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Classical action recognition algorithms require the user to pre-select the time window for
the action by clipping the video or choosing the initial and final time frames. Recently, new
deep learning algorithms have been developed to detect a key action from an untrimmed video.
However, they are unsuitable for temporally segmenting continuous action sequences and are
too computationally expensive for implementation on autonomous systems. This paper presents
a fast and accurate online action change detection framework. Given a streaming RGB video,
the algorithm is used to detect any changes in the sequence. If a new action is discovered, the
action recognition module will be applied to classify the action. Compared to existing methods,
this two-stage approach reduces computational cost by not applying the recognition algorithm
on every time window and improves classification accuracy by locating the starting time step of
each action. In a simulated airport environment created using Unreal Engine ™, the framework
is demonstrated and validated by detecting and recognizing sequential gestures from a ground
crew, who sends gesture commands to control the movement of an autonomous aircraft. A
hybrid optimal controller is developed to combine the visual information obtained from the
framework and prior information, such as airport map and reference lines, to control the
aircraft to safely navigate to a terminal gate.

I. Nomenclature

I = RGB image sequence
A = marshalling signals set
𝑐 = discrete time step of an action change point
𝑎 = semantic label of a marshalling gesture signal
v = human keypoint velocity
𝝓 = Autoregressive process parameters
𝐷 = Mahalanobis distance
h = Hu moments
𝑤𝑟 = time window size of the action recognition algorithm
𝑤𝑑 = time window size of the action detection algorithm
s = hybrid system continuous state
𝜇 = hybrid system discrete state
u = hybrid system control input
𝑑𝑎 = user-specified alarm distance between the aircraft and the node
G = simulated airport graph
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𝑣 = aircraft speed
𝜓 = aircraft yaw angle
𝜃 = aircraft steering angle
𝛽 = aircraft acceleration
𝑙 = distance between front and rear axles of the aircraft
𝑣𝑑 = desired aircraft speed

II. Introduction
Understanding a sequence of human actions and taking prompt response is crucial to many intelligent systems to

complete complex tasks in human-centered environments, such as an assistive robot identifying the person-of-interest in
the scene by recognizing a key action and starting following the target to execute any further visual command from
them. Another example is advanced surveillance systems, which monitor a series of activities from the crowd to detect
and respond to abnormal behaviors. Although action recognition algorithms are thought to play a crucial role in these
applications, most of the existing approaches either focused on single-action videos or assumed a user could specify the
time window a priori [1–5]. Recently, some deep learning algorithms [6–8] have been proposed to detect the starting
and ending frames of the action of interest from an unsegmented raw video. However, they assume the entire video is
observed by the network. Online action detection algorithms [9, 10] classify the present action from a streaming video
with only past and current frames available. Their methods assume the video only contains one "key" action, while
other events are background or irrelevant. This assumption limits the ability of the algorithms to comprehend a series of
moves from the human. Besides, it is hard to transfer them to mobile robotic systems due to the high computational
requirement of deep neural networks.

This paper develops a novel approach for detecting each action from an unsegmented ongoing image sequence
consisting of multiple actions. The algorithm is composed of two stages. In the first stage, an online action change
detection algorithm is developed to find the change point between two distinct actions. Unlike existing approaches
that focus on temporally localizing a key action, this method provides an accurate starting frame of each action. In
the second phase, the recognition module will only be applied if a new action change point is discovered. It alleviates
the high computational cost of the conventional algorithms, which constantly recognizes video clips from every time
window. The effectiveness of the algorithm is demonstrated by conducting numerical studies on a publicly available
dataset [11]. Besides, the framework is integrated with a vision-guided autonomous taxiing system for the arrival
simulation of an aircraft at the near-to-gate region. The airport environment is created by [12] using Unreal Engine
™[13], which is a high-fidelity physics-based simulation tool. In the synthetic experiment, the gesture commands from
an airport ground crew are detected and recognized by the framework. A hybrid controller is developed to control the
movement of an airplane based on the visual commands as well as tracking the feasible paths.

The paper is organized as follows. Section III formulates the two-stage action detection problem for vision-guided
control of the aircraft ground movement. Section IV describes the background of the change detection method. Section
V develops the two-stage action detection framework. Section VI presents a hybrid controller that switches the cruising
mode based on the action command while keeping the aircraft tracking the feasible centerlines. The performance of
the framework is demonstrated in Section VII, where a simulation is conducted for the arrival of an aircraft from the
taxiway to a designated terminal gate.

III. Problem Formulation
This paper considers the problem of automatically recognizing distinct marshalling commands from a streaming

image sequence for guiding the autonomous taxiing process of a near-to-gate aircraft. Let A = {𝑎1 . . . 𝑎𝑛} denote
an unknown action set composed of standard marshalling gestures, where 𝑎𝑖 represents the 𝑖th action label. Denote
the motion sequence consisting of image frames, 𝐼𝑖 ∈ Rℎ×𝑤 , (𝑖 = 1, · · · , 𝑘) by the vector I1:𝑘 = [𝐼1 . . . 𝐼𝑘]. The goal
of action recognition is to design a classification function 𝐹 that assigns each frame of the motion sequence to its
corresponding action label, i.e., 𝐹 (𝐼𝑖) ∈ A. This is accomplished by a two-stage action detection framework as shown
in Fig 1. Let 𝑐𝑖 denote the time step of 𝑖th change of action type in the sequence. In the first stage, the point is detected
with a small time delay by a light-weight online action change detection approach 𝑐𝑖 = 𝐺 (I𝑐𝑖−1:𝑐𝑖−1+𝑤𝑑

), where 𝑤𝑑 is the
detection window size. Once 𝑐𝑖 is discovered, the image sequence I𝑐𝑖 :𝑐𝑖+𝑤𝑟

will be processed by an effective action
recognition method to produce a unique label 𝑎𝑖 = 𝐹 (𝐼 𝑗 ), 𝑗 ∈ [𝑐𝑖 , 𝑐𝑖 + 𝑤𝑟 ] for all the frames in the window, where 𝑤𝑟

denotes the recognition window size. A feedback control system is designed to control the aircraft to safely navigate
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Fig. 1 The proposed two-stage framework. In the first stage, the change point is detected between two adjacent
actions. The new action is recognized in the second phase.

through the airport environment based on visual guidance, as shown in Fig 2. Assuming the airport graph G that
contains the information about the taxiways and terminal regions is available, a set of corresponding feasible cruising
pathsH can be generated for the aircraft to track. A hybrid controller is proposed to compute the control input and
decide the cruising mode based on the recognized marshalling command, feasible paths, and state feedback. Section
III.A formulates the gesture command sequence mathematically. The aircraft model and the airport model are discussed
in Section III.B and III.C, respectively.

A. Ground Crew Marshalling Gesture Sequence
Let 𝑎(𝑘) ∈ A denote the gesture label of the target ground crew T at time step 𝑘 , where the action label set is

defined as A = {𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5} ≜ {"Move Forward", "Turn Right", "Stop", "None", "Turn Left"}. As shown in Fig
3, the actions are standard marshalling commands for the near-to-gate navigation of the aircraft. During the simulation,
it is assumed that T is always within the field of view (FoV) of a fixed RGB camera. The entire body of T can be
projected to the camera frame, which is then processed by a real-time 2D pose estimation algorithm, such as [14], to

Hybrid 
Controller

 s

Online Action 
Change Detection

ua

I Action 
Recognition

 Aircraft 
Model

Hybrid 
Controller

 s

Online Action 
Change Detection

ua

I Action 
Recognition

 Aircraft 
Model

rs
a

Fig. 2 Block diagram of the system. A set of feasible reference pathsH is generated based on the airport graph
G. A sequence of gesture images I is processed online by the two-stage framework. A hybrid controller computes
the control input u of the system based on the gesture label 𝑎, reference pathsH and state feedback s.
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(a) (b) (c)

Fig. 3 Standard marshalling gesture signals (a) Turn right (b) Stop (c) Move Forward.

Fig. 4 Estimated keypoints of the ground crew using [14]. FI represents the image coordinate system.

effectively represent human motions.
As shown in Fig 4, positions of the estimated keypoints are represented in a fixed image coordinate F𝐼 with an

ordered basis {e1, e2}. A velocity vector v𝑘 of the keypoints at time step 𝑘 is constructed to characterize motions,

v𝑘 = [v𝑇𝑘,𝑥 v𝑇𝑘,𝑦]
𝑇 (1)

where v𝑘 ∈ R2𝑑×1, v𝑘,𝑥 ∈ R𝑑×1, v𝑘,𝑦 ∈ R𝑑×1 are one-dimensional vectors, 𝑑 is the number of keypoints. As an example,
v𝑘,𝑥 can be written as,

v𝑘,𝑥 = [𝑣𝑘,𝑥1 𝑣𝑘,𝑥2 . . . 𝑣𝑘,𝑥𝑑 ]𝑇 (2)

where 𝑣𝑘,𝑥𝑖 is the velocity of 𝑖th keypoint in e1 direction. The direction of The velocity vector is sorted in the same
way as the keypoints order from [14]. Then, the vectors within the same time window are combined to formulate a
multi-dimensional time sequence, i.e., V = [v𝑘−𝑤𝑑

, v𝑘−𝑤𝑑+1, . . . , v𝑘] ∈ R2𝑑×𝑤𝑑 , which is processed by the action
change detection algorithm to produce the change point 𝑐𝑖 , 𝑖 ∈ [1, 𝑛].

B. Aircraft Motion Model
This paper adopts the kinematic model used in [12] for airplane ground movement manipulation. Let [𝑥𝑘 , 𝑦𝑘]

denote the coordinates of the rear-axle center of the aircraft in inertial frame at time step 𝑘 . Let 𝜓𝑘 and 𝑣𝑘 denote
the aircraft yaw angle and speed respectively. Then, the aircraft ground state can be defined as s𝑘 = [𝑥𝑘 , 𝑦𝑘 , 𝜓𝑘 , 𝑣𝑘]𝑇 .
Denote the steering angle and forward acceleration as 𝜃 and 𝛽 respectively. The control input can be expressed in the
form of u𝑘 = [𝜃𝑘 , 𝛽𝑘]𝑇 . The kinematic equation of the aircraft is shown as,

s𝑘+1 = f (s𝑘 , u𝑘) (3)
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(a) (b)

Fig. 5 Simulated airport environment generated by [12] using Unreal Engine ™. The terminal region (a)
contains four gates and is connected by a taxiway (b) to the rest part of the airport.

where the difference function is given by a non-holonomic simple car model,

f (s𝑘 , u𝑘) =


𝑥𝑘

𝑦𝑘

𝜓𝑘

𝑣𝑘


+


𝑣𝑘 cos𝜓𝑘

𝑣𝑘 sin𝜓𝑘

𝑣𝑘
𝑙

tan 𝜃𝑘
𝛽𝑘


Δ𝑡 (4)

where 𝑙 is the distance between the front and rear axles of the aircraft, and Δ𝑡 is the sampling time interval.

C. Airport Model
The airport environment is generated by [12] using Unreal Engine™, which is a photo-realistic physics based

simulation tool. As shown in figure 5, the region of interest is characterized by a terminal with four gates (a) and a
taxiway (b). LetW ∈ R2 denote the workspace of the 2D ground plane of the region. The topological graph of the
airport can be defined as G = (E,V), where E is a set of undirected arcs that connect the nodes. A node 𝑣 ∈ V is
defined as a tuple 𝑣 = (𝛼, p, 𝜓), where 𝛼 ∈ L = {"terminal", "connecting arcs", "taxiway"} is the label of the node,
p ∈ W is the position of the node, and 𝜓 ∈ (− 𝜋

2 ,
𝜋
2 ) is the desired yaw angle of the aircraft at the node. To control the

aircraft to cruise safely in the near-to-gate region, reference lines between any pair of connected nodes are generated for
centerline following. LetH = {ℎ𝑖 𝑗 (q) = 0|𝑖, 𝑗 ∈ [1, 𝑛], 𝑖 ≠ 𝑗} denote a set that contains all the reference lines of the
simulated airport, where ℎ𝑖 𝑗 (q) = 0 is a line that connects the node 𝑣𝑖 and 𝑣 𝑗 . The waypoints on the line is represented
by q = [𝑥𝑟 , 𝑦𝑟 ] ∈ W.

Figure 5 illustrates the graph generated for the simulated airport. Here, 𝑣𝑠 denotes the starting point of the aircraft.
It is followed by two taxiway nodes 𝑣1 and 𝑣2, which are then connected to transition nodes 𝑣3 and 𝑣4 via dashed curves.
Through transition node 𝑣3, the airplane can cruise from taxiway to intermediate terminal node 𝑣5 or 𝑣6. Similarly, the
aircraft can reach 𝑣7 or 𝑣8 via transition node 𝑣4. The gate nodes include 𝑣9, 𝑣10, 𝑣11 and 𝑣12, which are connected to 𝑣5,
𝑣6, 𝑣7 and 𝑣8 respectively. The ground crew will send gesture command to the airplane when it approaches or arrives at
a node to direct it to the next node.

IV. Background on Multiple Change Point Analysis Method
Our online action change detection algorithm is based on Multiple change point analysis (MCPA) [15], which

outperforms other binary change point detection methods [16] in terms of computation complexity, detection performance,
and robustness. To date, the algorithm has been applied to the problem of detecting change points in one-dimensional
time series data. The method assumes the data is composed of several segments, each of which is generated by an
autoregressive (AR) process. Specifically, consider one-dimensional time sequence Y = [𝑌1 . . . 𝑌𝑛], which is generated
by an unknown number of distinct segment-wise AR process. MCPA method slides a time window 𝐿 to split the data
into 𝑚 equal length segments. For an arbitrary data point 𝑌𝑖 in 𝑗 th segment, where 𝑗 ∈ [1, 𝑚], it is generated by an AR
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Fig. 6 A topological graph illustration of the simulated airport map. The black dots represent the nodes and
continuous yellow lines are the arcs that connect them. The dashed lines connect taxiway with the terminal
region.

process:
𝑌𝑖 = 𝜖𝑖, 𝑗 + [1 𝑌𝑖−1 . . . 𝑌𝑖−𝑝]𝝓 𝑗 (5)

where 𝜖𝑖, 𝑗 are i.i.d. Gaussian noise terms. The parameters of the AR filter are expressed as, 𝝓 𝑗 = [𝑐 𝛼1 . . . 𝛼𝑝]𝑇 , where
𝑝 is the order of the AR process. 𝝓 𝑗 is estimated by minimizing accumulated prediction error for each point in 𝑗 th
segment:

argmin
𝝓 𝑗

∑︁
𝑖∈B 𝑗

(𝑌𝑖 − [1 𝑌𝑖−1 . . . 𝑌𝑖−𝑝]𝝓 𝑗 )2 (6)

where B 𝑗 is the index set of 𝑗 th segment. Then, the estimation is repeated to obtain the vectors of AR parameters for all
of the segments: [𝝓𝑇

1 . . . 𝝓𝑇
𝑚]. Next, the algorithm clusters similar AR parameter vectors together by selecting the best

number of groups and the range for each group. Assuming the data contains 𝑀 + 1 groups, the optimal range for all
groups are estimated by minimizing the accumulated within-group variance of AR parameter vectors,

argmin
[𝑆1 ,...,𝑆𝑀 ]

𝑀+1∑︁
𝑞=1

𝜆(𝝓𝑆𝑞−1+1, . . . , 𝝓𝑆𝑞
) (7)

𝜆(𝝓𝑆𝑞−1+1, . . . , 𝝓𝑆𝑞
) =

𝑆𝑞∑︁
𝑗=𝑆𝑞−1+1

|𝝓 𝑗 − 𝝓𝑞 |2 (8)

where the start points of each group are indexed by [𝑆0, 𝑆1, . . . , 𝑆𝑀 ] respectively (𝑆𝑀+1 = 𝑚), the variable 𝝓𝑞 =∑𝑆𝑞

𝑗=𝑆𝑞−1+1 𝝓 𝑗/(𝑆𝑞 − 𝑆𝑞−1) is the mean of the parameter vector group. Then, MCPA algorithm iterates the minimization
process by changing the value of 𝑀 from one to a user-defined limit. The optimal value of 𝑀 correspond to minimum
accumulated within-group variance. Once the clustering is achieved, change points are identified at the boundary
segments of neighboring groups. These regions are given a score of one. Naturally, the algorithm tends to select a
large 𝑀 to minimize within-group variance. To choose optimal number of change points, MCPA method uses BIC-like
criterion to design a penalty function 𝛽𝑀 = 𝑀var(𝝓)log log 𝑛, where 𝑀 is the number of change points. Finally, a
multi-window process is developed, where different window sizes are selected. Scores from each window size are
accumulated together to formulate the final scores of the detection. A region associated with a high score is likely to
contain a change point. More details of the MCPA algorithm can be found in algorithm 1.
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Algorithm 1 Multiple Change Point Analysis Method (MCPA)
Input: time series Y = [𝑌1 𝑌2 . . . 𝑌𝑛], window sizes [𝑤min . . . 𝑤max], order 𝑝 for AR model
Output: score s, optimal loss 𝑒∗

𝑀
, change point 𝑐.

1: for 𝑤 = [𝑤min . . . 𝑤max] do
2: Define maximum number of change points 𝑀𝑤

3: Calculate {𝝓 𝒋 , 𝑗 = 1, . . . , 𝑛/𝑤}
4: for 𝑀 = 1, . . . , 𝑀𝑤 do
5: Define 𝑆0 = 0, 𝑆𝑀+1 = 𝑛/𝑤
6: Define Loss function 𝜆(𝝓𝑆𝑞−1+1, . . . , 𝝓𝑆𝑞

) = ∑𝐿𝑞

𝑗=𝑆𝑞−1+1 |𝝓 𝑗 − 𝝓 |2
7: Define penalty terms 𝛽𝑀
8: min 𝑒𝑀 =

∑𝑀+1
𝑞=1 𝜆(𝝓𝑆𝑞−1+1, . . . , 𝝓𝑆𝑞

) + 𝛽𝑀
9: Record optimal 𝑒𝑀 and ranges [𝑆1, . . . , 𝑆𝑀 ]

10: end for
11: Find the optimal 𝑀∗, and corresponding loss 𝑒∗

𝑀
, segment length [𝑆∗1, . . . , 𝑆

∗
𝑀
]

12: Accumulate score s = s + 1 at the boundary segments between two optimal groups.
13: end for
14: Find the change point 𝑐 using s. The details are described in [15].

V. Online Action Change Detection
The two-stage action detection framework is described in detail in this section. Given an untrimmed streaming

sequence of the target gestures, an online action change detection algorithm is developed to locate the change point
accurately with a small time delay. The method is described in Section V.A. In the second phase, an action recognition
module will be applied to the streaming image sequence with the change point information to obtain the action label.
The classification method is discussed in Section V.B.

A. Online Action Change Point Detection
A multi-variate online action change detection algorithm is introduced in this section. The autoregression is extended

to vector autoregression (VAR) for handling the high-dimensional skeleton data. Compared to the full VAR model,
block diagonal VAR model is found to give the best trade-off between detection accuracy and computation time. Given
an arbitrary window of joint velocity sequence V = [v1 v2 . . . v𝑤𝑑

] ∈ R2𝑑×𝑤𝑑 , it is first divided into 𝑚 number of
non-overlapping segments by a sliding window with length 𝐿. Without loss of generality, consider a velocity vector v𝑖
in 𝑗 th, 𝑗 ∈ [1, 𝑚] segment, its VAR expression can be written in the following form,

v𝑖 =



𝑣𝑖,𝑥1

𝑣𝑖,𝑥2
...

...

𝑣𝑖,𝑦𝑑


=



𝝓𝑇
𝑗,𝑥1

0 0 · · · 0
0 𝝓𝑇

𝑗,𝑥2
0 · · · 0

... 0
. . .

. . .
...

...
...

. . .
. . . 0

0 0 0 0 𝝓𝑇
𝑗,𝑦𝑑





v𝑖−𝑝,𝑥1

v𝑖−𝑝,𝑥2
...

...

v𝑖−𝑝,𝑦𝑑


+ 𝝐 𝒋 (9)

where the velocity vector on right-hand-side is defined as v𝑖−𝑝,𝑥𝑖 = [1 𝑣𝑖−1,𝑥𝑖 . . . 𝑣𝑖−𝑝,𝑥𝑖 ]𝑇 , 𝑝 is the order of the
VAR process. The VAR parameter vector is denoted by 𝝓 𝑗 ,𝑥𝑖

= [𝜏𝑗 ,𝑥𝑖 𝛼1, 𝑗 ,𝑥𝑖 . . . 𝛼𝑝, 𝑗,𝑥𝑖 ]𝑇 . Besides, 𝝐 𝑗 is the i.i.d.
Gaussian noise vector for 𝑗 th segment. The parameters of the equation can be estimated via least square method, let
𝚽𝒋 ∈ R𝑑 (𝑝+1)×𝑑 (𝑝+1) denote the entire block diagonal VAR parameter matrix. Concatenating all the velocity vectors to
a long vector v𝑖−𝑝 = [v𝑇

𝑖−𝑝,𝑥1
. . . v𝑇

𝑖−𝑝,𝑦𝑑 ]
𝑇 ∈ R𝑑 (𝑝+1)×1. Then, the least square estimation can be written as below,

argmin
𝚽𝒋

∑︁
𝑖∈B 𝑗

| |v𝑖 −𝚽𝒋v𝑖−𝑝 | | (10)

where B 𝑗 is the index set of 𝑗 th segment. In a similar fashion, the VAR parameter vectors for other segments can
be estimated. Let 𝚽 ∈ R𝑑 (𝑝+1)×𝑚𝑑 (𝑝+1) denote the matrix of combination of all the VAR parameters from different
segments. The original sequence V is now transformed to 𝚽, which is in a reduced-dimension parameter space.
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Different from [15] that assumes all the time series data is available and observed, an online scheme is designed to
process the streaming data. First, assume an initial velocity sequence V1 = [v1 . . . v𝑤𝑑

], which is transformed to VAR
parameters 𝚽1. It is assumed that there are zero or only one change point in the window. Then, algorithm 1 is called to
obtain the optimal loss 𝑒∗. It is worth noting that the penalty function 𝛽 can be dropped from the loss since it is not
helpful for our one-change point assumption. Comparing 𝑒∗ to the variance 𝑒 of 𝚽1. If 𝑒∗ < 𝑒ℎ, the change point is
considered existing. Parameter ℎ needs to be manually tuned for different applications. If a change point is detected, the
next time window will start from that point and continue receiving data until the length 𝑤𝑑 is reached. Otherwise, the
first 𝐿max number of vectors in the window will be substituted by the incoming 𝐿max number of data. Algorithm 2
describes the online change detection process in detail.

Algorithm 2 Online Action Change Detection
Input: Current velocity sequence V𝑚, current velocity vector v𝑘 , and parameter ℎ, 𝑤𝑑 , 𝐿max
Output: Change point 𝑐𝑖 , updated velocity sequence Ṽ𝑚

1: function 𝑐𝑖 , Ṽ𝑚 = ChangeDetection(V𝑚, v𝑘 , 𝑤𝑑 , ℎ, 𝐿max)
2: if length(V𝑚) < 𝑤𝑑 then
3: 𝑐𝑖 ← ∅
4: Ṽ𝑚 = SlidingWindow(V𝑚, v𝑘 , 𝑐𝑖 , 0, 𝐿max)
5: else
6: 𝑒, 𝑒, 𝑐𝑖 = MCPA(V𝑚)
7: if 𝑒 < 𝑒ℎ then
8: 𝑐𝑖 = 𝑐𝑖
9: else

10: 𝑐𝑖 ← ∅
11: end if
12: Ṽ𝑚 =SlidingWindow(V𝑚, v𝑘 , 𝑐𝑖 , 1, 𝐿max)
13: end if
14: return 𝑐𝑖 , Ṽ𝑚

15: end function
Input: Current velocity vector v𝑘 , change point 𝑐𝑖 , flag and 𝐿max
Output: Updated velocity sequence Ṽ𝑚

1: function Ṽ𝑚 = SlidingWindow(V𝑚, v𝑘 , 𝑐𝑖 , flag, 𝐿max)
2: if flag == 0 then
3: Ṽ𝑚 ← append v𝑘 to the end of V𝑚

4: return Ṽ𝑚

5: else
6: if 𝑐𝑖 ≠ ∅ then
7: Ṽ𝑚 ← remove velocities before time step 𝑐𝑖 , append v𝑘 to the end of V𝑚

8: return Ṽ𝑚

9: else
10: Ṽ𝑚 ← remove velocities before time step 𝐿max, append v𝑘 to the end of V𝑚

11: return Ṽ𝑚

12: end if
13: end if
14: end function

B. Action Recognition
Assuming the last change point before current time step 𝑘 is 𝑐𝑖 . If 𝑘−𝑐𝑖 > 𝑤𝑟 , where𝑤𝑟 is the length of the recognition

window, the action recognition function 𝐹 will be applied on the video clip I𝑐𝑖 :𝑐𝑖+𝑤𝑟
= [𝐼𝑐𝑖 , 𝐼𝑐𝑖+1, . . . , 𝐼𝑐𝑖+𝑤𝑟

] to
identify the semantic labels,

𝑎( 𝑗) = 𝐹 (I𝑐𝑖 :𝑐𝑖+𝑤𝑟
), 𝑗 = 𝑐𝑖 , . . . , 𝑘 (11)

where the action labels are the same from step 𝑐𝑖 to 𝑘 . Here, an action recognition algorithm [17] is implemented.
The method employs motion energy image (MEI) and motion history image (MHI) to represent motions in an image

8

D
ow

nl
oa

de
d 

by
 2

4.
16

9.
97

.2
51

 o
n 

Ja
nu

ar
y 

7,
 2

02
2 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

2-
20

31
 



sequence or a video clip. MEI is a cumulative binary motion image, which indicates where the pixels are moving in the
image. MHI is a scalar-valued image where more recently moving pixels are brighter. Assume 𝑘 = 𝑐𝑖 + 𝑤𝑟 , the MEI
and MHI are defined as,

𝐸𝑘 =

𝑤𝑟−1∑︁
𝑖=0

𝐼𝑘−𝑖 − 𝐼𝑘−𝑖−1 (12)

𝐻𝑘 =


𝐻0,0,𝑘 𝐻1,0,𝑘 · · · 𝐻𝑤,0,𝑘

𝐻0,1,𝑘 𝐻1,1,𝑘 · · · 𝐻𝑤,1,𝑘
...

...
...

...

𝐻0,ℎ,𝑘 𝐻1,ℎ,𝑘 · · · 𝐻𝑤,ℎ,𝑘


(13)

where each entry in 𝐻𝑘 is defined as,

𝐻𝜉 ,𝜂,𝑘 =

{
𝑤𝑟 if |𝐼𝜉 ,𝜂,𝑘 − 𝐼𝜉 ,𝜂,𝑘−1 | > 𝑑𝑐

max(0, 𝐻𝜉 ,𝜂,𝑘−1 − 1) otherwise
(14)

where |𝐼𝜉 ,𝜂,𝑘 − 𝐼𝜉 ,𝜂,𝑘−1 | is the pixel intensity difference at location (𝜉, 𝜂), 𝑑𝑐 is a pre-defined threshold.
𝐻𝑘 and 𝐸𝑘 can effectively represent the shape and temporal history of human motion. The first seven Hu moments

are used as a feature descriptor of 𝐻𝑘 and 𝐸𝑘 . They are invariant to scale, translate and rotate. Mahalanobis distance
𝐷𝑖, 𝑗 is used to calculate the similarity between the hu moments h𝑐𝑖 :𝑐𝑖+𝑤𝑟

of the testing sample and that of the training
action,

𝐷𝑖, 𝑗 =

√︃
(h𝑐𝑖 :𝑐𝑖+𝑤𝑟

− h 𝑗 )𝑇K−1
𝑗
(h𝑐𝑖 :𝑐𝑖+𝑤𝑟

− h 𝑗 ) (15)

where K 𝑗 ∈ R7×7 and h 𝑗 ∈ R7×1 are the covariance and mean of the Hu moments of the 𝑎 𝑗 respectively, h𝑐𝑖 :𝑐𝑖+𝑤𝑟
∈ R7×1

is the Hu moment vector of the testing sample collected on I𝑐𝑖 :𝑐𝑖+𝑤𝑟
. The metric will produce a smaller value for actions

with similar shape and trajectory history.

VI. Hybrid Control of the Near-to-Gate Aircraft
A hybrid control system is designed with inspiration from [12] to control the aircraft to reach a terminal gate

designated by the ground crew. The controller in [12] assumes the Air Traffic Control (ATC) commands are received in
advance for path planning. Different from that, the control system in this paper processes the incoming marshalling
signals to coordinate between the discrete modes, including "Cruising Forward", "Turning", "Holding" and "Stop" , as
well as tracking the reference line. The "Cruising Forward" and "Turning" modes are solely determined by the action
recognition result on the ground crew gesture command. The "Holding" mode is activated when the plane approaches
a transit node without receiving any new instructions. The "Stop" mode is triggered when the aircraft arrives at the
terminal gate and receives the corresponding gesture command.

A. Continuous State Control Law
"Cruising Forward" Mode. The airplane is controlled to move forward with a pre-defined desired speed 𝑣𝑑 along

the centerline path generated between the current node and the following node. If there are multiple branches, the angle
of the vector formed by the current position of the aircraft and each potential node will be calculated. The branch with
the correct angle that aligns with the "Forward" command will be selected. This control scheme is triggered when
the airplane is instructed to "Cruising Forward". The waypoints [q𝑘

𝑇 , . . . , q𝑘 𝑓

𝑇 ]𝑇 = [𝑥𝑟 ,𝑘 , 𝑦𝑟 ,𝑘 , . . . , 𝑥𝑟 ,𝑘 𝑓
, 𝑦𝑟 ,𝑘 𝑓

]𝑇 and
reference yaw angles [𝜓𝑟 ,𝑘 , . . . , 𝜓𝑟 ,𝑘 𝑓

]𝑇 are assumed to be known in the inertial frame. The reference state at time step
𝑗 is then defined as s𝑟 , 𝑗 = [q𝑘

𝑇 , 𝜓𝑟 ,𝑘 , 𝑣𝑑]𝑇 . An optimal control problem is constructed for this mode. The control
objective function is defined as,

𝐽𝜇1 = | |s𝑘 𝑓
− s𝑟 ,𝑘 𝑓

| |22 +
𝑘 𝑓∑︁
𝑗=𝑘

| |s 𝑗 − s𝑟 , 𝑗 | |22 + ||u𝜇1 , 𝑗 | |22 (16)
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The deviation from the centerline and control usage are penalized. Then, a nonlinear optimization problem can be
formulated as below,

min
x1

𝐽𝜇1

subject to s 𝑗+1 = 𝑓 (s 𝑗 , u𝜇1 , 𝑗 ), 𝑗 = 𝑘, . . . , 𝑘 𝑓 − 1
s 𝑗 ∈ S, 𝑗 = 𝑘, . . . , 𝑘 𝑓

u𝜇1 , 𝑗 ∈ U, 𝑗 = 𝑘, . . . , 𝑘 𝑓

s𝑘 = s0

(17)

where s0 is the initial condition of the state, S andU are a set of admissible states and control inputs of the aircraft
respectively. All the states and control inputs in the current time window are organized as the following vector and
optimized together,

x1 = [s𝑇𝑘 , . . . , s
𝑇
𝑘 𝑓
, u𝑇

𝜇1 ,𝑘
, . . . , u𝑇

𝜇1 ,𝑘 𝑓
]𝑇 (18)

"Turning" Mode. The airplane is controlled to turn toward or turn away from the terminal gate while following the
centerline path and maintaining a pre-defined desired speed 𝑣𝑑 . When there are multiple branches of the centerline, the
angle of the vector that connects the current position of the aircraft and the destination node of each branch will be
estimated. The airplane will follow the branch whose estimated angle aligns with the gesture command. The control
objective function is the same to the "Cruising Forward" mode and is defined as,

𝐽𝜇2 = | |s𝑘 𝑓
− s𝑟 ,𝑘 𝑓

| |22 +
𝑘 𝑓∑︁
𝑗=𝑘

| |s 𝑗 − s𝑟 , 𝑗 | |22 + ||u𝜇2 , 𝑗 | |22 (19)

The nonlinear minimization problem is constructed as,

min
x2

𝐽𝜇2

subject to s 𝑗+1 = 𝑓 (s 𝑗 , u𝜇2 , 𝑗 ), 𝑗 = 𝑘, . . . , 𝑘 𝑓 − 1
s 𝑗 ∈ S, 𝑗 = 𝑘, . . . , 𝑘 𝑓

u𝜇2 , 𝑗 ∈ U, 𝑗 = 𝑘, . . . , 𝑘 𝑓

s𝑘 = s0

(20)

The optimization variables are,
x2 = [s𝑇𝑘 , . . . , s

𝑇
𝑘 𝑓
, u𝑇

𝜇2 ,𝑘
, . . . , u𝑇

𝜇2 ,𝑘 𝑓
]𝑇 (21)

"Holding" Mode. When the airplane is within the alarm distance 𝑑𝑎 of the next transit node and no further
command is received, the airplane will be controlled to reach the node while decelerating to zero velocity when it
arrives. The location of the nodes and centerline waypoints are assumed to be known in the inertial frame. The control
objective function is defined as,

𝐽𝜇3 = | |s𝑘 𝑓
− [𝑥𝑛, 𝑦𝑛, 𝜓𝑛, 0]𝑇 | |22 +

𝑘 𝑓∑︁
𝑗=𝑘

| |s 𝑗 − [𝑥𝑟 , 𝑗 , 𝑦𝑟 , 𝑗 , 𝜓𝑟 , 𝑗 , 0]𝑇 | |22 + ||u𝜇3 , 𝑗 | |22 (22)

where [𝑥𝑛, 𝑦𝑛]𝑇 is the location of the next node and 𝜃𝑛 is the desired yaw angle of the plane at the node. A nonlinear
minimization problem is formulated below for finding the optimal control inputs,

min
x3

𝐽𝜇3

subject to s 𝑗+1 = 𝑓 (s 𝑗 , u𝜇3 , 𝑗 , 𝑗 = 𝑘, . . . , 𝑘 𝑓 − 1
s 𝑗 ∈ S, 𝑗 = 𝑘, . . . , 𝑘 𝑓

u𝜇3 , 𝑗 ∈ U, 𝑗 = 𝑘, . . . , 𝑘 𝑓

s𝑘 = s0

(23)
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The optimization variables are defined as,

x3 = [s𝑇𝑘 , . . . , s
𝑇
𝑘 𝑓
, u𝑇

𝜇3 ,𝑘
, . . . , u𝑇

𝜇3 ,𝑘 𝑓
]𝑇 (24)

"Stop" Mode. When the airplane arrives at the designated terminal gate and receives the "Stop" command from the
ground crew, the engine will shut down and remain at that state until instructed to start again. The control law for this
mode is trivial,

u𝜇4 = 0 (25)

B. Mode Switching Control Law
"Cruising Forward" Mode. The discrete controller decides when to switch the system state to another mode from

"Cruising". If the aircraft receives "Turning" command from the ground crew, the aircraft will enter the corresponding
mode. Besides, if the aircraft approaches a node without receiving any new gesture commands, the airplane will switch
to "Holding" mode and start to decelerate to zero velocity. The plane will remain idle until the next instruction arrives.

𝜇(𝑘) =


𝜇2 if 𝑎(𝑘) = "Turn Right" or "Turn Left"
𝜇3 if 𝑎(𝑘) = "None" and | | [𝑥𝑘 , 𝑦𝑘]𝑇 − [𝑥𝑛, 𝑦𝑛]𝑇 | |22 < 𝑑𝑎

𝜇1 otherwise
(26)

"Turning" Mode. The discrete controller decides when to enter another system state from "Turning". If the ground
crew instructs the plane to change from "Turning" to "Move Forward", the airplane will switch to "Cruising Forward"
mode. Another situation is that when the plane approaches a node without receiving new commands, the airplane will
automatically change to "Holding" state.

𝜇(𝑘) =


𝜇1 if 𝑎(𝑘) = "Move Forward"
𝜇3 if 𝑎(𝑘) = "None" and | | [𝑥𝑘 , 𝑦𝑘]𝑇 − [𝑥𝑛, 𝑦𝑛]𝑇 | |22 < 𝑑𝑎

𝜇2 otherwise
(27)

"Holding" Mode. The airplane can reach any other system states in the "Holding" mode. The switching scheme is
solely based on the gesture commands. The discrete control law is defined as,

𝜇(𝑘) =


𝜇1 if 𝑎(𝑘) = "Move Forward"
𝜇2 if 𝑎(𝑘) = "Turn Right" or "Turn Left"
𝜇4 if 𝑎(𝑘) = "Stop"
𝜇3 otherwise

(28)

"Stop" Mode. The airplane will shut down and remain in the "Stop" mode.

𝜇(𝑘) = 𝜇4 (29)

VII. Results
The performance of the two-stage action detection is evaluated on a publicly available real-world gesture dataset

[11]. The robustness of the detection surpasses other action segmentation methods significantly using standard metrics.
The action classification result is also described. Then, the automatic cruising of the aircraft from the taxiway to the
designated gate is simulated. The results demonstrate the effectiveness of the vision-guided hybrid control system.

A. Two-Stage Online Action Detection Performance
The algorithm is tested on UTD Multimodal Human Action Dataset (UTD-MHAD) [11], which consists of 20

different human gestures, including daily actions and sports moves. Many of them are very similar, for instance, arms
cross and arms curl, baseball swing and tennis swing. Therefore, it is an appropriate as well as a challenging dataset
for testing the robustness and accuracy of the two-stage online action detection (OACD) algorithm. The dataset was
collected by a fixed Microsoft Kinect sensor and a wearable inertial sensor in the indoor environment. In the simulation,
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gestures are randomly selected and concatenated together to form a continuous motion sequence. OpenPose [14] is used
to extract keypoint velocity vectors from the video stream, which is then processed by the change detection algorithm
frame by frame. The change points will be reported once it is discovered in the current sliding window. The parameters
of the method are manually selected as 𝑤𝑑 = 200, L = [40, 30, 10], 𝑝 = 1 and ℎ = 0.1.

The accuracy and robustness of the algorithm are evaluated numerically using the standard Precision and False
Negative Rate (FNR) metric. Let 𝑛TP, 𝑛FP, 𝑛FN respectively denote the number of correctly detected change points, the
number of falsely detected change points, and the number of mistakenly undetected change points. The metrics can be
written as below,

Precision =
𝑛TP

𝑛TP + 𝑛FP
(30)

FNR =
𝑛FN

𝑛TP + 𝑛FN
(31)

In the simulation, 20 randomly generated motion sequences are tested. Table 1 summarizes the Precision and FNR
results of the OACD algorithm and compares them with other action segmentation methods. The low FNR indicates
that the algorithms can robustly avoid miss detection. Despite that OACD is an online method, it has a precision that is
close to that of other offline algorithms. Besides, the average runtime of the algorithm on one sliding window is only
0.012𝑠 with MATLAB implementation on an AMD Ryzen 3700X windows computer, which is suitable for real-time
control problems.

Table 1
Online Action Change Detection Performance.

Setting Methods Precision FNR

Offline ACA [18] 0.88 0.35
Offline HACA [19] 0.85 0.31
Offline SC [20] 0.67 0.54
Online OACD 0.77 0.026

The window size of the action recognition algorithm [17] is set to 𝑤𝑟 = 30. The module is applied once a
new change point is detected. The method is tested on 10 random sequences generated by the following actions
A = {"Waving", "Boxing", "Swiping", "Waving", "Push", "Swing"}. The results are quantified by the Precision metric,
where a perfect accuracy is achieved. As a comparison, the method proposed in [17] for finding the correct time window
by minimizing the Mahalanobis distance performs poorly on the continuous action sequences. It only achieves a value
of 0.4 using the same metric on the same dataset.

B. Aircraft Arrival Simulation
The arrival of an aircraft from the taxiway to a designated terminal gate is simulated. A commercial airplane model

is used with front-rear axle distance 𝑙 = 15𝑚, acceleration 𝛽 = [−10𝑚/𝑠2, 10𝑚/𝑠2], and yaw angle 𝜓 = [− 𝜋
2 ,

𝜋
2 ]. The

maximum speed of the aircraft is set to 10𝑚/𝑠. Besides, the sampling interval is Δ𝑡 = 0.1𝑠 and the planning horizon is
𝑘 𝑓 − 𝑘 = 10. At the beginning, the simulated aircraft idles at node 𝑣𝑠 with zero velocity, as shown in Fig 7(a). Upon
receiving the "Move Forward" command from the ground crew, it starts to accelerate to the desired velocity while
following the centerline. Two scenarios are considered when the airplane approaches 𝑣1. In the first case, the ground
crew will send "Turn Right" command before the aircraft reaches the alarm distance 𝑑𝑎 with respect to 𝑣1. For the
second simulation, the crew sends the command after the airplane is within the alarm distance 𝑑𝑎 of 𝑣1. The plane
will first enter "Holding" mode then switch to "Turning" due to the command delay. Fig 7(b) shows the pose and
position of the airplane in "Turning" mode. Next, the ground crew will send "Move Forward" command when the
aircraft approaches node 𝑣3. As shown in Fig 7(c), the airplane will be controlled to move forward since it receives the
command before it is too close to 𝑣3. Similarly, the crew member will send "Move Forward" again when the plane
approaches node 𝑣6 to direct it to the terminal gate 𝑣10. The airplane will automatically decelerate to safely stop at the
gate region. The ground crew will send "Stop" command to let the engine shut down. Fig 7(d) displays the final position
of the airplane. In the simulation, the nodes are connected in below order,

𝑣𝑠 → 𝑣1 → 𝑣3 → 𝑣6 → 𝑣10
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(a) (b) 

  

(c) (d) 
 

Fig. 7 Snapshots of the Arrival simulation. (a) The aircraft starts taxiing. (b) The airplane turns toward the
designated terminal gate. (c) The aircraft approaches and gate. (d) The aircraft arrives and the engine shuts
down.

Marshalling gestures are concatenated together to form the desired action sequence as described above. The time span
of each motion segment is designed based on the approximate time that the airplane will spend on each mode, given the
constraints. The sequence is ordered as below,

𝑎1 → 𝑎4 → 𝑎2 → 𝑎4 → 𝑎1 → 𝑎4 → 𝑎1 → 𝑎4 → 𝑎3

where the duration of each gesture is set to 6𝑠, 9𝑠, 9𝑠, 6𝑠, 10𝑠, 9𝑠, 10𝑠, 12𝑠 and 11𝑠 respectively. As shown in Fig 8, the
OACD algorithm can accurately detect all the change points with the largest error equaling to 1𝑠 at 𝑐6. Once a new
action segment is detected, it will be classified by the action recognition algorithm. Define the normalized M-distance
for the testing sample I𝑐𝑖 :𝑐𝑖+𝑤𝑟

as,

𝐷̃𝑖, 𝑗 =
𝐷𝑖, 𝑗

max{𝐷𝑖, 𝑗 | 𝑗 ∈ [1, 5]}
(32)

where the distance is divided by the largest distance among the testing sample and any of the training action
𝑎 𝑗 ∈ A. Recall that the similarity between two actions is quantified by the proximity of their M-distance; a small
distance means that the two samples possibly belong to the same action. Therefore, the smallest normalized distance
𝐷̃∗

𝑖
= min{𝐷̃𝑖, 𝑗 | 𝑗 ∈ [1, 5]} for each gesture segment is shown in Fig 8. All the actions are correctly recognized

and most of them are classified with a high confidence. The time delay of the recognition for each segment is
𝜏 = [𝜏1, . . . , 𝜏8] = [2.90𝑠, 1.23𝑠, 0.03𝑠, 0.70𝑠, 0.70𝑠, 0.37𝑠, 2.70𝑠, 1.33𝑠].
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Gesture Sequence for Aircraft Arrival Simulation

Start End

…

Forward None Turn None Forward None Forward Stop
Ground Truth

Detection

0.11 0.89 0.080.10 0.32

None

Forward None Turn None Forward None Forward StopNone
Recognition

Fig. 8 The detection and recognition results on gesture sequence for arrival simulation. The two-stage action
detection algorithm can accurately detect and recognize the actions with reasonable time delays. The values of
𝐷̃∗

𝑖
are displayed over each action segment.

The resulting gesture label sequence [𝑎(1) . . . 𝑎(9)] is used by the hybrid controller to decide the cruising mode of
the aircraft. Aside from the above action sequence, another sequence is generated for the second scenario, where the
duration of 𝑎(2) is extended to 10𝑠 such that the aircraft will first reach the distance 𝑑𝑎 before it receives the "Turn
Right" command. Fig. 9(a) and 10(a) show the actual trajectory of the aircraft compared to the reference line for the
two scenarios respectively. The corresponding control inputs and aircraft speed are plotted in Fig. 9(b)-(c) and Fig.
10(b)-(c) . It can be observed that the aircraft successfully switches between the different modes and follows the desired
centerline to reach the designated gate. Note that the optimization and gesture recognition are performed online using
MATLAB® to pre-compute all the aircraft states, which are then sent to Unreal Engine ™ for simulation.

(a) (b) (c)

Fig. 9 The aircraft trajectory (a), control inputs (b), and velocity profile (c), for arrival simulation. "Turning"
command is received before the aircraft approaches 𝑣1. The airplane maintains the desired velocity and passes
the node.

VIII. Conclusion
This paper develops a two-stage online action detection algorithm to temporally locate and classify actions from

a streaming video sequence. The robustness of the approach have been shown to surpass the existing algorithms on
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(a) (b) (c)

Fig. 10 The aircraft trajectory (a), control inputs (b), and velocity profile (c), for arrival simulation. "Turning"
command is not received before the aircraft is within alarm distance 𝑑𝑎 with 𝑣1. The airplane drops to zero
velocity at 𝑣1 and restart once it receives a new command.

a real-world gesture dataset significantly. The algorithm is integrated with a control system to control a near-to-gate
aircraft to cruise to a designated gate automatically. A hybrid controller is developed to switch between different cruising
modes based on the gesture commands while tracking and following the reference lines. The effectiveness of the system
is demonstrated by successfully conducting arrival experiments in a simulated airport.
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