
C
riminal psychology is beginning to focus on modeling the
effect of mental processes and environmental stimuli on
offender behavior [1]. This article presents a knowledge-
based-system approach to deriving empirical models of this
behavior. The inputs to the system are the psychological

characteristics and environmental variables that reflect the mental
state of the offender and the circumstances of the crime, while criminal
actions are viewed as the outputs. Although criminologists and psy-
chologists can identify relevant input and output variables, the
processes underlying criminal behavior are only partly understood
and thus cannot be modeled from first principles.

Once a criminal case is cleared, investigators file a record that
includes background characteristics and psychological diagnoses of
the convicted offender as well as forensic evidence obtained from the
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crime scene. This practice creates large databases of crime-
scene and offender information for major felonies, such as
murder, rape, and arson. Consequently, knowledge-based
systems trained from data can potentially assist in the
development of tools to support criminal investigations.

In this article, we construct neural network (NN) and
Bayesian network (BN) models of criminal behavior from
databases of single-victim homicides. We illustrate how
these models can be used to estimate the profile of the
offender, including a psychobehavioral portrait that helps
detectives select and interrogate suspects. A broader implica-
tion to the field of psychology is the development of scientif-
ic hypotheses from relationships and patterns that emerge
through the analysis of network models trained on data.

CLASSICAL CRIMINAL PROFILING
Criminal profiling is the study of behavior that identifies
the characteristics of the offender, his or her modus
operandi, and the motivation for the crime. Criminal pro-
filing techniques are intended to assist investigators by
narrowing the scope of the investigation, predicting the
social and psychological characteristics of the offender,
and suggesting strategies for apprehending and inter-
viewing suspects [3]. In current practice, a team of med-
ical examiners, detectives, and psychologists attempts to
reconstruct the motives for the crime as well as the events
that took place at the crime scene. The investigative team
then tries to deduce the psychobehavioral portrait of the
offender based on professional training and previous
investigations. This approach, known as behavioral evi-
dence analysis, is limited by the team’s ability to analyze
patterns from data and is subject to individual prejudices
and biases [4]–[5].

An alternative approach, known as inductive profiling,
attempts to generalize behavioral patterns obtained from
crimes of convicted offenders to crimes of unknown
offenders [6]–[8]. Inductive profiling techniques rely on
dichotomic psychology methods, which classify the
offender’s behavior and profile into one of two categories.
One example of inductive profiling is the FBI model,
which classifies offenders as either organized or disorga-
nized [3]. The organized offender, who displays characteris-
tics of maturity and resourcefulness, carries out a crime
that is methodical and premeditated. In contrast, the disor-
ganized offender does not plan the crime, and thus the
crime scene shows evidence of haphazard behavior [9],
[10]. Another example is circle theory, which classifies
offenders as either commuters or marauders, depending on
the distance traveled from their home base when commit-
ting a crime [6]. By defining these behavioral categories,
multidimensional scaling and clustering techniques are
used to classify offenders based on the forensic evidence
[11], [12]. Circle theory has been used successfully in pre-
dicting the approximate residence location of serial homi-
cide offenders [13].

The literature on inductive profiling suggests that differ-
ent styles of homicide reflect differences in the personality
and background of the offender [14]. However, inductive
profiling techniques have not been able to produce accurate
offender profiles in single-victim homicides [11]–[15]. This
shortcoming is typically attributed to both the complexity
of human behavior and the large number of situational
variables, such as the place where the aggression began, the
disorder ensued by a fight, and the interaction between the
victim and offender. Consequently, as advocated in [14]
and [15], a more realistic and utilitarian understanding of
mental processes leading to criminal actions requires devel-
opment beyond behavior classification.

By using NN or BN models of offender behavior in sin-
gle-victim homicides, relationships between the behavioral
and situational variables can be considered simultaneous-
ly. In this article these relationships are learned and quan-
tified by means of training algorithms that utilize
observations of the criminal process without postulating
offender categories a priori. A trained network model has
two main applications. First, the arcs in the network repre-
sent correlations between the variables and thus can be
used to form new hypotheses and theories of criminal psy-
chology. Second, the network model can be used in new
criminal investigations to infer offender characteristics
from the forensic evidence obtained from the crime scene.

BEHAVIORAL MODEL
The development of a behavioral model relies on two basic
premises, namely, behavioral consistency across offenses
and causal relationships among offender characteristics,
such as criminal record, psychiatric disorders, and the
behavior exhibited during a crime. Experts in psychology,
sociology, forensic medicine, and psychiatry [25] have iden-
tified variables that are relevant to single-victim homicides
and have organized these variables according to the crimi-
nal profiling (CP) taxonomy in Table 1. Examples of these
variables and their possible values are provided in Table 2.
As illustrated in Figure 1(a), external and internal stimuli,
such as environmental and psychological attributes, are
viewed as input variables driving the criminal behavioral
process. Crime-scene circumstances that are beyond the
offender’s control are considered to be uncertain distur-
bances. Once a behavioral model linking the inputs to the
outputs is obtained from a database of cleared criminal
cases, the model is inverted to obtain a profile of the
offender in an unsolved case, as shown in Figure 1(b).

Knowledge-based systems, such as BNs and NNs, can
be used to obtain a behavioral model and help solve a new
criminal case. BNs describe relationships among variables
by means of a joint probability mass function, whereas
NNs use a multivariate nonlinear function obtained from
the superposition of basis functions, such as sigmoids. The
network parameters that best explain the data are deter-
mined through training, which specifies a model of the
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system. The database of cleared criminal cases is divided
into a training set and a validation set. The training set is
used to estimate the network parameters, while the valida-
tion set is used to evaluate model predictions. When the
model predictions are not satisfactory, an alternative set of
models is considered by changing the variables and archi-
tecture of the network.

BN MODELS
BNs are probabilistic models that combine Bayes’ rule and
graph theory to provide a mathematical description of an

uncertain situation or random process [19], [20], such as a
crime, as shown in Figure 2. A random process produces
precisely one outcome from the sample space S, which is
the set of all of its possible outcomes. If a random-process
outcome is not numerical, it is associated with a number,
called the value, by a real-valued function on S, known as
the random variable. For example, the gender of the offend-
er has two possible outcomes, which may be associated
with the numerical values {1, 2} by a discrete random vari-
able called gender. A BN models a multivariable random
process by a pair B = (G,�) comprised of a directed graph

TABLE 2 Example of criminal profiling (CP) variables used by a team of experts for modeling the behavior of offenders in
single-victim homicides. Each variable is assigned to a node in the network model that takes on a finite set of values, referred
to as the variable range, which are determined by expert criminologists and psychologists. The cardinality of the range of each
variable, shown in the third column, illustrates the dimensionality of the problem.

Random Variable Definition (CP Group) Range Cardinality
Z9 Typology of offender’s judicial record (OA) 4
Z13 Immigration history (OA) 2
Z14 Typology of offender’s relationship with the victim (TV) 8
Z18 Social-cultural differences between offender and victim (TV) 6
E6 Place where the aggression began (CSA) 14
E23 Origin or source of the crime weapon (CSA) 2
E14 Typology of housebreaking signs (CSA) 5
E29 Objects or accessories left on the victim (VA) 12

TABLE 1 Taxonomy of criminal profiling variables. These variables model offender behavior in single-victim homicides. This
taxonomy, as well as each variable’s definition and range, are determined by a multidisciplinary team of experts through
panels organized by the International Crime Analysis Association. This study identifies up to 105 candidate variables that
represent the offender’s actions and decisions during the crime as well as the stimuli that drive them. Also, for each cleared
offense the value of each variable can be determined from investigations and interviews with the offender after he or she is
convicted and incarcerated.

Crime scene analysis (CSA) Physical elements and characteristics of the crime scene that represent consequences 
of offender behavior, such as time and place where the victim is found, 
neighborhood’s ethnic and social characteristics, correspondence between where the
victim is found and where the murder took place, and crime typology (premeditated,
rape, or arson).

Victimology assessment (VA) Victim characteristics, such as background information, age, sex, education, and 
occupation.

Medical examiner report (MER) Medical characteristics of the victim obtained by an examiner at the scene of the crime 
and during the autopsy, such as the cause and time of death, type of lesions, and
signs of self-defense.

Offender assessment (OA) Background and demographic information about the offender, such as age, sex, and 
family status, as well as his or her criminal characteristics, such as criminal career,
forensic awareness, and geographical residence with respect to the victim.

Transactions with the victim (TV) Attributes of the relationship and interactions between the offender and the victim 
before and during the crime, such as the social and cultural differences between the
offender and the victim.

Psychological and psychopathological Characteristics of the mental state of the offender before, during, and after the crime; 
profile (PP) attributes of the offender psychology, personality, intelligence, and attitude toward the

crime, such as the motive; and the actions of the offender while the investigation was
taking place.

Psychiatric diagnosis (PD) Psychiatric disorders observed in the offender, such as anxiety, depression, or forms of 
paraphilia.



G = (U, A) and a parameter structure � . The set
U = {X1, . . . , Xn} of random variables associated with the
random process is the universe, and the union of their
domains is the sample space S. Although continuous ran-
dom variables can be included [21, pp. 521–540], we
assume that each random variable Xi ∈ U is discrete and,
thus, has finite range {xi,1, . . . , xi,mi}, where xi, j denotes the
jth value of Xi.

The random variables in a BN are represented by
nodes, which are connected by directed links or arcs in the
set A. An arc from a random variable Xi to a random vari-
able Xj represents conditioning of Xj on Xi, indicating that
knowing the value of Xi provides partial knowledge about
the value of Xj. This knowledge is captured by the condi-
tional probability mass function p(Xj|Xi), which is attached
to Xj. Xj is a child of Xi, and Xi is a parent of Xj. When a ran-

dom variable Xj is conditioned
on more than one random vari-
able in U, Xj has attached a mul-
tivariate conditional probability
mass function p(Xj | pa(Xj)) con-
ditioned on all of its parent
nodes in U, which are denoted
by pa(Xj). When a random vari-
able Xi has no parents, it has
attached a prior probability
mass function p(Xi). In a BN,
every prior and conditional
probability mass function is
expressed as a conditional prob-
ability table (CPT). A CPT
expressing a multivariate proba-
bility mass function for n ran-
dom variables X1, . . . , Xn is an

n-dimensional array of size m1 × m2 × · · · × mn , where mi
denotes the number of values in the range of Xi. For exam-
ple, a two-dimensional CPT expressing the conditional
probability mass function of the random variable E23 con-
ditioned on Z12 is shown in Figure 3, where the rows cor-
respond to values in the range of E23, and the columns
correspond to values in the range of Z12. The BN parame-
ter structure � is the set of all CPTs associated with the
universe U. 

Training a BN is the process by which the set A of arcs
and the parameters � are estimated from data. Given �
and A, the BN B defines a joint probability mass function
that is specified in terms of the factorization

p(U) = p(X1, . . . , Xn) =
n∏

i=1

p(Xi | pa(Xi)), (1)

obtained from the multiplication rule of probability cal-
culus, that is, p(X1, . . . , Xn) = p(X1) · p(X2|X1) · p(X3|X1,

X2) · · · · p(Xn|X1, . . . , Xn−1) [22,  p.  24].  Here,  p(Xi, Xj)

denotes the joint probability mass function of Xi and Xj,
and (·) denotes the multiplication of probabilities [22, p.
24]. Thus, from (1) the joint probability mass function
p(U) over the universe, which is expressed as an n-
dimensional array, is obtained by multiplying the n BN
CPTs p(Xi | pa(Xi)), i = 1, . . . , n ,  where,  each CPT
p(Xi | pa(Xi)) with v parent nodes in the set pa(Xi) is a
(v + 1)-dimensional array in �. The set A of arcs, which
constitutes a BN structure, can be obtained from expert

FIGURE 2 General Bayesian network (BN) model of (a) criminal
behavior  and (b) selected nodes and connections within the BN
structure. The offender’s psychological characteristics and back-
ground may determine his or her psychiatric disorders and transac-
tions with the victim. These variables, in turn, are believed to
determine the offender’s behavior at the crime scene as well as the
victim’s attributes, which are observable from the investigation. When
this structure is learned from real cases, it can be used to reveal inter-
dependencies among the variables, such as those highlighted in (b).
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FIGURE 1 Example of (a) criminal behavioral model and (b) automated profiler, with inputs and
outputs defined as in Table 1. The inputs driving criminal behavior are comprised of internal stim-
uli, which are determined by the offender’s psychological characteristics and diagnosis, as well as
external stimuli that may be reflected in the offender’s background and transactions with the vic-
tim. Some of the crime scene variables can be viewed as disturbances, while others can be used
to describe how the crime took place and, thus, comprise the state. The crime scene analysis,
including the medical examiner report and victimology assessment, are the output variables
observable from the investigations. These variables can be used as inputs to the (b) automated
profiler, derived from the (a) behavioral model, to predict all of the offender’s variables.
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knowledge or from a training database D. A training
database D ≡ {C1, . . . , Cd} is a set of samples or cases,
where each case Ci is obtained from the random process
and contains the measured values of all random vari-
ables in U. When expert knowledge is unavailable, A
can be obtained from D by means of a structural training
algorithm that utilizes the frequency of events observed
from d cases. Batch training algorithms for this purpose
are reviewed in [21, Part IV]. Given the structure A, the
parameters � that best explain the database D are deter-
mined by parameter-training algorithms based on maxi-
mum likelihood estimation, as explained in the
following sections.

Once the BN model of a random process is established,
measured values of a subset of the random variables in U
can be used to estimate the remaining ones. A random
variable that is not measured, due to a partial observation
process, is a hidden node. For example, in an unsolved
crime, most of the nodes representing offender characteris-
tics are hidden, while most of the nodes representing the
evidence can be measured from the crime scene. Bayesian
inference consists of computing the posterior probability
mass function of hidden nodes based on the joint probabil-
ity mass function p(U) as well as sample information.

Sample information is hard evidence when it consists of
samples of random variables in U and is soft evidence
when it consists of partial information about a random
variable in U. Partial information obtained from the mea-
surements may not reveal the value of a discrete random
variable but may narrow its range. In this case, the soft
evidence consists of a finding ei for a random variable Xi,
where ei is an array of size 1 × mi, that is, a row vector,
containing ones and
zeros that indicate
which values in the
range of Xi are possi-
ble and which are
ruled out with cer-
tainty by the mea-
s u r e m e n t s ,
respectively. For
example, consider
the random variable
E6 in Table 2 repre-
senting the place
where the aggression
began, with m6 = 14
possible values, such
as 1) the victim’s
home, 2) someone
else’s home, 3) a
public place, and 4)
the victim’s profes-
sional studio or
office. Even after the

crime has taken place, the investigators may not be able
to determine where the aggression began, but may be
able to rule out locations 1) and 4) based on the evidence.
Then, the finding on E6 is a 1 × 14 array containing zeros
for values 1 and 4, as well as ones for values 2, 3, and
5–14. If no evidence is available about Xi, then ei is set
equal to the 1 × mi ones vector, all of whose entries are 1,
that is, ei = 11×mi .

By expressing probability mass functions and findings
as tables and arrays, the operations of multiplication (·)
and marginalization (�) of probabilities can be carried out
using the algebra of potentials [19, pp. 12–17], also known
as the tabular method [22, pp. 93–94]. According to this
method, given a two-dimensional joint probability table,
that is, a matrix, p(Xj, Xi), and a finding ei on Xi, the two-
dimensional joint probability table p(Xj, Xi, ei) is obtained
by multiplying each row of p(Xj, Xi) entrywise with ei,
that is, p(Xj, Xi, ei) = p(Xj, Xi) · ei . When the joint proba-
bility mass function is factorized using the multiplication
rule, p(Xj, Xi) = p(Xj) · p(Xi | Xj) , the same result can be
obtained by multiplying the CPT attached to Xi by ei, that
is, p(Xj, Xi, ei) = p(Xj) · p(Xi | Xj) · ei . To calculate the mar-
ginal probability mass function p(Xi), the tabular method
sums all of the entries corresponding to Xi in the joint
probability table p(Xj, Xi) according to the marginaliza-
tion of probabilities [22, p. 93]. Other types of sample infor-
mation, such as likelihood evidence, can be incorporated
using Jeffrey’s rule [23]. 

The posterior probability mass function of the hidden
nodes in a BN can be obtained from the joint probability
mass function (1) using Bayes’ rule of inference as
explained by the following theorem.

FIGURE 3 Slice of the Bayesian network model of criminal behavior learned from data. The arcs, which are
learned from the training set using the K2′ algorithm, represent directional conditioning among the criminal pro-
filing variables. The conditional probability tables (CPTs) attached to every node are learned from the training
set after the structure is fixed. As an example, a CPT is shown for the evidence node E23, representing the
strength of the relationships between this node and its parents (adapted from [29]).
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Theorem
Let B = (G,�) be a BN over the universe
U = {X1, . . . , Xn}, and let F = {e1, . . . , en} be a set of find-
ings on the variables in U. Then

p(U, F) = p(X1, . . . , Xn, e1, . . . , en)

=
n∏

i=1

p(Xi | pa(Xi)) · ei, (2)

where � denotes repeated multiplication of probabilities,
and the posterior probability mass function for Xi ∈ U is

p(Xi | F) = 1
p(F)

n∑

k =1
k �=i

mk∑

jk =1

· p
(
x1, j1 , . . . , xi−1, ji−1 , Xi, xi+1, ji+1 , . . . , xn, jn, F

)
.

(3)

For large BNs, efficient inference algorithms exploit
Markov separation properties, which consist of conditional
independence statements derived from the graph structure
and the available evidence [21, Part I]. The random variables
Xi and Xj are conditionally independent given the value of the
random variable Xl if p(Xi | Xl) = p(Xi | Xj, Xl). Using the
factorization in (1) and the rules of probability calculus, it
can be shown that a random variable Xi is conditionally
independent of its nondescendants given its parents pa(Xi).
A node Xj is a descendant of Xi if there exists a forward path
connecting Xi to Xj in the directed graph structure. Markov
separation properties are used for graphical manipulations
that simplify the factorization (1) represented by the original
BN structure. The result is an approximate but efficient com-
putation of the joint probability p(U), which constitutes the

main difficulty in obtaining the posterior probability mass
functions required to infer the hidden nodes.

FEEDFORWARD NN MODELS
Unlike BNs, NN architectures are based on a division of the
random variables in U into input and output variables.
Like BNs, feedforward NNs provide a mathematical sys-
tem representation based on observed data. A feedforward
architecture consists of a layer of input nodes that represent
input variables, one or more layers of nodes that represent
basis functions, and a layer of output nodes that represent
output variables. Starting with the input layer, all of the
nodes in each layer are connected to all of the nodes in the
next layer unidirectionally, forming a feedforward struc-
ture in which information about the inputs is transmitted
forward to compute the output variables. The input vari-
ables in U comprise a vector p, while the outputs in U com-
prise a vector z. A feedforward NN with one layer of s
basis functions represents the nonlinear transformation

z = Vσ [Wp], (4)

where the matrices W and V contain the adjustable para-
meters of the NN model. The basis-function layer consists
of an operator σ that takes the s × 1 input vector n = Wp
and returns the s × 1 vector output

σ [n] ≡ [σ(n1) · · · σ(ns)]T.

σ (•) is a nonlinear function. A commonly used function is
the exponential sigmoid σ(n) ≡ (en − 1)/(en + 1).

A database can be used to train both BNs and NNs over
the same universe U. However, once an NN model is
obtained from data, its implementation consists of estimat-
ing the output variables from the values of the input vari-
ables. When only some of the input variables are observed,
or when only the outputs are the observable variables, esti-
mating the unknowns requires solving nonlinear systems
of equations obtained by inverting (4). Once a BN model is
obtained, evidence about any subset of variables in U can
be used in (2)–(3) to infer all of the unknowns.

For criminal profiling, an NN model of criminal behavior
is determined by grouping the set of observable variables
E = {CSA, VA, MER} into the input vector p, and the set of
offender variables Z = {OA, TV, PP, PD} into the output
vector z. The number of basis-function layers and nodes is
determined through testing. The weights that best match the
database D are computed by a backpropagation training
algorithm [24]. An illustrative neural model of criminal
behavior is shown in Figure 4. When a new crime is investi-
gated, the neural model is used to compute the offender
characteristics Z from the values of the crime scene variables
E, through the output equation (4). Evidence variables that
are unavailable from the crime scene can be computed by
inverting (4) numerically.

FIGURE 4 Structure of a neural network model of criminal behavior
with multiple hidden layers containing s basis-function nodes, with q
crime scene variables and r offender variables. The neural network
input nodes correspond to the observable variables, comprising the
crime scene analysis, the victimology, and the medical examiner
report. The output nodes correspond to the offender nodes. Scalar
adjustable parameters, referred to as weights, are attached to each
arc, and are grouped into the matrices W and V. Once these para-
meters are computed through training, the NN model can be used
to predict the offender’s assessment, transactions with the victim,
psychological profile, and psychiatric diagnosis, given the findings F
obtained from the crime scene.
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Comparison of
BN and NN Models
Network models are a convenient tool
for representing systems with many
variables because they are inherently
distributed (Figure 5) and are charac-
terized by scalable algorithms, such as
junction tree and backpropagation,
that exploit the network architecture
to simplify computation. The network
architecture is a directed graph com-
prised of a set of nodes and a set of
arcs that represent relationships
between the nodes. In NNs, nodes
that represent scalar basis functions
are hidden. In the BN literature, the
term hidden nodes refers to random variables that are not
observable. In BNs arcs represent statistical correlations,
whereas in NNs they represent functional relationships. While
NN training algorithms usually produce architectures that are
fully connected, the arcs in BNs are placed between only some
of the nodes to capture conditioning. As a result, BN training
produces hierarchical architectures that are sparsely connected
but have many more layers than NNs. 

In network models, adjustable parameters are associat-
ed with arcs and nodes to quantify the functional or statis-
tical relationships they represent. In BNs the parameters
are organized in probability tables attached to the nodes.
NN parameters consist of scalar numbers that are attached
to arcs to represent scalar multiplication or to hidden
nodes to represent an adjustable parameter of the basis
function. The implementation of these network models for
criminal profiling is discussed and compared in the follow-
ing sections.

BEHAVIORAL NETWORK MODELS FOR
AUTOMATED DECISION-SUPPORT SYSTEMS
The criminal profiling universe Ucp contains 57 discrete
random variables that are partitioned into a set E contain-
ing 36 crime-scene variables and a set Z containing 21
offender variables. A sample of these variables and the car-
dinalities of their ranges are shown in Table 2, while the
complete list is provided in [12] and [29]. For example, the
range of a random variable Z14 representing the relation-
ship between the offender and the victim includes values
such as psychological subjection, psychological domi-
nance, passionate love and jealousy, hate and envy, depen-
dence, and ambivalent hate/love. The database D, which
contains cleared homicide cases committed by various
offenders, consists of complete observations of all of the
random variables in Ucp.

BN Training with Cleared Homicide Cases
Feasible network models are obtained by designing BN
and NN architectures that are consistent with the criminal

profiling universe Ucp and its partition {E, Z}. The database
D of cleared cases is partitioned into a training set T and a
validation set V . BN models are trained in two steps, by
first determining the arcs and then the parameters. The
arcs are determined by maximizing the probability that a
hypothesized structure Â is compatible with the given
database, that is, p(Â | T ). Since p(T) is independent of Â,
the joint probability p(Â, T) = p(Â | T)p(T) can be maxi-
mized in place of p(Â | T).

A tractable approximation of the joint probability
p(Â, T) can be obtained by assuming as in [26] that prior
to training all models are equally likely; all cases in T occur
independently, for example, there are no serial murderers;
and all variables in Ucp can be ordered based on expert
knowledge to allow arcs only in the forward path of the
BN. With these assumptions, the joint probability can be
factored into

p(Â, T) = p(Â)

n∏

i=1

qi∏

j=1

(ri − 1)!
(N̄ij + ri − 1)!

ri∏

k=1

Nijk! , (5)

where n is the number of variables in Ucp, ri is the cardinal-
ity of the range of Xi, qi is the number of unique instantia-
tions of pa(Xi), Nijk is the number of cases in T with
Xi = Xi,k, and N̄ij = ∑ri

k =1 Nijk .
An objective function or scoring metric for structural

training is defined as a monotonically increasing function
of the joint probability p(Â, T ), such as

J = log
qi∏

j=1

(ri − 1)!
(N̄ij + ri − 1)!

ri∏

k=1

Nijk! . (6)

Since prior to training all models are considered to be
equally likely, the probability p(Â) is a known constant for
any structure and can be removed from the scoring metric.
Also, the node index i can be removed from (5) to consider
only single-attribute scores based on the BN factorization
property (1). The optimal BN structure A∗ , which is the
hypothesized arc structure that displays the highest

FIGURE 5 Comparison of (a) Bayesian and (b) neural network architectures. The nodes repre-
sent variables in the system, while arcs represent (a) directional conditioning and (b) function-
al relationships. In the case of neural networks, the hidden nodes contain nonlinear scalar
functions of their inputs. The two architectures also differ as to where the evidence F or
observations are injected into the network. In Bayesian networks evidence can be injected
into any node, whereas in neural networks evidence is injected into the input variable nodes.
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compatibility with the data T, is obtained by maximizing J
with respect to Â by means of the K2 greedy search algo-
rithm described in [26].

The number of hypothetical structures increases exponen-
tially with n [27], which affects the amount of data required
to determine a reliable structure [28]. The modified K2′ algo-
rithm given in [28] and [29] eliminates arcs between the evi-
dence nodes by assuming that the evidence nodes are
independent given the evidence, thereby reducing the search
space and requiring less training data than the K2 algorithm.
Once the BN structure is determined, the parameters � are
obtained by means of a maximum likelihood estimation
algorithm that maximizes their probability given the hypoth-
esized architecture Â and the training data T, that is,

�∗ = arg max
�

{log(p(� | T, Â))} .

In the maximum likelihood estimation algorithm, each
entry of the CPT attached to node Xi is computed by nor-
malizing the frequency of its values’ observations in the
training set T, for every observed combination of the par-
ents’ possible values [30]–[31].

Behavioral Network Analysis
A key application of behavioral network models is the
development of scientific hypotheses based on relation-
ships and patterns that emerge through the analysis of
these models. A slice of a BN model obtained from a data-
base T containing 200 homicide cases cleared by the U.K.
police between the 1970s and the early 1990s is shown in
Figure 3, taken from [29]. The arcs represent the most sig-
nificant relationships among the nodes in Ucp that are
learned from data. An illustrative CPT is provided in Fig-
ure 3 for node E23, which represents a weapon obtained
from the crime scene, and is strongly influenced by node
Z12, representing the gender of the offender. From this
CPT it can be seen that female offenders (Z12 = z12,2) are
more likely to use a weapon obtained from the crime scene
(E23 = e23,1). Also, from the arcs connecting nodes Z7, E3,
and Z17 (Figure 3), as well as from the corresponding CPTs
(not shown, for brevity), it can be seen that young offend-
ers (Z7 = z7,1) tend to have no prior record of fraud
(Z17 = z17,2), and to have a prior record of perpetrating
foreign-object penetration (E3 = e3,1). These relationships
are consistent with psychiatrists’ understanding of young
offenders’ behavior. According to psychiatrists, offenders
under the age of 21 are more likely to display psychopathic
behavior and to be moved by extreme anger that may

result in extremely violent acts, such as foreign-object pen-
etration. As expected by criminologists, the BN model
indicates that offenders with a prior record of theft (Z1) are
more likely to have a prior record of burglary (Z2) and to
be unemployed (Z8), and that a strong relationship exists
between the state of these priors and the gender of the
offender (Z12).

Although the interdependencies described above are
known to psychiatrists and criminologists, several connec-
tions revealed by the network structure are considered new
and interesting. For instance, the arc between the nodes
representing a prior relationship between the victim and
the offender (Z19) and the victim being blindfolded (Z10)

can be given the following interpretation. Presumably, an
offender blindfolds the victim to avoid eye contact and feel-
ings of shame that may be brought about by the familiarity
between them. Likewise, the relationship between the prior
record of fraud (Z17) and Z19 is new as is the connection
between the offender employment and the victim suffoca-
tion (Z32). A possible explanation is that an unemployed
offender who is exasperated by his or her status and is
reproached by the victim may employ suffocation in a reac-
tive fury, especially if the victim attempts self-defense. Suf-
focation is believed to be a sign of a close relationship
between the offender and the victim. But it may also occur
when an intruder, such as a burglar, unexpectedly finds
and kills a person who reacts to the intrusion. However,
these last two relationships are not represented in the
graph structure (Figure 3). The arcs between offender gen-
der and nodes E23 and E5, representing a weapon obtained
from the crime scene and the victim’s face being deliberate-
ly hidden, are consistent with the investigators’ under-
standing of female offenders. Female offenders typically
employ weapons that already are present in the home, such
as kitchen knives, whereas male offenders, especially
intruders, tend to bring their own weapon. Also, female
offenders tend to cover the victim’s face during the crime
when the victim is a relative who spawns ambivalent feel-
ings or after the crime to avoid guilt and remorse.

The graph structure of the BN behavioral model pro-
vides a map of correlations that are easily conveyed to
researchers in the fields of criminal psychology and social
sciences. Conversely, relationships hypothesized by psy-
chologists and criminologists could be used to initialize the
BN structure. Initialization consists of impeding or enforc-
ing arcs between certain nodes based on expert knowledge
and, by reducing the search space, can improve the effec-
tiveness of the structural training algorithms.

We construct neural network and Bayesian network models

of criminal behavior from databases of single-victim homicides.
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Investigative Decision-Support Systems
In this section we show that a BN behavioral model can
constitute a valuable decision-support tool for investiga-
tors. Using an approximate inference algorithm, the
offender variables are inferred from the evidence obtained
from the crime scene of an unsolved homicide. As a result,
an approximate posterior probability mass function is
computed for all hidden variables, that is, p(Zi | F ) is
obtained for all Zi ∈ Ucp. The same algorithms can also be
used to infer offender profiles from partial observations of
the crime scene and forensic variables E. In a partial obser-
vation of E some variables may be hidden due to missing
evidence or human error.

Two distinct homicide cases drawn from the validation
set V are used to illustrate BN inference of offender pro-
files. Tables 3 and 4 show the true values of the offender
characteristics along with the BN predictions. After
p(Zi | F) is obtained from the inference algorithm, the
offender variable Zi is predicted by selecting the value
with the highest posterior probability, that is,

Ẑi = z∗
i ≡ argmaxj {p(zi, j|F )}, where F is the set of findings

obtained from the crime scene. The maximum posterior
probability p(z∗

i | F ), known as the confidence level (CL), is
shown in tables 3 and 4 for each offender variable. In the
first homicide, six of the eight offender variables included
in Table 3 are predicted correctly by the BN, while the two
incorrectly predicted variables have a low confidence level
(approximately 50%). In the second homicide (Table 4),
seven of the eight variables are predicted correctly, but the
incorrect prediction carries a fairly high confidence level of
81%. When we consider the complete offender profile com-
prised of 21 variables, approximately 80% of the variables
are predicted correctly by the BN in both homicides.

For comparison, the evidence from the two homicides
is also provided to three teams of experts. Team A has its
main expertise in forensic psychiatry, while teams B and
C are composed of criminologists and police investiga-
tors. Based on the evidence provided, Team A interprets
the first homicide to be nonsexual and perpetrated by an
offender related to the victim, such as a relative or

TABLE 3  Example of offender profile variables inferred by the behavioral Bayesian network (BN) model, given the evidence from
a homicide scene. The true value of each offender’s characteristic is known from the validation set. The BN predictions are
accompanied by a confidence level (CL), which represents the likelihood of the value predicted for each variable. Also, the
evidence from the crime scene is shown to three teams of experts, labeled A, B, and C. Working independently, each of the three
expert teams produces an offender profile that includes the example variables in this table, with an average accuracy ranging
from 53% to 66%.

Offender Profile First Homicide Case

Variable True Value BN (CL) Expert Team A Expert Team B Expert Team C
Z1 = Prior theft None None (66%) None None None
Z2 = Prior burglary No No (80%) None Yes Yes 
Z7 = Young age No No (83%) No Yes Yes 
Z8 = Employment Unemployed Employed (50%) Unemployed Unemployed Unemployed 
Z11 = Familiarity CS Yes Yes (85%) Yes No Yes 
Z12 = Gender Male Male (74%) Male Male Male 
Z17 = Priors of fraud None None (67%) None None None
Z10 = Prior victim/ None Sexual (56%) Nonsexual Yes Yes

offender relationship 

Table 4  Example of offender profile variables inferred by the behavioral Bayesian network (BN) model, given evidence from a
second homicide scene. The true value of each offender’s characteristic is known from the validation set. The BN predictions
and confidence levels (CLs) are compared to the predictions of three independent teams of experts, labeled A, B, and C, who
were given the same crime-scene evidence as the BN.

Offender Profile Second Homicide Case

Variable True Value BN (CL) Expert Team A Expert Team B Expert Team C
Z1 = Prior theft None None (75%) Yes Yes Yes
Z2 = Prior burglary None None (99%) None None None
Z7 = Young age Yes No (81%) Yes No No
Z8 = Employment Unemployed Unemployed (76%) Unemployed Unemployed Unemployed 
Z11 = Familiarity CS Yes Yes (90%) Yes No No
Z12 = Gender Female Female (99%) Female Male Female 
Z17 = Priors of fraud None None (78%) Yes None None
Z10 = Prior victim/ None None (99%) Nonsexual None None

offender relationship 
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personal acquaintance. The close relationship between
the offender and the victim is evidenced by the type of
wounds described, found mostly on the face, neck, and
upper part of the body. The impulsive nature of the
crime is demonstrated by the fact that no property is
taken and the victim is left at the crime scene. The age of
the offender is unclear, but he or she may have a history
of violence or disorderly conduct and may be suffering
from intermittent explosive behavior. The second homi-
cide (Table 4) is believed to be nonsexual and premedi-
tated, because of an attempt to poison the victim.
Furthermore, familiarity between the offender and the
victim is supported by the fact that the victim is suffocat-
ed. The subsequent stab wounds may reveal the fury of
an offender who suffers from psychiatric problems, is
easily angered, and has a past history of disorderly con-
duct and theft. The crime may have followed an argu-
ment over a valuable object. Although stabbing is
generally perpetrated by male offenders, the use of poi-
son leads the team to conclude that the offender may be
female.

The offender profile presented by each team, which
includes the variables illustrated in tables 3 and 4,
achieves an average accuracy ranging from 53% to 66%
depending on the team. Therefore, the BN predictions for
these two homicides are on average more accurate than

those presented by the experts. The BN model can provide
accurate predictions and high confidence levels (≥ 80%)

even for variables that cause disagreement among the
experts, such as the offender criminal record in Table 3 as
well as the gender and crime scene familiarity in Table 4.
Another interesting finding is that the performance of
expert teams varies according to the group of variables
and to the team’s expertise. For example, the team special-
izing in forensic psychiatry makes better predictions
regarding offender assessment (OA) and psychological
profile (PP and PD) variables in both homicides. In con-
trast, teams B and C make better predictions regarding the
transactions with the victim (VT) and the offender crimi-
nal record (OA). Since the BN model performance is inde-
pendent of the variable taxonomy groups described in
Table 1, the BN model can be used to complement the
expertise of a team investigating a crime.

When the BN model is used to infer the offender pro-
files from 47 validation cases, it is found to predict 78.8%
of all offender variables correctly, as shown in Table 5.
When only variables with high confidence levels are
taken into account, the average accuracy increases to
95.6%. Numerical simulations show that the percent con-
fidence level of each hidden node Zi is representative of

TABLE 5 Average percent accuracy of the offender
variables predicted by the BN model, given the crime-
scene evidence, organized by confidence level (CL). The
average accuracy is obtained by dividing the number of
correct predictions by the total number of hidden nodes
over all validation cases. The results in each row illustrate
how the ratio of the number of nodes predicted correctly
over the total number of predictions increases with
increasing CL. Investigators can utilize this decision
support system by relying on those variables that are
inferred with high confidence, while continuing to
investigate the remaining ones.

Correct Predictions/
Total Predictions 

Confidence Level (CL) (Number of Nodes) Average Accuracy 
≥50% 780/987 79.03%
≥60% 713/866 82.33%
≥70% 618/725 85.24%
≥80% 501/573 87.43%
≥90% 244/255 95.6%

TABLE 6 Accuracy of a selected group of offender
variables, averaged across the validation set. The accuracy
of these predictions depends on the underlying statistical
processes, on the quality of the network models, and on the
evidence used for inference. These results show that, when
everything else is equal, the Bayesian network model
outperforms the neural network model for all but one of the
variables’ predictions.

Average Accuracy (%)

Inferred Offender Bayesian Network Neural Network 
Variable Model Model
Z1 = Prior theft 57.4% 51.1%
Z2 = Prior burglary 72.3% 65.9%
Z7 = Young age 87.2% 76.6%
Z8 = Employment 46.8% 53.2%
Z11 = Familiarity with 93.6% 85.1%

crime scene 
Z16 = Psychiatric 68.1% 53.2%

condition 
Z17 = Priors of fraud 72.3% 70.2%
Z10 = Prior victim/ 98.9% 72.2%

offender relationship 

We present an approach for deriving network models of criminal behavior

that draws on knowledge-based systems as well as the fields of

criminology and offender profiling.
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its average percent accuracy, as illustrated by Table 5. For
example, the average accuracy of offender variables with
CL ≥ 0.9 is 95.6%, whereas the average accuracy of vari-
ables with CL ≥ 0.7 is 85.2%. Thus, in an unsolved homi-
cide the confidence level indicates which predictions are
reliable and can be used to narrow the list of suspects as
well as which predictions remain uncertain and require
further investigation. The percent accuracy and confi-
dence level of each variable averaged across the valida-
tion set are illustrated in tables 6 and 7, respectively.
These tables identify variables that display low confi-
dence on average and, therefore, may be misleading dur-
ing most investigations. For instance, low accuracy may
be due to evidence that carries high errors or biases, or to
a variable that is weakly related to the rest of the criminal
profiling universe Ucp.

Figure 6 shows that NN models obtained from the
same training set display a lower accuracy (72%, on aver-
age) than BNs. Architectures with larger hidden layers or
with different definitions of the input and output vectors
are found to display an even lower accuracy (as low as
52%). To understand the impact of the training set size on
the performance of these network models, forward-sam-
pling techniques are utilized to produce increasingly large
databases. In Figure 6, the average percent accuracy of an
NN model with three hidden layers and 321 hidden nodes
is compared to the accuracy of a BN model trained with
the same variable-size training set. For a fixed underlying
joint probability mass function, the NN model displays
worse performance than a BN model trained with the
same training set. Furthermore, NNs do not provide a
measure of confidence for their outputs and thus cannot
inform investigators of the reliability of each prediction in
an unsolved case. Unlike BNs, NNs require hard evidence
for their inputs and complete cases for training. Their
implementation may thus not be practical given the
uncertainty surrounding criminal investigations.
Although missing input data can be handled by solving
nonlinear systems of equations, we found the inverse
solutions to be unreliable and to deteriorate the perfor-
mance by approximately 30% on average.

CHALLENGES AND OPPORTUNITIES
The results in tables 3–7 show that a useful BN model of
criminal behavior can be obtained from a database of
cleared single-victim homicide cases. Through approxi-
mate inference, this model can be used to predict the
offender’s background, psychological profile, and trans-
actions with the victim, given evidence from the crime
scene. For each variable inferred by the BN, investigators
obtain a confidence level that represents the probability
of each prediction and that is indicative of its accuracy.
The inference of CP variables that display low predictive
accuracy on average can be improved by identifying a
better CP universe, as well as by collecting observations

void of significant errors or biases. Police databases often
contain incomplete cases in which some of the observa-
tions are missing due to difficulties encountered during
the investigations and interrogations. The expectation-
maximization (EM) parameter-training algorithm [32],

TABLE 7 Offender nodes grouped by average confidence
level, with a few examples provided in the third column.
The employment state of the offender tends to be inferred
with low confidence, and is accompanied by low accuracy
(Table 6), whereas the offender’s familiarity with the crime
scene and his or her prior relationships with the victim are
typically predicted with fairly high confidence and accuracy.
If expert detectives and psychologists believe that variables
in the lower ranges are crucial to the investigative process,
the Bayesian network model can be modified by identifying
a better set of criminal profiling variables, or by improving
the training database.

Number Offender Variables 
Confidence Level Range of Nodes (Examples)
CL < 50% 1 Z8 = Employment
50% ≤ CL < 60% 1 Z1 = Prior theft
60% ≤ CL < 70% 3 Z16 = Psychiatric 

condition
70% ≤ CL < 80% 5 Z2 = Prior burglary

Z17 = Priors of fraud 
80% ≤ CL < 90% 6 Z7 = Young age

Z12 = Gender
90% ≤ CL < 100% 5 Z10 = Prior victim/

offender relationship
Z11 = Familiarity with 

crime scene

FIGURE 6 Comparison of Bayesian network and neural network
predictive performance as a function of training set size. These net-
work models are trained and validated with synthetic data generat-
ed by using forward sampling of a joint probability mass function
obtained from real data. This numerical study shows that, in addition
to providing desirable features such as confidence levels, Bayesian
network models require less data than neural networks to meet their
maximum predictive performance (shown by the dashed line).
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[33] can be used to include all available cleared cases in
the training set, despite the missing data. Typically, BN
algorithms are based on the assumption that the data are
identically sampled, but this assumption is often
violated during criminal investigations. Hence, more
systematic data-collection procedures are required to
minimize errors due to prejudices and biases, to improve
the completeness of training databases.

The use of automated criminal profiling software can
potentially reduce the number of suspects in a given case
and shorten the investigation times. Ideally, the model is
continually updated by insertions from newly cleared
crimes using incremental training algorithms. A compre-
hensive BN model of criminal behavior can also con-
tribute to our understanding of crime and offender
typologies. By inspecting the BN structure learned from
data, it is possible to discover previously unknown links
between the variables. Sensitivity analysis can be valu-
able for testing psychological hypotheses as well as for
assessing offender profiles obtained from evidence com-
promised by investigative errors or biases, as caused by
human emotions and prejudices.

The validity of present-day profiling may be question-
able, and has raised numerous critiques due to the blurred
borderlines between instinct and intuition [34]. Also, the
procedures adopted by human profilers are known to pos-
sibly compromise the entire process, from the collection of
evidence to the offender assessment [34]. The presence of
cultural baggage passed on from one profiler to another
with little exposure to actual crime scenes, the stress on
psychodynamics, and the poor application of in-depth
psychology offer little information about real patterns of
criminal behavior. National data for 2002 report 23 million
cases of victimization in the United States, 5.3 million of
which were personal victimizations. The national clearance
rate for violent crimes was as follows: murder, 64% (16,204
cases); aggravated assault, 56.5% (894,348 cases); and rape,
44.5% (95,136 cases). Including indexed property crimes in
this data, which often degenerate into rape or murder, the
clearance rate for burglary was 13.0% (2.2 million reported
cases) and for arson was 16.5% (74,921 cases) [2]. These
low clearance rates indicate that in spite of attentive police
investigation, a large number of offenders are not appre-
hended and continue their criminal activities. Because of
the high number of offenses it may prove difficult for the
police to carry out a thorough case analysis. In considera-
tion of the limitations of existing profiling techniques and
clearance rates, BNs can contribute greatly to the field of
criminology and law enforcement.

CONCLUSIONS
We present an approach for deriving network models of
criminal behavior that draws on knowledge-based sys-
tems as well as the fields of criminology and offender pro-
filing. A behavioral model provides a mathematical

representation of the multidimensional interdependencies
between variables that determine or reflect offender
behavior at the crime scene. Once a valid network model
is obtained from a database of cleared cases, it can be used
for decision support in an unsolved case by inferring the
offender profile from the forensic evidence obtained from
the crime scene. More research is needed to determine
which computational attributes should be provided to
criminologists and psychologists interested in developing
novel profiling theories and techniques. For example, pro-
viding confidence levels that denote the probability that
the predicted variables are correct can be valuable in nar-
rowing the list of suspects, because the variables with the
highest confidence can be given priority over the remain-
ing variables. Also, sensitivity analysis and structural
training algorithms can be used to identify the most sig-
nificant relationships among the variables and to deter-
mine how sensitive the linked variables are to each other.
By presenting this collaborative research and discussing
the challenges and opportunities of the profiling applica-
tion, we hope to motivate further interdisciplinary
research on behavioral models and dynamics.
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