
�
t� t1,k � τd

τm

�
Hpt� t1,k � τdq (4.31)

where t1,k denotes the kth firing time of neuron i � 1. Then, the gradients of the

training objective function (Eqn. 4.17) with respect to the centers of the RBF spike

model for M � 5 are given by the equations in the Appendix, which are obtained in

terms of the two functions,

g�pt1,i, t1,jq � A� exp

�
t1,i
τ�

exp

�
�t1,j
τ�

exp

�
�τd
τ�

(4.32)

g�pt1,i, t1,jq � �A� exp

�
t1,i
τ�

exp

�
�t1,j
τ�

exp

�
τd
τ�

(4.33)

where t1,i, t1,j are two distinct firing times of neuron i � 1.

The methodology presented in Chap. 4 can also be extended to larger SNNs,

although in this case it may be more convenient to compute the gradients of the

49

(a)

(b)

Figure 4.7: Indirect weight changes brought about by STDP, and the corresponding
deviation from w� � 2.8, for the SNN in Fig. 4.1 stimulated using the input spike
train in Fig. 4.5.

50

Figure 4.8: Model of three-node LIF spiking neural network.

objective function numerically. As an example, consider the three-neuron SNN in

Fig. 4.8, and with two synaptic weights w21 and w23 that each obeys the STDP

mechanism in (Eqn. 2.12). Suppose the desired values of the synaptic weights are

w�
21 � 4.1 and w�

23 � 2.8. Using the indirect learning method presented in this thesis,

and the gradient provided in the Appendix, a training-error function formulated in

terms of the deviations of w21ptq and w23ptq from w�
21 and w�

23 respectively, can be

minimized with respect to the parameters (centers) P of the RBF spike model (Eqn.

4.1).

Once the optimal RBF spike model, plotted in Fig. 4.9, is fed to the LIF sampler,

the controlled pulse plotted in Fig. 4.10 is obtained and implemented via Iinj. The

controlled pulse is thus used to stimulate neuron i � 1 at precise instants in time

that correspond to centers of the optimal RBF spike model. Therefore, w21ptq can

be converted to the desired value w�
21. Then the same method will be implemented

on the second neuron for changing w23ptq to w�
23. The time-histories of the weight

values, w21ptq and w23ptq, obtained by the indirect training algorithm are plotted

in Fig. 4.11(a). As is also shown by the corresponding training errors, plotted in

Fig. 4.11(b), the SNN weights over time converge to the desired values, w�
21 � 4.1

and w�
23 � 2.8. These results demonstrate that, even for larger SNNs, the indirect

training method presented in this thesis is capable of modifying synaptic weights

until they meet their desired values, without direct manipulation. Since this indirect

training algorithm only relies on modulating the activity of the input neurons, via

51

controlled input spike trains, it also has the potential of being realizable in vitro and

in silico, to train biological neuronal networks, and in CMOS/memristor nanoscale

chips, respectively.

Figure 4.9: Optimized RBF spike model for the SNN in Fig. 4.8.

4.2 Numerical Indirect Gradient Method

4.2.1 Optimization of Radial Basis Function

The numerical Indirect Gradient Method is applied to the virtual insect problem in

Section 3.1.1. If either the left or right terrain sensor detects the rough terrain, the

insect adjusts its direction in order to avoid entering the respective location. This

desired behavior can be mathematically formulated as follows,�
FL
FR

�

�
StrL StL
StrR StR

�
a1
a2

(4.34)

where FL and FR are the expected firing frequencies of the left and right motor

neurons; StrL, StL, StrR, StR are, respectively the left terrain sensor value, the left

target sensor value, the right terrain sensor value, and the right target sensor value.

The constants a1, a2 scale the sensor values, where a1 " a2 due to fact that inputs

52

Figure 4.10: Square wave obtained from the LIF sampler, using the optimized
RBF spike model in Fig. 4.9.

from the terrain sensors are prioritized when the virtual insect approaches rough

terrain.

The coding schemes for SNNs include both rate coding, which is the frequency of

neuron spikes, and temporal coding, which is correlated with the exact firing times

of the neurons. This paper employs the rate coding to decode the output spikes

of the neurons. The average firing rate of neuron i over time interval rtl�1, tls can

be calculated by (4.35). The sensor neurons (see Fig. 3.3) receive inputs from the

sensors of the virtual insect. The firing frequencies of the outputs, which connect to

the motors, are depicted fpi ptlq, where i is the index of the neuron and p is the index

of the training samples. The error, δ, at time tl is defined by (4.36).

fpi ptlq �

°tl
tl�1

HpViptl�1q ¡ Vthq

∆t
, ∆t � tl � tl�1 (4.35)

δptlq �

°
iPO

°Pm
p�1 ||F

p
i � fpi ptlq||

2 � Pm
(4.36)

where O is the set of indices identifying the output neurons in the SNN, Pm is

53

(a)

(b)

Figure 4.11: Indirect weight changes brought about by STDP, and corresponding
error functions, for the SNN in Fig. 4.8 stimulated using the input spike train in
Fig. 4.10.

54

the total number of training samples and F p
i is the target firing frequencies of the

neuron i for training samples p, fpi ptlq is the firing frequency of the neuron i for

training samples p during rtl�1, tls.

The RBF centers are updated according to (4.37) in order to minimize the error

δptq. During each training epoch rtl, tl�1s, only one square pulse is injected into each

neuron, and the time difference between the centers of the RBF input to neuron j

and i, dji, is given by

djiptq � �λ
Bδpt� ∆tq

Bdjipt� ∆tq
(4.37)

where λ is a constant learning rate.

Then, the centers of RBF pulses to each neuron can be calculated by solving the

linear systems,

dji � cj � ci, i, j P r1, 2, � � � , N s (4.38)

where i, j are the index of neurons, and N is the total number of neurons in the

SNN.

At every time step, dji is calculated as described above, and the values of c are

calculated using (4.38). Then we input the RBF to the neurons during each epoch

rtl, tl�1s. A square pulse with the center c is injected into each training neuron, such

that the SNN is trained by our indirect training method via the STDP rule discussed

in Section 2.3. Fig. 4.12 shows the optimized firing times of neurons 1 and 3 caused

by the RBF inputs and the corresponding weight changes due to the STDP rule

during training. If the output error is lower than δmin, the training stops and the

trained SNN is used on the virtual insect problem.

4.3 Indirect Training by Weight Perturbations

The output signal from the output neuron layer is decoded using rate coding, which

computes the mean firing frequency of a set of neurons and has been chosen due to

55

Figure 4.12: Optimized input spike train, and indirect weight changes brought
about by STDP.

its capability to successfully describe the behavior in some biological neural systems,

such as the decoding of signals from muscle stretch receptor neural cells Mountcas-

tle (1957); Hubel and Wiesel (1959). In the rate coding method, the mean firing

frequency of a set of K neurons is calculated as,

fptrq �
Σi�1,...,Kziptrq

K
(4.39)

where ziptrq is the total number of spikes of output neuron i within the time interval

rt� tr, ts. If K are the left neurons, Eq. (4.39) can calculate the left motor neurons’

mean firing frequency. If K are the right motor neurons, Eqn. (4.39) can calculate

the right motor neurons’ mean firing frequency.

The SNN can be trained to control the virtual insect to accomplish the objectives

of the navigation problem described in Sec. 3. The training is achieved through the

control of precise training stimuli given to the network which, in turn, indirectly

modifies the SNN weights via the internal STDP mechanism. The training signals

are determined from the SNN’s response to a set of training data, which takes the

56

Figure 4.13: Insect locations for six training cases.

form of m � 6 cases of sensor stimuli in Fig. 3.6 and the desired decoded output

signals from the output neuron layer. Then the goal of the training becomes to

reduce the error between the SNN’s decoded output and the desired output provided

by Eq. (4.40).

Same as the desired output for gradient training method, the desired output

signal of the SNN can be defined as,�
f�L
f�R

�

�
hL gL
hR gR

�
κ
η

(4.40)

where f�L and f�R are the desired average firing frequencies of the left and right motor

neurons, and hL, gL, hR, and gR are the sensor input stimuli from Eq. (3.4) and

Eq. (3.5). The constants κ and η are constants that are chosen such that κ ¡ η to

prioritize obstacle avoidance over reaching the target.

Each training iteration is divided into n �

�
N
2

epochs, which is the number of

possible ordered pairs of training neurons, where N is the number of input neurons.

Batch training is performed on the SNN with only two input neurons receiving train-

ing stimuli per epoch. For each epoch, a pair of input neurons is selected from a list

of n possible ordered pairs, denoted by N , to receive training stimuli. No training

57

signals are given to the other input neurons during this epoch.

For each of the m � 6 training cases, the input neurons are given signals that

simulate the corresponding stimuli, dLpxL, yLq, dRpxR, yRq, rpxL, yLq, and rpxR, yRq,

from the four insect sensor models Eq. (3.4) and Eq. (3.5). The inputs of the

training cases are a set of m vectors, denoted by Ii � R4, i � 1, ...,m, each of which

contains an instance of environmental information for the four insect sensors. Then

the `th training error ek,`, ` � t1, 2u, of the kth epoch, can be evaluated from,

ek,` �

b°
i�1,...,mru

�
i � uisT ru�

i � uis

m
(4.41)

where ui � rfR fLs
T is the decoded control output of the SNN for training case i,

u� � rf�R f
�
Ls
T is the desired output from Eq. (4.40), and ` is an index corresponding

to the two testing phases per epoch.

Fig. 4.14 describes the process in one epoch. Each epoch consists of four phases

in the following order: an initial testing phase, an initial training phase, a final

testing phase, and a final training phase. The purpose of the first three phases is to

evaluate the change in error, ∆ek � ek,2 � ek,1, brought about by an experimental

training signal in the initial training phase. Then, during the final training phase,

an extended training signal, which is a function of ∆ek, is given to the selected pair

of input neurons to induce favorable training on the SNN.

Expanding on each of the four phases in an epoch, the initial testing phase eval-

uates the error ek,1 by simulating each of the m training cases and comparing the

SNN’s observed output decoded from Eq. (4.39) with the desired output computed

from Eq. (4.40). For each training case, the sensory stimuli is encoded as constant

current injections, defined by Eq. (3.4) and Eq. (3.5), to all input neurons for a

duration of te � 0.04 seconds per case and with no pauses between cases. The time

interval te is set to only be long enough for the signal to propagate through the SNN

58

Figure 4.14: Flowchart of the training algorithm.

and be reliably decoded as an output. Then ek,1 is obtained from Eq. (4.41).

The initial training phase of the epoch involves the delivery of an experimental

training signal to the input neurons that is used to induce small synaptic weight

changes in the SNN, which are then used to determine an extended training signal

to be applied in the final training phase. The experimental training signal is given

to a pair of input neurons i and j, selected from a list of all possible ordered pairs

N , such that pi, jq P N ; i, j � 1, ..., N ; i � j, where N denotes the number of

input neurons. The training signals, denoted by si for the ith neuron, are square

59

pulse current inputs, such that,

siptq � w
Ģ

a�1

�
H

�
t� pi,a �

β

2

�H

�
t� pi,a �

β

2

�
(4.42)

where pi,a represents the temporal center of the ath square pulse delivered to the ith

input neuron, G � 10 is the number of square pulses in the training signal over the

duration of the initial training phase, w � 7� 10�7 amperes is the amplitude of the

pulses, and β � 0.004 seconds is the duration of each pulse. The constants w and β

are chosen such that each pulse will reliably induce the input neuron to spike once

and only once. The pulse inputs are given every tp � 0.08 seconds, and the pulses

are offset slightly between the pair of input neurons pi, jq, such that pj,a � pi,a � b0,

where b0 � �0.002 seconds. This offset acts to induce small synaptic weight changes

in the SNN through STDP.

The final testing phase of the epoch evaluates the error for a second time using

the same procedure as in the initial testing phase. The error, ek,2, computed from

Eq. (4.41) will be different from ek,1 since the synaptic weights of the SNN changed

during the initial training phase and marginally changed during the initial testing

phase. The change in error, ∆ek � ek,2 � ek,1, can then be computed and used to

determine the optimal training signal.

The last phase of the epoch, the final training phase, uses the value of ∆ek to

determine an optimal training signal that, when applied to the same pair of input

neurons pi, jq, will modify the weights of the SNN to cause a decrease in error. As

in the initial training phase, the training signal consists of square pulses computed

from Eq. (4.42), but a new offset parameter, denoted by bk, is used. The offset bk is

a function of the change in error, such that,

bk � � sgnp∆ekqb0 (4.43)

60

Then the square pulses are offset between the pair of input neurons pi, jq, such

that pj,a � pi,a � bk. This calculated offset ensures that the synaptic weight changes

brought about by the training signal will decrease the error between the observed

SNN output signal and the desired output. Also since the training must compensate

for the weight changes from the other phases, and since the STDP mechanism is

known to increase the weights at about double the rate that it decreases them ?, the

optimal number of square pulses, G�, is a function of bk and ∆ek, and is given by,

G� �

$&
%

2G, b0 ¡ 0 and ∆ek ¡ 0
1
2
G, b0 0 and ∆ek 0
G, ∆ek 0

(4.44)

To summarize, the parameters to be determined that define the optimal training

signal for each epoch are the training signal offset, bk from Eq. (4.43), and the

number of square pulses, G� from Eq. (4.44). These parameters are functions of

the change in error, ∆ek, which is a difference between the two evaluations of the

error ek,`, computed before and after an experimental training signal is applied. For

each epoch, a new pair of neurons to receive the training signals is selected from the

ordered list N , and the process is repeated until the error reduces to an acceptable

value or stops decreasing. If ∆ek 0, then G� � 10. In Fig. 4.15, w1,19 increases

ten times according to the STDP rule. While if ∆ek ¡ 0, b0 ¡ 0, the number of

training input pairs is 2G � 20 in Fig. 4.15 bottom.

In Fig. 4.15, because the presynaptic neuron 1 fires before neuron 19 due to

the temporal difference 0.002 (s) between the two square pulses, the synaptic weight

w1,19 increases. In contrast, neuron 5 fires after neuron 22 so that the synaptic weight

w5,22 decreases.

61

Figure 4.15: Action potentials of the pre and post-synaptic neurons and the weights
change by training inputs.

62

5

Simulation Results

5.1 Seven Neurons Controlled Virtual Insect

The architecture and algorithm of the indirect training approach presented in Section

4.2 are used to train an SNN with randomized initialization, in order to perform

target detection and terrain navigation. The objective of the simulations presented

is to test the effectiveness of this training approach by comparing two trained states

of the SNN including naive, partially-trained and fully trained on blank, s-maze, and

cloud terrains.

Fig. 5.1 shows the error defined by (4.35) and (4.36) against the training duration

where the error converges. Therefore, the training would be stopped once the error is

lower than δmin. Due to the instability of the solution caused by continuous strength-

ening/weakening of synapses, the synaptic weights are fixed after the training process

completes. Fig. 5.2 demonstrates the evolution of synaptic weights with training in-

puts. The strengthened connections between terrain sensory neurons and neuron 3

(see Fig. 3.3) ensure the priority of terrain information; meanwhile the weights of

inhibitory synapses are updated so that the both sides of SNN structure can be bal-

63

anced. The synapses connecting with motor neurons can either be strengthened or

weakened as long as the values of these synaptic weights are comparable to balance

the two motor outputs.

The simulations are conducted in MATLABr and in order to create the virtual

environment, a 600�600 pixels image of the terrain and the target were generated.

The initial positions of the virtual insect differ in the three environments. As il-

lustrated by the examples in Section 5.1.1 to 5.2.2, the indirect training method is

capable of both strengthening and weakening synapses without directly manipulating

synaptic weights. It is also capable of integrating information regarding the target

location and terrain conditions, and, thus, it can train the virtual insect to avoid

rough terrain on its path to the target.The movie clips for these results show a very

realistic insect behavior and can be downloaded from the URL at Zhang and Xu

(2013).

5

g
w

100 200 300 400 500
Time(ms)

Figure 5.1: Error δ during training of the neural network with 7 neurons.

5.1.1 Blank Terrain

The properties and effectiveness of the indirect training are first tested in a simple

environment where the terrain has uniform smoothness and, therefore, only target

64

Figure 5.2: Evolution of eight synaptic weights subject to STDP during train-
ing.The synapse between neuron 1 and 3 is labeled as synapse (1-3). See Fig. 3.3 for
all connections.

information is relevant. As shown by the trajectory in Fig. 5.3-5.16, initially, the

virtual insect rotates randomly in place. After partially trained, the virtual insect

moves through the workspace but does not approach the target. Finally, following

the completion of the training procedure, the virtual insect approaches the target

using the path of shortest distance.

5.1.2 S-maze Terrain

In this scenario, the virtual insect must not only find the target, but integrate in-

formation about the terrain. The simulation results for naive, partially trained and

fully trained states are illustrated in Fig. 5.5-5.6. The naive insect rotates without

moving toward the target. In the partially-trained state, the insect initially moves

away from the target and due to its capacity of terrain navigation, it successfully

accomplishes the task by rambling along the black terrain.

65

Figure 5.3: Trace of naive insect
controlled by 7 neurons on blank
terrain.

Figure 5.4: Trace of fully-
trained insect controlled by 7 neu-
rons on blank terrain .

Figure 5.5: Trace of the naive
insect controlled by 7 neurons on
an S-maze terrain (see movie in
Zhang and Xu (2013)).

Figure 5.6: Trace of the fully-
trained insect controlled by 7 neu-
rons on an s-maze terrain (see
Zhang and Xu (2013)).

5.1.3 Cloud Terrain

The cloud terrain is a heavily obstacle populated maze, created via Photoshopr.

This environment introduces rough terrain and narrow channels, creating a complex

and difficult landscape for the virtual insect to navigate. In the partially-trained

case, the insect fails to acquire the target as it does in the s-maze terrain because of

the complexity of the cloud terrain. As expected, the fully trained SNN accounts for

66

both target location and terrain roughness and effectively controls the virtual insect

along its path.

Figure 5.7: Trace of the naive
insect controlled by 7 neurons on
the cloud terrain (see movie in
Zhang and Xu (2013)).

Figure 5.8: Trace of the fully-
trained insect controlled by 7 neu-
rons on cloud terrain (see movie in
Zhang and Xu (2013)).

5.2 Insect Trace Controlled by Larger Neural Networks Trained by
Weight Perturbations

In Fig. 5.9 (a), the sensor input gL stimulates the left target sensor neurons, which

are the left bottom of the input layer. Fig. 5.9 (b) shows the activity of the three

layers during the stimulation of the left bottom neurons. Before training, the left

motor neurons do not fire. Fig. 5.9 (c) shows the membrane potentials just after

stopping the sensor inputs. The membrane potentials are still above the resting

potential 0.014. During the training in Fig. 5.9 (d), two neurons in the input layer

are stimulated for training. After training, in Fig. 5.9(e), the left motor neurons fire

in order to force the insect to turn right.

Fig. 5.10 (a) shows that the error defined in Eq. (4.41) converges, which cannot be

further improved with more training. Therefore, the training input would be removed

once the error is lower than a threshold value. By comparing Fig. 5.10 (b) and (c) in

67

Figure 5.9: Membrane potentials during tests for case 2 (no obstacle and target
right). (a). Test and training inputs injected to the neurons. (b - e). Membrane
potentials of the neurons in four different time instants marked in (a).

68

case 2 (no obstacle right target), the left motor neurons fire more than the right motor

neurons in order to force the insect to turn right after training. The properties and

Figure 5.10: Membrane potential of three layers before the training and after
training. (a). Error change during the entire simulation. (b-c). Membrane potentials
of the neurons in three layers at the times pointed in (a).

effectiveness of the indirect training are first tested in a simple environment where the

terrain has uniform smoothness and, therefore, only target information is relevant.

As shown by the trajectory in Fig. 5.15-5.16, initially, the virtual insect randomly

69

rotates in place. Following the completion of the training procedure, the virtual

insect approaches the target using the path of shortest distance.

Figure 5.11: Naive insect on
a blank terrain controlled by the
neural network with 184 neurons.

Figure 5.12: Trained insect on
a blank controlled by the neural
network with 184 neurons.

5.2.1 S-maze

In this scenario, the virtual insect must not only find the target, but also integrate

information about the terrain. The simulation results for naive and fully trained

states are illustrated in Fig. 5.13-5.14. The naive insect rotates and moves away

from the target. After training, the trained virtual insect can navigate in the S-maze

and reach the target.

5.2.2 Cloud Terrain

In Fig. 5.7 and Fig. 5.8, the cloud terrain is a heavily obstacle populated maze,

created via Photoshopr. This environment introduces rough terrain and narrow

channels, creating a complex and difficult landscape for the virtual insect to navigate.

The naive insect can avoid some obstacles but it fails to detects the target. As

expected, the trained SNN accounts for both target location and terrain steepness

and effectively controls the virtual insect along its path.

70

Figure 5.13: Naive insect on an
S-Maze controlled by the neural
network with 184 neurons.

Figure 5.14: Trained insect on
an S-Maze controlled by the neu-
ral network with 184 neurons.

Figure 5.15: Naive insect on a
Cloud terrain controlled by the
neural network with 184 neurons.

Figure 5.16: Trained insect on a
Cloud terrain of controlled by the
neural network with 184 neurons.

5.3 Tripod Insect Controlled by a Large SNN

The architecture and algorithm of the indirect training approach presented in Section

4.3 are used to train a three-layer SNN (550 neurons) with recurrent connections,

for the control of the virtual insect in the navigation problem described in Section

3.2. Fig. 5.17 shows that the error defined in (4.41) converges, which cannot be

further improved with more training. Therefore, the training input is removed once

the error is less than a tolerance δmin. The objective of the simulations presented

71

Figure 5.17: Error during training of the SNN with 550 neurons.

is to evaluate the effectiveness of this training approach by comparing two states of

the SNN, naive and fully trained, on identical terrains.

The terrain used for the simulations is the cloud terrain. The naive insect can

travel to the target, but it cannot avoid the obstacles and navigate the maze. As

illustrated by Fig. 5.18 and Fig. 5.19, the indirectly trained SNN is capable of

integrating information regarding the target location and terrain conditions, and,

thus, the indirect training approach can train the virtual insect to avoid rough terrain

on its path to the target.

The fluctuations of membrane potentials of SNN during testing are demonstrated

in Fig. 5.20. In Fig. 5.20, only the right bottom area receives sensory inputs, which

propagate to the other two layers as shown in Fig. 5.21.

5.4 Strength of Large Size SNNs

Without sensor noise, there is not much difference between the behavior of small

neural network controlled virtual insect and large neural network controlled virtual

72

Figure 5.18: Trace of the untrained virtual insect controlled by 550 neurons on
cloud terrain.

Figure 5.19: Trace of the fully-trained virtual insect controlled by 550 neurons on
cloud terrain.

73

Figure 5.20: Distribution of membrane potentials when the neurons in the right
bottom receive sensory inputs.

Figure 5.21: Propagation of sensor inputs to other layers of the SNN.

74

insect. In order to find whether the larger neural network has some strengths than

the small network, some sensor noises are added to test whether the behavior of

larger neural network is better than the small neural network.

In order to compare the performance of the two different size neural networks, a

noise generated by a normal distribution is added to the four sensor inputs. For com-

paring, the noise is chosen to be 50 percent of the original sensor values. Therefore,

the sensor value with noise is,

Si � 0.5 � rand� S0
i (5.1)

where i is the index of the four sensors, rand is a random number following the

normal distribution between -1 and 1, S0
i is the sensor values without noise.

First, we test the 7 nodes neural network given the sensor with noise. The insect

is located in the middle of a 600*600 blank terrain. The target is on the left front of

the insect.

We can see that the insect can not reach the target if there is a large sensor noise.

However, the figure below shows the behavior of the 3 layer neural network with 184

neurons. After added noise defined in Eqn. 5.1, this large neural network can still

reach its target.

Therefore, in conclusion, the neural network with 184 neurons are much more

adaptive to the sensor noises than the neural network with 7 neurons.

75

Figure 5.22: Trained insect controlled by 7 neurons with sensor noise on a blank
terrain.

Figure 5.23: Trained insect controlled by 184 neurons with sensor noise on a blank
terrain.

76

6

Conclusion

Because our training methods are biologically plausible, they will be applied to

CMOS/memristor neuromorphic computers, that do not allow the direct manipu-

lations of the synaptic weights, that are instead required by existing SNN training

algorithms. The trained neuromorphic chips cost low energy with effective computa-

tional power. Even though some papers have published training methods on training

a simulated neuromorphic system by directly setting the connection strengths, these

methods are not applicable to neuromorphic chips in hardware. By indirect training

algorithms, a trained neuromorphic chip will be used to solve many control problems,

such as robot path planning, cognitive computing and the human brain project. The

future work aims to develop methods for porting higher level algorithms, specifically

Neurodynamic programming (NDP), from a purely stand alone software implemen-

tation on the microprocessor to an Application Specific Integrated Circuit (ASIC)

design. NDP is a general approach for designing control algorithms for nonlinear,

non-convex dynamical systems that learn and adapt in real time, subject to new

and unforeseen environments. The optimization of this adaptability in control with

respect to a changing environment is vital to the development and maturation of

77

Cyber-Physical Systems (CPS). A control system ASIC will vertically integrate em-

bedded software computing, energy-optimized hardware, effective communication

between modules on the ASIC, and the control algorithms used for the specified

control. The ASIC is envisioned to use CMOS/memristor hardware in order to

adopt the advantages of neuromorphic computing. CMOS/memristor-devices have

the potential for creation of adaptive, neuromorphic sensorimotor circuits for intel-

ligent robots and neuroprosthetic devices that can adaptively interact in uncertain

environments. The use of CMOS/memristors will enable an approximated synaptic

plasticity, device density, scalability, and fault tolerance inherent in biological neural

networks. One objective of the future research will involve the study and develop-

ment of CMOS/memristor hardware for embedded CPS applications. The ultimate

objective is not just a virtual realization of the CMOS/memristor hardware but to

solve issues related to CMOS and memristor integration and provide results relating

to the effectiveness of such a computational platform.

Another future project will develop and verify a mathematical and physiological

framework for uncovering the system-level capabilities of mammalian brains that en-

able them to optimally solve complex control and system identification problems, by

adapting to uncertain and non-convex environments. Although existing designs are

very effective at controlling systems whose dynamics are approximated a priori, they

are not yet capable of handling the range of operating conditions, unforeseen dam-

ages, and failures handled by biological brains. In principle, neurodynamic program-

ming (NDP) can solve non-convex optimal control problems adaptively. But, the

current formalisms for artificial neural networks (ANNs) and gradient-based learn-

ing are far removed from their biological counterparts. By integrating control theory

with in silico and in vitro experiments, this project will develop NDP algorithms

that are biologically plausible and testable on light-sensitive neurons grown in cul-

ture. The cultured neurons will be trained using light patterns, and their spatiotem-

78

poral responses will be measured in real time using microelectrode arrays (MEAs).

Furthermore, it will be possible to introduce lesions and to observe how memory is

restored, either spontaneously by outgrowth of existing neurons, or by re-seeding the

cultures. This project will aim to reverse-engineer dopamine and cortical neuronal

cultures on a chip, emulating the actor and critic networks, respectively, by training

them to perform adaptive control of aircraft through an NDP architecture. The

outcome of this research shall help uncover the mechanisms by which sensorimotor

learning is influenced by dopamine neuron activity in the basal ganglia, which is

believed to function as a reinforcement signal.

It has recently been demonstrated that the higher control of insect movements in

highly conserved region of insect brain call the Central Complex (CX) Pfeiffer and

Homberg (2014); Strausfeld (2012); Strausfeld and Hirth (2013); Strauss (2002). The

future research is to train the CX of a behaving cockroach, by implementing a novel

spike-based perturbative approach in-vivo. The approach relies on a learning rule for

manipulating patterns of neural stimulations (spike trains) that can be delivered us-

ing a four-tetrode arrangement inserted into the cockroach CX, modulating synaptic

plasticities based on the observed locomotory behaviors. The neural system of the

virtual insect will change to a more biologically plausible one with different regions

perform different functions.

As part of the insect navigation research, the existing CPG and locomotion mod-

els will be improved by considering the three-dimensional joint kinematics and neuro-

biology. Then, the improved CPG network and locomotion model will be connected

to the CX model, in order to obtain a more realistic insect simulation.

Future study will also focus on implementing our training algorithms on flying

micro-robots, which have more complex dynamics. Because micro-robots need to

have a control system that is not only effective but also light enough, the Neuromor-

phic chip can be a good choice because of its less energy cost and effectiveness in

79

control tasks. First of all, our indirect training algorithms will be tested on training

the neuro-morphic chip to control a flying micro-robot for hovering like qudrators

or bees. The neural network controlled micro-robot will be more adaptive to some

emergent cases and unknown environments than traditional controllers. After the

test on hovering, the training methods will be tested on flying insects like RoboBees,

controlled by sensor-motor nervous systems for searching, rescuing and hazardous

environment exploration.

80

Appendix A

Appendix

BE2

Bc1
�

$''''&
''''%

2Er g�pt1,1,t1,3q

τ�p1�g�pt1,1,t1,3q
s if vpt1,3 � τd, 1, 3q ¡ Vth

2Er g�pt1,1,t1,2q

τ�p1�g�pt1,1,t1,2qq
s if vpt1,2 � τd, 1, 2q ¡ Vth

2Er g�pt1,1,t1,4q

τ�p1�g�pt1,1,t1,4qq
s if vpt1,4 � τd, 1, 4q ¡ Vth

2Er g�pt1,1,t1,5q

τ�p1�g�pt1,1,t1,5qq
s if vpt1,5 � τd, 1, 5q ¡ Vth

(A.1)

BE2

Bc2
�

$'''''''''''''''''''''''''''''&
'''''''''''''''''''''''''''''%

2Er g�pt1,2,t1,3q

τ�p1�g�pt1,2,t1,3q
s if vpt1,3 � τd, 1, 3q ¡ Vth

2Er �g�pt1,1,t1,2q

τ�p1�g�pt1,1,t1,2qq
s if vpt1,2 � τd, 1, 2q ¡ Vth,

vpt1,5 � τd, 3, 5q ¡ Vth,

c3 ¡
c5�c2�2τd

2

2Er �g�pt1,1,t1,2q

τ�p1�g�pt1,1,t1,2qq
� g�pt1,2,t1,3q

τ�p1�g�pt1,2,t1,3qq
s if vpt1,2 � τd, 1, 2q ¡ Vth,

vpt1,4 � τd, 3, 4q ¡ Vth,

c3
c4�c2�2τd

2
or

vpt1,2 � τd, 1, 2q ¡ Vth,

vpt1,5 � τd, 3, 5q ¡ Vth,

c3
c5�c2�2τd

2

2Er �g�pt1,1,t1,2q

τ�p1�g�pt1,1,t1,2qq
� g�pt1,2,t1,3q

τ�p1�g�pt1,2,t1,3qq

� g�pt1,2,t1,4q

τ�p1�g�pt1,2,t1,4qq
� g�pt1,2,t1,5q

τ�p1�g�pt1,2,t1,5qq
s if vpt1,2 � τd, 1, 2q ¡ Vth,

vpt1,5 � τd, 3, 5q Vth

2Er g�pt1,2,t1,4q

τ�p1�g�pt1,2,t1,4q
s if vpt1,4 � τd, 1, 4q ¡ Vth

(A.2)

81

BE2

Bc3
�

$''&
''%

2Er �g�pt1,1,t1,3q

τ�p1�g�pt1,1,t1,3q
� �g�pt1,2,t1,3q

τ�p1�g�pt1,2,t1,3q

� g�pt1,3,t1,4q

τ�p1�g�pt1,3,t1,4q
s if vpt1,3 � τd, 1, 3q ¡ Vth,

vpt1,5 � τd, 4, 5q ¡ Vth,

c3 ¡ 2c4 � c5 � 2τd

2Er �g�pt1,1,t1,3q

τ�p1�g�pt1,1,t1,3q
� �g�pt1,2,t1,3q

τ�p1�g�pt1,2,t1,3q
s if vpt1,3 � τd, 1, 3q ¡ Vth,

vpt1,5 � τd, 4, 5q ¡ Vth,

c3 2c4 � c5 � 2τd

2Er g�pt1,3,t1,5q

τ�p1�g�pt1,3,t1,5qq
s if vpt1,2 � τd, 1, 2q ¡ Vth,

vpt1,5 � τd, 3, 5q ¡ Vth,

c3 ¡
c5�c2�2τd

2
or

vpt1,5 � τd, 1, 5q ¡ Vth

2Er �g�pt1,2,t1,3q

τ�p1�g�pt1,2,t1,3qq
s if vpt1,2 � τd, 1, 2q ¡ Vth,

vpt1,5 � τd, 3, 5q ¡ Vth,

c3
c5�c2�2τd

2
or

vpt1,2 � τd, 1, 2q ¡ Vth,

vpt1,4 � τd, 3, 4q ¡ Vth,

c3
c4�c2�2τd

2
or

vpt1,2 � τd, 1, 2q ¡ Vth,

vpt1,5 � τd, 3, 5q Vth

2Er g�pt1,3,t1,4q

τ�p1�g�pt1,3,t1,4q
s if vpt1,2 � τd, 1, 2q ¡ Vth,

vpt1,4 � τd, 3, 4q ¡ Vth,

c3 ¡
c4�c2�2τd

2
or

vpt1,4 � τd, 1, 4q ¡ Vth

2Er �g�pt1,1,t1,3q

τ�p1�g�pt1,1,t1,3q
� �g�pt1,2,t1,3q

τ�p1�g�pt1,2,t1,3q
�

g�pt1,3,t1,4q

τ�p1�g�pt1,3,t1,4q
� g�pt1,3,t1,5q

τ�p1�g�pt1,3,t1,5q
s if vpt1,3 � τd, 1, 3q ¡ Vth,

vpt1,5 � τd, 4, 5q Vth

(A.3)

82

BE2

Bc4
�

$''&
''%

2Er �g�pt1,3,t1,4q

τ�p1�g�pt1,3,t1,4q
s if vpt1,3 � τd, 1, 3q ¡ Vth,

vpt1,5 � τd, 4, 5q ¡ Vth,

c4
c3�c5�2τd

2
or

vpt1,3 � τd, 1, 3q ¡ Vth,

vpt1,5 � τd, 4, 5q Vth

2Er g�pt1,4,t1,5q

τ�p1�g�pt1,4,t1,5q
s if vpt1,3 � τd, 1, 3q ¡ Vth,

vpt1,5 � τd, 4, 5q ¡ Vth,

c4 ¡
c3�c5�2τd

2
or

vpt1,2 � τd, 1, 2q ¡ Vth,

vpt1,5 � τd, 3, 5q ¡ Vth,

c3 ¡
c2�c5�2τd

2
or

vpt1,2 � τd, 1, 2q ¡ Vth,

vpt1,5 � τd, 3, 5q ¡ Vth,

c3
c2�c5�2τd

2

2Er �g�pt1,3,t1,4q

τ�p1�g�pt1,3,t1,4q
� g�pt1,4,t1,5q

τ�p1�g�pt1,4,t1,5q
s if vpt1,2 � τd, 1, 2q ¡ Vth,

vpt1,4 � τd, 3, 4q ¡ Vth,

c4 2c3 � c2 � 2τd

2Er g�pt1,4,t1,5q

τ�p1�g�pt1,4,t1,5q
s if vpt1,2 � τd, 1, 2q ¡ Vth,

vpt1,4 � τd, 3, 4q ¡ Vth,

c4 ¡ 2c3 � c2 � 2τd

2Er �g�pt1,2,t1,4q

τ�p1�g�pt1,2,t1,4q
s if vpt1,2 � τd, 1, 2q ¡ Vth,

vpt1,5 � τd, 3, 5q Vth

2Er �g�pt1,1,t1,4q

τ�p1�g�pt1,1,t1,4q
� �g�pt1,2,t1,4q

τ�p1�g�pt1,2,t1,4q
�

�g�pt1,3,t1,4q

τ�p1�g�pt1,3,t1,4q
� g�pt1,4,t1,5q

τ�p1�g�pt1,4,t1,5q
s if vpt1,4 � τd, 1, 4q ¡ Vth

2Er g�pt1,4,t1,5q

τ�p1�g�pt1,4,t1,5q
s if vpt1,5 � τd, 1, 5q ¡ Vth

(A.4)

83

BE2

Bc5
�

$''&
''%

0 if vpt1,3 � τd, 1, 3q ¡ Vth,

vpt1,5 � τd, 4, 5q ¡ Vth,

c5 ¡ 2c4 � c3 � 2τd

2Er �g�pt1,4,t1,5q

τ�p1�g�pt1,4,t1,5q
s if vpt1,3 � τd, 1, 3q ¡ Vth,

vpt1,5 � τd, 4, 5q ¡ Vth,

c5 2c4 � c3 � 2τd

2Er �g�pt1,3,t1,5q

τ�p1�g�pt1,3,t1,5q
� �g�pt1,4,t1,5q

τ�p1�g�pt1,4,t1,5q
s if vpt1,2 � τd, 1, 2q ¡ Vth,

vpt1,5 � τd, 3, 5q ¡ Vth,

c5 2c3 � c2 � 2τd

2Er �g�pt1,4,t1,5q

τ�p1�g�pt1,4,t1,5q
s if vpt1,2 � τd, 1, 2q ¡ Vth,

vpt1,5 � τd, 3, 5q ¡ Vth,

c5 ¡ 2c3 � c2 � 2τd

2Er �g�pt1,4,t1,5q

τ�p1�g�pt1,4,t1,5q
s if vpt1,2 � τd, 1, 2q ¡ Vth,

vpt1,4 � τd, 3, 4q ¡ Vth

2Er �g�pt1,2,t1,5q

τ�p1�g�pt1,2,t1,5q
s if vpt1,2 � τd, 1, 2q ¡ Vth,

vpt1,5 � τd, 3, 5q Vth

2Er �g�pt1,3,t1,5q

τ�p1�g�pt1,3,t1,5q
s if vpt1,3 � τd, 1, 3q ¡ Vth,

vpt1,5 � τd, 4, 5q Vth

2Er �g�pt1,4,t1,5q

τ�p1�g�pt1,4,t1,5q
s if vpt1,4 � τd, 1, 4q ¡ Vth

2Er �g�pt1,1,t1,5q

τ�p1�g�pt1,1,t1,5q
� �g�pt1,2,t1,5q

τ�p1�g�pt1,2,t1,5q
�

�g�pt1,3,t1,5q

τ�p1�g�pt1,3,t1,5q
� �g�pt1,4,t1,5q

τ�p1�g�pt1,4,t1,5q
s if vpt1,5 � τd, 1, 5q ¡ Vth

(A.5)

84

Bibliography

Abbott, L. and Kepler, T. B. (1990), “Model neurons: From hodgkin-huxley to
hopfield,” in Statistical mechanics of neural networks, pp. 5–18, Springer.

Albus, J. S. (1971), “A theory of cerebellar function,” Mathematical Biosciences, 10,
25–61.

Andreou, A. G., Meitzler, R. C., Strohbehn, K., and Boahen, K. (1995), “Analog
VLSI neuromorphic image acquisition and pre-processing systems,” Neural Net-
works, 8, 1323–1347.

Banghart, M., Borges, K., Isacoff, E., Trauner, D., and Kramer, R. H. (2004), “Light-
activated ion channels for remote control of neuronal firing,” Nature neuroscience,
7, 1381–1386.

Bi, G.-q. and Poo, M.-m. (1998), “Synaptic modifications in cultured hippocampal
neurons: dependence on spike timing, synaptic strength, and postsynaptic cell
type,” The Journal of neuroscience, 18, 10464–10472.

Bliss, T. V. and Gardner-Medwin, A. (1973), “Long-lasting potentiation of synaptic
transmission in the dentate area of the unanaesthetized rabbit following stimula-
tion of the perforant path,” The Journal of physiology, 232, 357.

Bliss, T. V. and Lømo, T. (1973), “Long-lasting potentiation of synaptic transmis-
sion in the dentate area of the anaesthetized rabbit following stimulation of the
perforant path,” The Journal of physiology, 232, 331–356.

Bohte, S. M., Kok, J. N., and La Poutre, H. (2002), “Error-backpropagation in
temporally encoded networks of spiking neurons,” Neurocomputing, 48, 17–37.

Borghetti, J., Snider, G. S., Kuekes, P. J., Yang, J. J., Stewart, D. R., and Williams,
R. S. (2010), “Memristiveswitches enable statefullogic operations via material im-
plication,” Nature, 464, 873–876.

Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., and Deisseroth, K. (2005),
“Millisecond-timescale, genetically targeted optical control of neural activity,” Na-
ture neuroscience, 8, 1263–1268.

85

Burgsteiner, H. (2006), “Imitation learning with spiking neural networks and real-
world devices,” Engineering Applications of Artificial Intelligence, 19, 741–752.

Burkitt, A. (2006), “A Review of the Integrate and Fire Neuron Model: I. Homoge-
neous Synaptic Input,” Biol Cybern, 95, 1–9.

Dan, Y. and Poo, M.-m. (1992), “Hebbian depression of isolated neuromuscular
synapses in vitro,” Science, 256, 1570–1573.

Dayan, P. and Abbott, L. (2003), “Theoretical neuroscience: computational and
mathematical modeling of neural systems,” Journal of Cognitive Neuroscience,
15, 154–155.

Dora, S., Suresh, S., and Sundararajan, N. (2014), “A sequential learning algorithm
for a Minimal Spiking Neural Network (MSNN) classifier,” in Neural Networks
(IJCNN), 2014 International Joint Conference on, pp. 2415–2421, IEEE.

Esser, S. K., Andreopoulos, A., Appuswamy, R., Datta, P., Barch, D., Amir, A.,
Arthur, J., Cassidy, A., Flickner, M., Merolla, P., et al. (2013), “Cognitive com-
puting systems: Algorithms and applications for networks of neurosynaptic cores,”
in Neural Networks (IJCNN), The 2013 International Joint Conference on, pp. 1–
10, IEEE.

Feichtinger, H. G. (2010), “Approximate reconstruction of bandlimited functions for
the integrate and fire sampler,” Advanced Computational Mathematics, p. 12.

Ferrari, S., Mehta, B., Muro, G. D., VanDongen, A. M., and Henriquez, C. (2008a),
“Biologically Realizable Reward-Modulated Hebbian Training for Spiking Neural
Networks,” Proc. International Joint Conference on Neural Networks, Hong Kong,
pp. 1781–1787.

Ferrari, S., Mehta, B., Di Muro, G., VanDongen, A. M., and Henriquez, C. (2008b),
“Biologically realizable reward-modulated hebbian training for spiking neural net-
works,” in Neural Networks, 2008. IJCNN 2008.(IEEE World Congress on Com-
putational Intelligence). IEEE International Joint Conference on, pp. 1780–1786,
IEEE.

Ferster, D. and Spruston, N. (1995), “Cracking the neuronal code,” SCIENCE-NEW
YORK THEN WASHINGTON-, pp. 756–756.

Fiete, I. R. and Seung, H. S. (2006), “Gradient learning in spiking neural networks
by dynamic perturbation of conductances,” Physical review letters, 97, 048104.

FitzHugh, R. (1961), “Impulses and physiological states in theoretical models of
nerve membrane,” Biophysical journal, 1, 445–466.

86

Fletcher, T. L., Cameron, P., De Camilli, P., and Banker, G. (1991), “The distri-
bution of synapsin I and synaptophysin in hippocampal neurons developing in
culture,” The Journal of neuroscience, 11, 1617–1626.

Florian, R. V. (2007a), “Reinforcement Learning Through Modulation of Spike-
Timing-Dependent Synaptic Plasticity,” Neural Computation, 19, 1468–1502.

Florian, R. V. (2007b), “Reinforcement learning through modulation of spike-timing-
dependent synaptic plasticity,” Neural Computation, 19, 1468–1502.

Foderaro, G., Henriquez, C., and Ferrari, S. (2010), “Indirect training of a spiking
neural network for flight control via spike-timing-dependent synaptic plasticity,” in
Decision and Control (CDC), 2010 49th IEEE Conference on, pp. 911–917, IEEE.

Gerstner, W. and Kistler, W. (2006), Spiking Neuron Models: Single Neurons, Pop-
ulations, Plasticity, Cambridge University Press, Cambridge, UK.

Gerstner, W. and Kistler, W. M. (2002), Spiking neuron models: Single neurons,
populations, plasticity, Cambridge university press.

Gerstner, W., Kempter, R., van Hemmen, J. L., and Wagner, H. (1999), “Hebbian
learning of pulse timing in the Barn Owl auditory system, Pulsed neural networks,”
.

Harrison, R. R. and Koch, C. (1998), “An analog VLSI model of the fly elementary
motion detector,” Advances in neural information processing systems, pp. 880–886.

Hodgkin, A. L. and Huxley, A. F. (1952a), “A Quantitative Description of Ion Cur-
rents and its Applications to Conductance and Excitation in Nerve Membranes,”
Journal of Physiology, 117, 500–544.

Hodgkin, A. L. and Huxley, A. F. (1952b), “A quantitative description of membrane
current and its application to conduction and excitation in nerve,” The Journal of
physiology, 117, 500–544.

Hubel, D. H. and Wiesel, T. N. (1959), “Receptive fields of single neurones in the
cat’s striate cortex,” The Journal of physiology, 148, 574–591.

Indiveri, G. (1998), “Analog VLSI model of locust DCMD neuron response for com-
putation of object approach,” PROGRESS IN NEURAL PROCESSING, 10, 47–
60.

Izhikevich, E. M. et al. (2003), “Simple model of spiking neurons,” IEEE Transac-
tions on neural networks, 14, 1569–1572.

Jack, J. J. B., Nobel, D., and Tsien, R. (1975), Electric Current Flow in Excitable
Cells, 1st ed., Oxford University Press, Oxford, UK.

87

Jo, S. H., Chang, T., Ebong, I., Bhadviya, B., Mazumder, P., and Lu, W. (2010),
“Nanoscale Memristor Device as Synapse in Neuromorphic Systems,” Nano Let-
ters, 10, 1297–1301.

Kasabov, N., Dhoble, K., Nuntalid, N., and Indiveri, G. (2013), “Dynamic evolving
spiking neural networks for on-line spatio-and spectro-temporal pattern recogni-
tion,” Neural Networks, 41, 188–201.

Kepler, T. B., Abbott, L., and Marder, E. (1992), “Reduction of conductance-based
neuron models,” Biological cybernetics, 66, 381–387.

Kim, H., Sah, M. P., Yang, C., Roska, T., and Chua, L. O. (2012), “Neural synaptic
weighting with a pulse-based memristor circuit,” Circuits and Systems I: Regular
Papers, IEEE Transactions on, 59, 148–158.

Kuhn, K. J. (2009), “Moore’s Law Past 32nm: Future Challenges in Device Scaling,”
in Computational Electronics, 2009. IWCE’09. 13th International Workshop on,
pp. 1–6, IEEE.

LaValle, S. M. (2004), “Planning Algorithms,” .

Legenstein, R., Naeger, C., and Maass, W. (2005), “What Can a Neuron Learn with
Spike-Timing-Dependent Plasticity?” Neural Computation, 17, 2337–2382.

Legenstein, R., Chase, S. M., Schwartz, A. B., and Maass, W. (2010), “A reward-
modulated hebbian learning rule can explain experimentally observed network re-
organization in a brain control task,” The Journal of Neuroscience, 30, 8400–8410.

Levy, W. and Steward, O. (1983), “Temporal contiguity requirements for long-term
associative potentiation/depression in the hippocampus,” Neuroscience, 8, 791–
797.

Lichtsteiner, P., Posch, C., and Delbruck, T. (2008), “A 128� 128 120 dB 15 µs
latency asynchronous temporal contrast vision sensor,” Solid-State Circuits, IEEE
Journal of, 43, 566–576.

Maass, W. (1997a), “Networks of spiking neurons: the third generation of neural
network models,” Neural networks, 10, 1659–1671.

Maass, W. (1997b), “Noisy Spiking Neurons with Temporal Coding Have More Com-
putational Power than Sigmoidal Neurons,” Advances in Neural Information Pro-
cessing Systems, 9, 211–217.

Maass, W., Schnitger, G., and Sontag, E. D. (1991), “On the computational power of
sigmoid versus boolean threshold circuits,” in Foundations of Computer Science,
1991. Proceedings., 32nd Annual Symposium on, pp. 767–776, IEEE.

88

Markram, H., Lübke, J., Frotscher, M., and Sakmann, B. (1997), “Regulation of
synaptic efficacy by coincidence of postsynaptic APs and EPSPs,” Science, 275,
213–215.

Mead, C. A. and Mahowald, M. A. (1988), “A silicon model of early visual process-
ing,” Neural networks, 1, 91–97.

Meliza, C. D. and Dan, Y. (2006), “Receptive-field modification in rat visual cortex
induced by paired visual stimulation and single-cell spiking,” Neuron, 49, 183–189.

Morris, C. and Lecar, H. (1981), “Voltage oscillations in the barnacle giant muscle
fiber,” Biophysical journal, 35, 193–213.

Mountcastle, V. B. (1957), “Modality and topographic properties of single neurons
of cat’s somatic sensory courtex,” J. neurophysiol.

Nagumo, J., Arimoto, S., and Yoshizawa, S. (1962), “An active pulse transmission
line simulating nerve axon,” Proceedings of the IRE, 50, 2061–2070.

Pennartz, C. (1997a), “Reinforcement learning by Hebbian synapses with adaptive
thresholds,” Neuroscience, 81, 303–319.

Pennartz, C. M. A. (1997b), “Reinforcement Learning by Hebbian Synapses with
Adaptive Thresholds,” Neuroscience, 81, 303–319.

Pfeiffer, K. and Homberg, U. (2014), “Organization and functional roles of the central
complex in the insect brain,” Annual review of entomology, 59, 165–184.

Pfister, J.-P., Barber, D., and Gerstner, W. (2003), “Optimal Hebbian learning: a
probabilistic point of view,” in Artificial Neural Networks and Neural Information
ProcessingICANN/ICONIP 2003, pp. 92–98, Springer.

Pfister, J. P., Toyoizumi, T., Barber, D., and Gerstner, W. (2006), “Optimal Spike-
Timing-Dependent Plasticity for Precise Action Potential Firing in Supervised
Learning,” Neural Computation, 18, 1318–1348.

Ponulak, F. and Kasinski, A. (2010), “Supervised learning in spiking neural net-
works with ReSuMe: sequence learning, classification, and spike shifting,” Neural
Computation, 22, 467–510.

Rostro-Gonzalez, H., Cessac, B., and Viéville, T. (2012), “Parameter estimation
in spiking neural networks: a reverse-engineering approach,” Journal of neural
engineering, 9, 026024.

Rowcliffe, P. and Feng, J. (2008), “Training spiking neuronal networks with appli-
cations in engineering tasks,” Neural Networks, IEEE Transactions on, 19, 1626–
1640.

89

Saleh, A. Y., Hameed, H. N. B. A., Najib, M., and Salleh, M. (2014), “A Novel
hybrid algorithm of Differential evolution with Evolving Spiking Neural Network
for pre-synaptic neurons Optimization,” Int. J. Advance Soft Compu. Appl, 6.

Schutter, E. D. (2009), Computational Modeling Methods for Neuroscientists, The
MIT Press, 1st edn.

Shin, S., Kim, K., and Kang, S. (2011), “Memristor applications for programmable
analog ICs,” Nanotechnology, IEEE Transactions on, 10, 266–274.

Sjostrom, P., Turrigiano, G., and Nelson, S. (2001), “Rate, Timing, and Cooperativ-
ity Jointly Determine Cortical Synaptic Plasticity,” Neuron, 32, 1149 – 1164.

Song, S., Miller, K., and Abbott, L. (2000), “Competitive Hebbian Learning through
spike-timing-dependent synaptic plasticity,” Nature, 3, 919–926.

Sporea, I. and Grüning, A. (2013), “Supervised learning in multilayer spiking neural
networks,” Neural computation, 25, 473–509.

Stengel, R. F. (1986), Optimal Control and Estimation, Dover Publications, Inc.

Strausfeld, N. J. (2012), Arthropod brains: evolution, functional elegance, and his-
torical significance, Belknap Press of Harvard University Press Cambridge, MA.

Strausfeld, N. J. and Hirth, F. (2013), “Deep homology of arthropod central complex
and vertebrate basal ganglia,” Science, 340, 157–161.

Strauss, R. (2002), “The central complex and the genetic dissection of locomotor
behaviour,” Current opinion in neurobiology, 12, 633–638.

Strukov, D. B., Snider, G. S., Stewart, D. R., and Williams, R. S. (2008), “The
missing memristor found,” nature, 453, 80–83.

Thorpe, S., Delorme, A., and Van Rullen, R. (2001), “Spike-based strategies for
rapid processing,” Neural networks, 14, 715–725.

Van De Ven, T. J., VanDongen, H. M. A., and VanDongen, A. M. J. (2005), “The
non-kinase phorbol ester receptor alpha 1-chimerin binds the NMDA receptor
NR2A subunit and regulates dendritic spine density.” Journal of Neuroscience,
15, 9488–9496.

Wang, J., Belatreche, A., Maguire, L., and McGinnity, T. (2014), “An Online Su-
pervised Learning Method for Spiking Neural Networks with Adaptive Structure,”
Neurocomputing.

Wong, H.-S. P., Frank, D. J., Solomon, P. M., Wann, C. H., and Welser, J. J. (1999),
“Nanoscale cmos,” Proceedings of the IEEE, 87, 537–570.

90

Wysoski, S. G., Benuskova, L., and Kasabov, N. (2006), “Adaptive learning proce-
dure for a network of spiking neurons and visual pattern recognition,” Advanced
Concepts for Intelligent Vision Systems, ACIVS, Antwerp, Lecture Notes in Com-
puter Science, 4179.

Yakopcic, C., Taha, T. M., Subramanyam, G., Shin, E., Murray, P. T., and Rogers,
S. (2010), “Memristor-based pattern recognition for image processing: an adaptive
coded aperture imaging and sensing opportunity,” in SPIE Optical Engineering+
Applications, pp. 78180E–78180E, International Society for Optics and Photonics.

Yang, Z., Murray, A., Worgotter, F., Cameron, K., and Boonsobhak, V. (2006), “A
neuromorphic depth-from-motion vision model with STDP adaptation,” Neural
Networks, IEEE Transactions on, 17, 482–495.

Zemelman, B. V., Lee, G. A., Ng, M., and Miesenböck, G. (2002), “Selective photo-
stimulation of genetically chARGed neurons,” Neuron, 33, 15–22.

Zhang, F., Wang, L.-P., Boyden, E. S., and Deisseroth, K. (2006),
“Channelrhodopsin-2 and optical control of excitable cells,” Nature methods, 3,
785–792.

Zhang, X. and Xu, Z. (2013), “navigation of virtual insect in different terrains,” .

Zhang, X., Foderaro, G., Henriquez, C., VanDongen, A., and Ferrari, S. (2012),
“A radial basis function spike model for indirect learning via integrate-and-fire
sampling and reconstruction techniques,” Advances in Artificial Neural Systems,
2012, 10.

Zhang, X., Xu, Z., Henriquez, C., and Ferrari, S. (2013), “Spike-based indirect train-
ing of a spiking neural network-controlled virtual insect,” in Decision and Control
(CDC), 2013 IEEE 52nd Annual Conference on, pp. 6798–6805, IEEE.

91

	Abstract
	List of Tables
	List of Figures
	List of Abbreviations and Symbols
	Acknowledgements
	1 Background and Motivation
	1.1 CMOS and Memristor
	1.2 Light-Sensitive Culture
	1.3 Spiking Neural Network Models
	1.4 Neuromorphic Systems
	1.5 Training Methods for Spiking Neural Networks

	2 Spiking Neural Network Model
	2.1 Integrate-and-Fire Model
	2.1.1 Synaptic Current
	2.1.2 Refractory Period

	2.2 Hebbian Learning
	2.3 Spike Timing-Dependent Plasticity(STDP)

	3 Benchmark Training Problem: Virtual Insect Control and Navigation
	3.1 Unicycle Modeled Virtual Insect
	3.1.1 Sensor Models of the Virtual Insect Trained by Gradient Method
	3.1.2 Virtual Insects Trained by Weights Perturbation

	3.2 Biologically Modeled Virtual Insect

	4 Indirect Training Algorithms
	4.1 Analytic Gradient Training Algorithm
	4.1.1 Deterministic Spike Model
	4.1.2 Derivation of Gradient Equations for Indirect Training

	4.2 Numerical Indirect Gradient Method
	4.2.1 Optimization of Radial Basis Function

	4.3 Indirect Training by Weight Perturbations

	5 Simulation Results
	5.1 Seven Neurons Controlled Virtual Insect
	5.1.1 Blank Terrain
	5.1.2 S-maze Terrain
	5.1.3 Cloud Terrain

	5.2 Insect Trace Controlled by Larger Neural Networks Trained by Weight Perturbations
	5.2.1 S-maze
	5.2.2 Cloud Terrain

	5.3 Tripod Insect Controlled by a Large SNN
	5.4 Strength of Large Size SNNs

	6 Conclusion
	A Appendix
	Bibliography

