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ABSTRACT

Nowadays flight travel becomes a common way for people for work or leisure.

With more frequent flight travels, lots of manual instructions by the ground

tower and by ground crew members are needed. More resources and costs are

accumulated, making up a big budget for the airplane managers to consider.

Thus, a methodology of automatically guiding the airplanes to taxi based on the

guidance gestures from the ground crew member is proposed. Many method-

ologies are used for human actions segmentation and change points detection

of the human movements. Most of the algorithms focus on the single type of

human action, which cannot generalize to the everyday human activities. This

thesis presents a methodology that combine both the actions segmentation and

recognition parts, and direct the airplanes based on the action recognition re-

sults.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Nowadays more people take flights, and airports need control towers and hun-

dreds of ground crew members to help instructing the airplanes to taxi. These

infrastructures cost lots of resources and human labor. The circumstance mo-

tivates me to design an algorithm to let the airplane capture taxi instructions

from the ground crew’s gestures and follow the gestures automatically. Here,

the thesis proposes an algorithm to automatically instruct the airplanes to taxi

with fewer human support. It may help the airport operators to save budget on

human labor in the future.

The algorithm consists of human action recognition step and a control strat-

egy to instruct the airplanes. The human recognition is first introduced, fol-

lowed by a control strategy. Human actions recognition is important for in-

telligent systems and applications, such as city surveillance systems. Under-

standing the human actions becomes an popular research topic recently. Hu-

man actions consist of various types of actions, which include many sudden

change points while the person is performing even an everyday activities. An-

other characteristic of the human activity is the uncertainty of the change point.

The person changes his or her action at an unknown timestamp. These two

characteristics make the recognition of the human actions difficult to conquer.

Most of the existing approaches are focused on the video sequences with sin-

gle motion type. Even though there is a significant progress in this direction,

the assumption is limiting as the approaches assume the action sequence would

only contain single type of actions. Due to the two characteristics of the hu-

man activity, this assumption cannot hold. Also, currently there is no available
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dataset including the guidance gestures of the ground crew agents. The thesis

also created a synthetic dataset in Unreal environment to demonstrate the guid-

ance gestures, and the gestures will be used as the input data for the proposed

algorithm.

To generalize the assumption and to extend it to general human movement,

the thesis focuses on the continuous motion sequence, and the its change points

are unknown. Different templates matching methods are proposed to identify

and detect the different types of the actions from an original motion sequence.

In [20], a sliding-window method is to find the intervals of actions from the

video clips available in THUMOS-14 dataset. Later many approaches, such as

[26], [21], [13], adopted ideas of finding the correct intervals from videos clips,

and they improved the performance by applying Convolutional Neural Net-

works features. [26] combines the complete actions and the incomplete action

fragments into a neural network model to detect and recognize the personnel

actions. [21] applied new segment-based and aggregation module in their neu-

ral network model to model long-range motion sequence. [13] detects temporal

boundaries using neural networks features. The three approaches only focus on

removing the redundant frames which are unrelated with the actions. The goal

in this thesis is to distinguish multiple actions from continuous videos.

For the algorithm, one important task is to temporally segment the motion

sequence into various motion clusters. Many existing works proposes different

segmentation approaches using motion capture data. For instance, an earlier

work, [2], applies PCA-based method to partition the motion capture data into

different actions segments. The work addresses the possibility of segmenting

the motion capture data, but the proposed approach cannot distinguish similar
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actions. Another segmentation approach, [27], introduced the aligned cluster

analysis method to temporally group motion capture data into cycles of peri-

odic motions, and then assigned to different motion classes. Recently, the paper

[23] introduced a sparse subspace clustering method with geodesic exponen-

tial kernel to model the Riemannian manifold structure of human skeletons.

These segmentation methods are primarily focus on 3D dataset. The method

presented in this thesis will extends the data type as not only 3D data type but

also other sensor modalities.

Based on various control signals, the control logic needs to handle the multi-

ple scenarios under each signal. The paper [15] applied a hybrid ADP approach

to a switching control system for determining the discrete and continuous con-

trol logic. In terms of target finding, Another paper [11] applied and updated

a decision tree-based approach to adapt and to optimize the pursuit policies of

the protagonist in the game. The optimization approach enabled the character

to earn high scores, while preventing from being eaten by the enemies in the

game. Instead of using decision-tree method, the paper [7] applied a connec-

tivity graph to ”hunt” for the targets in the broad game, CLUE. Regarding the

human decision-making process, researchers at [17] addressed that human will

adapt a ”drop-the-worst” decision strategy while he or she is under time pres-

sure and various conditions. This is an important insight on studying the hu-

man decision making against the machine decision making. Moreover, a study

[18] applied Bayesian Inference to study the change of neural substrates due to

the decision strategy under increased time pressure. Researchers at [14] applied

an vision-guided control and planning method with the usage of convolutional

neural networks (CNNs). To track the activities of the dynamic subject, the work

[1] used a Bayesian approach to find the possible area of leak of methane in the
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natural gas field, and information-theoretic approach to reduce the uncertainty

of target source rate in the area of interest. In case the targets are moving, re-

searchers in [22] adapted a geometric approach to improve the detect accuracy

of the sensor towards the maneuvering targets, and the article formulated the

kinodynamic constraints as an optimal control problem. Likewise, the work [16]

applied a particle-filter information potential method to track the maneuvering

targets. The paper [8] applied a cell-decomposition method to find the probabil-

ity of the target and the cost of the operation of the sensors, and the article also

proved the termination time is a function of the sensor parameters and of the

numbers of detections. Finally, the article [24] summarized and compared vari-

ous information-driven approaches of sensor planning and detection strategy in

moving targets. For controlling the airplanes task, book [9] provided the basic

information regarding the unmanned aerial vehicles and corresponding control

strategies. The paper [10] introduced an optimal control method to track mov-

ing targets by using an omnidirectional sensor network. Finally, the article[25]

proposed a probabilistic roadmap method to classify the fixed targets in an area

of interest.

An efficient, human action recognition approach that automatically segment

an untrimmed human motion sequence into disjoint groups and recognize each

action group is proposed for this task. The input is an video sequence. The end

results of the algorithm are the change points of the motion group. As the first

step in the algorithm, the pose estimation of the skeleton structure is performed,

and it will extract joint information of the personnel skeleton, which will act as

the features for the segmentation step. The segmentation step is then proposed

based on the multiple change point analysis to detect the transition intervals

between distinct actions. Third, the temporal templates of each action clusters,
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segmented from the previous step, are calculated and matched to the motion

classes. Finally, a control logic is applied on the airplane system as to control

the airplane based on the signals.

The outline of this thesis is given below. In chapter II, the problem will be

formulated and presented. In chapter III, the recognition and segmentation

framework will be shown. In chapter IV, experiments results of the proposed

algorithm will be presented. In chapter V, the conclusion and the future devel-

opments will be presented.
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CHAPTER 2

PROBLEM FORMULATIONS AND ASSUMPTIONS

This thesis considered the problem of automatic guidance to instruct the

airplanes to taxi based on human actions segmentation and recognition from

untrimmed human action videos. The action set is extracted from the ac-

tion videos of the ground crew members. The action set is defined as S =

{a1, a2, .., ak}, where ai is denoted as the ith action label. The motion sequence

with video frames fi is denoted as V = [f1, f2, . . . , fn], where n represents the

total number of frames of a video. The proposed algorithm has two objectives

to accomplish: the first objective is to segment and recognize the guidance ges-

tures performed by a ground crew member in the airport, and the result of this

objective is to output a control signal. The second objective is to control the

airplane based on the signals captured from the guidance gestures performed

by the ground crew member. One assumption in the thesis is that all actions

are periodic actions. Regarding the human’s actions, the thesis considers both

typical taxiing activities and human exercises. For the motion sequences, each

action is repeated and forms cycles for several times. The thesis also assumes

that only a single agent performs the actions. Regarding the airplane taxiing

movements based on the guidance gestures, the thesis assumes the airplane can

have a view on the human subject, so the gestures of the ground crew member

could be successfully captured by the airplane.
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Figure 2.1: Algorithm Process

The figure introduces an overview of the human action segmentation and

recognition algorithm.

Figure 2.1 introduces two steps of the human actions recognition process: the

first step is actions sequence segmentation step, followed by the action recog-

nition step for each group segmented by the previous step. The inputs of the

process are untrimmed video clips, and the output of the process is a vector

containing classified action labels.

Firstly, motion features, denoted as V, are computed for the untrimmed
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video. Secondly, the change points, denoted as cp, are discovered, and lastly

the motion sequence will be temporally segmented based on the change points,

and accuracy of the classification will be evaluated after the last step. A change

point between two actions is defined, denoted as τ . The segmentation process is

decomposed below: Given a vector of change points, τ = [τ1, τ2, . . . , τk]
T , where

k represents the number of change points. The frames of the motion sequence

are separately grouped into distinct time windows. A time window is defined as

the range between two neighboring change point: w = [τi−1, τi]. The ideal result

would be time windows not sharing change points, meaning, all the segmented

time windows have distinct boundaries, and all the frames within a time win-

dow will be classified and recognized by the segmentation step.

In this thesis, 2D videos will be used as the input for the proposed algo-

rithm. For a video, ι = {It|t = 1, , , , , n} taken by a camera. The joint motion

information, such as positions, velocities, of the agent’s skeleton is extracted

from each frame of the video. Positions of the joints are calculated by extracting

and calculating the different displacements of the pixels corresponding to the

joints between consecutive frames. Specifically, the velocity of ith joints of the

agent’s skeleton, denoted as u, is calculated as

ut,i = [xt,i − xt−1,i, yt,i − yt−1,i] (2.1)

where [xt,i, yt,i] is a tuple of positions of the ith joint at the time t in the image.

For each image, all the velocities of the joints are concatenated to form a joint

velocity (ordered) set, as denoted Uι = {ut|t = 1, ..., n}, where n is the total

number of image frames of the motion sequence.
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The velocities of each joint serve as important features for the actions seg-

mentation process. The segmentation process is essential for finding the distinct

groups of the human actions and gathering the same action groups together.

The action recognition process is then applied on the segment to discover the

segmented actions. The output of the process will be used to guide the airplane.

The system of the airplane is assumed to have various movement modes

ξ = [1, . . . , E], where E is a discrete integer. The discrete control ν selects the

next system mode, such that ξ, ν ∈ ε. The switched dynamic system is selected:

x(k + 1) = fξ[xξ(k),uξ(k)] (2.2)

where the discrete control law is

ξ(k + 1) = ν(k) (2.3)

where x ∈ X ⊂ Rn is the continuous state. X is the state space, uξ ∈ Uξ ⊂ Rm

is the continuous control input, and Uξ is the space of admissible control inputs

for mode ξ. The initial state x(0) = x0 and mode ξ(0) = ξ0 are assumed given,

and the final time N is known and finite. The system also obeys the following

assumptions:

Assumption 1: Mode switching can occur at any time step k and is deter-

mined solely by ν with zero cost.

Assumption 2: The state X is fully observable and the measurement error is

negligible
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The continuous and discrete control laws are presented as below:

uξ = cξ[x(k), k] (2.4)

ν(k) = a[x(k), ξ(k), k] (2.5)

The system performance is represented by cost function:

J = φ[x(N)] +
N−1∑
j=0

Lξ[x(j),uξ(j), ν(j)] (2.6)

where Lξ[x(j),uξ(j), ν(j)] is the cost function of the system, the detail of the

cost function will be introduced in the Chapter IV.

In this module, the problem is formulated, and the background and the as-

sumptions are also introduced in the module. In the next modules, the algo-

rithm background of the segmentation and recognition will be introduced be-

low.
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CHAPTER 3

ALGORITHM BACKGROUND

the Multiple Change Point Analysis [6] is studied to separate the actions

sequence into distinct groups. The MCPA method is a robust and efficient

offline change point detection algorithm, which outperforms widely-used bi-

nary change point detection methods in computation complexity and detec-

tion robustness. The method focuses on finding the change points of the 1-D

time-series data as the input. The method models the data generating process

as a segment-wise autoregression. It addresses the problem of detecting the

change points in one-dimensional time series data with theoretical guarantee.

It achieves fast segmentation by segment-wise autoregression process. The au-

toregression process consists of various segments, each is modeled by the au-

toregression model. Then, the autoregression model is transformed into multi-

variate time-series data, and a multi-windows method is proposed to discover

the structure changes effectively. The MCPA also proves that a Bayesian Infor-

mation Criterion (BIC) gives a strong consistent selection of the optimal number

of change points.

Given the one-dimensional time-series data with n elements x = [x1x2 . . . xn],

MCPA partitions the actions sequence into k distinct groups, each group has

same length. Each partition is created using an autoregression model (AR):

xi = εi,q + [1 xi−1 . . . xi−m]φq (3.1)

In the equation, m means how many preceding terms are in the AR model.

i ∈ [sq−1 + 1, sq], which is the range of segment. εi,q is independent Gaussian
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noise. φq = [c a1 a2 . . . am]T is a vector consists of parameters of AR model,

which can be fitted using least square method:

arg min
φq

sq∑
t=sq−1+1

(xi − [1 xi−1 . . . xi−m]φq)
2 (3.2)

The author also transformed the other parameters of AR model, which is in

form [φ1,φ2, . . . ,φk]

A multiple time windows are used in MCPA method as to find the accurate

estimations of the change points. The method detects the change points for

each time window and merges all the information. For each window size, the

similar partitions will cluster together. The change points are defined as the

boundary points between different and distinct groups of actions. The change

point will then be identified between different clusters, and the boundary will

be scored by 1. Moreover, to avoid the tendency of choosing small clusters, a

BIC-like penalty term β is introduced to penalize the small ranges. Finally all

the scores are accumulated together as to form a score vector s, which represents

the final score. A region with highest score will have the highest possibility of

including a change point. The clustering is achieved by minimizing the within-

group variance.

arg min
{L1,...,Lh}

h∑
l=1

λ(φLl−1+1, . . . ,φLl
) (3.3)

where

λ(φLl−1+1, . . . ,φLl
) =

Ll∑
q=Ll−1+1

|φq − φl|2 (3.4)
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Finally, the scores from each window size are accumulated together to form

a final score. A region associated with high score is likely to contain a change

point. In the next module, the methodology of the proposed algorithm will be

introduced.
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CHAPTER 4

METHODOLOGY

The proposed algorithm framework is systematically developed in this sec-

tion. First, features from human actions are extracted. Second, action change

point detection is deployed. Thirdly, the temporal templates method is applied

to classify the segments, and the output will be used as the control signals of the

control logic of the airplane, and finally the control of the airplane is introduced

to guide the airplane to move based on the control signals of the guidance.

4.0.1 Human Action Features Representations

In this section, the thesis primarily focuses on the skeletal structure of human

personnel. The skeletal structure is a good human action feature since it is easy

to detect the changes in joints’ positions of the human, which can be used for

one of the features of the human actions [12]. Note that this thesis uses the

joints around the personnel’s hip, waist, shoulder, arms, legs, and neck since

all changes of the actions this thesis includes occur around these joints. For

this algorithm, the human skeleton joints’ data is used to reflect the ground

crew member’s movements, specifically, their guidance gestures. The skeletal

structure is beneficial for human action features since it is easy to detect the

changes in joints’ positions of the human, which can be used for one of the

features of the human actions. The skeleton joint distribution is shown below

The blue dots in Figure 4.1 are the selected human joints points for move-

ment information extraction. The joints velocities are used to characterize the

personnel’s actions. The joints positions and velocities are measured in both the
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Figure 4.1: Human Skeleton Distribution

fixed frame FW and the body frame FB. Velocities measured in both frames

serve different but important roles. The velocities measured in FW are dis-

tinguishable features for various movements occurred, and the velocities mea-

sured in frame FB are effective features used to separate discriminate motions

involving locomotion. Both origins of FW and FB are located in j1, which is the

hip joint of the human skeleton. The basis directions are fixed during the move-

ment of the personnel. The basis vector, denoted as ê′1, is perpendicular to the

framed formed by the two shoulder joints, (j2, j3) and the hip joint, j1.

ê
′

1 =
pj1,j2 × pj1,j2

||pj1,j2 × pj1,j2||
(4.1)

and basis vector ê′3 is the projection of relative position pj1,j4 on the plane:

ê
′

3 =
pj1,j4 − (pj1,j4 · ê

′
1)ê

′
1

||pj1,j4 − (pj1,j4 · ê
′
1)ê

′
1||

(4.2)
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the basis vector ê′2 is the outer product between the ê′1 and ê
′
1. In the fixed

frame, the definition of the movement sequence, V = {vt|t = 1, . . . , n} at time t

is shown below:

vt = [vTt,x vTt,y]
T (4.3)

where vt ∈ R2N×1, vt,x ∈ RN×1 and vt,y ∈ RN×1 and N is denoted as the num-

ber of joints of the skeleton. Specifically, the velocity component at x-axis, vt,x

includes all the velocity vectors of all the joints at x-axis:

vt,x = [vt,x1 vt,x2 . . . vt,xN ]T (4.4)

Similarly, the velocity set in the body frame VB is {vt,B|t = 1, . . . , n} The

form of the set VB is the same with the V . The next step of the algorithm is to

find the changes of actions of the skeleton, using the velocity sets as inputs. The

change point detection is to find the different patterns between different groups

of actions and group the similar ones together. In the change point detection

step, the change points are the boundary points between different groups. The

detail on the change point detection method will be introduced in the following

section.

4.0.2 Action Detection and Segmentation

In this module, the segmentation step is developed on the MCPA method, but it

extends it to adopt multi-dimensional time series data. The method models the
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joints’ velocities sets extracted from the personnel’s skeleton. The model used

in the algorithm is autoregression model. The module will first introduced the

1-dimensional time series data, then it introduces the multi-dimensional seg-

mentation process.

Given the one-dimensional time-series data with n elements x =

[x1, x2 . . . xn], the MCPA method partitions the actions sequence into k dis-

tinct groups, each group has same length. Each partition is created using an

autoregression model (AR):

xi = εi,q + [1 xi−1 . . . xi−m]φq (4.5)

In the equation, m means how many preceding terms are in the AR model.

i ∈ [sq−1 + 1, sq], which is the range of segment. εi,q is independent Gaussian

noise. φq = [c a1 a2 . . . am]T is a vector consists of parameters of AR model,

which can be fitted using least square method:

arg min
φq

sq∑
t=sq−1+1

(xi − [1 xi−1 . . . xi−m]φq)
2 (4.6)

The author also transformed the other parameters of AR model, which is in

form [φ1,φ1, . . . ,φk]

A multiple time windows are proposed in MCPA method as to find the ac-

curate estimations of change points. The method detects the change points for

each time window and merge all the information. For each window size, the

similar partitions will cluster together. The change points are defined as the
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boundary points between different and distinct groups of actions. The change

point will then be identified between different clusters, and the boundary will

be scored by 1. Moreover, to avoid the tendency of choosing small clusters, a

BIC-like penalty term β is introduced to penalize the small ranges. Finally all

the scores are accumulated together as to form a score vector s, which represent

the final score. A region with highest score will have the highest possibility of

including a change point. The clustering is achieved by minimizing the within-

group variance.

arg min
{L1,...,Lh}

h∑
l=1

λ(φLl−1+1, . . . ,φLl
) (4.7)

where

λ(φLl−1+1, . . . ,φLl
) =

Ll∑
q=Ll−1+1

|φq − φl|2 (4.8)

where {L1, . . . , Lh} are the ranges of clusters and h represents number of

clusters. φl is the average AR parameter in cluster l.

From the 1-dimensional MCPA algorithm, the proposed algorithm extends

it to multi-dimensional time series data. Similarly, given the joints velocities set,

V , the extension divided the set into k groups using a time window ω. Each

segment q of the set, each dimension of the segment is generated by an autore-

gressive model (AR). The velocities set is represented as below

V = [vx, vy] (4.9)

where vx represents the joints’ velocities on x axis, and vy represents the
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joints’ velocities on y axis. The proposed algorithm used multi-autoregression

model (MAR) to extend the MCPA functionality to the v. For instance, a joint’s

velocities on x-axis, vx, its AR model is given by:

vt,xi = εq,xi + [1 vt−1,xi . . . vt−m,xi ]φq,xi
(4.10)

where εq,xi represents the Gaussian noise term, t belongs to the range of the

segment, t ∈ [sq−1 + 1, sq]. m means how many preceding terms in the model.

φq,xi
is the AR parameters needed for estimation. These parameters can be

fitted using least square method:

arg min
φq,xi

sq∑
t=sq−1+1

(vt,xi − [1 vt−1,xi .. vt−m,xi ]φq,xi
)2 (4.11)

Secondly, the estimated AR parameters at other dimension, xi, are merged

together. The resulting AR parameters form a vector, [φT1,xi
φT2,xi

. . . φTk,xi
]

Repeating the process for other dimensions and concatenating all theφT1,xi
,

the parameters vectors are merged together to form a larger vector. The ψ =

[ψ1 ψ2 . . . ψk]. For example, a single ψx,k is expressed as below:

ψx,k = [φTx1,k φ
T
x2,k . . . φTxN ,k

] (4.12)

where the ψk is the formed by ones from other dimensions.

ψk = [ψx,k, ψy,k] (4.13)
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where ψk,x ∈ R1×Nm, ψk ∈ R1×2Nm. Now, the algorithm will express the

original velocity set V by transformed AR parameters ψ. The multiple time

windows are used to detect the action change points on ψ and the score vector

s, s, is obtained. An additional penalty term, R, is introduced to avoid the small

segmentation.

R =
b

1 + exp σ(l − lmin)
(4.14)

where lmin is the minimum critical length of undesirable segment length. b

and σ are two scalar parameters that can be user-defined based on the length of

the segment.

After obtaining the final score vector, s, the algorithm performs a refined

search on the score vector, especially focus on the peak regions of the score vec-

tor. The precise change points are located at the minimums of the kinematic

energy of the personnel. The reason is that the personnel is stationary when

he/she is about to change the actions.

4.0.3 Action Recognition with temporal templates

After segmenting the actions sequence, each distinct action group will be rec-

ognized by using an action recognition step. The action recognition method

is a fundamental method in the field of human action recognition [3]. This

method applies a time window to select the correct action from the movements

sequence, and this can be improved by the actions segmentation step in the pre-

vious section. The action recognition method uses temporal templates, a fea-
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ture consist of Motion Energy image (MEI) and Motion History image (MHI),

to identify the action from a motion sequence.

Each pair of MEI and MHI represents a movement of the subject in the mo-

tion sequence. The MHI is a scalar-valued image where the more recent pixels

are brighter. MHIs are used for representing motions in a movement sequence.

MEI is a cumulative binary motion image, which shows the locations of the mo-

tion in the image. Intuitively, the pixel value on MEI is 1 if the same pixel value

on MHI is nonzero. The MEI and MHI equations are shown below:

Eτ (x, y, t) =
τ−1∑
i=0

D(x, y, t− i) (4.15)

Hτ (x, y, t) =


τ, if D(x, y, t) = 1

max(0, Hτ (x, y, t− 1)− 1), otherwise
(4.16)

where D(x, y, t) is the image difference at a timestamp t, τ is the duration of

the movement.

The shapes of the MEI and MHI are effectively representing the hu-

man action. The algorithm then calculates the first 7 Hu moments. µ =

[µ1, µ2, µ3, µ4, µ5, µ6, µ7]T These Hu moments are invariant to the rotations, posi-

tions, and scale, so they are good features to identify the pattern, which is the

correct action group. The first 7 Hu moments’ definitions are shown below, note

that the subscripts in the right equation represent the (p+ q)th order:
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µ1 = η20 + η02 (4.17)

µ2 = (η20 − η02)2 + 4η2
11 (4.18)

µ3 = (η30 − 3η12)2 + (3η21 − η03)2 (4.19)

µ4 = (η30 + η12)2 + (η21 + η03)2 (4.20)

µ5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)2 − 3(η21 + η03)2]

+ (3η21 − η03)(η21 + η03)[3(η30 + η12)2 − (η21 + η03)2]

µ6 = (η20 − η02)[(η30 + η12)2 − (η21 + η03)2]

+ 4η11(η3 + η12)(η21 + η03)
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µ7 = (3η21 − η03)(η30 + η12)[(η30 + η12)2 − 3(η21 + η03)2]

− (η30 − 3η12)(η21 + η03)[3(η30 + η12)2 − (η21 + η03)2]

where ηpq represents the normalized for scale from the central moments µpq

ηpq =
µpq

(µ00)γ
(4.21)

where γ = (p+q)/2+1 and (p+q) ≥ 2 The Hu moments are thus independent

of orientation, scale, and rotation.

After computing the Hu moments, the algorithm develops a recognition

scheme matching the distance between the moments of the test points and the

those from the known training set. The metric used here is Mahalanobis Dis-

tances D, which measures the distance from a point to a distribution. The Ma-

halonbis Distance between the unknown testing action and the combined dis-

tribution of the known training set is shown below:

D =
√

(µ− µ̄s)K−1
s (µ− µ̄s)T (4.22)

where µ̄s represents the mean of the Hu moments of the known movements,

and Ks is the Covariance matrix of the stored (training) movements. µ is the

Hu moments vector for a testing action. The testing action with the minimal

Mahalanobis distance is the matched with the closet training data.
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To find the action from the sequence with a time window, the proposed algo-

rithm applies an estimate of the minimum and maximum duration of the action:

τmin and τmax. To compute the MHI for movements range from τmin to τmax, set

τ = τmax and calculate its Hτ . The MHI for the rest in the range can be obtained

by a threshold Hτ :

Hτ−∆τ (x, y, t) =


Hτ (x, y, t)−∆τ, if Hτ (x, y, t− 1) > ∆τ

0, otherwise
(4.23)

where ∆τ is the time step. After the Hu moments are computed, the match-

ing scheme uses a distance metric to match the moments of an unknown test

points against the ones from the known training set. The metric used here is the

Mahalanobis distance, which measures the distance between a point and a dis-

tribution. It is used between the test point and the training data for each of the

duration within the range. The best duration τbest has the smallest distance. The

testing action with the closest Mahalanobis distance is matched with the train-

ing data. Mathematically, the testing action label yt is selected based on training

label yk with the closest Mahalanobis Distance, D∗:

yt = yk for D∗ = minD (4.24)

where yk is the action labels from the known actions in the training set.
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yk ∈



y1

y2

y3

y4

y5

y6


(4.25)

where y1 denotes the ”Come To Stop” action label. y2 denotes the ”Engine

Fire” action label. y3 denotes the ”Slow” action label. y4 denotes the ”Pass Con-

trol Off” action label. y5 denotes the ”Taxi Forward” action label. y6 denotes the

”Turn Right” action label. Using the metric D, the testing action can be matched

with the training action which has the closest distance to the testing action.

The recognition algorithm will be repeated until all the action groups are

identified.

The thesis tested the action recognition algorithm on the gesture actions

against a small training set, whose actions are a small portions of the whole

action histories.

The precision is the criterion the thesis used to evaluate based on the correct

classified labels against the total number of frames of the action video.

Precision =
nTP

nTP + nFP
x100% (4.26)

where the nTP denotes the numbers of true positive labels, nTP+nFP denotes
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the total numbers of labels of the action sequence.

The detection accuracy is measured numerically using standard Precision

and Recall metric. In the metric, nTP represents number of correctly detected

change points, nFP represents number of falsely detected change points and

nFN serves as the number of mistakenly undetected change points. Precision is

defined as the ratio of number of correct detection versus the total number of

detection. Recall is defined as the ratio of number of correct detection versus

the total number of change points.

After the evaluation, the recognition scheme would output a control signal,

which will be applied in the next module. In the following module, the airplane

system and the control logic will be introduced.

4.0.4 Auto Guidance Demo Switching Control Logic

After each action groups are segmented and recognized in the previous step,

the output of the previous step will act as the control signals, the system will re-

sponse differently to various modes computed from the previous step. The sys-

tem consists of three action modes: the ”Turn Right” mode, the ”Taxi Forward”

mode, and the ”Come To Stop” mode. Each mode can be represented by a lin-

ear time-invariant (LTI) dynamics with a continuous state vector x = [x, y, θ]T ,

where x ∈ R. θ denotes the orientation of the airplane. x is fully observable

and error free. The mode of the system is represented by a discrete state vari-

able ξ ∈ ε , where ε = [1, 2, 3] and uξ = [u1, u2, u3]T . Each mode denotes the

movements of the airplane based on the identified ground grew gesture. ξ = 1

denotes the ”Come To Stop” mode, ξ = 2 denotes the ”Taxi Forward” mode,
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and ξ = 3 denotes the ”Turn Right” mode. The system dynamics under each

mode is represented below:

x(k + 1) =


A1x(k) + B1u1(k), for ν(k) = 1

A2x(k) + B2u2(k), for ν(k) = 2

A3x(k) + B3uu3(k), for ν(k) = 3

(4.27)

where

u1(k) = v0∆k +
a(∆2)

2
(4.28)

u2(k) = vk∆k (4.29)

u3(k) =

−rC sin(θ0)

rC cos(θ0)

 (4.30)

where ∆k is the time step, a represent the acceleration of the airplane v0

denotes as the initial speed of the airplane, and θ0 is the initial orientation of the

airplane, and rC is the radius of the arc trajectory between the initial state and a

terminal point.

At any time k ∈ {0, . . . , (N − 1)}, the system mode ξ can be fully controlled

at no cost by a switching signal ν ∈ ε provided by the discrete controller.

The paper [15] proposed a new ADP recurrence relationships and transver-
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sality conditions for solving the switched optimal control problem. From Bell-

man’s principle of optimality [4], the optimization of the objective function (2.6)

can be embedded in the optimization of a switched system value function or

cost-to-go which, at any time k, is defined as:

V [x(k), ξ(k), π, k]φ[x(N)] +
N−1∑
j=k

Lξ[x(j),uξ(j)] (4.31)

From the definition above, the value function obeys the recurrence relation-

ship

V [x(k), ξ(k), π, k] = Lξ[x(k),uξ(k)] + V [x(k + 1), ξ(k + 1), π, k + 1] (4.32)

The system depends on both continuous and discrete state and control in-

puts. The cost function to be minimized is represented by:

J = xT (N)Pfx(N) +
N−1∑
j=0

xT (j)Qξx(j) + uTξ (j)Rξuξ(j) (4.33)

where Pf represents the terminal cost matrix, Qξ and Rξ are the weighting

matrices for each mode

From [19], the switched differential Riccati Equation is given by:
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P (k − 1)−Qξ = AT
ξ (P (k)− P (k)Bξ(Rξ +BT

ξ P (k)Bξ)
−1BT

ξ P (k))Aξ (4.34)

where the discrete control law is obtained by minimizing the Hamiltonian

function, such that:

ν(k) = arg min
ν
{H[P (k), x(k), ξ(k), u(k)]} (4.35)

where the Hamiltonian function H is defined as:

H = Lξ[x(k),uξ(k)] + λ[x(k + 1), ν(k), k + 1]fξ[x(k),uξ(k)]

= H[x,uξ,λ, ν, k]

where λ represents the gradient of the value function with respect to the

state, such that

λ =
δV

δx
(4.36)

In this chapter, it introduces the skeleton feature representation, which is

the input of the segmentation step. Additionally, the chapter also explains the

three parts of the proposed algorithm, including the actions segmentation, ac-

tion recognition, and aircraft control logic. Each step’s equations are given in
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details in this chapter. In the next chapter, the experimental results on each step

will be present, and two demos are created to illustrate the practical applica-

tion of the airplane taxiing based on the recognition results of the ground crew

member.
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CHAPTER 5

EXPERIMENTS ON UNREAL SYNTHETIC DATASET

5.0.1 Motion Segmentation using MCPA

In this chapter, experiments conducted on the Unreal Synthetic dataset, and the

results of the MCPA and action recognition algorithm will be shown. The videos

in this database are generated by using 12 motion-capture cameras around dif-

ferent people subjects, and the shooting angles for each action video range from

0 degree to 330 degree in counter-clockwise direction. The thesis simulated 7

subjects and 10 actions for each of them. In order to obtain joints’ velocities of

the animations, the proposed algorithm used a public toolbox [5, ?] to compute

the joint positions from the action videos. The results of the extracted velocities

are shown below

Figure 5.1: Three Actions from Ground Taxiing Guidance

Figure 5.1 shows the extracted joints of the ground crew member in the air-

port at daylight environment. The joints are the dots on the crew member, and

the links connected by the dots in the crew member are the arms/legs of the per-

sonnel. Each joint is recording the its position and the velocities at each frame.
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So the joints velocities history can be used as the input to the Motion Segmenta-

tion process.

The proposed algorithm applied the motions segmentation step on the

video, and the segmentation result of three taxiing gestures sequence is shown

below:

Figure 5.2: MCPA results from three actions of taxiing guidance

Fig 5.2 shows the MCPA result of the three actions of the taxiing guidance,

and note that the two true change points, which are at 104th and 243rd frame, are

covered inside the peaks of the score plots. The peaks are the limits separating

the sequence into three distinct groups.

Figure 5.3: Joint Extraction Two Human Exercises

Figure 5.3 shows the extracted joints of the crew member in the airport at

night. To visualize the motion better, a light is applied on the personnel. The
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joints store the velocities history, which will be used as the inputs to the Motion

Segmentation step.

Figure 5.4: MCPA results from two actions of Human Exercises

Fig 5.4 shows the MCPA results on two human exercises under the light

scene. Note that only one ground true change point, which is 42nd frame, is

included in the peaks of the score plot.

More test cases are used to test the effectiveness of the Motion Segmentation

process. Here the three human exercises are used in the motion sequence.

Figure 5.5: Joint Extraction of three actions of Human Exercises

Figure 5.5 shows the extracted joints of three human exercises of the ground

crew member at night environment. The figure also shows the ground true

change points, which are 48th and 218th frame.
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The segmentation result is displayed below

Figure 5.6: MCPA results from three human exercises at night

Figure 5.6 shows the segmentation result on three human exercises at night.

The segmentation has two peaks, the first peak starts from the 25th frame to

72nd frame and the second one ranges from 199th to 220th frame. The peaks can

effectively include the ground true change points for the sequence. The two

peaks can also act as the separation criteria to segment the sequence.

For the Multi-dimensional motion segmentation step in the proposed algo-

rithm, the algorithm can yield the correct result with small angle variations. The

input data is the everyday human exercises actions (running, mopping floor,

walking, and waving). Each action is repeated for five repetitions. The four ac-

tions are concatenated to form a continuous motion sequence. OpenPose tool-

box[9] is used to compute the joint positions of the person subject. The outliers

of the joint positions are removed by using Savitzky-Golay filter for the pose

estimation.
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Figure 5.7: MCPA results Human Exercises at 0 degree

Fig 5.7 shows the segmentation results towards the personnel. The red lines

are the predicted change points whose kinetic energy are at the peaks, and the

black lines are the ground true change points. Two neighbors segments on two

sides of a change point will be scored by one of each window sizes, and final

score s is the accumulation for all of the windows. The three peak scores seg-

ment the actions into 4 groups, and each action group is identified by using the

matching scheme with temporal templates. The GT τ represents the ground

true change point, and the red τ̂ means the detected change points.

Figure 5.8: MCPA results Human Exercises at 30 degree

Fig 5.8 shows segmentation results of the crew personnel under under 30 de-

gree view angle in counter clockwise direction. The red lines are the predicted

change points whose kinetic energy are at the peaks, and the black lines are the
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ground true change points. The sequence is separated by the segmentation step

into four distinct groups. Then, each group is recognized by the action recog-

nition scheme using temporal templates. The matched action class is shown

above the score plot. The GT τ is the ground true time, and the red τ is the

detected time. The figure shows the detected ones are matched with the ground

true time.

the window size for MCPA algorithm is w = [31, 6, 4, 3], and applied the

algorithm to the video clips on other view angles. The segmentation accuracy is

evaluated by using precision and recall equations, which are given below:

precision =
nTP

nTP + nFP
(5.1)

recall =
nTP

nTP + nFN
(5.2)

Where nTP represents the number of correctly detected change points, nFP

represents number of falsely detected change points, and nFN is the number of

mistakenly undetected change points.

Table 5.1 shows the MCPA results on the four human exercises actions with

multiple view angles. The precision and recall accuracy show three out total

four view angles has segmented all the actions correctly.

36



Table 5.1: Precision and Recall Accuracy of MCPA with view angle vari-
ants

Angle (degree) Precision (%) Recall (%)

0 100 100

30 100 100

60 100 100

5.0.2 Demo: Airport Ground Crew Guidance

In the ground crew gestures demo, the actions sequence consist of three actions.

The segmentation process segments the actions sequence into three groups.

Each group represents an action.

Figure 5.9: Segmentation Result of the actions for auto guidance demo

Fig 5.9 shows the segmentation result from the joints’ velocities of the per-

sonnel in the video. There are two discovered change points, which are at 294th

and at 565th frames respectively. The black dashed lines are the segmentation

limit. The red dashed lines are the ground true change points. By this seg-
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mentation process, two discovered change points separate the video into three

segments, and each segment represents the action.

5.0.3 Action Recognition using Temporal Templates

For the experiment, the thesis used human exercises actions and all personnel

subjects from Unreal Engine synthetic dataset and 9 view angles out of 12 view

angles for each action of each personnel. The first step in the recognition frame

work is to calculate the Motion-Energy and Motion-History images. There are

six actions for the ground crew gestures: Come To Stop, Engine Fire, Pass Con-

trol Off, Slow, Taxi Forward, and Turn Right.

The MEIs of the ground crew gestures are listed below:

Figure 5.10: Motion Energy Images of the ground crew gestures
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The MHIs of the ground crew gestures are presented below:

Figure 5.11: Motion History Images of the ground crew gestures

In the demo, the MEIs and the MHIs are computed, and their Hu moments

are matched with the ones from the known actions in the training set. The dis-

tance metric is the Mahalanobis distance, and the lowest Mahalanobis distance

is the matched action label. The action recognition is the second step for the

AACD algorithm. The action sequence is separated into three groups. Each

group is identified by the action recognition step of the algorithm. The Maha-

lanobis distances between the Hu moments of the segment and the ones from

the training actions set are computed, and the action label with the closest Ma-

halanobis distance represents the matched action class.

Fig 5.12 shows the Mahalanobis distances of the Hu moments of the segment

to the training set. The bar with the lowest distance is colored red, and it is the

matched action label from the process. For the first segment, the classified ac-

tion class is Turn Right.

Fig 5.13 For the second segment, the classified action class is Taxi Forward.

The Mahalanobis distance is the smallest on the fifth action label. It shows that
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Figure 5.12: Action Recognition of first segment (Into Gate)

Figure 5.13: Action Recognition of second segment (Into Gate)

the recognized action label is matched with the ground true action label.

Figure 5.14 shows the action recognition result for the third group segmented

by the motion segmentation step. The action class with the closest Mahalanobis

distance is the first action class, which is ”Come To Stop”. The figure shows the

detected action label is matched with the ground true action label.
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Figure 5.14: Action Recognition of third segment (Into Gate)

For the Out to Taxiway demo, the thesis applied the action recognition step

for each action of the ground crew, the results are shown below:

Figure 5.15: First Action Recognition Result (Out to Taxiway)

Figure 5.15 shows the action recognition result for the first action group.

The action class with the smallest Mahalanobis distance is the Taxi action class,

which is ”Taxi Forward”. The figure shows the detected action label is matched

with the ground true action label.

Figure 5.16 shows the action recognition result for the second action group.
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Figure 5.16: Second Action Recognition Result (Out to Taxiway)

The action class with smallest Mahalanobis distance is the ”Turn Right” action

class. The figure shows the detected action label is matched with the ground

true action label.

Figure 5.17: Third Action Recognition Result (Out to Taxiway)

Figure 5.17 shows the action recognition result for the third action group.

The action class with smallest Mahalanobis distance is the ”Come To Stop”

action class. The figure shows the detected action label is matched with the

ground true action label.

Table 5.2 below summarize the classification result and the the ground true
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result.

Table 5.2: Classification and the Ground true results of the segments

Segment Classification Label Ground True Label

1 Turn Right Turn Right

2 Taxi Forward Taxi Forward

3 Come To Stop Come To Stop

5.0.4 Auto Guidance Demo

To demonstrate the control logic, the screenshots of the Into Gate demo video

are shown below:

Figure 5.18: First Action in the Into Gate Demo

Figure 5.18 shows the first action in the sequence, it demonstrates the air-

plane is moving right while the ground crew member is doing the ”Turn Right”

Action, and the action recognition result gives the correct classification result.

Figure 5.19 shows the second group of the sequence. The airplane is mov-
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Figure 5.19: Second Action in the Into Gate Demo

ing towards the ground crew member with a constant speed. The ground crew

member is also doing ”Taxi Forward”. The action recognition also gives a cor-

rect result.

Figure 5.20: Third Action in the Into Gate Demo

Figure 5.20 is the last action segment of the sequence. The airplane is coming

to the ground crew member with a decreasing speed, followed by the ground

crew member’s gesture. The action recognition method is showing the correct

classification action.
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The solutions of the system in this demo are obtained from the SDRE numer-

ically with approach [19] is shown below:

Figure 5.21: Demo Solutions from SDRE (Into Gate)

Figure 5.21 shows the switched dynamical Ricartti equation solutions of the

into gate demo. The black solid triangle represents the initial state, the hollow

black circle denotes the final state, the green dots line represents the first optimal

mode, which is ”Come To Stop” mode, the blue dots line represents the second

optimal mode, which is ”Engine Fire” mode, and the red dots line represents

the third optimal mode, which is ”Turn Right” mode. The orange crosses are

the time when the control modes switched. The process starts with the ”Turn

Right” mode, followed by the ”Taxi Forward” mode, and it is finished by the

”Come To Stop” mode. The order of the movements matched with the correct

order of the ground true sequence.
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The thesis also introduced another demo that instruct the airplanes going out

from the terminal gate to the taxiway for take-off. The actions sequence is ”Taxi

Forward” – ”Turn Right” – ”Come To Stop”. The recognition and segmentation

results of the sequence is shown in the figures below

Figure 5.22: First action of the Out To Taxiway demo

Figure 5.22 shows the first action that the ground crew member performed,

and the airplane captured his action as ”Taxi Forward” action, the red bar in the

action recognition shows the action matched with the ground true action.

Figure 5.23: Second action of the Out To Taxiway demo

Figure 5.23 shows the second action, and the airplane captured the ground
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crew member’s action as ”Turn Right”, the red bar in the action recognition

shows the action matched with the ground true action, and the segmentation

step detects a structural change occurs in the ground crew member.

Figure 5.24: Third action of the Out To Taxiway demo

Figure 5.24 shows the last action that the ground crew member performed,

and the airplane captured his action command as ”Come to Stop”, the red bar

in the action recognition shows the action matched with the ground true ac-

tion, and the segmentation step detects another structural change occurs in the

ground crew member’s guidance, meaning the ground crew member changed

his action from one to a new action.
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Figure 5.25: Demo Out To Taxiway Solutions from SDRE

The solutions of the system of the airplane from SRDE using approach [19]

is shown above:

Figure 5.25 shows the switched dynamical Ricartti solutions of the second

demo of out to taxi way. The black solid triangle represents the initial state, the

hollow black circle denotes the final state, the green dots line represents the first

optimal mode, which is ”Come To Stop” mode, the blue dots line represents the

second optimal mode, which is ”Engine Fire” mode, and the red dots line rep-

resents the third optimal mode, which is”Turn Right” mode. It shows that the

process starts with the third mode, which is the ”Turning Right” mode, and once

it met with the first orange cross, which indicates that the system switches from

the ”Turn Right” mode to the ”Taxi Forward” mode, and the system switched

again when it meets with the second orange cross, and the system changed its

movement from ”Taxi Forward” to ”Come To Stop” mode. The order of the

movements of the airplane matches with the correct order from the ground true

sequence.
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CHAPTER 6

CONCLUSIONS AND FURTHER DEVELOPMENT

In this thesis, a framework of action segmentation and an action recognition

with airplane control logic is proposed to control the airplane’s taxiing move-

ments based on the automatic recognition of the ground crew guidance ges-

tures. The multi-dimensional change point detection method is developed to

find the transition stage between the action groups in a motion sequence, and

an action recognition method using temporal templates is employed in order to

identify the action of the current group. Then, a methodology combining the

two components is introduced in this thesis for automatic change points and

action recognition task to segment the guidance sequence and identify the ac-

tion of the segmented group. Then, a switching control logic is introduced in

order to instruct the airplane based on the guidance gestures identified by the

method. The proposed algorithm is evaluated on 3D motion sequences pro-

duced under Unreal Engine simulation environment. The results show that the

framework can effectively segment and recognize actions within a small angle

variation. Moreover, The airplane switching control logic is proposed to control

the airplane’s motion based on the framework results. Finally, Two demos of

auto guidance of an airplane based on the segmentation and recognition results

of a ground crew member are created in order to demonstrate the effectiveness

of the algorithm. A Unreal Synthetic dataset of the ground crew member guid-

ance gestures are created for future development.

One of the future extensions of the framework is to adapt to real-world ac-

tion videos to guide the airplanes. Additionally, many real-world action videos

are taken into various angles. Another future extension of the proposed algo-
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rithm is to yield correct results for videos taken under different view angles.

Another future work would focus on the interaction between multi-ground

crew agents and multiple airplanes movements scenarios. Regarding the con-

trol logic, an analysis of the robustness and the complexity would be a future

development for the framework, and various multi-dynamical systems would

be suitable for the multi-agent scenario. Conducting some small-scaled real-

world experiments would be a potential development. The future work on the

framework could have a broad prospective and applications.
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