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ABSTRACT

A decentralized GP learning, fusion, and planning (RESIN) algorithm for a mo-

bile sensor network to actively learn the motion pattern of multiple moving

targets, and thus planning for each sensor to pursue the targets based on the

information entropy was proposed. RESIN is combined with a decentralized

GP fusion method which is robust to rumor propagation and computational

efficient by using the weighted exponential product based on Chernoff infor-

mation, and an information-driven path planning (IPP) method that is able to

generate the most information sensitive path for the mobile sensor network by

using sequential planning and fusing each sensor with its predecessors’ plan-

ning information. Various numerical simulations were done to show that RESIN

is effective and could achieve near-optimal performance for the sensor network.

Also, RESIN shows more applicability while in the situation that the number of

sensors is less than number of targets.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

Sensor planning problem has been increasing attracting attention and is widely

used for a various of applications such as environmental monitoring [29, 36],

video surveillance [21, 32, 11, 12] and the internet of things [14]. From these

applications, it can be learned that during the practical situation, usually the

region of interest (ROI) are greatly larger than the area of the sensor’s field of

view (FOV). As a result, learning the target’s behavior and planning for the

sensor’s motion becomes a crucial point in order to improve the performance of

collecting the information of the targets in the ROI.

One example of such research is the Pursuit–Evasion Games [30], the prob-

lem of a network of sensors pursuing a team of evaders (targets) while concur-

rently building a map in an unknown environment. This problem was defined

as a probabilistic game theoretical framework with a finite 2-D environment

containing an unknown number of fixed obstacles. Evaders and pursuers are

placed in the environment and are allowed to move to the unoccupied space.

In this research, the motion of the evader is modeled as a Markov process and

the planning is based on the policy to maximized the probability of sensors

capturing and containing an evader. Moreover, in the work of [10], the energy

consumed of the sensor pursuing the evader is also taken into consideration

and the pursuit policy are thus further optimized. Then, in [15], a new model-

ing method of target’s motion is proposed, which deployed a camera installed

on a helicopter for monitoring the traffic of the Boston area. The traffic motion

is then modeled using Dirichlet Process Gaussian Processes (DPGP), which are

proved to be faster and more appropriate for the decentralization of the state
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space than markov process.

In this thesis, a “rumor-robust” decentralized GP learning and fusion ap-

proach which aims to prevent the rumor propagation in GP fusion is proposed.

The approach is demonstrated on a collaborative sensor network to perform

decentralized target modeling and trajectory prediction. Also, a decentralized

information-driven path planning (IPP) approach is also presented in this the-

sis for controlling and coordinating sensor trajectories such that the sensors

could obtain the most informative target measurements under the communi-

cation constraints.

In the following content of the thesis, Chapter 4 would discuss about the op-

tical flow method for the motion computation of the targets. The decentralized

GP learning and fusion approach would be described in Chapter 5 and the de-

centralized path planning algorithm would be presented in chapter 6. In chapter

7, numerical simulations would be done to show the accuracy and efficiency of

RESIN algorithm proposed in this thesis.
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CHAPTER 2

BACKGROUND

Nonparametric models, such as gaussian process, has been showing its ef-

ficiency and flexibility in modeling multi-targets. For a multivariable gaus-

sian distribution f ∼ GP(µ, k), in order to model the probability distribution

P( f∗ | x,D), we would use a GP prior P( f | x) ∼ N(µ,Σ) and condition it based on

the training data D, to make prediction by maximise the log-marginal likelihood

[8]:

θ =θ log(P( f | x,D)) = −
1
2

( f T (K + σ2
ε I)−1 f + log|K + σ2

ε I|) (2.1)

Define K = k(S , S ) ∈N×N as the kernel matrix. With the trained hyper-

parameter θ, the posterior distribution could be predicted by:

E[ f∗] = kT
∗ (K + σ2

ε I)−1 f

var[ f∗] = k∗∗ − kT (K + σ2
ε I)−1k∗

(2.2)

Where f∗ is the predicted motion of the target, s∗ is the test input, k∗ = k(S , s∗)

and k∗∗ = k(s∗, s∗).

For a single gaussian process, while dealing with multi-targets trajectory

learning, although it performs robust to unaligned, noisy measurements and

provides a flexible representation for each individual motion pattern, it is not

able to model different target with different destinations and motion patterns.

In order to solve this problem, we need to mixture the gaussian models of differ-

ent motion patterns[15]. On way is to use Dirichlet Process to mixture Gaussian
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Process.

The Dirichlet Process (DP) is a distribution over discrete distributions, usu-

ally the total number of distributions is unbounded, which means there could

be nearly infinite motion patterns and the total probability would be still mod-

eled as 1. Among them, a few patterns are expected to be followed by the target

for the majority of time. For these motion patterns, the prior probability that

motion pattern zi of target trajectory ti belongs to an existing motion pattern b j

is modeled as:

P(zi = j | z−i, α) =
n j

N − 1 + α
(2.3)

Where z−i denotes the motion pattern assignments for the remaining trajec-

tories, α represents the concentration parameter of the Dirichlet process, n j is the

number of trajectories assigned to motion pattern b j , and N is the total num-

ber of observed trajectories. And the probability that motion pattern zi is a new

motion pattern is:

P(zi = M + 1 | z−i, α) =
α

N − 1 + α
(2.4)

Where M is the number of observed motion patterns. For any finite measur-

able motion pattern Bi
n
i=1, the following holds:

[P(B1)...P(Bn)]T ∼ Dir(αH(B1), ..., αH(Bn)) (2.5)

Where ”Dir” denotes the Ditichlet distribution. Now we can do the DPGP

mixture:
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θi, π ∼ DP(α,GP0), i = 1, ...,∞

G j ∼ Cat(π), j = 1, ...,N

fG j(x) ∼ GP(θG j,Ψ), x ∈ W, j = 1, ...,N

(2.6)

Where ”GP” is gaussian process, GP0 = GP(0,Ψ), ”Cat(π)” denotes an M-

dimensional categorical distribution with probability mass function π. With the

DPGP mixture we are now able to model the dynamic targets from sensor mea-

surements that are obtained over a period of time [to, t f ].

Compared to a single, non-stationary GP, DPGP has the following advan-

tages: (a) It preserves the use of the well-studied and widely-applied stationary

covariance functions, many of which exhibit the locality property and are com-

putationally friendly with only a few (unknown) hyperparameters to be trained,

(b) the required number of locally stationary GPs can automatically grow with

the increasing complexity of the phenomenon, and (c) each locally stationary

GP only incurs cubic time in the size of the observations that are local to its

corresponding area of prediction instead of over the entire phenomenon.[27]

Decentralized GP learning and fusion approaches have been developed by

distributing the computation into independent local agents and each agent just

operates on a subset of the whole data. There are two representative classes

for decentralized GP learning and fusion, the mixture of experts (MoEs) [35]

and the product of experts (PoEs) [6, 8]. In MoEs, each agent would locally

learn its own GP model for different partition of the whole state space and then

make a global prediction by synthesizing all the local predictions together. Each

local prediction would be assigned a weight based on the agent’s domain cor-

responding to the training data. In contrast, the agents in PoEs would share
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the same state space with each agent independently learn a GP model just us-

ing a subset of the training data. The global prediction is therefore made using

Bayes rule and the independence assumption of local predictions. Comparing

with MoEs, the PoEs method is more efficient in training and thus attracts great

interest. However, current PoE approaches are not able to be directly applied

in data fusion within a sensor network, since the PoE-based approaches would

suffer the problem of rumor propagation, which means the common informa-

tion between local agents, i.e. the simultaneous measurements of the same tar-

get, would be redundantly used and therefore may lead into incorrect fusion

results [5].

Information-driven planning refers to the problem of determining the best

control policy for the sensor to gather the measurement over a future period

of time [9]. One of the previous methods for decentralized IPP is a decentral-

ized, gradient-based control approach which assumes all-to-all agent commu-

nications [13] where each sensor’s measurement and the gradient of the objec-

tive function are communicated constantly with the whole network, and the

trajectories are proved to be converged into a Nash equilibrium. However since

multiple iterations are required for the convergence of gradient-based optimiza-

tion, this method incurs large communication burden. Another one is a dis-

tributed planner proposed to learn spatial-temporal processes using GPs [33],

where each sensor constantly communicates with its neighboring sensors and

computes the optimal trajectories for both itself and its neighbors to achieve

coordination. While the planning is fully decentralized, the exchange of mea-

surements and planning for neighbors also result in high communication bur-

den and redundant computation. More recently, a multi-robot online sensing

strategy for using GP to construct the communication maps was proposed [19].
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This work uses a leader-follower paradigm, where each pair of leader-follower

sensors is manually defined and the leader generates plans to coordinate with

its follower. However, no coordination is ensured between different pairs.

So to overcome these challenges, this thesis proposes a rumor-robust decen-

tralized GP learning, fusion, and planning (RESIN1) approach for a mobile sen-

sor network to actively learn target motion models. To deal with time-varying

target motion models, a spatio-temporal kernel is used in GP modeling. A

rumor-robust decentralized PoE-based GP learning and fusion algorithm is then

applied to combine individual sensors’ local prediction of target trajectories into

a globally consistent one. The GP learning and fusion approach is computation-

ally efficient and is able to avoid rumor propagation in the sensor network.

1RESIN is the acronym of “Rumor-robust decentralized gp lEarning, fuSIon, and planNing”.
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CHAPTER 3

PROBLEM FORMULATION

This thesis considers the situation that multiple targets T1, ...,Tm, are moving

with different motion patterns in a Euclidean workspaceW ⊂ R2 . A network

of N mobile robots, where there is a fixed sensor installed on each robot, are

deployed to learn the motion models of the targets. For each robot, the sensor

consists of a fixed stereo camera, which can extract the motion of the target it

observed in the form of scene flow and a wireless communication device that

enables information transfer between sensors. For certain target Ti, i ∈ {1, ...m},

its trajectory could be represented as a differentiable continuous function fi :

R2 × R → R2 defined over the workspaceW. The function maps the position of

the target to its velocity, as the following shows,

ẋi(t) = fi [xi(t), t] , vi(t), (3.1)

where xi(t) ∈ W and vi(t) ∈ R2 respectively represent the position and veloc-

ity of the target’s center of mass.

The sensor’s state is defined by a R4 matrix s = [sx sy sθ sv]T , where

s = [sx sy]T denotes the position of the sensor in the workspaceW, sθ ∈ [0, 2π)

denotes the orientation of the sensor and sv > 0 denotes the linear velocity of

the robot. The control input to the robot is defined as a R2 matrix u = [ω a]T ,

where a represents the linear acceleration and ω represents the angular velocity.

With the time interval be defined as ∆T > 0, the kinematic model of the robot

j could be represented by the following difference equation which denotes the

state transformation between the kth step and the (k + 1)th step,

8



s j(k + ∆T ) = s j(k) +


sv(k) cos(sθ(k))

sv(k) sin(sθ(k))

u j(k)

 ∆T (3.2)

For simplification, in the following content of this thesis, the R4 × R2 → R4

function (3.2) will be represented in the form of,

s j(k + ∆T ) = g(s j(k),u j(k),∆T ). (3.3)

Each sensor could measure the position and velocity of the target within

its field of view (FOV) by computing the sparse scene flow of the target

[18]. This thesis assumes the FOV of the sensor is defined as F
(
s j(k)

)
={

w ∈ W |
∥∥∥[sx(k) sy(k)]T − w

∥∥∥
2
≤ r j

}
, where r j > 0 denotes the measuring range

of the jth sensor. The measurement model of the camera could then be defined

as the following function,

zi j(k) =


vi(k) + ε if xi(k) ∈ F

(
s j(k)

)
∅ if xi(k) < F

(
s j(k)

) , (3.4)

where ε ∈ R2 is an additive zero-mean Gaussian white noise added to the

measurement, with the distribution ε ∼ N(0,Σε), where Σε = ε2
0I, and zi j(k) ∈ R2

denotes the velocity of the ith target measured by the jth sensor. For simplicity,

this thesis assumes that the target could be accurately measured by the sensor

provided that it’s in the FOV of the sensor.

A communication network will then be built by connecting all the sensors.

Let a directed graph G = (V,E) represent this communication network, where

9



V = {1, . . . ,N} is the set of sensor indices and E =
{
e jl ∈ {0, 1} | j, l = 1, . . . ,N

}
denotes the edge set. Sensors j and l can exchange information when there is a

communication link between them, i.e. ei j = 1 [24].

In practical applications, usually the communication range between sensors

is limited, so in this thesis, sensors are divided into groups which is formed

by neighboring sensors. It’s assumed that sensors within the same group can

communicate with each other at each time step.

For the sensors to keep learning the models of the target’s motion, an accu-

rate prediction on the target’s future positions is required. Based on the pre-

diction, the sensor could then actively planning the trajectory it is supposed to

move along with, so that the sensor is able to keep the target within its FOV and

extract the measurement from the target continuously.

The approaches for solving the two problems introduced above are going to

be discussed in the following sections.

3.1 Decentralized Learning and Fusion

In this thesis, an approach using Gaussian Process for predicting the target mo-

tion and thus computing the future trajectories of the target is deployed. In

practical applications, since the communication between the sensors is limited.

To conduct centralized GP learning would be difficult as the data transfer are

only happened within neighboring robots. So decentralized GP serves as a

better choices. For each sensor, the GP model runs locally and the local pre-

diction would then be fused into a global one as the final prediction, which,
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as is fused by the observation and prediction of every sensor in the sensor

network, could help reduce the uncertainty of the estimation of target state.

One typical issue in decentralized fusion is the rumor propagation, where the

common information in sensors’ local data are double counted. To better ex-

plain this, let P j

(
x(k) | Z j(k)

)
and Pl (x(k) | Zl(k)) represent the probability den-

sity function (pdf) of local estimates of x(k) from sensors j and l, respectively.

Since in current PoEs methods, P j

(
x(k) | Z j(k)

)
and Pl (x(k) | Zl(k)) are assumed

independent, as a result the fusion would just be the product of them, which

is P
(
x(k) | Z j(k)

)
P (x(k) | Zl(k)). If a target is measured both by sensors j and l,

then simply multiplying the two pdfs would result in incorrect global predic-

tion, which is called rumor propagation. The way to avoid rumor propagation

during the estimation of target’s state is to ensure that the common information

could be tracked and removed during computation. In other words, the fused

pdf should be,

P
(
x(k) | Z j(k) ∪ Zl(k)

)
∝

P
(
x(k) | Z j(k)

)
P (x(k) | Zl(k))

P
(
x(k) | Z j(k) ∩ Zl(k)

) , (3.5)

where the denominator is the conditional probability distribution based on

common information between sensors j and l [1]. However, the cost to con-

duct such a computation is usually expensive. So in this thesis, an approach

of decentralized GP fusion was proposed, which could combine the local pre-

dictions and thus generate a global consistent prediction on the target motion

while avoiding rumor propagation.
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3.2 Information-driven Path Planning (IPP) Algorithm

The second problem is the trajectory planning for the robot so that the sensor is

able to keep the targets in its FOV. In this thesis the planning algorithm is formu-

lated as an optimal control problem. Suppose u j

(
k : k f

)
=

[
uT

j (k) . . . uT
j

(
k f

)]T

as a sequence of control input on the jth sensor over the planning interval

[k, k f ], and the set U
(
k : k f

)
=

[
u1

(
k : k f

)
. . . uN

(
k : k f

)]
denote the control

inputs of all N sensors, which could be computed by maximizing a cost func-

tion J
(
U

(
k : k f

))
under the system constrains. The problem is then formulated

as a optimization problem, as the following equation represents,

U∗
(
k : k f

)
= arg max

U(k:k f )
J
(
U

(
k : k f

))
s.t. s j(t + ∆T ) = g

(
s j(t),ui(t),∆T

)
s j(t) ∈ S, u j(t) ∈ U

t = k, . . . , k f − 1, j = 1, . . . ,N,

(3.6)

where S andU respectively represent the sensor state and control input.

In this thesis, mutual information (MI) is deployed in the cost function, since

it has been proved effective in Information-driven path planning [13, 31, 32].

Define X
(
k : k f

)
=

[
x1

(
k : k f

)
. . . xm

(
k : k f

)]
as the prediction of target posi-

tions during the planning procedure, which could be obtained by decentralized

GP fusion. Meanwhile, based on the predicted trajectories of the targets, the

trajectories of the sensors could be predicted given the control input into the

robots. Then with the prediction of both targets and sensors, the sensor mea-

surement could therefore be predicted . Define the predicted measurement of

all the sensors as Z
(
k : k f

)
, then the MI between X

(
k : k f

)
and Z

(
k : k f

)
can be
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defined as J
(
U

(
k : k f

))
, given the existing measurements stored in the sensor,

i.e.,

J
(
U

(
k : k f

))
= I

(
X

(
k : k f

)
; Z

(
k : k f

)
| Z (1 : k − 1)

)
. (3.7)

Although in function (3.7), U
(
k : k f

)
does not explicitly appear, the predicted

sensor positions S
(
k : k f

)
could be computed since it directly depends on the

control input into the robot, then it would determine the expected sensor mea-

surements Z
(
k : k f

)
and thus, affecting the cost function.

Generally, it’s computationally expensive to solve the centralized IPP as the

search space would grow exponentially with respect to the growing of sensor

number and the planning horizon. So this thesis proposes a decentralized IPP

algorithm for distributing the computation to different sensors and thus im-

prove the efficiency through parallel computation.
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CHAPTER 4

SCENE FLOW EXTRACTION AND TARGET VELOCITY COMPUTATION

One way to measure the motion of the object using visual algorithm is to extract

the scene flow from the object. Scene flow is an approximation of the motion

of each volume voxel of the image taken by the camera, which could be com-

puted under the 3D Motion Constraint Equation [3]. Define a 3D volume voxel

I(x, y, z, t), where x, y, z denotes the spatial position of the voxel and t denotes the

time. As the voxel is moving continuously, after a small time interval, the same

voxel now at time t +δt could be represented as I(x+δx, y+δy, z+δz, t +δt), where

δx, δy, δz is the motion of the vowel along the direction of 3 axes, respectively, so

the following equation is satisfied,

I(x, y, z, t) = I(x + δx, y + δy, z + δz, t + δt) (4.1)

Based on 1st order Taylor series expansion, I(x + δx, y + δy, z + δz, t + δt) could

be expanded as,

I(x + δx, y + δy, z + δz, t + δt) = I(x, y, z, t) +
∂I
∂x
δx +

∂I
∂y
δy +

∂I
∂z
δz +

∂I
∂t
δt (4.2)

According to equation (4.1) and (4.2), the following equation could be ob-

tained,

∂I
∂x

vx +
∂I
∂y

vy +
∂I
∂z

vz +
∂I
∂t

= 0 (4.3)
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Where vx, vy, vz denotes the velocity of the voxel with respect to X,Y,Z axis,

respectively, which is vx = δx
δt , vy =

δy
δt , vz = δz

δt . Let Ix, Iy, Iz, It denotes the 4 partial

derivatives of I, which is, Ix = ∂I
∂x , Iy = ∂I

∂y , Iz = ∂I
∂z , It = ∂I

∂t and equation (4.3) now

becomes,

∇I · −→v = −It (4.4)

Where ∇I = [Ix, Iy, Iz] ∈ R3 is the spatial intensity gradient and −→v =

[vx, vy, vx]T ∈ R3 is the velocity of the image, in other words, the scene flow, of the

pixel (x, y) at time t. Equation (4.4) is called the 3D Motion Constraint Equation.

4.1 Object Scene Flow (OSF) computation

A common approach for extracting 3D scene flow from 2D images is to use a

stereo camera to extract the depth information of the pixels on the image, and

thus it becomes able to compute the motion of pixels along Z axis. In this thesis,

an approach, named object scene flow, is deployed in 3d scene flow computa-

tion for the stereo came [23]. This approach assumes that the 3D structure of

the scene is approximated by a set of piecewise planar superpixels [34] and the

moving object in the scene is rigid and finite. Let S denote the set of superpix-

els and s ∈ S represents one of the superpixel in the set. Define the variable

vs = [ns, os] ∈ R2, where ns ∈ R
3 denotes a 3d plane (ns · X = 0 for any point

X ∈ R3 on the plane), and os denotes the objects that superpixel s is associated

with. Define δoi ∈ S E3 as the motion of object oi and O as the set of all the object,

which is O = {o1, o2, ...}. So the scene flow could be computed by minimizing the

cost function,
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Figure 4.1: Data corresponding cost

E(vs, oi) =
∑
s∈S

ϕ(vs, os) +
∑

{a|a∈S isad jacenttos}

ψ(s, a) (4.5)

where ϕ(vs, os) = ϕ f low(vs, os) + ϕ(vs, os)cross + ϕstereo(vs, os) denotes the cost of

data corresponding, which consists of three parts, as figure 4.1 shows, and

ψ(s, a) = w1ψdepth(ns, na)+w2ψorient(ns, na)+w3ψmotion(s, a) denotes the cost of smooth-

ing, which consist of three part, the smoothness of depth, orientation and

motion, respectively, between neighboring pixels, and w1,w2,w3 denotes the

weights to different parts.

Figure 4.2 shows a demo result of scene flow computation. In this demo the

scene flow is presented as a set of arrows A = {Ai, i = 1, ...} ∈ R3 with the root

of each arrow on each pixel pi(x, y, z)of the image plane P ∈ R3 , and each arrow
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(a) 

 

(b) 

Figure 4.2: Demo result of scene flow computation, (a) projection of scene flow
on the 2D image plane, (b) presentation of 3D scene flow arrow and the 2d image
plane

presents the motion dpi(x,y,z)
dt ∈ R3 of the corresponding pixels of the image.

4.1.1 3D reconstruction and visualization

To better present the 3D spatial information of the 3D scene flow, the 3D recon-

struction are conducted, which projects the pixels on the 2D image back to the

3D space in the world coordinate, based on the depth information computed

in the process of the scene flow computation. With stereo camera, suppose

I1(x1, y1, t) and I2(x2, y2, t) are corresponding pixels respectively on two camera

plane P1 and P2, where (x1, y1) and (x2, y2) ∈ R2 denotes the position of the pixel

17



respectively in two camera’s coordinates, and I(x, y, z, t) where (x, y, z) ∈ R3 de-

notes the position of the voxel in the world coordinate, denotes the 3D voxel

reconstructed from the pixel I1(x1, y1, t) and I2(x2, y2, t). Define a R2 × R2 → R3

projection function,

I(x, y, z, t) = p(I1(x1, y1, t), I2(x2, y2, t))

I1(x1, y1, t) ∈ P1

I2(x2, y2, y) ∈ P2

(4.6)

According to figure (4.3), the depth D of voxel I(x, y, z, t) in the world coordi-

nate could thus be computed as follows,

D = b
f
d
,

where b is the stereo baseline and f denotes the focal length of camera lens,

which are calibration parameters of the stereo camera, so in this thesis they are

supposed to be known. The disparity d = |x1 − x2| represents distance between

the pixel positions in two camera coordinates. Now the scene could be recon-

structed as a set V , which contains all the voxels projected from all the pixels of

the image the camera captured, which is,

p(I1(x1, y1, t), I2(x2, y2, t)) = I(x1, y1,D, t)

V = {I | I = p(I1, I2), I1 ∈ P1, I2 ∈ P2}

(4.7)

The result of 3D reconstruction of the scene and the scene flow visualization

can be seen in figure (4.4). The image shows clearly the spatial relationship
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Figure 4.3: Sketch map of depth computation by stereo camera

            

(a)                                                           (b) 

Figure 4.4: 3D reconstruction result. (a) the original image frame captured by
the camera. (b) The reconstructed scene based on the 3D position of the pixel

among the person and the background, proving the algorithm to be efficient.
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4.2 Ego-Motion Subtraction

Object scene flow is used to compute the dense flow of the whole scene. How-

ever in practical application only the motion of target, in the other word, sparse

flows are needed. So it becomes necessary to compute the flow caused by ego

motion of the camera and subtract it to generate the sparse flow.

Suppose the camera coordinate is fixed, define I(x, y, z) = [x, y, z]T as a voxel

with the position (x, y, z) ∈ R3 denotes the position in the camera coordinate, λ

denotes the focal length of the camera, and I(p, q) denotes the pixel projected by

the voxel on the image with the position (p, q) ∈ R2 in the camera coordinate,

which is

I(p, q) = [p, q]T = [λ
x
z
, λ

y
z

]T (4.8)

The derivative of function (4.8) is as following,

∇I(p, q) = [λ
z∂I(x,y,z)

x − x ∂I(x,y,z)
z

z2 , λ
z∂I(x,y,z)

y − y∂I(x,y,z)
z

z2 ]T (4.9)

The motion of the voxel with respect to the camera coordinates are caused

by two factors, the translation and the rotation of the camera, which is,

∇I(x, y, z) = vtrans + vrot (4.10)

Define w = [wx,wy,wz] as the angular velocity of the camera around x, y, z axis

respectively, v = [vx, vy, vz] as the linear velocity of the camera along x, y, z axis

respectively, so now function (4.10) becomes,
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∇I(x, y, z) = v − w × I(x, y, z)

= [vx + ywz − zwy, vy + zwx − xwz, vz + xwy − ywx]T
(4.11)

Based on function (4.9) and (4.11), the camera’s ego motion could be repre-

sented as the motion of the voxel in the camera coordinate, which is,

∇I(x, y, z) =


λ
z 0 −

p
z

pq
λ

−
p2+λ2

λ
q

0 λ
z −

p
z −

q2+λ2

λ

pq
λ

−p

0 0 1 −y x 0


[
v w

]T

(4.12)

To prove the efficiency of the ego motion subtraction algorithm, a demo is

demonstrated using a moving camera to capture the images of static environ-

ment. The original scene flow computed is shown in figure (4.5.a) and scene

flow after ego motion subtraction is shown in figure (4.5.b). As can be seen

in the figures, the ego motion algorithm is able to compute the flow generated

by camera motion and after subtraction the flow are much more closed to the

ground truth (no flow).
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                          (a)                                                             (b) 

Figure 4.5: Demo result of scene flow ego motion subtraction. (a) Original scene
flow computed from the images extracted by a moving camera (b) scene flow
after camera ego motion subtraction.
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CHAPTER 5

GAUSSIAN PROCESS ON MOTION PREDICTION

Recently, Bayesian non-parametric approaches began to increasingly show its

effectiveness in learning dynamics from data since they are flexible and data

driven. [22, 32, 20]. In this thesis, Bayesian non-parametric GP is deployed to

model the velocity field for each target, which takes the target’s position as the

input and the corresponding velocity of that target as the output.

In particular, let Xi(k) = [xi(1) . . . xi(k)] and Zi j(k) =
[
zi j(1) . . . zi j(k)

]
represent the measured positions and velocities of ith target. The jth sensor’s

local GP model would predict the velocity of certain target at any query posi-

tion ξ ∈ W, and the predicted value zi j(ξ) would obey the following Gaussian

distribution [28],

zi j(ξ) ∼ N
(
µi j(ξ),Σi j(ξ)

)
µi j(ξ) = K (ξ,X)

(
K (X,X) + ε2

0I
)−1

Z

Σi j(ξ) = K (ξ, ξ) −K (ξ,X)
(
K (X,X) + ε2

0I
)−1

K (X, ξ)

(5.1)

where µi j(ξ) and Σi j(ξ) respectively represent the mean and covariance ma-

trix of the Gaussian distribution.

To encode the similarity between input data points, a kernel was added to

the computation during the GP process. In this thesis, the following Radial Basis

functions matrix K(·, ·) is deployed as the spatio-temporal kernel to account for

the time-varying nature of the motion model,
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K
(
xi(ti), x j(t j)

)
= σ2

se
−
‖xi−x j‖

2
2

2l2x e
−

(ti−t j)2

2l2t (5.2)

where lx and lt respectively denotes the spatial and temporal length scale,

and σs represents the hyper-parameter for the signal variance.

5.1 Local GP Learning and Prediction of Target Trajectory

For sensor j, the hyper-parameters of GP could be learned from the measure-

ment by maximizing the logarithm of the marginal likelihood function of the

training data. [28]. Then the resultant GP model could be used to predict the tar-

get position within the time interval
[
k, k f

]
during the planning process. Accord-

ing to Bayesian’s rule, the probability density function (pdf) of the predicted

target positions could be represented as,

P j

(
Xi(k + 1 : k f ) | Xi(k)

)
=

k f−1∏
t=k

P (xi(t + 1) | xi(t)) (5.3a)

=

k f−1∏
t=k

∫
R2

P (xi(t + 1) | vi(t), xi(t)) P j (vi(t) | xi(t)) dvi(t),

(5.3b)

where P j (vi(t) | xi(t)) corresponds to jth sensor’s local GP model and

P (xi(t + 1) | vi(t), xi(t)) is defined by the target motion model (3.1).The factoriza-

toin in (5.3a) is due to the Markov property of the target motion model. In

general, there is no analytical form for P j

(
Xi(k + 1 : k f ) | Xi(k)

)
when k f − k ≥ 2.

To make the target motion prediction tractable, in this thesis a nominal path
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is defined, which is obtained by assuming that the target is moving in a mean

velocity given from the GP model by approximating the posterior probability

P j

(
Xi(k + 1 : k f ) | Xi(k)

)
along the nominal path. Above process essentially re-

sembles the Laplace approximation which is widely used in statistical inference

[4]. In particular, define the sequence of targets’ nominal positions as X̂i j(k + 1 :

k f ) = [x̂i j(k+1) . . . x̂i j(k f )] where x̂i j(t+1) = µi j(x̂i j(t))∆T + x̂i j(t), t = k, . . . , k f −1

with the initial condition x̂i j(k) = xi(k). The velocity term µi j(xi(t)) is the mean

vector computed from (5.1). Then the pdf of the predicted trajectory can be

approximated as follows,

P j

(
Xi(k + 1 : k f ) | Xi(k)

)
(5.4a)

≈

k f−1∏
t=k

∫
R2

P
(
xi(t + 1) | vi(t), x̂i j(t)

)
P j

(
vi(t) | x̂i j(t)

)
dvi(t)

=

k f−1∏
t=k

P j

(
vi(t) =

xi(t + 1) − x̂i j(t)
∆T

| x̂i j(t)
)

(5.4b)

where the equality (5.4b) holds since the motion model (3.1) is deterministic.

Equations (5.4a) indicates that the pdf of the predicted target trajectory could

be approximated by computing the pdf of the predicted velocities along the

nominal path, which is a product of Gaussian distributions. By simple algebraic

manipulation, it could be shown that (5.4b) is actually a Gaussian distribution

N(µi j,loc,Σi j,loc), where the mean vector µi j,loc and the covariance matrix Σi j,loc is

µi j,loc =
[
x̂i j(k + 1) . . . x̂i j(k f )

]T
, (5.5a)

Σi j,loc = diag
[
ΣT

i j(x̂i j(k + 1)) . . . ΣT
i j(x̂i j(k f ))

]
, (5.5b)
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where diag means the block diagonal matrix. It can be easily seen the mean

is the vector of nominal positions.

5.2 Decentralized Target Trajectory Fusion and Prediction

Since the sensing range is limited (and usually smaller than the workspace), for

each sensor, only a subset of the targets can be measured at each time step. So

to coordinate the whole sensing maps, the local prediction of each sensor need

to be fused so that a global consensus on the prediction of targets’ trajectories

can be obtained.

In this subsection, a rumor-robust decentralized GP fusion approach is

proposed. Consider the fusion process of ith target’s prediction from sen-

sors j and l, where the pdfs of local prediction are P j

(
Xi(k + 1 : k f ) | Xi(k)

)
and

Pl

(
Xi(k + 1 : k f ) | Xi(k)

)
, which could be computed using (5.4a). Then the fused

pdf could be obtained from the following formula,

P
(
Xi(k + 1 : k f )|Xi(k)

)
∝ Pβ jw∗

(
Xi j(k + 1 : k f )|Xi j(k)

)
Pβl(1−w∗)

(
Xil(k + 1 : k f )|Xil(k)

)
, (5.6)

where β j and βl are the weighting factors that indicate each sensor’s con-

tribution to the combined prediction, and w∗ is the optimal weight based on

Chernoff information [25]. According to the strategy in [6], β j and βl are cho-

sen as the difference in the differential entropy between the prior and poste-

rior at Xi(k + 1 : k f ) to ensure that the more information an agent contains
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on the ith target’s prediction, the more it could contribute to the combined

prediction. Using the fact that for a Gaussian distribution P(x) ∼ N(µ,Σ),

its exponential is also a Gaussian distribution with a scaled covariance ma-

trix [6], i.e. Pα(x) ∼ N(µ, α−1Σ), the predictive mean and covariance matrix of

P
(
Xi(k + 1 : k f ) | Xi(k)

)
are

µ∗i = Σ∗i

(
β jw∗Σ−1

i j,locµi j,loc + βl(1 − w∗)Σ−1
il,locµil,loc

)
Σ∗i =

(
β jw∗Σ−1

i j,loc + βl(1 − w∗)Σ−1
il,loc

)−1
(5.7)

where
(
µi j,loc,Σi j,loc

)
and

(
µil,loc,Σil,loc

)
are respectively the mean and covari-

ance pairs of sensor j and l ’s local prediction.

The fusion rule proposed in (5.6) is similar to the generalized product of

GP experts (gPoE) method as proposed in [6]. However, since these methods

assume that for each agent, the training data are disjoint, therefore directly mul-

tiplying local pdfs to generate the glocal pdf is a reasonable choice in [6].

However, while in the practical application, common information can usu-

ally exist in the training data of different sensors in a sensor network, which

means that a target could be measured simultaneously by multiple sensors. So

how to avoid double-counting becomes an essential requirement for the consis-

tent data fusion in the sensors networks [5]. To avoid rumor propagation, in this

thesis, weighted exponential product rule are utilized for data fusion. This the-

sis deploys Chernoff information to compute the optimal fusion weight, which

has been proved effective to reduce rumor propagation in sensor networks since

the common information would only be counted exactly once via weighted ex-

ponential production.[1]. For two arbitrary pdfs Pa(x) and Pb(x), the optimal

27



Chernoff weight is obtained by minimizing their Chernoff information, i.e.,

w∗ = arg max
w∈[0,1]

− log
∫

[Pa(x)]w [Pb(x)]1−w dx. (5.8)

The combined pdf is P(x) = [Pa(x)]w∗ [Pb(x)]1−w∗ .

The main difficulty of using Chernoff weight for information fusion is that

for general distributions, there is usually no analytical expression for their Cher-

noff information, therefore computing the optimal weight may cause significant

computational cost [1]. However, the Chernoff information for two multivari-

ate Gaussian distributions, Pa(x) ∼ N(µa,Σa) and Pb(x) ∼ N(µb,Σb), could be

expressed in a closed form [25], and the optimal Chernoff weight can be com-

puted as follows,

w∗ = arg min
w∈[0,1]

1
2

log
|wΣa + (1 − w)Σb|

|Σa|
w|Σb|

1−w (5.9)

+
w(1 − w)

2
(
µa − µb

)T (wΣa + (1 − w)Σb)
(
µa − µb

)
The optimal Chernoff weight, w∗, in (5.7) therefore can be computed effi-

ciently for the following two Gaussian distributions,

Pβ j
(
Xi j(k + 1 : k f ) | Xi j(k)

)
∼ N(µi j,loc, β

−1
j Σi j,loc), (5.10)

Pβl
(
Xil(k + 1 : k f ) | Xil(k)

)
∼ N(µil,loc, β

−1
l Σil,loc), (5.11)

using nonlinear optimization algorithms [26]. Using (5.7) and (5.9) for each

pair of sensors along the tree-structured communication network, the rumor-

robust decentralized GP fusion can therefore be conducted efficiently. The fused
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prediction at the root sensor could then be propagated back to all sensors such

that all the sensors would have the same fused pdf, which is refered to as

P f use

(
Xi(k + 1 : k f ) | Xi(k)

)
for the ith target.

In a summary, he process of the fusion could be described by the following

pseudocode,

Algorithm 1 Decentralized GP model fusion

1: Let S = [S1 . . . Sm] be the set of sensors
2: Let X = [X1 . . .Xn] be the set of targets
3: for target Xi in X do
4: Let Xi(k) = [xi(1) . . . xi(k)] be the set of position of target xi in time frames

1 to n
5: for sensor S j in S do
6: Let Zi j(k) =

[
zi j(1) . . . zi j(k)

]
be the set of the velocity of the target Xi in

time frames 1 − k measured by the sensor S j

7: Compute the GP model P j

(
Xi(k + 1 : k f ) | Xi(k)

)
of the target Xi in sen-

sor S j

8: if j > 1 then
9: Fuse the two GP models P j−1

(
Xi(k + 1 : k f ) | Xi(k)

)
and

P j

(
Xi(k + 1 : k f ) | Xi(k)

)
stored in S j into the new GP model

P∗j
(
Xi(k + 1 : k f ) | Xi(k)

)
10: Update the GP models P j

(
Xi(k + 1 : k f ) | Xi(k)

)
in sensor S j to the

fused GP model P∗j
(
Xi(k + 1 : k f ) | Xi(k)

)
11: end if
12: Pass the GP model P j

(
Xi(k + 1 : k f ) | Xi(k)

)
in sensor Sj to sensor Sj+1

13: end for
14: for sensor S j in S do
15: Pass the GP model Pn

(
Xi(k + 1 : k f ) | Xi(k)

)
in sensor Sm to sensor Sj

16: Update the GP model P j

(
Xi(k + 1 : k f ) | Xi(k)

)
in sensor S j to GP

model Pn

(
Xi(k + 1 : k f ) | Xi(k)

)
17: end for
18: end for

29



CHAPTER 6

PATH PLANNING VIA INFORMATION ENTROPY

In this section, a decentralized IPP algorithm using the sequential planning

strategy will be presented. [17, 2, 7]. According to [17, 2], compared to

the centralized planning, the sequential planning is guaranteed to generate a

near-optimal solutions, provided that the objective function is submodular and

monotonic and satisfies MI. For sequential planning, after the planning order

is given, each sensor would at first receive the planning information from its

predecessors (Section 6.1), and then compute its own optimal path (Section 6.2).

Later each sensor would passing the new planning information to the next sen-

sor in the sequence. The planning order can be defined in advance or deter-

mined online for each communication round. In this thesis, it’s assumed that the

planning order corresponds to the sensors’ indices. The decentralized IPP algo-

rithm is characterized by the efficiency both in communication (Section 6.1) and

computation (Section 6.2). Since mutual information is a submodular function,

such sequential planning approach would generate a near-optimal, coordinated

solution [16].

6.1 Fusing Predecessors’ Plans

For the jth sensor, given the planned paths of the first j−1 sensors, S j−1(k : k f ) =

[s1(k : k f ) . . . s j−1(k : k f )], the local planning problem then becomes
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u∗j
(
k : k f

)
= arg max

u j(k:k f )
Ji

(
u∗j

(
k : k f

)
| S j−1(k : k f )

)
s.t. s j(t + 1) = g

(
s j(t),u j(t)

)
,

s j(t) ∈ S, u j(t) ∈ U, t = k, . . . , k f

(6.1)

The objective function is defined as the mutual information between target

prediction and jth sensor’s planned path, conditioned on the first j − 1 sensors’

plans, i.e.,

J j

(
u∗j

(
k : k f

)
| S j−1(k : k f )

)
= I

(
X

(
k + 1 : k f

)
; z j

(
k + 1 : k f

)
|Z j−1(k + 1 : k f )

)
(6.2)

where Z j−1(k + 1 : k f ) represent the predicted measurements of the first j − 1

sensors’ planned paths.

The main difficulty in evaluating (6.2) is how to systematically update the

target position prediction by incorporating predecessors’ planned path. To

solve this problem, a Bayesian data fusion strategy is deployed for fusing pre-

decessors’ plan.

In order to fuse predecessor sensors’ predicted measurements, the glob-

ally fused target prediction, P f use

(
Xi(k + 1 : k f ) | Xi(k)

)
, is treated as the prior

distribution of targets’ prediction. Similar to Section 5.1, the Bayesian fu-

sion approach is used to compute the posterior distribution conditioned on

Z j−1(k + 1 : k f ). Define X̂i

(
k + 1 : k f

)
= [x̂i(k + 1) . . . x̂i(k f )] as the nominal

path obtained from P f use

(
Xi(k + 1 : k f ) | Xi(k)

)
, the pdf after fusing Z j−1(k + 1 : k f )

is
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P j,pre

(
Xi

(
k + 1 : k f

)
| Z j−1(k + 1 : k f )

)
∝ P f use

(
Xi

(
k + 1 : k f

)) j−1∏
l=1

P
(
zl(k + 1 : k f ) | Xi

(
k + 1 : k f

))
(6.3a)

≈

k f−1∏
t=k

P
(
vi(t) =

xi(t + 1) − x̂i(t)
∆T

) j−1∏
l=1

P (zl(t) | x̂i(t))

 (6.3b)

The factorization in (6.3a) is obtained by the conditional independence of

measurements from different sensors given the target positions. Equation (6.3b)

is obtained similar to that in (5.4a), where the pdf is approximated along the

nominal path. The predicted measurement from lth sensor, zl(t), is assumed to

be nonempty if the nominal position x̂i(t) lies in the sensor’s FOV at t.

The prior P
(
vi(t) =

xi(t+1)−x̂i(t)
∆T

)
can be directly obtained by marginaliz-

ing P f use

(
Xi(k + 1 : k f ) | Xi(k)

)
over all time steps except t, and can be eas-

ily shown to be a Gaussian distribution, denoted as N(µi, f use(t),Σi, f use(t)).

Since the measurement model is linear Gaussian, an analytical expression of

P j,pre

(
Xi

(
k + 1 : k f

)
| Z j−1(k + 1 : k f )

)
can be obtained. In particular, let I{x̂i(t) ∈

F (sl(t))} represent the indicator function and it equals 1 if and only if the the

nomial position x̂i(t) lies in the sensor’s planned FOV at t. Then it can be de-

rived, using the conjugacy property of Gaussian prior and likelihood functions

[4], that given the prior covariance matrix Σi, f use(t) and let n(t) =
∑ j−1

l=1 I{x̂i(t) ∈

F (sl(t))} represent the number of sensors in the first j − 1 sensors that can mea-

sure the ith target at time t, then the posterior covariance is

Σi j,pre(t) =
(
Σ−1

i, f use(t) + n(t)Σ−1
ε

)−1
, t = k + 1, . . . , k f . (6.4)

Therefore, the fused pdf can be compactly represented as
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P j,pre

(
Xi

(
k + 1 : k f

)
| Z j−1(k + 1 : k f )

)
∼ N

(
µi j,pre(k + 1 : k f ),Σi j,pre(k + 1 : k f )

)
=

k f∏
t=k+1

N
(
µi j,pre(t),Σi j,pre(t)

)
(6.5)

where the mean and the covariance matrix Σi j,pre(k + 1 : k f ) is

µi j,pre

(
k + 1 : k f

)
=

[
µT

i j,pre(k + 1) . . . µT
i j,pre(k f )

]T

Σi j,pre

(
k + 1 : k f

)
= diag

[
Σi j,pre(k + 1) . . . Σi j,pre(k f )

]
.

(6.6)

The key observation is that, to compute Σi j,pre

(
k + 1 : k f

)
, the only informa-

tion needed from predecessor sensors is the times that each sensor are expected

to detect the target during the planning interval, i.e., n(t). Since all sensors are

sharing the same nominal path of the target, X̂i

(
k : k f

)
, with the decentralized

GP fusion, what each sensor needs to do is only to receive the counting num-

ber from its predecessor, then update its own counting number by adding the

received number to its expected measurement times. After updating its GP,

the sensor would then send the updated counting number to the next sensor.

The communication between each pair of sensors is therefore constant and in-

dependent of the number of predecessor sensors. In contrast, in state-of-the-art

sequential planning approaches [17, 2, 7], the transmitted information to each

sensor is the planned path from all predecessor sensors, which has the commu-

nication burden of O(N). So the decentralized sequential planning approach in

this thesis could significantly reduce the communication cost compared to the

state-of-the-art.
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6.2 Local Objective Function

The fused pdf P j,pre

(
Xi

(
k : k f

)
| Z j−1(k : k f )

)
can now be used as the prior pdf

for jth sensor’s path planning. Given the jth sensor’s future control inputs

u j

(
k : k f

)
and the consequent future measurements z j

(
k : k f

)
, the posterior pdf

can be obtained in a way similar to (6.3), which is,

P j,plan

(
Xi

(
k + 1 : k f

)
| z j

(
k + 1 : k f

)
,Z j−1(k + 1 : k f )

)
∝ P j,pre

(
Xi

(
k + 1 : k f

)
|Z j−1(k + 1 : k f )

)
(6.7)

P
(
z j

(
k + 1 : k f

)
|Xi

(
k + 1 : k f

))
≈

k f∏
t=k+1

P
(
v̂i(t) =

xi(t + 1) − x̂i(t)
∆T

| Z j−1(k + 1 : k f )
)

P
(
z j(t) | x̂i(t)

)
∼ N

(
µi j,plan(k + 1 : k f ),Σi j,plan(k + 1 : k f )

)
,

where the covariance matrix is

Σi j,plan

(
k + 1 : k f

)
= diag

[
Σi j,plan(k + 1) . . . Σi j,plan(k f )

]
. (6.8)

Again, using the conjugacy of Gaussian distribution, the covariance matrix

of the posterior pdf could be computed in a closed-form, i.e., for t = k + 1, . . . , k f ,

Σi j,plan(t) =
(
Σ−1

i j,pre(t) + I{x̂i(t) ∈ F
(
s j(t)

)
}Σ−1

ε

)−1
. (6.9)

Because the mutual information in (6.2) is a non-additive function of the
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future measurements, z j

(
k + 1 : k f

)
, maximizing J j

(
u j

(
k : k f

)
| S j−1(k : k f )

)
is in

general a combinatorial optimization problem since there is possibility that the

predicted target might be outside of sensor FOV and therefore results in no mea-

surement at some time steps. So a computationally efficient approach which is

able to significantly reduce the computational complexity is developed.

Now derive the closed-form of the objective function. Let H(·) represent the

entropy of random variables, then

J j

(
u j

(
k + 1 : k f

)
| S j−1(k + 1 : k f )

)
=

M∑
i=1

I
(
Xi

(
k + 1 : k f

)
; z j

(
k + 1 : k f

)
| Z j−1(k + 1 : k f )

)
(6.10a)

=

M∑
i=1

k f∑
t=k+1

I
(
Xi (t) ; z j (t) | Z j−1(k + 1 : k f )

)
(6.10b)

where (6.10a) is due to the independence of GP models for different targets

and (6.10b) is due to the block diagonal shape of Σi j,plan. For a Gaussian distri-

bution Pa(x) ∼ N(µa,Σa), its entropy has a closed form, H(x) = 1
2 log det (2πeΣa).

Given the analytic expression of MI between Gaussian distributions [4], it can

be derived that

J j

(
u∗j

(
k : k f

)
| S j−1(k : k f )

)
=

M∑
i=1

k f∑
t=k

1
2

log det
Σi j,pre(t)
Σi j,plan(t)

. (6.11)

The indicator function in (6.9) makes the IPP problem a mixed integer non-

linear programming problem, which is notoriously difficult to solve. To over-

come this problem, an approximate objective function is used, where the indi-

cator function is replaced by constant 1 and a weighting factor is added to the
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MI at each step. In particular, define the weighting factor

ψ(t) = max

0, 1 −
(
‖[s j,x(t), s j,y(t)]T − x̂i (t) ‖2 −

r j

2

)2

( r j

2 )2

 . (6.12)

which equals 1 when the sensor is close to the predicted target location, and

equals 0 when they are far away from each other. Then the objective function is

defined as

J j

(
u j

(
k : k f

)
| S j−1(k : k f )

)
=

M∑
i=1

k f∑
t=k

ψ(t)
2

log det
Σi j,pre(t)

Σ̃i j,plan(t)
(6.13)

where Σ̃i j,plan(t) =
(
Σ−1

i j,pre(t) + Σ−1
ε

)−1
. By using above closed-form objective

function, the decentralized IPP problem (6.1) is now efficiently solved with non-

linear optimization algorithms.
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CHAPTER 7

SIMULATION AND RESULT

The implementation of the decentralized GP fusion and information-driven

path planning (IPP) algorithm based on the sparse optical flow of the target,

as is described in the previous chapters, are tested in a variety of workspaces.

Two kind of testing are conducted. One is to evaluate the accuracy of of the

Gaussian Process prediction by stationary sensors in the workspace measuring

the motion of the targets and thus making predictions. Another one is to eval-

uate the performance of the IPP, conducted by setting multiple sensors chasing

multiple targets with different motion patterns in a larger workspace.

7.1 Evaluating Decentralized GP Learning and Fusion

To evaluate the accuracy and efficiency of the decentralized GP fusion algo-

rithm, firstly set a 10m × 10m workspace, 4 sensors are randomly set in the

workspace. Set the range of the sensor as r j = 5m, j = 1 . . .N. A target X1 was

randomly set in this workspace and moves along the curve of a differentiable

function f : y = 139
6600 x3− 1393

2200 x2 + 1729
330 x in this workspace, shown as figure (7.1) and

the time interval between each measurement of the sensors is 0.2s. The result

could be seen in figure (7.2) and (7.3), where figure (7.2) shows the state-of-

art result of the decentralized GP fusion prediction, and figure (7.3) represents

the analytical error of the prediction with respect to the ground truth. The re-

sult proves the accuracy of the decentralized GP fusion algorithm. However,

to further evaluate the efficiency of decentralized GP fusion algorithm over the

ordinary GP algorithm without decentralized fusion, another experiment needs
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Figure 7.1: Trajectory of the target in the workspace

to be conducted.

Using the same workspace and sensors, to show the efficiency of the decen-

tralized GP fusion algorithm, a set of 8 targets were randomly placed in the

workspace with each target in a different motion pattern, the layout could be

seen in figure (7.4). Figure (7.5) represents the trajectories of different targets.

Three method, decentralized GP fusion, GP without fusion and centralized GP

are tested in the simulation. In centralized GP, all the sensor are allowed to

communicate and share the measurement between each other such that the GP

learning and prediction are based the measurement of all the sensors, which
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Figure 7.2: Result of decentralized GP fusion prediction of the target trajectory

stands for the optimal situation. GP without fusion, on the other hand, are basi-

cally set under the similar constrain to the decentralized GP fusion algorithms,

that is, the communication between sensors are limited. For comparison, in GP

without fusion, the sensors only uses their own measurement and do not com-

municate with other sensors at all.

The results could be seen in figure (7.6). As expected, the centralized GP rep-

resents the best performance among the three approaches. Since in the central-

ized GP, there is no limit of communication between sensors so all the sensors’

measurement can be therefore used for learning the GP model. As a result, the

error of centralized GP should be the lowest. Decentralized GP Fusion, shows
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Figure 7.3: Decentralized GP fusion prediction error

a slightly larger error over the optimal situation while GP without fusion made

a prediction with the largest error as each sensor is limited to only use its own

measurement and there are no communications between sensors at all. This

simulation results shows that decentralized GP fusion is efficient in the learn-

ing and prediction of the targets’ motions with a relatively low prediction error

over the ordinary GP without fusion and could achieve a similar accuracy with

the centralized GP, while significantly reducing the computational complexity

compared to centralized GP.

7.2 Evaluating the information-driven path planning algo-

rithm (IPP)

In this simulation, to represent the efficiency of the path planning algorithm, a

larger workspace with 30m×30m area was used but still, the sensors’ measuring
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Figure 7.4: Initial layout of the simulation

range is limited to r j = 5m, j = 1 . . .N. This setting ensures that the sensors are

not able to detect all the targets at one time step. So the information commu-

nication and planning based on the analysis of past information are therefore

significant. Multiple sensors, each installed on a mobile robot, are deployed to

learn from the targets’ motion patterns and based on that, chase the targets in

order to get as much information from the targets as possible. The planning

horizon is five steps ahead. The velocity of the mobile robot is bounded in the

the range of [0, 3](m/s) and the control input to each robot is also bounded in the

range of,
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Figure 7.5: Trajectories of different targets

 −π6

−5(m/s)

 ≤ u ≤


π
6

5(m/s)

 .
Similar to the previous section, one target was placed in the workspace and

moves along the curve of a differentiable function f : x = 97
3360y3− 473

560y2 + 2629
420 y+ 22

35

in this workspace, as figure (7.7) shows. 2 sensors, which are randomly placed

in the workspace, are deployed for measuring and chasing the target to show

that IPP works in such situations. The result can be seen in figure (7.8) and (7.9),

where figure (7.8) shows the visualized trajectories of the target and sensors to
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Figure 7.6: Average prediction error of targets using different GP fusion strate-
gies.

show that the sensors are capable of chasing the target based on the GP models

they learned and figure (7.9) represents the numerical error during the chas-

ing process. It can be seen in the pictures that the IPP algorithm is efficient in

chasing the target moving in the workspace.

7.3 Evaluating the decentralized GP learning, fusion, and plan-

ning algorithm (RESIN)

Now, the final simulation is going to be conducted to represent the performance

of the whole algorithm proposed in this thesis, while compared with other algo-

rithms. The settings are like the following. In a 30m × 30m workspace, 8 targets

are randomly placed and each with different motion patterns. 4 sensors, with

each installed on a mobile robot, are also randomly placed in the workspace.
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Figure 7.7: Trajectory of the target in the workspace

The initial layout could be seen in figure (7.10). The measuring range of each

sensor is r j = 5m, j = 1 . . .N and the velocity of the robots is in the the range of

[0, 3](m/s). The planning horizon is five steps ahead. The control input into the

robot is,

 −π6

−5(m/s)

 ≤ u ≤


π
6

5(m/s)

 .
Four algorithms are used, including RESIN and three other algorithms, cen-

tralized GP planner, nearest target following planner, and the random planner.
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Figure 7.8: Result of robots chasing the target and prediction on the target posi-
tion

In the centralized GP planner, for comparison. In the centralized GP planner,

sensors’ communication are not limited and all the sensors could share their

measurement with each other, so the planning are conducted in a centralized

way, which is based on all the sensors’ data and plans for all the sensors at the

same time. In the nearest target following planner, each sensor would pursue

the nearest target from itself based on its local prediction of the targets’ posi-

tions. The random planner would not make use of the sensor measurement at

all and would just generate random control inputs for each sensor.

45



 

Figure 7.9: Result of prediction error of target position

The result could be seen in figure (7.11) and (7.12). Figure (7.11) visually rep-

resents the performance of the 4 algorithms. As expected, the centralized GP

planner achieved the highest performance since all sensor’s measurements and

synthesized and are used for the planning of all the sensors simultaneously.

RESIN shows a very similar and closed performance with the centralized GP

planner, for which the sensors are able to keep track of targets and make accu-

rate prediction of the targets’ position. In contrast, in the nearest target follow-

ing planner simulation, several targets are lost track of and the prediction on

these targets becomes inaccurate. Random planner performs the worst, since

the sensors do not take their measurement into account at all, the target easily

lose the track of their targets very soon. The numerical results shown in figure

(7.12) further support the observation, in which the average prediction error on

each target by each sensor under different planning strategies are quantitatively

compared. From the picture it is to see that RESIN outperforms the nearest tar-

get following planner and random planner and the performance is very closed
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Figure 7.10: Initial layout of the simulation

to the performance of the optimal situation, the centralized GP planner.

In order to further explore into the applicability of RESIN. the workspace

and initial setting would be kept unchanged but the number of sensors de-

ployed for measuring and tacking the targets is changing. The number of targets

is 8 and the number of sensors (robots) changed from 2 to 8. The result could

be seen in figure (7.13) and table (7.1). The result shows that with the increas-

ing of the number of the sensors, the difference of the prediction error between

RESIN and centralized GP has been enlarging. With 8 sensors, the performance

of RESIN is even worse than nearest target following planner. Though with 2
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                                                   (a)                                                                     (b) 

   

                                                   (c)                                                                      (d) 

Figure 7.11: Target prediction and tracking performance using (a) random plan-
ner, (b) nearest target following planner, (c) RESIN, and (d) centralized GP plan-
ner.

sensors, RESIN could reach the same performance with centralized GP, how-

ever, that is because the number of sensors is too small and they could only

measure only a part of the targets and is not able to measure all the targets, so

the average prediction error is relatively small. In order to get the performance

we needed, it’s best to 4-6 sensors for measuring and tracking the targets.

Also, we then keep the number of sensors constant and change the number

of targets. With the workspace and initial setting unchanged. 4 sensors are de-

ployed and the targets number varied from 4 to 8. The result could be seen in
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Figure 7.12: Average prediction error of targets using different planning strate-
gies.

figure (7.14) and table (7.2). From the result it can be found that with the in-

creasing of the number of targets, the prediction error is increasing because for

each sensor there are more targets needed to predict. Also, the difference of pre-

diction error between RESIN and nearest target following planner is enlarging.

Meaning with the increasing of targets, the RESIN shows more applicability in

keeping a relatively small error in prediction.

So the conclusion could be reached that compared to other method, RESIN

is represented to be more applicable in the situation that the target number is

more than sensors number, which is more practical in real world application

since the number of sensors could be saved while measuring multiple targets.
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Figure 7.13: Average prediction error of targets using different number of sen-
sors for measuring 8 targets.

Table 7.1: Comparison of the prediction performance using different number of

sensors in measuring 8 targets

Number of sensors 2 4 6 8

Average RESIN 0.4413 0.9732 0.7691 1.2746

prediction Centralized GP 0.4413 0.6893 0.2275 0.1902

error Nearest following 1.4083 1.851 1.6356 1.1653

Random control 6.6845 5.2698 8.3876 1.6969
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Figure 7.14: Average prediction error of targets using 4 sensors for measuring
different number of targets.

Table 7.2: Comparison of the prediction performance using different number of

sensors in measuring 8 targets

Number of targets 4 6 8

Average RESIN 0.2082 0.3177 0.9732

prediction Centralized GP 0.1174 0.1586 0.6893

error Nearest following 0.1625 0.4691 1.851

Random control 0.4184 1.1473 5.2698

51



CHAPTER 8

CONCLUSION AND FUTURE STEPS

In this thesis, a decentralized GP learning, fusion, and planning (RESIN) al-

gorithm for a sensor network to actively learn the motion pattern of multiple

moving targets, and thus planning for each sensor to keep track of all the tar-

gets based on the information entropy was proposed. To extract the target’s mo-

tion from a dense scene flow, an ego-motion extract algorithm was proposed for

computing the flow produced by the camera’s ego-motion and extract it from

the whole dense scene flow. For a better visualization of the scene flow, a 3D

reconstruction method was proposed. A decentralized GP fusion method was

introduced, which, compared to the ordinary GP, is more robust to rumor prop-

agation and more computational efficient. An information-driven path plan-

ning (IPP) method was proposed. Comparing to the traditional target pursuit

algorithm, IPP is more information sensitive based on decentralized GP fusion

learning and prediction, and therefore presents more proper performance while

dealing with multiple targets pursuing problem. Simulations are done to rep-

resent the accuracy and efficiency of RESIN and a final simulation was demon-

strated to compare RESIN with other method to prove the efficiency of RESIN

compared to other traditional method. Also, compared to nearest target follow-

ing method, RESIN shows more efficiency and applicability in the situation that

the sensor number is less than the target number, which means RESIN is more

suitable for practical applications.

The future work will further investigate into the data association issue in

the decentralized GP fusion, for example, how to associate each keypoint of

the target measured in different time frame. Besides, in the simulation, due to
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the computational cost of scene flow extraction and processing, this thesis only

uses the ground truth of the targets’ motion, with a gaussian noise ε ∼ N(0,Σε),

where Σε = ε2
0I added as the measurement of the targets. In the future work,

a more computational efficient motion extraction method should be combined

into the simulation. Also, physical experiments using actual mobile robots and

sensors for chasing actual targets will be conducted to evaluate this thesis in the

physical practical application.
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