
A CELL DECOMPOSITION APPROACH TO
AUTONOMOUS PATH PLANNING FOR

DIRECTIONAL MOBILE SENSORS

A Thesis

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Master of Science

by

Zeyu Liu

May 2018

c© 2018 Zeyu Liu

ALL RIGHTS RESERVED

ABSTRACT

A methodology based on integer programming and cell decomposition is de-

veloped for planning the path of UGVs equipped with directional sensors used

to classify multiple targets in an obstacle-populated environment. While it is

desirable to solve this problem in minimum time, the non-completeness of the

connectivity graph and the classification objectives do not allow for a Travel-

ing Salesman Problem (TSP) solution. Moreover, the TSP is known to be NP

hard. Therefore, this thesis presents an approach for decomposing the UGV

workspace based on the directional sensor FOV, line-of-sight visibility and ob-

stacle map. By this approach, a connectivity graph with observation cells can be

obtained and an optimal path can be computed via integer programming. Simu-

lations conducted in Webots, a professional robot simulator that supports accu-

rate simulation of rigid body dynamics and sensors with computer vision capa-

bility, demonstrate the effectiveness of this approach compared to the ”nearest

neighbor” methods and classical TSP formulations.

BIOGRAPHICAL SKETCH

Zeyu Liu is an M.S. student in the Laboratory for Intelligent Systems and Con-

trols (LISC) at Cornell University. He received the B.S. degree in Mechanical En-

gineering from Tongji University and Politecnico di Milano (magna cum laude).

His research interests include probabilistic reasoning, optimal control, computer

vision and machine learning, with a focus in unmanned ground vehicles.

iii

This document is dedicated to all Cornell graduate students.

iv

ACKNOWLEDGEMENTS

I would like to sincerely thank Prof. Ferrari who has been providing me with

great guidance and advice in my research at Cornell University. It is her kind-

ness and assistance that impacted my life the most. I also want to thank Prof.

Knepper for his suggestion in my defense. There are many others I would like to

acknowledge. Prof. Kleinberg and Prof. Schalekamp discussed with me about

the Traveling Salesman Problem (TSP). Dr. Zhu and Dr. Fu both provided me

with much feedback in my discussion with them. Dr. Liu gave me much sup-

port in modifying the writing of my thesis. Last but not least, I would like to

thank all other members in LISC, Jake, Taylor, Julian, Min, Yucheng, Shi, Jane,

Hengye and Quanxing, for their feedback in the lab meetings and my practice

presentation.

v

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vi
List of Tables . vii
List of Figures . viii

1 Introduction and Background 1

2 Problem Formulation and Assumptions 5
2.1 Minimum-time optimal path planning 8

3 Feature extraction from Image 12
3.1 Shape Detection using Circular Hough Transform (CHT) 12
3.2 Color Detection using HSV . 13
3.3 Texture Detection using LBP . 14

4 Path Planning Methodology 16
4.1 Directional C-Targets . 16

4.1.1 C-Target with the presence of Obstacles 19
4.1.2 Algorithm and computational complexity 22

4.2 Approximate cell decomposition with C-targets and C-obstacles . 24
4.3 Connectivity graph . 27

5 Path Planning via Integer Programming 31
5.1 Important properties of the problem 31
5.2 Non-completeness and no-returning 34

5.2.1 Non-completeness . 34
5.2.2 Transforming no-returning to returning problem 37

5.3 Formulation of Integer Programming 38
5.4 Sub-tour Elimination . 40

6 Simulation and Results 43
6.1 Influence of translation weight wt 43
6.2 Influence of maximum permissible cell size cm 46
6.3 Performance comparison with benchmark methods 47

7 Conclusion and Future Steps 56

Bibliography 58

vi

LIST OF TABLES

6.1 Performance Comparison in Map 1, 2 and 3 53

vii

LIST OF FIGURES

2.1 Line of sight visibility. Sensor FOV S is shown by a green tri-
angle. In this figure, the point of interest xT is occluded because
there exists a ξ that fails the line-of-sight test. 7

2.2 Bayesian Network of feature discrete random variables X1

(shape), X2 (color), X3 (texture) and Y (type). The values of X1,
X2 and X3 are displayed on the right. The value of the categori-
cal random variable Y is {Treasure,Non-Treasure}. 11

3.1 Demonstration of shape detection using circular Hough trans-
form. The highest value in the accumulator shown in blue marks
the center of a potential sphere. 13

3.2 Histogram of LBP of a watermelon. The vector of histogram is
used to train and test the SVM for classification. 15

4.1 Example of v1 and v2, given a robot configuration q = [x, y, θ]T .
The FOV is characterised by v1 and v2. 17

4.2 An example of S = Vi
⋃

(Vi)−v1

⋃
(Vi)−v2 with θ = π

2
. Elements

of S are shown in thick black dot. FOVs are shown with green
isosceles triangles and target is a red polygon. Elements of S
indicate the configurations of UGV where S(q)∩Ti is a vertex of
Ti. 18

4.3 C-Target CT θi is shown in blue. Ti in red is excluded, as the sensor
should not collide with the target. 18

4.4 Examples of the shadow region. Figure (a) illustrates the cov-
erage cone KP (Bj) defined by the boundary vectors k̂1 and k̂2 .
Figure (b) shows the shadow regionDP (Bj) of point P with re-
spect to obstacle Bj , which is shown in dark brown. Figure (c)
is the intersect of all the shadow regions defined from the ver-
tices of Ti,

⋂
P

DP (Bj) ∀P ∈ Vi. In such a region, the sensor cannot

measure any point of Ti as it is blocked by Bj . Figure (d) demon-
strates the shadow region with respect to all the obstacles in the
workspaceW . 20

4.5 C-Target (shown in blue) in the Satisficing test workspace. In
the upper right region, there exist 20 small obstacles placed near
each other, and a target in the middle of them. The C-Target
successfully captures the visibility of this obstacle-populated re-
gion, which enables the UGV to navigate in this region and ob-
tain measurement. 21

4.6 Result of approximate cell decomposition at u = 2 (θ = π). The
observation cells are shown in blue, and void cells are shown in
white. It can be observed that for each target there are more than
one corresponding observation cells. 26

viii

4.7 Example of the connectivity graph. The observation nodes are
shown in red, and void nodes are shown in blue. It can be ob-
served that the graph is not complete: most nodes are only con-
nected to a small number of other nodes. 30

5.1 An example of many observation cells correspondign to the
same target. For target 7, there are 10 observation cells in which
the UGV can measure it. Visiting one of them is enough to obtain
measurement of Target 7. 33

5.2 An example of the necessity to visit observation node more than
once. The start node is void node, and the objective is to visit
all the other nodes. Observation node 2 must be visited twice in
any optimal solution. 33

5.3 An example of the method of making the graph complete. For
node 3 and node 4, there is no edge connecting them. An addi-
tional edge is added between node 3 and node 4, with the cost of
the shortest path from node 3 to node 4, which is the cost of the
path ”3-2-1-4”. 36

5.4 The connectivity graph with a dummy node added. The edge
between the dummy node and any other node is associated with
zero cost. The visiting time of the dummy node must be set to
1, otherwize the algorithm would repeatedly visit the dummy
node as it has lowest cost. 38

5.5 An example of the solution of integer programming with 2 sub-
tours. For each subtour, it visits some of the obsevation nodes,
but it is not connected to other subtours and is thus isolated.
Subtours can be eliminated by iteratively adding constraints that
eliminate the solution with subtours obtained at each optimization. 41

6.1 Optimal path with wt = 0.3, cm = 4. A low wt indicates higher
rotation cost and discourages rotation. The sensor first measures
target 8, then moves forward for a long distance to obtain mea-
surements of target 4 because it does not need to perform rota-
tion in this process. 44

6.2 Optimal path with wt = 0.7, cm = 4. A high wt encourages the
UGV to rotate more to save the total distance traveled. The sen-
sor rotates toward a much nearer target 5 after obtaining mea-
surement of target 8 that is nearer. 45

6.3 Comparison of optimal cost and running time for all cm. Smooth-
ing significantly reduces the cost. In general, reducing cm results
in lower optimal cost but longer run time. 46

6.4 Map1 is composed of 3 obstacles and 7 targets. The number of
obstacles is relatively small. As a result, a large portion of target
pairs are connected with a collision-free straight line segment. . . 48

ix

6.5 Map 2 is composed of 9 obstacles and 7 targets. More obstacles in
the workspace blocks more straight paths between target pairs. 49

6.6 Map 3 is composed of 25 obstacles and 30 targets. Out of the 25
obstacles, 20 of them are small polygons populated in the upper
right room with relatively high density. The 30 targets are spread
across the entire workspace. 50

6.7 The optimal path obtained from cell decomposition and integer
programming with wt = 0.9 for Map 2. The sensor demonstrates
the ”shake head” behavior near target 6 and 7, which allows the
sensor to rotate more to reduce translation cost. The total trans-
lation is 11.1m and total rotation is 14.7 rad. 51

6.8 The optimal path obtained from 2-opt heuristics for Map 2. The
sensor need to go to each target to obtain measurement and
therefore the performance is affected. The total translation is
14.0m and total rotation is 12.7 rad. 52

6.9 The optimal path obtained from cell decomposition and integer
programming with wt = 0.9 for Map 3. The total translation is
39.2m and total rotation is 58.5 rad. 54

6.10 The optimal path obtained from ”2-opt” heuristics for Map 3.
The sensor need to go to each target to obtain measurement and
therefore the performance is affected. The total translation is
45.2m and total rotation is 42.2 rad. 55

7.1 The optimal path obtained for Map 3 with PRM and integer pro-
gramming approach. The milestones are shown by triangles.
The path planning algorithm generates the connectivity graph
from the milestones, and produce a path that satisfies the sensing
objective with minimum time. In this example, only translation
cost is taken into consideration. 57

x

CHAPTER 1

INTRODUCTION AND BACKGROUND

Sensor planning is the problem of determining a strategy to support a sens-

ing objective. With the proliferation of sensors installed on mobile robotic plat-

forms, such as autonomous vehicles, one of the challenging problems is deter-

mining the best path for obtaining sensor measurements [19, 1, 29]. In sensor

planning, the robot motion is planned to best support the sensing objective,

rather than simply using sensor measurements to support robot motion [9].

This thesis addresses the problem of path planning for an Unmanned Ground

Vehicle (UGV) equipped with a directional sensor used to classify targets in an

obstacle-populated environment in minimum time. This problem is a variant of

the treasure hunt problem, in which the shortest path and measurement location

of a robotic sensor is planned in order to successfully classify the most valuable

targets in an obstacle-populated workspace. Potential application of the mini-

mum time problem addressed in this thesis are robotic mine hunting, cleaning

and monitoring of urban environments [5] and search and rescue [51, 35, 34].

The minimum time problem is also an excellent benchmark problem for sat-

isficing decision making. Satisficing refers to fast heuristic decision making

that prioritizes some information while ignoring others under uncertainty and

time pressure [55, 56, 57, 16]. An example of satisficing task involves human

or animal subjects tasked with the problem of classifying targets in a complex

workspace while under time pressure [41, 42].

Directional sensor path planning belongs to the class of geometric sensor

planning problems that consider the geometry and position of the targets and

that of the sensor’s field of view (FOV) [17]. Then, using methods such as cell

1

decomposition, sensor path planning can take into account the motion and ge-

ometry of the sensor’s platform and FOV, as well as the geometry of all the

targets and obstacles. Subsequently, a connectivity graph can be obtained by

decomposing the free configuration space into void and observation cells. Void

cells represent the configurations in which the sensor cannot obtain any mea-

surements. Observation cells represent configurations in which the sensor can

obtain measurements from one or more targets [6]. The resulting connectivity is

typically a non-complete graph in which only a small portion of node pairs are

connected by an edge. Therefore, the number of edges is relatively small com-

pared to that in a complete graph with same number of nodes. A path planning

algorithm that can take advantage of this property is much more efficient and

has a shorter running time.

One approach to guaranteeing that a robotic sensor visits all targets is to

solve a coverage path planning problem [10]. Popular approaches include lawn

mower with optimal line-sweep [21], complete coverage [1, 9], random [1], grid

[33] and genetic algorithm [23]. A major drawback of coverage path planning is

that the distance traveled is not minimized, resulting in very timely and costly

operations. Therefore, an information potential method (IPM) was developed

in [36], which defines a potential function from conditional mutual information

and generates paths of maximum information value. In IPM, the use of target

information value and geometry greatly improves the sensor performance, but

target coverage is not guaranteed and the directionality of sensor is not consid-

ered. Information roadmap method (IRM) has also been proposed for consid-

ering the targets’ expected information value in order to generate a roadmap

with a high density of high-information-value milestones while capturing the

connectivity of the workspace [64]. However, existing methods cannot provide

2

minimum time paths for covering all of the targets.

Planning the optimal sensor path is intrinsically hard, because the optimiza-

tion problem is generally non-convex. However, the problem can be trans-

formed into an integer linear programming problem involving discrete deci-

sions about edges under linear constraints [3, 61]. Integer programming has

been applied to robot path planning, including aircraft collision avoidance [49]

and autonomous underwater vehicle for ocean measurements [63]. The avail-

ability of a linear programming routine where constraints can be iteratively

added makes the method tractable for problems with large number of con-

straints [37]. Although integer programming technique can be used for solv-

ing traveling salesman problem (TSP), the minimum time sensor path planning

problem is by nature very different from TSP, as will be shown in Chapter 5.

In this thesis, the benchmark problem of minimum time sensor path plan-

ning is solved via integer programming by transforming the sensing objective

into linear constraints based on the connectivity graph constructed by cell de-

composition. A closed-form definition of directional C-Target is also proposed

together with an algorithm that calculates all C-Targets with linear computa-

tional complexity.

In Chapter 3, computer vision algorithms used for classification based on

feature extraction from sensor image is discussed. The definition of directional

C-Target and an approximate cell decomposition approach are developed in

Chapter 4. The proposed approach developed in Chapter 5 incorporates the

special properties of the sensing objective and the connectivity graph presented

in Chapter 4. As shown in Chapter 6, the proposed approach fulfills the sensing

objective requiring less time to classify all targets when compared to the near-

3

est neighbor method and classical TSP solutions. The proposed method can be

applied to different robot parameters of translation and rotation, and guaran-

tee obstacle avoidance as well as non-overpass constraints [53] of platforms that

must avoid driving over targets.

4

CHAPTER 2

PROBLEM FORMULATION AND ASSUMPTIONS

This thesis considers the problem of planning the path of a directional sensor

onboard unmanned ground vehicle (UGV) deployed to classify a set of targets

in an obstacle-populated workspace in minimum time. The workspace denoted

byW ⊂ R2 is assumed here to be a compact subset of a Euclidean space, popu-

lated with r fixed targets denoted by T1, ..., Tr. The probabilistic model of sensor

measurements and classification is learned from data and expert knowledge

using a Bayesian Network (BN). BN represents a joint probability mass func-

tion (PMF) by a directed acyclic graph (DAG), G = (N , E). The node set N is

composed of M discrete feature random variables X1, ..., XM and a categorical

random variable Y . Each feature random variable Xj ∈ N is associated with

a finite set of mutually exclusive states Xj = {x1, ..., x}, and the states of the

categorial random variable Y is Y = {y1, y2}. Each node inN is associated with

a conditional probability table (CPT) of BN parameters. The set of edges E rep-

resents conditional dependencies between nodes in N , and expresses the joint

PMF as

p(N) = p(X1, ..., XM , Y) = p(Y |pa(Y))
M∏
j=1

p(Xj|pa(Xj)) (2.1)

where pa(Xj) is the parent set of Xj , such that ∀Xi ∈ pa(Xj) there exists a

directed arc (i, j) ∈ E and similarly for pa(Y).

W is also populated with n fixed obstacles B1, ...,Bn whose geometry and

positions are known a priori. The UGV’s geometry is described by a rigid object

A ⊂ R2 that is a compact subset ofW . The UGV is equipped with a directional

5

sensor (e.g. a camera) with a field of view (FOV) denoted by S. A configuration

vector q = [x, y, θ]T ∈ C specifies the position of the UGV’s geometrical center

and orientation of the UGV with respect to a fixed Cartesian frame FW embed-

ded inW with originOW , where configuration space C ⊂ W×(0, 2π] denotes the

space of all possible values of the configuration vector q. q also specifies a mov-

ing Cartesian frameFA embedded inAwith originOA defined at the position of

UGV. The UGV is assumed to obey the a unicycle robot kinematics. The control

input is u = [v ω]T ∈ U = {v, ω | 0 ≤ v ≤ vm, 0 ≤ ω ≤ ωm}, where vm, ωm ∈ R+

are the maximum permissible velocity and angular velocity respectively. The

unicycle model is

q̇(t) =


ẋ(t)

ẏ(t)

θ̇(t)

 =


cosθ(t) 0

sinθ(t) 0

0 1


v(t)

ω(t)

 = g[q(t)]u(t) (2.2)

The sensor is fixed on the UGV, and therefore every point in S is fixed with re-

spect to FA. Under this assumption q also specifies both A and S. A C-obstacle

with respect to obstacle Bi is defined as a subset of C that causes collisions with

Bi, i.e., CBi = {q ∈ C | A(q) ∩ Bi 6= Ø}, where A(q) denotes the subset of W

occupied by A when the UGV is at configuration q. The C-obstacle region CB

is defined as ∪i CBi, and the free configuration Cfree is defined as Cfree = C \ CB.

Planning a collision-free path for the UGV is equivalent to find a trajectory in

Cfree.

A directional sensor is influenced by occlusions caused by obstacles in its

6

Figure 2.1: Line of sight visibility. Sensor FOV S is shown by a green triangle.
In this figure, the point of interest xT is occluded because there exists a ξ that
fails the line-of-sight test.

line-of-sight (LoS), in front of the target of interest Ti. The FOV of a sensor with

dynamic state q can be modeled as a compact subset S(q) ofW occupied by S

when the UGV is at configuration q. Let xT be the position of an interest point

in target Ti. The coordinate of the point of interest in FA is rT = xT − q. xT is in

the LoS of the sensor at q if there are no points in the obstacle region B that are

co-directional with rT and closer to q than xT , or

@ξ ∈ B s.t. ξ � rT = ‖ξ‖‖rT‖ and ‖ξ‖ < ‖rT‖ (2.3)

where ξ is defined with respect toFA, and it is assumed that Ti∩B = Ø. Target Ti

is visible to the sensor if S(q)∩Ti 6= Ø} and Ti is in the LoS of the sensor. C-target

of target Ti is defined as a subset of C such that CT i = {q ∈ C | S(q)∩Ti 6= Ø} and

the LoS test is satisfied for all obstacles. Therefore, the path planning problem

for visiting all targets in minimum time can be redefined as:

7

”Find a trajectory in Cfree such that for every C-target CT i, there exist at least

one configuration along the trajectory that belongs to CT i for which Ti is in the

LoS of the robot, and the total time is minimized subject to UGV’s constraints”.

The minimum time sensor path planning problem is solved via integer pro-

gramming by transforming the sensing objective into linear constraints based

on a connectivity graph constructed by cell decomposition. The cell decomposi-

tion approach utilizes the closed form definition of directional C-target CT that

will be discussed in Chapter 4.

2.1 Minimum-time optimal path planning

The minimum time path planning problem is simplified by means of the follow-

ing key assumptions are made. The UGV (2.2) is assumed to always move and

rotate at maximum admissible velocity vm and angular velocity ωm, which indi-

cates that acceleration and deceleration are ignored. The location of the targets

and obstacles are known from prior knowledge, which allows the UGV to plan

a path to classify all targets offline. Also, the initial configuration q0 of the UGV

is assumed to be fixed and known.

Because the on-board sensor is directional (e.g. camera), C-Target has a more

complicated shape compared to the case with omnidirectional sensor. The as-

pect angle θ is taken into consideration in sensor path planning which is carried

out in 3-dimensional configuration space.

Denote the start and final time as t0 and tf respectively. Denote tm as the time

required to go from q0 along the path to the finish point, which is not fixed and

up to the algorithm to optimize. The total time can therefore be decomposed

8

into two terms: observation time to and motion time tm.

tf − t0 = to + tm =
r∑
i=1

ti + tm (2.4)

where r is the total number of targets, ti is the time required to classify the i-

th target. Under the assumption that the UGV always moves and rotates at

fixed velocity vm, ωm, the moving time tm is transformed into a combination of

translation distance and rotation angle along the path segments.

The target classification problem assumes that target features and classifi-

cation can be modeled by a Bayesian Network joint probability mass function

(PMF),

P (Y |X1, ..., Xl) =
∑
X1

...
∑
Xl

P (Y |XM)
M−1∏
j=l

P (Xj+1|Xj) (2.5)

where X1, ..., Xl are discrete feature random variables and Y is a categorical

random variable. The BN model used in this thesis is shown in Figure 2.2. The

discrete feature random variables X1, X2 and X3 indicates ”shape”, ”color” and

”texture” respectively. Y is a categorical random variable that indicates whether

the object is a treasure or not. Each random variable is associated with a finite

set of mutually exclusive states,

9

X1 = {”Sphere”, ”Box”}

X2 = {”Green”, ”Orange”, ”Brown”, ”Black”}

X3 = {”Apple”, ”Watermelon”, ”Orange”, ”Basketball”,

”Cardboard Box”, ”Wooden Box”, ”Computer”, ”Book”}

Y = {”Treasure”, ”Non-Treasure”}

(2.6)

The features of the object are revealed in sequential order. Each time the UGV

reveals the value of a new feature, the posterior distribution is updated and so

is the confidence level.

The confidence level of target classification reflects how much confidence we

have when classifying a target. It is defined as an function of Y given the value

of l (l ≤M) features:

CL(Y,X1, ..., Xl) = maxP (y|X1, ..., Xl) (2.7)

To successfully classify a target, the confidence level must reach a threshold

τ ∈ (0, 1]. For this problem the threshold is set to a fixed value for all targets.

After reviewing certain amount of features, the posterior distribution become

much less uniform than the prior distribution, and the confidence level is there-

fore increased. Denote the minimum number of features required to reach the

threshold for classifying target Ti as νi, i.e., CL(Y,X1, ..., Xνi) > τ . Therefore, the

time ti required to classify Ti is defined as:

ti =

νi∑
q=1

tiq (2.8)

10

Figure 2.2: Bayesian Network of feature discrete random variables X1 (shape),
X2 (color), X3 (texture) and Y (type). The values of X1, X2 and X3 are
displayed on the right. The value of the categorical random variable Y is
{Treasure,Non-Treasure}.

where tiq is the time required to reveal the q-th feature of target i.

Given the target initial feature level and the CPT under Bayesian Network

model for targets, and assuming that target cue level does not change unless

the UGV chooses to, ti will be constant for any target. Note that the objective

is to classify all targets, so the sum of time of revealing cues over all targets

to =
∑r

i=1 ti is a constant. Therefore, minimizing the total time T is equivalent

to minimizing tm. The objective is transformed to finding the shortest path in

the configuration space that visits all targets while avoiding all obstacles. The

problem is therefore restated as: Given the start configuration q0 of the UGV,

determine u(t) t ∈ T = [t0, tf] to minimize: J(tf) = tf − t0, such that

∀Ti, ∃ti ∈ T s.t. q(ti) ∈ CT i (2.9)

11

CHAPTER 3

FEATURE EXTRACTION FROM IMAGE

In the setting of the Satisficing task, human subjects use a camera onboard

UGV to obtain measurements and classify targets. Each target is associated with

three features: shape, color and texture, revealed in sequential order. In this

chapter, three different approaches are discussed for the three features men-

tioned above.

3.1 Shape Detection using Circular Hough Transform (CHT)

The circular Hough transform (CHT) enables the binary classification of the

sphere and box based on shape. The CHT has been proven to be a robust

method for circle detection even under noisy circumstances [50]. The CHT was

first proposed by Duda et al. [13] after the related 1962 patent of Paul Hough

[20]. The CHT transforms points from pixel space to Hough space. The proce-

dure of CHT has three steps [39]: first the edges in the image are found using

Canny algorithm [7]; second, for each edge point a circle is drawn with radius

r, and increments all coordinates that the perimeter passes through in the ac-

cumulator [28, 50]; Third, A circle with radius is found if a point in parameter

space is a local maximum that exceeds a threshold. If no circle exists the object

is assumed to be a box.

12

Figure 3.1: Demonstration of shape detection using circular Hough transform.
The highest value in the accumulator shown in blue marks the center of a po-
tential sphere.

3.2 Color Detection using HSV

Individual color appearance parameters provide input to image processing al-

gorithms. A color’s hue (denote by H) corresponds to the color of the rainbow

it’s closest to (e.g. pink and brown have red and orange hues respectively). The

mean HSV (hue, saturation and value) are calculated for each image, and hue

is used for color detection as it is not influenced by lighting conditions as RGB.

RGB values are converted to hue and intensity values as [26]

H =


arccos (R−G)+(R−B)

2
√

(R−G)2+(R−B)(G−B)
B ≤ G

2π − arccos (R−G)+(R−B)

2
√

(R−G)2+(R−B)(G−B)
B > G

(3.1)

S = max(R,G,B)−min(R,G,B)
max(R,G,B)

(3.2)

13

V = max(R,G,B)
255

(3.3)

where R, G and B are the values of three channels of RGB color model. Hue

information alone enables the classification of cue X2. Shape and texture are the

distinguishing features of cues X1 and X3 respectively.

3.3 Texture Detection using LBP

A linear support vector machine (SVM)[12, 8] trained with linear binary pat-

terns (LBP) features differentiates target texture. The LBP operator [43] has been

proven to be an effective and computational efficiency texture descriptor be-

cause of its invariance to monotonic gray level changes [60, 44]. LBP features

exhibit invariance to monotonic gray level changes [60, 44]. Let p represent one

of P points evenly spaced around a circle centered at c (i.e. p are the vertices

of a regular polygon centered at c). Let gp and gc denote the grayscale value of

points p and point c respectively. A LBP feature is a P bit binary number whose

pth bit is a 0 if gp is less than gc, and a 1 otherwise. There exist 2P possible LBP

features. Uniform pattern LBP reduces this total feature number by assigning

the same value to every binary string that is not a uniform pattern. A string is

a uniform pattern if it contains at most two bitwise transitions. E.g. 101011 is

not a uniform pattern because it contains 4 transitions, while 100001 is a uni-

form pattern because it contains 2 transitions. The rotation invariant uniform

pattern LBP simplifies LBP further by lumping uniform patterns with the same

sum together. Uniform LBP is calculated as [45]

14

Figure 3.2: Histogram of LBP of a watermelon. The vector of histogram is used
to train and test the SVM for classification.

LBP riu2
P,R =


∑P−1

p=0 s(gp − gc) if (LBPP,R) ≤ 2

P + 1 otherwise
(3.4)

U(LBPP,R) =
|s(gP−1 − gc)− s(g0 − gc)|

+
∑P−1

p=1 |s(gp − gc)− s(gp−1 − gc)|
. (3.5)

where superscript riu2 reflects the use of rotation invariant uniform patterns that

have U value of at most 2, gc is the gray value of the central pixel , gp is the

value of its neighbors, P is the total number of involved neighbors, and R is the

radius of the neighborhood. By using the uniform pattern, the LBP histogram

has a separate bin for every uniform pattern and all nonuniform patterns are

assigned to a single bin [2]. A normalized histogram of feature vectors from a

textured region comprises a single input to an SVM classifier. The training set is

generated by taking images from different angles ranging from 0 to 360 degrees

with a step of 5 degrees.

15

CHAPTER 4

PATH PLANNING METHODOLOGY

4.1 Directional C-Targets

One of the most important objective for sensor path planning is measuring the

targets. Along the path of the sensor platform, there exist configurations q =

[x, y, θ]T such that the targets fall into the sensor’s FOV S(q). The subsets of C

where the sensor can collect measurements of targets are denoted as C-Targets,

defined as CT i = {q ∈ C | S(q) ∩ Ti 6= Ø} for target Ti. Therefore, for any

target Ti, there exists at lease one configuration in the path that belongs to the

corresponding C-Target CT i.

Directional sensor is a type of sensor that obtains measurements only for a

bounded subset of all possible aspect angles. The following assumptions are

made regarding the FOV of the sensor. First, the sensor is assumed to obey the

LoS visibility model [46] [52] [58]. It only measures a point if the straight line

segment connecting the sensor to this point does not intersect with any obstacle.

In other words, obstacles occlude area from the sensor’s FOV. second, the FOV

is assumed to be an isosceles triangle with leg length lS and vertex angle φ. The

lower bound of the sensor’s range is assumed to be zero. Third, the sensor is

assumed to be fixed with respect to the UGV. Under these assumptions, the FOV

S(q) of the sensor is characterized by two vectors v1, v2 defined as

v1 = [lScos(θ −
φ

2
), lSsin(θ − φ

2
)] v2 = [lScos(θ +

φ

2
), lSsin(θ +

φ

2
)] (4.1)

16

FOV

UGV

FOV

UGV

Figure 4.1: Example of v1 and v2, given a robot configuration q = [x, y, θ]T . The
FOV is characterised by v1 and v2.

The vectors v1, v2 are illustrated by Figure 4.1.

The C-Target of Ti at robot’s orientation θ is denoted as CT θi . A closed-form

definition of CT θi can be derived from v1 and v2 , which can simplify the cal-

culation and reduce computational complexity. Target Ti is assumed to be a

convex polygon. Denote the set of vertices of Ti as Vi. Define (Vi)−v1 as the a

set of vertices composed of every element of Vi translated by vector −v1. The

set of points S = Vi
⋃

(Vi)−v1

⋃
(Vi)−v2 forms the boundary configuration of CT θi ,

where the S(q) ∩ Ti is a vertex of Ti. Figure 4.2 shows the elements of S with

θ = π
2
. C-Target CT θi is defined as

CT θi = Conv(S)\Ti (4.2)

where Conv(S) is the convex hull of S:

17

UGV position

Target

FOV

Figure 4.2: An example of S = Vi
⋃

(Vi)−v1

⋃
(Vi)−v2 with θ = π

2
. Elements of

S are shown in thick black dot. FOVs are shown with green isosceles triangles
and target is a red polygon. Elements of S indicate the configurations of UGV
where S(q) ∩ Ti is a vertex of Ti.

Target i

C-Target i


Figure 4.3: C-Target CT θi is shown in blue. Ti in red is excluded, as the sensor
should not collide with the target.

Conv(S) = {
|S|∑
z=1

wzxz|wz ≥ 0,

|S|∑
z=1

wz = 1} (4.3)

18

4.1.1 C-Target with the presence of Obstacles

In an obstacle-populated workspace, additional constraint must be considered

for the definition of directional C-Target. As the sensor is assumed to be LoS

sensor, obstacles in the line of sight may cause occlusions to the FOV. CT θi should

not include the regions in which the sensor cannot obtain measurement from Ti

due to occlusion. In this section, a definition of C-Target with the presence of

obstacles is formulated by excluding the occluded area from previously defined

C-Target.

Assuming all targets and obstacles are convex polygons. Let the vertices of

target Ti and obstacle Bj be denoted by Vi and Vj respectively. Let P ∈ Vi be an

arbitrary vertex of Ti. Vl and Vm are chosen as the pair of vertices of Bj such that

the angle α =< PVl, PVm > is maximized. The boundary vectors k̂1 and k̂2 are

defined as

k̂1 =
PVl

‖PVl‖

k̂2 =
PVm

‖PVm‖

(4.4)

The illustration of the boundary vectors is shown in Figure 4.4 (a). The coverage

cone of point P with respect to obstacle Bj is defined as

KP (Bj) = cone(k̂1, k̂2) = { x | x = xP + k̂1 + c2k̂2, c1, c2 ≥ 0} (4.5)

where xp is the coordinate of point P . The shadow region of point P with respect

to obstacle Bj can therefore be defined as

19

(a)

(b)

(c)

i

Target i

(d)

Figure 4.4: Examples of the shadow region. Figure (a) illustrates the coverage
cone KP (Bj) defined by the boundary vectors k̂1 and k̂2 . Figure (b) shows the
shadow regionDP (Bj) of point P with respect to obstacle Bj , which is shown in
dark brown. Figure (c) is the intersect of all the shadow regions defined from the
vertices of Ti,

⋂
P

DP (Bj) ∀P ∈ Vi. In such a region, the sensor cannot measure

any point of Ti as it is blocked by Bj . Figure (d) demonstrates the shadow region
with respect to all the obstacles in the workspaceW .

DP (Bj) = KP (Bj)\Conv({P} ∪ Vj) (4.6)

The shadow regionDP (Bj) represents the set of positions where the UGV cannot

see the point P as it is blocked by obstacle Bj . The shadow region of target Ti

with respect to Bj is the intersect of all the shadow region of its vertices. In

20

Obstacles
*

Targets

C-Targets

Figure 4.5: C-Target (shown in blue) in the Satisficing test workspace. In the
upper right region, there exist 20 small obstacles placed near each other, and a
target in the middle of them. The C-Target successfully captures the visibility
of this obstacle-populated region, which enables the UGV to navigate in this
region and obtain measurement.

Figure 4.4 (c), each P ∈ Vi forms a shadow region DP (Bj), and the intersect of

all those regions represents the set of positions in which no point of the target Ti

can be measured due to obstacle Bj .

For a region populated with n obstacles B1, ...,Bn, the set of all shadow re-

gions of a target with respect to all the obstacles is defined as

21

D(Ti) =
n⋃
j=1

(
⋂
P

DP (Bj) ∀P ∈ Vi) (4.7)

Finally, the directional C-Target of target Ti at UGV orientation θ in the pres-

ence of obstacles is defined as

CT θi = Conv(S)\{Ti ∪ D(Ti)} (4.8)

An example of directional C-Target in the Satisficing human test workspace

is shown in Figure 4.5. The workspace is composed of 30 targets and 25 obsta-

cles. In the upper right of the workspace, 20 small obstacles are placed relatively

near to each other, and there is a target in the middle of them. As shown in the

figure, the directional C-Target successfully captures the visibility characteristics

and enable the UGV to navigate through this region to obtain measurement.

4.1.2 Algorithm and computational complexity

This section analyzes the computational complexity of calculating C-Targets for

a workspaceW = [x0, x1]× [y0, y1] populated with r targets and n obstacles. The

objective is to propose an algorithm that calculates C-Targets with acceptable

complexity and the running time can be controlled by some of its parameters.

The configuration space C = [x0, x1] × [y0, y1] × [θ0, θ1] is discertized for the x, y

and θ axis with corresponding resolution rx, ry and rθ. In this section and all the

following chapters, it is assumed that θ0 = 0 and θ1 = 2π, as the UGV is free to

rotate to any direction. The number of discrete values along each dimension is

therefore nx = x1−x0
rx

+ 1, ny = y1−y0
ry

+ 1 and nθ = θ1−θ0
rθ

+ 1. Denote the set of all

22

points obtained from discretizing C as PS . The total number of points in PS is

N = nxnynθ.

Algorithm 1 Generating C-Target

1: Let PS be the set of points obtained from discretizing C, T be the set of
targets, B be the set of obstacles

2: Let CT be an r × 1 array of sets that store C-Target points
3: for Point p ∈ Point Set PS do
4: Initialize flagT =False, flagOB =False
5: targetID = empty array
6: for i = 1 : |T | do
7: if p ∈ Conv((Vi)−v1

⋃
(Vi)−v2

⋃
(Vi))\Ti then

8: flagT = True
9: add t to targetID

10: end if
11: for Obstacle ob ∈ Obstacle Set B do
12: if line segment [p, t] intersects with ob then
13: flagOB = True
14: end if
15: end for
16: end for
17: if flagT == True and flagOB == False then
18: for i in targetID do
19: Add p to CT [i]
20: end for
21: end if
22: end for

Algorithm 1 loops through all the nodes in the configuration space, and

checks if each node belongs to any CT θi . Checking whether a node is in C-

Target is implemented by Matlab ”inpolygon” function, which takes constant

time. For a target Ti, checking the target shadow region Di is not implemented

directly. Instead, for a given point p, the Matlab ”polyxpoly” function is applied

to check if the line segment between p and Ti intersects with any obstacle Bj .

Checking each obstacle takes constant time. Therefore, the overall complexity

of the algorithm is O(Nnr), which is linear with respect to the number of tar-

gets r and that of obstacles n. The complexity is also linear with respect to nx

23

and ny, which indicates that the running time can be controlled by changing the

resolution on each axis.

4.2 Approximate cell decomposition with C-targets and C-

obstacles

In the sensor path planning with obstacles, cell decomposition is a well-

known method that decomposes the free configuration space Cfree into non-

overlapping polygons (cells) in which the path is planned for the sensor plat-

form. Despite its computational cost, cell decomposition has the advantage

of being resolution complete compared to other methods such as probabilis-

tic roadmap method (PRM) [6]. The approximate rectangloid decomposition

method, referred to as the approximate-and-decompose method [65], utilizes

a predefined rectangloid shape to decompose the free configuration space Cfree

with the approximation of C-Obstacles CB and C-Targets CT [4, 15, 27, 31, 22, 11,

54, 62]. The approximate cell decomposition of Cfree obtained from this method

are composed of cells free of C-Obstacles and therefore can guarantee collision

avoidance in the path planning step.

The cells are classified into two types. A void cell is a convex polygon Kvoid

in Cfree such that no target can be measured in any configuration q ∈ Kvoid. An

observation cell is a convex polygon Kz such that in every configuration q ∈ Kz

the UGV can measure at least one target [6]. In the process of approximate

cell decomposition, the C-Target index for each cell is maintained. To be more

specific, for each C-Target CT i (i = 1, ..., r), a cell index set Oi is maintained to

store the indices of all the observation cell corresponding to C-Target CT i. In

24

the path planning step, visiting one of the observation cells in Oi is enough to

obtain measurement from Ti, and therefore it is necessary to spedify which set

of cells need to be visited. Such constraints will be specified in the formulation

of integer programming in the next chapter. In the case where a cell belongs to

multiple C-Targets, it is also guaranteed that visiting this cell would enable the

UGV to obtain measurement for all of them.

The configuration space is decomposed by the following steps [6].

1. For every u = 1, ..., nθ, compute the C-Obstacle CBuj for each obstacle j =

1, ..., n, and the directional C-Target CT i for each target i = 1, ..., r.

2. For every u = 1, ..., nθ, generate bounding rectangloid approximationRBuj

of CBj for each obstacle j = 1, ..., n, and a abounded approximation RT i

for each CT i.

3. For every u = 1, ..., nθ, generate a rectangloid decomposition Kuvoid of void

configuration space

Cuvoid ≡ Cu\{
n⋃
j=1

RBuj ∪
r⋃
i=1

RT ui } (4.9)

where Cu = [0, xm]× [0, ym]× θu

Kvoid =

nθ⋃
u=1

Kuvoid (4.10)

4. For every u = 1, ..., nθ, and i = 1, ..., r, generate a rectangloid decomposi-

tion Kuz,i of Cuz,i\
⋃
l 6=i Cuz,l where

Cuz,i = RT ui \
n⋃
j=1

RBuj (4.11)

and add the indices of cells in ∪nθu=1Kuz,i to Oi.

25

Observation Cells

Targets

Void Cells

C-Obstacles

Figure 4.6: Result of approximate cell decomposition at u = 2 (θ = π). The
observation cells are shown in blue, and void cells are shown in white. It can be
observed that for each target there are more than one corresponding observation
cells.

5. For each u = 1, ..., nθ, generate a rectangloid decomposition Kuz,l of⋃r
i=1{Cuz,i ∩

⋃
l 6=i Cuz,l}. Then let Kz =

⋃nθ
u=1{{∪ri=1Kuz,i} ∪ Kuz,l}. For each

cell c ∈ Kuz,l, if c ⊂ {Cuz,i ∩
⋃
l 6=i Cuz,l}, then add the index of c to Oi.

The cell size has a large impact on path planning and therefore a parameter

cm is set to control the maximum permissible cell size in the decomposition step.

For each cell in Kuz (u = 1, ..., nθ), if the size exceeds cm it is decomposed into

smaller cells by Algorithm 2.

Figure 4.6 illustrates the result of approximate cell decomposition for a

workspace populated with 3 obstacles and 9 targets. The maximum permis-

26

Algorithm 2 Division of large cells

1: Let Kvoid be the set of void cells
2: Let Kz be the set of observation cells
3: Let cm be the maximum permissible cell size
4: for cell c in Kvoid do
5: if size of c larger than cm then
6: decompose c into a set of cells Sc with size ≤ cm.
7: remove c from Kvoid
8: add all cells in Sc to Kvoid
9: end if

10: end for
11: for cell c in Kz do
12: Let I be the index set of all the targets Ti such that c ∈ Oi
13: if size of c larger than cm then
14: decompose c into a set of cells Sc with size ≤ cm.
15: remove c from Kz
16: add all cells in Sc to Kz
17: update Oi, i ∈ I
18: end if
19: end for

sible cell size cm is set to be 5, and θu is set as π. It can be observed that for

each target there are more than one corresponding observation cells. Visiting

one of these observation cells is sufficient to obtain measurement of the target,

and visiting extra observation cells for the same target would yield higher cost.

4.3 Connectivity graph

In this section, the connectivity graph used for path planning is described and

special attention is paid to the cost on the edges. The UGV sensor is represented

as a point in C by the connectivity graph. A connectivity graph is a directed

graph where nodes represents either an observation cell or a void cell in C [6].

A directed edge eij that connects node vi and vj exists if and only if the cor-

27

responding cells are adjacent and the rotation required for the UGV to move

from vi to vj is less than or equal to π. Compared to the definition of connec-

tivity graph as an undirected graph, the directed connectivity graph enables the

consideration of rotating cost in the edge costs. In the construction of the con-

nectivity graph, the observation cells become observation noded, and void cells

become void nodes. The index of node v uses the same index of its correspond-

ing cell c. As a result, the index set Oi(i = 1, ..., r) does not need to be modified

and now represents the observation node indices. The x, y coordinate of v is set

to be the centroid of c, and the θ coordinate of v is the same as c.

The following rules of defining edges are set in accordance with the proper-

ties of directed edge eij . In this section and all the following chapters, nθ is set

to be 4 and θ is therefore discretized into four values: π
2
, π, 3π

2
and 2π.

1. Nodes with same orientation

If vi and vj have the same orientation θi = θj , as θ is discretized into four

values, the following rule holds: Edge eij exists if and only if ci and cj are

adjacent and



max(y(ci)) ≤ min(y(cj)) θi = π
2

max(x(cj)) ≤ min(x(ci)) θi = π

max(y(cj)) ≤ min(y(ci)) θi = 3π
2

max(x(ci)) ≤ min(x(cj)) θi = 2π

(4.12)

where x(ci) and y(ci) denotes the x and y coordinates of all the vertices

of cell ci respectively. Cells are adjacent if their edges overlap but the in-

tersected area is zero. It is worth noting that the orientation is considered

approximately: cells are only required to have overlapping edges, even

28

though the centroids of each cell might have different x or y. For example,

in the case of θ = π, ideally the UGV is moving in the horizontal position,

which indicates that ci and cj should have the same y coordinate. How-

ever, the connectivity characteristics is considered approximately, so that

as long as ci and cj has overlapping edges they are considered connected.

This approximation allows the use of larger cell sizes so that the number

of nodes are reduced and so is the running time. The influence of the cell

size on the running time and performance of path planning will be shown

in later chapters.

2. Nodes with different orientation

In the case where vi and vj have different orientation, eij indicates that the

UGV has to conduct both translation and rotation to go from ci to cj . As

the orientation is discretized with interval of π
2
, the following rule is set:

Edge eij exists if and only if |θi − θj| = π
2

and the projection of the two

rectangloids on the x− y plane intersect with each other.

For each edge in the connectivity graph, it is associated with a cost of positive

value. As mentioned before, the UGV has to both translate and rotate to move

from one node to another. Therefore, the edge cost is defined as a weighted

combination of translation cost and rotation cost. For an arbitrary node vi, de-

note xi = [xi, yi]
T as the x − y coordinate of vi, and θi as the θ corrdinate of vi.

For edge eij connecting node vi and vj , the cost εij is defined as:

εij = wt × ‖xi − xj‖2 + (1− wt)× dθ

dθ =


π
2

{θi = 2π, θj = π
2
} or {θi = π

2
, θj = 2π}

|θi − θj| otherwise

(4.13)

29

Edges

Observation Nodes

Void Nodes

(m)x
(m)x

X(m)
Y(m)

 (rad)

Figure 4.7: Example of the connectivity graph. The observation nodes are
shown in red, and void nodes are shown in blue. It can be observed that the
graph is not complete: most nodes are only connected to a small number of
other nodes.

where wt is the weight of translation and 1−wt is therefore the weight assigned

for rotation. The translation weight wt can be chosen as ωm
vm+ωm

. If vm is far larger

than ωm,wt is close to zero and the rotation cost dominates and so is the opposite

case. In later chapter, we will run simulation under different wt and observe the

difference in the results obtained.

30

CHAPTER 5

PATH PLANNING VIA INTEGER PROGRAMMING

In this chapter, a specially designed method, integer programming, is de-

rived for solving the path planning problem in the connectivity graph obtained

from the previous chapters. The availability of adding constraints and reop-

timize makes it possible to adopt an integer programming approach to the

traveling-salesman problem (TSP)[37]. The major advantage is the geniality of

the method and the modest solution time, which will be demonstrated in the

examples in the next chapter. The directional sensor path-planning problem,

however, is by nature very different from the TSP and in section 5.1 the im-

portant properties of this problem are examined. The following sections will

focus on transforming the directional sensor path planning problem into an op-

timization problem with constraints such that the integer programming can be

applied.

5.1 Important properties of the problem

The directional sensor path planning problem has some important properties

that make it hard to solve. Some of the barriers come from the objective it-

self, and some of them are imposed by the properties of the connectivity graph.

These properties mark the significant differences from the classical TSP and can

explain why many classical solutions would fail in this case.

First, the number of nodes in the path is not fixed. Recall that the nodes are

classified into observation nodes and observation nodes. As the objective is to

measure and classify all the targets, there is no requirement that all void nodes

31

need to be visited. In fact, void nodes serve as ”transfer stations” that connects

all the observation nodes. Visiting unnecessary void cells increases overall time

and degrades the performance.

Second, there is even no need to visit all the observation nodes. For each

target, there are more than one observation nodes corresponding to different

sensor orientation θ, and visiting one of them is sufficient to obtain measure-

ment for this target. For example, in Figure 5.1, there are 10 observation cells for

target 7 in which the UGV can take mansurement, and it is sufficient to visit at

least one of them. This property distinguishes the problem from the TSP prob-

lems: There is no specific set of nodes that must be visited, but only a constraint

on a set of nodes that at least one of them needs to be visited. Any algorithm

that depend on a set of compulsory nodes cannot be adopted to this problem.

Third, the connectivity graph may not be complete. A complete graph is a

graph in which each pair of graph nodes is connected by an edge. As illustrated

in Figure 4.7, each cell is only connected to a small number of other cells. In the

case of non-complete graph, it can either be modified into a fully connected one,

or can be solved directly with existing edges. The consideration of the pros and

cons will be discussed in the following section.

Fourth, it is possible that some observation nodes need to be visited more

than once in the optimal solution. For example, for the connectivity graph in

Figure 5.2, the start node is the void node, and the objective is to visit all the

other nodes. The observation node 2 must be visited twice in any optimal solu-

tion. In this case, constraining the visit time to one would yield to suboptimal

solution or even no solution at all. This property also distinguish the problem

from classical TSP, as in the latter case no duplicate visit is allowed.

32

C-Obstacles

Observation Cells

Targets

Figure 5.1: An example of many observation cells correspondign to the same
target. For target 7, there are 10 observation cells in which the UGV can measure
it. Visiting one of them is enough to obtain measurement of Target 7.

Figure 5.2: An example of the necessity to visit observation node more than
once. The start node is void node, and the objective is to visit all the other
nodes. Observation node 2 must be visited twice in any optimal solution.

33

Fifth, in this problem it is not required that the UGV return to the starting

position. In other words, the UGV’s path does not need to form a loop. As will

be discussed in the next section, this ”no return” problem can be transformed to

a return problem. However, special attention should be paid to the start node,

as in this problem the start node of the robot is fixed. It is easy to incorporate

this constraint with integer programming.

Looking back at these properties, they make the problem very different from

the classical TSP. Property 1 and 2 defines a unique objective that is hard to

transform to that of TSP. Property 3 and 4 make the graph much harder to solve,

and property 5 causes a tricky problem with the starting node. The integer

programming problem is formulated incorporating these properties.

5.2 Non-completeness and no-returning

5.2.1 Non-completeness

In the classical TSP, the graph is restricted to be complete, which indicates that

for an arbitrary pair of nodes in the graph there exists an edge connecting them.

Many TSP algorithms need this property to obtain an optimal or approximate

solution. However, as mentioned before, the case is quite opposite: each node is

only connected to a small number of other nodes. Take the workspace of Figure

4.7 as an example. There are 262 nodes in the graph, indicating 68382 possible

directed edges. However, the number of existing edges is actually only 2634, or

3.85% of all the possibilities. The sparsity has big influence on the consideration

of the transformation to be discussed below.

34

A first intuitive approach would be to assign a large cost to the edges that

should not exist, and then solve the TSP problem as if the graph is complete.

The cost should be large enough to eliminate the possible existence of it in the

optimal path. This method, however, seraches in an unnecessarily large search

space, and would therefore suffer from slow convergence or even inability to

solve numerically. In the example above, there should be only 2634 variables

to be considered, but this approach searches the optimal solution with 68383

variables. In even larger workspaces, such as the satisficing test workspace,

the number of possible directed edges is significantly larger, and the situation

worsens. The unnecessarily large search space would affect the performance

dramatically and therefore make the approach untractable.

A second method also seeks to make the graph complete, but in a more so-

phisticated way. As the graph has no isolated node, for any node vi and vj that

there exists no edge between them, we can find a shortest path from vi to vj

by Dijkstra’s algorithm, and the corresponding cost is denoted as ε′ij . An ad-

dition edge connecting vi and vj with cost ε′ij . After iteratively adding edges

between all such pairs of nodes, the graph becomes complete. An illustration of

this approach is shown in Figure 5.3. For node 3 and node 4, there is no edge

connecting them. An additional edge is added between node 3 and node 4, with

the cost of the shortest path from node 3 to node 4, which is the cost of the path

”3-2-1-4”.

The drawback of this approach is clear. First, it does not resolve the issue of

extra search space and therefore face the same challenges as the first one. Sec-

ond, this approach actually loses the optimality of the solution. Recall that the

requriement is to visit some of the observation cells. When adding an edge be-

35

3 2 1

4

Observation Node

5

Void Node

Figure 5.3: An example of the method of making the graph complete. For node
3 and node 4, there is no edge connecting them. An additional edge is added
between node 3 and node 4, with the cost of the shortest path from node 3 to
node 4, which is the cost of the path ”3-2-1-4”.

tween vi and vj , chances are that the shortest path between them passes through

some observation cells, one of which is denoted by vo. Therefore, when the UGV

moves from vi to vj in the graph, it already visits vo and there’s no need to visit

it again in the next steps. But the algorithm does not recognize this and would

pay extra cost visiting vo. In the example in Figure 5.3, going from node 3 to

node 4 indicates adopting the path ”3-2-1-4”, which already visits obsesrvation

node 2. However, the algorithm would still try to visit node 2 in later steps.

Therefore, this approach is not desirable.

In order to restrict the search space to be small enough,the variables should

only represent the existing edges in the graph. This can be easily implemented

in the integer programming approach, the detail of which will be discussed in

the next section.

36

5.2.2 Transforming no-returning to returning problem

The UGV is not required to return to the starting configuration. In the connec-

tivity graph, it indicates that the path does not include an edge that returns to

the starting node. If the last node in the path is specified, it can be constrainted

that the last node has only incoming edges, but this is not the case in the prob-

lem at hand. In fact, it is much easier to transform it to a returning problem by

adding a dummy node, with special attention paid to the starting node.

Given a graph G composed of nodes V and edges E . A dummy node vd is

added to V , and the new set of nodes is denoted by V ′. Edges from vd to all nodes

in V with zero cost and from all nodes to vd are added to E , and the new set of

edges is denoted as E ′. The dummy node is constrained to be visited only once.

The problem now can be solved assuming returning to the starting node. The

optimal path solved on G′ = {V ′, E ′}, denoted as P ′, consists of two edges from

and to vd with zero cost. Eliminating such two edges would yield the optimal

path P that is a solution to G, as the total cost of P and P ′ would be the same.

In the transformation above, the starting node is not taken into considera-

tion. Adding a dummy node first and eliminating it afterwards might give us

arbitrary starting node in G, but in our problem the starting node vs is fixed as

the initial configuration of the UGV is fixed. Therefore, it is necesary to add an-

other constraint specifying that the edge vd → vs in E ′ is always selected. This

would fix the starting node in P . This will form one of the constraints in integer

programming to be described in the next section.

37

Dummy Node

Edges

Void Nodes

Observation Nodes

Figure 5.4: The connectivity graph with a dummy node added. The edge be-
tween the dummy node and any other node is associated with zero cost. The
visiting time of the dummy node must be set to 1, otherwize the algorithm
would repeatedly visit the dummy node as it has lowest cost.

5.3 Formulation of Integer Programming

Integer programming method has been applied to many graph problems such

as Traveling Salesman. The basic idea is to assign a binary variable denoting the

choice of arc in the optimal solution, and minimize the total cost under certain

constraints. The optimization problem is derived as follows.

Given a directed graph G′ = {V ′, E ′}, obtained by adding a dummy node as

described in the previous section, for edge eij ∈ E ′ from node vi and to node vj ,

a corresponding binary variable is defined as

38

xij =


1 if edge eij is in the optimal path

0 otherwise

The objective is to minimize the total edge cost.

min
∑
i,j

εijxij (5.1)

The constraints are defined as follows.

1. ”In == Out”

As the problem has been transformed into a returning problem, the times

of UGV going to a node equals the times of UGV leaving a node.

∑
j

xjl =
∑
j

xlj ∀l (5.2)

2. Visit dummy node only once

By limiting the time of visiting the dummy node to be one, we ensure

that the path obtained is a single path instead of several segments of path.

Denote the index of the dummy node as id.

∑
j

xjid =
∑
id

xidj = 1 ∀j (5.3)

3. Start node

Denote the index of the start node as is.

xidis = 1 (5.4)

39

4. C-Target visited at least once

Recall that for target Ti (i = 1, ..., r), Oi as the set of indices of all obser-

vation nodes corresponding to C-Target CT i. To ensure that all targets are

classified, we need to ensure that for any target Ti, nodes in Oi are visited

at least once.

∑
l

xlj ≥ 1 ∀j ∈ Oi,∀i (5.5)

5.4 Sub-tour Elimination

When applying integer programming to solve the path planning problem, one

major challenge is eliminating subtours. A subtour is a directed cycle that sat-

isfies all the previous constraints. If the optimal math consists of more than one

subtour, the nodes in any subtour does not guarantee measuring all the targets.

The optimal solution should contain only one subtour that defines the optimal

path. However, the constraints above does not guarantee that there exists only

one loop, and the optimal solution of integer programming may consist of more

than one loops. An example of this case is shown in Figure 5.5 .

To eliminate subtours, there exist several classical formulation. The bench-

mark is the subtour formulation. Other weaker ones uses extra variables, one

of which will be discussed in more detail. A comparison is given in [25, 30, 47].

A first way of eliminating sub-tours is called ”sub-tour formulation”, without

assigning additional variables [32].

40

Dummy Node

Subtour

Void Nodes

Observation Nodes

Start Node

Figure 5.5: An example of the solution of integer programming with 2 subtours.
For each subtour, it visits some of the obsevation nodes, but it is not connected
to other subtours and is thus isolated. Subtours can be eliminated by iteratively
adding constraints that eliminate the solution with subtours obtained at each
optimization.

∑
l∈S,j∈S,l 6=j

xlj ≤ |S| − 1 ∀S (V ′, |S| > 1 (5.6)

where | · | denote the cardinality of a set. The number of constraints equals

the total number of all possible S. The sub-tour formulation would introduce

2|V
′| − 1 constraints. The number of constraints in too large to be handled by

the numerical solver and therefore this formulation should not be implemented

directly.

The second way, called Miller-Tucker-Zemlin (MTZ) formuation [38], uses

extra variables uj (j = 1, ..., |V ′|) and the constraints

41

u1 = 1

2 ≤ uj ≤ |V ′|,∀j 6= 1

uj − ul + 1 ≤ (|V ′| − 1)(1− xjl)∀j 6= 1,∀l 6= 1

(5.7)

The major advantage of the MTZ formulation is its relatively small size: there

are roughly |V
′|2
2

extra constraints.

However, given the size of connectivity graph at hand, even the MTZ for-

mulation introduces too many constraints for the solver to work effectively. A

relatively better approach would be an iterative one. First ignore the subtour

constraints and obtain an optimization result, then identify all the subtours in

the optimal path. For each subtour, the set of all nodes in the path forms S (V ′

in Equation 5.6, and then add the constraint as defined in Equation 5.6 and run

the optimization again. The iteration continues until we obtain a solution with

no subtour, which indicates that the result is satisfactory.

Algorithm 3 Subtour iteration

1: Let opts be the optimization problem of integer programming,
2: Let cons be the initial constraints
3: tour = optimal solution of opts with respect to cons
4: nt = number of subtours in tour
5: while nt > 1 do
6: for z = 1: nt do
7: Let Vz be the set of node indices in the z-th subtour
8: Add new constraint

∑
i∈Vz ,j∈Vz xij ≤ |Vz| − 1 to cons

9: end for
10: tour = optimal solution of opts with respect to cons
11: nt = number of subtours in tour
12: end while

42

CHAPTER 6

SIMULATION AND RESULTS

The implementation of the path planning methodology described in the pre-

vious chapters is tested on a variety of workspace with different connectivity

characteristics such as obstacle and target densities and narrow passages. In the

next section, the influence of translation weight wt and maximum cell size cm on

path planning are examined. The results presented in section 6.2 demonstrate

that the proposed method outperform the nearest neighbor and 2-opt heuristics

in distance-optimal path planning, and the major advantage is that it also takes

rotation time into consideration.

6.1 Influence of translation weight wt

In this section, the optimal sensor path obtained from cell decomposition

and integer programming is plotted along with sensor configurations on the

workspace. The FOV of the sensor is plotted by a green triangle when it reaches

an observation cell and obtains measurement from a target. Figure 6.1 and Fig-

ure 6.2 shows the optimal path with different wt. It is observed that the value

of translation weight wt must be accounted for in sensor path planning. Sup-

poseW contains 9 targets indicated by red thick dots and 9 obstacles indicated

by black solid rectangles as shown in Figure 6.5. Different translation weight

wt would produce different cost on the edges of the connectivity graph. As

the objective is to find a path with the lowest cost, a large wt indicates large

cost associated with translation, and encourages the UGV to rotate more to save

translation distance. In Figure 6.1, the optimal path is planned with a relatively

small value of wt = 0.3. The sensor first measures target 8, then moves forward

43

C-Obstacles

UGV

FOV

Initial Position

Optimal Path

Targets

Figure 6.1: Optimal path with wt = 0.3, cm = 4. A low wt indicates higher
rotation cost and discourages rotation. The sensor first measures target 8, then
moves forward for a long distance to obtain measurements of target 4 because
it does not need to perform rotation in this process.

for a long distance to obtain measurements of target 4 because it does not need

to perform rotation in this process. However, in Figure 6.2 where translation

cost dominates, the sensor rotates toward a much nearer target 5 after obtaining

measurement of target 8. Moveover, the sensor shows a ”shake head” behavior

near target 5 and 6. It chooses a path that has targets along both sides, and ro-

tates left and right (each time by approximately π
2
) to obtain measurements. In

this way the sensor does not need to go to each target and the total translation

cost is minimized.

44

C-Obstacles

UGV

FOV

Initial Position

Optimal Path

Targets

Figure 6.2: Optimal path with wt = 0.7, cm = 4. A high wt encourages the UGV
to rotate more to save the total distance traveled. The sensor rotates toward a
much nearer target 5 after obtaining measurement of target 8 that is nearer.

Recall that wt is chosen as ωm/(vm + ωm). For different pairs of vm and ωm,

different values ofwt are chosen and the corresponding optimal path is planned.

In fact, wt is closely related to the robot kinematics. For example, it is much eas-

ier for a unicycle to turn around than a unmanned underwater vehicle (UUV),

and the relative cost of translation and rotation are very different in both cases.

The freedom of choosingwt enables the method to adapt to robots with different

characteristics.

45

Figure 6.3: Comparison of optimal cost and running time for all cm. Smoothing
significantly reduces the cost. In general, reducing cm results in lower optimal
cost but longer run time.

6.2 Influence of maximum permissible cell size cm

The cell decomposition approach decomposes Cfree into cells with a maximum

permissible cell size cm such that the length and height of each cell is smaller

than cm. In this section, simulation conducted in Map 1 shown in Figure 6.4

demonstrates the influence of cm on path planning results. Figure 6.3 compares

the cost and running time with different cell sizes. Smoothing of the path ob-

tained from cell decomposition would achieve path continuity and help elimi-

nate broken lines, frequently turning points and large cumulative turning angle

[14, 59]. Three important observations can be made from Figure 6.3.

First, the running time increases significantly as the cell size decreases. The

number of cells would increases quadratically with respect to cell size, and so

is the number of nodes in the connectivity graph. Even though the integer pro-

46

gramming approach avoids the exponential complexity with respect to node

number associated with TSP, the running time still increases at a relatively high

speed.

Second, a smaller cell size would improve the performance of the path plan-

ning approach. The general trend of the cost associated with the optimal path is

descending as cell size decreases. Reducing cell size improves the performance

for two reasons. On is that as the UGV is unable to maneuver inside a cell, if

the cell size is too large, some maneuvers that helps to reduce the cost might be

missed. The other is that as the sensor moves between centroid of cells, large

cell size would result in broken lines and frequently turning points that can be

improved by reducing cell size.

Third, after smoothing the benefit of reducing cell size becomes small.

Smoothing reduces the cost associated with broken lines and frequently turning

points. After the cell size is sufficiently small, the benefit of maneuver dimin-

ishes. This observation suggests the use of a moderate cell size combined with

smoothing in order to make a good tradeoff between time and performance.

6.3 Performance comparison with benchmark methods

In this section, the sensor path planning method developed in this thesis is

tested on three workspace with various connectivity characteristics. The first

workspace, denoted as Map1, consists of 3 obstacles and 9 targets. Only a small

portion of straight line between target pairs are blocked by obstacles. Map 2 is

populated with 9 obstacles that block most target pairs. Map 3 is the 10m× 10m

with 30 targets and 25 obstacles shown in Figure 6.6. Out of the 25 obstacles, 20

47

Targets

Obstacles

Figure 6.4: Map1 is composed of 3 obstacles and 7 targets. The number of obsta-
cles is relatively small. As a result, a large portion of target pairs are connected
with a collision-free straight line segment.

of them are small polygons populated in the upper right room with relatively

high density. The 30 targets are spread across the entire workspace. The initial

position of the UGV is in the lower right room marked by the thick blue dot.

In the following figures, S is triangle plotted in green whenever the sensor

obtain measurements, and UGV is plotted as a rectangle in blue along the op-

timal path. The index i of each target that is measured by the sensor is shown

next to Ti in all figures.

48

Targets

Obstacles

Figure 6.5: Map 2 is composed of 9 obstacles and 7 targets. More obstacles in
the workspace blocks more straight paths between target pairs.

For comparison, two benchmark methods, the nearest neighbor (NN) [24]

and 2-opt heuristics [24, 18], are implemented for the directional sensor. Since

these two methods do not take non-complete graph and obstacles into consid-

eration, they are modified to adapt to the obstacle populated workspace.

The nearest neighbor method is a simple and straightforward approach de-

veloped to generate path for TSP [40]. Every time the UGV decides on the next

move, the collision-free path from the current configuration to every other target

is calculated via methods such as Dijkstra or A* alrogithm. The UGV chooses

49

Obstacles

Initial Position

Targets

Figure 6.6: Map 3 is composed of 25 obstacles and 30 targets. Out of the 25
obstacles, 20 of them are small polygons populated in the upper right room with
relatively high density. The 30 targets are spread across the entire workspace.

the nearest one as the next point and iterates until all the targets have been vis-

ited. In the presence of obstacles, the connectivity graph is not complete, and

the nearest neighbor approach might fail to find the next unvisited target. Here,

the connectivity graph is modified as a complete graph by adding extra edges.

For any pair of unconnected nodes, an extra edge is added with a cost corre-

sponding to the shortest collision free path between them. The connectivity

graph is therefore complete and the sensor path can be planned using ”nearest

neighbor” approach.

50

C-Obstacles

UGV

FOV

Initial Position

Optimal Path

Targets

Figure 6.7: The optimal path obtained from cell decomposition and integer pro-
gramming with wt = 0.9 for Map 2. The sensor demonstrates the ”shake head”
behavior near target 6 and 7, which allows the sensor to rotate more to reduce
translation cost. The total translation is 11.1m and total rotation is 14.7 rad.

A popular approach to reduce path cost is a heuristics named as 2-opt al-

gorithm [40]. The 2-opt algorithm consists of removing two arbitrary edges in

the path, reconnecting the path using two new edges, and then maintaining this

change if it reduces the total cost. It has been proven to produce a solution no

worse than the average cost of a tour in polynomial time [48]. In the sensor

path planning problem with obstacles, the 2-opt algorithm is implemented on

the path obtained from the nearest neighbor approach.

All three methods are applied to three different workspace with different

targets and obstacle conditions. For the cell decomposition method, two ex-

51

C-Obstacles

UGV

FOV

Initial Position

Optimal Path

Targets

Figure 6.8: The optimal path obtained from 2-opt heuristics for Map 2. The
sensor need to go to each target to obtain measurement and therefore the per-
formance is affected. The total translation is 14.0m and total rotation is 12.7 rad.

treme cases of wt = 0.1 and wt = 0.9, are simulated to analyze the performance

when either rotation or translation dominates. All three methods are evaluated

in terms of rotation time and translation time. The results are shown in Table

6.1.

52

Table 6.1: Performance Comparison in Map 1, 2 and 3

Map1 Cell (wt = 0.1) Cell (wt = 0.9) NN Heuristics

Translation (m) 15.1 11.2 13.1 13.2

Rotation (rad) 9.3 12.4 16.0 10.0

Map2 Cell (wt = 0.1) Cell (wt = 0.9) NN Heuristics

Translation (m) 14.0 11.1 16.7 14.0

Rotation (rad) 11.8 14.7 14.0 12.7

Map Cell (wt = 0.1) Cell (wt = 0.9) NN Heuristics

Translation (m) 48.6 39.2 60.8 45.2

Rotation (rad) 38.0 58.5 45.1 42.2

Compared with two benchmark methods that considers only translation, the

proposed method obtains a path with smaller cost with a large wt due to its abil-

ity to encourage the UGV to rotate more to save translation distance. Consider

the path between target 6 and 7 in Figure 6.7 and Figure 6.8. The ”shake head”

behavior of the sensor discussed in section 6.1 reduces the translation distance

compared with the heuristics. Overall, the proposed method achieves 13% to

16% improvement in performance. The method with the worst performance

is the ”nearest neighbor” approach, because the sensor greedily moves to the

nearest target and may travel back and forth to visit all the targets. Moreover,

the proposed approach is able to deal with the case where rotation cost dom-

inates (wt = 0.1), while the benchmark methods do not consider rotation and

53

C-Obstacles

UGV

FOV

Initial Position

Optimal Path

Targets

Figure 6.9: The optimal path obtained from cell decomposition and integer pro-
gramming with wt = 0.9 for Map 3. The total translation is 39.2m and total
rotation is 58.5 rad.

the performance is therefore affected. Another important observation is the in-

fluence of obstacles on path planning. In Map 1, the number of obstacles is

relatively small, and most target pairs are placed relatively close to each other.

The benchmark methods can still obtain a path with relatively low translation

cost. In Map 2 where more obstacles are present, the performance of the heuris-

tics is affected and so is the nearest neighbor method. The cell decomposition

approach applied in this thesis is able to path a path with low cost under all

circumstances.

54

C-Obstacles

UGV

FOV

Initial Position

Optimal Path

Targets

Figure 6.10: The optimal path obtained from ”2-opt” heuristics for Map 3. The
sensor need to go to each target to obtain measurement and therefore the per-
formance is affected. The total translation is 45.2m and total rotation is 42.2 rad.

55

CHAPTER 7

CONCLUSION AND FUTURE STEPS

In this thesis, a methodology based on cell decomposition and integer pro-

gramming is developed for planning the path for directional sensor platforms

to classify targets in the workspace with minimum time. The objective of mea-

suring targets is transformed into visiting the corresponding observation cells

obtained from cell decomposition. A closed-form definition of directional C-

Target is proposed and can be implemented with linear complexity. An inte-

ger programming approach is developed to solve the path planning problem

in the connectivity graph. The methodology is flexible to incorporate different

weights on translation and rotation and the running time can be controlled by

the maximum permissible cell size. Simulations in different workspace with

different connectivity characteristics has shown the effectiveness of this method

and the relatively better performance compared to the nearest neighbor method

and classical TSP formulation.

The running time of the path planning methodology increases with the num-

ber of cells. One of the future direction is making the methodology scalable to

larger workspace. The integer programming approach can also be combined

with other path planning techniques. For example, the probabilistic roadmap

method (PRM) picks a collection of random configurations in Cfree as mile-

stones, and the connectivity graph is constructed with milestones as nodes.

Compared to cell decomposition, PRM is not resolution complete, but is more

scalable to larger workspace. The connectivity graph obtained from PRM can

also be solved via integer programming to classify all the targets. Analog to the

notion of observation cells, the milestones where the sensor can measure tar-

56

FOV

Optimal Path

UGV

Obstacles

Initial Position

Targets

Milestones

Figure 7.1: The optimal path obtained for Map 3 with PRM and integer pro-
gramming approach. The milestones are shown by triangles. The path planning
algorithm generates the connectivity graph from the milestones, and produce a
path that satisfies the sensing objective with minimum time. In this example,
only translation cost is taken into consideration.

gets are found out and the index set Oi is generated in a similar pattern. The

path planning algorithm generates the connectivity graph from the milestones,

and produce a path that satisfies the sensing objective with minimum time. In

this example, only translation cost is taken into consideration. The optimal path

is shown in Figure 7.1. The combination of integer programming and PRM

demonstrates the flexibility of the integer programming technique, and future

work of applying it to sensor path planning would have a broad perspective.

57

BIBLIOGRAPHY

[1] Ercan U Acar, Howie Choset, Yangang Zhang, and Mark Schervish. Path
planning for robotic demining: Robust sensor-based coverage of unstruc-
tured environments and probabilistic methods. The International journal of
robotics research, 22(7-8):441–466, 2003.

[2] Timo Ahonen, Abdenour Hadid, and Matti Pietikainen. Face description
with local binary patterns: Application to face recognition. IEEE transac-
tions on pattern analysis and machine intelligence, 28(12):2037–2041, 2006.

[3] Alberto Bemporad and Manfred Morari. Control of systems integrating
logic, dynamics, and constraints. Automatica, 35(3):407–427, 1999.

[4] Rodney A Brooks and Tomas Lozano-Perez. A subdivision algorithm in
configuration space for findpath with rotation. IEEE Transactions on Sys-
tems, Man, and Cybernetics, (2):224–233, 1985.

[5] Chenghui Cai and Silvia Ferrari. A q-learning approach to developing an
automated neural computer player for the board game of clue R©. In Neural
Networks, 2008. IJCNN 2008.(IEEE World Congress on Computational Intelli-
gence). IEEE International Joint Conference on, pages 2346–2352. IEEE, 2008.

[6] Chenghui Cai and Silvia Ferrari. Information-driven sensor path planning
by approximate cell decomposition. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 39(3):672–689, 2009.

[7] Chester F Carlson. Lecture 10: Hough circle transform. Rochester Institute
of Technology: Lecture Notes, 2005.

[8] Olivier Chapelle, Patrick Haffner, and Vladimir N Vapnik. Support vector
machines for histogram-based image classification. IEEE transactions on
Neural Networks, 10(5):1055–1064, 1999.

[9] Howie Choset. Coverage for robotics–a survey of recent results. Annals of
mathematics and artificial intelligence, 31(1-4):113–126, 2001.

[10] Howie Choset and Philippe Pignon. Coverage path planning: The boustro-
phedon cellular decomposition. In Field and service robotics, pages 203–209.
Springer, 1998.

58

[11] Gianpaolo Conte and Romolo Zulli. Hierarchical path planning in a multi-
robot environment with a simple navigation function. IEEE Transactions on
Systems, Man, and Cybernetics, 25(4):651–654, 1995.

[12] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
learning, 20(3):273–297, 1995.

[13] Richard O Duda and Peter E Hart. Use of the hough transformation to
detect lines and curves in pictures. Communications of the ACM, 15(1):11–
15, 1972.

[14] Mohamed Elbanhawi, Milan Simic, and Reza N Jazar. Continuous path
smoothing for car-like robots using b-spline curves. Journal of Intelligent &
Robotic Systems, 80(1):23–56, 2015.

[15] Bernard Faverjon. Object level programming of industrial robots. In
Robotics and Automation. Proceedings. 1986 IEEE International Conference on,
volume 3, pages 1406–1412. IEEE, 1986.

[16] Gerd Gigerenzer and Wolfgang Gaissmaier. Heuristic decision making.
Annual review of psychology, 62:451–482, 2011.

[17] Greg Hager and Max Mintz. Computational methods for task-directed sen-
sor data fusion and sensor planning. The International Journal of Robotics
Research, 10(4):285–313, 1991.

[18] Keld Helsgaun. An effective implementation of the lin–kernighan traveling
salesman heuristic. European Journal of Operational Research, 126(1):106–130,
2000.

[19] Christian Hofner and Günther Schmidt. Path planning and guidance tech-
niques for an autonomous mobile cleaning robot. Robotics and autonomous
systems, 14(2-3):199–212, 1995.

[20] Paul VC Hough. Machine analysis of bubble chamber pictures. In Inter-
national conference on high energy accelerators and instrumentation, volume 73,
page 2, 1959.

[21] Wesley H Huang. Optimal line-sweep-based decompositions for coverage
algorithms. In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE
International Conference on, volume 1, pages 27–32. IEEE, 2001.

59

[22] Yong K Hwang and Pang C Chen. A heuristic and complete planner for the
classical mover’s problem. In Robotics and Automation, 1995. Proceedings.,
1995 IEEE International Conference on, volume 1, pages 729–736. IEEE, 1995.

[23] Paulo A Jimenez, Bijan Shirinzadeh, Ann Nicholson, and Gursel Alici. Op-
timal area covering using genetic algorithms. In Advanced intelligent mecha-
tronics, 2007 IEEE/ASME international conference on, pages 1–5. IEEE, 2007.

[24] David S Johnson and Lyle A McGeoch. The traveling salesman problem:
A case study in local optimization. Local search in combinatorial optimization,
1:215–310, 1997.

[25] Michael Jünger and Denis Naddef. Computational combinatorial optimization:
optimal or provably near-optimal solutions, volume 2241. Springer Science &
Business Media, 2001.

[26] Chen Junhua and Lei Jing. Research on color image classification based on
hsv color space. In Instrumentation, Measurement, Computer, Communication
and Control (IMCCC), 2012 Second International Conference on, pages 944–947.
IEEE, 2012.

[27] Subbarao Kambhampati and Larry Davis. Multiresolution path planning
for mobile robots. IEEE Journal on Robotics and Automation, 2(3):135–145,
1986.

[28] Carolyn Kimme, Dana Ballard, and Jack Sklansky. Finding circles by an
array of accumulators. Communications of the ACM, 18(2):120–122, 1975.

[29] Chris M Kreucher, Keith D Kastella, and Alfred O Hero. Multi-platform
information-based sensor management. In Defense Transformation and
Network-Centric Systems, volume 5820, pages 141–152. International Soci-
ety for Optics and Photonics, 2005.

[30] André Langevin, François Soumis, and Jacques Desrosiers. Classification
of travelling salesman problem formulations. Operations Research Letters,
9(2):127–132, 1990.

[31] C Laugier. An adaptive collision-free trajectory planner. In Proc. Int. Conf.
on Advanced Robotics, 1985.

[32] Eugene L Lawler, Jan Karel Lenstra, and Alexander HG Rinnooy Kan. The
traveling salesman problem. 1985.

60

[33] Xuejun Liao and Lawrence Carin. Application of the theory of optimal ex-
periments to adaptive electromagnetic-induction sensing of buried targets.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(8):961–972,
2004.

[34] Lanny Lin and Michael A Goodrich. Uav intelligent path planning for
wilderness search and rescue. In Intelligent robots and systems, 2009. IROS
2009. IEEE/RSJ International Conference on, pages 709–714. IEEE, 2009.

[35] Yugang Liu and Goldie Nejat. Robotic urban search and rescue: A sur-
vey from the control perspective. Journal of Intelligent & Robotic Systems,
72(2):147–165, 2013.

[36] Wenjie Lu, Guoxian Zhang, and Silvia Ferrari. An information potential
approach to integrated sensor path planning and control. IEEE Transactions
on Robotics, 30(4):919–934, 2014.

[37] P Miliotis. Integer programming approaches to the travelling salesman
problem. Mathematical Programming, 10(1):367–378, 1976.

[38] Clair E Miller, Albert W Tucker, and Richard A Zemlin. Integer program-
ming formulation of traveling salesman problems. Journal of the ACM
(JACM), 7(4):326–329, 1960.

[39] Bryan S Morse. Lecture 15: Segmentation (edge based, hough transform).
Brigham Young University: Lecture Notes, 2000.

[40] Christian Nilsson. Heuristics for the traveling salesman problem. Linkoping
University, pages 1–6, 2003.

[41] Hanna Oh, Jeffrey M Beck, Pingping Zhu, Marc A Sommer, Silvia Ferrari,
and Tobias Egner. Satisficing in split-second decision making is character-
ized by strategic cue discounting. Journal of experimental psychology: learn-
ing, memory, and cognition, 42(12):1937, 2016.

[42] Hanna Oh-Descher, Jeffrey M Beck, Silvia Ferrari, Marc A Sommer, and
Tobias Egner. Probabilistic inference under time pressure leads to a cortical-
to-subcortical shift in decision evidence integration. NeuroImage, 162:138–
150, 2017.

[43] Timo Ojala, Matti Pietikäinen, and David Harwood. Performance evalua-
tion of textures measures with classification based on kullback discrimina-

61

tion of distributions. In Proceedings of the International Conference on Pattern
Recognition (ICPR94), pages 582–585, 1994.

[44] Timo Ojala, Matti Pietikäinen, and David Harwood. A comparative study
of texture measures with classification based on featured distributions. Pat-
tern recognition, 29(1):51–59, 1996.

[45] Timo Ojala, Matti Pietikainen, and Topi Maenpaa. Multiresolution gray-
scale and rotation invariant texture classification with local binary patterns.
IEEE Transactions on pattern analysis and machine intelligence, 24(7):971–987,
2002.

[46] Joseph O’rourke. Art gallery theorems and algorithms, volume 57. Oxford
University Press Oxford, 1987.

[47] Manfred Padberg and Ting-Yi Sung. An analytical comparison of different
formulations of the travelling salesman problem. Mathematical Program-
ming, 52(1-3):315–357, 1991.

[48] Abraham Punnen, FrancoiS Margot, and SantoSh Kabadi. Tsp heuristics:
domination analysis and complexity. Algorithmica, 35(2):111–127, 2003.

[49] Arthur Richards and Jonathan P How. Aircraft trajectory planning with
collision avoidance using mixed integer linear programming. In American
Control Conference, 2002. Proceedings of the 2002, volume 3, pages 1936–1941.
IEEE, 2002.

[50] Mohamed Rizon, Yazid Haniza, Saad Puteh, Ali Yeon, Md Shakaff, Saad
Abdul Rahman, Masanori Sugisaka, Yaacob Sazali, Mamat M Rozailan,
and M Karthigayan. Object detection using circular hough transform. 2005.

[51] N Ruangpayoongsak, H Roth, and J Chudoba. Mobile robots for search
and rescue. In Safety, Security and Rescue Robotics, Workshop, 2005 IEEE In-
ternational, pages 212–217. IEEE, 2005.

[52] Thomas C Shermer. Recent results in art galleries (geometry). Proceedings
of the IEEE, 80(9):1384–1399, 1992.

[53] Rob Siegel. Land mine detection. IEEE instrumentation & measurement mag-
azine, 5(4):22–28, 2002.

[54] Thierry Siméon, Stéphane Leroy, and J-P Lauumond. Path coordination

62

for multiple mobile robots: A resolution-complete algorithm. IEEE Trans-
actions on Robotics and Automation, 18(1):42–49, 2002.

[55] Herbert A Simon. A behavioral model of rational choice. The quarterly
journal of economics, 69(1):99–118, 1955.

[56] Herbert A Simon. Rational choice and the structure of the environment.
Psychological review, 63(2):129, 1956.

[57] Herbert A Simon. Invariants of human behavior. Annual review of psychol-
ogy, 41(1):1–20, 1990.

[58] Jorge Urrutia. Art gallery and illumination problems. In Handbook of com-
putational geometry, pages 973–1027. Elsevier, 2000.

[59] Hongwei Wang, Yong Ma, Yong Xie, and Min Guo. Mobile robot optimal
path planning based on smoothing a* algorithm. Journal of Tongji University
(natural science), 38(11):1647–1650, 2010.

[60] Xiaoyu Wang, Tony X Han, and Shuicheng Yan. An hog-lbp human de-
tector with partial occlusion handling. In Computer Vision, 2009 IEEE 12th
International Conference on, pages 32–39. IEEE, 2009.

[61] H Paul Williams and Sally C Brailsford. Computational logic and integer
programming. Advances in Linear and Integer Programming, 4:249–281, 1996.

[62] Simon X Yang and Chaomin Luo. A neural network approach to complete
coverage path planning. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 34(1):718–724, 2004.

[63] Namik Kemal Yilmaz, Constantinos Evangelinos, Pierre FJ Lermusiaux,
and Nicholas M Patrikalakis. Path planning of autonomous underwater
vehicles for adaptive sampling using mixed integer linear programming.
IEEE Journal of Oceanic Engineering, 33(4):522–537, 2008.

[64] Guoxian Zhang, Silvia Ferrari, and M Qian. An information roadmap
method for robotic sensor path planning. Journal of Intelligent and Robotic
Systems, 56(1-2):69–98, 2009.

[65] DJ Zhu and J-C Latombe. New heuristic algorithms for efficient hierarchi-
cal path planning. IEEE Transactions on Robotics and Automation, 7(1):9–20,
1991.

63

