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a b s t r a c t

This paper presents a novel optimal control problem, referred to as distributed optimal control, that
is applicable to multiscale dynamical systems comprised of numerous interacting agents. The system
performance is represented by an integral cost function of themacroscopic state that is optimized subject
to a hyperbolic partial differential equation known as the advection equation. The microscopic control
laws are derived from the optimal macroscopic description using a potential function approach. The
optimality conditions of the distributed optimal control problem are first derived analytically and, then,
demonstrated numerically through a multi-agent trajectory optimization problem.

© 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license.
1. Introduction

Many complex systems ranging from renewable resources
(Sanchirico & Wilen, 2005) to very large scale robotic (VLSR) sys-
tems (Reif & Wang, 1999) can be described as multiscale dy-
namical systems comprised of many interactive agents. On small
spatial and temporal scales, the dynamics of every agent can be de-
scribed by a small systemof ordinary differential equations (ODEs),
referred to as the microscopic or detailed equation. On larger spa-
tial and temporal scales, the agents’ dynamics and interactions give
rise to macroscopic coherent behaviors, or coarse dynamics, that
can bemodeled by partial differential equations (PDEs) (Kevrekidis
et al., 2003). In many cases, the macroscopic PDE model can be
derived by mapping the microscopic states of the agents to a
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macroscopic description using an appropriate restriction opera-
tor, such as the distribution of the agents or its lower-order mo-
ments (Kevrekidis et al., 2003).

This paper presents a distributed optimal control (DOC) prob-
lem formulation and optimality conditions applicable to a class of
multiscale dynamical systems in which the restriction operator is
the distribution of the agents, and the macroscopic dynamics are
given by a PDE known as the advection equation. The DOC ap-
proach is demonstrated by solving a trajectory optimization prob-
lem in which a large number of unicycle robots must travel from
an initial to a final macroscopic state, in the presence of obsta-
cles. It was recently shown that optimizing the trajectories of N
agents in an obstacle-populated environment is polynomial-space-
hard (PSPACE-hard) in N (Hopcroft, Schwartz, & Sharir, 1984). A
problem is considered PSPACE-hard if every problem in its class
is at least as difficult as any problem solvable in polynomial space
(PSPACE). The class of PSPACE problems contains many problems
for which no efficient solutions are known. Therefore, a PSPACE-
hard problem is generally considered to be computationally in-
tractable for large N , as it would require exponential deterministic
time in the worse case (Rich, 2008).

Several approaches have been proposed for tackling the control
of VLRS systems, and avoid complexity issues for large N (Cheah,
Hou, & Slotine, 2009). These approaches include prioritized
planning techniques (Thrun, Bennewitz, & Burgard, 2002), and
path-coordination methods (LaValle & Hutchinson, 1998), which
first plan the agents’ trajectories independently, and then adjust

-ND license.
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the microscopic control laws to avoid mutual collisions. Behavior-
based control methods seek feasible solutions by programming
a set of simple behaviors for each agent, and by showing that
the agents’ interactions give rise to a macroscopic behavior, such
as dispersion (Reif & Wang, 1999). Swarm-intelligence methods,
such as foraging and schooling (Gazi & Passino, 2004), view each
agent as an interchangeable unit subject to local objectives and
constraints through which the swarm can converge to a range of
pre-defined distributions.

The DOC approach presented in this paper does not rely on
decoupling the agents’ dynamics, or on specifying the agents’
distribution a priori. Instead, DOC optimizes the macroscopic
performance of the system subject to agent dynamics that are
coupled via the objective function, and relies on the macroscopic
evolution equation and restriction operator that characterize the
multiscale system to reduce the computational complexity of the
optimal control problem. As a result the computation required is
significantly reduced compared to classical optimal control, and
the trajectories of cooperative agents can be computed over large
spatial and time scales without sacrificing optimality or complete-
ness. The DOC optimality conditions are derived using calculus of
variations, and validated using numerical solutions obtained via a
direct optimizationmethod. Simulations are presented to illustrate
the performance of the DOC approach on a trajectory optimization
problem involving hundreds of agents, and multiple cooperative
objectives.

2. Problem formulation and assumptions

This paper considers the problem of computing the optimal
state and control trajectories for a multiscale dynamical system
comprised of N dynamical systems, referred to as agents, that can
each be described by a small system of ODEs, referred to as the
detailed equation,

ẋi(t) = f[xi(t),ui(t), t], xi(T0) = xi0 , i = 1, . . . ,N (1)

where xi ∈ X ⊂ Rn and ui ∈ U ⊂ Rm denote the microscopic
state and control of the ith agent, respectively, xi0 is the initial value
of the microscopic state, X denotes the microscopic state space,
and U denotes the space of admissible microscopic controls. On
larger spatial and temporal scales, the interactions of the N agents
give rise to macroscopic coherent behaviors, or coarse dynamics,
that are modeled by PDEs. The macroscopic state of the multiscale
system, denoted by X ∈ Rl, consists of l < n variables that cap-
ture the macroscopic system dynamics and performance, such as
lower-order moments of the microscopically-evolving agent dis-
tribution (Kevrekidis et al., 2003).

From the agent distribution, it is possible to determine a re-
striction operator ℘xi that maps the microscopic states to the
macroscopic description (Kevrekidis et al., 2003). Since xi is a time-
varying continuous vector,℘xi is a time-varyingprobability density
function (PDF),℘xi : X×R → R, such that X = ℘xi(xi, t), and l =
1. Then, for any agent i, the probability of event xi ∈ B at time t is,

P(xi ∈ B, t) =


B
℘xi(xi, t)dxi, (2)

for any subset B ⊂ X, where ℘xi is a nonnegative function that
satisfies the normalization property,

X

℘xi(xi, t)dxi = 1 (3)

and is abbreviated to ℘ in the remainder of this paper. For exam-
ple, if xi is the position of agent i at time t , the agent can be viewed
as a fluid particle in the Lagrangian approach, and ℘(xi, t) can be
viewed as the forward PDF of particle position (Pope, 2000). Fur-
thermore, N℘(xi, t) represents the density of agents in X.
The macroscopic system performance is a function of the agent
distribution and control, and it can be expressed as an integral cost
function of ℘ and ui,

J = φ[℘(xi, Tf )] +

 Tf

T0


X

L [℘(xi, t),ui(t), t]dxidt (4)

where L is the Lagrangian, and φ is the terminal cost. DOC seeks
to determine themacroscopic state andmicroscopic control trajec-
tories that minimize J over a (large) time interval (T0, Tf ], subject
to the coarse dynamics, the normalization condition (3), and state
constraints.

Through state constraints, it is possible to guarantee that, at any
time t ∈ (T0, Tf ], xi ∈ X for all i, and, thus, agents in X are never
created nor destroyed. The PDE that governs the motion of a con-
served, scalar quantity, such as a PDF, as it is advected by a known
velocity field is a hyperbolic PDE known as the advection equation
(Boyd, 2001). Based on the advection equation, when℘ is advected
by the velocity field vi = ẋi ∈ Rn, known from the detailed Eq. (1),
the evolution of℘ can be derived from the continuity equation and
Gauss’ theorem. It can be shown that the time-rate of change of ℘
can be written in terms of the divergence of the vector (℘vi), as
shown by the advection equation,

∂℘

∂t
= −∇ · {℘(xi, t) vi(t)} (5)

= −∇ · {℘(xi, t) f[xi,ui, t]} (6)

where, the gradient ∇ denotes a row vector of partial derivatives
with respect to the elements of xi, (·) denotes the dot product, and
the divergence is written as the dot product between (℘vi) and
the gradient ∇ . The reader is referred to Boyd (2001) for a detailed
derivation of the advection equation. Assuming the initial agent
distribution is a known PDF g0, the macroscopic evolution equa-
tion (6) is subject to the following initial and boundary conditions,

℘(xi, T0) = g0(xi), ∀xi ∈ X (7)

℘(xi, t) = 0, ∀xi ∈ ∂X, ∀t ∈ (T0, Tf ] (8)

where ∂X denotes the boundary of X, such that agents remain in
the interior of X at all times. Additionally, ℘ must obey the nor-
malization condition (3), and the state constraint

℘(xi, t) = 0, ∀xi ∉ X, ∀t ∈ (T0, Tf ]. (9)

Then, the DOC problem consists of finding the optimal agent distri-
bution,℘∗, andmicroscopic controls, u∗

i , thatminimize themacro-
scopic cost function (4) subject to the dynamic constraint (6), the
normalization condition (3), the initial and boundary conditions
(7)–(8), and the state constraint (9). Since the DOC problem does
not obey the classical optimal control formulation (Stengel, 1986),
new optimality conditions are derived in the next section, and then
they are validated numerically in Section 5 through a multi-agent
trajectory optimization problem presented in Section 4.

3. DOC optimality conditions

The necessary conditions for optimality are derived by using
calculus of variations to determine the agent distribution and
control laws that minimize the integral cost function (4). Since
the optimization of (4) is subject to a set of dynamic and equality
constraints, the integral to be minimized is found by adjoining the
dynamic constraints to (4) using a Lagrangemultiplier (Fox, 1987).
By this approach, necessary conditions for optimality are found
from the first-order effects of control variations that must be zero
at all times for the integral cost to be stationary. Then, higher-
order sensitivity to control variations can be tested to discriminate
between cases in which the integral is a minimum, a maximum, or
is neither (Fox, 1987).
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From the distributive property of the dot product and by change
of sign, the advection equation (6) is rewritten as the time-varying
equality constraint,

∂℘

∂t
+ (∇℘) · f + ℘(∇ · f) = 0 (10)

where the functions’ arguments are omitted for brevity. Since (10)
is a dynamic constraint that must be satisfied at all times, a time-
varying Lagrange multiplier, λ = λ(xi, t), is used to adjoin the
equality constraint (10) to the integral cost (4). Then, the aug-
mented cost function,

JA = φ[℘(xi, Tf )] +

 Tf

T0


X


L (℘,ui, t) + λ


∂℘

∂t

+ (∇℘) · f + ℘(∇ · f)


dxidt (11)

is to beminimizedwith respect to the functional forms of the time-
varying agent distribution ℘ and control ui, and subject to the
equality constraints (3), (7)–(9).

The integrand of (11) must satisfy stationarity conditions
throughout (T0, Tf ] in order for JA to be stationary (Fox, 1987). This
is proven by introducing the Hamiltonian,

H[℘(·),ui(·), λ(·), t] ≡ L (·) + λ[(∇℘) · f + ℘(∇ · f)] (12)

which is a function of the agent distribution, the control, and the
Lagrange multiplier, and is analogous to the Hamiltonian from
Pontryagin’s minimum principle (Stengel, 1986). The augmented
cost function (11) is then rewritten in terms of the Hamiltonian
and simplified using integration by parts,

JA = φ +

 Tf

T0


X


H + λ

∂℘

∂t


dxidt

= φ +


X

[λ(xi, Tf )℘(xi, Tf ) − λ(xi, T0)℘(xi, T0)]dxi

+

 Tf

T0


X


H − ℘

∂λ

∂t


dxidt. (13)

By the fundamental theorem of calculus of variations (Fox, 1987),
an integral with fixed end points, T0 and Tf , is stationary for weak
variations if the first order effect of variations in the function to be
optimized is zero throughout (T0, Tf ]. Thus, for JA to be stationary,
the first-order effect of control variations δui(t) on (13) must be
zero for all t ∈ (T0, Tf ]. By the causality of the macroscopic dy-
namic equation (6), control perturbations lead to perturbations in
℘, and thus the first variation of JA is

δJA =

 Tf

T0


X


∂H

∂℘
− λ̇


δ℘(δui) +

∂H

∂ui
δui


dxidt

+


∂φ

∂℘
+


X

λdxi


δ℘(δui)


t=Tf

−


X

λdxiδ℘(δui)


t=T0

.

For an extremum, we must have δJA = 0 for all δ℘, δui, and the
variations from δ℘ and δui must independently vanish along the
optimal solution curve. Since it can be assumed that the initial con-
trol has no effect on the initial state conditions, the equations,

λ̇ =
∂H

∂℘
=

∂L

∂℘
+ λ(∇ · f) (14)

and,

0 =
∂H

∂ui
=

∂L

∂ui
+ λ


(∇℘)

∂f
∂ui

+ ℘
∂

∂ui
(∇ · f)


(15)
must be satisfied for T0 ≤ t ≤ Tf , subject to the terminal conditions
X

λ(xi, Tf )dxi = −
∂φ

∂℘


t=Tf

. (16)

Eqs. (14)–(16) constitute necessary conditions for optimality for
the DOC problem in Section 2. Thus, the optimal agent distribu-
tion℘∗ must satisfy (14)–(16) alongwith the normalization condi-
tion (3), the initial and boundary conditions (7)–(8), and the state
constraint (9). If these conditions are satisfied, the extremals can
be tested using higher-order variations to verify that they lead to
a minimum of the augmented cost function JA in (11). In particu-
lar, sufficient conditions for optimality could be derived from the
second-order derivatives of the Hamiltonian (12) with respect to
ui, or Hessian matrix that is positive definite for a convex Hamilto-
nian. In this paper, we consider admissible solutions of (14)–(16)
to be optimal if perturbations at any t ∈ (T0, Tf ] only increase the
value of JA.

The microscopic control laws are determined from the optimal
macroscopic description℘∗ by defining an attractive potential that
pulls the agents towards ℘∗. Since ℘∗ is a time-varying distribu-
tion, the potential function is defined as a quadratic function of the
error between ℘∗ and the estimated agent distribution, ℘̂, at time
(t + δt):

U ,
1
2

[℘̂(xi, t + δt) − ℘∗(xi, t + δt)]2. (17)

The time interval δt is a small time constant that is chosen to pre-
vent the agents from lagging behind℘∗. The estimate ℘̂(xi, t + δt)
is computed by stepping the advection equation (6) forward in
time by an interval δt from ℘̂(xi, t), and ℘̂(xi, t) is computed
via kernel density estimation from the agents’ positions at time t
(Simonoff, 1996). Then, a microscopic control law that minimizes
(17) is obtained from the negative gradient of U , based on the de-
tailed Eq. (1), such that u∗

i = c[℘∗(xi, t + δt)].

4. Multi-agent trajectory optimization

The DOC problem and optimality conditions presented in the
previous section are demonstrated through a multi-agent trajec-
tory optimization problem. Consider a system of N cooperative
unicycle robots traveling through an obstacle-populated compact
spaceW ⊂ R2, referred to as theworkspace, and occupied byM ob-
stacles B1, . . . , BM , where Bj ⊂ W . The dynamics of each robot
are described by the nonlinear unicycle model,

ẋi = vi cos θi ẏi = vi sin θi θ̇i = ωi (18)

where qi = [xi yi θi]T is the configuration of agent i, which contains
the xy-coordinates, xi and yi, and heading angle, θi, with i =

1, . . . ,N . The microscopic control vector of agent i is ui = [vi ωi]
T ,

where vi and ωi are the linear and angular velocities, respectively.
The macroscopic state of the system is described by the time-

varying PDF, or restriction operator,℘ : X×R → R, such that the
probability of xi = [xi yi]T is given by (2), in terms of ℘. It follows
that W = X, and ℘ can be regarded as the density of agents in
W at time t ∈ (T0, Tf ]. Given an initial distribution g0(xi), the
agents must travel in W to meet a goal distribution g(xi), while
avoiding obstacles, and minimizing energy consumption. The goal
distribution is assumed to be time-invariant, and all M obstacles’
positions and geometries are assumed known without error. This
section shows that all of these trajectory optimization objectives
can be expressed in terms of the PDF, ℘, to be optimized.

A measure of the difference between ℘ and the goal distri-
bution, g , is given by the instantaneous Kullback–Leibler (KL)
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divergence at time t ,

D(℘ ∥ g) =


X

℘(xi, t) log2
℘(xi, t)
g(xi)

dxi (19)

where, by definition, the support set of ℘ is contained by the
support set of g , and the value 0 log2(0/0) is replaced with 0 for
continuity (Cover & Thomas, 1991). Although the KL divergence
is not a true distance function because it is not symmetric, it is a
suitable objective function because its value increases when the
difference between ℘ and g increases, and vice versa. Also, the KL
divergence of℘ and g is zerowhen the two distributions are equal.

A repulsive potential Urep can be generated from the obstacles’
geometries B1, . . . , BM in W , as shown in Latombe (1991). Then,
the obstacle avoidance objective can be represented by the product
℘Urep. The energy consumption is modeled as a quadratic function
of the control. The DOC cost function to be minimized is,

J =

 Tf

T0


wd D(℘ ∥ g) +


W


wr ℘ Urep

+ we uT
i Rui


dxi


dt (20)

where, R is a diagonal positive-definite matrix. The scalar weights
wd,wr , andwe can be chosen by the user or from a Pareto optimiza-
tion curve, and represent the desired tradeoff between the three
competing objectives. By this formulation of the cost function, the
KL divergence of ℘ and g is minimized throughout (T0, Tf ].

The solution of the DOC problem can be approached by a
parametrization technique that approximates the function to be
optimized by a weighted linear combination of basis functions
(Loxton, Teo, & Rehbock, 2008; Wang, Gui, Teo, Loxton, & Yang,
2009). Finite Gaussian mixture models are commonly used to
provide parametric approximations of PDFs. Thus, in this paper, the
agent distribution is approximated by a mixture model comprised
of z components with Gaussian PDFs f1, . . . , fz , and corresponding
mixing proportions (or weights) w1, . . . , wz . The n-dimensional
multivariate Gaussian PDF,

fj(xi, t) =
e{−(1/2)[xi−µj(t)]T Σj(t)−1

[xi−µj(t)]}

(2π)n/2|Σj(t)|1/2
(21)

is referred to as the component density of themixture, and is char-
acterized by a time-varying mean vector µj ∈ Rn, and a time-
varying covariance matrix Σj ∈ Rn×n, with j = 1, . . . , z. We
assume that, at any t ∈ (T0, Tf ], the agent distribution can be ap-
proximated as follows,

℘(xi, t) ≈

z
j=1

wj(t)fj(xi, t) (22)

where, 0 ≤ wj ≤ 1 for any j, and
z

j=1 wj = 1 (McLachlan,
2000). In this paper, it is assumed that z is fixed, and chosen by the
user. Then, an approximately-optimal agent distribution℘∗ can be
obtained by determining the optimal trajectories of the mixture
model parameters, i.e., µ∗

j , Σ
∗

j , and w∗

j , for j = 1, . . . , z.
In addition to satisfying the DOC constraints and optimality

conditions, the mixture model parameters must be determined
such that the component densities f1, . . . , fz are nonnegative and
obey the normalization condition for all t ∈ (T0, Tf ]. This is ac-
complished by discretizing the continuous DOC problem in space
and time, about a finite set of collocation points in X × (T0, Tf ].
Let∆x and∆t denote constant space and time discretization inter-
vals, respectively, that, to guarantee numerical stability, are chosen
according to the Courant–Friedrichs–Lewy condition (Tannehille,
Anderson, & Pletcher, 1997). Then, by formulating the discretized
DOC problem as a finite dimensional NLP, the optimal mixture
Fig. 1. Initial (a) and goal (b) agent distributions for a workspace with three
obstacles (solid black).

model parameters can be computed via sequential quadratic pro-
gramming (SQP) (Bertsekas, 2007). The details of the DOC numer-
ical solution will be provided in a separate paper.

Once an optimal agent distribution℘∗ is obtained from theDOC
problem (18)–(20), themicroscopic control laws are obtained from
the negative gradient of the potential function in (17). For robots
described by the unicycle model (18), the microscopic control law
is,

ui = [vc Q (θ̂i, −∇U)]T (23)

where,

Q (·) = {a(θ̂i) − a[Θ(−∇U)]}sgn{a[Θ(−∇U)] − a(θ̂i)}

is the minimum differential between the agent’s actual heading
angle θ̂i and the desired heading angle Θ(−∇U), vc is the agent’s
speed, sgn(·) is the sign function, and a(·) is an angle wrapping
function (Latombe, 1991).

5. Simulation results

The DOC solution of the multi-agent trajectory optimization
problem presented in the previous section is illustrated through
an example in which N = 500 agents with unicycle dynamics (18)
must travel from the initial distribution, g0, to the goal distribution,
g , plotted in Fig. 1, during a time interval (0, 22] h. The initial mi-
croscopic states xi0 are determined by sampling g0. Subsequently,
the agents must travel in a workspace W = [0, L] × [0, L], with
L = 15 km, and three obstacles plotted in solid black in Fig. 1. All
agents are assumed to have a linear velocity vi = 0.7 km/h, and an
angular velocityωi ∈ [−ωmax, +ωmax], whereωmax = 0.52 Rad/s.
The cost function weights, wd = 20, wr = 0.1, and we = 1, are
chosen based on the units and relative magnitudes of the three
navigation objectives.
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Fig. 2. Optimal evolution of agent distribution and microscopic state (yellow
circles) for N = 500 microscopic agents, at four instants in time. State trajectories
(blue lines) of 6 randomly chosen agents are plotted in (d).

The computational complexity of the optimization performed
in this example is of the order of the dominant computation of
the algorithm’s quadratic program (QP) subproblem, which is a
QR decomposition using Householder Triangularization (Powell,
1977). This leads to a complexity of O(z2XK 3) that does not grow
Fig. 3. Microscopic state and control histories for 3 agents randomly chosen from
the example in Fig. 2.

with the number of agents N . The number of mixture components,
z = 6, is chosen to obtain the best tradeoff between accuracy
and computational complexity. Time is discretized in intervals of
∆t = 1 h, such that K = 22, and the state space is discretized
using X = 900 collocation points. As a result, the optimal agent
distribution could be computed in several hours on a Core-2 Duo
CPU 2.13-GHz computer with 8-GB RAM, while the corresponding
classical optimal control problem for N = 500 was found to be
intractable on the same machine.

The optimal agent distribution,℘∗, and the values of the agents’
microscopic state variables, xi, are plotted in Fig. 2 at four sample
moments in time, t = 5 h (a), t = 10 h (b), t = 15 h (c), and
t = 22 h (d). The evolution of themicroscopic state, xi, is simulated
by integrating the closed-loop detailed Eq. (18) numerically for all
i, using a time interval δt = 3 s. At every time step of the numerical
integration, the feedback control law is evaluated according to
(23), from the attractive potential (17) defined in terms of the
optimal distribution℘∗. The time-histories of the DOCmicroscopic
state and control for three, randomly-chosen agents are plotted in
Fig. 3, and the state trajectories of six, randomly-chosen agents
are plotted in Fig. 2(d). The results show that, as specified by
the cost function (20), over time ℘∗ meets the goal distribution
g , while agents also avoid obstacles in W , and minimize energy
consumption.

The optimal agent distributions obtained via SQP are also used
to show that any perturbations from the optimal mixture model
parameters increase the error in the optimality conditions derived
in Section 3. Fig. 4 shows the effects of perturbations in the covari-
ances of two mixture components at t = 21 h, for the optimal dis-
tribution in Fig. 2. Here, the jth component’s covariance ismodified
such that Σj = Σ∗

j + cjI2, where cj is the perturbation parameter
varied in Fig. 4, and e1 and e2 denote the mean-squared errors for
the optimality conditions (14) and (15), respectively. These results
are representative of an extensive set of simulations in which the
means, covariances, and component weights were perturbed from
optimal at various times. In all cases, the optimality conditions
were validated numerically by showing that e1 and e2 were at a
minimum for themixturemodel parameters ζ∗ computed via SQP.

6. Conclusion

This paper presents a novel DOC problem formulation that
extends the capabilities of classical optimal control to multiscale
dynamical systems. The DOC optimality conditions are derived
analytically for the case in which the macroscopic description
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Fig. 4. Numerical error for optimality conditions (14) (a) and (15) (b) as a function
of covariance perturbation parameters.

is characterized by the agent distribution, and the macroscopic
dynamics are modeled by the advection equation. Numerical
simulations are used to validate the optimality conditions, and to
demonstrate the effectiveness of the approach for optimizing the
trajectories of many unicycle robots that must travel through an
obstacle-populated environment.
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