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Inferential decision-making algorithms developed to date have assumed that an un-

derlying probabilistic model of decision alternatives and outcomes may be learned a

priori or online. As a result, when these assumptions are violated, they fail to pro-

vide solutions and are limited in their ability to modulate between optimizing and

satisficing in the presence of hard time or cost constraints, adverse environmental

conditions, or other unanticipated external pressures. Cognitive studies presented

in this dissertation demonstrate that humans modulate between near-optimal and

satisficing solutions, including heuristics, by leveraging information value of avail-

able environmental cues. Using the benchmark inferential decision problem known

as a “treasure hunt”, this dissertation develops a general approach for investigat-

ing and modeling active perception solutions under pressure, learning from humans

how to modulate between optimal and heuristic solutions on the basis of external

pressures and probabilistic models, if and when available. The result is an active

perception approach that allows autonomous robots to modulate between near-

optimal and heuristic strategies, tested via high-fidelity numerical simulations and

physical experiments. The effectiveness of the new active perception strategies is

demonstrated under a broad range of conditions, including decision tasks in which

state-of-the-art sensor planning methods, such as cell decomposition, information

roadmap, and information potential algorithms fail due to adverse weather (fog)

or significantly underperform because of time or cost limitations.
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CHAPTER 1

INTRODUCTION

Rational inferential decision-making theories in both human and autonomous

robot studies assume knowledge of a world model, such that near-optimal or sat-

isficing strategies may be achieved by maximizing an appropriate utility function

and/or satisficing mathematical constraints [80, 81, 13, 62, 82]. When a probabilis-

tic world model is available, either because it is learned online or a priori, a vari-

ety of approaches, such as optimal control, robot/sensor planning, and maximum

utility theories may be applied to inferential decision-making problems for robot

active perception, planning, and feedback control [22, 51, 77, 89, 21, 47, 49]. Many

“model-free” reinforcement learning (RL) and approximate dynamic programming

(ADP) approaches have also been developed on the basis of the assumption that

a partial or imperfect model is available in order to predict the next system state

and/or “cost-to-go”, and optimize the immediate and potential future rewards,

such as information value [3, 79, 68, 20, 87, 92].

Humans have also been shown to use internal world models for inferential

decision-making whenever possible, a characteristic first referred to as “substantial

rationality” in [81, 80]. As also shown by the human studies on passive and active

satisficing perception presented in this dissertation, given sufficient data, time, and

informational resources, a globally rational human decision-maker uses an internal

model of available alternatives, probabilities, and decision consequences to opti-

mize both decision and information value in what is known as a “small-world”

paradigm [76]. In contrast, in “large-world” scenarios, decision-makers face envi-

ronmental pressures that prevent them from building an internal model or quanti-

fying rewards, because of pressures such as missing data, time and computational
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power constraints, or sensory deprivation, yet still manage to complete tasks by

using “bounded rationality” [84]. Under these circumstances, optimization-based

methods may not only be infeasible, returning no solution, but also cause dis-

asters resulting from failing to take action [31]. Furthermore, Simon and other

psychologists have shown that humans can overcome these limitations in real life

via “satisficing decisions” that modulate between near-optimal strategies and the

use of heuristics to gather new information and arrive at fast and “good-enough”

solutions to complete relevant tasks.

To develop satisficing solutions for active robot perception, herein, we consider

here the class of sensing problems known as treasure hunt [11, 93, 20, 12, 10, 9, 8].

The mathematical model of the problem, comprised of geometric and Bayesian net-

work descriptions demonstrated in [11, 21], is used to develop a new experimental

design approach that ensures humans and robots experience the same distribu-

tion of treasure hunts in any given class, including time, cost, and environmental

pressures inducing satisficing strategies. This novel approach enables not only the

readily comparison of the human-robot performance but also the generalization of

the learned strategies to any treasure hunt problem and robotic platform. Hence,

satisficing strategies are modeled using human decision data obtained from passive

and active satisficing experiments, ranging from desktop to virtual reality human

studies sampled from the treasure hunt model. Subsequently, the new strategies are

demonstrated through both simulated and physical experiments involving robots

under time and cost pressures, or subject to sensory deprivation (fog).

The treasure hunt problem under pressure, formulated in Chapter 2 and re-

ferred to as satisficing treasure hunt herein, is an extension of the robot treasure

hunt presented in [11, 93], which introduces motion planning and inference in the
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search for Spanish treasures originally used in [83] to investigate satisficing deci-

sions in humans. Whereas the search for Spanish treasures amounts to searching

a (static) decision tree with hidden variables, the robot treasure hunt involves a

sensor-equipped robot searching for targets in an obstacle-populated workspace.

As shown in [21] and references therein, the robot treasure hunt paradigm is useful

in many mobile sensing applications involving multi-target detection and classifi-

cation. In particular, the problem highlights the coupling of action decisions that

change the physical state of the robot (or decision-maker) with test decisions that

allow the robot to gather information from the targets via onboard sensors. In this

dissertation, the satisficing treasure hunt is introduced to investigate and model

human satisficing perception strategies under external pressures in passive and ac-

tive tasks, first via desktop simulations and then in the Duke immersive Virtual

Environment (DiVE) [18], as shown in Fig. 1.1.

To date, substantial research has been devoted to solving treasure hunt prob-

lems for many robots/sensor types, in applications as diverse as demining infrared

sensors and underwater acoustics, under the aforementioned “small-world” as-

sumptions [21]. Optimal control and computational geometry solution approaches,

such as cell decomposition [11], disjunctive programming [88], and information

roadmap methods (IRM) [93], have been developed for optimizing robot perfor-

mance by minimizing the cost of traveling through the workspace and processing

sensor measurements, while maximizing the sensor rewards such as information

gain. All these existing methods assume prior knowledge of sensor performance

and of the workspace, and are applicable when the time and energy allotted to

the robot are adequate for completing the sensing task. Information-driven path

planning algorithm integrated with online mapping, developed in [94, 55, 25], have

extended former treasure hunt solutions to problems in which a prior model of the
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(a)
 

(b)

Figure 1.1: Human participant solving treasure hunt problem first under no pres-
sure (a) and then under sensory deprivation (fog pressure) (b) in the DiVE [18].

workspace is not available and must be obtained online. Optimization-based algo-

rithms have also been developed for fixed end-time problems with partial knowl-

edge of the workspace, on the basis of the assumption that a probabilistic model of

the information states and unlimited sensor measurements are available [74]. This

dissertation builds on this previous work to develop heuristic strategies applicable

when uncertainties cannot be learned or mathematically modeled in closed form,

and the presence of external pressures might prevent task completion, e.g., adverse

weather or insufficient time/energy.

Inspired by previous findings on human satisficing heuristic strategies [31, 28,

32, 29, 63], this dissertation develops, implements, and compares the performance
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between existing treasure hunt algorithms and human participants engaged in the

same sensing tasks and experimental conditions by using a new design approach.

Subsequently, human strategies and heuristics outperforming existing state-of-the-

art algorithms are identified and modeled from data in a manner that can be

extended to any sensor-equipped autonomous robot. The effectiveness of these

strategies is then demonstrated with camera-equipped robots via high-fidelity sim-

ulations as well as physical laboratory experiments. In particular, human heuristics

are modeled by using the “three building blocks” structure for formalizing general

inferential heuristic strategies presented in [33]. The mathematical properties of

heuristics characterized by this approach are then compared with logic and statis-

tics, according to the rationale in [31].

Three main classes of human heuristics for inferential decisions exist:

recognition-based decision-making [71, 35], one-reason decision-making [60, 29],

and trade-off heuristics[53]. Although categorized by respective decision mecha-

nisms, these classes of human heuristics have been investigated in disparate sat-

isficing settings, thus complicating the determination of which strategies are best

equipped to handle different environmental pressures. Furthermore, existing hu-

man studies are typically confined to desktop simulations and do not account

for action decisions pertaining to physical motion and path planning in complex

workspaces. Therefore, this dissertation presents a new experimental design ap-

proach (Chapter 3) and tests in human participants to analyze and model satisfic-

ing active perception strategies (Chapter 6) that are generalizable and applicable

to robot applications, as shown in Chapter 7.

The dissertation presents separate analysis and modeling studies for human

satisficing strategies in passive and active perception and decision-making tasks.
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For passive tasks, time pressure on inference is introduced to examine subsequent

effects on human decision-making in terms of decision model complexity and infor-

mation gain. The resulting heuristic strategies (Chapter 4) extracted from human

data demonstrate adaptability to varying time pressure, thus enabling inferen-

tial decision-making to meet decision deadlines. These heuristics significantly re-

duce the complexity of target feature search from an exhaustive search O(2n) to

O(nlog(n)+n), where n is the number of target features. Additionally, the heuris-

tics exhibit superior classification performance to that of an “optimal” strategy

using all target features for inference (Chapter 5), thus reflecting the less-can-

be-more effect [31]. For active tasks, human motion strategies are modeled as

heuristics (Chapter 6) when information gathering capabilities are limited, such

as in adverse weather conditions. These proposed heuristic strategies are then

applied and tested on robots equipped with onboard sensors, and compared with

existing planning methods (Chapter 7) through simulations and physical exper-

iments in which the optimal strategies have very poor performance. Regarding

information cost pressure, a decision-making strategy using a mixed integer non-

linear program (MINLP) is developed on the basis of existing methods [11, 93].

The MINLP-based strategy, compared with human strategies, demonstrates supe-

rior performance (Chapter 7). This finding is consistent with expectations, given

that information cost pressure does not fundamentally undermine the accuracy

of the presumed world model, and optimization-based solutions can still provide

high-quality decisions. Overall, the strategies presented herein provide a toolbox

for decision-making under different pressures to solve the satisficing treasure hunt

problem.
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CHAPTER 2

TREASURE HUNT PROBLEM FORMULATION

This dissertation considers the treasure hunt problem of inferential decision

making under pressure for the purpose of mobile information gathering from mul-

tiple r fixed targets. The goal of an information-gathering agent is to navigate in an

obstacle-populated environment to observe the target features and infer their clas-

sification variables, and ultimately, discover all important targets or “treasures” in

a workspace referred to as W ⊂ R2. The body of the information-gathering agent

is assumed to be a rigid geometry I ⊂ W .

The workspace is populated with q fixed rigid obstacles B1, ...,Bq ⊂ W and r

fixed point targets x1, ...,xr ∈ W . Associated with the ith target, a set of n random

variables represents target features Fi = {Fi,1 ... Fi,l ... Fi,n}. The lth feature is

discrete and random with finite range. A random and discrete hypothesis variable

Yi represents the ith target’s property of interest. The range is Y = {yj|j ∈ J },

where yj represents the jth outcome of Yi, and both Fi and Yi are assumed unknown

in prior.

The information-gathering agent can perceive information about targets and

obstacles in its surroundings. This ability is facilitated by the concept of field of

view (FOV), which is defined as follows:

Definition 2.0.1 (FOV) The field of view of an information-gathering agent in

workspace W is a compact subset S ⊂ W, from which the information-gathering

agent can gather information on the environment.

FOVs can be associated with different perception mechanisms, such as passive

perception, wherein the agent collects information without actively interacting
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with the environment, or interactive perception, whose outcome may depend on

interactions with the environment.

Thus, the considered information-gathering agent is assumed to have two dis-

tinct FOVs: SP for passive perception and SI for interactive perception. Both

FOVs are not omnidirectional. The agent relies on SP to gather navigational

information such as obstacle detection and target awareness. In contrast, SI is

utilized for observing inference-related information, such as target features, and

obtaining information value.

The state of an information-gathering agent at tk with the aforementioned

perception capabilities is described as a vector qk = [sTk θk ξk ϕk]
T , where

sk = [xk yk] ∈ W is the position of the information-gathering agent with respect

to the workspace W , θk ∈ S1 is the orientation of the agent, and ξk ∈ [ξl, ξu] and

ϕk ∈ [ϕl, ϕu] are preferred information gathering directions of the “passive” and

“interactive” FOVs, respectively. In addition, ξl, ξu and ϕl, ϕu bound the preferred

information gathering directions for SP and SI with respect to the information-

gathering agent body. This definition enables the preferred information gathering

directions of both FOVs to not be fixed to the orientation of the agent itself. The

corresponding configuration of the information-gathering agent body is defined as

tk = [sTk θk]
T . Let C represent all possible configurations of the information-

gathering agent. The space of configurations that cause collisions between the

agent and Bj is defined as C-obstacles CBj = {t ∈ C|I(t) ∩ Bj ̸= ∅}. Then, the

agent must travel in free configuration space Cfree = {C\
⋃q

j=1 CBj} [21]. While an

agent is in free configuration space and a point of interest falls within the FOV.

The information gathering process should also comply with line of sight visibility

constraints, as in Definition 2.0.2.
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Definition 2.0.2 (Line of sight) An opaque object B ⊂ W blocks the line of

sight between a point of interest at x ∈ W and an information-gathering agent at

s ∈ W if and only if,

P (s,x) ∩ B ̸= ∅ (2.1)

where P (s,x) = {(1− γ)s+ γx|γ ∈ [0, 1]}

Therefore, an information-gathering agent at s ∈ W can capture the environ-

mental information of a point of interest x ∈ W if x ∈ SP (q) and P (s,x) ∩ Bj =

∅, 1 ≤ j ≤ q.

According to visibility theory developed in [26], the region that enables visibility

of target at xi with respect to SP , is defined in Definition 2.0.3.

Definition 2.0.3 (Target Visibility Region) Given an information-gathering

agent at s ∈ W, and FOV geometry SP , the visibility region of a target at xi ∈ W

in the presence of q opaque obstacles Bj(j = 1, ..., q) is defined as the subset of Cfree

that simultaneously satisfies the FOV and LOS target visibility conditions,

T V i = {t ∈ Cfree|xi ∈ SP , P (s,xi) ∩ Bj = ∅,∀j} (2.2)

where P (s,x) = {(1− γ)s+ γx|γ ∈ [0, 1]}

For multiple target visibility regions that are not mutually disjoint, every region

of intersection can be associated with an index set that represents the indices of

all targets visible from the corresponding set of configurations. Then, a one-to-one
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correspondence can be established between target sets and visibility by introducing

Definition 2.0.4.

Definition 2.0.4 (Set Visibility Region) Given a set of target r visibility re-

gions {T V i|i ∈ {1, 2, ..., r}}, let S ⊆ {1, 2, ..., r} represent the set of target indices

of two or more intersecting regions,
⋂

i∈S T V i ̸= ∅. Then, the set visibility region

is defined as

VS = {
⋂
i∈S

T V i|S ⊆ {1, 2, ..., r}} (2.3)

If the ith point target satisfies xi ∈ SI(q) and P (s,xi) ∩ Bj = ∅, 1 ≤ j ≤ q,

the agent is able to observe the target features and obtain a set of measurements,

Mi = {mi,l|1 ≤ l ≤ ℘, l ∈ Z}, for target features in Fi, where ℘ is the number

of target feature measurements. The test variable mi,l is random and discrete,

with the same finite range as Fi,l, and typically includes superimposed random

noise that may induce measurement error, however, the outcome of a test variable

always falls within the range of the corresponding target feature. Thus, the agent’s

goal is to identify the treasure(s) in the environment by inferring the hypothesis

variable Yi from Mi, by using a measurement model P (Yi,Mi), which is the casual

relationship between measurements and classification variables [21]. The model

could be, for example, a Bayesian network from expert knowledge or prior training

data, and a mapping between measurements to classification variables in human

memory from learning experience.

The target feature measurements are made through test decisions by an

information-gathering agent. A test decision is a decision to look for more evi-

dence to be entered into P (Y,M) [41]. Define u(tk) ∈ Uk as a test decision chosen
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from the set Uk ⊂ U of all admissible tests at tk. The set U = {ϑc, ϑs, ϑun} consists

of all test decisions, where ϑc and ϑs represent the decisions whether to continue

or stop measuring target features, and ϑun refers to not performing any tests on

a target. The outcomes of the test decision u(tk) are a measurement variable

z(tk+1) = mi,l, 1 ≤ i ≤ r, 1 ≤ l ≤ n, and information cost J(tk) ∈ Z, which is

modeled as cumulative target feature measurement up to tk. If a measurement

budget Jb exists, then the cumulative information cost at final time tT should not

exceed Jb.

An action decision is a decision to change the state of the world and the deci-

sions for an information-gathering agent [41]. Concretely, this decision determines

the path of the information-gathering agent, the orientation of the agent, and the

preferred information gathering directions of SP and SI , as it navigates through

the environment to observe the targets. Define a(tk) ∈ Ak as an action decision

chosen at time tk from set Ak of all admissible actions. The agent motion can then

be described by a causal model as the following difference equation,

qk+1 = f [qk, a(tk), tk] (2.4)

where f [·] is the known transition dynamics of an information-gathering agent with

respect to time.

An active inferential strategy as a sequence of decision functions is then de-

scribed as follows:

Definition 2.0.5 (Strategy) An active inferential strategy is a class of admissi-

11



ble policies that consists of a sequence of functions,

σ = {π0, π1, ..., πT} (2.5)

where πk maps all past information-gathering agent states, test variables, action

and test decisions into admissible action and test decisions,

{a(tk), u(tk)} = πk[q0, a(t1), u(t1), z(t1), J(t1),q1,

..., a(tk−1), u(tk−1), z(tk−1), J(tk−1),qk−1]

(2.6)

such that πk[·] ∈ {Ak,Uk}, for all k = 1, 2, ..., T .

Based on all the aforementioned definitions, the problem is formulated as fol-

lows:

Problem 1 (Satisficing Treasure Hunt) Given the initial state q0, the satis-

ficing objective of the problem is to develop a strategy within finite time horizon

(0, T ], such that,

r∑
i=1

[1(∃k,xi ∈ SI(qk) ∧ P (sk,xi) ∩ Bj,∀j)I(Yi;Mi)] ≥ α

where

12



qk+1 = f [qk, a(tk), tk]

Mi = {mi,l|1 ≤ l ≤ ℘i, l ∈ Z}

ŷi = argmax
y∈Y

P (Yi = y,Mi)

I(Yi;Mi) = H(Yi)−H(Yi|Mi)

J(tT ) ≤ Jb

i = 1, 2, ..., r, 1 ≤ k ≤ T

j = 1, 2, ..., q

The satisficing search objective requires the summation of the information value

of all visited targets to be no less than an aspiration level α. A feasible search

strategy may use all or part of the available models of the environment and targets,

or knowledge of prior states and decisions to produce a sequence of action and test

decisions that satisfy the objective within tT .
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CHAPTER 3

HUMAN SATISFICING STUDIES

In order to investigate human satisficing strategies in the treasure hunt prob-

lem, this dissertation presents two classes of experiments: passive and active sat-

isficing. Both classes share the same underlying mathematical formulation known

as “treasure hunt” (Chapter 2) and serve as a behavioral paradigm for humans

and autonomous robots. Passive satisficing experiments focus on treasure hunt

problems in which information is presented to the decision maker who passively

observes cues needed to make inferential decisions. Active satisficing experiments

allow the decision maker to control the amount of information gathered in sup-

port of inferential decisions. Another important distinction is between static and

dynamic treasure hunts in which the decision maker remains stationary or moves

through the environment, respectively, in order to find the hidden treasures.

Previous studies showed that the urgency to respond [16] and the need for fast

decision-making significantly affect human decision evidence accumulation, thus

leading to the use of heuristics in solving such tasks [64]. Passive satisficing ex-

periments focus on test decisions, which determine the evidence accumulation of

the agent based on partial information under “urgency”. Inspired by satisficing

searches for Spanish treasures with feature ordering constraints [83], active satis-

ficing includes both test and action decisions, which change not only the agent’s

knowledge and information about the world but also its physical state. In humans,

knowledge of the world/agent is acquired through the six senses, i.e. assumed to

be vision in this dissertation, whereas in robots it is acquired through onboard

sensors, i.e. cameras. Because information gathering by a physical agent such as a

human or robot is a causal process [21], feature ordering constraints are necessary

14



in order to describe the temporal nature of information discovery.

Both passive and active satisficing human experiments comprise a training

phase and a test phase that are also similarly applied in the robot experiments in

Chapters 5-7. During the training phase, human participants learn the validity of

target features in determining the outcome of the hypothesis variable. They receive

feedback on their inferential decisions to aid in their learning process. During the

test phase, pressures are introduced, and action decisions are added for active

tasks. Importantly, during the test phase, no performance feedback or ground

truth is provided to human participants (or robots).

3.1 Passive Satisficing Task

The passive satisficing experiments presented in this dissertation adopted the pas-

sive treasure hunt problem, shown in Fig.3.1 and related to the well-known weather

prediction task [34, 45, 86]. The problem was first proposed in [63] to investigate

the cognitive processes involved in human test decisions under pressure. In view

of its passive nature, the experimental platform of choice consisted of a desktop

computer used to emulate the high-paced decision scenarios, and to encourage the

human participants to focus on cue combination rather than memorization [63, 46].

The stimuli presented on a screen were precisely controlled, ensuring consis-

tency across participants and minimizing distractions from irrelevant objects or

external factors [24, 50]. In each task, participants were presented with two dif-

ferent stimuli from which to select the “treasure” before the total time, tT , at

one’s disposal has elapsed (time pressure). The treasures are hidden but corre-

lated with the visual appearance of the stimulus, and the underlying probabilities

must be learned by trial and error during the training phase. Each stimulus is

15



characterized by four binary cues or “features”, namely color (F1), shape (F2),

contour (F3), and line orientation (F4), illustrated in the table in Fig. 3.1. The

goal of this passive satisficing task is to find all treasures among stimuli that are

presented on the screen or, in other words, to infer a binary hypothesis variable

Y , with range Y = {y1, y2}, where y1 = “treasure” and y2 = “not treasure”. The

task is passive by design because the participant cannot control the information

displayed in order to aid his/her decisions.

During the training phase, each (human) participant performed 240 trials to

learn the relationship between cues, F = {F1, F2, F3, F4}, and the hypothesis vari-

able Y . After the training phase, participants were divided into two groups. The

first group underwent a moderate time pressure (TP) experiment and was tested

against two datasets, each consisting of 120 trials. Participants were required to

make decisions within a response time tT = 750 ms, which allowed ample time to

ponder on the cues presented and how they related to the treasure. The second

group underwent an intense TP experiment, with a response time of only tT = 500

ms. Participants in this group also encountered two datasets, each containing 120

trials. A more detailed description of the experiment, including redundant cues

and human subject procedures, can be found in [63]. Subsequently, the task was

modified to develop a number of active satisficing treasure hunts in which informa-

tion about the treasures had to be obtained by navigating a complex environment,

as explained in the next section.
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Feature state 

Figure 3.1: Cues and human display used for the passive satisficing experiment,
where the result of “win” or “lose” was displayed only during the training phase.

17



3.2 Active Satisficing Treasure Hunt Task

The satisficing treasure hunt task is an ambulatory study in which participants

must navigate a complex environment populated with a number of obstacles and

objects in order to first find a set of targets (stimuli) and, then, determine which are

the treasures. Additionally, once the targets are inside the participant’s FOV, cues

are displayed sequentially to him/her only after paying a price for the information

requested. The ordering constraints (illustrated in Fig. 3.2d) allow for the study

of information cost and its role in the decision making process by which the task

is to be performed not only under time pressure but also a fixed budget. Thus,

the satisficing treasure hunt allows not only to investigate how information about

a hidden variable (treasure) is leveraged, but also how humans mediate between

multiple objectives such as obstacle avoidance, limited sensing resources, and time

constraints. Participants must, therefore, search and locate the treasures without

any prior information on initial target features, target positions, or workspace and

obstacle layout.

In order to utilize a controlled environment that can be easily changed to study

all combinations of cues, target/obstacle distributions, and underlying probabil-

ities, the active satisficing treasure hunt task was developed and conducted in a

virtual reality environment known as the DiVE [18]. By this approach different

experiments were designed and easily modified so as to investigate different dif-

ficulty levels and provide the human participants repeatable, well-controlled, and

immersive experience of acquiring and processing information to generate behavior

[90, 65, 78]. The DiVE consists of a 3m x 3m x 3m stereoscopic rear projected room

with head and hand tracking, allowing participants to interact with a virtual en-

vironment in real-time [18]. By developing a new interface between the DiVE and
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Figure 3.2: First-person view in training phase without prior target feature re-
vealed (a) and with feature revealed by a participant (b) in the Webots®
workspace (c) and target cues encoded in a BN structure with ordering constraints
(d).

the robotic software Webots®, this research was able to readily introduce humans

within the same environments designed for humans, and vice versa, according to

the Bayesian network (BN) model of the desired treasure hunt task. The structure

of the BN model capturing the relationship between the target variables in this

treasure hunt perception task is plotted in Fig. 3.2d. The BN parameters, not

shown for brevity, were varied across trials to obtain a representative dataset from

the human study from which mathematical models of human decision strategies

could be learned and validated.
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Six human participants were trained and given access to the DiVE for a to-

tal of fifty-four trials with the objective to model aspects of human intelligence

that outperform existing robot strategies. The number of trials and participants

is adequate to the scope of the study which was not to learn from a representative

sample of the human population, but to extract inferential decision making strate-

gies generalizable to treasure hunt robot problems. Besides manageable in view of

the high costs and logistical challenges associated with running DiVE experiments,

the size of the resulting dataset was also found to be adequate to varying all of the

workspace and target characteristics across experiments, similarly to the studies

in [95, 52]. Moreover, through the VR googles and environment, it was possible

to have precise and controllable ground truth not only about the workspace, but

also about the human FOV, SP , within which the human could observe critical

information such as targets, cues, and obstacles.

A mental model of the relationship between target features and classification

was first learned by the human participants during 100 stationary training sessions

(Fig. 3.2a and Fig. 3.2b) in which the target features (visual cues), comprised of

shape (F1), color (F2), and texture (F3), followed by the target classification Y ,

where Y = {y1, y2}, were displayed on a computer screen, through the Webots®

simulation shown in Fig. 3.2. Participants were then instructed to search for

treasures inside an unknown 10m x 10m Webots® workspace with r = 30 targets

(Fig. 3.2c), by paying a fee to see the features, F = {Fi,1, Fi,2, Fi,3}, of every

target i inside their FOV sequentially over time (test phase). Based on the features

observed, which may have included one or more features in the set F , participants

then had to decide which targets were treasures (Y = y1) or not (Y = y2). No

feedback about their decisions was provided and, as explained in Chapter 2, the

task had to be performed within a limited budget Jb and time period tT .
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Figure 3.3: Test phase in active satisficing experiment in DiVE.
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Mobility and ordering cue constraints are critical to causal systems, such as

autonomous sensors and robots, because they are intrinsic to how these physical

systems are able to gather information from the environment as they move and/or

interact with the world around them. Thanks to the simulation environments

and human experiment design presented in this section, we were able to engage

participants in a series of classification tasks in which target features were revealed

only after paying both a monetary and time cost, similarly to artificial sensors that

require both computing and time resources to process visual data. Participants

were able to build a mental model built for decision making with the inclusion of

temporal constraints during the training phase, according to the BN conditional

probabilities (parameters) of each study. By sampling the Webots® environments

from each BN model, selected by the experiment designer to encompass the full

range of inference problem difficulty, and by transferring them automatically into

VR (Fig. 3.3) the data collected was guaranteed ideally suited for the modeling

and generalization of human strategies to robots (Chapter 6). As explained in the

next section, the test phase was conducted under three pressure conditions: no

pressure, money pressure, and sensory deprivation (fog).

3.3 External Pressures Inducing Satisficing

Previous work on human satisficing strategies and heuristics illustrated that most

humans resort to these approaches for two main reasons, one is computational

feasibility and the other is the “less-can-be-more” effect [31]. When the search for

information and computation costs become impractical for making a truly “ratio-

nal” decision, satisficing strategies adaptively drop information sources or partially

explore decision tree branches, thus accommodating the limitations of computa-
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tional capacity. In situations in which models have significant deviations from the

ground truth, external uncertainties are substantial, or closed-form mathemati-

cal descriptions are lacking, optimization on potentially inaccurate models can be

risky. As a result, satisficing strategies and heuristics often outperform classical

models by utilizing less information. This effect can be explained in two ways.

Firstly, the success of heuristics is often dependent on the environment. For exam-

ple, empirical evidence suggests that strategies such as “take-the-best,” which rely

on a single good reason, perform better than classical approaches under high uncer-

tainty [39]. Secondly, decision-making systems should consider trade-offs between

bias and variance, which is determined by model complexity[4]. Simple heuristics

with fewer free parameters have smaller variance than complex statistical mod-

els, thus avoiding overfitting to noisy or unrepresentative data, and generalizable

across a wider range of datasets [4, 6, 30].

Motivated by the situations where robots’ mission goals can be severely hin-

dered or completely compromised due to inaccurate environment or sensing models

caused by pressures, the dissertation seeks to emulate aspects of human intelli-

gence under the pressures and study their influence on decisions. The environ-

ment pressures include, for example, time pressure [66], information cost [17, 7],

cue redundancy [17, 73], sensory deprivation, and high risks [85, 67]. Cue redun-

dancy and high risk have been investigated extensively in statistics and economics,

particularly in the context of inferential decisions [44, 59]. In the treasure hunt

problem, sensory deprivation and information cost directly and indirectly influence

action decisions, which brings insight how these pressures impact agents’ motion.

However, the effects of sensory deprivation on human decisions have not been thor-

oughly investigated compared to other pressures. Time pressure is ubiquitous in

the real world, yet heuristic strategies derived from human behavior are still lack-
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ing. Thus, this dissertation aims to fill this research gap by examining the time

pressure, information cost pressure, and sensory deprivation and their effects on

decision outcomes.

3.3.1 Time Pressure

Assume that a fixed time interval tc is needed to integrate one additional cue

into the inference decision-making process. In the meantime, each decision must

be made within tb, and ℘i is the number of measurements for the ith target. The

satisficing strategies must adaptively select a subset of the cues such that a decision

is made within the time constraint

℘itc < tb, i = 1, 2, ..., r (3.1)

According to the human studies in [63], the response time of participants in the

passive satisficing tasks was measured during the pilot work. The average response

time in these tasks was found to be approximately 700 ms. Based on this finding,

three time windows were designed to represent different time pressure levels: a

two-second time window was considered without any time pressure; a 750 ms time

window was considered moderate time pressure; and a 500 ms time window was

considered intense time pressure.
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3.3.2 Information Cost Pressure

The cost of acquiring new information intrinsically makes an agent use fewer cues

to reach a decision. In Chapter 2, new information for the ith target is collected

through a sequence of ℘i measurements of target features. Thus, for all r targets,

the information cost is mathematically described as the total number of target

feature measurements not exceeding a preset budget Jb

r∑
i=1

℘i ≤ Jb (3.2)

In Chapter 3, the human studies introduce information cost pressure using the

parameter Jb = 30. In the context of the treasure hunt problem, Jb represents the

measurement budget, which limits the number of features that a participant can

measure for the targets. In this specific experiment, there are a total of r = 30

targets, and each target has multiple features that can be measured. The value of

Jb = 30 means that the human participants are constrained to measure, on average,

one feature per target. This budget is not sufficient to measure all available features

for all the targets but allows the participants to gather limited information about

each target.

3.3.3 Sensory Deprivation Pressure

Many robot applications face sensory deprivation due to environmental conditions,

such as occlusion of sight by fog, clouds, or other adverse weather, as well as

unexpected sensor damages or interference. This dissertation considers a scenario

in which the environment contains steady, dense, and almost uniform particles
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(e.g., fog or clouds) that strictly limit the effective distance of vision perception

capabilities. Consider the assumption in Chapter 2 that the map is not known

a priori. The information on the target and obstacle positions and geometries

relies on information from FOV SP shown in Fig. 3.4. Consider the concept of

set visibility region (Definition 2.0.4). Let S ⊆ {1, 2, ..., r} represent a subset of

target indices, and the set visibility region VS ⊆ Cfree enables the visibility to

all the targets in S with respect to SP . A globally optimal solution to treasure

hunt problem with respect to a subset of target S is feasible only if VS ̸= ∅.

This means that the agent has full visibility to all targets in the set S, allowing

the agent to start with complete information and compute optimal action and

test decisions. Unfortunately, under sensory deprivation, the perception capability

for SP is severely restricted. As in human studies in Section 3.2, the sensory

deprivation is introduced by constraining the effective distance of vision to 1m

in an environment of the size 20m by 20m. This situation often leads VS = ∅

even for a set |S| = 2 (i.e., a set with two targets), which indicates that an

globally optimal solution of the 2 targets is infeasible. Consequently, long-horizon

optimal planning becomes extremely challenging due to lack of target information

under sensor deprivation. In such situations, satisficing strategies are aimed at

overcoming this difficulty, and use local information to explore the environment

and visit targets. A fog environment is visually represented in Webots®, as shown

in Fig. 3.4. The figure illustrates the camera FOV as an example of SP , and the

measurement FOV as an example of SI .
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Figure 3.4: Top view visibility conditions of the workspace (a) and first-person
view visibility condition (b) under fog pressure
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CHAPTER 4

MATHEMATICAL MODELING OF HUMAN PASSIVE

SATISFICING STRATEGIES

Assume the probabilistic sensor model is a known a-priori under this pressure

condition. The probabilistic classification tasks, as described in the author and

the collaborators’ previous work [63], is mathematically described as follows.

Two objects on the left(L) and right(R) are displayed on the screen simulta-

neously, each object has four cues (color, shape, contour, line orientation). For

every binary cue, each cue state associates with a weight, where wi,j denotes the

weight of the ith cue in state j, i = 1, 2, 3, 4, j = 1, 2. For example, denote the

target feature/cue sets of the left and right objects as FL = {F1,L, F2,L, F3,L, F4,L}

and FR = {F1,R, F2,R, F3,R, F4,R}, respectively. and the associated weights for the

cues of left and right objects are denoted as the sets WL = {w1,L, w2,L, w3,L, w4,L},

and WR = {w1,R, w2,R, w3,R, w4,R}. The outcomes of the hypothesis variable are

denoted as Y = {yL, yR}, where yL denotes the left object “wins”, while yR de-

notes the right object “wins”. The difference in the cue weights determines the

probability of wining, as shown in Eq. 4.1.

p(yL|FL, FR) =
10

∑4
i=1(wi,L−wi,R)

1 + 10
∑4

i=1(wi,L−wi,R)
(4.1)

p(yR|FL, FR) = 1− p(yL|FL, FR)

Denote the set of cue indices that are used for inference is M , which is an

element of the power set of all cue indices andM is not an empty set, as represented

in Eq. 4.2,
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M ∈ P({1, 2, 3, 4})\∅ (4.2)

Given the set M , consider M is a set of binary state random variables, and

denote m̂ as an instantiation of M , the probability for the left object to “win”

presented in Eq. 4.1 is modified as,

p(yL|FL, FR, m̂) =
10

∑
i∈m̂(wi,L−wi,R)

1 + 10
∑

i∈m̂(wi,L−wi,R)
(4.3)

Each set M corresponds to one of fifteen decision models as shown in Fig. 4.1c

that uses a particular subset of cues. Then the information gain is encoded as

the expected entropy reduction. If no cue is used, then the probability for the left

object to “win” is,

p(yL|FL, FR, ∅) =
100

1 + 100
=

1

2

Therefore, the initial entropy is,

H(Y ) = E[− log p(yL|FL, FR, ∅)]

The information gain is represented as,

∆H(Y,M) = H(Y )−H(Y |M)

= H(Y )−
∑

H(Y |m̂)p(m̂)

(4.4)

where H(Y |m̂) = E[− log p(yL|FL, FR, m̂)].
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4.1 Human Data Analysis

Previous work by the authors in [63] showed that human participants drop less

informative cues to meet pressing time deadlines that do not allow them to com-

plete the tasks optimally. The analysis of data obtained from the moderate TP

experiment (Fig. 4.1a) and intense TP experiment (Fig. 4.1b) reveals similar

interesting findings regarding human decision-making under different time pres-

sure conditions. Under the no TP condition, the most probable decision model

selected by human participants (indicated by yellow boxes in Fig. 4.1a and Fig.

4.1b) utilizes all four cues and aims at maximizing information gain. However,

under moderate TP, the most probable decision model selected by human partic-

ipants (indicated by a red box in Fig. 4.1a) uses only three cues and has lower

information gain than the no TP condition. As time pressure becomes the most

stringent in the intense TP, the most probable decision model selected by human

participants (indicated by a dark blue box in Fig. 4.1b) uses only two cues and ex-

hibits even lower information gain than observed in the previous two time pressure

conditions. These results demonstrate the trade-offs made by human participants

among time pressure, model complexity, and information gain. As time pressure

increases, individuals adaptively opt for simpler decision models with fewer cues,

and sacrificed information gain to meet the decision deadline, thus reflecting the

cognitive adaptation of human participants in response to time constraints.

4.2 Satisficing Strategy Modeling under Time Pressure

Inspired by human participants’ satisficing behavior indicated by the data analysis

above, this dissertation develops three heuristic decision models, which accommo-
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Figure 4.1: Human data analysis results for (a) the moderate TP experiment and
(b) the intense TP experiment with (c) the enumeration of decision models.

date varying levels of time pressure and adaptively select a subset of information-

significant cues to solve the inferential decision making problems. The heuristics

assume that the measurement of cues is exact without any error.
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4.2.1 Discounted Cumulative Probability Gain (Prob-

Gain)

The heuristic is designed to incorporate two aspects of cue selection. First, the

heuristic assesses the information value of individual cues and encourages the use

of cues that provide valuable information for decision-making. By summing up

the information value of each cue, the heuristic prioritizes the cues that contribute

the most to evidence accumulation. Second, the heuristic also considers the cost

of using multiple cues in terms of processing time. By applying a higher discount

to models with more cues, the heuristic discourages excessive cost on time that

might lead to violation of time constraints.

For an inferential decision-making problem with sorted cue measurements

{mi}℘i=1 according to the information gain vI(mi) in descending order, where vI(mi)

representing the increase in information value with respect to the maximum a-

posterior rule

vI(mi) = max
y∈Y

p(Y = y|mi)−max
y∈Y

p(Y = y) (4.5)

LetMi = {m1,m2, ...,mi} represent a subset of cue measurements that contains

the first (i) most informative cues with respect to vI(mi), where tb is the allowable

time to make a classification decision, and the discount factor γ(tb) ∈ (0, 1) is

defined to be a function of tb to represent the penalty induced by time pressure.

Then, the heuristic strategy can be modeled as follows,

HProbGain(tb, {mi}℘i=1) = argmax
i
{γ(tb)i

i∑
j=1

vI(mj)} (4.6)
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where

γ(tb) = e
− λ

tb (4.7)

4.2.2 Discounted Log-odds Ratio (LogOdds)

Log odds ratio plays a central role in classical algorithms like logistic regression [4],

and represents the “confidence” of making a inferential decision. The update of log

odds ratio with respect to a “new cue” is through direct summation, thus taking

advantage of the cue independence and arriving at fast evidence accumulation.

Furthermore, the use of log odds ratio in the context of time pressure is slightly

modified such that a discount is applied with inclusion of an additional cue to

penalize the cue usage because of time pressure. By combining the benefits of direct

summation for fast evidence accumulation and the discount for time pressure, the

heuristic based on log odds ratio can make efficient decisions by considering the

most relevant cues under time constraints.

For an inferential decision-making problem with sorted cue measurements

{mi}℘i=1 according to the information gain |vI(mi)| in descending order, where

|vI(mi)| represents the log odds ratio of cue measurement mi. Then, the heuristic

strategy can be modeled as follows,

HLogOdds(tb, {mi}℘i=1) = argmax
i
{γ(tb)i|v0 +

i∑
j=1

vI(mj)|} (4.8)

where
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vI(mi) = log(p(mi|y1))− log(p(mi|y2))

v0 = log(p(Y = y1))− log(p(Y = y2))

4.2.3 Information Free Cue Number Discounting (In-

foFree)

The previous two cue selection heuristics are both based on comparison: multiple

candidate sets of cues are evaluated and compared, and the heuristics select the

one with the best trade-off between information value and processing time cost.

However, because of comparison, the heuristics consume storage and time in pro-

cessing the candidates. Thus, a simpler heuristic is propose to avoid comparisons

and reduce the computation burden.

Sort the cues according to the information value vI(mi) in descending order

as m1,m2, , ...,m℘, and a subset of the first i most informative cues refers to as

Mi = {m1,m2, ...,mi}. The heuristic strategy is as follows,

HInfoFree(tb) =

⌈
℘ exp(−λ

tb
)

⌉
(4.9)

The outputs of the three heuristics are the numbers of cues to be fed into the

model P (Y,M) to make an inference decision. Some mathematical properties of

the three heuristics strategies are presented in Appendix A.
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Figure 4.2: Average number of used cues and standard deviation of three heuristic
strategies and human participants under different time pressure conditions.

4.3 Model Fit Test Against Human Data

The model fit tests against human data of the three proposed time-adaptive heuris-

tics are under three time pressure levels, with the time constraints scaled to ensure

comparability between human experiments and heuristic tests. The results, as

shown in Fig. 4.2, indicate two major observations. First, as time pressure in-

creases, all three strategies utilize fewer cues, thus demonstrating their adaptabil-

ity to time constraints and mirroring the behavior observed in human participants.

Second, among the three strategies, HLogOdds exhibits the closest average number

of cues and standard deviation to the human data across all time pressure con-

ditions. Consequently, HLogOdds is the heuristic strategy that best matches the

human data among the three proposed strategies.
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CHAPTER 5

AUTONOMOUS ROBOT APPLICATIONS OF PASSIVE

SATISFICING STRATEGIES

To validate the effectiveness of the proposed passive satisficing strategies, the

three heuristics learned from the human studies in Chapter 4 (HProbGain, HLogOdds,

HInfoFree) are tested on an autonomous robot making inferential decisions on the

well-established database known as car evaluation dataset [19]. This dataset con-

tains 1728 samples, thus not requiring a complex statistics model to represent and

having the right size for heuristics to model. Also, the dataset has six attributes

or cues, which is big enough to reflect the heuristics’ characteristics of adaptively

selecting a subset of cues to make inferential decisions. The performance of the

three heuristics is compared against that of a näıve Bayes classifier, referred to as

“Bayes optimal” herein, which utilizes all available cues for decision-making.

The car evaluation dataset records the cars’ acceptability, on the basis of six

cues and originally four classes. The four classes are merged into two. A training

set of 1228 samples is used to learn the conditional probability tables (CPTs),

ensuring equal priors for both classes. After learning the CPTs, 500 samples are

used to test the classification performance of the heuristics and the näıve Bayes

classifier. The tests are conducted under three conditions: no TP, moderate TP,

and intense TP.

The experiments are performed on a digital computer using MATLAB R2019b

on an AMD Ryzen 9 3900X processor. The processing times of the strategies are

depicted in Fig. 5.1. If a heuristic’s processing time falls within the time pressure

envelope (blue area), the time constraints are considered satisfied. The no TP

condition provides sufficient time for all heuristics to utilize all cues for decision-

36



 

LogOdds
ProbGain

InfoFree
Optimal

unit: sec 

M
od

er
at

e 
TP

 

Inten
se 

TP 
1.29

×
10 !

" 

1.29
×
10

!
" 

1.29 ×
10!

"  9.7
5 ×
10
!#  

6.45 × 10!# 6.51 × 10 !# 

6.28
×
10 !

# 

1.29 × 10
!"  

8.6
0 ×
10
!#  8.43 × 1

0!#  

1.29 × 10 !" 
8.34 × 10!# 

LogOdds 
ProbGain 

InfoFree 

Optimal Time Pressure 
Envelope No TP 

Figure 5.1: Processing time (unit: sec) of three time-adaptive heuristics and the
“Bayes optimal” strategy.

making. The moderate TP condition allows for 75% of the time available in the

no TP condition, whereas the intense TP condition allows for 50% of the time

available in the no TP condition. All three heuristics are observed to satisfy the

time constraints across all time pressure conditions.

Fig. 5.2 illustrates the classification performance and efficiency of the three

time-adaptive strategies. HLogOdds outperforms the other three strategies on this

dataset, and its performance deteriorates as time pressure increases. Under mod-

erate TP, the three time-adaptive strategies use fewer cues but achieve better clas-

sification performance than Bayes optimal. This finding exemplifies the less-can-

be-more effect [31]. The classification efficiency measures the average contribution

37



 

LogOdds
ProbGain

InfoFree
Optimal

 

              

89.0% 

89.0% 

89.0% 

89.0% 

89.0% 

91.7% 

88.7% 

88.7% 

89.6% 

91.0% 

90.6% 

90.4% 

M
od

er
at

e 
TP

 

Inten
se 

TP 

No TP 

0.2
02 

0.307 

0.235 

0.231 

0.2
26 0.296 

0.293 

0.148 

0.1
48

 

0.148 

0.148 

0.1
48

 

LogOdds 
ProbGain 

InfoFree 
Optimal 

Classification Perform 
Classification Eff.  

 

 

 

 

Figure 5.2: Classification performance and efficiency of three time-adaptive heuris-
tics under three time pressure conditions.

of each cue to the classification performance. Bayes optimal has the lowest effi-

ciency, because it utilizes all cues for all time pressure conditions, whereas HLogOdds

exhibits the highest efficiency among the three heuristics across all time pressure

conditions.
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CHAPTER 6

MATHEMATICAL MODELING OF HUMAN ACTIVE

SATISFICING STRATEGIES

In the active satisficing tasks, the human participants in the experiments face

pressures due to information cost (money) and sensory deprivation (fog pressure).

These pressures prevent the participants from performing the test and action de-

cisions optimally. The data analysis results for the information cost pressure, as

described in Section 6.1, reveal that the test decisions and action decisions are

coupled. The pressure on test decisions affect the action decisions made by the

participants. The data analysis of the sensory deprivation (fog pressure) does not

incorporate existing decision-making models, such as [95, 52, 27, 69], because the

human participants perceive very limited information, thus violating the assump-

tions underlying these models. Instead, a set of decision rules are extracted in

the form of heuristics from the human participants data from inspection. These

heuristics capture the decision-making strategies used by the participants under

sensory deprivation (fog pressure).

6.1 Information Cost (Money) Pressure

The author analyzes the human decision data with money pressure under two

potential assumptions on human’s decision-making incentives.

The author first assumes that the human participants make action and test

decisions in order to maximize a cumulative objective function as in Eq. 6.1,
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V =
T∑

k=0

ωBB(tk)− ωDD(tk)− ωJJ(tk) (6.1)

where ωB, ωD, ωJ > 0 are weights for three respective objectives. As target feature

measurement sensor reduces the uncertainty of the hypothesis variables through

making test decisions, the information gain B(tk) makes positive contributions to

the objective at the cost of sensor measurements J(tk) and robot travel distance

cost D(tk).

6.1.1 Human Data Analysis: Inverse Reinforcement

Learning Algorithm

Under the assumption that the human participants are trying to maximize a cu-

mulative objective function Eq. 6.1, it is natural to model to human participants’

sequential decisions (action and test decisions) in Markov Decision Process (MDP)

[69, 23, 75] framework. Then the problem of understanding the human decision

incentives under money pressure translates to recover the mathematical represen-

tation of the human reward function given the human decision data. By studying

the mathematical structure of the reward function, the author aims to find robust

statistical evidence of how the pressure impact the human decision behaviors. In

this dissertation, a class of algorithms called inverse reinforcement learning (IRL)

[95, 52] is considered because the algorithms investigate MDPs that miss reward

functions with known optimal policies, and the objective is to recover the reward

functions. Two broad categories of IRL algorithms have been developed. ”Max-

Margin” [1, 61] is the very original version of IRL algorithms. With the assumption

that the reward function is a linear combination of multiple pre-determined fea-
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tures, the method aims to find a set of reward function parameters such that the

cumulative reward of human/expert decision sequences are no less than that of

any other policies. However, the problems of this category of methods are that 1).

the parameter search process is easy to degenerate, because apparently 0 satisfy

all the inequalities; 2). the methods of this category is computationally intractable

because in theory, it assumes that all possible policies can be enumerated to com-

pare with the human/expert data. The second category is “feature expectation

matching”. With the assumption of linear form of reward function as well, the

category of methods incorporates probabilistic thinking, and aims to find the pa-

rameters such that the likelihood against human decision data is maximized, and

the recovered reward function “matches” the human data to the most extent. This

dissertation adopts the second category and the algorithm is derived as follows.

A Sampling-based Algorithm Derviation

Suppose a trial of experiment data is in the form of configuration-decision trajec-

tories τj = {< qk, ak, uk >}Nj

k=1 that record a human participant’s configuration

and decision history, where k is the time step, j is the index of the data trial and

Nj is the number of entries in the jth data trial. The full data set is denoted as

Dhum = {τj}Nj=1. Consider the objective is the linear combination of three separate

objectives parameterized by a weight vector ω = [ωB ωD ωJ ]
T as shown in Eq.

6.1. In this dissertation, it is decided to adopt the method described in [95, 42] to

estimate the weight vector ω based on the data Dhum.

As mentioned earlier, suppose the weight vector is ω = [ωB ωD ωJ ]
T and

the feature reward vector at time k is fk = [B(tk) D(tk) J(tk)]
T . Thus, the total

reward along jth data sequence is:
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R(τj) = ωT fτj

where fτj =
∑Nj

k=1 fk, i.e. the sum of the reward features along the jth sequence.

The MaxEnt approach assumes that a data sequence τ samples from the dis-

tribution

p(τ) =
exp(ωT fτ )

Z

where Z =
∫
exp(ωT fξ)dξ.

Given the data set Dhum, the objective is to estimate the weight vector ω to

maximize the log likelihood. Concretely,

lik(ω) = log
N∏
j=1

exp(ωT fτj)

Z

= ωT

N∑
j=1

fτj −N logZ

Without generality, the problem reduces to the maximum likelihood problem:

max
ω

L(ω) =
1

N
lik(ω)

= ωT

N∑
j=1

fτj − logZ

= ωT f̂ − logZ

(6.2)

42



Consider the partition function Z [4] is an integral of all possible configuration-

decision sequences, which is analytically intractable to compute. A common ap-

proach to approximate Z is importance sampling. A proposal distribution of the

configuration-decision history τ is denoted as q(τ), then draw H sample sequences

Dsamp = {τi}Hi=1 from the distribution and use Monte-Carlo method to approximate

the expectation.

Z =

∫
exp(ωT fξ)dξ

=

∫
exp(ωT fξ)q(ξ)

q(ξ)
dξ

= Eq[
exp(ωT fξ)

q(ξ)
]

≈ 1

H

H∑
i=1

exp(ωT fτi)

q(τi)

The existing methods that generate the data set Dsamp = {τi}Hi=1, according to

Boularias [5] and Kalakrishnan [42], are to uniformly sample states and actions

or to sample state-action sequences from high dimensional Gaussian around the

demonstrated sequences. These methods are not applicable to this problem be-

cause there exists obstacles and constrained situations to make test decisions, which

make the samples from uniform distribution or Gaussian distribution be possibly

infeasible to the workspace.

Therefore, in this dissertation, a simple stochastic policy π(ak, uk|qk) is de-

signed to generate a set of sample sequences Dsamp. Then, the distribution of a

sequence τ represented by the stochastic policy π(ak, uk|qk) is:

q(τ) = p(q0)

Hi−1∏
k=0

π(ak, uk|qk)
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where p(q0) is the probability value that initial configuration is q0, Hi is the length

of the ith sampled sequence.

Then the gradient of the objective function Eq. 6.2 can be approximated as,

∂L

∂ω
= f̂ − M

Z

H∑
i=1

exp(ωT fτi)

q(τi)
fτi

At maxima, the reward feature vector of the human strategy from human data

and the policy under the reward function parameterized by ω match, and thus the

corresponding reward function reflects the decision preferences of human partici-

pants.

Parameter Learning Results

The averaged weights utilized by human participants are estimated using the Max-

imum Entropy Inverse Reinforcement Learning algorithm, adopted from [95], in

order to understand the effects of money pressure on human decision behaviors.

The two indices, IIG = ωB/ωD and IIC = ωB/ωJ , are designed by calculating the

ratios of the three averaged weights, and they reflect the incentives underlying

human decision behaviors. IIG, the information gain attempt index, measures the

willingness of human participants to trade travel distance for information gain.

IIC , the information cost parsimony index, measures the willingness of human

participants to spend “money” (i.e., incur costs) for information gain. The re-

sults of the analysis (shown in Fig. 6.1) indicate that under the information cost

(money) pressure condition, human participants are more willing to travel longer

distances to acquire information gain (higher IIG). However, they are less willing

to incur costs (lower IIC) for information gain, thus suggesting a tendency to be
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Figure 6.1: (a) Information gain attempt index IIG and (b) information cost par-
simony index IIC of high performance human participants under two pressure
conditions.

more conservative in spending resources for information acquisition.

6.1.2 Human Data Analysis: Dynamic Bayesian Network

(DBN) Structure Learning

Secondly, it is assumed that no utility is associated with states or actions in human

decision-making. Instead, decisions are made on this basis of causal relationships.

To model human decision behavior under this assumption, this dissertation uses

dynamic Bayesian networks (DBNs). The DBN intra-slice structure, as shown in

Fig. 6.2, includes variables such as the human participants’ states qk, the action

decision a(tk), the test decision u(tk), the set of visible targets o(tk) at time tk,

and the “money” already spent J(tk).
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Figure 6.2: The intra-slice DBN that models human decision behavior

The intra-slice variables capture the relevant information for decision-making

at a specific time slice. This dissertation investigates the inter-slice structure to un-

derstand how observations influence subsequent action and test decisions. The key

question is: in how many time slices does an observation o(tk) influence decision-

making? To determine the appropriate inter-slice structure, this dissertation con-

ducts a series of hypothesis tests to assess the conformity of various models against

the human decision data. Concretely, a F-test [14, 91] is conducted on two models:

fit two models to human decision data, let the two models generate their decision

predictions respectively, and check if one model is significant better than the other

in term of a F-statistic metric. The algorithm is shown as Alg. 1.

Fig. 6.3 presents the results of these hypothesis tests. Each data point repre-

sents a p-value that evaluates the null hypothesis: “model i + 1 does not fit the

human data significantly better than model i”. The models are defined according

to the number of time slices in which an observation influences decisions. If the

p-value is smaller than the significance level α, the null hypothesis is rejected, thus
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Algorithm 1 InterSliceStructLearn

Input: D : the human data; α : the significance level

1: l← 0

2: repeat

3: l← l + 1

4: N ← countSamples(D)

5: p(a(tk), u(tk)|o(tk), ..., o(tk−l+1),qk)← learnCPT(D)

6: p(a(tk), u(tk)|o(tk), ..., o(tk−l+1), o(tk−l),qk)← learnCPT(D)

7: Initialize b̂[1, ..., N ]

8: Initialize b̃[1, ..., N ]

9: for k := 1 to N do

10: â(tk), û(tk)← argmax {p(a(tk), u(tk)|o(tk), ..., o(tk−l+1),qk)}
11: ã(tk), ũ(tk)← argmax {p(a(tk), u(tk)|o(tk), ..., o(tk−l+1), o(tk−l),qk)}
12: end for

13: d̂f = N − df(a(tk))− df(u(tk))− l × df(o(tk))

14: d̃f = N − df(a(tk))− df(u(tk))− (l + 1)× df(o(tk))

15: F =
(
∑k=N

k=1 1{a(tk)=â(tk),u(tk)=û(tk)}−
∑k=N

k=1 1{a(tk)=ã(tk),u(tk)=ũ(tk)})/(d̂f−d̃f)∑k=N
k=1 1{a(tk)=ã(tk),u(tk)=ũ(tk)}/d̃f

16: F ∗ = F distribution(α, d̂f , d̃f)

17: until F < F ∗

18: return l

indicating that the subsequent model fits the data better than the previous one.

According to the results in Fig. 6.3, under the no pressure condition, an observa-

tion o(tk) influences one subsequent decision. However, under the money pressure,

an observation o(tk) influences nine subsequent decisions. This finding suggests

that the influence of observations extends over a longer time horizon under money

pressure than in the no pressure condition. The final BN model is presented as

Fig. 6.4.
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Figure 6.3: DBN inter-slice structure hypothesis testing results

6.2 Sensory Deprivation (Fog Pressure)

The introduction of sensory deprivation (fog pressure) in the environment poses

two main difficulties for human participants during navigation. First, fog limits the

visibility range, thus hindering human participants’ capability of locating targets

and being aware of obstacles. Second, fog impairs spatial awareness, thus hindering

human participants’ ability to accurately perceive their own position within the

workspace.

In situations in which target and obstacle information is scarcely accessible,

and the uncertainties are difficult to model, the human participants are believed

to use local information to navigate in the environment, obtain target feature
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Figure 6.4: Human DBN decision model under money pressure. The observation
of visible targets at time tk will influence the subsequent action and test decisions
over 10 time slices.

49



 

 

 

 

 

 

 

 

 

1 

3 

(a)

 

 

 

 

 

 

 

 

 

4 

2 

(b)

 

 

 

 

 

 

 

 

 

5 

(c)

 

 

 

 

 

 

 

 

 

6 

(d)

Figure 6.5: The human behavior patterns in a fog environment.
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measurements, and classify the targets [31, 17]. This dissertation analyzes the

human decision data collected in the active satisficing experiment and inspect the

significant behavioral patterns shared by the human participants. The results are

shown in Fig. 6.5, in which the following six behavioral patterns are observed:

1. When participants enter an area and no targets are immediately visible, they

tend to walk along the walls or obstacles present in the environment. This

behavior is depicted in Fig. 6.5a.

2. When a participant spot multiple targets, they tend to pursue the targets

one by one, according to their proximity. This behavior is depicted in Fig.

6.5b.

3. While walking along a wall or obstacle, if participants spot a target, they will

deviate from their original path and pursue the target, and may then return

to their previous “wall/obstacle follow” path. This behavior is depicted in

Fig. 6.5a.

4. Upon entering an area, participants may engage in a strategy of covering the

entire room. This behavior is depicted in Fig. 6.5b.

5. After walking along a wall or obstacle for some time without encountering

any targets, participants are likely to change their exploratory strategy. This

behavior is depicted in Fig. 6.5c.

6. In the absence of visible targets, participants may exhibit random walking

behavior. This behavior is depicted in Fig. 6.5d.

Analysis of the six behavioral patterns observed in the active satisficing experi-

ment reveals three underlying incentives that drive human participants’ behaviors

in the presence of fog pressure, as follows:
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• Frugal: Human participants exhibit tendencies to avoid repeated visitations.

Navigating along walls or obstacles help participants localize themselves with

respect to the surrounding environment, by using the walls or obstacles as

reference points.

• Greedy: Human participants demonstrate a strong motivation to find tar-

gets and engage with them. After a target is detected, participants pursue

it and interact with it immediately.

• Adaptive: Human participants display adaptability by using multi-

ple strategies for exploring the workspace. These strategies include

“wall/obstacle following,” “area coverage,” and “random walk.” Participants

can switch among these strategies according to the effectiveness of their cur-

rent approach in finding targets.

On the basis of the observations above, this dissertation develops an algorithm

called AdaptiveSwitch (Algorithm 2) to model human strategies in a fog en-

vironment. This algorithm captures the adaptive nature of human participants’

strategies and allows for transitions among the simple heuristics under specific

conditions.

The algorithm uses three exploratory heuristics: wall/obstacle following (π1),

area coverage (π2), and random walk (π3). The probability of executing each

heuristic is referred to as Π = [b1, b2, b3]
T , where bi represents the probability of

executing πi. The index J indicates the exploratory policy being executed, and

k represents the number of steps taken while executing a policy. The maximum

number of steps before updating the distribution Π is K. The policy for inter-

acting with targets is πI(u(tk)|qk, o(tk)), and the policy for pursuing a target is

πP (a(tk)|qk, o(tk)).
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Algorithm 2 AdaptiveSwitch

1: Π = [b1, b2, b3]
T

2: k = 0, J = 0
3: while (tk ≤ tT ∨ not all targets are classified) do
4: if ∃xj ∈ SI(qk) then
5: πI(u(tk)|qk, o(tk))
6: else
7: if o(tk) ̸= ∅ then
8: πP (a(tk)|qk, o(tk))
9: k = 0, J = 0
10: else
11: if J > 0 ∧ k ≤ K then
12: πJ(a(tk)|qk, o(tk))
13: k = k + 1
14: else
15: if k ≥ K then
16: Π[J ] = γ ∗ Π[J ]
17: else
18: if not closed to wall then
19: Π[1] = 0
20: else
21: Π[1] = β(b1 + b2 + b3)
22: end if
23: end if
24: Π =normalize(Π)
25: J ∼ Π
26: end if
27: end if
28: end if
29: end while

In Algorithm 2, the switch logic among the heuristics is described. The algo-

rithm demonstrates the greediness of the heuristic strategy (lines 4 - 9), in which

participants interact with targets if possible (line 4) and pursue a target if it is vis-

ible (line 7). If no targets are visible and the maximum exploratory step K is not

exceeded, the current exploratory heuristic continues to be executed (lines 11-13).

The adaptiveness of the three exploratory heuristics is shown in lines 15 - 22. If the

current exploratory heuristic is executed for more than K steps, its probability of
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Figure 6.6: Averaged model log likelihood of AdaptiveSwitch and ForwardExplore
in six human studies.

execution is discounted (line 16). The probability of executing the “wall/obstacle

following” heuristic increases if the participant is close to a wall/obstacle; oth-

erwise this heuristic is disabled (lines 19 - 21). Additionally, ForwardExplore

heuristic is proposed, where participants predominantly move forward with a high

probability and turn with a small probability or when encountering an obstacle.

This dissertation evaluates the log likelihood of AdaptiveSwitch and Forward-

Explore against the human data from the active satisficing experiment involving

six participants. The results in Fig. 6.6 show that the log likelihood of Adap-

tiveSwitch is greater than that of ForwardExplore across all human experiment

trials. This finding suggests that AdaptiveSwitch aligns more closely with the

observed human strategies than ForwardExplore.
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CHAPTER 7

AUTONOMOUS ROBOT APPLICATIONS OF ACTIVE

SATISFICING STRATEGIES

Two key contributions of this dissertation are the applications of the modeled

human strategies on a robot, and the comparison of optimal strategies and the

modeled human strategies in pressure conditions, under which optimization is in-

feasible. For simplicity, the preferred sensing directions of SP and SI are assumed

to be fixed with respect to the robot platform. Therefore, the state vector for a

robot reduces to q = [x y θ]T , where the orientation of the robot platform θ

also represents the preferred sensing directions. Both sensor FOVs are modeled

by sectors with angle-of-view α1, α2 ∈ [0, 2π) and radii r1, r2 > 0. The two FOVs

share the same apex and their bisectors coincide with each other.

7.1 Information Cost (Money) Pressure

The introduction of information cost increases the complexity of planning test

decisions. In the absence of information cost, a greedy policy that measures all

available features for any target is considered “optimal”, because it collects all

information gain without any cost. However, when information cost is taken into

account, a longer planning horizon for test decisions becomes crucial to effectively

allocate the budget for measuring features of all targets. This dissertation proposes

two planners, a probabilistic roadmap (PRM) based planner and a cell decompo-

sition based planner, to solve the robot treasure hunt problem, which has identical

workspace, initial conditions, and target layouts to the problem faced by human

participants in the active satisficing experiment. The objective function Eq. 6.1

is maximized by using these methods. Unlike existing approaches [11, 20, 93]
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that solve the original version of the treasure hunt problem as described in [21],

the developed planners handle the problem without pre-specification of the final

robot configuration. Consequently, the search space increases exponentially, thus

rendering label-correcting algorithms [3] no longer applicable. Additionally, un-

like previous methods that solely optimize the objective with respect to the path,

the developed planners consider the constraint on the number of target feature

measurements due to information cost (money) pressure. The number of measure-

ments thus becomes a decision variable with a long planning horizon. To solve the

problem, the developed planners use PRM and cell decomposition techniques to

generate graphs representing the workspace [21]. The Dijkstra algorithm is used to

compute the shortest path between targets. Furthermore, an MINLP algorithm is

used to determine the optimal number of measurements and the visitation sequence

of the targets. The detailed MINLP based algorithm is described as follows:

Consider the constraint brought by money pressure, as discussed in Section 3.3,

can be very well described mathematically. Thus, the authors decided to solve the

problem under money pressure within the optimization framework.

The methodology assumes that the sensor model P (Y,M) is known and the

“vision” sensor complies with the pin-hole camera model such that the working

distance is infinity within the opening angle of the sensor FOV S1, the problem

described in Chapter 2 can be transformed to an optimization problem with a clear

objective as in Eq. 6.1.

The proposed strategy under money pressure is a MINLP based optimal sensor

planning methodology on a path planning graph with observations [11] G = (N , E)

generated via methods like PRM ad cell decomposition as described in [11, 56],

where N denotes the set of nodes and E denotes the set of edges. Two types of
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nodes inN , the observation nodes that support target feature sensor measurements

and void nodes that don’t. Denote a node that supports measurement with (·) and

the set of all nodes that support target feature measurements on the ith target as

Ki.

A path in graph G is defined as a sequence of connected nodes in G, as a channel

C [48]:

C = {N1, ..., Nf},where(Nl, Nl+1) ∈ E (7.1)

The mobile robot’s path follows the configurations specified by the sequence of

nodes in channel C.

Given only initial configuration q0, label-correcting/A*-type algorithms [3] are

not applicable to search the optimal path/channel directly. Therefore, a two-step

algorithm is applied to solve the problem:

1. Sample one node from Ki, i = 1, ...r that support target feature measure-

ments on ith target and add the node of initial configuration q0. Use Dijk-

stra algorithm to compute shortest path/channel C∗
ij with distance cost D∗

ij

between every pair of the r + 1 nodes. For the optimal channel from N i to

N j:

R(C∗
ij) = max

℘j

{ωBB(℘j)− ωDD
∗
ij − ωJ℘j} (7.2)

where ℘j is the number of target feature measurements made on jth target,

B(℘j) is the information gain collected on jth target from ℘j measurements,
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and information cost is encoded as number of target feature measurements

directly.

2. Use as q0 the initial configuration, apply MINLP to determine which channel

C∗
ij should be included in the final optimal path to maximize Eq. 6.1.

Note the channel C∗
i,j only considers the information gain on node N j but not N i.

Therefore, the reward along C∗
i,j is not necessarily equal to that along C∗

j,i.

After applying Dijkstra to compute C∗
ij, 1 ≤ i, j ≤ r + 1, the sensor planning

problem is formulated as a MINLP:

The decision variable V is a matrix of (r+1)× (r+1) binary variables, where

Vij =


1 if channel C∗

ij is in the optimal path

0 otherwise

(7.3)

The node of initial configuration is represented at the 1st column and 1st row in

the matrix V.

Then the objective is as follows:

max
V

∑
i,j

R(C∗
i,j)Vi,j (7.4)

The constraints are described as follows:
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1. The initial configuration is specified and the path should start at q0:∑
j

V1j = 1

∑
i,,i ̸=1

Vi1 = 0

(7.5)

2. Each target should be visited/classified at most once:∑
j

Vij ≤ 1 ∀i

∑
i

Vij ≤ 1 ∀j
(7.6)

3. The path should be connected:

IfVij = 1, meaning that channel C∗
ij is in the optimal path, then there should

be a channel that connects to C∗
ij, which leads to

∑
k Vki = 1(except that i

is the initial configuration). Otherwise, if Vij = 0,
∑

k Vki can be either 0

or 1.

Vij(
∑
k

Vki − 1) = 0 ∀i, j, i ̸= 1 (7.7)

4. There should be no circle in the path:

Let the row vector λ =

r+1︷ ︸︸ ︷
[0... 1︸︷︷︸

jth

...0] represent node j in the path represented

by V, then λ×V is the next node in the path after j. If λ is the final node

in the path then λ ×V = 01×(r+1) because the final node doesn’t point to

any other node. Thus, if there is no circle in the path, then

∀λ, λ×Vr+1 = 01×(r+1). (7.8)

However, if there exists a circle in the path V, ∃λ such that Eq. 7.8 doesn’t

hold because the final node points to the initial node in the circle. Since Eq.
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7.8 is valid for arbitrary node represented by λ, the Eq. 7.8 is equivalent to

1:

Vr+1 = 0(r+1)×(r+1) (7.9)

5. The target feature measurement budget should not be exceeded

r∑
j=1

℘j ≤ Jb

Note that the optimization problem formulated above doesn’t impose a hard con-

straint that all targets has to be visited. This is due to the observation of the

human decision data that under money pressure, many human participants don’t

complete visiting all targets while under no pressure condition, almost all par-

ticipants do. In order to construct a fair comparison with human strategy, the

optimization problem moves the “constraint” to the objective such that the plan-

ner aims to classify more targets to obtain information gain at the cost of travel

distance and information cost. However, without the hard constraint, the search

space (on action and test decisions) becomes exponentially large and the exact

optimal search becomes intractable. Thus, in this dissertation, genetic algorithm

is used to approximate the optimal solution. It is worth to mention that the 4th

constraint of this optimization problem enforces there is no circle in the path. In

theory, there is no need to explicitly enforce such requirement as the “global” opti-

mal route shouldn’t include a circle. However, in the implementation, as the exact

global optimal solution is intractable and the genetic algorithm based optimizer

is very likely to stop at a local optimal and the “no circle” constraint can’t be

1Note that V1,1 = 1 with all other entries zero is a corner case, which violates constraint (4)
but represents a valid path with only the initial configuration.
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automatically guaranteed. Therefore, the author explicitly enforces the “no cirle”

condition.

7.1.1 Performance Comparison with Human Strategies

The performance (Fig. B.1) of two optimal strategies (PRM and cell decomposi-

tion) is compared with the human strategy from human data. Under information

cost (money) pressure, the path and the number of measurements for each target

are optimized with respect to a linear combination of three objectives. Definingτ

as a planned continuous path [49], this dissertation focuses on four performance

metrics: path efficiency ηP = 1/D(τ) [m−1]; information gathering efficiency

ηB = B(τ)/D(τ) [bit/m]; measurement productivity ηJ = B(τ)/J(τ) [bit]; and

classification performance N = N(τ). Higher numbers are better for all metrics.

Six case studies are examined. One case study comprises of three different exper-

iment layouts. The optimal strategies and the human participants have no prior

knowledge of the target positions and initial features, and all environmental infor-

mation is obtained from FOV SP . The results, shown in Fig. B.1, indicate that

the two optimal strategies consistently outperform the human strategy across all

four performance metrics. The performance envelopes of the optimal strategies are

outside of the performance of the human strategy, thus indicating their superiority.

The finding that the optimal strategies outperform human strategies is unsur-

prising, because information cost (money) pressure imposes a constraint on only

the expenditure of measurement resources, which can be effectively modeled math-

ematically. The finding suggests that under information cost (money) pressure,

near-optimal strategies can make better decisions than human strategies.
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Figure 7.1: Performance comparison of two optimal strategies and human strategy
over six case studies (a)-(f).
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7.2 Sensory Deprivation (Fog) Pressure

An extensive series of tests are conducted to evaluate the effectiveness of Adap-

tiveSwitch (Chapter 6) under fog conditions and compare it with other strategies.

These tests comprise of 118 simulations and physical experiments, encompass-

ing various levels of uncertainty. The challenges posed by fog in robot plan-

ning are twofold. First, fog obstructs the robot’s ability to detect targets and

obstacles by using onboard sensors such as cameras, thus making long-horizon

optimization-based planning nearly impossible. Second, fog complicates the task

of self-localization for the robot with respect to the entire map, although short-

term localization can rely on inertial measurement units. Three test groups are

described as follows:

7.2.1 Performance Tests in the Human Experiment

Workspace

AdaptiveSwitch is applied to the workspace and target layouts in the active satis-

ficing experiment workspace described in Fig. 3.3 and Fig. 3.4. The experiment

involves six human participants, each of whom completes three trials with different

target layouts, thus resulting in a total of eighteen different target layouts with a

uniform obstacle layout.

The performance of AdaptiveSwitch is compared with that of optimal strategies

and the human strategy. One important metric used to evaluate a strategy’s

capability to search for targets in fog conditions is the number of classified targets:

Nv. Under fog pressure, as shown in Fig. 7.2a and Fig. 7.2b, the optimal strategies
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face difficulties in moving and classifying targets, because of the lack of prior

information on the target and obstacle layouts. In contrast, both the human

strategies and the AdaptiveSwitch are able to explore the unknown environment,

and even at times do not capture target information through SP . AdaptiveSwitch,

in particular, achieves slightly higher target classification rates and shorter travel

distances than the human strategy.

7.2.2 Extended Performance Tests in Simulations

This dissertation also presents new workspaces and target layouts beyond those

used in the active satisficing experiment. These new layouts are used to assess

the performance of AdaptiveSwitch in different environments and to determine its

applicability beyond the specific experimental settings.

Simulations with Fixed Truncated Sensing Range

The evaluation of AdaptiveSwitch involves conducting simulations in MATLAB®,

by using four newly designed workspaces and corresponding target layouts. The

effect of fog is emulated by imposing a fixed truncated sensing range for SP , and

the trajectory of AdaptiveSwitch is superimposed on each workspace to observe

its behavior (Fig. 7.4). The simulations consider fixed geometries for the FOV of

the onboard sensors, assume no target miss detection or false alarms, and assume

perfect target feature recognition. ForwardExplore and two optimal strategies are

also implemented for comparison.

The results of the simulations demonstrate that the optimal strategies perform

poorly in terms of travel distance D(τ) and the number of classified targets (Nv)

64



 
1 2 3 4 5 6

0

5

10

15

20

25

30
AdaptiveSwitch
Human Strategy

Cell Decomposition
PRM

AdaptiveSwitch 

Human Data 

Cell Decomposition 

PRM 

𝑁 !
 

Study A Study B Study C Study D Study E Study F 
(a)

 

1 2 3 4 5 6
0

50

100

150

200

250

300

350

400

Study A Study B Study C Study D Study E Study F 

𝐷
(𝜏
) 

(b)
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(Fig. 7.3a), owing to the challenges posed by fog and limited sensing capabilities.

In contrast, the proposed heuristics (AdaptiveSwitch and ForwardExplore) out-

perform the optimal strategies in terms of Nv, because they are able to explore the

workspace even when no targets were visible.

Additionally, AdaptiveSwitch is more efficient than ForwardExplore in terms

of travel distance. By adapting its exploration strategy and leveraging the combi-

nation of three simple heuristics, AdaptiveSwitch is able to classify more targets

while traveling shorter distances. Consequently, higher information gain B(τ) than

that with both ForwardExplore and the optimal strategies is observed across all

four case studies (Fig. 7.3b). These findings highlight the effectiveness of the

AdaptiveSwitch in navigating foggy environments and its superiority to the op-

timal strategies and the ForwardExplore in terms of information gathering and

travel efficiency.

Simulations with Artificial Fog

Two new workspaces are designed in Webots® as shown in Fig. 7.5. The perfor-

mance of AdaptiveSwitch and its standalone heuristics for the two workspaces is

shown in Table 7.1 and Table 7.2. The comparison reveals the substantial advan-

tage of AdaptiveSwitch. In both workspace scenarios, as shown in Table 7.1 and

7.2, AdaptiveSwitch outperforms its standalone heuristics by successfully finding

and classifying all targets within the given simulation time upper bound. In con-

trast, the standalone heuristics are unable to achieve this level of performance.

AdaptiveSwitch not only visits and classifies all targets, but also accomplishes the

tasks within shorter travel distances than the standalone heuristics. Therefore,

AdaptiveSwitch exhibits higher target visitation efficiency (ηv) which is calculated
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Figure 7.3: (a). Number classified targets and travel distance (b) information gain
for two heuristic strategies and two optimal strategies in four case studies.

as the ratio of the number of classified targets to the travel distance (Nv/D(τ)).

The target visitation efficiency of AdaptiveSwitch is at least twice higher than that

of the standalone heuristics.

These results highlight the strength of combination used by AdaptiveSwitch.

By integrating multiple simple heuristics, AdaptiveSwitch demonstrates a greater

ability to explore the entire environment in the presence of fog. In contrast, the

standalone heuristics tend to be less flexible and may become trapped in certain

“moving patterns”; therefore, although they can explore some areas effectively,
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Figure 7.4: Four workspace in MATLAB® simulations and AdaptiveSwitch tra-
jectories for case studies (a)-(d).

they might struggle to reach other areas.
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Figure 7.5: New designs of workspace for heuristic strategy tests.
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Table 7.1: Performance comparison of AdaptiveSwitch and Standalone heuristics
in Webots® : Workspace A

Performance
Metrics

Heuristic Strategies
AdaptiveSwitch RandomWalk AreaCoverage

Travel distance, D(τ) [m] 86.19 164.87 224.18
Number of classified tar-
gets, Nv

7/7 7/7 3/7

Target visitation efficiency,
ηv [m

−1]
0.0812 0.0425 0.0134

Travel distance, D(τ) [m] 148.98 291.69 246.38
Number of classified tar-
gets, Nv

13/13 11/13 6/13

Target visitation efficiency,
ηv [m

−1]
0.0873 0.0377 0.0244

Travel distance, D(τ) [m] 159.97 236.86 205.78
Number of classified tar-
gets, Nv

15/15 11/15 8/15

Target visitation efficiency,
ηv [m

−1]
0.0938 0.0464 0.0389

7.2.3 Physical Experiments in Fog Experiment

Sensing Interruption and Classification Performance Degradation

To handle real-world uncertainties that are not adequately modeled in simulations,

this dissertation conducts physical experiments to test the AdaptiveSwitch. These

uncertainties include factors such as the robot’s initial position and orientation,

target miss detection and false alarms, depth measurement errors, and control

disturbances. In addition, the fog models available in Webots®, are relatively

simple and do not provide a wide range of possibilities for simulating the degrading

effects of fog on target detection and classification performance. Consequently, this

dissertation performs physical experiments to better capture the complexities and

uncertainties associated with real-world conditions.

The physical experiments use the ROSbot2.0 robot equipped with an RGB-

70



Table 7.2: Performance comparison of AdaptiveSwitch and Standalone heuristics
in Webots® : Workspace B

Performance
Metrics

Heuristic Strategies
AdaptiveSwitch RandomWalk AreaCoverage

Travel distance, D(τ) [m] 122.86 218.72 265.49
Number of classified tar-
gets, Nv

7/7 5/7 5/7

Target visitation efficiency,
ηv [m

−1]
0.0570 0.0229 0.0188

Travel distance, D(τ) [m] 122.57 219.49 234.70
Number of classified tar-
gets, Nv

13/13 10/13 7/13

Target visitation efficiency,
ηv [m

−1]
0.0873 0.0456 0.0298

Travel distance: D(τ) [m] 129.19 226.57 216.25
Number of classified tar-
gets, Nv

15/15 12/15 8/15

Target visitation efficiency,
ηv [m

−1]
0.1161 0.0530 0.0370

D camera as the primary sensor. The YOLOv3 object detection algorithm is

employed to detect the targets of interest (e.g., an apple, watermelon, orange,

basketball, computer, book, cardboard box, and wooden box) identical to those in

human experiments. The training images for the YOLOv3 are captured in a clear

environment.

As depicted in Fig. 7.6, the YOLOv3 [72] algorithm successfully detects the

existence of the target “computer” when the environment is clear, as shown in

Fig. 7.6a. However, when fog is present, as illustrated in Fig. 7.6b, the algorithm

fails to detect the target. This result demonstrates the degrading effect on the

performance of target detection algorithms.

The YOLOv3 was trained with customized datasets of targets of interest (ap-

ple, watermelon, orange, basketball, computer, book, cardboardbox, woodenbox)

as in the human experiments. The training images are all captured in non-fog
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environment. The perception pipeline is shown as Fig. 7.7. As shown in Fig. 7.6,

the YOLOv3 algorithm is able to detect the existence of the target “computer”

when the environment is clear as in Fig. 7.6.A. However, when the fog exists, the

algorithm fails to detect the target as in Fig. 7.6.B.

The author also develops SVM based target feature (shape, color, texture) clas-

sifiers. The impact of fog on the target feature classification correct is shown in

Fig. 7.8a. Under non-fog condition, the classification correct drops significantly

beyond d = 0.61m. For the fog condition, the classification performance drops

significantly beyond d = 0.30m.

The localization of a target with respect to the robot’s body frame in the

physical experiment relies on a successful detection of the target from the RGB

frame and the measurement of the relative distance from the target to camera

from depth frame (RGB-D camera). The depth measurement of our device is

through Structured Light [43]. Our analysis shows that the existence of fog not

only influences the detection of the target, but also make the depth measurement

nosier, which is confirmed by Quintana et al. in [70].

In the physical experiments conducted with ROSbot2.0 [40], AdaptiveSwitch

and ForwardExplore are implemented to test their performance in an environment

with fog. A plastic box is constructed with dimensions 10’0” x 6’0” x 1’8” in order

to create the foggy environment. The box is designed to contain different layouts

of obstacles and targets, capturing various aspects of a “treasure hunt” scenario,

such as target density and target view angles. Each heuristic strategy is tested five

times in each layout, considering all the uncertainties described earlier. The travel

distances in the physical experiments are measured in inertial measurement unit.

72



The first layout (Fig. 7.9) comprises of six targets: a watermelon, wooden

box, basketball, book, apple, and computer. The target visitation sequences of

AdaptiveSwitch along the path are depicted in Fig. 7.10, showing the robot’s

trajectory and the order in which the targets are visited. The performance of

the two strategies is summarized in Table 7.3, as evaluated according to three

aspects: travel distanceD(τ), correct target feature classifications, and information

gathering efficiency ηB. These metrics assess the quality of the strategies’ action

and test decisions.

Table 7.3: Performance Comparison of Heuristic Strategies in target layout 1

Performance
Metrics

Heuristic Strategies
AdaptiveSwitch ForwardExplore

Number of classified targets, Nv 6/6 6/6
Travel distance, D(τ) [m] 6.43 ± 0.90 8.38 ± 2.07
Correct target feature classifica-
tions

13.40 ± 1.82 12.40 ± 1.95

Info gathering efficiency,
ηB [bit/m]

0.155 ± 0.023 0.090 ± 0.018

The second layout (Fig. 7.11) contains eight targets: a watermelon, wooden

box, basketball, book, computer, cardboard box, and two apples. The obstacles

layout is also changed with respect to the first layout: the cardboard box is placed

in a “corner” and is visible from only one direction, thus increasing the difficulty

of detecting this target. This layout enables a case study in which the targets

are more crowded than in the first layout. The mobile robot first-person-views of

AdaptiveSwitch along the path are demonstrated in Fig. 7.12, and the performance

is shown in Table 7.4.

The third layout (Fig. 7.13) contains two targets: a cardboard box, and a wa-

termelon. Note that having fewer targets does not necessarily make the problem

easier, because the difficulty in target search in fog comes from how to navigate
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Table 7.4: Performance Comparison of Heuristic Strategies in target layout 2

Performance
Metrics

Heuristic Strategies
AdaptiveSwitch ForwardExplore

Number of classified targets, Nv 8/8 8/8
Travel distance, D(τ) [m] 8.41 ± 0.46 13.45 ± 2.10
Correct target feature classifica-
tions

17.80 ± 1.10 15.20 ± 1.64

Info gathering efficiency,
ηB [bit/m]

0.151 ± 0.008 0.091 ± 0.016

when no target is in the FOV. This layout intentionally makes the problem “dif-

ficult”, because it “hides” two targets behind the walls. The mobile robot first-

person-views of AdaptiveSwitch along the path are demonstrated in Fig. 7.14, and

the performance is shown in Table 7.5. The videos for all physical experiments

(AdaptiveSwitch and ForwardExplore in three layouts) are accessible through the

link in [15].

Table 7.5: Performance Comparison of Heuristic Strategies in target layout 3

Performance
Metrics

Heuristic Strategies
AdaptiveSwitch ForwardExplore

Number of classified targets, Nv 2/2 2/2
Travel distance, D(τ) [m] 7.48 ± 0.465 11.67 ± 1.37
Correct target feature classifica-
tions

5.00 ± 1.00 4.80 ± 1.64

Info gathering efficiency,
ηB [bit/m]

0.033 ± 0.003 0.021 ± 0.002

According to the performance summaries in Table 7.3, Table 7.4, and Table

7.5, both AdaptiveSwitch and ForwardExplore are capable of visiting and clas-

sifying all targets in the three layouts under real-world uncertainties. However,

AdaptiveSwitch demonstrates several advantages over ForwardExplore:

1. The average travel distance of AdaptiveSwitch is 30.33%, 59.93%, and

56.02% more efficient than ForwardExplore in the three workspaces, respec-
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tively. This finding indicates that AdaptiveSwitch is able to search target

with a shorter travel distance than ForwardExplore.

2. The target feature classification performance of AdaptiveSwitch is slightly

better than that of ForwardExplore, with improvements of 8.06%, 17.11%,

and 4.16% in the three workspace, respectively. One possible explanation

for these results is that the “obstacle follow” and “area coverage” heuristics

in AdaptiveSwitch cause the robot’s body to be parallel to obstacles during

classification of target features, thus ensuring that the targets are the ma-

jor part of the robot’s first-person view and make them relatively easier to

classify. In contrast, ForwardExplore does not always lead the robot body

to be parallel to obstacles during classification, thereby sometimes allowing

obstacles to dominate the robot’s first-person view and decreasing the target

classification performance.
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(a)

 

(b)

Figure 7.6: Object detection results (a) in clear and (b) fog conditions.
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Raw image Yolov3 ConvNet object 
detector

Detection result

Feature Extractors 
(e.g. HOG)

SVM classifiers

Shape?
Color?
Texture?

Target feature 
recognition results

Figure 7.7: The CovNet based perception pipeline. The objective of the process is
to use a object detector to identity the existence of the target of interest, and then
use multiple SVM classifiers to sequentially recognize the target features: shape,
color, texture.
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(a)

 

(b)

Figure 7.8: (a). Overall target feature (color, shape, texture) classification accu-
racy versus the measurement distance in physical experiment. (b). The target
localization error with respective to the distance between a camera and a target.
In fog environment, as distance increases, it is likely to fail detect a target and
thus the localization error increases very quickly.
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(a)

 
(b)

Figure 7.9: The first workspace and target layout for the physical experiment under
(a) clear and (b) fog condition.
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𝒕 = 𝟑 𝒔 𝒕 = 𝟏𝟎 𝒔 

𝒕 = 𝟏𝟕 𝒔 𝒕 = 𝟐𝟒 𝒔 

𝒕 = 𝟒𝟐 𝒔 𝒕 = 𝟑𝟒 𝒔 

Figure 7.10: Target visitation sequence of AdaptiveSwitch in the first workspace.
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(B) 

 

(a)
 

(A)

 

(B) 

 

(b)

Figure 7.11: The second workspace and target layout for the physical experiment
under (a) clear and (b) fog condition.
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𝒕 = 𝟓𝟓 𝒔 𝒕 = 𝟑𝟕 𝒔 

𝒕 = 𝟐𝟕 𝒔 𝒕 = 𝟐𝟏 𝒔 

𝒕 = 𝟏 𝒔 𝒕 = 𝟏𝟎 𝒔 

𝒕 = 𝟔𝟗 𝒔 𝒕 = 𝟔𝟓 𝒔 

Figure 7.12: Target visitation sequence of AdaptiveSwitch in the second workspace.82



 
 (a)

 

(b)

Figure 7.13: The third workspace and target layout for the physical experiment
under (a) clear and (b) fog condition.

 

 

𝒕 = 𝟏𝟖 𝒔 𝒕 = 𝟓𝟗 𝒔 

Figure 7.14: Target visitation sequence of AdaptiveSwitch in the third workspace.
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CHAPTER 8

CONCLUSION

The research aims to develop a decision making toolbox that is able to handle

different pressure conditions and make high quality decisions. In addition to the

optimization based decision making approaches, the author embraces the idea of

satisficing proposed by Herbert Simon, and tries to answer a question that Simon

raised “How do human beings reason when the conditions for rationality postulated

by the model of neoclassical economics are not met?”

To answer this question, the author and the collaborators considers a bench-

mark decision making problem that involves both action and test decision under

four representative environmental pressures, which make the assumptions for the

global rationality no longer hold. The four considered pressure conditions are:

time pressure, information cost pressure, training data scarcity pressure and sen-

sory deprivation pressure. The author designs passive and active satisficing ex-

periments based on the proposed benchmark decision problem, and invites human

participants to conduct the experiments and solve the decision problem under the

aforementioned pressures. To understand the human decision mechanism under

pressures and how the pressures influence the human participant’s decision behav-

ior, the author uses various statistical tools, such as hypothesis testings, dynamic

Bayesian Network and inverse reinforcement learning algorithms to fit the data

and observes how model parameters change due to the existence of the pressures.

Specifically, for the pressure condition under which the decision data can’t be well

explained by current off-the-shelf statistical tools or algorithms, the raw decision

data is manually inspected and the decision behavior pattern is summarized.

Based on the data analysis results, the author proposes the most plausible de-
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cision models that human participants use under each pressure condition. Among

those, the author manages to model the human decisions under time pressure,

limited data pressure and sensory deprivation pressures as heuristics, which can

not only complete the decision making tasks that optimization based strategies are

not feasible, but also outperform optimization based strategies even if they work

to some extent. Several mathematically properties of the heuristics under time

pressure have been proved and show that as the pressure becomes more severe, the

more cue are dropped to make a decision. The decision problem under informa-

tion cost pressure, however, is solved under optimization framework because the

pressure can be described well mathematically. Particularly, the human heuristics

modelled under sensory deprivation pressure, as the most important heuristics in

this dissertation, is extracted based on the inspection of the human decision data

and tested extensively on robotic applications with different levels of uncertainties

from simulations to physical experiments. The modeled strategy manages to com-

plete the “treasure hunt” task with handling the uncertainties brought by physical

world quite well: the heuristic strategy is able to guide a four-wheeled robot navi-

gate and find treasure in a fog environment which makes the camera’s visible range

extremely short. It is also worth to note that the physical experiments on the robot

brings an extra layer of uncertainty that the human experiments don’t have, which

is the target detection false alarm and miss detection. In this sense, the “treasure

hunt” experiments for a robot is more challenging than for the human participants.

In terms of practical applications of this research, the author foresees potential

applications of the inference heuristics on highly structured problems requiring

quick decisions. For the heuristic strategies under interrupted sensory signal pres-

sure, the author expects that a mobile robotic sensor with the algorithm can be

applied in a realistic and unstructured environment, like victim rescue after disas-
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ters or target search under adverse weather such as fog or heavy rain environments.
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APPENDIX A

PROPERTIES OF HEURISTICS UNDER TIME PRESSURE AND

PROOFS

A.1 Discounted Cumulative Probability Gain (ProbGain)

The output of HProbGain(tb, {mi}℘i=1) is the number of most informative cues to use

given the discount due to time pressure. The discount factor γ(tb) decreases as

the allowable time tb decreases, λ can be understood as a parameter that human

participants use to control the discount given a time pressure.

The idea of HProbGain is as follows: as more cues are used, the probability gain

accumulates; in the meantime, as the probability gain of one more cue is added,

one more discount factor due to time pressure is multiplied to the cumulative

probability gain. Then, the the number of cues to use is determined by maximizing

the product of discount factors and the cumulative probability gain to make the

trade off between the time pressure and the cue probability gain.

Proposition 1. A sufficient condition for ProbGain to use all ℘ cues is: if

the allowable time tb to make a decision satisfies:

tb ≥
λ℘

ln(1 + α
℘
)

(A.1)

where α =
v(mc℘ )

v(mc1 )
is ratio of information values between the least informative

cue and the most informative cue.
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Proof: For an arbitrary classification task with cues {mi}℘i=1, according the

heuristic represented by Eq. 4.6, the allowable time to make a classification decision

should satisfy following inequalities:

γ(tb)
℘

℘∑
i=1

v(mci) ≥ γ(tb)
m

m∑
i=1

v(mci), 1 ≤ m ≤ ℘− 1 (A.2)

Simplify the inequalities and we have:

γ(tb) ≥ (

∑m
i=1 v(mci)∑℘
i=1 v(mci)

)
1

℘−m , 1 ≤ m ≤ ℘− 1 (A.3)

Plug Eq. 4.7 in Eq.A.3, then we have:

e
− λ

tb ≥ (

∑m
i=1 v(mci)∑℘
i=1 v(mci)

)
1

℘−m , 1 ≤ m ≤ ℘− 1 (A.4)

Compute the log of both sides of Eq. A.4 and simplify the equation, we have

tb ≥
λ

ln(1 +
∑℘

i=m+1 v(mci )∑m
i=1 v(mci )

)
1

℘−m

, 1 ≤ m ≤ ℘− 1 (A.5)

Consider the cues mc1 ,mc2 , , ...,mc℘ are sorted according to their information val-

ues, i.e. v(mc1) ≥ v(mc2) ≥ ... ≥ v(mc℘).

For m = 1, 2, ..., ℘− 1

ln(1 +

∑℘
i=m+1 v(mci)∑m
i=1 v(mci)

)
1

℘−m ≥ ln(1 +
v(mc℘)

℘v(mc1)
)

1
℘−m

≥ ln(1 +
v(mc℘)

℘v(mc1)
)

1
℘

=
1

℘
ln(1 +

v(mc℘)

℘v(mc1)
)

(A.6)
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Plug Eq. A.6 in Eq. A.5, and we have a sufficient condition for the heuristic to

cue all cues:

tb ≥
λ℘

ln(1 + α
℘
)

(A.7)

where α = v(mc℘)/v(mc1).

Proposition 2. A sufficient condition for ProbGain to use 1 (the least pos-

sible number of cues to use) cue is: if the allowable time to make a decision tb

satisfies

tb ≤
λ

ln(℘)
(A.8)

Proof: For an arbitrary classification task with cues {mi}℘i=1, according the

heuristic represented by Eq.4.6, the allowable time tb to make a classification de-

cision should satisfy following inequalities:

γ(tb)v(mc1) ≥ γ(tb)
m

m∑
i=1

v(mci), 2 ≤ m ≤ ℘ (A.9)

Simplify the inequalities and we have:

γ(tb) ≤ (
v(mc1)∑m
i=1 v(mci)

)
1

m−1 , 2 ≤ m ≤ ℘ (A.10)

Plug Eq. 4.7 in Eq. A.10, then we have:
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e
− λ

tb ≤ (
v(mc1)∑m
i=1 v(mci)

)
1

m−1 , 2 ≤ m ≤ ℘ (A.11)

Compute the log of both sides of Eq. 14 and simplify the equation, we have

tb ≤
λ

1
m−1

ln(
∑m

i=1 v(mci )

v(mc1 )
)

(A.12)

Consider the cues mc1 ,mc2 , , ...,mcM are sorted according to their information val-

ues, i.e. v(mc1) ≥ v(mc2) ≥ ... ≥ v(mc℘).

For m = 2, 3, ..., ℘

1

m− 1
ln(

∑m
i=1 v(mci)

v(mc1)
) ≤ ln(

∑m
i=1 v(mci)

v(mc1)
)

≤ ln(
℘v(mc1)

v(mc1)
)

= ln(℘)

(A.13)

Plug Eq.A.13 in Eq. A.12, and we have a sufficient condition for the heuristic to

cue 1 cue:

tb ≤
λ

ln(℘)
(A.14)

Proposition 3. Monotonicity with respect to allowable time tb: for a classi-

fication task with cues {mi}℘i=1, HProbGain(tb, {mi}℘i=1) satisfies:

HProbGain(tb,2, {mi}℘i=1) ≥ HProbGain(tb,1, {mi}℘i=1) (A.15)

for ∀tb,1, tb,2, tb,2 > tb,1
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Proof by contradiction: Denote n1 = HProbGain(tb,1, {mi}℘i=1), n2 =

HProbGain(tb,2, {mi}℘i=1). Suppose n1 > n2, then according to the heuristic, we

have the following two inequalities:

γ(tb,2)
n2

n2∑
i=1

v(mci) ≥ γ(tb,2)
n1

n1∑
i=1

v(mci) (A.16)

γ(tb,1)
n2

n2∑
i=1

v(mci) ≤ γ(tb,1)
n1

n1∑
i=1

v(mci) (A.17)

Simplify Eq. A.16, A.17, we have:

γ(tb,2)
n1−n2 ≤

∑n2

i=1 v(mci)∑n1

i=1 v(mci)
(A.18)

γ(tb,1)
n1−n2 ≥

∑n2

i=1 v(mci)∑n1

i=1 v(mci)
(A.19)

According to Eq. A.18, A.19, we have

γ(tb,1)
n1−n2 ≥ γ(tb,2)

n1−n2 (A.20)

Since we assume n1 > n2, we have:

γ(tb,1) ≥ γ(tb,2) (A.21)

This result contradicts to the fact that given tb,2 > tb,1, according to the definition

of γ(tb), γ(tb,2) > γ(tb,1). Then the assumption n1 > n2 is incorrect. Thus, for

∀tb,1, tb,2, tb,2 > tb,1, we have

HProbGain(tb,2, {mi}℘i=1) ≥ HProbGain(tb,1, {mi}℘i=1) (A.22)
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Propositions 1 and 2 tell the behavior of ProbGain under “extreme” conditions.

Particularly, proposition 1 shows that as the allowable time tb ≥ λ℘
ln(1+α

℘
)
, the

heuristic uses all cues to make the classification decision (i.e. converges to the

“optimal strategy”, which uses all cues to make a decision). Also, according to

Proposition 2. when the allowable time is too little (tb ≤ λ
ln(℘)

), the heuristic

only uses 1 cue (the least possible number of cues to use) to make the decision.

Proposition 3 shows the monotonicity of the heuristic with respect to allowable

time tb, as allowable time increases, the heuristic uses monotonically more cues to

make a classification decision.

A.2 Discounted Log-odds Ratio (LogOdds)

This heuristic regards log-odds ratio,

LMi
= log

p(Y = y1|mc1 , ...,mci)

p(Y = y2|mc1 , ...,mci)

based on cues in set Mi as the “confidence” of making the classification task. The

greater the value |LMi
| is, the more confident is to make the classification decision.

While one cue comes into consideration, an additional time-pressure dependent

discount factor is imposed on the absolute value the log-odds ratio LMi
of the cues

in set Mi. The heuristic selects the cues under pressure based on the maximization

of the product of the discount factors and the log-odds ratio, in this way, the less

informative cues will be dropped due to the discount factor. As the time pressure

increases, the heuristic has larger tendency to drop the cues.

92



Proposition 4. A sufficient condition for LogOdds to use 1 cue is if the

allowable time tb to make a decision satisfies

tb ≤
λ

ln(1 + ℘−1
|1+β|)

(A.23)

where β = v0/v(mc1).

Proof: For an arbitrary classification task with cues {mi}℘i=1, according the

heuristic represented by Eq. 4.8, the allowable time to make a classification decision

should satisfy following

γ(tb)|v0 + v(mc1)| ≥ γ(tb)
m|v0 +

m∑
i=1

v(mci)|, 2 ≤ m ≤ ℘ (A.24)

Simplify the inequalities and we have:

e
− λ

tb ≤ (
|v0 + v(mc1)|

|v0 +
∑m

i=1 v(mci)|
)

1
m−1 , 2 ≤ m ≤ ℘ (A.25)

If ∃m, s.t.

|v0 + v(mc1)| > |v0 +
m∑
i=1

v(mci)| (A.26)

then the Eq. A.25 is automatically satisfied. Otherwise, we have

tb ≤
λ

1
m−1

ln(
|v0+

∑m
i=1 v(mci )|)

|v0+v(mc1 )|)
)

(A.27)
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For m = 2, 3, ..., ℘

1

m− 1
ln(
|v0 +

∑m
i=1 v(mci)|)

|v0 + v(mc1)|)
) ≤ ln(

|v0 + v(mc1)|+
∑m

i=2 |v(mci)|)
|v0 + v(mc1)|)

)

≤ ln(1 +
(℘− 1)|v(mc1)|
|v0 + v(mc1)|

)

≤ ln(1 +
℘− 1

|1 + β|
)

(A.28)

where β = v0
v(mc1 )

.

Thus, a sufficient condition for LogOdds to use only 1 cue is that

tb ≤
λ

ln(1 + ℘−1
|1+β|)

(A.29)

Proposition 5. Monotonicity with respect to allowable time tb: for an object

with cues {mi}℘i=1, HLogOdds(tb, {mi}℘i=1) satisfies:

HLogOdds(tb,2, {mi}℘i=1) ≥ HLogOdds(tb,1, {mi}℘i=1) (A.30)

for ∀tb,1, tb,2, tb,2 > tb,1.

Proof by Contradiction: Denote n1 = HLogOdds(tb,1, {mi}℘i=1), n2 =

HLogOdds(tb,2, {mi}℘i=1). Suppose n1 > n2, then according to the heuristic, we have

the following two inequalities:

γ(tb,2)
n2 |v0 +

n2∑
i=1

v(mci)| ≥ γ(tb,2)
n1|v0 +

n1∑
i=1

v(mci)| (A.31)

γ(tb,1)
n2|v0 +

n2∑
i=1

v(mci)| ≤ γ(tb,1)
n1|v0 +

n1∑
i=1

v(mci)| (A.32)
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Simplify Eq. A.31, A.32, we have:

γ(tb,2)
n1−n2 ≤ |v0 +

∑n2

i=1 v(mci)|
|v0 +

∑n1

i=1 v(mci)|
(A.33)

γ(tb,1)
n1−n2 ≥ |v0 +

∑n2

i=1 v(mci)|
|v0 +

∑n1

i=1 v(mci)|
(A.34)

According to Eq.A.33, A.34, we have

γ(tb,1)
n1−n2 ≥ γ(tb,2)

n1−n2 (A.35)

Since we assume n1 > n2, we have:

γ(tb,1) ≥ γ(tb,2) (A.36)

This result contradicts to the fact that given tb,2 > tb,1, according to the definition

of γ(tb), γ(tb,2) > γ(tb,1).

Then the assumption n1 > n2 is incorrect. Thus, for ∀tb,1, tb,2, tb,2 > tb,1, we

have

HLogOdds(tb,2, {mi}℘i=1) ≥ HLogOdds(tb,1, {mi}℘i=1) (A.37)

Note that unlike HProbGain, although HLogOdds tends to use more cues as time

pressure release, HLogOdds doesn’t necessarily use all ℘ cues when the time available

tb is greater than a certain threshold. This is because the value metric used in
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HLogOdds: |LMi
| = |v0+

∑i
j=1 v(mcj)| is not monotonically increasing as the number

of cues to use i increases.

A.3 Information Free Cue Number Discounting (InfoFree)

After sorting the cues in terms of the information gain, the cut-off criterion of

this heuristic is no longer dependent on the information gain. Thus the allowable

decision time tb is the only argument for the heuristic. As exp(−λ/tb) < 1, tb ∈

(0,+∞), the number of cues to use is always less than or equal to ℘ and decreases

exponentially when time pressure increases, and the parameter λ > 0 controls how

much a time pressure is discounted. Given the monotonicity of the exponential

function, it is obvious that HInfoFree uses more cues as time pressure releases and

it uses all ℘ cues if the time available tb is large enough and uses 1 cue if time

available tb is small enough.
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APPENDIX B

NO PRESSURE PLANNING RESULTS

The Active Satisficing Experiment includes no pressure condition besides

money pressure and fog pressure, which are deeply addressed in the dissertation. To

compare with human performance under no pressure condition, two graph search

based optimal strategies (PRM based and Cell Decomposition based) have been

developed. When there is no pressure imposed, the optimal strategies reduce to

Traveling Salesman Problem (TSP) [2, 54, 38, 37] that tries to find the shortest

path that covers all targets while makes all target features measurements.

Thus, we focus on the path efficiency 1/D(τ), the info gathering efficiency

B(τ)/D(τ) and, finally, classification performance N(τ). The optimal strategies

outperform the human strategy in the aforementioned three aspects, except Study

F, where human strategy has higher Info Gathering efficiency than Cell decompo-

sition but not PRM. One study comprises of three different experiment trials. The

optimal strategies and the human subjects don’t have prior knowledge of the tar-

get positions and initial features, and the information is obtained from an onboard

directional sensor.
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(a) Study A
 

(b) Study B

 
(c) Study C

 
(d) Study D

 
(e) Study E

 
(f) Study F

Figure B.1: Performance comparison between human strategy and optimal strate-
gies under no pressure condition.
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APPENDIX C

FAST AND FRUGAL TREE AS INFERENCE STRATEGY

 

Figure C.1: A quick procedure for physicians to decide whether a patient has acute
ischemic heart disease.

The target feature measurement strategy under fog pressure is modeled as a

Fast Frugal Tree (FFT)[31, 57, 36, 58]. This is a inference decision heuristic model

that is able to handle sequential cues. Suppose there is a stimulus with m binary

cues. If a Bayesian model is used and incorporates all m cues, then the decision

model has 2m leaves in the representation of a tree. In contrast, FFTs have only

m+1 leaves as the model doesn’t wait until all cues are revealed to make a decision.

As each cue is revealed, the decision is potentially to be made. If not, the next cue

will be revealed to obtain more information. The simplicity of FFTs makes the

likely to be robust to wider ranges of data sets due to Less-Can-Be-More effect.

The construction of FFTs usually embedded with expert/human knowledge as
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Figure C.2: The FFT structure that models human participants cue measurement
strategy under fog environment.

the cue order in the tree can affect not only the computation complexity but also

inference accuracy. A common example of FFT as shown in Fig. C.1 is constructed

by Green et.al [36] to make a medical decision.

The structure of the FFT in the target feature measurement under fog pressure

condition is shown as Fig. C.2. The set of cues that human participants deem to

have high enough confidence to exit the cue measurement process is denoted as

Q∗.
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[16] Paul Cisek, Geneviève Aude Puskas, and Stephany El-Murr. Decisions in
changing conditions: the urgency-gating model. Journal of Neuroscience,
29(37):11560–11571, 2009.

[17] Anja Dieckmann and Jörg Rieskamp. The influence of information redundancy
on probabilistic inferences. Memory & Cognition, 35(7):1801–1813, 2007.

[18] DiVE. The duke immersive virtual environment (dive).
https://https://digitalhumanities.duke.edu/resource/

duke-immersive-virtual-environment-dive, 2006.

[19] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[20] Silvia Ferrari and Chenghui Cai. Information-driven search strategies in the
board game of clue®. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 39(3):607–625, 2009.

[21] Silvia Ferrari and Thomas A Wettergren. Information-Driven Planning and
Control. MIT Press, 2021.

[22] Peter C Fishburn. Subjective expected utility: A review of normative theories.
Theory and decision, 13(2):139–199, 1981.

[23] Frédérick Garcia and Emmanuel Rachelson. Markov decision processes.
Markov Decision Processes in Artificial Intelligence, pages 1–38, 2013.

102



[24] David Garlan, Daniel P Siewiorek, Asim Smailagic, and Peter Steenkiste.
Project aura: Toward distraction-free pervasive computing. IEEE Pervasive
computing, 1(2):22–31, 2002.

[25] Shuzhi Sam Ge, Qun Zhang, Aswin Thomas Abraham, and Brice Rebsamen.
Simultaneous path planning and topological mapping (sp2atm) for environ-
ment exploration and goal oriented navigation. Robotics and Autonomous
Systems, 59(3-4):228–242, 2011.

[26] Jake Gemerek, Bo Fu, Yucheng Chen, Zeyu Liu, Min Zheng, David van Wijk,
and Silvia Ferrari. Directional sensor planning for occlusion avoidance. IEEE
Transactions on Robotics, pages 1–21, 2022.

[27] Zoubin Ghahramani. Learning dynamic bayesian networks. Adaptive Pro-
cessing of Sequences and Data Structures: International Summer School on
Neural Networks “ER Caianiello” Vietri sul Mare, Salerno, Italy September
6–13, 1997 Tutorial Lectures, pages 168–197, 2006.

[28] Gerd Gigerenzer. From tools to theories: A heuristic of discovery in cognitive
psychology. Psychological review, 98(2):254, 1991.

[29] Gerd Gigerenzer. Gut feelings: The intelligence of the unconscious. Penguin,
2007.

[30] Gerd Gigerenzer and Henry Brighton. Homo heuristicus: Why biased minds
make better inferences. Topics in cognitive science, 1(1):107–143, 2009.

[31] Gerd Gigerenzer and Wolfgang Gaissmaier. Heuristic decision making. Annual
review of psychology, 62(1):451–482, 2011.

[32] Gerd Gigerenzer and Daniel G Goldstein. Reasoning the fast and frugal way:
models of bounded rationality. Psychological review, 103(4):650, 1996.

[33] Gerd Gigerenzer and Peter M Todd. Simple heuristics that make us smart.
Oxford University Press, USA, 1999.

[34] Mark A Gluck, Daphna Shohamy, and Catherine Myers. How do people
solve the “weather prediction” task?: Individual variability in strategies for
probabilistic category learning. Learning & Memory, 9(6):408–418, 2002.

[35] Daniel G Goldstein and Gerd Gigerenzer. Models of ecological rationality:
the recognition heuristic. Psychological review, 109(1):75, 2002.

103



[36] Lee Green and David R Mehr. What alters physicians’ decisions to admit to
the coronary care unit? Journal of family practice, 45(3):219–227, 1997.

[37] Gregory Gutin and Abraham P Punnen. The traveling salesman problem and
its variations, volume 12. Springer Science & Business Media, 2006.

[38] Karla L Hoffman, Manfred Padberg, Giovanni Rinaldi, et al. Traveling sales-
man problem. Encyclopedia of operations research and management science,
1:1573–1578, 2013.

[39] Robin M Hogarth and Natalia Karelaia. Heuristic and linear models of judg-
ment: matching rules and environments. Psychological review, 114(3):733,
2007.

[40] Husarion. Rosbot autonomous mobile robot. https://husarion.com/

manuals/rosbot/, 2018.

[41] Finn V Jensen and Thomas Dyhre Nielsen. Bayesian networks and decision
graphs, volume 2. Springer, 2007.

[42] Mrinal Kalakrishnan, Peter Pastor, Ludovic Righetti, and Stefan Schaal.
Learning objective functions for manipulation. In 2013 IEEE International
Conference on Robotics and Automation, pages 1331–1336. IEEE, 2013.

[43] Mike Knicker. 3d scanning basics: How structured light scanning works, 2014.

[44] John K Kruschke. Bayesian data analysis. Wiley Interdisciplinary Reviews:
Cognitive Science, 1(5):658–676, 2010.

[45] David A Lagnado, Ben R Newell, Steven Kahan, and David R Shanks. Insight
and strategy in multiple-cue learning. Journal of Experimental Psychology:
General, 135(2):162, 2006.

[46] Koen Lamberts. Categorization under time pressure. Journal of Experimental
Psychology: General, 124(2):161, 1995.

[47] Jean-Claude Latombe. Robot motion planning, volume 124. Springer Science
& Business Media, 2012.

[48] Jean-Claude Latombe. Robot motion planning, volume 124. Springer Science
& Business Media, 2012.

104



[49] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

[50] Nilli Lavie. Attention, distraction, and cognitive control under load. Current
directions in psychological science, 19(3):143–148, 2010.

[51] Mikhail A Lebedev, Jose M Carmena, Joseph E O’Doherty, Miriam Zacksen-
house, Craig S Henriquez, Jose C Principe, and Miguel AL Nicolelis. Cortical
ensemble adaptation to represent velocity of an artificial actuator controlled
by a brain-machine interface. Journal of Neuroscience, 25(19):4681–4693,
2005.

[52] Sergey Levine, Zoran Popovic, and Vladlen Koltun. Nonlinear inverse rein-
forcement learning with gaussian processes. Advances in neural information
processing systems, 24, 2011.

[53] Allan J Lichtman. The keys to the White House: a surefire guide to predicting
the next president. Rowman & Littlefield, 2008.

[54] Shen Lin. Computer solutions of the traveling salesman problem. Bell System
Technical Journal, 44(10):2245–2269, 1965.

[55] Chun Liu, Shuhang Zhang, and Akram Akbar. Ground feature oriented path
planning for unmanned aerial vehicle mapping. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 12(4):1175–1187,
2019.

[56] Wenjie Lu, Guoxian Zhang, and Silvia Ferrari. An information potential
approach to integrated sensor path planning and control. IEEE Transactions
on Robotics, 30(4):919–934, 2014.

[57] Laura Martignon, Konstantinos V Katsikopoulos, and Jan K Woike. Cate-
gorization with limited resources: A family of simple heuristics. Journal of
Mathematical Psychology, 52(6):352–361, 2008.

[58] Laura Martignon, Oliver Vitouch, Masanori Takezawa, and Malcolm R
Forster. Naive and yet enlightened: From natural frequencies to fast and
frugal decision trees. Thinking: Psychological perspective on reasoning, judg-
ment, and decision making, pages 189–211, 2003.

[59] Sendhil Mullainathan and Richard H Thaler. Behavioral economics, 2000.

[60] Ben R Newell and David R Shanks. Take the best or look at the rest? factors

105



influencing” one-reason” decision making. Journal of Experimental Psychol-
ogy: Learning, Memory, and Cognition, 29(1):53, 2003.

[61] Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement
learning. In Icml, volume 1, page 2, 2000.

[62] Phedon Nicolaides. Limits to the expansion of neoclassical economics. Cam-
bridge Journal of Economics, 12(3):313–328, 1988.

[63] Hanna Oh, Jeffrey M Beck, Pingping Zhu, Marc A Sommer, Silvia Ferrari,
and Tobias Egner. Satisficing in split-second decision making is characterized
by strategic cue discounting. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 42(12):1937, 2016.

[64] Thorsten Pachur and Ralph Hertwig. On the psychology of the recognition
heuristic: Retrieval primacy as a key determinant of its use. Journal of Ex-
perimental Psychology: Learning, Memory, and Cognition, 32(5):983, 2006.

[65] Xueni Pan and Antonia F de C Hamilton. Why and how to use virtual reality
to study human social interaction: The challenges of exploring a new research
landscape. British Journal of Psychology, 109(3):395–417, 2018.

[66] John W Payne, James R Bettman, and Eric J Johnson. Adaptive strategy
selection in decision making. Journal of experimental psychology: Learning,
Memory, and Cognition, 14(3):534, 1988.

[67] Anthony J Porcelli and Mauricio R Delgado. Stress and decision making:
effects on valuation, learning, and risk-taking. Current opinion in behavioral
sciences, 14:33–39, 2017.

[68] Warren B Powell. Approximate Dynamic Programming: Solving the curses of
dimensionality, volume 703. John Wiley & Sons, 2007.

[69] Martin L Puterman. Markov decision processes. Handbooks in operations
research and management science, 2:331–434, 1990.
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