
Indirect Training Algorithms for Spiking Neural
Networks based on Spiking Timing Dependent

Plasticity and Their Applications

by

Xu Zhang

Department of Mechanical Engineering and Materials Science
Duke University

Date:
Approved:

Craig S. Henriquez, Supervisor

Brian P. Mann

Michael M. Zavlanos

Marc A. Sommer

Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in the Department of Mechanical Engineering and Materials

Science
in the Graduate School of Duke University

2016

Abstract

Indirect Training Algorithms for Spiking Neural Networks

based on Spiking Timing Dependent Plasticity and Their

Applications

by

Xu Zhang

Department of Mechanical Engineering and Materials Science
Duke University

Date:
Approved:

Craig S. Henriquez, Supervisor

Brian P. Mann

Michael M. Zavlanos

Marc A. Sommer

An abstract of a dissertation submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in the Department of Mechanical Engineering

and Materials Science
in the Graduate School of Duke University

2016

Copyright c© 2016 by Xu Zhang
All rights reserved except the rights granted by the

Creative Commons Attribution-Noncommercial Licence

http://creativecommons.org/licenses/by-nc/3.0/us/

Abstract

Spiking neural networks have been used to investigate the mechanisms of processing

in biological neural circuits or to propose hypotheses that can be tested in exper-

iments. Because of their biological plausibility and event-based information trans-

mission, Spiking Neural Networks (SNNs) have suggested as alternatives to Artificial

Neural Networks for pattern recognition, classification and function approximation

problems with fewer neurons. In machine learning, SNNs has been shown to be able

to solve pattern and robotic control. For SNNs to be used for such problems, they

must incorporate some mechanism for learning. Current methods to train SNNs use

learning algorithms which adjust the synaptic weights according to an update rule.

In most cases the weights are modified directly. In potential applications such as

driving plasticity in neural culture (in-vitro) and training neuromorphic chips the

directly manipulation of synaptic weights is not possible. Therefore, indirect algo-

rithms, which cause the SNNs to learn based on some biological learning mechanisms

using stimulation of neurons offer significant advantages over the existing algorithm

for these real world applications.

Indirect algorithms train the neural network by using external stimuli to modulate

the synaptic strengths of a neural network according to synapses intrinsic mechanisms

for plasticity. The training algorithms have been demonstrated in both Integrate and

Fire neurons and more biologically realistic neural networks. In this thesis, four indi-

rect methods to drive the synaptic weights to its desired value in a network through

iv

Spike Time Dependent Plasticity (STDP) are developed: Indirect Perturbation, In-

direct Stochastic Gradient, Indirect ReSuMe, and Indirect Training with Supervised

Teaching Signals. These algorithms are used to solve the temporal and spatial input-

output mapping problem using temporal coding. The other type of problem is to

mapping input output firing rates using rate coding.

To test the algorithms, SNNs are used to control both virtual and real world

robots. For the real world robots with SNNs, known and Neurorobots, two types

of robot localization techniques are used: Optitrack, using ceiling mounted cameras

and onboard markers, and embedded cameras. Both small and large SNNs with

biologically realistic neurons are used to drive the neurorobots are modeled with

input coming from Optitrack or the cameras with GPU accelerated SNN simulator.

The results show that the indirect perturbation and indirect stochastic gradient

algorithms can train an SNN to control the robot to find targets and avoid obstacles

even in the presence of sensor noise. The results also show that indirect training with

supervised training signals algorithm can train a feedforward network with 1000s of

neurons to process and output the correct movement commands to localize a target

using from real time images captured from an embedded camera. Finally. an indirect

version of the Remote Supervised Method (ReSuMe) algorithm was developed using

a more biologically realistic form of Spike-Timing Dependent Plasticity to produce a

specific temporal pattern of spiking from a group of neurons. The indirect algorithms

developed in this thesis may eventually allow the ability to train in vitro and in

vivo biological circuits to perform specific tasks using patterns of electrical or light

stimulation.

v

I dedicate this thesis to God for His blessing, to my wife for her consistent love,

to the MEMS department and Graduate School for the funding support and valuable

suggestions.

vi

Contents

Abstract iv

List of Tables x

List of Figures xi

List of Abbreviations and Symbols xvi

Acknowledgements xx

1 Introduction 1

1.1 Training CMOS and Memristor Devices 5

1.2 Training Neuronal Cultures and Neurochips 6

1.3 Spiking Neural Networks and Modeling Software 7

1.4 Application of SNNs in Neurorobotics 10

1.5 Training Algorithms for Spiking Neural Networks 11

1.6 Discussion . 13

2 Spiking Neural Network Model 17

2.1 Integrate-and-Fire Model . 17

2.1.1 Electric Circuit . 17

2.1.2 Refractory Period . 19

2.2 Izhikevich Model . 21

2.3 Synapse Models . 25

2.3.1 Delta Pulse . 26

vii

2.3.2 Alpha Synapse . 27

2.4 Spike Timing-Dependent Plasticity (STDP) 28

2.4.1 Implement STDP using Local Variables 31

2.5 Discussion . 33

3 Problem Formulations 35

3.1 Temporal and Spatial Mapping using Temporal coding 35

3.1.1 Correlation-Based Metric . 36

3.1.2 Training and testing Data . 37

3.2 Input Output Mapping using Rate Coding 39

3.3 Neural Network Size and Inputs Noise 40

3.4 Discussion . 40

4 Indirect Training Algorithms based on Rate Coding and Applica-
tions 43

4.1 Indirect Perturbation Algorithm . 44

4.1.1 Algorithm Description . 44

4.1.2 Local Minimum . 52

4.1.3 Application of Indirect Perturbation Algorithm on Virtual In-
sect Navigation . 53

4.1.4 Application of Indirect Perturbation Algorithm on Indoor Robot
Navigation using Optitrack . 64

4.1.5 Discussion . 73

4.2 Indirect Stochastic Gradient Descent Algorithm and Application . . . 75

4.2.1 Algorithm Description . 75

4.2.2 Performance of Indirect SGD Vs. Indirect Perturbation Algo-
rithm . 77

4.2.3 Discussion . 82

viii

4.3 Indirect Training with Supervised Teaching Signals and Neurorobot
Applications . 83

4.3.1 Algorithm Description . 83

4.3.2 Neurorobotic Navigation using Large SNNs and Embedded
Cameras . 85

4.3.3 Discussion . 89

5 Indirect ReSuMe Algorithm and Spatial Temporal Mapping 92

5.1 Algorithms Description . 92

5.1.1 Indirect ReSuMe rule . 93

5.2 Results of Training Biological Realistic Model for Temporal Spatial
Mapping . 95

5.2.1 Analysis of the Indirect Learning Rate 101

5.3 Discussion . 102

6 Conclusions 104

A Appendix 108

Bibliography 114

Biography 131

ix

List of Tables

4.1 SNN architecture with 11 neurons . 57

4.2 SNN architecture with 14 neurons . 57

4.3 SNN architecture with 184 neurons 57

4.4 SNN architecture with 819 neurons 57

A.1 Parameters for neuron models for Chapter 4 and Chapter 5. 108

A.2 Parameters for neuron models for Chapter 6. 108

A.3 Parameters for neuron models for Chapter 7. 109

A.4 Units for parameters . 109

x

List of Figures

2.1 Integrate-and-Fire neuron model. The basic circuit of the synapse
is the module inside the dashed square. A spike δpt � tfj q is filtered

and generates an input current alpha pulse αpt � tfj q at the synapse.
The basic circuit of the postsynaptic neuron is the module inside the
dashed triangle. The current Iptq charges the RC circuit. When the
voltage at the capacitance if over a threshold Vth. It generates an
output pulse δpt� tfi q. 18

2.2 Membrane potential of linear, quadratic, and exponential integrate-
and-fire neurons when stimulated by constant currents. 19

2.3 Dynamic analysis of different LIF models. 20

2.4 States of Na� and K� channels during action potential. 21

2.5 Relative refractory period. 22

2.6 Absolute refractory period. 22

2.7 Different type of neurons with different values of a,b,c,d in the model
described by the Eq. 2.6, Eq. 2.7. IB and CH are cortical excitatory
neurons. FS and LTS are cortical inhibitory interneurons. 23

2.8 Membrane potentials of pre- and postsynaptic neuron by modeling
synaptic current using delta pulse. (a). simple network structure.
(b). membrane potential of presynaptic neuron stimulated by extra
currents. (c). membrane potential of postsynaptic neuron. 27

2.9 Conductance simulated by summation of alpha functions and coupled
ODEs. 29

2.10 Conductance simulated by alpha function and coupled ODE for GABAa
and NMDA respectively. 30

2.11 STDP learning scheme. 31

xi

2.12 Local variables xi, yi and their pairings. 32

2.13 Nearest-Neighbor pairing scheme . 33

3.1 Information flow of ANNs comparing with SNNs. 36

3.2 Each neuron is trained to classify one type of spike train. 37

3.3 One input data sample generated according to Eq. 3.3 38

3.4 Different rate coding methods. (a) rate coding over time of single
neuron. (b) rate coding over a population of neurons. (c) rate coding
over different trials. 39

4.1 Insect locations for six training cases. The star represents the target
while the black square represents the obstacle. 45

4.2 Virtual insect model. (a). Insect geometry and workspace coordinates.
(b). Insect terrain sensors (gray) and target sensors (black). 46

4.3 Flowchart of the training algorithm. 47

4.4 Action potentials of the pre and post-synaptic neurons and the weights
change by training inputs. (a). Training square pulses for increasing
the weight and response of the neurons. (b). Training square pulses
for decreasing the weight and response of the neurons. (c). Weight
increase caused by training stimuli during one training epoch. (d).
Weight decrease caused by training stimuli during one training epoch. 51

4.5 Global minimum and local minimum. 53

4.6 Comparison of insect trajectories for naive (random synaptic strengths)
(a) and trained (b) SNNs in an obstacle-free arena. 54

4.7 Comparison of insect trajectories for naive (random synaptic strengths)
(a) and trained (b) SNNs in an S-maze. 54

4.8 Comparison of insect trajectories for naive (random synaptic strengths)
(a) and trained (b) SNNs in a complex terrain of variable elevation. . 55

4.9 Track of live insect in the arena color coded based on the activity level
of a CX unit (a). Color-coded neural (spike) activity as a function
of translational and rotational velocity over entire track (b), where
warmer colors indicate higher firing frequency (taken from [106]). . . 55

xii

4.10 Insect behavior in a complex terrain (a), visualized in VRML, illus-
trating the ability of the trained SNN to navigate through narrow
passages (b)-(c), ultimately reaching the target (d). 56

4.11 Training blue for SNN with 819 neurons. 58

4.12 Trained insect trajectories with or without sensory input noise for
SNN with 11 neurons (a), 14 neurons (b), 184 neurons (c) and 819
neurons (d) when ν � 0.5. 59

4.13 Time history of insect distance from the target in the presence of
sensor noise, when ν � 0.5, using the trained SNN with 11 neurons
(a), 14 neurons (b), 184 neurons (c), and 819 neurons (d). 60

4.14 Trained SNN effectiveness as a function of sensor noise level and for
different numbers of neurons. 62

4.15 Seven neurons influenced by stimulus with Gaussian error in Eqn.
(4.13) when training pulse is delivered to neuron i at pX, Y q � p2, 2q. 63

4.16 Training blue in the presence of training stimulus error, for σ � 0.8
with the network in Fig. 4.15. 63

4.17 The robot experiment communication system. 66

4.18 The SNN with 49 neurons and random recurrent connections. The
square shape is only for better illustration of those connections. . . . 67

4.19 Robot traces with different initial positions and orientations. 68

4.20 Spikes of the SNN during robot’s turn and reaching the target. (A).
Spikes of the SNN around position A. (B). Spikes of the SNN around
the turning point at position B. (C). Spikes of the SNN around the
final point at position C. (D). Robot trace during the simulation. . . 69

4.21 Spikes of the SNN during robot’s turn and reaching the target. (A).
Spikes of the SNN around position A. (B). Spikes of the SNN around
the turning point at position B. (C). Spikes of the SNN around the
final point at position C. (D). Robot trace during the simulation. . . 70

4.22 Robot experiment setup for avoiding objects. 71

4.23 Spikes of the SNN during robot’s turn and reaching the target. (A).
Spikes of the SNN around position A. (B). Spikes of the SNN around
the turning point at position B. (C). Spikes of the SNN around the
final point at position C. (D). Robot trace during the simulation. . . 72

xiii

4.24 Spikes of the SNN during robot’s turn and reaching the target. (A).
Spikes of the SNN around position A. (B). Spikes of the SNN around
the turning point at position B. (C). Spikes of the SNN around the
final point at position C. (D). Robot trace during the simulation. . . 73

4.25 Error during training. (a). Error during training using Indirect Per-
turbation Algorithm. (b). Error during training using Indirect SGD. . 78

4.26 Traces of the insects trained by (a). indirect SGD (green) and (b).
indirect perturbation (red) under sensor noise p � 0.9. 80

4.27 The distance from the insects to the target of insect controlled by (a).
indirect SGD (blue) and (b). indirect perturbation (red). 81

4.28 Performance of the insects under different level of sensory noises trained
by (a). indirect SGD (blue) and (b). indirect perturbation (red). . . . 81

4.29 The largest indirectly trained network 84

4.30 Weight distribution before training 87

4.31 Weight distribution during training 87

4.32 Camera shots taken from the embedded camera on the robot.(a) Raw
image taken from the camera when the target is far away. (b) Pre-
processed image using OpenCV when the target is far away. (c) Raw
image taken from the camera when the target is nearby. (d) Prepro-
cessed image using OpenCV when the target is nearby. 88

4.33 Snapshots of firings of the large size neural network during robot ex-
periment. 89

4.34 Snapshots of firings of the large size neural network during robot ex-
periment. 89

5.1 Raster plot of output neurons before training using ReSuMe algorithm
given random generated input spikes. 96

5.2 Raster plot of output neurons after training using ReSuMe algorithm
given random generated input spikes. 97

5.3 Raster plot of output neurons before training given random generated
input spikes. 98

5.4 Raster plot of output neurons after training given random generated
input spikes. 98

xiv

5.5 The weight change during indirect training for spatial and temporal
mapping. 99

5.6 The performance of five output neurons during training using ReSuMe.100

5.7 The performance of five output neurons during training. 100

5.8 Performance analysis of indirect ReSuMe under different STDP pa-
rameters. 101

5.9 Time cost analysis of indirect ReSuMe under different STDP parameters.102

xv

List of Abbreviations and Symbols

Symbols

Below are the descriptions of a list of symbols used in this dissertation.

Isyn Synaptic current.

IInj External inject current.

I Total current given to a neuron.

IR Current that goes through resistance.

IC Current that charge the capacitance.

R Membrane resistance.

C Membrane capacitance.

Cm Membrane capacitance.

δp�q Delta pulse.

αp�q Alpha pulse.

Vth Threshold.

τm Membrane potential time constant.

EL Resting potential.

∆Q,∆E, VT Constant voltages.

v Membrane potential.

u Membrane recovery variable.

a, b, c, d Dimensionless parameters for Izhikevich model.

xvi

tf Firing time.

gsynptq Synaptic conductance.

ḡsyn Synaptic conductance amplitude.

f Normalization factor for synaptic conductance.

τdecay, τrise Time constants for the decaying speed and rising speed of con-
ductance.

t0 Rising time of the synaptic conductance.

tpeak Peak time of the synaptic conductance.

h Temporary variable for conductance model.

W Synaptic weight.

A�, A� Maximum increase and decrease of weight per spike pair.

∆t Temporal difference between spikes.

τ�, τ� Time constants for STDP

tpre, tpost Firing times of pre and postsynaptic neuron.

xi, yi Local variable for implement STDP.

tfi , t
f
j Firing time of pre, postsynaptic neurons.

τx, τy Time constants for implement STDP.

wij Weight between neuron i and j.

ti,k kth Firing of neuron i.

ck kth Square pulse given to the neuron.

β Width of the square pulse.

∆abs Time length of refractory period.

T Time costs for a neuron to fire given constant input.

ω Height of the constant input.

Rm Membrane resistance.

f�L, f
�
R Desired average firing frequencies of left and right motor.

xvii

hL, gL Left terrain and target sensor values.

hR, gR Right terrain and target sensor values.

xL, yL, xR, yR Positions of the left and right target sensors.

dL, dR Euclidean distance from left and right target sensor to the target.

λ, α, γ, σ Constant scalers.

r Roughness of the terrain.

n Number of possible pairs.

N Number of neurons.

ek,l lth training error of kth epoch.

te Time length of one test epoch.

R Membrane resistance.

Abbreviations

SNN Spiking neural network.

STDP Spike timing dependent plasticity

ReSuMe Remote supervised method.

CMOS Complementary metaloxidesemiconductor.

IF Integrate-and-fire.

LIF Leaky integrate-and-fire.

ISGD Indirect stochastic gradient descent.

ANN Artificial neural network.

MEA Multi-electrode array.

HH Hodgkin-Huxley.

CSIM Circuit SIMulator.

CPG Central pattern generator.

CH Chattering.

xviii

IB Intrinsically bursting.

FS Fast spiking.

LTS Low-threshold spiking.

RS Regular spiking.

TC Thalamo-cortical.

RZ Resonator.

PSP Postsynaptic potential.

LTP Long-term potentiation.

LTD Long-term depression.

CNN Convolutional neural network.

SVM Support vector machine.

ISI Interspike intervals.

ROS Robot operating systems.

CUDA Compute unified device architecture.

FPGA Field-programmable gate array

xix

Acknowledgements

Many thanks to Mechanical Engineering and Materials Science department’s con-

sistent funding supports and National Science Foundation’s ECCS Grant 0925407.

Thanks to my adviser Dr. Henriquez, from whom I learned how to improve myself to

be both a good researcher and a good programmer skilled in different programming

languages that helped me find a perfect job related to Spiking Neural Networks.

Thanks Dr. Mann’s many suggestions during my transition and helps on my funding

support. Thanks Graduate School on my tuition waive and communications during

my difficult time. Thanks Dr. Zavlanos’ permission so that I can do experiments

using the robot lab’s equipments. Thanks Dr. Sommer for his agreement to be my

committee member and many valuable suggestions.

xx

1

Introduction

Spiking neural networks are a more biologically realistic form of artificial neural

networks. Information is transmitted in the network though brief events known as

spikes, to mimic action potentials, and via time-dependent dynamics and delays, to

represent electrical and chemical synapses in the brain. SNNs can represent infor-

mation through both the spiking rate and the the relative timings of the spikes [99].

As a result, SNNs can replicate biological phenomenon observed in in vitro neuronal

cultures or in vivo animal brains [170, 21] and can be used to produce hypotheses

that can be tested in experiments or aid in interpreting results. Along with studying

biology, spiking neural networks are beginning to be used for solving problems in pat-

tern recognition, classification and function approximations [82, 24, 162, 57, 75, 28].

[101] has shown that SNNs can solve the same problem as ANNs by using fewer

neurons.

Because of their potential advantages, SNNs have received increased attention as

potentially powerful computational platforms that can be implemented in software

or hardware. Maass introduced the concept of a liquid state machine with fading

memory formed by a recurrent SNN for real-time computing on time varying input

1

streams for applications such as classification [98]. Software implementations of

SNNs have also had a long history in neuroscience using both biophysically realistic

and simplified models of neurons and synapses [19] Models have been constructed to

investigate a wide range of phenomena such as the origin of brain oscillations [36]

and central pattern generators underlying animal locomotion [86]. More recently,

SNN have been used in the emerging field of computational psychiatry that seeks to

link the emergent circuit dynamics to decision-making [117] and an actual behavior

and in neurorobotics that seeks to integrate sensor data to drive robot movement or

response [8].

Programmable hardware implementations of simplified models of neurons and

synapses form the basis of neuromorphic chips [164]. Recently, researchers at the

University of California, Santa Barbara, and Stony Brook University constructed a

functional neuromorphic chip with hardware elements alone that mimic the digital

neurons and analog synapses of a brain [130]. The key to this breakthrough was the

incorporation of a two terminal device, known as a memristor, in which the resistance

to current depends on the currents that have flowed through them in the past, to

serve as the synapse. The development of neuromimetic devices may not only lead to

new image and language processing technologies but may underlie new event-based

sensory prosthesis to correct blindness or deafness. The primary challenge of these

new computing platforms that use SNNs is that they cannot be programmed using

traditional approaches. Like a real brain, the SNN implemented in software or on a

neuromorphic chip needs to learn the desired behavior [164].

There is growing experimental evidence that learning in the brain involves changes

in the strength of synaptic connections (plasticity) in the neuronal circuits [46].

One form of synaptic plasticity depends on the timing of the spikes in the neuron

before the synapse (pre-synaptic) and the neuron after the synapse (postsynaptic).

Markram et al. were the first to show that when a presynaptic spike is followed by

2

postsynaptic spike there is enhancement in the strength of the synapse and when

a postsynaptic spike is followed by a presynaptic spike there is depression of the

strength of the synapse [105]. Bi and Poo showed that the amount of strengthing or

weakening depended on the timing of the pre and post-synaptic spike. This change

in synaptic strength that depends on spike times is known as spike-timing dependent

plasticity (STDP) [9].

Because of its biological basis and relative simplicity, STDP has been used in

both software and hardware versions of SNNs. A number of supervised and rein-

forcement learning algorithms have been developed for training spiking neural net-

works to perform function approximation or classification by means of a learning rule

that adapts the synaptic strengths via STDP plasticity. One of the first supervised

learning algorithm for spiking neural networks, Spike-Prop, was inspired by Error

Backpropagation algorithm for ANNs [136]. The Spike-Prop algorithm is based on a

single-spiking structure, which means that the input, hidden, output layer neurons

can only emit a single spike during each test. Additionally, Spike-Prop algorithm is

subject to sudden jumps in the training error, called surges, which change the course

of learning or even lead to a failure [157]. The use of adaptive learning rate has been

found to reduce surges and variants of Spike-Prop have been developed that allow

for multiple spikes in the hidden layers [146, 147]. ReSuMe is an example super-

vised learning algorithm that is based on the classical Widrow-Hoff rule which uses

combination of the spike time-dependent plasticity (STDP) and anti-STDP learning

windows to produce a desired output spike train in response to a spatiotemporal

pattern [128]. The Chronotron algorithm is similar to ReSuMe in that it uses spike

timing [51]. A trained network using this method has been shown to have a higher

memory capacity than ReSuMe. Delay learning re-mote supervised method (DL-

ReSuMe) combines the delay shift approach with ReSuMe to improve the learning

performance and biological properties [155]. Recently, Multi-DL-ReSuMe has been

3

developed that uses multiple output neurons with each neuron classifying a single

type of output [156]. Multiple Spike Pattern Association Neurons (SPANs) in a sin-

gle layer network can be trained to solve classification problem with higher accuracy

than a single SPAN [115]. In some algorithms, a global reward was used to simulate a

neurochemical signal for modifying synaptic weights via STDP [138, 124, 91, 78, 81].

Spike-driven synaptic plasticity (SDSP) was used to train a spiking neural network

to perform pattern recognition [82].

Unfortunately, most of the existing training algorithms rely on direct the ma-

nipulation the synaptic weights via a learning rule. Such direct manipulation is not

possible in a biological circuit and may be limiting in certain implementations of

neuromorphic chips using memristor technologies. However, it is possible to stimu-

late a subset of neurons either by electrical or light stimulus [174] to induce changes

at the synapses. For example, light-sensitive neural systems grown in vitro can be

stimulated to fire precisely in milliseconds scale [174]. Therefore, these indirect stim-

uli can be used as a teaching signal to force the neurons to fire in a specific pattern

so that the synaptic weights can be indirectly modulated to train the SNNs.

In this thesis, I develop four indirect training algorithms for SNNs. Because

SNNs can include both rate-coding or spike-coding [55], most existing learning algo-

rithms have been designed specifically for solving problems limited to specific coding

schemes [68]. The indirect training algorithms developed here are also tested on both

rate coding and spike coding problems for wide applicability. For rate coding, the

algorithms are used to train a large scale SNNs for controlling both virtual simulated

neurorobot for finding a target while avoiding obstacles and an actual real-time neu-

rorobot in an environment populated with obstacles for finding targets. For temporal

coding, an SNN is trained to mapping randomly generated input spikes into desired

firing times of the output neurons.

4

1.1 Training CMOS and Memristor Devices

The complementary metal-oxide-semiconductor (CMOS) has been used in micropro-

cessors, microcontrollers, static RAM and other digital logic circuits since the early

1960s. CMOS has two important strengths including high noise immunity and low

static power consumption [142]. Therefore, it does not produce as much wasted

heat as other kinds of logic such as transistor-transistor logic (TTL) or NMOS logic,

which usually have standing current even when not changing state. In comparison

with electronic devices, the brain is extremely energy efficient using about 15 kilo-

calories per hour, which is the same amount of energy that a quad-core CPU uses

in 20 minutes (around 20 watt hours). So the brain uses about 3 times less power

to support 40,000 times more synapses than transistors. Therefore, that the brain

is over 100,000 times more energy efficient. Nevertheless, CMOS neurons are being

developed to implement neural networks in hardware VLSI chips [96, 95, 39, 66].

Static RAM has been designed to modeling the synapse’s behavior on nanoscale

chips [143]. Even though SRAM can provide fast access time and is stable, it always

needs a voltage to be applied for retention [171]. The memristor, considered as the

fourth fundamental circuit element, behaves very similarly to the biological synapse.

It was discovered by Chua in 1971 and further developed by Williams at Hewlett

Packard in 2008. The configurable resistance of the memristor maintains its state

even when the power is disconnected. This allows the memristor to serve as a low-cost

electrical element in the next generation of computers or chips [72, 13].

By combining CMOS and memristor technology, neuromorphic chips have been

designed to solve some real world problems in both neuroscience and robotics [85, 152,

172, 172, 93]. Memristors can incorporate Spike-Timing-Dependent Plasticity as a

learning mechanism [144, 131, 105]. Unfortunately, most STDP learning algorithms

are unsupervised [108, 37, 107, 167]. Therefore, indirect training algorithms are

5

needed to enable supervised learning or reinforcement learning based on the STDP

to greatly improve the potential application areas of neuromorphic chips.

1.2 Training Neuronal Cultures and Neurochips

Culture of neurons have been used to study processing in the brain and for studying

animal learning, plasticity, and memory, [163]. The cultured neural networks are

typically stimulated and recorded using an input/output electronic device called

multi-electrode array (MEA), which make the two ways communication possible

between researchers and neural networks. Using this framework, Potter et al. used

cultured neurons to control simple robots termed hybrot or animat. By running

hybrot in the real environment, they have been able to investigate the underlying

learning and plasticity in a biologically realistic context [5, 35]. However, these

cultures have proven extremely difficult to train. Traditional neural network learning

algorithms that operate directly on the weights are not applicable to real neuronal

cultures. As a result, these robots can only accomplish simple tasks like running in

straight lines. In other words, there are currently no efficient methods to train the

biological neural networks.

Although an MEA can both record and stimulate neuronal cultures, it does not

providee high temporal and spatial precisions. Optical control of neurons has been

proposed to overcome this limitation[173, 174]. Optogenetics combines genetics and

optics for controlling well-defined events within specific cells of living tissue [114]. By

using patterns light, it may be possible to achieve higher temporal-spatial resolution.

In addition, optogenetics enable the ability to either hyperpolarize or depolarize cells

using different wavelengths of light.

For implementing this technique in-vitro, randomly connected neural networks

can be grown by the method called Banker Cultures [49], which grow neurons on

top of a monolayer of astrocytes. By using the MEA, the firings of cultured out-

6

put neurons can be recorded and computed for real-time firing rates or integrated

signals. In [16], Multi-Channel System recording hardware and software setups al-

low researchers to record the neuronal activity on millisecond timescales. Therefore,

indirect training algorithms based on stimulating neural network using optogenetics

and recording outputs using MEAs are needed to make solving reverse engineering

problems using biologically neural culture possible.

Because of the small number of neurons, few connections and the ability for pre-

cise control compared with traditional neuronal cultures, the Neurochip could also

benefit from indirect training algorithms. According to Pinelab at Caltech, the goal

of the neurochip project is to design and fabricate a silicon-micromachined device

that continuously records from and selectively stimulates individual neurons that are

part of a small network of cultured neurons.” Studies have been done on mapping

connections between individual neurons grown in neurochip and analyzing learn-

ing [42, 103]. In one implementation of a Neurochip, 16 neurons on a 4*4 array

of ”neurocages” were grown. The Neurochip cultures show suprathreshold activity

starting around 10-14 DIV, which is consistent with the time range for formation

of functional synapses and network maturation in previous studies of hippocampal

cultures. Whether the observed responses in neurochip are from mono- or polysy-

naptic connections are also investigated [42]. In this thesis, a biological plausible

small network is modeled and trained by using indirect training methods, which are

applicable to biological neurochip in future.

1.3 Spiking Neural Networks and Modeling Software

Neural network models can be classified into three generations: perceptrons, activation-

function based networks, and spiking neural networks (SNNs). The first generation

uses McCulloch-Pitts neurons as the computational elements, which are only known

as perceptrons. Multilayer perceptrons, Hopfield nets, and Boltzmann machines

7

belong to this generation. These networks only generate digital output, the main

weakness of these models. However, for computation with digital input and output,

they are universal. To overcome the weakness of the first generation, the second

generation of neural networks uses computational node models that include an ”ac-

tivation function”. This type of neural network can have continuous input and

output, where the input is the weighted sum of the outputs from the previous layer.

The most commonly used activation functions include sigmoid function, binary step

function, bipolar step function, sigmoidal function and ramp function. The second

generation includes feedforward, recurrent neural networks, and radial basis function

neuronal model. It has been shown in [102, 32] that the second generation uses fewer

neurons to solve the same problem than the first generation. This generation can

compute input-output mapping with analog signals. A number of gradient descent

algorithms like backpropagation were designed for training this type of neural net-

works [137, 139, 181]. Even though ANNs have been shown capable of solving many

classical machine learning and control problems such as pattern recognition, func-

tion approximation, and robotic control, they lack some of the basic characteristics

of biological neural networks. First, these ANNs do not incorporate the time-based

information transmission between neurons. Also, they do not have the ability to

replicate some basic phenomena that commonly appear in biological neural networks

like bursting and synchrony [104]. Thus, the third-generation neural network model,

SNN, increases the level of biological realism by modeling neural spikes[45]. Neurons

in the network communicate with each other via action potential spikes, often with

the same time course. Therefore, the specific timings of those spikes matter more

than shapes of individual spikes. This enables fast and energy saving transmission

of information in the network.

Before picking a spiking neural network, we must evaluate the trade-off between

the computational efficiency and biological realism. For example, Hodgkin-Huxley

8

type models for the spiking which incorporates ion flows and other dynamics, are

computationally expensive and difficult to analyze, limiting networks to only a small

group of neurons. While computationally challenging, these types of models can

serve as an important reference for the derivation of other simple models. The four-

dimensional Hodgkin Huxley model has been reduced to simpler two-dimensional

models. Morris-Lecar model, Fitzhugh-Nagumo model, and Izhikevich model are

several examples of the two dimensional models [118, 48, 79]. Further reduction is

often needed for more analytical analysis of both learning and memory. Therefore, a

reduction from two-dimensional to one-dimensional gives us one of the most popular

neuron model called Leaky Integrate and Fire (LIF) neuron. The LIF neuron is a

one-dimensional model described by a single Ordinary Differential Equation (ODE).

It has been defined as a canonical model for spiking neurons because it can be simply

studied analytically and also being sufficiently plausible to model several essential

characteristics of a neural system. In this thesis, LIF neurons are used for deriving

the analytical gradient algorithm; Izhikevich neurons are used to model SNNs in a

GPU for controlling a mobile robot in real experiment environment and HH neurons

are used for modeling a small neurochip.

There are many different SNN simulators with different level of computational

speed and biological models. CSIM (Circuit SIMulator) can simulate heterogeneous

networks with different neural and synapse models. It’s written in C++ with a

MEX interface to Matlab. The main strength of CSIM is that it has many different

types of neuron and synapse models. The biggest weakness of CSIM is its simulation

speed. Brian 2 [64], is another SNN simulator written in python and runs slightly

faster than CSIM. A big advantage compared with CSIM is that users can define

any type of neural and synapse models using ODES. CSIM users can only use pre-

defined models. Neither, CSIM or Brian 2 can be used in a real-time environment.

For simulating large neural network in real time or faster than real time, we used a

9

GPU accelerated simulator called CarlSim, which can simulate thousands of neurons

faster than real time. This fast speed is really important for the use of SNNs in a

physical robot which needs to interact with an obstacle or a moving target.

1.4 Application of SNNs in Neurorobotics

Neurorobotics is an emerging field that combines of neuroscience, robotics, and arti-

ficial intelligence. It has attracted many research groups to study neural systems and

behavior by implementing simulated SNNs in a robot, which can interact with the

real environment. In contrast to simulated environments, real environments are rich,

complex and noisy. These real-world challenges require more sophisticated networks

which are computationally expensive and difficult to train. Four characteristics of a

neurorobot are: 1. robot is engaged in a behavioral task. 2. the robot is operating

in a real environment. 3. the robot has interaction with the environment through

sensory inputs. 4. The robot is controlled by a nervous system that simulates the

brain’s architecture at some level.

There are three main research directions of neurobotics: motor control, learning

and value systems. Neurorobots are useful for studying animal locomotion and motor

control to improve robotic controller designs. Central Pattern Generators (CPGs),

networks of motorneurons that repeat a rhythmic firing pattern without extra stimuli,

have been applied to robot locomotion [76, 84, 77, 41, 94]. Ijspeert’s group designed

an amphibious salamander-like robot that can swim and walk. This neurorobot was

used to test whether their CPG model can reproduce the behavior of salamander

locomotion both in water and on the ground. Endo’s group at Tokyo Institute of

Technology built the first successful biped locomotion system on a full-body hardware

humanoid robot by using CPG to control the robot’s legs.

Neurorobots are also being used to study motor control by developing predic-

tive controllers that include more smooth, accurate movements. With training, the

10

robot can predict the environment and produce motor commands before the reflex

response. Robots inspired by this have been developed and tested in obstacle dis-

tributed environment [112, 129].

A recent study in UC Irvine uses a cortical neural network model implemented

in CarlSim running on a GPU to control an R/C car for reaching its target while

avoiding obstacles [8]. The work mainly focuses on building primary visual cortex

(V1), middle temporal area (MT) to help the robot process the information from

an android phone camera and produce motor commands to steer the robot around

obstacles towards its goal. Currently, there is no learning in these robots. The

synaptic weights in the network are tuned offline by hand. Also, the computations

are done on a desktop rather than directly on the robots.

In this thesis, I implement an SNN for the control of the neurobot. In contrast

to previous studies, indirect training is used to obtain the synaptic weights. As

noted earlier, the on advantage of indirect training algorithms is that they can be

implemented in neuromorphic chips which may be used for on-board learning in

mobile robots. The robots learn to avoid obstacles and to reach its target according

to the biologically plausible STDP rule.

1.5 Training Algorithms for Spiking Neural Networks

The training algorithms for SNNs can be classified as either unsupervised learning or

supervised learning. For unsupervised learning, the data provided to SNNs has no

label and therefore no feedback about its performance is returned to the network. A

normal task is to find and respond to data correlations in statistics. Hebbian learning

and STDP are the classical examples [70, 108]. Beside finding the data correlations,

unsupervised learning goal can also include data classification.

For supervised learning, neural network inputs and desired outputs are both re-

quired to evaluate and improve the performance of the neural network (mapping

11

between inputs and outputs). An error signal is defined by an error function to

measure the difference between the actual output and the desired outputs. In super-

vised learning, the error signal is used to update the synaptic weights. Most gradient

descent learning rules are supervised learning.

The current SNN training algorithms are still very limited compared with ANNs

because the response of an SNN is not in closed-form and have to be solved numeri-

cally using a system of differential equations. In addition, the complex spike patterns

have to be decoded into the lower-order continuous output for control or to evaluate

the system-level performance.

Spike-Prop as one of the supervised learning algorithm for SNNs is inspired by

Error BackProp algorithm for ANNs [14]. In Spike-Prop, each neuron is restricted

to only one spike during a certain period. Similar restrictions also apply to exten-

sions of this algorithm [15, 160], which limits the applications of this algorithm on

most spike patterns. SpikeProp is only suitable to use ’time-to-first-spike’ coding

scheme. Also, this method is only defined for feedforward neural networks. [160]

improved SpikeProp to recurrent SNNs even though it still requires one spike per

neuron. Including momentum term in weight update equation significantly improves

the convergence speed of SpikeProp [169]. Several other backprop methods have

adapt to more diverse spike patterns so that it can include rate coding [135, 47, 150].

Belatreche et al. studied the applicability of evolutionary strategies (ES) on

supervised learning of SNNs [6]. Compared to genetic algorithms, ESs’ primary

operator is mutation other than crossovers [62, 149]. In this algorithm, both the

synaptic weights and synaptic delays are updated during learning. ESs are expected

to converge to global optimal networks compared with gradient descent algorithms.

One weakness of this algorithm is its computational complexity, which is much higher

comparing with gradient-based algorithms. Also this method requires that the synap-

tic weights be set directly, which is not applicable to biological neural networks.

12

A number of experimental studies have shown that synaptic plasticity of biological

neurons are driven by Hebbian learning mechanisms, such as STDP [105, 31, 92, 113,

165]. The synaptic weights change based on the temporal difference between the

firing times of pre- and postsynaptic neurons. Supervised learning algorithms based

on STDP have been tested on nonlinear function approximation and classification

problems [126, 154]. STDP has also been used for reinforcement learning of SNNs

for solving nonlinear function approximation and classifications [125, 90, 43, 52, 50].

The reinforcement signals simulate chemical rewards that modulate the STDP rule

that controls the synaptic weight changes. Spike Driven Synaptic Plasticity (SDSP)

has recently been applied on pattern recognition by assuming the synaptic weights

are known [82].

Most of the current algorithms reviewed above have been used for SNNs perform-

ing function approximation or classification . However, none of them is applicable to

biological neural networks or memristor-based computer chips because of their direct

manipulation of synaptic weights. Therefore, indirect training algorithms have been

proposed by stimulating training neurons during training periods to modulate the

synaptic weights based on STDP learning rule. The methods described here have

been both tested both in virtual environments and in real environments.

1.6 Discussion

New developments in neural stimulation and recording technologies are revolution-

izing the field of neuroscience, giving scientists the ability to record and control the

activity of individual neurons in the living animal’s brains, with very high spatial and

temporal resolution [34]. Otogenetics, which can be used to control cell firings in neu-

rons in-vitro or in-vivo, is enabling the ability to determine the regions of the brain

that are primarily responsible for encoding particular stimuli and behaviors. Despite

this remarkable progress, the relationship between biophysical models of synaptic

13

plasticity and circuit-level learning, also known as functional plasticity, is poorly

understood. This gap has recently been considered as an outstanding challenge in

reverse engineering of the brain [158].

Many spiking neural network (SNN) learning algorithms have been developed

to model and replicate both the synaptic plasticity and circuit-level learning mecha-

nisms observed in biological neuronal networks [44, 59, 166, 175, 145, 153, 53]. Exper-

iments have shown that learning in the brain is correlated to the change in synaptic

efficacy or synaptic strength [38]. Developing learning rules for updating synaptic

weights, has been the emphasis of both artificial neural networks (ANN) and SNN

learning algorithms to date. In addition, SNN learning algorithms inspired by biolog-

ical mechanisms, such as as spike-timing dependent plasticity (STDP) [105, 9, 120],

have recently been roposed to modify synaptic weights according to a learning rule

modeled based on STDP or Hebbian plasticity, to optimize the network performance

[125, 90, 43, 52, 50, 82]. Other SNN learning algorithms include Spike-Prop [147, 58]

and ReSuMe [128], which use classical backpropagation and Widrow-Hoff learning

rules in combination with STDP to adapt the synaptic weights so as to produce

a desired SNN response. When trained by these approaches, computational SNN

have been shown to be very effective at solving decision and control problems in a

number of applications, including delay learning, memory, and pattern classification

[51, 155, 156, 116].

Despite their effectiveness, none of the computational SNN learning algorithms

to date have been implemented or validated experimentally on biological neurons in

vitro or in vivo. Such experimentation could help develop plausible models linking

synaptic-level and functional-level plasticity in the brain, and also enable many po-

tential neuroscience applications by closing the loop around the recording and the

control of neuron firings. Existing SNN learning algorithms, however, are difficult to

implement and test experimentally because they utilize learning rules that require

14

the direct manipulation of synaptic weights. Experimental methods for regulating

synaptic strengths in biological neurons, for example via manipulating intracellular

proteins or neurotransmitters such as AMPA receptors [40], do not lend themselves

to the implementation of parallel and frequent weight changes, followed by the ob-

servation of network performance, as typically dictated by SNN learning algorithms.

To overcome this fundamental hurdle, I have developed four indirect SNN learn-

ing paradigm in which the learning rule regulates the spatiotemporal pattern of cell

firings (or spike trains) to achieve a desired network-level response by indirectly

modulating synaptic plasticity [179, 178]. Because these learning algorithms do not

rely on manipulating synaptic strengths directly, they can theoretically be imple-

mented experimentally by delivering the neural stimulation patterns determined by

the algorithm to biological neurons using light or electrical stimulation. As a first

step, this new indirect learning paradigm was demonstrated by showing that the

synaptic strengths of a few neurons could be accurately controlled by optimizing a

radial basis function (RBF) spike model using an analytical steepest-gradient descent

method [178]. As a second step, the method was extended to networks with up to

ten neurons by introducing an unconstrained numerical minimization algorithm for

determining the centers of the RBF model, such that the timings of the cell firings

could be optimized [179]. The latter approach was also shown effective at training

memristor-based neuromorphic computer chips that aim to replicate the function-

alities of biological circuitry [73, 110]. Because they are biologically inspired, these

neuromorphic chips are characterized by STDP-like mechanisms that only adjust

CMOS synaptic strengths by virtue of controllable applied voltages analogous to

neuron firings. Therefore, they too are amenable to a learning paradigm that seeks

to regulate the spatiotemporal pattern of cell firings (or spike trains) in lieu of the

synaptic strengths.

This thesis presents four indirect training algorithms including indirect pertur-

15

bation algorithm, indirect stochastic gradient descent (SGD) algorithm, indirect

ReSuMe algorithm and indirect training by supervised teaching signals algorithm.

These algorithms are used to solve problems based on temporal coding and rate cod-

ing. More specifically, indirect perturbation algorithm and indirect SGD algorithm

are used to train an unicycle modeled virtual insect for navigate in an unknown ter-

rain while avoiding obstacles. Indirect perturbation algorithm is also used to train

an Izhikevich neuron modeled neural network for controlling an Optitrack tracked

robot to navigate in an indoor laboratory and find its target while avoiding obstacles.

Indirect ReSuMe method is used to train an SNN for spatial and temporal mapping

of the network input and output spikes. Indirect training by supervised teaching sig-

nals algorithm is finally described and used to train a large size SNN with thousands

neurons to control a neurorobot with a embedded camera. Using the trained SNN,

the robot can use the camera image to give the robot appropriate motor controls.

16

2

Spiking Neural Network Model

2.1 Integrate-and-Fire Model

The details of dimensional reduction of mathematical neural models are in [83].

Reduction from two-dimensional to Integrate-and-Fire model can be found in [1].

Compared to other neural models, Linear Integrate-and-Fire (LIF) neurons have the

highest computational efficacy [33, 55].

2.1.1 Electric Circuit

Fig. 2.1 shows two electric circuits for modeling a synapse and a neural soma. First,

in the dashed triangle, the current I can be Isyn � IInj, where Isyn is the synaptic

current from other presynaptic neurons, IInj can be the summation of all extra

current stimuli or light stimuli. In the circuit, I is separated into two currents IR

and IC . IR can be calculated be Ohm’s law IR � V {R. IC can be calculated by

IC � CdV {dt. According to Kirhhoff’s Current Law,

Iptq � Cm
dV

dt
�
V ptq

R
(2.1)

17

Figure 2.1: Integrate-and-Fire neuron model. The basic circuit of the synapse is the
module inside the dashed square. A spike δpt� tfj q is filtered and generates an input

current alpha pulse αpt � tfj q at the synapse. The basic circuit of the postsynaptic
neuron is the module inside the dashed triangle. The current Iptq charges the RC
circuit. When the voltage at the capacitance if over a threshold Vth. It generates an
output pulse δpt� tfi q.

After we multiply both sides of Eqn. 2.1 by R and replace RC by constants τm, LIF

equation can be written as,

τm
dV ptq

dt
� �V ptq �RIptq (2.2)

where τm is the membrane time constant, Vm is the membrane potential, R is the

resistance. Whenever V is larger than its threshold value Vth, the voltage is reset to

its resting potential.

A more general form of LIF neuron is,

τm
dV

dt
� pEL � V q � F pV q �RmIstim (2.3)

For linear model in Eqn. 2.2, F pV q � 0. For the quadratic integrate-and-fire model

(QIAF)

F pV q �
pV � ELq

2

∆Q

(2.4)

18

Figure 2.2: Membrane potential of linear, quadratic, and exponential integrate-
and-fire neurons when stimulated by constant currents.

While for the exponential integrate-and-fire (EIAF),

F pV q � ∆Eexpp
pV � Vrq

∆E

q (2.5)

where ∆Q,∆E, VT are constant voltages. Fig. 2.2 compares the membrane potential

of three types of neurons stimulated by constant current. Fig. 2.3 shows the dV {dt

relationship with V for three models.

2.1.2 Refractory Period

In the HH model, the action potential is mainly caused by the dynamics of sodium

and potassium ions, which are governed by the opening and closing of their cor-

responding ion channels. In Fig. 2.4, during resting potential, both sodium and

potassium channels are closed as in left bottom subfigure. When there is an excita-

tory synaptic current or an extra stimulus, the voltage gated ion channel Na� opens

19

Figure 2.3: Dynamic analysis of different LIF models.

instantaneously as in left top subfigure. The sodium ions flux into the neuron, which

cause the depolarization of the neuron. The sodium channels also close very fast

after the membrane potential reaches the maximum in top right subfigure. Because

the potassium channels open and close slower than the sodium channels, potassium

ions flow out of the neuron even though the membrane potential decreases below the

resting potential in bottom right subfigure.

There are two types of refractory periods: the relative refractory period and

the absolute refractory period. The absolute refractory period is a period of time

immediately after an action potential when it is impossible to have a second action

potential no matter how large the second stimulus. The relative refractory period is

a period when it is possible to generate an action potential by larger extra stimulus

than the previous one. In Fig. 2.5, the second stimulus causes the increase of

conductance of the sodium channel. In addition, the amplitude of second increase

20

Figure 2.4: States of Na� and K� channels during action potential.

of the conductance is smaller than the first one even though its stimulus is larger.

In Fig. 2.6, the second stimulus is very near the first stimulus, which therefore is

the absolute refractory period. There is no change in the conductance of the sodium

channel caused by the second stimulus.

2.2 Izhikevich Model

Even though LIF neurons are computational efficient, it is unrealistically simple and

cannot produce rich spiking, bursting dynamics found in cortical neurons. Izhikevich

proposed a new mathematical neuron model, which is both biologically plausible as

Hodgkin-Huxley model and computational efficient as LIF neurons. By using four

parameters, it can reproduce spiking and bursting behavior of most cortical neurons

in Fig. 2.7.

By using Bifurcation methodologies [80], the four dimensional HH neuronal model

can be reduced to two dimensional model in Eq. 2.6-2.7,

21

Figure 2.5: Relative refractory period.

Figure 2.6: Absolute refractory period.

22

Figure 2.7: Different type of neurons with different values of a,b,c,d in the model
described by the Eq. 2.6, Eq. 2.7. IB and CH are cortical excitatory neurons. FS
and LTS are cortical inhibitory interneurons.

v1 � 0.04v2 � 5v � 140 � u� I (2.6)

u1 � apbv � uq (2.7)

with the auxiliary after-spike resetting

if v ¥ 30mV, then

"
v Ð c
uÐ u� d

(2.8)

where v and u are dimensionless variables, a, b, c, d are dimensionless parameters, 1 �

d{dt, t is the time. v is the membrane potential of the neuron while u is a membrane

recovery variable, which can represent the activation of K� and inactivation of Na�.

So it’s for decreasing v. If the spike reaches its maximum (+30mv), the membrane

potential and recovery variable are reset based on Eq. 2.8. Synaptic currents and

extra stimulus are represented by variable I. The coefficients in Eq. 2.6 are picked

by fitting action potential of a cortical neuron, where v has the mV scale and t has

23

ms scale. a, b, c, d are defined as below:

• The parameter a determines the time scale of the recovery variable u. The

typical value is a � 0.02.

• The parameter b determines the sensitivity of u to the subthreshold fluctua-

tions of v. Higher values couple v, u more strongly leading to subthreshold

oscillations and low-threshold spiking dynamics. It’s typical value is 0.2.

• The parameter c determines the after-spike reset value of v. It’s typical value

is c � �65mV

• The parameter d determines the after-spike reset of u because of slow high-

threshold Na� and K� conductances. It’s typical value is 2.

Different parameters can result in many different types of neocortical [27, 67, 60] and

thalamic neurons in Fig. 2.7. Fig. 2.7 shows several types of spiking and bursting

in neocortical neurons of mammalian brains. Two excitatory cells include:

• In Fig. 2.7(a), CH (chattering) neurons fire stereotypical bursts. The inter-

burst frequency can reach 40 Hz. For this model, c � �50 mV and d � 2.

• In Fig. 2.7(c), IB (intrinsically bursting) neurons fire a burst of spikes followed

by repetitive single spikes. The parameters are c � �55 mV and d � 4. u

builds up during initial burst and then switch to single spikes.

Two inhibitory cells are:

• In Fig. 2.7(b), FS (fast spiking) neurons can have periodic spikes with very

high frequency without any adaption. In the model, a � 0.1.

• In Fig. 2.7(d), LTS (low-threshold spiking) neurons can also have periodic

spikes with very high frequency but with frequency adaption. The neuron has

low firing threshold by setting b � 0.25.

24

Izhikevich model can also simulate other types of excitatory neurons and inhibitory

neurons such as RS (regular spiking) neurons, TC (thalamo-cortical) neurons, and

RZ (resonator) neurons [79].

2.3 Synapse Models

When an action potential transmit to presynaptic terminal, the voltage dependent

Ca2� channels are opened. Ca2� ions goes into the presynaptic terminal and bind

on the vesicles that contain the neurotransmitters. Ca2� causes vesicle migration,

fusion to pre-synaptic membrane. Then the transmitters are released via exocy-

tosis in quantized amounts. Transmitters diffuse across cleft toward post-synaptic

membrane. Transmitters binds to receptor sites, which changes the membrane per-

meability of ions. This change can cause post-synaptic potential (PSP). It can be

either excitatory (EPSP) or inhibitory (IPSP) depends on the synapse type. If EPSP

exceeds threshold, action potential of postsynaptic neuron is generated. Transmit-

ters are broken down by enzyme in cleft. The product are taken up by presynaptic

site to generate new neurotransmitters.

Because many physiological processes happen during synaptic transmission, pre-

cise modeling of this transmission is challenging. In addition, the properties of

synapses change on many different timescale making synaptic transmission is a highly

dynamic process. Additionally, synaptic transmissions are believed to be one of the

main source of noises in neural system. Even a single neuron can have thousands of

synapses. Therefore, efficient simulation by using simplified computational models

are essential.

Studies estimate that the average adult human brain has about 86 billion neurons

[3]. Because a single neuron can have thousands of synapses, the estimated number

of synapses is in trillions. Even if all synapses were identical, modeling the whole

brain in real time can be an impossible task. Therefore, researchers developed dif-

25

ferent types of simplified synapse models including delta pulses, alpha synapses, and

chemical synapses.

2.3.1 Delta Pulse

The delta pulse is the simplest model for modeling the synaptic current, which is

defined as,

Isyn � δpt� tf q (2.9)

where δp�q is a Dirac delta function, tf is the firing time of presynaptic neuron, Isyn

is the synaptic current. It can be thought of as a function on real line which is zero

everywhere except at the origin, where it is infinite,

δpt� tf q �

"
�8, t� tf � 0
0, t� tf � 0

(2.10)

This equation can satisfy » 8

�8

δpt� tf qdt � 1 (2.11)

Synapses modeled by delta pulse can cause an instantaneous increase of the mem-

brane potential of postsynaptic neuron like Fig. 2.8. To better illustrate this synapse

model, the membrane potentials of two connected neurons are plotted in Fig. 2.8.

Neuron 1 is the presynaptic neuron while neuron 2 is the postsynaptic neuron. Neu-

ron 1 is stimulated by extra currents. The red dots in Fig. 2.8. (b) show the firings

of the presynaptic neuron 1. In Fig. 2.8(c), we can see an instantaneous increase

of membrane potential of neuron 2 when neuron 1 fires. The following decay after

the instantaneous rise is due to the leaky integrate and fire model. The third spike

of neuron 1 cause another instantaneous increase of V2, which generates an action

potential.

26

Figure 2.8: Membrane potentials of pre- and postsynaptic neuron by modeling
synaptic current using delta pulse. (a). simple network structure. (b). membrane
potential of presynaptic neuron stimulated by extra currents. (c). membrane poten-
tial of postsynaptic neuron.

2.3.2 Alpha Synapse

One weakness of delta pulse is that it does not capture the rising phase and decaying

phase of synaptic conductances, which have strong effects on network dynamics [161].

Alpha function models both the rising phase and decaying phase of the conductance.

gsynptq � ḡsynfpe
�pt�tf q{τdecay � e�pt�tf q{τriseq (2.12)

where gsyn is the synaptic conductance, tf is the firing time, τdecay, τrise are time

constants for the decaying speed and rising speed of conductance respectively, f is

27

the normalization factor to ensure that the amplitude is ḡsyn,

tpeak � t0 �
τdecayτrise
τdecay � τrise

lnp
τdecay
τrise

q (2.13)

The normalization factor f is defined by,

f �
1

�e�ptpeak�tf q{τrise � e�ptpeak�t0q{τdecay
. (2.14)

The weakness of using the equations above to model the conductance change is that

all the inputs must be tracked and stored. Another method that does not need

storing spike times is by solving the two coupled linear differential equations for the

synaptic conductance [168],

gsynptq � ḡsynfgptq (2.15)

dg

dt
� �

g

τdecay
� h (2.16)

dh

dt
� �

h

τrise
� h0δptf � tq (2.17)

where h0 is a scaling constant. In Fig. 2.9-Fig. 2.10, most time courses of synaptic

conductances can be well modeled by these two equations. In Fig. 2.10, the left sub-

figure shows the coupled ODE simulated GABAa synaptic conductance comparing

with summation of alpha functions while the right subfigures presents the compari-

son of coupled ODE simulated NMDA and summation of alpha function for NMDA.

In general, the coupled ODE models the alpha function very good and efficient.

2.4 Spike Timing-Dependent Plasticity (STDP)

In most neuron models, each synapse is described by a constant parameter wij, which

defines the amplitude of postsynaptic response to an synaptic current. According to

some electrophysiological experiments, these amplitudes are not fixed but can change

28

Figure 2.9: Conductance simulated by summation of alpha functions and coupled
ODEs.

over time. Proper electrical or optic stimulus can make changes of the synaptic

weights for hours or days. These experiments are mostly inspired by Hebb’s postulate

([70]):

When an axon of cell A is near enough to excite cell B or repeatedly

or persistently takes part in firing it, some growth process or metabolic

change takes place in one or both cells such that A’s efficiency, as one of

the cells firing B, is increased.

Experiments for proving Hebb’s postulation found long-lasting changes in synap-

tic weights [12]. If stimulations cause persistent increase of synaptic weights, the ef-

fect can be called long-term potentiation (LTP). If the synaptic weight is decreased,

it can be called long-term depression (LTD). However, Hebb didn’t define clearly

29

Figure 2.10: Conductance simulated by alpha function and coupled ODE for
GABAa and NMDA respectively.

30

Figure 2.11: STDP learning scheme.

how the firing of pre- and postsynaptic neuron can be correlated. Spike Timing De-

pendent Plasticity (STDP) is found to be a temporally asymmetric form of Hebbian

learning with precise definition of the temporal correlations between the spikes of

pre- and postsynaptic neurons [10]. The basic STDP model is usually defined by,

W p∆tq �

"
A�expp�ptpost � tpreq{τ�q, if tpre tpost
�A�exppptpost � tpreq{τ�q, if tpre ¡ tpost

(2.18)

where ∆t means the temporal difference between the presynaptic spike and postsy-

naptic spike, A�, A� are the maximum increase and decrease, τ�, τ� are two time

constants. Fig. 2.11 shows the weight change defined by STDP rule. If there are mul-

tiple spikes from both presynaptic neuron and postsynaptic neuron, many different

paring schemes exist to pair those spikes [119].

2.4.1 Implement STDP using Local Variables

STDP update rule can be implemented using two local variables so that the memory

doesn’t need to track all spike timings. One variable is for a low-pass filtered version

of the presynaptic spike train. The other is for the postsynaptic spike train. Each

spike of presynaptic neuron i contribute to the value of xi:

31

Figure 2.12: Local variables xi, yi and their pairings.

dxi
dt

� �
xi
τx
�
¸
tfi

δpt� tfi q (2.19)

where tfi is the firing times of the presynaptic neuron. xi increase by 1 each time

when i spikes and decrease with time constant τx. For the postsynaptic neuron j, its

firings contributes to variable yj:

dyj
dt

� �
yj
τy
�
¸
tfj

δpt� tfj q (2.20)

where tj is the spike timing of postsynaptic neuron j. The dynamics of the local

variable xi and yj can be seen in Fig. 2.12. The weight change is governed by,

dwij
dt

� �A�yjptqδpt� tfi q � A�xiptqδpt� tfj q. (2.21)

Eq. 2.21 describes the all-to-all pairing. Another pairing scheme is called nearest-

neighbor in Fig. 2.13. In Nearest-Neighbor pairing, each presynaptic neuron’s spike

32

Figure 2.13: Nearest-Neighbor pairing scheme

only pairs with its nearest spike of the postsynaptic neuron. It can be realized using

proper local variables. The local variables are reset to 1 other than increase by 1 in

all-to-all pairing scheme.

2.5 Discussion

In this thesis, two main types of neural models are used including Integrate-and-

Fire model and Izhikevich model. Integrate-and-Fire model, as a one dimensional

model, is one of the most efficient neuron models used for solving classification,

pattern recognition and control problems, which require real time processing and

fast feedback signals such as hand writing digit recognition, autonomous driving and

spam classification. In my work, LIF neurons are used for training SNNs to control

unicycle modeled virtual insects using indirect perturbation algorithm and indirect

SGD algorithm. They are simulated using CSIM simulator, which can simulate SNNs

with complex 3D structures and connection distributions. The trained insects can

navigate in an unknown environment and find its target while avoiding obstacles.

In order to satisfy our algorithms motivation of training biological neuron net-

works, the neural network’s model have to be more biologically plausible so that what

happens in the biological neuronal system and culture can be simulated. Therefore,

as a two dimensional, Izhikevich model is used in my thesis for training SNNs to

control both robot in real world environments. As a GPU accelerated SNN simula-

33

tor, CarlSim is used for simulating large size SNNs with Izhikevich neurons in real

times. The main advantage of CarlSim comparing with other simulators is that it

can simulate large size neural networks based on CUDA on GPU, which enable us

to run the simulation of SNNs in real time. Comparing with LIF neuron, Izhikevich

neuron model can model different types of firing patterns, which usually can be found

in real neural systems and neuronal cultures.

In this thesis, alpha synapse model with both rising phase and decaying phase

is used to model the shape of conductance change during the synaptic transmis-

sion. By using different parameters of the decaying and rising constants, different

types of biological synapses can be simulated in a good precision such as NMDA,

GABAa and GABAb. The magnitude of the synaptic conductance is a function

of the time difference between the spiking of the pre-synaptic neuron and the spik-

ing of the post-synaptic neuron, a model of spike-time-dependent-plasticity (STDP).

While the nature of synaptic plasticity in the cockroach has yet to be determined,

STDP has been observed in many biological preparations. Comparing with a lot

of rate-based hebbian learning rule, the STDP depends on precise timings of the

pre and postsynaptic activities, which has been found in different types of biological

neuronal systems. In order to modeling it in a fast speed, this thesis implement it

using local variables so that the memory do not need to save every spikes in the past

by only save the value of those two local variables, which changes whenever the pre

or postsynaptic neuron fires.

34

3

Problem Formulations

There have been a number of studies that have shown that a feed-forward network

with one hidden layer consisting of a finite number of neurons can approximate con-

tinuous functions on compact subsets of <n after training [30, 71]. This is often

referred to as the universal approximation theorem. Recurrent neural networks are

even more powerful because it has been proven that they can approximate any dy-

namical system [54]. Spiking neural network, the third generation of neural networks,

has been proven to solve the same problem as ANNs using fewer neurons [100]. An

SNN can be classified according to its coding schemes. Rate coding and temporal

coding are two coding schemes that SNNs can use.

3.1 Temporal and Spatial Mapping using Temporal coding

One of a SNN’s properties is the ability to both encode and decode information in

temporal form, which is hard to do in ANNs. Fig. 3.1 shows the comparison of

coding of information in ANNs and SNNs. In Fig. 3.1(a), the information flows in

ANNs all contain real values with various amplitudes. The information given to the

ANNs are encoded by the input neurons into analog signals at the same time when

35

Figure 3.1: Information flow of ANNs comparing with SNNs.

the input is given. In contrast, in Fig. 3.1(b), information given to the SNNs is

encoded by the input neurons into spike trains with different timings. All the action

potentials have almost the same shape. Therefore, the timings or the rate of the

spikes actually matters because they are the way that SNNs use to store, compute

and transmit information.

A long-standing debate within neuroscience community is whether the nervous

system use temporal coding or rate coding. In motor neurons, the strength at which

muscles is flexed depends only on the firing rate. However, external stimulus in visual

and auditory systems are found to be coded by temporal coding schemes [22, 56].

Most existing training algorithms are designed for a specific coding scheme [51, 14].

The indirect training algorithms developed in this thesis are tested on both temporal

coding and rate coding problems. A commonly test case for temporal coding is the

classification of input spike trains into different classes according to the outputs. The

basic structure of the network can be seen in Fig. 3.2 [156].

m input synapses are used for each output neuron. An input layer with m input

neurons is all-to-all connected to the input synapses of each output neuron.

3.1.1 Correlation-Based Metric

As proposed in [140], a correlation-based metric (C) measures the similarity between

two spike trains. Similarity coefficient C is one for two same spike trains and zero

36

Figure 3.2: Each neuron is trained to classify one type of spike train.

for two uncorrelated spike trains. C is defined as,

C �
vd � v0
|vd||v0|

(3.1)

where vd, v0 are two vectors of convolutions created from a desired spike train and

actual output spike train. The convolution transforms series of Dirac delta functions

into continuous function. Symmetric Gaussian function is used to convolve with the

spike trains in Eq. 3.2

fptq � e
�t2

e2δ
2 (3.2)

where δ is a constant that governs the width of the symmetric Gaussian function.

3.1.2 Training and testing Data

Every spatiotemporal input pattern has m spike trains with time length of T ms.

Nt samples are generated in each of the five different classes by adding a Gaussian

jitter with a standard deviation to the base pattern. Gaussian jitter is a type of

data signal jitter that is unpredictable electronic timing noise. It follows Gaussian

distribution because most noise or jitter in an electrical circuit is caused by thermal

37

Figure 3.3: One input data sample generated according to Eq. 3.3

noise with gaussian distribution. The time of input spike after adding jitter can be

written as,

Ti � UniformRandi �GaussianRandi (3.3)

Ti is the input spike timing for neuron i, UniformRandi is the random time picked

from uniform distribution, GaussianRand is the random number picked from Gaus-

sian jitter. Fig. 3.3 shows an example of input generated by Eq. 3.3.

Fig. 3.3 is randomly generated according to one base pattern and one gaussian

jitter. The base pattern is the randomly generated term in Eq. 3.3 [123]. Another

set of data for testing is generated in the same way. The final data set for training

is classified to five classes according to five different base pattern. Each class has 15

data samples generated by adding the Gaussian jitter.

38

Figure 3.4: Different rate coding methods. (a) rate coding over time of single
neuron. (b) rate coding over a population of neurons. (c) rate coding over different
trials.

3.2 Input Output Mapping using Rate Coding

Rate coding assumes that most information from the stimulus is encoded into the

firing rate of the neurons. Input noise can cause big variation of specific timings of

the spikes. Therefore, rate coding is very robust to inter-spike interval (ISI) noise

[151]. Precise calculation of firing rate is essential during simulation. There are

several different definitions of firing rates according to different average procedures.

For example, in Fig. 3.4(a), average firing rate over time is different from average

of firing rate over different trials in Fig. 3.4(c). The average over a population of

neurons is shown in Fig. 3.4(b).

The input to the neural network can either be spike trains or a current stimulus.

The output of the SNN is decoded using the rate coding strategy described previously.

39

The training data set is given to the input layer of the SNN while the output layer

is used to decode the spikes into firing frequencies.

This input and output mapping task can be described by,

yptkq � glrξptkqs Ð SNN rξptkq,Wlptkqs � ŷptkq (3.4)

where y is the desired function value, ŷptkq is the decoded output from an SNN,

ξptkq is the input at time interval rtk, tk�1s, gl is the function that the SNN needs to

map.

3.3 Neural Network Size and Inputs Noise

Neural networks have been used for noise reduction both in speech recognition prob-

lem and image classification problems [141, 97, 180]. One of the strengths of convo-

lutional neural networks compared with other machine learning methods for image

recognition are their ability to reduce noise. Support Vector Machines accomplish

this be preprocessing the images by de-skewing [26]. The size of the network needed

to solve a given task is expected to change depending on the amount of noise. In

this thesis I explored the effect of network size for different input noises for robots

with the same initial position and target positions.

3.4 Discussion

This chapter describes the types of problems solved by the four indirect training

algorithms used on SNNs so that the reader can generalize which indirect algorithms

to use when new problems are encountered. The problems are classified as temporal

and spatial mapping problems via temporal coding and input output mapping via

rate coding. The temporal and spatial mapping problems can only be solved via spik-

ing neural networks because of its dependence on complex information transmission

40

modeling and coding requirements. Algorithms that are applied to train rate based

neural networks like back-propagation cannot be directly applied to solve spatial and

temporal mapping problems. Therefore, specific algorithms have been developed for

solving this type of problems such as ReSuMe, DL-ReSuMe and tempotron. How-

ever, the learning rules to update weights are not biologically plausible enough to be

implemented in real neuronal networks. Therefore, the indirect ReSuMe algorithm

described in this thesis is developed to solve this type of problems by adapting the

ReSuMe algorithm to implement the STDP learning rule and indirect stimulation via

square pulses. The new algorithm has potential ability to be applied in real neural

systems.

Input output mapping by rate coding problems include training of virtual insects

and neurorobots for navigating in unknown terrains to find targets while avoiding

obstacles. Rate coding is not only used in Spiking Neural Networks but also in ANNs,

in which the state of the neuron can be interpreted as the firing rate of the neuron. In

addition, some parts of the human or animal’s biological neuronal systems are based

on rate coding like muscle force. In addition, the image projected onto the retinal

photoreceptors changes therefore every few hundred milliseconds. For the virtual

insect navigation problem and neurorobot with Optitrack, the inputs given to the

network are the sensory information according to the distance from the insect’s left

and right target sensors to the target. The outputs are the firing rates of the output

neurons in the corresponding networks, which drive the motors of the insects and

robots. For a neurorobot with an embedded camera, the input given to the network

is the image captured by the camera while the outputs are the firing frequencies

of the output neurons, which control the moving speeds of the robot wheels. The

mapping of sensory information to the desired output is created by indirect training

using rate codings.

Further analysis of the algorithms is performed by comparing virtual insect’s

41

performances controlled by different sizes of networks trained by indirect algorithms.

This can help in determining the size of the network needed for a given problems. In

addition, sensory noise cannot be neglected if the robot is used to solve problems in

real world environment. Therefore, the behaviors of insects and robots under different

sensory noise need to be analyzed so that those algorithms can be implemented

robustly.

42

4

Indirect Training Algorithms based on Rate Coding
and Applications

Indirect Training involves using stimulation to force the neural network to fire in

a pattern that can lead to a change in the synaptic weights according to its own

biologically plausible learning rule. Most spiking neural network training paradigms

such as Spikeprop, genetic algorithm and self-organization directly set the synaptic

weights based on their weight update formulas. These direct methods have been

shown to train networks to solve both classification and regression problems. How-

ever, they are not biologically implementable in vivo or in vitro because the synaptic

efficacy cannot be directly altered. Indirect training algorithms can be applied to

neuromorphic chips, prosthetics and neuronal cultures.

In this thesis, I have developed four indirect methods to drive the synaptic weights

to its desired value in a network through STDP, namely, Indirect Perturbation, In-

direct Stochastic Gradient, Indirect ReSuMe, and Indirect Training with Supervised

Teaching Signals. In the first three methods, the firing times of presynaptic neurons

are tuned to satisfy the below constraints,

43

ti,k ¤ ck �
β

2
(4.1)

ti,k � ∆abs ¥ ck �
β

2
(4.2)

where ti,k is the kth firing of neuron i, ck is the kth square pulse given to the

neuron, β is the width of the square pulse, ∆abs is the time length of the refractory

period of neurons. Because all square pulse’s heights and widths are the same, the

firing time of presynaptic neuron given square pulses can be written as,

ti,k � ck �
β

2
� T (4.3)

where ti,k is kth firing time of neuron i, T is the time costs for a neuron to fire

given constant input height ω,

T � �τm ln

�
1 �

ξ

ωRm

�
pIRm ¡ ξq (4.4)

where ξ � Vth � V0 is the voltage difference between the threshold and resting po-

tential, Rm is the resistance, τm is the passive-membrane time constant. Therefore,

T can be tuned by adjusting ω.

4.1 Indirect Perturbation Algorithm

4.1.1 Algorithm Description

We have previously shown that an SNN can be trained using, Indirect Perturbation,

to control the virtual insect to accomplish the objectives of the navigation problem

[177]. The training is achieved through the application of training stimuli given to

the network at precise times which, in turn, indirectly modifies the synaptic weights

via the internal STDP mechanism. The training signals are determined from the

44

SNN’s response to a set of training data, which takes the form of m � 6 cases of

sensor stimuli illustrated in Fig. 4.1 and the desired decoded output signals from

the output neuron layer. Then the goal of the training becomes to reduce the error

between the SNN’s decoded output and the desired output provided by Eq. (4.5).

Figure 4.1: Insect locations for six training cases. The star represents the target
while the black square represents the obstacle.

Based on the insect’s objectives, the desired output signal of the SNN can be

defined as,

�
f�L
f�R

�

�
hL gL
hR gR

�
κ
η

(4.5)

where f�L and f�R are the desired average firing frequencies of the left and right motor

neurons, and hL, gL are the sensor input stimuli from Eq. (4.6). The constants κ

and η are chosen such that κ ¡ η to prioritize obstacle avoidance over reaching the

target.

gL � αpdLpxL, yLq � λrdLpxL, yLq � dRpxR, yRqsq

gR � αpdRpxR, yRq � λrdRpxR, yRq � dLpxL, yLqsq
(4.6)

45

where the R and L subscripts of x and y correspond to the xy-positions of the right

and left sensors, respectively, dL and dR are the Euclidean distances between the

target position and the left and right target sensors in Fig. 4.2(b), respectively,

λ � 5 is a constant value chosen heuristically to amplify the target sensor inputs

differences between the left target sensor value and the right target sensor value, and

α � 10�9 is the scaling factor of the sensor inputs.

hR, and gR are defined by Eq. (4.7). In Fig. 4.2(b), the terrain sensors’ stimuli,

defined as hL and hR for the left and right antennae, respectively, are governed by,

hL � αγ σ
rpxL,yLq�1

hR � αγ σ
rpxR,yRq�1

(4.7)

where γ � 0.1 is a constant scalar chosen heuristically to bound the terrain sensor

inputs, rpxL, yLq is roughness in other words the pixel value at position pxL, yLq of

the terrain image and σ � 255 denotes the maximum pixel value such that when

r � σ, the measured terrain is flat.

Figure 4.2: Virtual insect model. (a). Insect geometry and workspace coordinates.
(b). Insect terrain sensors (gray) and target sensors (black).

46

Figure 4.3: Flowchart of the training algorithm.

Each training iteration is divided into n �

�
N
2

epochs, which is the number

of possible ordered pairs of training neurons, where N is the number of input neu-

rons. Batch training is performed on the SNN with only two input neurons receiving

training stimuli per epoch. In addition, all neurons in the input layer receive their

corresponding sensor stimuli during testing phases of each epoch. For each epoch,

a pair of input neurons is selected from a list of n possible ordered pairs, denoted

by N , to receive training stimuli. No training signals are given to the other input

neurons during this epoch.

For each of the m � 6 training cases, the input neurons are given signals that

simulate the corresponding stimuli, dLpxL, yLq, dRpxR, yRq, rpxL, yLq, and rpxR, yRq,

from the four insect sensor models Eq. (4.6) and Eq. (4.7). The inputs of the

47

training cases are a set of m vectors, denoted by Ii � R4, i � 1, ...,m, each of which

contains an instance of environmental information for the four insect sensors. Then

the `th training error ek,`, ` � t1, 2u, of the kth epoch, can be evaluated from,

ek,` �

b°
i�1,...,mru

�
i � uisT ru�

i � uis

m
(4.8)

where ui � rfR fLs
T is the decoded motor control output of the SNN for training case

i, u� � rf�R f
�
Ls
T is the desired output from Eq. (4.5), and ` is an index corresponding

to the two testing phases per epoch.

Fig. 4.3 describes the process in one epoch. Each epoch consists of four phases in

the following order: an initial testing phase, an initial training phase, a final testing

phase, and a final training phase. The purpose of the first three phases is to evaluate

the change in error, ∆ek � ek,2� ek,1, brought about by a test training signal (i.e., a

series of stimuli) in the initial training phase. Then, during the final training phase,

an extended training signal, which is a function of ∆ek, is given to the selected pair

of input neurons to induce favorable training on the SNN.

Expanding on each of the four phases in an epoch, the initial testing phase eval-

uates the error ek,1 by simulating each of the m training cases and comparing the

SNN’s observed output decoded from Eq. (4.9) with the desired output computed

from Eq. (4.5).

fptrq �
Σi�1,...,Kziptrq

K
(4.9)

where ziptrq is the total number of spikes of output neuron i within the time interval

rt � tr, ts. If K are the left motor neurons, Eq. (4.9) can calculate the left motor

neurons’ mean firing frequency or vice versa for right motor neurons.

If the error is below a criteria, the simulation will end. For each training case,

the sensory stimuli is encoded as constant current injections, defined by Eq. (4.6)

48

and Eq. (4.7), to all input neurons for a duration of te � 0.04 seconds per case and

with no pauses between cases. The time interval te is set to only be long enough

for the signal to propagate through the SNN and be reliably decoded as an output.

Then ek,1 is obtained from Eq. (4.8).

The initial training phase of the epoch involves the delivery of a test training

signal to the input neurons that is used to induce small synaptic weight changes in

the SNN, which are then used to determine an extended training signal to be applied

in the final training phase. The test training signal is given to a pair of input neurons

i and j, selected from a list of all possible ordered pairs N , such that pi, jq P N ;

i, j � 1, ..., N ; i � j, where N denotes the number of input neurons. The training

signals, denoted by si for the ith neuron, are square pulse current inputs, such that,

siptq � w
M̧

a�1

�
H

�
t� pi,a �

β

2

�H

�
t� pi,a �

β

2

�
(4.10)

where pi,a represents the temporal center of the ath square pulse delivered to the ith

input neuron, M � 10 is the number of square pulses in the test training signal over

the duration of the initial training phase, w � 7 � 10�7 amperes is the amplitude

of the pulses, and β � 0.004 seconds is the duration of each pulse, Hp�q is the

Heaviside function. The constants w and β are chosen such that each pulse will

reliably induce the input neuron to spike once and only once. The pulse inputs are

given every tp � 0.08 seconds, and the pulses are offset slightly between the pair of

input neurons pi, jq, such that pj,a � pi,a � b0, where b0 � �0.002 seconds. This

offset acts to induce small synaptic weight changes in the SNN through STDP.

The final testing phase of the epoch evaluates the error for a second time using

the same procedure as in the initial testing phase. The error, ek,2, computed from

Eq. (4.8) will be different from ek,1 since the synaptic weights of the SNN changed

during the initial training phase and marginally changed during the initial testing

49

phase. The change in error, ∆ek � ek,2 � ek,1, can then be computed and used to

determine the optimal training signal.

The last phase of the epoch, the final training phase, uses the value of ∆ek to

determine an optimal training signal that, when applied to the same pair of input

neurons pi, jq, will modify the weights of the SNN to cause a decrease in error. As

in the initial training phase, the training signal consists of square pulses computed

from Eq. (4.10), but a new offset parameter, denoted by bk, is used. The offset bk is

a function of the change in error, such that,

bk � � sgnp∆ekqb0 (4.11)

The square pulses are then offset between the pair of input neurons pi, jq, such

that pj,a � pi,a � bk. This calculated offset ensures that the synaptic weight changes

brought about by the training signal will decrease the error between the observed

SNN output signal and the desired output. Also since the training must compensate

for the weight changes from the other phases, and since the STDP mechanism is

known to increase the weights at about double the rate that it decreases them [23],

the optimal number of square pulses, M�, is a function of bk and ∆ek, and is given

by,

M� �

$&
%

2M, b0 ¡ 0 and ∆ek ¡ 0
1
2
M, b0 0 and ∆ek ¡ 0
M, ∆ek 0

(4.12)

To summarize, the parameters to be determined that define the optimal training

signal for each epoch are the training signal offset, bk from Eq. (4.11), and the

number of square pulses, M� from Eq. (4.12). These parameters are functions of

the change in error, ∆ek, which is a difference between the two evaluations of the

error ek,`, computed before and after an experimental training signal is applied. For

each epoch, a new pair of neurons to receive the training signals is selected from the

50

ordered list N , and the process is repeated until the error reduces to an acceptable

value or stops decreasing. If ∆ek 0, then M� � 10. In Fig. 4.4, w1,19 increases

ten times according to the STDP rule. While if ∆ek ¡ 0, b0 ¡ 0, the number of

training input pairs is 2M � 20 in Fig. 4.4 bottom.

In Fig. 4.4, because the presynaptic neuron 1 fires before neuron 19 due to the

temporal difference 0.002 (s) between the two square pulses, the synaptic weight w1,19

increases. In contrast, neuron 5 fires after neuron 22 so that the synaptic weight w5,22

decreases. The pseudo code is in Algorithm. 1.

Figure 4.4: Action potentials of the pre and post-synaptic neurons and the weights
change by training inputs. (a). Training square pulses for increasing the weight and
response of the neurons. (b). Training square pulses for decreasing the weight and
response of the neurons. (c). Weight increase caused by training stimuli during one
training epoch. (d). Weight decrease caused by training stimuli during one training
epoch.

51

Result: A trained SNN
Create an SNN;

while ek,2¡criteria do
Test the SNN;

calculate ek,1;

Pick neuron i, j;

Generate si, sj with temporal difference b0;

Stimulate i and j;

Test the SNN;

calculate ek,2;

if ek,2¡ek,1 then
Swap si, sj;

else
Keep si, sj;

end

Stimulate i and j;
k=k+1;

end
Algorithm 1: Training algorithm pseudo code. T is the temperature. TD is the
temperature decay factor.

4.1.2 Local Minimum

Mathematically, the global minimum is the smallest value of a given function in the

entire domain while the local minimum is the smallest value in a given range in Fig.

4.5. Error functions with respect to the weights for multi-layer neural networks have

many local minimums. One of the main weaknesses of the well known algorithm

BackProp is that it can be trapped in a local minimum if the initial weights are not

chosen well [65]. Therefore, comparing with BackProp and other gradient-based al-

gorithms, genetic algorithms perform better in dealing with local minimum problems

[4]. However, genetic algorithms are computational expensive and not biologically

plausible. Our indirect perturbation algorithm also can settle into local minimum

problem during training if the initial weights are not well chosen.

52

Figure 4.5: Global minimum and local minimum.

4.1.3 Application of Indirect Perturbation Algorithm on Virtual Insect Navigation

Insect Navigation

After learning, the virtual insect is placed in the three environments illustrated in

Figs. 4.6-4.8, and compared to a naive insect controlled by the initial SNN model,

with random synaptic strengths. It can be seen that, unlike the naive version, the

trained SNN is capable of integrating information regarding the target location and

terrain conditions and control the legs of the virtual insect such that it avoids elevated

terrain, and reaches the target represented by a star. In particular, when placed in

the obstacle-free environment, where only target information is relevant, the virtual

insect navigates to the target using the path of shortest distance (Fig 4.6(b)), while

the naive insect rotates in place (Fig. 4.6(a)).

53

 (a) (b)
Figure 4.6: Comparison of insect trajectories for naive (random synaptic strengths)
(a) and trained (b) SNNs in an obstacle-free arena.

 (a) (b)
Figure 4.7: Comparison of insect trajectories for naive (random synaptic strengths)
(a) and trained (b) SNNs in an S-maze.

54

 (a) (b)
Figure 4.8: Comparison of insect trajectories for naive (random synaptic strengths)
(a) and trained (b) SNNs in a complex terrain of variable elevation.

(a) (b)

Figure 4.9: Track of live insect in the arena color coded based on the activity level
of a CX unit (a). Color-coded neural (spike) activity as a function of translational
and rotational velocity over entire track (b), where warmer colors indicate higher
firing frequency (taken from [106]).

Similar to the arena used for biological experiments in Fig. 4.9, the S-Maze

involves a target and two partial walls that the trained insect is capable of navigating

around efficiently to find the target on the other side (Fig. 4.7(b)). Instead, the naive

insect moves in circles locally, responding to tactile information, but is unable to

55

move past the first wall (Fig 4.7(a)). The irregular terrain characterized by hills and

narrow channels represents a fairly complex landscape that would cause several path

planning algorithms to remain stuck in dead ends or take long and inefficient detours.

Instead, the trained SNN is capable to navigate efficiently and autonomously toward

the goal, avoiding regions of high elevation and exploiting useful canyons between

them (Fig. 4.8(b)). Although the naive insect can respond to stimuli from contact

with obstacles, it is unable to reach the target (Fig. 4.8(a)).

When the simulation results are visualized in VRML (Fig. 4.10), the virtual insect

also appears to display a realistic behavior (see insect video [176]). Besides validat-

ing the effectiveness of the proposed weight-free learning algorithm, these results

also demonstrate that this spike-based formalism enables more direct and effective

transfer of biological findings from animal experiments to synthetic platforms.

(a) (b)

(c) (d)
Target
Insect

Figure 4.10: Insect behavior in a complex terrain (a), visualized in VRML, illus-
trating the ability of the trained SNN to navigate through narrow passages (b)-(c),
ultimately reaching the target (d).

56

The scalability and robustness of the SNN weight-free learning algorithm are

investigated by considering the effects of noisy sensory inputs, modeled by Eq. (4.6),

on three SNN architectures comprised of 11, 14, 184 neurons, and 819 neurons, shown

in Tables 4.1-4.4. Numerical tests show that, for noise-free sensory inputs, the weight-

free learning algorithm can successfully train all four SNN architectures to properly

control the virtual insect such that it can successfully and efficiently navigate all

three environments. As an example, the root mean square error or training blue for

the SNN with 819 neurons is plotted in Fig. 4.11. It can be seen that the error

converges steadily to its minimum even for a large network size.

Table 4.1: SNN architecture with 11 neurons

Neurons Excitatory Inhibitory Total
Input Sensor Neurons 8 0 8
Hidden Neurons 1 0 1
Output Motor Neurons 2 0 2

Table 4.2: SNN architecture with 14 neurons

Neurons Excitatory Inhibitory Total
Input Sensor Neurons 6 2 8
Hidden Neurons 4 0 4
Output Motor Neurons 2 0 2

Table 4.3: SNN architecture with 184 neurons

Neurons Excitatory Inhibitory Total
Input Sensor Neurons 49 15 64
Hidden Neurons 80 20 100
Output Motor Neurons 14 6 20

Table 4.4: SNN architecture with 819 neurons

Neurons Excitatory Inhibitory Total
Input Sensor Neurons 124 20 144
Hidden Neurons 524 101 625
Output Motor Neurons 44 6 50

57

Figure 4.11: Training blue for SNN with 819 neurons.

In the presence of noise, the performance robustness improves as the size of the

SNN is increased. Figure 4.12 shows the trajectories of the trained virtual insect

controlled by the three SNNs in an obstacle-free environment, with and without

sensor noise. It can be seen that the 11-neuron SNN is unable to navigate to the

target in the presence of the sensor noise with ν � 0.5. In contrast, the 14-neuron

SNN is capable of controling the insect such that it reaches the target, but the insect

first spins in a circle and only afterwards finds the shortest path. Comparing with

14-neuron SNN, the 184-neuron SNN shows a better performance, controlling the

insect such that it corrects its orientation by turning around and then navigating to

the target along the shortest path. The 819-neuron SNN shows the best performance,

in which the noise almost has no impact on the robot traces. This insect distance

from the target is plotted over time in Fig. 4.13 from the initial to a final time that

58

is chosen heuristically in each case. It can be seen that the largest (819-neuron)

SNN performs better than all other SNNs, with or without sensor noise, and that

in the presence of noise (with ν � 0.5) the insect performance improves even more

significantly with the SNN size.

Figure 4.12: Trained insect trajectories with or without sensory input noise for
SNN with 11 neurons (a), 14 neurons (b), 184 neurons (c) and 819 neurons (d) when
ν � 0.5.

59

Figure 4.13: Time history of insect distance from the target in the presence of
sensor noise, when ν � 0.5, using the trained SNN with 11 neurons (a), 14 neurons
(b), 184 neurons (c), and 819 neurons (d).

60

To further understand SNN robustness to noisy inputs, the insect performance

is analyzed as a function of noise amplitude, ν P r0, 1s. By varying ν in the model

of Eq. (4.6), random noise is produced with a magnitude up to 100 � ν (%) of the

original sensor input (gR,L or hR,L). Let success be defined as the ability to reach

the target in a desired time window, in this case chosen as 5.6(s) based on the initial

target distance and maximum insect speed. If the insect is unable to navigate to the

target in this time window or leaves the arena, failure is declared.

By plotting the successes and failures as a function of noise amplitude (ν) in

Fig. 4.14, the SNN robustness to noisy sensor inputs is established in the limit. It

can be seen that, as expected, robustness increases with the size of the SNN, as the

819-neuron SNN is effective up to ν � 0.8, while the 11-neuron SNN is only effective

up to ν � 0.2. This is attributed to the presence of a larger hidden layer capable

of compensating for input errors. Surprisingly, the 14-neuron SNN can cope with

noise up to ν � 0.5, indicating that its limiting performance is acceptable up to a

very significant noise amplitude. However, as shown in Figs. 4.12-4.13, the insect

trajectories in this case are far less efficient than the trajectories obtained with the

819-neuron SNN. Thus, a large SNN can not only provide robust performance in the

limit, but also robust optimal performance as may be desirable in many biological

and engineering systems.

61

Figure 4.14: Trained SNN effectiveness as a function of sensor noise level and for
different numbers of neurons.

The robustness of the weight-free learning algorithm to errors in stimulus delivery

is tested by modifying the stimulus from the ideal square pulse function in Eq. (4.10),

delivered only to neuron i, to a square pulse delivered to all neurons in a neighborhood

of scale σ from i. By modeling the error in delivering the stimulus using a Gaussian

distribution, the stimulus amplitude (or intensity) approaches w at neuron i, and

decreases exponentially with the distance, Dpi, jq, for any other neuron j nearby, or,

wj � w
¸
i

exp

�
�
Dpi, jq

2σ2

�
(4.13)

where the variance is chosen by the user. In this paper, the value σ � 0.8 is found to

adequately represent the error found in neuronal cultures, causing multiple nearby

neurons to fire, as shown in Fig. 4.15 for a neuron i with coordinates pX, Y q � p2, 2q.

When the indirect perturbation algorithm is implemented with the stimulus error in

Eq. (4.13), the network performance can still be optimized reliably, as shown by the

62

training blue in Fig. 4.16.

i

X

Y

Figure 4.15: Seven neurons influenced by stimulus with Gaussian error in Eqn.
(4.13) when training pulse is delivered to neuron i at pX, Y q � p2, 2q.

Figure 4.16: Training blue in the presence of training stimulus error, for σ � 0.8
with the network in Fig. 4.15.

63

4.1.4 Application of Indirect Perturbation Algorithm on Indoor Robot Navigation
using Optitrack

Neurorobotics, as a combination of neuroscience, robotics, and artificial intelligence,

is the research field of embodied autonomous neural systems [87]. Neural systems

have bio-inspired algorithms, computational model of neural networks like spiking

neural networks and biological neural networks in vivo or vitro. These networks

can be implemented on machines with mechanical output or other output signals

including robots, prosthetic devices. Neurorobotics tools help to reverse engineer

cognitive function and its architecture in the brain.

Neuroscience tends to study intelligent behaviors by studying the possible theory

behind those intelligent behaviors using experiment and analysis. While artificial

intelligence believes those problems can be solved in other ways other than mimic

human or other animal’s behavior. Neurorobotics combines these to field by test-

ing those biologically inspired theories with a physical implementation. The results

of those experiments can provide evidence to reject or accept those proposed theo-

ries. Neurorobots include three major classes including the study of motor control,

memory, action selection, and perception.

The neural network used for controlling the robot with Optitrack is trained by

the indirect perturbation algorithm in Sec. 1.1. It is an off-line training, that is ran

through the SNN simulator Brian 2. In general, the algorithm includes two training

phases and two testing phases. The first test phase is used to measure the initial root

mean square error ek,1. After the first test phase, two neurons within the network

are selected and stimulated through square pulses, which have temporal difference

b0. In the second testing phase, ek,2 is calculated and used to calculate the error

change ∆ek � ek,2 � ek,1. If ∆ek ¡ 0, two square pulses with the opposite temporal

differences of previous one are used to stimulated those two selected neurons. After

training, the network weights are saved for neurorobot experiments.

64

The neurorobotics experiment is done in Duke Zavlanos Lab using robot built

based on irobot createTM shown in Fig. 4.19. Robot Operating System (ROS) is

installed on the computer embedded on iRobot for controlling the robot by higher

level of command comparing with irobot’s own commands. The lab is equipped with

OptiTrack, which is a 6 DoF object tracking system that can locate the positions

of the markers precisely in millimeters. Therefore, there are 24 cameras on the

ceilings of the lab for covering the locations of a square areas around 3*3 m2. The

information captured by the cameras are sent to a PC with installed software Motive

for receiving information through TCP/IP protocol. The SNN is also simulated on

that PC, which has 8 core Intel Xeon (R) CPU 2.5Hz and CUDA capable GPU

NVIDIA Quadro K4000 for running GPU accelerated SNN simulator CarSim. The

outputs of the SNN are sent to the robot as left wheel and right wheel velocity

command via TCP/IP protocol. The input information update for the SNN is 10

Hz. In other words, each short SNN simulation for update the new output command

takes 100 ms. Two markers on the robot were picked and adjusted by rotating

the platform, where they were pasted so that they are approximately symmetric

according to the axis between two wheels.

65

Figure 4.17: The robot experiment communication system.

The SNN simulator CarlSim is installed and running on Microsoft Visual Studio

2012. The SNN simulated is a recurrent NN with 49 neurons in Fig. 4.18.

66

Figure 4.18: The SNN with 49 neurons and random recurrent connections. The
square shape is only for better illustration of those connections.

Neurons in Fig. 4.18 are modeled by Izhikevich neuron. Their weights are trained

by using Brian 2. The trained neural network’s weights and other data are saved in

a txt file and imported by CarlSim in C++. Real time information coming from the

cameras are used to calculating the Euclidean distance between the two markers on

the robot and the target location.

dl �
b
pxl � xtargetq2 � pyl � ytargetq2dr �

b
pxr � xtargetq2 � pyr � ytargetq2 (4.14)

where dl, dr are distances between the left, right target sensor and the target, pxl, ylq is

the position of the left marker, pxr, yrq is the position of the right marker, pxtarget, ytargetq

is the position of the target.

67

Results of Indoor Robot Experiment

First, the robot is tested on an environment without obstacles. The robot is given

different initial positions and orientations so that the traces include both turning left

and right. To avoid collision, the robot inputs are set to zero when the distance dl

and dr are less than a criteria dc. Fig. 4.19 shows those traces, which all successfully

reach the target plotted as blue circle.

Figure 4.19: Robot traces with different initial positions and orientations.

For better illustration of the spikes during the experiment, Fig. 4.20 shows the

responses of those 49 neurons during certain periods of the experiment corresponding

to the robot’s positions in A, B, C. At initial position, neuron 35-37, 42-44 fire with

high frequencies because they receive the right target sensor values, which are much

larger than the left. In the raster plot of position near B, the high frequency firing

neurons switch to neuron 39-41, 47-49 because it turns slightly over. At position

68

near C, the robot continuously adjusts its orientation causing the neuron spikes to

oscillate.

Figure 4.20: Spikes of the SNN during robot’s turn and reaching the target. (A).
Spikes of the SNN around position A. (B). Spikes of the SNN around the turning
point at position B. (C). Spikes of the SNN around the final point at position C.
(D). Robot trace during the simulation.

In simulation or in experiment performed indoors, the assumptions and conditions

are more static and certain than outdoor environment. For example, OptiTrack can

provide millimeters localization for the robots in the lab, which is impossible to

provided in outdoor environment. GPS in outdoor environment have only meters

precision. Therefore, the robustness of the SNN under sensor noise is very important

69

for implementation of the robot in outdoor environment. In order to test the trained

SNN’s performance with sensor noise, noise defined as,

snoise � p2 � rand� 1q � α � s (4.15)

is added when snoise is the sensor noise, rand is the rand number between 0 and 1,

α is a constant, s is the original sensor value. Given α P r0.1, 0.9s, the robot traces

with approximately the same initial position and orientation are plotted in Fig. 4.21.

The robot successfully reaches the target with sensor noise from 10% to 40%. The

larger the noise, the longer trace it will take for the robot to reach the target. A

robot with 50% sensor noise may reach the target if the experimental environment is

sufficiently large. The robot cannot navigate with the sensor noise larger than 50%.

Figure 4.21: Spikes of the SNN during robot’s turn and reaching the target. (A).
Spikes of the SNN around position A. (B). Spikes of the SNN around the turning
point at position B. (C). Spikes of the SNN around the final point at position C.
(D). Robot trace during the simulation.

70

Figure 4.22: Robot experiment setup for avoiding objects.

To show the robot’s ability to avoid obstacles, one extra marker is placed between

the robot and its final target. Fig. 4.22 shows the experimental set up. The marker

is modeled with a terrain sensor value defined by,

str �
D

dtr
(4.16)

dtr �
a
px� xtrq2 � py � ytrq2 (4.17)

The robot trace is shown in Fig. 4.23. The robot successfully avoids the obstacle

and reaches its target. Spikes during four important periods of the experiment are

plotted in Fig. 4.24. During the SNN simulation around position A, the robot is

far from the obstacle shown as red circle. Therefore, only neurons receiving target

sensor values fire with high frequencies. At position B, the robot is within the region

covered by the obstacle sensor values. Neuron 4-6, 11-13 fire with high frequencies.

At position C, the robot runs out of the obstacle region, the frequencies of neuron

4-6, 11-13 decrease. When the robot reaches near the target at position D, the firing

neurons oscillate.

71

Figure 4.23: Spikes of the SNN during robot’s turn and reaching the target. (A).
Spikes of the SNN around position A. (B). Spikes of the SNN around the turning
point at position B. (C). Spikes of the SNN around the final point at position C.
(D). Robot trace during the simulation.

72

Figure 4.24: Spikes of the SNN during robot’s turn and reaching the target. (A).
Spikes of the SNN around position A. (B). Spikes of the SNN around the turning
point at position B. (C). Spikes of the SNN around the final point at position C.
(D). Robot trace during the simulation.

4.1.5 Discussion

This chapter presents an indirect training algorithm capable of manipulating plastic-

ity at multiple scales of neural circuits. The advantage of a indirect algorithm is that

plasticity is altered by controlling cell activity and, thus, it is potentially realizable in

live biological neuronal networks via optogenetics or electrical stimulation. The idea

of training neural networks by controlling cell activity, rather than by controlling the

synaptic weights according to a learning rule, was recently demonstrated on small-

scale SNNs [177]. This idea is motivated by techniques, such as optogenetics, that

73

are having a significant impact in the neuroscience field by delivering optical firing

control with the precision and spatiotemporal resolution required for investigating

information processing and plasticity in biological brains.

Even in the simplest organisms, however, brain circuits are characterized by hun-

dreds of neurons responsible for integrating diverse stimuli and for controlling multi-

ple functionalities. Because of their size, these large neuronal structures are believed

to provide robustness and reconfigurability, characteristics that are also desirable in

neuromorphic circuits and engineering applications of computational SNNs. This

chapter presents a new perturbative learning algorithm for scaling the weight-free

paradigm up to networks with over eight-hundred neurons.

The results in this chapter show that the indirect perturbation method is feasi-

ble for training SNNs on a larger scale than previously shown in the literature, and

without any knowledge of their connectivity or synaptic strengths. The spike-based

method by perturbation has a good level of accuracy and reliability in the chosen

application of virtual insect control and neurorobotic navigation. The virtual insect

application is motivated by experimental studies in biology which have recently re-

vealed that changes in the activity (e.g. firing rates) of individual units immediately

precede changes in the firing rates of motoneurons responsible for locomotory behav-

iors such as walking speed, turning, and climbing [132, 133, 134]. The same wires

used for recording cell activity can be used to stimulate the brain region to evoke

altered behavior and plasticity. Hence, the indirect perturbation learning algorithm

is demonstrated on a virtual simulation of the aforementioned insect experiments to

demonstrate its effectiveness at inducing higher-level learning, as well as to illustrate

how it might some day be used for controlling plasticity in experiments on living

insects. The simulation results show that the trained SNN sensorimotor controller

is capable of integrating different sensory stimuli and accomplish desired behavioral

goals efficiently and reliably. As expected, the robustness of the trained SNN is shown

74

to improve significantly with network size, providing near optimal performance even

in the presence of large sources of sensor noise.

The neurorobot experiment shows that the indirect perturbation algorithm can

also train networks modeled by the Izhikevich model to control real robots for navi-

gate in real world environments with more unexpected accidents and sensory noises.

The results show that the robot can search in an unknown environment and find its

target in a real time speed.

4.2 Indirect Stochastic Gradient Descent Algorithm and Application

4.2.1 Algorithm Description

The Indirect Perturbation algorithm described in Sec. 4.1 can be classified as a hill

climbing algorithm [148]. It is guaranteed to converge to a local minimum with a

small enough step size to avoid oscillation. Gradient Descent can converge faster

than Indirect Perturbation with fewer requirements on the step size. For problems

requiring large data sets such as ImageNet, MNIST and CIFAR, the training of

traditional neural networks (e.g., Convolutional Neural Network (CNN), take days

or even weeks to train [89]. Therefore stochastic gradient approaches are often used

in which a subset of data is randomly chosen from the whole data set and calculate

the gradient of error with respect to the weights. After all the subsets are used,

the algorithm will randomize the data again and continue to pick subsets. In our

case, the data set for training is not particularly large. The time to implement the

algorithm can be significant due to the indirect nature in which square current pulses

are used to modify the weights. In the indirect method described below, Stochastic

Gradient Descent is used but applied to randomly selected subset of weights rather

than data to calculate the gradient in,

75

BE

wij
�

∆E

∆perturbwij
�Op∆perturbwijq (4.18)

If the perturbation ∆perturbwij is small enough, the weight update rule can be,

∆wij � �η �
∆E

∆perturbwij
(4.19)

The Indirect Stochastic Gradient Descent Algorithm can be written as a pseu-

docode in Algorithm. 1. The algorithm uses a randomly generated SNN. Then

randomize possible pairs are grouped into 100 subsets. The batch number is initial-

ized to be zero. A criteria is initialized to terminate the train if it is satisfied. During

each while loop, an error is generated by testing all cases. Then one batch of i, j is

selected to be perturbed indirectly and used to calculate the corresponding gradients

of error with respect to the perturbation. After all the gradients of one batch are

calculated, corresponding square pulses are generated to stimulate those i, j. The

number of square pulses for each i, j are determined by the gradients calculated.

76

Data: Initialize the training cases
Result: A trained SNN
initialization;

Randomize pairs into subsets Wbatch;

batch � 0;

while E ¡ criteria do
Run six different cases;

Calculate E;

if batch ¡ 100 then
randomize pairs into subsets Wbatch

end

for i and j, i, j P Wbatch do
Stimulate i and j with time difference δt;

Run six different cases;

Calculate Eij
perturb;

Calculate gradient Gij �
Eijperturb�E

A� exp δt
τ�

end

for i and j, i, j P Wbatch do
Calculate δw�

ij � �η �Gij ;

Calculate number of spike pairs needed Nspair;

for i � 1 : Nspair do
Stimulate i and j;

end

end

batch� � 1;

end
Algorithm 2: Indirect Stochastic Gradient Descent Algorithm

4.2.2 Performance of Indirect SGD Vs. Indirect Perturbation Algorithm

In order to better show and analyze the performance of Indirect SGD method de-

scribed in Sec. 2.1, networks with the same size and connection properties are trained

using both indirect SGD algorithm and indirect perturbation algorithm. Fig. 4.25

shows the error change during training using indirect SGD and indirect perturbation

algorithm.

77

Figure 4.25: Error during training. (a). Error during training using Indirect
Perturbation Algorithm. (b). Error during training using Indirect SGD.

78

The results show that the indirect SGD can train large size networks with better

performance than the indirect perturbation algorithm. To further analyze the per-

formance differences of the networks trained by these two algorithms, they are both

used to control a virtual insect to navigate on an blank terrain. Their performance

are compared under different level of sensor noise defined by Eqn. 6.5.

Fig. 4.26 shows the insect traces controlled by one indirect SGD trained network

and one indirect perturbation trained network for sensor noise with p � 0.9. The

indirect SGD trained network performs better by controlling the insect to reach the

target by moving along a shorter path. This can be further seen in Fig. 4.27, which

plots the distances from the insects to the target during the test. The indirect SGD

controlled insects uses shorter path than the indirect perturbation metho.

79

Figure 4.26: Traces of the insects trained by (a). indirect SGD (green) and (b).
indirect perturbation (red) under sensor noise p � 0.9.

80

Figure 4.27: The distance from the insects to the target of insect controlled by
(a). indirect SGD (blue) and (b). indirect perturbation (red).

In addition, the insect navigation performance is tested under different level of

noise. As we can see in Fig. 4.28, the network trained by indirect SGD can tolerate

large sensor noise than the network trained by indirect perturbation algorithm.

Figure 4.28: Performance of the insects under different level of sensory noises
trained by (a). indirect SGD (blue) and (b). indirect perturbation (red).

81

4.2.3 Discussion

The indirect SGD algorithm was developed because the standard indirect perturba-

tion algorithm can take a long time to train and sometimes will not converge to a

good optimal value due to the oscillation. The results show that the indirect SGD

algorithm can train a network to lower error comparing with indirect perturbation

algorithm. In addition, indirect SGD algorithm takes shorter time to run comparing

with indirect perturbation. The trained networks are tested on controlling virtual

insects to navigate on a blank terrain under large sensor noise. For the indirect per-

turbation method, the trace of the insect controlled by an SNN is generally longer.

In contrast, the indirect SGD trained network can drive the insect to the target in

a shorter path. The indirect SGD trained network can also tolerate large noise than

the indirect perturbation trained network.

The indirect SGD algorithm’s performance depends on several parameters. First,

the scale of the initial weight change for measuring the gradient is very sensitive. An

inappropriate scale can cause either vanishing gradients or exploding gradients. This

problem occurs for often in rate coding problems where a small perturbation of the

weight cannot cause the output to change. Therefore, the perturbation should be

larger than the perturbation than that used in traditional SGD algorithm. Secondly,

the setting of the desired output values can also affects of the final error. If the

desired output values are too large, the weights can increase such that stimulating

only two neurons can cause multiple neurons to fire. In this case, reducing the scale

of the desired firing frequency is needed.

The primary limitation of both the indirect SGD and indirect perturbation method

is that they require that only two neurons fire during each training epoch. If many

neurons fire during training epoch, unexpected weight changes may increase the error

during each training epoch. Therefore, initialization of the weights have to be low

82

enough so that stimulating two neurons will not cause other postsynaptic neurons to

fire. Because of the rate coding, during each training epoch, some gradients might be

zero. This can be solved through increasing the testing period length or increasing

the weight perturbation value for calculating the gradients.

4.3 Indirect Training with Supervised Teaching Signals and Neuro-
robot Applications

4.3.1 Algorithm Description

Some algorithms use teaching signals that are directly given to the output neurons

to facilitate the weights to change based on STDP so that the output neurons can

fire in desired patterns. [17] designed the first supervised STDP-like algorithm that

can train an Spiking Neural Network to classify Latex symbols with high accuracy.

The paper uses simple LIF neurons with constant leak and Dirac pulse modeled

synaptic current. Two main weakness of their work are the oversimplified models

and hand tuned learning parameters. Beyeler [7] used the same STDP-like learning

mechanism, but with more biological neural and synapse models including Izhikevich

neuron models and conductance based synapses. Even though the paper uses a

multilayer neural network structure, the learning actually only happens in the final

layer. Tempotron-rule is another supervised learning algorithm that can be used to

train SNNs to fire or not fire. Therefore it is not well suited to solve for function

approximation tasks [69]. As a result, another indirect training algorithm that can

analytically determine the training signals and can train biological plausible neural

network models is needed.

In the chapter I present an indirect algorithm which uses supervised teaching

signals to train a two layer network with 3800 neurons in Fig. 4.29. The first layer

includes 3600 neurons with all-to-all feed forward connection to the second layer with

200 neurons. The dynamics of synapses follow the STDP rule described in Chapter.

83

2. The neurons are modeled by Izhikevich model described in Chapter. 2. One

training epoch has two phases: a testing phase and a training phase. During the

testing phase, only the inputs are given to the neural network. So the error will be

measured. Before the training phase, the desired training stimuli is calculated by

Eq. 4.21.

Input layer (3600)

Neuron

Synapse

Teaching signal Output layer (200)

Figure 4.29: The largest indirectly trained network

The desired controller is supposed to control the output neurons to fire at a

constant average firing frequency by adjusting the teaching stimuli correspondingly

so that the weights will update in a controllable rate. Therefore, there is a training

signal adjustment session before the training session, during which the STDP is

turned off. During the training signal adjustment session, the stimulus is updated

by,

Sk � Sk�1 � α � pf�t � ftq (4.20)

where Sk, Sk�1 are the teaching signal’s amplitude during kth, k� 1th epoch, α is the

adjusting rate, f�t is the desired firing rate of the output neurons during training,

ft is the actual firing rate of the output neurons during training. After the desired

84

training signal is measured during the training signal adjustment session, the STDP

is activated; and the inputs and training signals are given to the SNN to update

the weights for a certain time period Ttrain. Then the performance of the network is

measured during a testing period by,

eptq � f�ptq � fptq (4.21)

where f�ptq is the desired average firing frequency of the output neurons during

testing period, fptq is the actual average firing frequency during testing period. The

training takes many training epochs based on the network size and complexity of the

problem to be solved. The pseudo code Alg. 4 can be found in Appendix. A.

4.3.2 Neurorobotic Navigation using Large SNNs and Embedded Cameras

In order to process images, the network size has to be much larger than the network

used to control the robot based on Optitrack. Therefore, the number of synapses

can be 100 times more than in the smaller network, which exponentially increases

the training time if only two neurons are stimulated during each training epoch.

Consequently, the indirect training with supervised teaching signals method was

developed (Sec. 3.1) for this type of problem. A two layer feedforward network was

used to test the algorithm . The training is composed of both testing epoch and

training epoch. The network is tested by giving the input layer testing data and

then evaluate the root mean square error of the output and the desired output. If

the output firing rate is too small, the input layer is stimulated and the output layer

is stimulated to make the output fire at a certain frequency f�tinc. This will cause the

corresponding weights among those stimulated regions to be strengthened. When

output firing rate is too high, the input layer is stimulated and the output layer is

stimulated to fire in f�tdec so that the corresponding weights will be weaken. The

detail of this method can be found in Sec. 3.1.

85

The network was trained to process the input image taken from the embed-

ded camera and output a commend to control the robot’s wheel speeds. A trained

network can control a robot to reach its target by perceiving the image from the

embedded camera and output a desired movement. Half of the output neurons are

supposed to control the left wheel while the other half are used to control the right

wheel by calculating the average firing frequency during a testing epoch. Therefore,

the motor speed can be defined as,

Vi �
¸
jPO

γ
fj
N

(4.22)

where Vi is the velocity of motor i, j is the index of the output neurons, O is the

index set, γ is a constant scalar, fj is the firing frequency of neuron j, N is the total

number of neurons in that index set.

Training Large Size Neural Network

The network shown in Fig. 4.29 is initialized with random weights that can be seen

in Fig. 4.30. During training, regions of neurons are stimulated during each training

epoch. Therefore a large amount of weights are updated during each training epoch

so that this indirect training method is the most efficient one among those described

before. The weights during training can be seen in Fig. 4.31.

86

Figure 4.30: Weight distribution before training

Figure 4.31: Weight distribution during training

During the experiment, the figure that the robot receives is shown in Fig. 4.32(a)(c).

The image is preprocessed using OpenCV color detection [18], which results in Fig.

4.32(b)(d).

87

Figure 4.32: Camera shots taken from the embedded camera on the robot.(a) Raw
image taken from the camera when the target is far away. (b) Preprocessed image
using OpenCV when the target is far away. (c) Raw image taken from the camera
when the target is nearby. (d) Preprocessed image using OpenCV when the target
is nearby.

Fig. 4.32(b)(d) are then sent as an input image to the first layer of the trained

SNN. The robot trace during the experiment can be seen in Fig. 4.34. The neural

responses during the experiment is shown in Fig. 4.33. This application shows that

the indirect training algorithm using teaching signals can indirectly train an large size

neural network efficiently for solving target finding task in 3D complex environment.

88

Figure 4.33: Snapshots of firings of the large size neural network during robot
experiment.

Figure 4.34: Snapshots of firings of the large size neural network during robot
experiment.

4.3.3 Discussion

While indoor robotic experiments can use Optitrack for its localization with millime-

ter precision [127], the localization of outdoor robots can be done by using GPS and

89

Radar [20, 2, 122]. However, these equipment can only reconstruct the environment

rather than the equivalent of the direct perception of the environment. In addition,

his resolution GPS and radar systems can be expensive. Cameras allow for direct

perception of the environment are are more cost effective. Understanding the digi-

tal images from the camera is a very hard problem that forms a field in computer

science called Computer Vision. The motivation of computer vision is to develop

algorithms and methods that can be used to understand the environment and auto-

mate tasks in a manner consistent with the human visual system. Recent progresses

in neural networks such as Alex Net that won 2012 ImageNet competition for image

classification, neural network driven cars and amazon robotic competition show a

great potential of using neural networks in the field of robotics [88, 25, 29] can be

computationally expensive. Therefore, studies on solving real world robot problems

like robot navigation, robot interaction and robot perception using spiking neural

networks are needed.

Neurorobots can be used to analyze motor feedback and control systems. Loco-

motion control has been studied using models or central pattern generators, which are

a group of neurons for generating repetitive behaviors, to drive four-legged walking

robots [76]. However, these are no learning involved in this robot control problem.

Some studies examine the memory of rat’s hippocampus found that place cells fire at

specific locations that has been learned [121, 109]. However, they do not have high

density of visual stimuli, which therefore simplified the problem. Recent neurorobot

experiment shows a robot with android phone for receiving image inputs and output

desired movement can avoid obstacles while reaching an target. However, there is

no learning involved in the system. The network’s parameters are all set through

previous experiment and human experiences [8].

This chapter introduces an indirect training algorithm using supervised teaching

signals, which can control the output neurons to fire at certain average firing fre-

90

quencies during training to let the weights update according to STDP learning rule.

In principle, this approach could be applied both before and during navigation. The

results show that this algorithm can train a large scale neural networks in a reason-

able time. The trained two layer network with thousands of neurons can be used to

control a robot with an embedded camera to navigate in real time environment and

reach its target. The trained general weights distribution have a decay from the edge

of the network to the center of the network to reduce the oscillation of the robot

during tests.

For training networks using this method, parameters like A�, A� can affects the

performance of the training. When A�, A� are too large the network gives rise an

increased speed, which can produce large errors after training. Like artificial neural

networks, the network initial weights should be both random and have a small value.

The robot’s performance also depends on the setting of the OpenCV parameters.

A good HSV parameter setting can improve the robot’s performance with fewer

oscillations in the robot direction.

The present limitation of this algorithm is that only two layer feedforward neural

network can be trained. The reason is that the teaching signal can only affect the

weights between the stimulated layer and its previous layer given the nature of the

stimulus-induced STPD learning in the network. One possible way to improve this

is to backpropagate the desired firings from the output layer to the hidden layers so

that the algorithm can decide the teaching signals. If this is solved, this algorithm

should be able to train a multilayer feedforward neural networks.

91

5

Indirect ReSuMe Algorithm and Spatial Temporal
Mapping

In this chapter I present and analyze the results of temporal and spatial mapping

using the indirect ReSuMe algorithm. One of the weaknesses of the standard ReSuMe

method is that its STDP-like learning mechanism is not as biological plausible. In

the indirect ReSuMe method described here a more realistic version of STDPis used

to train a network with 200 input neurons and five output neurons.

5.1 Algorithms Description

Spiking neural networks have been used for two types of problems: rate coding

problems and temporal coding problems. Traditional classification, or regression

problems such as those studied in the field of deep learning can all be classified as

rate coding problem. Temporal coding problem is a special problem that seeks to

decode or evaluate the performance of the neural network through measurement of

their specific firing times. Temporal coding has been shown to be an important

characteristic in human and animals neural system for recognition of color patterns,

92

visual patterns, odours and sound localization hopfield1995pattern. Studies have

shown that the resolution of temporal coding for sound localization is on a millisecond

time scale [11, 159]. Visual stimuli are encoded in the latency time between stimulus

onset and first spike [63]. Temporal coding is, however, very sensitive to noise [61].

There are several existing methods to train SNNs to solve the spatial and temporal

mapping problem based on temporal coding, including SpikeProp [14], Tempotron

[69] and the Remote Supervised Method (ReSuMe) [128]. Spikeprop was the first

efficient algorithm developed to train a forward spiking neural network to generate

output spikes at specific timings. However, the algorithm assumes neurons fire only

once during each testing epoch. This assumption limits more complex applications

of spiking neural networks. Tempotron enables neurons to learn whether to fire

or not to fire for a given set of input stimuli. Therefore, the trained SNNs can do

binary classifications. However, the SNN cannot learn specific firing times but instead

only learns whether to generate spikes for a given stimulus. ReSuMe is a Hebbian

based supervised learning algorithm that uses a STDP-like learning window. Ponulak

showed that a random mapping from input spike trains to output spike trains could

be achieved. However, the STDP-like rule used in this work was not a biologically

plausible for of STDP.

The Indirect ReSuMe algorithm based on a realistic form of STDP is presented

below.

5.1.1 Indirect ReSuMe rule

ReSuMe defines a learning algorithm using the following equation:

d

dt
wkiptq � Sdptq

�
ad �

» 8

0

W dpsdqSinpt� sdqdsd
�

� Slptq

�
al �

» 8

0

W lpslqSinpt� slqdsl
� (5.1)

93

where wki is the synaptic efficacy between input neuron k and output neuron

i, ad, al are two constants determining the amplitudes of the weight modifications,

Sd, Sl are defined by,

Sdptq �
¸
f

δpt� tfdq (5.2)

Slptq �
¸
f

δpt� tfl q (5.3)

where Sd, Sl are the signals represented by spikes, tfd is the desired firing time of the

output neuron, tfl is the actual firing time of output neuron. W d,W l in Eqn. 5.1 are

two window functions defined by,

W dpsdq �

"
�Ad � expp�s

d

τd
q if sd ¡ 0

0 if sd ¤ 0
(5.4)

W lpslq �

"
�Al � expp�s

l

τl
q if sl ¡ 0

0 if sl ¤ 0
(5.5)

where Ad, Al are positive real values for excitatory synapse and negative real values

for inhibitory synapse, τ d, τ l are real and positive values, sd, sl are defined by,

sd � td,fj � tin,fk (5.6)

sl � tl,fi � tin,fk (5.7)

To simplify the model, the parameters are set: al � �ad, Al � Ad and τ l � τ d,

then Eqn. 5.1 becomes,

94

d

dt
wkiptq � rSdptq � Slptqs

�
ad �

» 8

0

W dpsdqSinpt� sdqdsd
�

(5.8)

The equation above shows that the synaptic efficacy is driven by the difference

between the desired and generated signals. To implement the indirect form of Re-

SuME, this synaptic strength changes through STDP rather than through a direct

setting of the weight. To accomplish this, multiple pairs of pre- and postsynaptic

square pulses are given to the corresponding neurons. The time difference between

the square pulses given to neuron i and j is defined as,

δt � ci � cj (5.9)

where ci, cj are the centers of those square pulses given to neuron i and j, the sign of

δt is determined by Eqn. 5.8. For example, if dwki ¡ 0, the δt will be set negative so

that the presynaptic neuron fires before the postsynaptic neuron in order to increase

the weight and visa versa. Small A�, A� in STDP rule are chosen so that dwki for

all k, i can be indirectly implemented through STDP with a good precision.

δew � δw � δw� Ew (5.10)

where δew is the error difference between the actual weight change through indirect

training δw and the desired weight change through ReSuMe δw�, Ew � 1e � 10 is

the criteria value. The pseudo code Alg. 3 can be found in Appendix. A.

5.2 Results of Training Biological Realistic Model for Temporal Spa-
tial Mapping

The network is a two layer feedforward network. The input layer has 200 neurons

while the output layer has 5 neurons. The connections are all-to-all style.

95

The neuron model used in solving this problem is Izhikevich neuron model and

STDP learning rule. The synaptic weights during training is shown in Fig. 5.5. The

initial weights are set to be 80 % positive (excitatory) and 20 % negative (inhibitory).

Fig. 5.1 shows the actual spikes of the output neurons and their desired spike

timings before training. Fig. 5.2 shows the actual spikes and the desired spikes after

training using ReSuMe method, which directly set the synaptic weights. The results

show that the training can let the output neurons fire at desired spike timings.

Figure 5.1: Raster plot of output neurons before training using ReSuMe algorithm
given random generated input spikes.

96

Figure 5.2: Raster plot of output neurons after training using ReSuMe algorithm
given random generated input spikes.

Fig. 5.3 shows the actual spikes and the desired spikes before training using

the indirect ReSuMe. Fig. 5.4 shows the actual spikes and the desired spikes after

training using the indirect ReSuMe method. The accuracy improves comparing with

the firings before training even though it’s lower than the ReSuMe method. The

weight updates according to the STDP during the indirect training are plotted in

Fig. 5.5.

97

Figure 5.3: Raster plot of output neurons before training given random generated
input spikes.

Figure 5.4: Raster plot of output neurons after training given random generated
input spikes.

98

Figure 5.5: The weight change during indirect training for spatial and temporal
mapping.

Fig. 5.6 shows the performance measured by Correlation-based metric defined in

Chapter 4 during training using ReSuMe method. All the output neuron’s perfor-

mances improve during training.

99

Figure 5.6: The performance of five output neurons during training using ReSuMe.

Fig. 5.7 shows the performance measured by Correlation-based metric defined in

Chapter 4 during training using indirect ReSuMe method. All the output neurons

performances improve during training.

Figure 5.7: The performance of five output neurons during training.

100

5.2.1 Analysis of the Indirect Learning Rate

In order to find what variable affects the performance of indirect ReSuMe, multiple

simulations are run with different values of the A� parameter in the STDP model.

Fig. 5.8 shows that the performance decrease as the A� increases. The reason is

that the pair based firings of the pre and postsynaptic neurons cannot drive weights

to their desired weights if the A� is too large.

Figure 5.8: Performance analysis of indirect ReSuMe under different STDP pa-
rameters.

The decrease of A� can improve the final performance after training using indirect

ReSuMe. But this can increase the time it takes to train the network due to the

number of square pulses increases. Fig. 5.9 shows the time length it takes to train

the SNN given different values of A�.

101

Figure 5.9: Time cost analysis of indirect ReSuMe under different STDP parame-
ters.

Finally, the analysis of the effects of network size on the final performance is

plotted in Fig. . It can be seen that the training algorithm has a good scalability.

5.3 Discussion

This chapter describes an indirect training algorithm to train an spiking neural net-

work based on a biologically realistic STDP learning rule for spatial and temporal

mapping of output neuron’s spikes. The algorithm is derived from standard ReSuMe

algorithm, which uses a non-biologically plausible version of STDP. As with the per-

turbation methods, the indirect ReSuMe method uses paired stimulation with square

pulses to modify the weights. The indirect ReSuMe does not allow the synapses to

change from inhibitory to excitatory or vice versa during training, which is also more

biologically plausible.

The ReSuMe algorithm can train the network with good performance. The per-

formance of the indirect ReSuMe algorithm was found to improved with smaller

102

parameters for A�, A�. However, there is a trade off between the performance of the

indirect ReSuMe and the time needed for training. When small values of A�, A� are

used, the performance can be almost as precise as the ReSuMe algorithm. Unfortu-

nately, it can takes days to train the network. Temporal coding is found in many

parts of the biological neural systems. Because of being able to solve the spatial and

temporal mapping based on temporal coding problem, indirect ReSuMe is needed

to be applied to those networks. Its potential application could be neuroprosthetics,

neurorobotics and neuromorphic chips. Indirect ReSuMe can also be applied to train

recurrent neural networks by training only synapses that connect the hidden pool

and the output pool.

As noted, the main limitation of the current indirect ReSuMe method is the

time for training. One way to reduce the training time is to stimulate neurons

using square pulses that have various temporal differences rather than only a sign

difference. This should be able to largely reduce the time cost due to multiple pairs of

square pulses needed during each training epoch. This improvement can also improve

the performance of the indirect ReSuMe because it can reduce the error between the

desired weight change and the actual induced weight change.

103

6

Conclusions

Four different indirect training methods are presented, which induce changes in

synaptic plasticity by controlled pulses abiding by the STDP rule, as opposed to

direct weight manipulation. The idea of training neural networks by controlling cell

activity is motivated by emerging techniques in neuroscience, such as optogenetics,

with enable precise spatio-temporal control of cell activity using light. The indirect

training algorithms use patterns of square pulse stimuli to drive plasticity and can be

optimized to optimized to generate the firing rates or even precise spike timings that

minimize a desired objective function. The square pulse stimuli can cause a single

neuron to fire precisely at desired time with millisecond precision. This property

enables the precise firing of pairs of neurons so that the strength of any possible

synapse between them can be increased or decreased through spike time dependent

plasticity. SNNs trained this way can be used to control both virtual and real world

robots to navigate in an unknown terrain with obstacles.

In this thesis, SNNs using simplified and biologically realistic models of neurons

and synapses are used to test the different training algorithms. The Izhikevich model

can reproduce spiking and bursting behavior of multiple types of cortical neurons.

104

It can replicate Hodgkin-Huxley type dynamics with low computational complex-

ity similar to integrate-and-fire model. Conductance based synapse model is more

biologically plausible than simple Dirac pulse. The application of the indirect meth-

ods to more biological realistic models suggests that these algorithms to be used on

cultures or real neurons.

The indirect SGD algorithm improves the performance by relying on the gradient

rather than only the directions of the weight update. Compared to indirect pertur-

bation, indirect SCG shows better performance when training the same size networks

to controlling the virtual insect with large sensor noise. To train SNNs for spatial

and temporal mapping of spikes, an indirect ReSuMe algorithm is developed by in-

corporating a more realistic form of STDP learning rule in the standard ReSuMe

algorithm by stimulating the neurons with square pulses so that the output neurons

can fire at desired timings for a randomly generated set of input spikes. Even though

the performance of the indirect method is not as good as the ReSuMe method, it’s

shown that the performance can be improved by using smaller STDP parameters.

Finally, the indirect training by supervised teaching signals method can train the

largest SNN (with almost 4000 neurons) known to date. Teaching signals are given

to a region of neurons other than a single neuron to control those neurons to fire in a

certain frequency, which can drive the desired synapses to their desired weights. This

algorithm is applied to controlling a neurorobot with an embedded camera to find its

desired colored target. The indirect SGD and indirect perturbation algorithm both

have potential application on training networks of caged neuron non chips if neurons

that are not stimulated during training can be silent or inhibited. One advantage of

the indirect SGD method over other methods is that it can train both feedforward

multilayer neural network and recurrent neural networks. While the training time

can be significant on large network, it can be shortened using faster processors such

as GPU accelerated implementation of SNNs like that used in Carlsim.

105

The indirect stochastic gradient descent algorithm and indirect training through

teaching signals are two most promising algorithms to be applied to larger networks

and larger data sets. Compared with indirect weight perturbation algorithm, indirect

SGD algorithm can converge to lower error given the same network structure. The

Indirect training through teaching signals method was shown to train the largest

feedforward network efficiently. The efficiency of the other indirect algorithms is

limited because they use the square pulse stimuli to control the firing time of pairs

of single neurons very precisely. For future study, the square pulse’s center can be

adjusted by specific timings rather than flipping of the sign, which might largely

reduce the time to train SNNs using indirect SGD or indirect ReSuMe.

The simulation of virtual insect path planning shows that these algorithms can

train SNN to approximate the mapping between the input and desired output, which

enables the SNN to solve control problems like path planning both in biological

neuronal networks, and in CMOS/memristor nanoscale chip. These algorithms have

been validated in hardware, which were accomplished both at the FPGA level and

the CMOS level [74, 111]. The implemented design was tested on real hardware to

show that the proposed SNN structure and training algorithm can be adopted in

circuit designs. These algorithms have also been tested on neurorobotic navigation

problems using both Optitrack and embedded camera with analysis of different level

of sensor noise.

Future work may include application of indirect training algorithms on larger

size networks for solving more complex problems of image recognition. Because the

networks needed to accomplish certain tasks may need to be large. The use of a

momentum term in the indirect SGD algorithm may reduce the time it takes to

train large networks with large input datasets. At present the methods have only be

tested in relatively simple network topologies. The modeling of the neural system

for controlling the neurorobots could be designed with an architecture to mimic that

106

of an insect which operate in a dynamic changing environment.

One of the most successful ANNs, convolutional neural networks (CNNs) mimic

the multilayer processing in the visual system. Some papers have trained multilayer

SNNs with same structure as CNNs by mapping the trained CNNs weights direct

to the SNNs. The trained SNNs can classify MNIST dataset in a high accuracy

comparing with all other algorithms. However, this cannot be considered as a SNN

training because it did not use any biologically plausible learning rules like STDP

and Hebbian learning. Therefore our indirect training by supervised teaching signal

algorithm can be used to train an SNN with convolutional structure for classifying

large image datasets.

Further neurorobotic experiments can use the indirect training algorithm though

teaching signals by combining with multilayer trained CNNs as a replacement of

OpenCV color detection. This can not only reduce the effects of noise from other

objects with similar colors and also solve more complex tasks by recognizing com-

plex shapes in the environment. After improving the indirect training by supervised

teaching signal algorithm by back-propagating the desired firing frequency, the indi-

rect training algorithm should be able to train deep multilayer SNNs efficiently.

Finally, none of the SNNs have been applied to solve the autonomous driving

problem. Even though some companies, like Tesla, have invented autonomous driving

based on using Convolutional Neural Networks, they are currently limited and such

techniques are not ready to completely replace human drivers. In addition, CNNs

require implementation of GPUs. SNNs can be implemented in neuromorphic chips

and can trained using the indirect training algorithms developed here. We have

already presented preliminary evidence that our indirect training algorithms can be

applied on CMOS/memristor based chips, which may form the basis of the next

generation of intelligent systems.

107

Appendix A

Appendix

Table A.1: Parameters for neuron models for Chapter 4 and Chapter 5.

Parameter Value during simulation
CmpF q 3e-8
RmpOhmq 1e6
VthreshpV q 0.017
VrestingpV q 0.014
VinitpV q 0
Trefractpsq 0.002
InoisepAq 5e-12

Table A.2: Parameters for neuron models for Chapter 6.

Parameter Value during simulation
τm 10 ms
RmpOhmq 1e7
VthreshpV q -55
VrestingpV q -65
VinitpV q 0
Trefractpsq 0.004
InoisepAq 0

The units for the variables are shown in Table A.4.

108

Table A.3: Parameters for neuron models for Chapter 7.

Parameter Value during simulation
τ�pmsq 20
τ�pmsq 60
A� 0.1
A� -0.03
a 0.02
b 0.2
c -65
d 8

Table A.4: Units for parameters

Parameter Unit
t, tL, tR, Trefract, tr, β, ci,l, b0, bk s
x, y, L, dL, dR, σ,Dpa, bq, λ mm
α A/mm
hL, gL, hR, gR, sptq, Si, S

0
i , Inoise, ω A

v, vL, vR, η mm/s
f, f�L, f

�
R, fL, fR, zi, f

0
L, f

0
R Hz

Cm F
Rm ohm
Vthresh, Vresting, Vinit V

109

Result: A trained SNN
Create an SNN;

while ek,2¡criteria do
Test the SNN;

calculate ek,1;

Pick neuron i, j;

Generate si, sj with temporal difference b0;

Stimulate i and j;

Test the SNN;

calculate ek,2;

if ek,2¡ek,1 then
Swap si, sj;

else
Keep si, sj;

end

Stimulate i and j;
k=k+1;

end
Algorithm 1: Indirect perturbation algorithm pseudo code.

110

Data: Initialize the training cases
Result: A trained SNN
initialization;

Randomize pairs into subsets Wbatch;

batch � 0;

while E ¡ criteria do
Run six different cases;

Calculate E;

if batch ¡ 100 then
randomize pairs into subsets Wbatch

end

for i and j, i, j P Wbatch do
Stimulate i and j with time difference δt;

Run six different cases;

Calculate Eij
perturb;

Calculate gradient Gij �
Eijperturb�E

A� exp δt
τ�

end

for i and j, i, j P Wbatch do
Calculate δw�

ij � �η �Gij ;

Calculate number of spike pairs needed Nspair;

for i � 1 : Nspair do
Stimulate i and j;

end

end

batch� � 1;

end
Algorithm 2: Indirect stochastic gradient descent algorithm pseudo code.

111

Initialize W and desired output timings;

Initialize input I while minpCq ¡ criteria do
Run a test for 200 ms;

for j in output neuron index do
Calculate correlation Crjs � vd�v0

|vd||v0|
;

Calculate d
dt
wkiptq using Eq. 5.1;

while maxpabspewqq ¡ Ew do
for i � 1 : 200 do

Calculate desired deltat � signpewrisq;

Calculate desired ci, cj;

Stimulate each i, j with square pulses centered ci, cj;

Update ewris � δw � δw�;

end

end

end

batch� � 1;

end
Algorithm 3: Indirect ReSuMe algorithm pseudo code.

112

Initialize the network W ; for i � 1 : 6 do
Initialize input current Ii for input region i in input layer;

Initialize desired output f�i for case i;

e=100;

while abs(e)¡criteria do
Turn off STDP;

initialize Sk � 3;

while f�t � ft ¡criteria2 do
Stimulate input region i and output region using Ii and Sk;

if abspf�t � ftq � criteria2 then
break;;

end

if abspf�t � ftq ¡ 0 then
Sk � Sk�1 � α � abspf�t � ftq;

else
Sk � Sk�1 � α � abspf�t � ftq;

end

k=k+1;

end

Turn on STDP;

Stimulate input neurons and output regions using Ii and Sk;
Update e � f�i � fi

end

end
Algorithm 4: Indirect ReSuMe algorithm pseudo code.

113

Bibliography

[1] Abbott, L., and Kepler, T. B. Model neurons: From hodgkin-huxley to
hopfield. In Statistical mechanics of neural networks. Springer, 1990, pp. 5–18.

[2] Agrawal, M., and Konolige, K. Real-time localization in outdoor environ-
ments using stereo vision and inexpensive gps. In 18th International Conference
on Pattern Recognition (ICPR’06) (2006), vol. 3, IEEE, pp. 1063–1068.

[3] Azevedo, F. A., Carvalho, L. R., Grinberg, L. T., Farfel, J. M.,
Ferretti, R. E., Leite, R. E., Lent, R., Herculano-Houzel, S.,
et al. Equal numbers of neuronal and nonneuronal cells make the human brain
an isometrically scaled-up primate brain. Journal of Comparative Neurology
513, 5 (2009), 532–541.

[4] Bajpai, P., and Kumar, M. Genetic algorithm–an approach to solve global
optimization problems.

[5] Bakkum, D. J., Gamblen, P. M., Ben-Ary, G., Chao, Z. C., and
Potter, S. M. Meart: the semi-living artist. Frontiers in neurorobotics 1
(2007), 5.

[6] Belatreche, A., Maguire, L., McGinnity, M., and Wu, Q. A method
for supervised training of spiking neural networks. In Proc. IEEE Conf. Cyber-
netics Intelligence–Challenges and Advances, CICA (2003), Citeseer, pp. 39–
44.

[7] Beyeler, M., Dutt, N. D., and Krichmar, J. L. Categorization and
decision-making in a neurobiologically plausible spiking network using a stdp-
like learning rule. Neural Networks 48 (2013), 109–124.

[8] Beyeler, M., Oros, N., Dutt, N., and Krichmar, J. L. A gpu-
accelerated cortical neural network model for visually guided robot navigation.
Neural Networks 72 (2015), 75–87.

114

[9] Bi, G.-q., and Poo, M.-m. Synaptic modifications in cultured hippocampal
neurons: dependence on spike timing, synaptic strength, and postsynaptic cell
type. The Journal of neuroscience 18, 24 (1998), 10464–10472.

[10] Bi, G.-q., and Poo, M.-m. Synaptic modification by correlated activity:
Hebb’s postulate revisited. Annual review of neuroscience 24, 1 (2001), 139–
166.

[11] Blauert, J. Spatial hearing: the psychophysics of human sound localization.
MIT press, 1997.

[12] Bliss, T. V., and Lømo, T. Long-lasting potentiation of synaptic trans-
mission in the dentate area of the anaesthetized rabbit following stimulation
of the perforant path. The Journal of physiology 232, 2 (1973), 331–356.

[13] Boahen, K. Neuromorphic microchips. Scientific American 292, 5 (2005),
56–63.

[14] Bohte, S. M., Kok, J. N., and La Poutre, H. Error-backpropagation in
temporally encoded networks of spiking neurons. Neurocomputing 48, 1 (2002),
17–37.

[15] Booij, O., and tat Nguyen, H. A gradient descent rule for spiking neurons
emitting multiple spikes. Information Processing Letters 95, 6 (2005), 552–558.

[16] Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., and Deisseroth,
K. Millisecond-timescale, genetically targeted optical control of neural activity.
Nature neuroscience 8, 9 (2005), 1263–1268.

[17] Brader, J. M., Senn, W., and Fusi, S. Learning real-world stimuli in a
neural network with spike-driven synaptic dynamics. Neural computation 19,
11 (2007), 2881–2912.

[18] Bradski, G., et al. The opencv library.

[19] Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D.,
Bower, J. M., Diesmann, M., Morrison, A., Goodman, P. H., Har-
ris Jr, F. C., et al. Simulation of networks of spiking neurons: a review
of tools and strategies. Journal of computational neuroscience 23, 3 (2007),
349–398.

115

[20] Bulusu, N., Heidemann, J., and Estrin, D. Gps-less low-cost outdoor
localization for very small devices. IEEE personal communications 7, 5 (2000),
28–34.

[21] Buonomano, D. V., and Maass, W. State-dependent computations: spa-
tiotemporal processing in cortical networks. Nature Reviews Neuroscience 10,
2 (2009), 113–125.

[22] Buračas, G. T., and Albright, T. D. Gauging sensory representations
in the brain. Trends in neurosciences 22, 7 (1999), 303–309.

[23] Caporale, N., and Dan, Y. Spike timing-dependent plasticity: a hebbian
learning rule. Annual Review of Neuroscience 31 (2008), 25–46.

[24] Carpenter, G. A., and Grossberg, S. Pattern recognition by self-
organizing neural networks. MIT Press, 1991.

[25] Chen, C., Seff, A., Kornhauser, A., and Xiao, J. Deepdriving: Learn-
ing affordance for direct perception in autonomous driving. In Proceedings of
the IEEE International Conference on Computer Vision (2015), pp. 2722–2730.

[26] Cireşan, D. C., Meier, U., Masci, J., Gambardella, L. M., and
Schmidhuber, J. High-performance neural networks for visual object classi-
fication. arXiv preprint arXiv:1102.0183 (2011).

[27] Connors, B. W., and Gutnick, M. J. Intrinsic firing patterns of diverse
neocortical neurons. Trends in neurosciences 13, 3 (1990), 99–104.

[28] Corneil, D., Sonnleithner, D., Neftci, E., Chicca, E., Cook, M.,
Indiveri, G., and Douglas, R. Function approximation with uncertainty
propagation in a vlsi spiking neural network. In Neural Networks (IJCNN),
The 2012 International Joint Conference on (2012), IEEE, pp. 1–7.

[29] Correll, N., Bekris, K. E., Berenson, D., Brock, O., Causo, A.,
Hauser, K., Okada, K., Rodriguez, A., Romano, J. M., and Wur-
man, P. R. Lessons from the amazon picking challenge. arXiv preprint
arXiv:1601.05484 (2016).

[30] Cybenko, G. Approximation by superpositions of a sigmoidal function. Math-
ematics of control, signals and systems 2, 4 (1989), 303–314.

[31] Dan, Y., and Poo, M.-m. Hebbian depression of isolated neuromuscular
synapses in vitro. Science 256, 5063 (1992), 1570–1573.

116

[32] DasGupta, B., and Schnitger, G. The power of approximating: a com-
parison of activation functions. MATHEMATICAL RESEARCH 79 (1994),
641–641.

[33] Dayan, P., and Abbott, L. Theoretical neuroscience: computational and
mathematical modeling of neural systems. Journal of Cognitive Neuroscience
15, 1 (2003), 154–155.

[34] Deisseroth, K. Optogenetics. Nature Methods 8 (2011), 26–29.

[35] DeMarse, T. B., Wagenaar, D. A., Blau, A. W., and Potter, S. M.
The neurally controlled animat: biological brains acting with simulated bodies.
Autonomous robots 11, 3 (2001), 305–310.

[36] Destexhe, A., Babloyantz, A., and Sejnowski, T. J. Ionic mechanisms
for intrinsic slow oscillations in thalamic relay neurons. Biophysical Journal
65, 4 (1993), 1538.

[37] Diehl, P. U., and Cook, M. Unsupervised learning of digit recognition us-
ing spike-timing-dependent plasticity. Frontiers in computational neuroscience
9 (2015).

[38] Douglas, R. M., and Goddard, G. V. Long-term potentiation of the
perforant path-granule cell synapse in the rat hippocampus. Brain research
86, 2 (1975), 205–215.

[39] Ebong, I. E., and Mazumder, P. Cmos and memristor-based neural net-
work design for position detection. Proceedings of the IEEE 100, 6 (2012),
2050–2060.

[40] El-Husseini, A. E.-D., Schnell, E., Dakoji, S., Sweeney, N., Zhou,
Q., Prange, O., Gauthier-Campbell, C., Aguilera-Moreno, A.,
Nicoll, R. A., and Bredt, D. S. Synaptic strength regulated by palmitate
cycling on psd-95. Cell 108, 6 (2002), 849–863.

[41] Endo, G., Morimoto, J., Matsubara, T., Nakanishi, J., and Cheng,
G. Learning cpg-based biped locomotion with a policy gradient method: Ap-
plication to a humanoid robot. The International Journal of Robotics Research
27, 2 (2008), 213–228.

[42] Erickson, J., Tooker, A., Tai, Y.-C., and Pine, J. Caged neuron mea:
A system for long-term investigation of cultured neural network connectivity.
Journal of neuroscience methods 175, 1 (2008), 1–16.

117

[43] Ferrari, S., Mehta, B., Muro, G. D., VanDongen, A. M., and Hen-
riquez, C. Biologically realizable reward-modulated hebbian training for spik-
ing neural networks. In Neural Networks, 2008. IJCNN 2008.(IEEE World
Congress on Computational Intelligence). IEEE International Joint Confer-
ence on (2008), IEEE, pp. 1780–1786.

[44] Ferrari, S., Mehta, B., Muro, G. D., VanDongen, A. M., and Hen-
riquez, C. Biologically realizable reward-modulated hebbian training for spik-
ing neural networks. Proc. International Joint Conference on Neural Networks,
Hong Kong (2008), 1781–1787.

[45] Ferster, D., and Spruston, N. Cracking the neuronal code. Science 270,
5237 (1995), 756.

[46] Fields, R. D. Myelination: an overlooked mechanism of synaptic plasticity?
The Neuroscientist 11, 6 (2005), 528–531.

[47] Fiete, I. R., and Seung, H. S. Gradient learning in spiking neural networks
by dynamic perturbation of conductances. Physical review letters 97, 4 (2006),
048104.

[48] FitzHugh, R. Impulses and physiological states in theoretical models of nerve
membrane. Biophysical journal 1, 6 (1961), 445.

[49] Fletcher, T. L., Cameron, P., De Camilli, P., and Banker, G. The
distribution of synapsin i and synaptophysin in hippocampal neurons develop-
ing in culture. The Journal of neuroscience 11, 6 (1991), 1617–1626.

[50] Florian, R. V. Reinforcement learning through modulation of spike-timing-
dependent synaptic plasticity. Neural Computation 19, 6 (2007), 1468–1502.

[51] Florian, R. V. The chronotron: a neuron that learns to fire temporally
precise spike patterns. PloS one 7, 8 (2012), e40233.

[52] Foderaro, G., Henriquez, C., and Ferrari, S. Indirect training of a
spiking neural network for flight control via spike-timing-dependent synaptic
plasticity. In Decision and Control (CDC), 2010 49th IEEE Conference on
(2010), IEEE, pp. 911–917.

[53] Friedrich, J., Urbanczik, R., and Senn, W. Code-specific learning
rules improve action selection by populations of spiking neurons. International
journal of neural systems 24, 05 (2014), 1450002.

118

[54] Funahashi, K.-i., and Nakamura, Y. Approximation of dynamical sys-
tems by continuous time recurrent neural networks. Neural networks 6, 6
(1993), 801–806.

[55] Gerstner, W., and Kistler, W. M. Spiking neuron models: Single neu-
rons, populations, plasticity. Cambridge university press, 2002.

[56] Gerstner, W., Kreiter, A. K., Markram, H., and Herz, A. V. Neu-
ral codes: firing rates and beyond. Proceedings of the National Academy of
Sciences 94, 24 (1997), 12740–12741.

[57] Ghosh-Dastidar, S., and Adeli, H. Improved spiking neural networks
for eeg classification and epilepsy and seizure detection. Integrated Computer-
Aided Engineering 14, 3 (2007), 187–212.

[58] Ghosh-Dastidar, S., and Adeli, H. A new supervised learning algorithm
for multiple spiking neural networks with application in epilepsy and seizure
detection. Neural Networks 22, 10 (2009), 1419–1431.

[59] Ghosh-Dastidar, S., and Adeli, H. Spiking neural networks. Interna-
tional journal of neural systems 19, 04 (2009), 295–308.

[60] Gibson, J. R., Beierlein, M., and Connors, B. W. Two networks of
electrically coupled inhibitory neurons in neocortex. Nature 402, 6757 (1999),
75–79.

[61] Gilles, W., Michèle, T., and Khashayar, P. Intrinsic variability of
latency to first-spike. Biological cybernetics 103, 1 (2010), 43–56.

[62] Goldberg, D. Genetic algorithms in search, optimization, and machine learn-
ing, 1989.

[63] Gollisch, T., and Meister, M. Rapid neural coding in the retina with
relative spike latencies. science 319, 5866 (2008), 1108–1111.

[64] Goodman, D., and Brette, R. Brian: a simulator for spiking neural
networks in python.

[65] Gori, M., and Tesi, A. On the problem of local minima in backpropagation.
IEEE Transactions on Pattern Analysis & Machine Intelligence, 1 (1992), 76–
86.

119

[66] Graf, H. P., and Henderson, D. A reconfigurable cmos neural net-
work. In Solid-State Circuits Conference, 1990. Digest of Technical Papers.
37th ISSCC., 1990 IEEE International (1990), IEEE, pp. 144–145.

[67] Gray, C. M., and McCormick, D. A. Chattering cells: superficial pyra-
midal neurons contributing to the generation of synchronous oscillations in the
visual cortex. Science 274, 5284 (1996), 109–113.

[68] Grüning, A., and Bohte, S. M. Spiking neural networks: Principles and
challenges. In ESANN (2014).

[69] Gütig, R., and Sompolinsky, H. The tempotron: a neuron that learns
spike timing–based decisions. Nature neuroscience 9, 3 (2006), 420–428.

[70] Hebb, D. O. The organization of behavior: A neuropsychological theory.
Psychology Press, 2005.

[71] Hornik, K., Stinchcombe, M., and White, H. Multilayer feedforward
networks are universal approximators. Neural networks 2, 5 (1989), 359–366.

[72] Hsu, J. Ibm’s new brain [news]. Spectrum, IEEE 51, 10 (2014), 17–19.

[73] Hu, D., Zhang, X., Xu, Z., Ferrari, S., and Mazumder, P. Digi-
tal implementation of a spiking neural network (snn) capable of spike-timing-
dependent plasticity (stdp) learning. In Nanotechnology (IEEE-NANO), 14th
IEEE International Conference on (2014), IEEE , pp. 873–876.

[74] Hu, D., Zhang, X., Xu, Z., Ferrari, S., and Mazumder, P. Digi-
tal implementation of a spiking neural network (snn) capable of spike-timing-
dependent plasticity (stdp) learning. In 14th IEEE International Conference
on Nanotechnology (2014), IEEE, pp. 873–876.

[75] Iannella, N., and Back, A. D. A spiking neural network architecture for
nonlinear function approximation. Neural networks 14, 6 (2001), 933–939.

[76] Ijspeert, A. J., Crespi, A., Ryczko, D., and Cabelguen, J.-M. From
swimming to walking with a salamander robot driven by a spinal cord model.
science 315, 5817 (2007), 1416–1420.

[77] Inagaki, S., Yuasa, H., Suzuki, T., and Arai, T. Wave cpg model
for autonomous decentralized multi-legged robot: Gait generation and walking
speed control. Robotics and Autonomous Systems 54, 2 (2006), 118–126.

120

[78] Izhikevich, E. M. Solving the distal reward problem through linkage of stdp
and dopamine signaling. In Cerebral cortex (2007).

[79] Izhikevich, E. M., et al. Simple model of spiking neurons. IEEE Trans-
actions on neural networks 14, 6 (2003), 1569–1572.

[80] Izhikevich, E. M., and Moehlis, J. Dynamical systems in neuroscience:
The geometry of excitability and bursting. SIAM review 50, 2 (2008), 397.

[81] Joshi, P., and Triesch, J. Optimizing generic neural microcircuits through
reward modulated stdp. In International Conference on Artificial Neural Net-
works (2009), Springer, pp. 239–248.

[82] Kasabov, N., Dhoble, K., Nuntalid, N., and Indiveri, G. Dynamic
evolving spiking neural networks for on-line spatio-and spectro-temporal pat-
tern recognition. Neural Networks 41 (2013), 188–201.

[83] Kepler, T. B., Abbott, L., and Marder, E. Reduction of conductance-
based neuron models. Biological cybernetics 66, 5 (1992), 381–387.

[84] Kimura, H., Fukuoka, Y., and Cohen, A. H. Biologically inspired adap-
tive walking of a quadruped robot. Philosophical Transactions of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences 365,
1850 (2007), 153–170.

[85] Koickal, T. J., Hamilton, A., Pearce, T. C., Tan, S. L., Covington,
J. A., and Gardner, J. W. Analog vlsi design of an adaptive neuromor-
phic chip for olfactory systems. In Circuits and Systems, 2006. ISCAS 2006.
Proceedings. 2006 IEEE International Symposium on (2006), IEEE, pp. 4–pp.

[86] Kopell, N., Ermentrout, G., and Williams, T. On chains of oscillators
forced at one end. SIAM Journal on Applied Mathematics 51, 5 (1991), 1397–
1417.

[87] Krichmar, J. Neurorobotics. Scholarpedia 3, 3 (2008), 1365. revision 152121.

[88] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural informa-
tion processing systems (2012), pp. 1097–1105.

[89] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based
learning applied to document recognition. Proceedings of the IEEE 86, 11
(1998), 2278–2324.

121

[90] Legenstein, R., Chase, S. M., Schwartz, A. B., and Maass, W. A
reward-modulated hebbian learning rule can explain experimentally observed
network reorganization in a brain control task. The Journal of Neuroscience
30, 25 (2010), 8400–8410.

[91] Legenstein, R., Pecevski, D., and Maass, W. A learning theory
for reward-modulated spike-timing-dependent plasticity with application to
biofeedback. PLoS Comput Biol 4, 10 (2008), e1000180.

[92] Levy, W., and Steward, O. Temporal contiguity requirements for long-
term associative potentiation/depression in the hippocampus. Neuroscience 8,
4 (1983), 791–797.

[93] Lewis, M. A., Hartmann, M. J., Etienne-Cummings, R., and Cohen,
A. H. Control of a robot leg with an adaptive avlsi cpg chip. Neurocomputing
38 (2001), 1409–1421.

[94] Lewis, M. A., Tenore, F., and Etienne-Cummings, R. Cpg design using
inhibitory networks. In Robotics and Automation, 2005. ICRA 2005. Proceed-
ings of the 2005 IEEE International Conference on (2005), IEEE, pp. 3682–
3687.

[95] Linares-Barranco, B., Sánchez-Sinencio, E., Rodŕıguez-Vázquez,
A., and Huertas, J. L. A cmos implementation of fitzhugh-nagumo neuron
model. Solid-State Circuits, IEEE Journal of 26, 7 (1991), 956–965.

[96] Liu, B., and Frenzel, J. A cmos neuron for vlsi circuit implementation of
pulsed neural networks. In IECON 02 [Industrial Electronics Society, IEEE
2002 28th Annual Conference of the] (Nov 2002), vol. 4, pp. 3182–3185 vol.4.

[97] Maas, A. L., Le, Q. V., Vinyals, O., Nguyen, P., and Ng, A. Y.
Recurrent neural networks for noise reduction in robust asr.

[98] Maass, W. Liquid state machines: motivation, theory, and applications.
Computability in context: computation and logic in the real world , 275–296.

[99] Maass, W. Networks of spiking neurons: the third generation of neural
network models. Neural networks 10, 9 (1997), 1659–1671.

[100] Maass, W. Noisy spiking neurons with temporal coding have more computa-
tional power than sigmoidal neurons. Institute for Theoretical Computer Sci-
ence. Technische Universitaet Graz. Graz, Austria, Technical Report TR-1999-
037.[Online]. Available: http://www. igi. tugraz. at/psfiles/90. pdf (1999).

122

[101] Maass, W., Schnitger, G., and Sontag, E. On the computational power
of sigmoid versus boolean threshold circuits. In Foundations of Computer
Science, 1991. Proceedings., 32nd Annual Symposium on (Oct 1991), pp. 767–
776.

[102] Maass, W., Schnitger, G., and Sontag, E. D. On the computational
power of sigmoid versus boolean threshold circuits. In Foundations of Com-
puter Science, 1991. Proceedings., 32nd Annual Symposium on (1991), IEEE,
pp. 767–776.

[103] Maher, M., Pine, J., Wright, J., and Tai, Y.-C. The neurochip: a
new multielectrode device for stimulating and recording from cultured neurons.
Journal of neuroscience methods 87, 1 (1999), 45–56.

[104] Maheswaranathan, N., Ferrari, S., VanDongen, A. M., and Hen-
riquez, C. S. Emergent bursting and synchrony in computer simulations of
neuronal cultures. Frontiers in Computational Neuroscience 6 (2012).

[105] Markram, H., Lübke, J., Frotscher, M., and Sakmann, B. Regulation
of synaptic efficacy by coincidence of postsynaptic aps and epsps. Science 275,
5297 (1997), 213–215.

[106] Martin, J. P., Guo, P., Mu, L., Harley, C. M., and Ritzmann, R. E.
Central-complex control of movement in the freely walking cockroach. Current
Biology 25, 21 (2015), 2795–2803.

[107] Masquelier, T., Guyonneau, R., and Thorpe, S. J. Competitive stdp-
based spike pattern learning. Neural computation 21, 5 (2009), 1259–1276.

[108] Masquelier, T., and Thorpe, S. J. Unsupervised learning of visual fea-
tures through spike timing dependent plasticity. PLoS Comput Biol 3, 2 (2007),
e31.

[109] Matarić, M. J. Behavior-based robotics as a tool for synthesis of artificial
behavior and analysis of natural behavior. Trends in cognitive sciences 2, 3
(1998), 82–86.

[110] Mazumder, P., Hu, D., Ebong, I., Zhang, X., Xu, Z., and Ferrari,
S. Digital implementation of a virtual insect trained by spike-timing dependent
plasticity. Integration, the VLSI Journal 54 (2016), 109–117.

[111] Mazumder, P., Hu, D., Ebong, I., Zhang, X., Xu, Z., and Ferrari,
S. Digital implementation of a virtual insect trained by spike-timing dependent
plasticity. Integration, the VLSI Journal 54 (2016), 109–117.

123

[112] McKinstry, J. L., Edelman, G. M., and Krichmar, J. L. A cerebellar
model for predictive motor control tested in a brain-based device. Proceedings
of the National Academy of Sciences of the United States of America 103, 9
(2006), 3387–3392.

[113] Meliza, C. D., and Dan, Y. Receptive-field modification in rat visual
cortex induced by paired visual stimulation and single-cell spiking. Neuron 49,
2 (2006), 183–189.

[114] Mohanty, S. K., and Lakshminarayananan, V. Optical techniques in
optogenetics. Journal of modern optics 62, 12 (2015), 949–970.

[115] Mohemmed, A., Schliebs, S., Matsuda, S., and Kasabov, N. Span:
Spike pattern association neuron for learning spatio-temporal spike patterns.
International Journal of Neural Systems 22, 04 (2012), 1250012.

[116] Mohemmed, A., Schliebs, S., Matsuda, S., and Kasabov, N. Train-
ing spiking neural networks to associate spatio-temporal input–output spike
patterns. Neurocomputing 107 (2013), 3–10.

[117] Montague, P. R., Dayan, P., and Sejnowski, T. J. A framework for
mesencephalic dopamine systems based on predictive hebbian learning. The
Journal of neuroscience 16, 5 (1996), 1936–1947.

[118] Morris, C., and Lecar, H. Voltage oscillations in the barnacle giant muscle
fiber. Biophysical journal 35, 1 (1981), 193.

[119] Morrison, A., Diesmann, M., and Gerstner, W. Phenomenological
models of synaptic plasticity based on spike timing. Biological cybernetics 98,
6 (2008), 459–478.

[120] Nobukawa, S., and Nishimura, H. Enhancement of spike-timing-
dependent plasticity in spiking neural systems with noise. International journal
of neural systems (2015), 1550040.

[121] O’keefe, J., and Nadel, L. The hippocampus as a cognitive map. Oxford
University Press, USA, 1978.

[122] Panzieri, S., Pascucci, F., and Ulivi, G. An outdoor navigation system
using gps and inertial platform. IEEE/ASME transactions on Mechatronics 7,
2 (2002), 134–142.

124

[123] Paugam-Moisy, H., and Bohte, S. Computing with spiking neuron net-
works. In Handbook of natural computing. Springer, 2012, pp. 335–376.

[124] Pecevski, D., Maass, W., and Legenstein, R. A. Theoretical analy-
sis of learning with reward-modulated spike-timing-dependent plasticity. In
Advances in Neural Information Processing Systems (2007), pp. 881–888.

[125] Pennartz, C. Reinforcement learning by hebbian synapses with adaptive
thresholds. Neuroscience 81, 2 (1997), 303–319.

[126] Pfister, J.-P., Barber, D., and Gerstner, W. Optimal hebbian learn-
ing: a probabilistic point of view. In Artificial Neural Networks and Neural
Information ProcessingICANN/ICONIP 2003. Springer, 2003, pp. 92–98.

[127] Point, N. Optitrack. Natural Point, Inc.,[Online]. Available: http://www.
naturalpoint. com/optitrack/.[Accessed 22 2 2014] (2011).

[128] Ponulak, F. Resume-new supervised learning method for spiking neural net-
works. Institute of Control and Information Engineering, Poznan University of
Technology.(Available online at: http://d1. cie. put. poznan. pl/˜ fp/research.
html) (2005).

[129] Porr, B., and Wörgötter, F. Isotropic sequence order learning. Neural
Computation 15, 4 (2003), 831–864.

[130] Prezioso, M., Merrikh-Bayat, F., Hoskins, B., Adam, G., Likharev,
K. K., and Strukov, D. B. Training and operation of an integrated neuro-
morphic network based on metal-oxide memristors. Nature 521, 7550 (2015),
61–64.

[131] Rachmuth, G., Shouval, H. Z., Bear, M. F., and Poon, C.-S. A
biophysically-based neuromorphic model of spike rate-and timing-dependent
plasticity. Proceedings of the National Academy of Sciences 108, 49 (2011),
E1266–E1274.

[132] Ritzmann, R., and Büschges, A. Adaptive motor behavior in insects.
Current opinion in neurobiology 17 (2007), 629–636.

[133] Ritzmann, R., and Büschges, A. Adaptive motor behavior in insects.
Current opinion in neurobiology 17 (2007), 629–636.

[134] Ritzmann, R. E., Harley, C. M., Daltorio, K. A., Tietz, B. R., Pol-
lack, A. J., Bender, J. A., Guo, P., Horomanski, A. L., Kathman,

125

N. D., Nieuwoudt, C., et al. Deciding which way to go: how do insects
alter movements to negotiate barriers? Frontiers in neuroscience 6 (2012).

[135] Rowcliffe, P., and Feng, J. Training spiking neuronal networks with
applications in engineering tasks. Neural Networks, IEEE Transactions on 19,
9 (2008), 1626–1640.

[136] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning inter-
nal representations by error-propagation. In Parallel Distributed Processing:
Explorations in the Microstructure of Cognition. Volume 1, vol. 1. MIT Press,
Cambridge, MA, 1986, pp. 318–362.

[137] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning
representations by back-propagating errors. Cognitive modeling 5, 3 (1988), 1.

[138] Samson, R., Frank, M., and Fellous, J.-M. Computational models of
reinforcement learning: the role of dopamine as a reward signal. Cognitive
neurodynamics 4, 2 (2010), 91–105.

[139] Sanger, T. D. Optimal unsupervised learning in a single-layer linear feed-
forward neural network. Neural networks 2, 6 (1989), 459–473.

[140] Schreiber, S., Fellous, J.-M., Whitmer, D., Tiesinga, P., and Se-
jnowski, T. J. A new correlation-based measure of spike timing reliability.
Neurocomputing 52 (2003), 925–931.

[141] Seltzer, M. L., Yu, D., and Wang, Y. An investigation of deep neural
networks for noise robust speech recognition. In Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on (2013), IEEE,
pp. 7398–7402.

[142] Semiconductor, F. Cmos, the ideal logic family.

[143] Seo, J.-s., Brezzo, B., Liu, Y., Parker, B. D., Esser, S. K., Mon-
toye, R. K., Rajendran, B., Tierno, J. A., Chang, L., Modha, D. S.,
et al. A 45nm cmos neuromorphic chip with a scalable architecture for learn-
ing in networks of spiking neurons. In Custom Integrated Circuits Conference
(CICC), 2011 IEEE (2011), IEEE, pp. 1–4.

[144] Serrano-Gotarredona, T., Masquelier, T., Prodromakis, T., In-
diveri, G., and Linares-Barranco, B. Stdp and stdp variations with
memristors for spiking neuromorphic learning systems.

126

[145] Shapero, S., Zhu, M., Hasler, J., and Rozell, C. Optimal sparse
approximation with integrate and fire neurons. International journal of neural
systems 24, 5 (2014).

[146] Shrestha, S. B., and Song, Q. Weight convergence of spikeprop and
adaptive learning rate. In Communication, Control, and Computing (Allerton),
2013 51st Annual Allerton Conference on (2013), IEEE, pp. 506–511.

[147] Shrestha, S. B., and Song, Q. Adaptive learning rate of spikeprop based
on weight convergence analysis. Neural Networks 63 (2015), 185–198.

[148] Skiena, S. S. The algorithm design manual: Text, vol. 1. Springer Science &
Business Media, 1998.

[149] Spears, W. M., De Jong, K. A., Bäck, T., Fogel, D. B., and
De Garis, H. An overview of evolutionary computation. In Machine Learn-
ing: ECML-93 (1993), Springer, pp. 442–459.

[150] Sporea, I., and Grüning, A. Supervised learning in multilayer spiking
neural networks. Neural computation 25, 2 (2013), 473–509.

[151] Stein, R. B., Gossen, E. R., and Jones, K. E. Neuronal variability:
noise or part of the signal? Nature Reviews Neuroscience 6, 5 (2005), 389–397.

[152] Still, S., Schölkopf, B., Hepp, K., and Douglas, R. J. Four-legged
walking gait control using a neuromorphic chip interfaced to a support vector
learning algorithm. In NIPS (2000), Citeseer, pp. 741–747.

[153] Strack, B., Jacobs, K. M., and Cios, K. J. Simulating vertical and
horizontal inhibition with short-term dynamics in a multi-column multi-layer
model of neocortex. International journal of neural systems 24, 05 (2014),
1440002.

[154] Strain, T. J., McDaid, L., Maguire, L. P., and McGinnity, T. M. A
supervised stdp based training algorithm with dynamic threshold neurons. In
Neural Networks, 2006. IJCNN’06. International Joint Conference on (2006),
IEEE, pp. 3409–3414.

[155] Taherkhani, A., Belatreche, A., Li, Y., and Maguire, L. P. Dl-
resume: a delay learning-based remote supervised method for spiking neurons.
IEEE transactions on neural networks and learning systems 26, 12 (2015),
3137–3149.

127

[156] Taherkhani, A., Belatreche, A., Li, Y., and Maguire, L. P. Multi-
dl-resume: Multiple neurons delay learning remote supervised method. In
Neural Networks (IJCNN), 2015 International Joint Conference on (2015),
IEEE, pp. 1–7.

[157] Takase, H., Fujita, M., Kawanaka, H., Tsuruoka, S., Kita, H.,
and Hayashi, T. Obstacle to training spikeprop networkscause of surges in
training process. In 2009 International Joint Conference on Neural Networks
(2009), IEEE, pp. 3062–3066.

[158] National Academy of Engineering. NAE grand challenges for engineer-
ing. http://www.engineeringchallenges.org/9109.aspx, 2015.

[159] Thompson, D. M. Understanding audio: getting the most out of your project
or professional recording studio. Hal Leonard Corporation, 2005.

[160] Tiňo, P., and Mills, A. J. Learning beyond finite memory in recurrent
networks of spiking neurons. Neural computation 18, 3 (2006), 591–613.

[161] Van Vreeswijk, C., Abbott, L., and Ermentrout, G. B. When in-
hibition not excitation synchronizes neural firing. Journal of computational
neuroscience 1, 4 (1994), 313–321.

[162] Wade, J. J., McDaid, L. J., Santos, J. A., and Sayers, H. M. Swat:
a spiking neural network training algorithm for classification problems. Neural
Networks, IEEE Transactions on 21, 11 (2010), 1817–1830.

[163] Wagenaar, D. A., Pine, J., and Potter, S. M. Searching for plasticity
in dissociated cortical cultures on multi-electrode arrays. Journal of negative
results in biomedicine 5, 1 (2006), 1.

[164] Walter, F., Röhrbein, F., and Knoll, A. Neuromorphic implementa-
tions of neurobiological learning algorithms for spiking neural networks. Neural
Networks 72 (2015), 152–167.

[165] Wang, J., Belatreche, A., Maguire, L., and McGinnity, T. M. An
online supervised learning method for spiking neural networks with adaptive
structure. Neurocomputing 144 (2014), 526–536.

[166] Wang, Z., Guo, L., and Adjouadi, M. A generalized leaky integrate-and-
fire neuron model with fast implementation method. International journal of
neural systems 24, 05 (2014), 1440004.

128

http://www.engineeringchallenges.org/9109.aspx

[167] Weidenbacher, U., and Neumann, H. Unsupervised learning of head pose
through spike-timing dependent plasticity. In International Tutorial and Re-
search Workshop on Perception and Interactive Technologies for Speech-Based
Systems (2008), Springer, pp. 123–131.

[168] Wilson, M. A., and Bower, J. M. The simulation of large-scale neural
networks. In Methods in neuronal modeling (1989), MIT Press, pp. 291–333.

[169] Xin, J., and Embrechts, M. J. Supervised learning with spiking neural
networks. In Neural Networks, 2001. Proceedings. IJCNN’01. International
Joint Conference on (2001), vol. 3, IEEE, pp. 1772–1777.

[170] Yamazaki, T., and Tanaka, S. The cerebellum as a liquid state machine.
Neural Networks 20, 3 (2007), 290–297.

[171] Yang, J. J., Strukov, D. B., and Stewart, D. R. Memristive devices
for computing. Nature nanotechnology 8, 1 (2013), 13–24.

[172] Zaghloul, K. A., and Boahen, K. Optic nerve signals in a neuromorphic
chip ii: Testing and results. Biomedical Engineering, IEEE Transactions on
51, 4 (2004), 667–675.

[173] Zemelman, B. V., Lee, G. A., Ng, M., and Miesenböck, G. Selective
photostimulation of genetically charged neurons. Neuron 33, 1 (2002), 15–22.

[174] Zhang, F., Wang, L.-P., Boyden, E. S., and Deisseroth, K.
Channelrhodopsin-2 and optical control of excitable cells. Nature methods 3,
10 (2006), 785–792.

[175] Zhang, G., Rong, H., Neri, F., and Pérez-Jiménez, M. J. An op-
timization spiking neural P system for approximately solving combinatorial
optimization problems. International journal of neural systems 24, 05 (2014),
1440006.

[176] Zhang, X. Snn-controlled insect simulation in virtual reality modeling lan-
guage (vrml). https://youtu.be/J31QcxCNuiY, 2016.

[177] Zhang, X., Foderaro, G., Henriquez, C., and Ferrari, S. A scalable
weight-free learning algorithm for regulatory control of cell activity in spiking
neuronal networks. International Journal on Neural systems (2017).

129

https://youtu.be/J31QcxCNuiY

[178] Zhang, X., Foderaro, G., Henriquez, C., VanDongen, A., and Fer-
rari, S. A radial basis function spike model for indirect learning via integrate-
and-fire sampling and reconstruction techniques. Advances in Artificial Neural
Systems 2012 (2012), 10.

[179] Zhang, X., Xu, Z., Henriquez, C., and Ferrari, S. Spike-based indi-
rect training of a spiking neural network-controlled virtual insect. In Decision
and Control (CDC), 2013 52th IEEE Annual Conference on (2013), IEEE ,
pp. 6798–6805.

[180] Zhou, Y.-T., Chellappa, R., Vaid, A., and Jenkins, B. K. Image
restoration using a neural network. Acoustics, Speech and Signal Processing,
IEEE Transactions on 36, 7 (1988), 1141–1151.

[181] Zinkevich, M., Weimer, M., Li, L., and Smola, A. J. Parallelized
stochastic gradient descent. In Advances in neural information processing sys-
tems (2010), pp. 2595–2603.

130

Biography

1. Xu Zhang

2. July 1988, China

3. Bachelor degree in Mechanical Engineering and Materials Science at University
of Shanghai for Science and Technology, Master degree in Mechanical Engi-
neering and Materials Science at Duke University, Master degree in Computer
Science at Duke University.

1. Chinese National Scholarship, January 2007

2. First Class Honor, October 2009

3. University students of distinction, shanghai, May 2010

4. Shanghai Scholarship, December 2008

131

	Abstract
	List of Tables
	List of Figures
	List of Abbreviations and Symbols
	Acknowledgements
	1 Introduction
	1.1 Training CMOS and Memristor Devices
	1.2 Training Neuronal Cultures and Neurochips
	1.3 Spiking Neural Networks and Modeling Software
	1.4 Application of SNNs in Neurorobotics
	1.5 Training Algorithms for Spiking Neural Networks
	1.6 Discussion

	2 Spiking Neural Network Model
	2.1 Integrate-and-Fire Model
	2.1.1 Electric Circuit
	2.1.2 Refractory Period

	2.2 Izhikevich Model
	2.3 Synapse Models
	2.3.1 Delta Pulse
	2.3.2 Alpha Synapse

	2.4 Spike Timing-Dependent Plasticity (STDP)
	2.4.1 Implement STDP using Local Variables

	2.5 Discussion

	3 Problem Formulations
	3.1 Temporal and Spatial Mapping using Temporal coding
	3.1.1 Correlation-Based Metric
	3.1.2 Training and testing Data

	3.2 Input Output Mapping using Rate Coding
	3.3 Neural Network Size and Inputs Noise
	3.4 Discussion

	4 Indirect Training Algorithms based on Rate Coding and Applications
	4.1 Indirect Perturbation Algorithm
	4.1.1 Algorithm Description
	4.1.2 Local Minimum
	4.1.3 Application of Indirect Perturbation Algorithm on Virtual Insect Navigation
	4.1.4 Application of Indirect Perturbation Algorithm on Indoor Robot Navigation using Optitrack
	4.1.5 Discussion

	4.2 Indirect Stochastic Gradient Descent Algorithm and Application
	4.2.1 Algorithm Description
	4.2.2 Performance of Indirect SGD Vs. Indirect Perturbation Algorithm
	4.2.3 Discussion

	4.3 Indirect Training with Supervised Teaching Signals and Neurorobot Applications
	4.3.1 Algorithm Description
	4.3.2 Neurorobotic Navigation using Large SNNs and Embedded Cameras
	4.3.3 Discussion

	5 Indirect ReSuMe Algorithm and Spatial Temporal Mapping
	5.1 Algorithms Description
	5.1.1 Indirect ReSuMe rule

	5.2 Results of Training Biological Realistic Model for Temporal Spatial Mapping
	5.2.1 Analysis of the Indirect Learning Rate

	5.3 Discussion

	6 Conclusions
	A Appendix
	Bibliography
	Biography

