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Abstract— This paper presents an automatic target recogni-
tion (ATR) approach for sonar onboard unmanned underwater
vehicles (UUVs). In this approach, target features are extracted
by a convolutional neural network (CNN) operating on sonar
images, and then classified by a support vector machine (SMV)
that is trained based on manually labeled data. The proposed
approach is tested on a set of sonar images obtained by a UUV
equipped with side-scan sonar. Automatic target recognition
is achieved through the use of matched filters, while target
classification is achieved with the trained SVM classifier based
on features extracted by the CNN. The results show that
deep learning feature extraction provide better performance
compared to using other feature extraction techniques such
as histogram of oriented gradients (HOG) and local binary
pattern (LBP). By processing images autonomously, the pro-
posed approach can be combined with onboard planning and
control systems to develop autonomous UUVs able to search
for underwater targets without human intervention.

I. INTRODUCTION

Automatic target recognition (ATR) and classification are
important for a wide range of autonomous systems and ap-
plications. In modern maritime operations, vehicles outfitted
with acoustic sensors, such as side-scan sonars, are used to
obtain images of unidentified objects that may be of potential
threat [1], [2]. Unmanned underwater vehicles (UUVs) are
particularly suited for this task, and generally, they are
guided to take images based on prior available surveying and
tactical information. ATR eliminates the need of manually
classifying targets by expert human operators, which can be
costly, slow and inefficient. ATR based on underwater sonar
images faces challenges because sonar images are natural
images characterized by low constrast, low resolution, and
noise and clutter. As a result, many handcrafted features
used in computer vision are unlikely to extract meaningful
information. This paper leverages recent advancements in
deep learning combined with matched filters and classifier to
extract dominant features from underwater sonar images for
ATR. This is an important stepping stone for the development
of sonar-driven path planning for autonomous UUVs.

The recent success of deep learning algorithms for object
recognition in images is due to the ability to effectively
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perform highly nonlinear feature extraction. [3]–[11]. Con-
volutional neural networks (CNNs) are one of the most
effective deep learning architecture used for image feature
extraction that have spurred a rapid improvement in visual
recognition and brought forth dramatically improved perfor-
mance. Such improvements have been demonstrated through
the yearly ImageNet Large-Scale Visual Recognition Chal-
lenge (ILSVRC), which is designed to allow researchers to
compare progress in computer vision [12]. This paper shows
that by using the renowned robust pre-trained CNN network
AlexNet, trained with ordinary images [7], in combination
with a matched filter and a support vector machine (SVM)
classifier, deep learning can be applied to feature extraction
in pre-processed underwater side-scan sonar images, without
having to train a new CNN purely on sonar domain.

The rest of the paper is organized as follows. In Section II,
problem formulation is presented. In Section III the approach
used for object recognition in sonar images is described,
as well as other topics such as sonar image pre-processing
and object recognition based on the matched filters. In
Section IV, background on CNN is presented, followed by a
description of the object classification system in Section V-B.
Results are presented and discussed in Section VI. Finally,
conclusion and future directions are given in Section VII.

II. PROBLEM FORMULATION

Consider the problem in which multiple images are ob-
tained by a mobile UUV, to recognized, segment, and classify
one or more objects of interest, each belonging to one of
two classes referred to as target c0 and non-target c1. The
goal of the classification task is to design a classifier, f ,
which maps an (n′s × n′t) image segment matrix K to the
output y ∈ {0, 1}. Then, the classifier is applied to determine
the class u ∈ {c0, c1} from image segments based on the
following decision policy:

u =

{
c0, if y = f(K) = 0

c1, if y = f(K) = 1.
(1)

The image segment matrix K is obtained by segmentation
of the (ns × nt) seafloor image matrix I . Each element of
the matrices I and K has a non-negative value,

I(i, j), K(ι, ζ) ∈ [0,+∞). (2)

Let (iI , jI) be a set of indices of the image matrix I .
Choosing the first element of K to be at the location of
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I(iI , jI), the relationship between K and I can be expressed
explicitly as

I =

 · · · · · ·
︸ ︷︷ ︸
jI − 1

...
K
...︸︷︷︸
n′
t

· · · · · ·

︸ ︷︷ ︸
nt − n′

t + iI + 1

 } iI − 1
}ns
}ns − n′s − iI + 1

(3)
Since K always lies inside the image matrix I , the location
of the first pixel of K and the indices of K are constrained
by iI ∈ [1, ns]; jI ∈ [1, nt]; and ι ∈ [1, ns + 1 − iI ]; ι ∈
[1, nt − jI ], respectively.

In this paper, underwater sonar images refer to images of
the seafloor taken by a moving UUV equipped with side-
scan sonar, as shown in Fig. 1. The sonar is mounted on
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Fig. 1. UUV and side-scan sonar image data schematics

the bottom right and bottom left of the UUV, and emits
acoustic waves directly below the UUV. The acoustic waves
are emitted at time intervals one ∆t apart, and the reflected
waves are recorded. The UUV moves forward (defined as
parallel to the seafloor) with constant velocity v. During
the jth time intervals, sonar reflection data from a scan is
recorded, as shown by the red solid lines in Fig. 1. These data
are stored in the jth column of I . The actual size of the sea
floor represented by one sonar image is determined by the
sonar range Lr and the total travel distance L = ntv∆t. Each
pixel value I(i, j), represents the strength of the reflected
acoustic waves from the sea floor. The image matrices
obtained by the right and left side sonars are denoted by
IL and IR, respectively, as shown in Fig. 1. However, since
all data processing treatments are identical for the left and
right images, the subscripts L and R will be omitted for
simplicity, and I will be used to refer to either the right or
the left side sonar scan data.

To collect the underwater images, the simulated UUV
navigates near the sea floor according to a given trajectory,
as shown by the green curve in Fig. 2. In this Figure, the
green trajectory is the coverage path (similar to that the zig-
zag motion for a lawnmower). Objects of potential interest
are defined to be either targets (shown by blue circles) or
non-targets (shown by red dots). A total of N = 35 sonar
images are obtained along the given UUV trajectory (Fig. 2).
The corresponding locations of these images are shown by
red numbers from 1 to 35. Image data at different locations
along travel trajectory are identified using superscript n,
such that the image at the nth location is I(n), where
n = 1, ..., N . The problem considered in this paper is to
recognize and classify targets in the sonar images obtained
by the UUV along a given trajectory. This is accomplished
by first recognizing objects of interest from the sonar images,
and then classifying the objects recognized into a class u. In
particular, given a sonar image, I(i, j) for i = 1, ..., ns and
j = 1, ..., nt, an object of interest is recognized by finding
a segment represented by a sub-matrix K in the given sonar
image matrix I .
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Fig. 2. UUV trajectory, sonar image location and target location

III. OBJECT RECOGNITION

In this section, the recognition of object of interest in sonar
images is described. The histogram equalization technique is
used in the image pre-processing phase. A matched filter is
designed for the seafloor sonar image objects, and used later
for image recognition. The recognized object images are then
considered as input of the proposed classifier in Section V-B.

A. Image Pre-processing

Because the matrix I is a record of the reflected acoustic
wave strength, it is not a standard image matrix. Pre-
processing is necessary to enhance the measurements for
further processing. Also, since the original sonar data are
over-sampled, the first step in pre-processing is to down-
sample sonar matrix data by a user-defined factor, d. This
reduces the computational complexity of the problem. Then,
the down-sampled image Id becomes a matrix of size of
bns

d c × nt, where b·c is the floor operator. Next, the down-
sampled image is normalized linearly to obtain the grayscale
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Fig. 3. Gray image Ig (upper) and histogram equalized image Ih (lower).
Objects are circled in red.
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Fig. 4. Matched filter with head and body components.

image matrix,

Ig(i, j) =
Id(i, j)

max
i,j

[Id(i, j)]
(4)

Then Ig(i, j) ∈ [0, 1], ∀i, j. Finally, in order to adjust image
intensities to enhance contrast, the histogram equalization
technique [13] is applied to the gray image, and a trans-
formed image, Ih, is obtained. Examples of the grayscale
image Ig and the histogram equalized image Ih are shown
in Fig. 3. It can be seen that the objects in Ih are better
observed Ih than in Ig due to enhanced contrast.

B. Segmentation based on Matched Filters

In sonar images used in this study, all objects of inter-
est have a similar structure comprised of a highlight area
followed by a shadow. This is because the object reflects
the sonar waves causing a the sonar to pick up a strong
signal for that location, while location behind the object is
blocked, results in a weak signal registration. The direction

of the shadow area is always in line with the sonar scan
direction, facing away from the sonar. To recognize and
segment seafloor objects in the sonar images, a matched
filter is designed, as shown in Fig. 4. Wm is the width of the
matched filter and Lh and Lb are the lengths of the head and
body parts, respectively. The matched filter is mathematically
described by introducing a (Wm × (Lh + Lb)) match filter
matrix,

Im(i, j) =

{
1, for i ∈ [1,Wm] and j ∈ [1, Lh]

−1, for i ∈ [1,Wm] and j ∈ [Lh + 1, Lh + Lb]
(5)

The grayscale image Ig is then converted to the binary image
matrix

Ib(i, j) =

{
1, if Ig(i, j) ≥ θb

−1, if Ig(i, j) < θb
(6)

where θb is the binary threshold for the pixels. The normal-
ized output of the matched filter is expressed as

In(i, j) =

∑Wm

ι=1

∑Lh+Lb

ζ=1 Ib(i+ ι, j + ζ)Im(ι, ζ)∑Wm

ι=1

∑Lh+Lb

ζ=1 I2m(ι, ζ)
, (7)

and is plotted in Fig. 5. Large values of In(i, j) (peaks in
Fig. 5) indicate that the pixels around them agree with the
designed matched filter. Let θm be a user selected threshold
value. In(i, j) ≥ θm is selected, and their indices are grouped
into a set denoted by σ = {(i, j)|In(i, j) ≥ θm}.

Shadow lengths of different objects varies in a sonar
images. Also, shadow length of the same object varies from
sonar image to sonar image, because the sonar orientations
and ambient lighting conditions may have changed. Thus,
k0 matched filters {Im(k)}k0k=1, with different length pa-
rameters {Lb(k)}k0k=1 and corresponding binary thresholds
{θb(k)}k0k=1, are applied to recognize different objects in
images. For the kth matched filter, points on an image
selected by this matched filter can be represented by σ(k).
Therefore the combined set of points selected by all k0
matched filter is

σtot = σ(1) ∪ ... ∪ σ(k) ∪ ... ∪ σ(k0). (8)

After obtaining σtot, the points of an image selected by
all the matched filters are clustered into several 8-connected
objects and identified in white as shown in Fig. 6. Finally,
the image segment of the objects of interest K is obtained
from the original sonar image I . Some examples of the image
segments are shown in Fig. 7.

IV. BACKGROUND ON CONVOLUTIONAL NEURAL
NETWORKS

Convolutional neural networks (CNNs) are a modification
of artificial neural networks (ANNs) that employs multiple
heterogenous layers in a cascade structure, such as that
shown in Fig 8, where each layer allows learning and
feature extraction at different levels starting with a row and
potentially complex image as the input. Though many CNN
structures have been proposed, they all incorporate several
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Fig. 5. The normalized output of the matched filter.

Fig. 6. Example σ set for a sonar image represented by white segments.

key layers, including the convolutional layer and Rectified
Linear Units (ReLU), pooling, cross channel normalization,
and conventional fully-connected (FC) layers, which are
briefly described in the following subsections.

A. Convolutional layer and ReLU layer

The convolutional layer is of key importance to a CNN be-
cause it is where most of the feature extraction computation
takes place. A CNN may have many convolutional layers. A
general convolutional layer uses a (nD1 × nW1 × nH1) 3-D
volume X(d, i, j) as input, and outputs a (nD2×nW2×nH2)
3-D volume O(k, i, j). The indicies i and j denote the
column and row position of an element of an image matrix
K, d is the depth of the image (i.e. d = 3 for RGB images),
and k is the number of (F×F ) convolutional kernels Ω(ι, ζ)
used in the operation. A convolutional kernel has the effect
of a filter on the input image.

In order to assure that the images before and after the
convolution layer have the same width and height, the input

Fig. 7. Examples of recognized image segments rotated 90 degrees
counterclockwise.

image is first padded with P layers of zeros, see Fig. 9.
The convolutional kernel Ω is applied to the padded input
image similar to that of an image filter, which slides at a
rate of S pixel elements per operation, along each rows of
the input image. S is also referred to as the stride parameter.
Using P and S, the input and output dimensionalities of the
convolutional layer are related by

nW2 = (nW1 − F + 2P )/S + 1

nH2 = (nH1 − F + 2P )/S + 1. (9)

For the first convolutional layer, the padded segmented image
matrix is used as an input, where the depth parameter nD1

is 1 for a single layer image. A more general example of
a nD1 = 3 and nD2 = 4 convolutional layer is shown in
Fig. 10, where the 4 different colors indicate the 4 different
convolutional kernels.

Each element of a general convolutional layer output O is
obtained via a convolutional operation

O(k, i, j)

=

nD1∑
d=1

F∑
ι=1

F∑
ζ=1

ωk,d,ι,ζ X
′ (d, i(S − 1) + ι, j(S − 1) + ζ) ,

(10)

where X ′ is a matrix that is the extension of the matrix X
by zero-padding, and ωk,d,ι,ζ is the weighting parameter of
the (ι, ζ) element of the k’th kernel used in the d’th layer
convolution. As an example, the convolutional operation for
a (1× 5× 5) input matrix X with P = S = 1 and a kernel
size F = 3 is shown in Fig. 9. For example, the first element
of the output matrix at the first convolution step (i = j = 1)
is computed as

O(1, 1, 1) =

0 0 0
0 1 1
0 1 2

 ◦
4 0 0

0 1 1
0 1 2

 = 7 (11)

where ◦ denote the element-wise Hadamard product of two
matrices.

Since the convolution operation is a linear operation, non-
linearity needs to be introduced to the network so that
the CNN can correctly capture the non-linear relationship
between the input image and the output features. This can
be done by introducing an activation layer that applies an
element-wise activation function. The rectified linear unit,
or ReLU layer is a layer that applies an element-wise
non-saturating activation function f(x) = max(0, x). This
activation function has been demonstrated to be much more
computationally effective in CNN than the logistic sigmoid
typically used in ANNs.

B. Cross Channel Normalization Layer

For some CNNs such as the AlexNet, local normalization
is applied after the ReLU layer, and has been shown to reduce
error rate [7]. The cross channel normalization layer is a
local normalization scheme used in the AlexNet. Let aς(i, j)
denote the activity of a neuron computed by first applying
the ςth 2-D kernel at position (i, j) and then applying the
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Fig. 8. Structure of a convolutional neural network
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Fig. 9. Example of convolutional operation.

 

    

    

    

    

    

        

    

    

    

    

    

    

    

    

    

    

Fig. 10. Convolutional layer input and output dimensionality.

ReLU nonlinearity. The response-normalized activity bς(i, j)
is given by

bς(i, j) =
aς(i, j){

q + α
∑τf
τ=τi

[aς(i, j)]
2
}β , (12)

τi = max(0, ς − `/2) (13)

τf = min(nk − 1, ς + `/2) (14)

where the sum runs over ` “adjacent” kernel maps at the same
spatial position, and nk is the total number of kernels in the
layer. The parameters q, α, l, β are considered as constant
user-defined hyper-parameters, see [7] for more details.

C. Pooling Layer

The Pooling layer is a nonlinear down-sampling operation
along the width and height of the input volume. The purpose
of a pooling layer is to progressively reduce the size of the
volume, leading to a reduction of the amount of parameters
in the network. This then improves computation efficiency
and also gives a way to control overfitting. The Pooling Layer
operates independently on every depth slice of the input vol-
ume, outputing the downsampled value as the maximum of
the input values. The most common form of a pooling layer is
a 2×2 matrix applied with a stride S = 2 downsamples every
depth slice in the input by 2, along both width and height.
Example of a pooling operation on a 2 × 2 input matrix
with the stride parameter S = 2 is shown in Fig. 11. Notice
after the pooling operation, the size of the input volume has
reduced by a factor of 4. In this example, the stride parameter
is equal to the size of the size of the pooling operator, and
the result is that the pooling layer input matrices do not
overlap. However, S can be smaller than the size of the
pooling operator, which results in overlapping pooling. In
the AlexNet, overlapping pooling slight improved network
performance. Although using a pooling layer for down-
sampling is still popular, other alternative, such as increased
stride in the convolutional layer, have been proposed [14].

D. Fully-Connected (FC) Layers

After the network has down-sampled through a series of
convolutional and pooling operations, fully-connected (FC)
layers are then used to combine information from the last
network layer to extract features. It can be loosely viewed as
a 1 dimensional convolutional layer. Being one dimensional,
the neurons are the same as those found in an ANN, and that
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Input matrix X(i,j) 

pool(X(i,j)) 

Fig. 11. Pooling operation for 2× 2 input matrix. Stride S = 2.

any one is connected to all other neurons in the previous
layer. Several FC layers can be used together to improve
learning and prevent underfitting. The output of the final FC
layer is a features vector z.

V. OBJECT CLASSIFICATION

Due to the nature of underwater sonar image data men-
tioned in Section I, direct training of a classifier using
the sonar images will yield poor results. Thus, the image
segments, K’s in the previous section is used instead. Since
these image segments cannot be applied directly to classifica-
tion, the features of these image segments are first extracted
using a pre-trained CNN, and then the image segments are
classified based on extracted features.

A. Feature Extraction
The AlexNet is chosen as a pre-trained network to

demonstrate how the limited availability of sonar images
may be overcome by using CNNs trained on other images
and domains. AlexNet is a robust network containing five
convolutional and three fully-connected layers. It is trained
using the data set ImageNet LSVRC-2010 that includes 1.2
million photographs from 1000 object categories. Details on
the AlexNet can be found in [7]. The AlexNet, shown in
Fig 12, uses the recognized image segments as inputs and
extract its features, producing a (4096×1) features vector z.
Since the AlexNet is pre-trained, the network stays the same
for both the target training phase and testing phase. In this
study the features vector z is obtained from the sixth layer of
the AlexNet, where the rest is replaced by a support vector
machine (SVM).

B. Classification from Extracted Features
Because of the high dimension of the extracted features,

a linear support vector machine (SVM) is applied to classify
these image segments [15], which is expressed by

y = fSVM (z) = Φ(wT z + b) (15)

where Φ(x) = 1 if x ≤ 0, and Φ(x) = 0 otherwise, which
denotes a mapping from (wT z+b) ∈ R to the class label y ∈
{0, 1}. This parameter w can be learned from the training
data set by solving the following optimization problem

minw,b,ξ
1
2‖w‖

2 + c
∑Ntr

n=1 ξn

s.t. ξn ≥ 0, yn(wT zn + b) ≥ 1− ξn, (16)
n = 1, ..., Ntr

where ξ = [ξ1, ..., ξNtr
]T are the slack variables. They

represent the degree that each data sample lies inside the
margin, defined by two hyperplanes, (wT z + b) = ±1. The
user-defined parameter c > 0 controls the trade-off between
the slack variable penalty and the margin [16]. Here, the
training data set isD = {(zn, yn)}Ntr

n=1 and Ntr is the number
of training data. In this paper, the training data set is obtained
from the original sonar image manually.

VI. SIMULATIONS AND RESULTS

The proposed ATR approach is demonstrated using N =
35 sonar images obtained by the UUV shown in Fig. 2,
following the testing procedure outlined in Fig. 12, where
images are used to produce a training and a testing set. In
the training phase, the image segments in the training set are
recognized and segmented manually, and the image segments
representing the objects of interest are manually labeled
based on the ground truth. Then, these image segments are
feed into the AlexNet to extract salient features, as described
in Section V-A. Finally, the extracted features (outputs of the
’fc6’ layer) and the target labels are applied to train the SVM,
as described in Section V-B. The feature layer (’fc6’ layer) is
selected based on comparison of classification performance
among all FC layers.

In the testing phase, the image segments are recognized
and segmented automatically using the image processing
method presented in Section III. Similarly, the recognized
image segments are feed into the AlexNet for features
extraction. Finally, the extracted features are applied as
inputs of the trained SVM, and the outputs of the SVM
is the predicted class of the corresponding image segments.
The cross validation method is used to generate additional
training and testing data sets. From all of the sonar images,
ntr = 233 image segments are recognized and segmented
manually. They are all used as training image segments. First,
sonar images are split into 5 Groups denoted by G1, G2, G3,
G4, and G5 according to Table II. There are about 50 training
image segments in each group. Denote the set of all index
by I = {1, 2, 3, 4, 5}. Each time, one group denoted by Gt,
t ∈ I, is applied as test image set and the other four groups
denoted by G0 = ∪

t′ 6=t,t′∈I
Gt′ are applied as training image

set. Then, the image segments obtained manually from the
sonar image I0 ∈ G0 are applied as training data set. Finally,
the image segments recognized and segmented automatically
from the sonar image It ∈ Gt are applied as the testing data
set.

To performance of the proposed deep learning approach is
evaluated by comparing its target classification performance
to two other existing methods, the Local binary patterns
(LBP) features [17] and the histogram of oriented gradients
(HOG) features [18]. The linear SVM classifier presented
in Section V-B is applied to the features extracted by all
three methods. In this binary ATR and classification problem
there are four possible outcomes obtained by the SVM binary
classifier. If the outcome from a prediction is positive and
the actual value is also positive, then it is called a true
positive (TP); however if the actual value is negative then it
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TABLE I
ALEXNET ARCHITECTURE

Layer No. Layer type Description Layer No. Layer type Description
1 ’input’ Image Input 5 ’conv4’ Convolution

2

’conv1’ Convolution ’relu4’ ReLU
’relu1’ ReLU

6
’conv5’ Convolution

’norm1’ Cross Channel Normalization ’relu5’ ReLU
’pool1’ Max Pooling ’pool5’ Max Pooling

3

’conv2’ Convolution 7 ’fc6’ Fully Connected
’relu2’ ReLU ’relu6’ ReLU

’norm2’ Cross Channel Normalization 8 ’fc7’ Fully Connected
’pool2’ Max Pooling ’relu7’ ReLU

4
’conv3’ Convolution 9 ’fc8’ Fully Connected

10 ’prob’ Softmax

’relu3’ ReLU 11 ’classfication-Layer’ Classification Output
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Fig. 12. Training architecture including training and testing phases.

TABLE II
SONAR-IMAGE GROUPS USED FOR CROSS VALIDATION

Group G1 G2 G3 G4 G5
Sonar image index 1-8 9-13 14,16-19 15,20,21 28-35

No. of image segments 47 46 46 46 48

TABLE III
TOTAL CLASSIFICATION RESULTS

Methods CNN+SVM LBP+SVM HOG+SVM
ACC 0.9588 0.9107 0.8351
TPR 0.8696 0.6812 0.5797

is said to be a false positive (FP). Conversely, a true negative
(TN) has occurred when both the prediction outcome and the
actual value are negative, and false negative (FN) is when
the prediction outcome is negative while the actual value is
positive. According to these concepts, the confusion matrix
is defined as,

C =

[
nTP nFN
nFP nTN

]
(17)

where nTP , nFN , nFP , and nTN denote the number of the

corresponding outcomes.
The classification accuracy (ACC) and the true positive

rate (TPR) are defined to evaluate the performance the binary
classification as follows

ACC =
nTP + nTN

nTP + nFN + nFP + nTN
(18)

TPR =
nTP

nTP + nFN
. (19)

where ACC represents the general classification perfor-
mance. For comparison, the ACC of all three methods
is shown in Fig. 13, where the horizontal axis denotes
the testing data sets, Gt. The total performance, calculated
based on all testing results, shows that the deep learning
(CNN+SVM) method presented in this paper outperforms
both LBP and HOG methods, by making better classification
decisions across most testing data sets. Also, for comparison,
the TPR of all three methods is shown in Fig. 14, where it can
be seen that the proposed CNN+SVM method outperforms
both LBP and HOG methods across most testing data sets.
These results show that the features extracted by the AlexNet
can describe the target objects in the sonar images better than
the LBP and HOG features. It was also found that, unlike
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Fig. 13. Comparison of classification accuracies among different methods.
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Fig. 14. Comparison of true positive rates among different methods.

CNN+SVM, the performance of HOG+SVM is not robust.
For example, for the testing data set G1 the HOG+SVM
achieves the same TPR as the proposed method, while for
the testing data set G4 the HOG+SVM cannot find any target
(TPR = 0). The performance comparison is also summarized
in Table III, showing that the CNN+SVM is the best of the
three approaches for ATR and classification.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, it is demonstrated that by using deep learn-
ing feature extraction techniques, significant improvement
in target recognition and classfication can be achieved for
underwater sonar images, compared with using other feature
extraction techniques such as histogram of oriented gradients
(HOG) and local binary pattern (LBP). Sonar-driven path
planning for autonomous UUVs and improving algorithm
robustness for sonar images taken in different environment
conditions are two possible directions of future research.
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