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Abstract:

A model reference adaptive control method is pro-
posed for controlling chaos in periodicalty forced
dynamical systems. The adaptive control uses pro-
portional, derivative and nonlinear feedback to sta-
bilize a chaotic system about a periodic reference
model embedded within the chaotic attractor. As an
example, the method is applied to control the chaot-
ic rolling motion of a ship oscillating in regular
ocean waves which is modelled by a periodically
forced oscillator with a cubic nonlinearity. As the
wave amplitude increases, the oscillations of the
ship undergo a period doubling bifurcation route to
chaos, followed by a crisis (capsizing). It is shown
that the control system stabilizes the chaotic motion
and prevents capsizing at higher wave amplitudes.
The power spectral density of the respective time
series and the Poincare map technique are used to
study the behavior of the chaotic uncontrolled sys-
temn and the stabilized periodic controlled system.

1. Introduction:

The suppression of chaos in nonlinear dynamical
systems 1s presently a topic of intense research due
to its potential applications in many fields. These
include nonlinear aerolasticity problems {Virgin
and Dowell, 1992], control of chaos in chemical
reactions, such as the Belousov—Zhabotinsky reac-
tion—diffusion system [Schwartz and Triandaf,
19941, control of unstable modes in multimodes
tasers [Colet, 1994] and many other applications.
Recently the problem of chaos control of a forced
nonlinear oscillator, such as the problem of ship
capsize has been studied by Ding, Ott and Grebogi
[Ding, 1994] using the discrete control method of
Ott, Grebogi and Yorke (OGY), see for example
[Ott, 1990] and the review of [Ottand Spano, 1995].
The OGY method uses the Poincare map and con-
sists of applying small discrete disturbances to sta-
bilize the chaotic system about an unstable periodic
orbit. Ding, Ott and Grebogi [Ding, 19947 achieve
the suppression of chaos and prevention of the sub-
sequent crisis by adding a discrete control to the
periodic forcing of the waves. The control is a smali
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balancing force, compared to the force produced by
the waves, and can be implemented by the use of
shifting ballasts installed in the ship.

Tn this paper, a different method for -suppressing
chaos is proposed. It isa continuous feedback con-
trol method which also helps delay the crisis, thus
stabilizing the system about an unstable limit cycle,
see also some preliminary work in [Crispin and Fer-
rari, 1995] and a discrete feedback control method
for maps [Crispin and Marduel, 1996]. The method
is based on the principle of the model reference
adaptive control [Astrom, 1995] in which the
required behavior is prescribed by a target dynami-
cal reference model. In order to force the controlled
system to behave like the target prescribed model,
an error function, the difference between the model
reference and the controlled system response, is
used in the closed loop. Several tools are used m
order to investigate the output of the controlled
system and distinguish between chaotic and period-
ic responses. These include the time series and the
phase portrait, the power spectrum [Hilborn, 1994]
and the Poincare map [Moon, 1992]. The present
method can be applied to higher order systems since
the method uses continuous feedback control and is
not a discrete method based on the Poincare map.

In order to validate the present approach, the meth-
od was applied to the problem of chaotic ship
oscillations and capsizing. The background of this
important problem will be described first. When a
ship is subjected to ocean lateral waves of increas-
ing amplitude, the motion of the ship follows a peri-
od—one limit cycle oscillation. When the amplitude
of the waves increases, a period doubling bifurca-
tion occurs. A further increase of the forcing ampli-
tude produces a period doubling cascade which
leads to chaotic motion. Beyond a critical value of
the forcing amplitude, the ship response escapes
from the chaotic attractor, its amplitude increases
mionotonically and the ship capsizes, a phenome-
non known as a crisis. Several authors have treated
the problem of forced nonlinear oscillations of a
ship in lateral ocean waves [Nayfeh, 1990; Ding,
1994; Thompson, 1990, 1993; Virgin, 1987]. For
instance, a nonlinear oscillator with a quadratic
non—tinearity was used by { Thompson, 1990, 1993}



in order to study ship stability criteria. It was found

that In ship capsizing, there is a sudden reduction in
the area of the safe basin of attraction in the space
of the initial conditions. Nayfeh and Sanchez [Nay-
feh, 1989] derive a similar equation of motion with
both cubic and quintic nonlinearities. They use a
perturbation technique to obtain approximate peri-
odic solutions. By perturbing the relative roll angle
with an infinitesimal disturbance, the stability of
the approximate periodic solutions is studied using
Floquet theory. Parameter ranges for which insta-
bility and crisis occur are investigated to provide the
designer with a set of initial conditions which lead
to capsizing. A similar nonlinear model was used by
[Virgin, 1987] to study the response and stability of
the ship. A numerical scheme was used to obtain
chaotic solutions and the possibility of capsize.

The above mentioned works, with the exception of
the paper by Ding, Grebogi and Ott [Ding, 1994],
concentrated on the analysis of periodic and chaotic
responses, but the possibility of actively controlling
chaos and preventing ship capsizing was not
attempted. It is in this direction that the present in-
vestigation is concentrated in this paper. In section
I1, the pertodic reference model embedded within
the chaotic response 1s described. In section I11, the
model reference feedback adaptive control method
for the suppression of chaos and stabilization of
ship capsizing is introduced. Results about the
successful suppression of chaos and prevention of
ship capsizing for a specific set of ship parameter
values are then presented in section IV, V and VI,
which are then followed by a summary and conclu-
sions.

IL. The Reference Model

Following the model introduced by Ding, Grebogi
and Ot [Ding, 1994], the uncontrolled nonlinear
oscillator used to describe the motion of the ship is
given by the following nonlinear second order ordi-
nary differential equation of the Duffing type:

(1) X7 +vx + g% — awg?x3 = £(t) fp sinQt

where x is the angle between the ship mast and the
vertical direction, v is the friction damping coeffi-
cient, wyg is the natural frequency and o is a parame-
ter characterizing the strength of the nonlinearity.
The forcing function fp f{t) sinQt, represents the
moment exerted by the waves on the ship. We study
the case where the waves magnitude increases
slowly over a transient period of time, after which
it reaches a constant value fy. f(t) is a linear function
of time that increases from 0 to | over a specified
transient period and remains equal to 1 thereafter.

is the angular frequency ofthe waves and the primes
denote time derivatives. In order to control the
chaotic behavior of the system described by Eq.(1),
a model reference adaptive system (MRAS) is used.
This control system is described in Section IIL. The
required ideal performance of the system is pre- -
scribed by a reference model, the target model,
which has a required regular period—one response
denoted by xp(t). It is obtained from Eq.(1), by
seeking an approximate periodic solution using the
method of averaging. This method is documented
in the nonlinear oscillations literature [Nayfeh and
Mook, 19797, {Hagedorn, 1988}, and is given here
in outline form. The assumption is that the response
1s basically sinusoidal, but with the amplitude and
phase varying slowly as a function of time. To this
extent, one can define the following transformation
{Hagedorn, 1988]:

@) x=a(t) s(t)
X = 2(t) s() + a(t) (@ + 0°(9) c(t)

where a(t) is the amplitude, 6(t)} is the phase,
s(t} = sin (€2t + 6) and ¢(t) = cos (Qt + ).

x’ and x” can be approximated by the following
equations :

(3) x’=aQc(t)

X7 =2 Qc(t)—aQ(Q+6)s(t)
where
@ 2O s +a® Q=0

Substituting the values of x, x” and x”, given by
Egs. (2) and (3) in Eq. (1) and rearranging, the fol-
lowing system of equations is obtained:

(5) " Q= (Q2—wp?) a s(t) c(t) — v a Q (1)
+awg? a® s3(t) c(t) + c(t) £y sinQt

a Q8 =—(Q? —we?) as2(t) +vaQct)st)
— ot (g? a3 s*(t) — s(t) £ sinQt

Eq. (5} is equivalent to Eq. (1), both systems are se-
cond order ordinary differential equations with a
time—dependent forcing function. Therefore, both
systems are equivalent to a third order antonomous
system of ODEs, and therefore they are both able to
display chaotic behavior. The model reference sys-
tem is defined by taking the mean values of the right
hand sides of the system of Eqs.(5), over one period:
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(6) Qam’ =—vQ an—1/2 fysin 6, :
Qap 0’ =—1/2(Q%—w?) 2 —3/8 o wg? 3;[13
- 1/2 fy cos O

where the subscript m indicates the variables of the
reference model. Eq. (6) is an autonomous second
order system which cannot display chaos. The state
variables of the reference model are then given by:

(7) xm = ap(t) sin (Rt +0y)

Xm = am §2 cos (Rt + 8y,

The solution of Eqs.(6,7), the model reference Sys-
tem, with initial conditions ap,(0) = 0, 8m(0)=0and
parameter valuesv=0.5,wp=1,0=1 and f0=0.72

is shown in Fig.1. Fig.1(2) shows the time series
and Fig.1(b) shows a limit cycle in the phase plane

The parameters of the model were chosen to bé
equal to the uncontrolled system parameters. The
amplitude of the waves is growing from zero at t =
0 to one at t = 50 and remains constant thereafter
The oscillations of the reference model are follow-
ing the behavior of the forcing waves. Fort> 50 the
oscillations approach the ideal stable period:{)ne
limit cycle shown in the figure.

IIl. Model-Reference Adaptive Control of

Chaos and Crisis:

The model reference adaptive control system is
cha_racgenzed by two loops: a feedback inner loop
which includes the system (process) and the regula_’
tor, and an outer loop, which serves to adjust the in-
ner foop control parameters. An adjustment mecha-
nism in the inner loop follows the error e=%Xx and
modifies the regulator parameters accordingly. De-
fine an error e(t), the deviation of the controljed 8Ys-
tem response from the reference modef -

8) e=xp~x. e"=x," —x"; 7= Ko™ g
Using the error ¢, the following closed loop con-
trolled system is proposed:

(9) X7+ v+ wp2x ~ aweP =K, e + K o’
. Kge
+ K, €3+ f{t) £y sinQt F

where Kp , K4 and K, are control gains to be ad-
Justed such as to decrease the error e. As the dynam-
ics of the controlled system start locking on the dy-
namics of the reference model, the pmpomongl
derivative and nonlinear controls Koe, Kge’ an(i
Kn €3, respectively, become small, thus reducing
tl?e control effort. We study the set of parameters
given by [Ding, 1994], namely, v = 0.5, wg = 1,

o= 1 and f > 0.7. Using Eq. (8), Eq. (9) can be writ-
ten as:

{19
X7 + (v +Kgx' + (wo? +Kp + 3 Ko xpy?)x
= Kp Xm + KaXm’ + Ko x® + (1) 5 sinQt

From the new coefficients appearing in Eq.(10), it
can be seen that the effective physical parameters of
the controlled system can be varied by applying the .
control gains Ky, Kq and Ky, The control problem
now is to vary the gains such as to minimize the er-
ror e(t). For this purpose, an objective function J is
defined as:

(1) J(Kp, Ky, Kp) = el/2

In order to minimize e, the control gains are ad-
justed so that their magnitude is proportional to the
negative direction of the gradient of J as will be
shown below. The derivatives of J with respect to
the controls K, Kgand K, are evaluated as follows:

(12) .
dI/dK, = ¢ de/dK,, = e (dxp/dK, — dx/dK )
d¥dK g = e de/dK g = e (dxp/dKg — dx/dK g)
dI/dK, = e de/dK, = e (dxm/dKy — dx/dKy)

The sensitivity functions Sp, S4 and Sy, are defined
by the following equations:

(13)  Sp=de/dK,, = dxp/dK, — dx/dK,
Sq= de/dKg = dxp/dKq — dx/dKg
S = de/dK., = dxp/dKy — dx/dKy

Since the reference model x, is independent of the -
gains K, Kq and K, Equations (12,13} reduce to:

(14y  dV/dK, =e S = ¢ (— dx/dK,)
dl/dKg =e Sg = ¢ (—dx/dKy)
VK, =e §; = e (— dx/dK,)
From Eq.(13), it follows that:

(15)  de'/dK, =dSy/dt=S,’
de”/dK,, = 28, /di? =S,

Similar equations are obtained for Sq and Sp. The
periodic model reference satisfies Eq.(1), 1.e.

(16)

X"+ VEm + 007K — (xmgzxm3 = f(t) fo sin€2t
Subtracting Eq.9) from the model reference

Eq.(16), the following equation for the evolution of
the error e(t) is obtained:
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(17) '€”+(\£+Kd)e’ + (o2 + Kp) e + Ky &
— oW (X, — X2)= 0

The governing equations for the sensitivity func-
tions are found from equations (13), (15) and (17):
(18) S, +ASy” +BSy=-e
Sa” +ASy +BSg=-¢’
Sa” +AS, +BS=—¢}
where

A=v+

B=wmp?~3 a g x* + Ky + 3K, €2

In order to minimize the objective function J, the
control gains Ky, Ky, and K, are varied in the direc-
tion of the negative gradient of J {Astrom, 1995]:

(19)  dKp/dt =—yp dV/dK, = —yp e de/dK,
dKg/dt =—y4 dV/dK4 =—y4e de/dKg
dK/dt = —yp dV/dK, =—yp e de/dK,

From Egs. (13) and (19), the governing equations
for the evolution of the control gains are obtained:

(20) Kp:= —Yp Spe
Kg'=-vdSq¢
Ky'=—¥nSne

where vy}, , Ya and v, are constants to be adjusted. If
the values of ¥’s are too low, the chaotic behavior
cannot be controlled and the closed loop system
might become unstable. If the chosen values of the
¥’s are too high, the control gains K, Kgand K,
could become too high, which is also undesirable,
since the invested control effort should be kept low.
It was found that a value of yp = y4=1n=0.02is a
good compromise between the two requirements.
In the simulations, Eqs.(6,7) for the reference mod-
el, Eq.(10) for the closed loop adaptive controlled
system, Egs.(18) for the sensitivity functions and
Eqgs.(20) for the control gains are solved simulta-
neously using a fourth order Runge—Kutta method
with variable step size. The initial conditions used
in the simulations are discussed in the next section.

1V, Time Series and Phase Portraits of the

Controlled and Uncontrolled Systems:

In order to study the uncontrolled nonlinear system,
Eq.(10) was solved with no controls applied, i.e.
with K, =0, K4 = 0 and K, = 0. The time series for
this system is shown in Fig.2(a) for an amplitude
f0=0.72. It can be seen that the time series is chaotic.
Next the adaptive feedback control was applied to
the same system with the same amplitude of the
forcing waves f=0.72. The controlled system is
simulated by solving the system of equations (6),

{7, (10), (18) and (20) with the initial conditions

a0} =0, 0,0} = 0, x(0) =0, x’(0) = 0, SK(0) = 0,
Sp’(0) = 0, S¢(0) = 0, S4'(0) = 0, S(0) = 0 and
$,7(0) = 0. The initial conditions for the adaptive
gains were taken as K(0) = Kg(0) =K(0) = 0. The
time series of the controlled system is given in
Fig.2(b). It can be seen that the response converges
to a period—one limit cycle as compared to the un-
controlled chaotic signal. Fig.3 shows the behavior
of the uncontrolled and the controlled systems in

. the phase plane. For the uncontrolled system, the
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phase portrait is a chaotic attractor (the oscillator
cycle does not repeat itself). On the other hand,
when the adaptive feedback control is applied, the
chaotic oscillations are suppressed and the trajecto-
ry approaches a limit cycle. A similar result can be
seen in Fig.4 where the error e, i.e. the difference
between the model reference response xy, and the
system response x, is displayed for the uncontrolled
and the controlled systems. The chaotic error of the
uncontrolled system is reduced to a periodic error of
much smaller amplitude.

The proportional sensitivity and control functions
are shown in Fig.5. It can be seen that both signals
are periodic and have a small amplitude. In particu-
lar the control is three orders of magnitude smaller
than the controlled signal, which means a relatively
small effort is needed in order to stabilize the sys-
tem. The periodicity of the proportional control in-
dicates that the error function is also periodic and,
thus, that the system has been stabilized. From
Fig.6 it can be seen that the derivative sensitivity
and the derivative control also approach periodic
behavior and their magnitude is small compared to
the controlled system response. The nonlinear sen-
sitivity and control were found to be very small and
displayed a similar behavior as in Figs. 5and 6.

V. Poincare Maps and Power Spectrum of
the Controlled and Uncontrolled Systems
Poincare maps were obtained for both the con-
trolled and the uncontrolled systems in order to dis-
tinguish between the periodic behavior of the con-
trolled system and the chaotic behavior of the
uncontrolled system. The equations of motion are
solved using a variable step Runge—Kutta fourth
order integration scheme. The time series obtained
are sampled at discrete time intervals tp = n{T/10},
wheren=Q, 1,2, ... and T = 2n 1s the nondimension-
al period of the waves. The sampled data points are
subsequently used in order to obtain the power
spectrum density. If the system were perfectly peri-
odic and sampled every full period T, the Poincare
map would appear as a single point. The motion -
may be considered to be chaotic if the map consists
of a large set of points which do not repeat or do not




form a closed orbit (as in quasi—periodic motion).
In that case, the points define a chaotic attractor.

When the Poincare map displays data that are
sampled every T/10 time steps, ten branches appear
in the chaotic attractor, each comesponding to a
different starting point T/10, 2T/10, 3T/10 etc., as
can be seen in Fig.7(a) for the uncontrolled chaotic
system. Comparing this result to the Poincare map
of the controlled system shown in Fig.7(b), a dra-
matic difference is observed, showing that the con-
trolled system is clearly periodic, since exactly 10
points are obtained, each corresponding to a differ-
ent starting point of time T/10, 2T/10 etc., the mo-
tion repeating itself every full period T.

An additional tool was used to diagnose the period-
ic behavior of the controlled system versus the
chaotic behavior of the uncontrolled system: the
power spectral density. For a description of this
technique, see e.g. [Hilborn, 1994]. The basis of the
method is an analysis of the frequency content of
the sampled signal using the fast Fourier transform
{FFT) for which very efficient numerical methods
have been developed. The absolute value squared of
the fast Fourier transform is considered to be the
amount of power contained in the frequency range
considered. The spectrum of a chaotic signal is
characterized by many frregular peaks of different
amplitudes over a wide bandwidth, while the spec-
trum of a periodic signal would display one main
peak and a smooth spectral curve. A comparison of
the power spectral densities is shown in Figs.8(a)
and 8(b).

The power spectrum of the controlled system is
shown in Fig.8(b). It can be seen that the power
spectrum has a main peak, which corresponds to the
natural frequency of the system, and by a second
peak, having an amplitude about four orders of
magnitude smaller than the main peak, which corre-
sponds to an additional frequency superimposed on
the main frequency. The power spectrum of the ref-
erence model is similar to that of the controlled sys-
tem, except that it does not display a second peak.
from Fig.8(a)}, it is apparent that the uncontrolled
system is clearly chaotic as indicated by the numer-
ous irregular peaks.

V1. Controlling the Crisis (Capsizing)

Previous work [Ding et al, 1994] as well as our sim-
ulations have shown that as the amplitude of the
waves fy increases from zero to 0.7, the motion of
the ship follows a period-one limit cycle. When the
amplitude is increased further, the motion under-
goes a period doubling bifurcation route to chaos
which persists up to an amplitude value around
0.726. When the amplitude 1s increased beyond this

critical value, the chaotic oscillations lead to a cri-
sis, the amplitude of the motion increases indefi-
nitely, which signals the capsizing of the ship. This
crisis phenomenon is shown in Fig.9(a) for the
uncontrolled system for an amplitude of 0.78 which
is beyond the critical value. Applying the feedback
adaptive control stabilizes the ship motion and sup-
presses chaotic oscillations as shown in Fig.9(b).

. The controlled periodic motion is maintained well

886

beyond the time for the onset of the crisis. Thiscan
also be seen from the phase portrait of the two sys-
tems as shown in Fig.10. The motion of the uncon-
trolled system escapes the attractor, following an
oscillatory transient period. Fig.10 also shows that
by using the present adaptive conirol scheme, the
crisis can be stabilized around the reference model
limit cycle.

Conclusions:

A continuous model reference adaptive feedback
conirol method is proposed for the suppression of
chaos in periodically forced dynamical systems. As
an example, an application of the control system to
the response of a ship oscillating in lateral ocean
waves is studied. The control law consists of pro-
portional, derivative and nonlinear feedback. A pe-
riodic reference model obtained from the ship equa-
tion of motion by the method of averaging is
presented. It was found that for forcing amplitudes
below the capsize critical value, suppression of
chaos is achieved, and the response follows the
ideal model reference period—one limit cycle. For
forcing amplitudes above the capsize critical value,
ship capsizing is avoided and the crisis is stabilized.
This control method is also capable of stabilizing
the system at higher forcing amplitudes. Several
tools are used to diagnose the controlled system pe-
riodic behavior and the uncontrolled chaotic re-
sponse. These include time series, phase portraits,
power spectrum densities and Poincare maps. One
advantage of the present method is that it is applica-
ble to the control of chaos in higher order systems.
Another advantage is that it does not require a per-
manent digital computer in the control loop, since
the continuous control system can be implemented
using analog circuits.
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Fig.2: Comparison between (a) the uncontrolled chaotic system and (b) the controlled periodic system.
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Fig.3: Phase portraits of (a) the chaotic uncontrolled system and (b) the controlled system (limit cycle). -
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Fig.4: Error function e(t) = xiy(t) —x(t) for (a) the chaotic uncontrolied and (b) the controtied system.
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Fig.7: (a) Poincare map of the uncontrolled system and (b) of the controlled system for fo=
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0.72.
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Fig.8: (a) Power spectral density (PSD) of the uncontroiled system and (b) of the controlled system.

(é) Uncontrolled System, f0=0.78 (b) Controiled System, fo =0.78

1 1

© o : | i | |
= D
g -1t = 0 ; l
= = I |
3 = | I I
2 -21 8 -0.5¢ - Hh ; E
-~ >
>

-3; -1

~4 : - : -1.5 : : :

0 100 200 300 400 0 100 200 300 400

time ‘ time
Fig.9: (a) Crisis of the uncontroiled system and (b) the stabilized limit cycle motion of the controlled system.

(@) Uncontrolled System, fo=0.78 {b) Controlied System, fo=0.78
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Fig.10: Phase portraits for fp = 0.78: (a) Crisis and escape from the attractor for the uncontrolled system
versus (b) near limit cycle when the adaptive control is applied.
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