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Distributed Optimal Control of Sensor Networks
for Dynamic Target Tracking
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Abstract—This paper presents a distributed optimal control ap-
proach for managing omnidirectional sensor networks deployed to
cooperatively track moving targets in a region of interest. Several
authors have shown that under proper assumptions, the perfor-
mance of mobile sensors is a function of the sensor distribution.
In particular, the probability of cooperative track detection, also
known as track coverage, can be shown to be an integral function
of a probability density function representing the macroscopic
sensor network state. Thus, a mobile sensor network deployed to
detect moving targets can be viewed as a multiscale dynamical
system in which a time-varying probability density function can
be identified as a restriction operator, and optimized subject to
macroscopic dynamics represented by the advection equation.
Simulation results show that the distributed control approach is
capable of planning the motion of hundreds of cooperative sensors,
such that their effectiveness is significantly increased compared
to that of existing uniform, grid, random, and stochastic gradient
methods.

Index Terms—Distributed control, mobile sensor networks,
multiscale dynamical systems, optimal control, target tracking,
track coverage.

I. INTRODUCTION

THIS paper presents a distributed optimal control (DOC)
approach for optimizing the trajectories of a network of

many cooperative mobile sensors deployed to perform track
detection in a region of interest (ROI). Considerable attention
has been given to the problem of controlling mobile sensors in
order to maximize coverage in a desired ROI, as required when
no prior target information is available [1]–[9]. When prior
information, such as target measurements or expert knowledge,
is available, optimal control and information-driven strategies
have been shown to significantly outperform other methods
[8]–[15]. Due to the computational complexity associated with
solving the optimality conditions and evaluating information
theoretic functions, however, these methods typically do not
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scale to networks with hundreds of sensors because the com-
putation they require increases exponentially with the number
of agents [16].

Distributed optimal control has been recently shown to over-
come the computational complexity associated with classical
optimal control for systems in which the network performance
or cost function is a function of a suitable restriction operator,
such as a probability density function (PDF) or maximum-
likelihood estimator (MLE) [17]–[20]. Several authors have
shown that, in many instances, the performance of networks
of cooperative agents, such as sensors and robotic vehicles,
is a function of a PDF representing the density of the agents
over the ROI [21]–[25]. Thus, one approach that has been
proposed to deploy many cooperative agents is to sample a
known PDF to obtain a set of agent positions in the ROI
[25]. Another approach is to use a known PDF to perform
locational optimization, and obtain a corresponding network
representation using centroidal Voronoi partitions [26], [27].
Alternatively, agent trajectories can be computed using a hierar-
chical control approach that first establishes a virtual, adaptive
network boundary, and then computes the agent control inputs
to satisfy the boundary in a lower-dimensional space [28].

While these existing approaches are effective at reducing
the dimensionality of an otherwise intractable optimal control
problem, they assume that the optimal PDF (or virtual bound-
ary) are given a priori. As a result, the agents may be unable
to reach the desired PDF when in the presence of dynamic con-
straints and/or inequality constraints on the state and controls.
Conversely, if a conservative PDF is given to guarantee reach-
ability, network performance may be suboptimal. Furthermore,
because existing methods assume stationary agent distributions,
they cannot fully exploit the capabilities of mobile sensors,
or take into account time-varying environmental conditions.
The DOC approach, recently developed by the authors in [18],
overcomes these limitations by optimizing a time-varying agent
PDF subject to the agent dynamics.

To date, DOC optimality conditions have been derived and
used to solve network control problems in multi-agent path
planning and navigation [18], [20]. This paper presents con-
servation law results that show the closed-loop DOC system
is Hamiltonian. Based on these results, an efficient numerical
solution is obtained using a finite volume discretization scheme
that has a computational complexity far reduced compared to
classical optimal control. The DOC method is then applied to a
network control problem in which omnidirectional sensors are
deployed to cooperatively detect moving targets in an obstacle-
populated ROI. Several authors have shown that the tracking
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and detection capability of many real sensor networks, such
as passive acoustic sensors, can be represented in closed-form
by assuming the sensors are omnidirectional and prior targets
measurements can be assimilated into Markov motion models
(see [9], [10], [29]–[32] and references therein). In this paper,
the DOC approach is used to optimize the detection capability
of this class of sensor networks for hundreds of cooperative
agents. In particular, the optimal DOC control laws optimize
a weighted tradeoff of multiple conflicting objectives, namely,
probability of detection, energy consumption, and collision
avoidance. The results show that the DOC approach signifi-
cantly improves the probability of detection compared to other
scalable strategies known as uniform, grid, along with random
and stochastic gradient methods [33], [34].

II. PROBLEM FORMULATION AND ASSUMPTIONS

This paper considers the problem of optimizing the state and
control trajectories of a network of N mobile sensors used
to detect a moving target in an obstacle-populated ROI A =
[0, L]× [0, L] ⊂ R

2 during a fixed time interval t ∈ (T0, Tf ],
where T0 and Tf are both given. Each sensor is mounted on a
robot or vehicle whose motion is governed by a small system
of ODEs

ṡi(t)= f [si(t),ui(t), t] , si(T0) = si0 , i=1, . . . , N (1)

where si(t) = [xT
i (t) θi(t)]

T ∈ S is the ith vehicle state
comprised of the vehicle position xi = [xi yi]

T ∈ A and
heading angle θi ∈ [0, 2π), ui ∈ U ⊂ R

m is the vehicle control
vector, and U is the space of m-admissible control inputs.
Here, the superscript “T ” denotes the transpose of matrices and
vectors. Each sensor is assumed to be omnidirectional, with a
constant effective range r ∈ R, defined as the maximum range
at which the received signal exceeds a desired threshold [8].
Then, the field of view (FOV) of every sensor can be modeled
by a disk C(xi, r) ⊂ R

2, with radius r and center at xi.
Since xi, i = 1, . . . , N , is a time-varying continuous vector,

let ℘xi
denote the time-varying PDF of xi, defined as a non-

negative function that satisfies the normalization property∫
A

℘xi
(xi, t)dxi = 1 (2)

and such that the probability of event xi ∈ B ⊂ A is

P (xi ∈ B, t) =
∫
B

℘xi
(xi, t)dxi (3)

where B is any subset of the ROI, and, for brevity, ℘xi
is

abbreviated to ℘ in the remainder of this paper. With this
approach, each sensor can be viewed as a fluid particle in the
Lagrangian approach, and ℘ can be viewed as the forward PDF
of particle position [35]. Therefore, N℘ represents the density
of sensors in A.

There is considerable precedence in both target tracking
literature and practice for modeling target dynamics by Markov

motion models that assimilate multiple, distributed sensor mea-
surements [36], [37]. These tracking algorithms have the ability
to incrementally update the target model over time and output
Markov transition probability density functions (PDFs) that
describe the uncertainty associated with the target based on
prior sensor measurements. This paper shows that the target
PDFs obtained by the tracking algorithms can be used as
feedback to a distributed optimal control algorithm, such that
the sensor motion can be planned in order to maximize the ex-
pected number of target detections over a desired time interval.
Subsequently, the target PDFs can be updated to reflect the new
knowledge obtained by the sensor network controlled via DOC.

Let the target (T) motion be described by the unicycle
kinematic equations

ẋT (t) =

[
ẋT (t)
ẏT (t)

]
=

[
vT (t) cos θT (t)
vT (t) sin θT (t)

]
, t ∈ (T0, Tf ] (4)

where xT (t) = [xT (t), yT (t)]
T ∈ A is the target state, vT (t)

is the target velocity, and θT (t) is the target heading angle.
Because many vehicles and targets of interest move at constant
heading over some period of time, Markov motion models
assume that the target heading and velocity are constant dur-
ing a sequence of time subintervals (tj , tj+1] ⊂ (T0, Tf ], j =
1, . . . ,m, that together comprise an exact cover of (T0, Tf ]. At
any time tj , j = 1, . . . ,m, the target may change both heading
and velocity and thus tj is also referred to as maneuvering time.
Then, introducing the discrete-time variables xTj

= xT (tj),
θTj

= θT (tj), and vTj
= vT (tj), and integrating (4) with re-

spect to time, the target can be described by the motion model

xTj+1
= xTj

+
[
vTj

cos θTj
vTj

sin θTj

]T
Δtj (5)

where Δtj = tj+1 − tjand j = 1, . . . ,m.
Because the actual target track is unknown a priori, xTj

,
θTj

, and vTj
can be viewed as random variables [36], [37].

Assuming for simplicity that they are independent random
variables, prior target information can be provided in terms of
the target PDFs fxTj

(xTj
), fΘTj

(θTj
), and fVTj

(vTj
)that may

computed by target tracking algorithms based on prior sensor
measurements [38] or are otherwise assumed uniform.

For an omnidirectional sensor, the probability of target detec-
tion for a sensor at xi can be described by the Boolean detection
model

Ps [xi(t),xT (t)] =

{
1, ‖xi(t)− xT (t)‖ ≤ r

0, ‖xi(t)− xT (t)‖ > r,
(6)

where ‖ · ‖ denotes the Euclidean norm [25], [30].
The problem considered in this paper is to optimally control

the N omnidirectional sensors such that the weighted tradeoff
of multiple conflicting objectives, namely, probability of track
detection, energy consumption, and collision avoidance in A
is optimized subject to the equation of motion (1). The next
section shows how this problem can be formulated as a DOC
problem and, then, solved efficiently for up to hundreds of
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Fig. 1. Example of 3-D coverage cone K(t) (magenta), and corresponding 2-D
representation comprised of the pair of heading-cone Kθ (orange) and velocity-
cone Kv (cyan).

sensors using the conservation law analysis and numerical
method presented in Sections V and VI.

III. PROBABILITY OF TARGET DETECTION

The quality-of-service of a sensor network deployed to detect
and track a moving target in an ROI A can be represented
in closed form by a track coverage function derived using
geometric transversals [10]. The track coverage function rep-
resents the probability of detecting a target on a track in a
spatiotemporal space, defined as Ω = A× (T0, Tf ]. Let FΩ

denote an inertial frame embedded in Ω and, for every time
interval (tj , tj+1], consider a local frame of reference Fj with
an origin at zj = [xT

Tj
tj ]

T ∈ Ω, as shown in Fig. 1. Then,
based on the Markov motion model in Section II, the target
track as it evolves from time tj to any time t, t ∈ (tj , tj+1],
can be represented by a time-varying vector mj(t) in Fj ,
defined as mj(t) = [xT (t)

T t]T − zj Fig. 1. From the sen-
sor model in (6), the ith sensor is able to detect the target
at time t if and only if ‖xT (t)− xi(t)‖ ≤ r. Thus, the set
of all target tracks detected is contained by a time-varying
3-D coverage cone defined according to the following remark,
proven in [10]:

Remark 3.1: The coverage cone defined as

K(t) =

{
[x y z]T ∈ Ω ⊂ R

3
∣∣z > tj , t ∈ (tj , tj+1]

×
∥∥∥∥[x y]T − (z − tj)

(t− tj)

[
xi(t)− xTj

]
− xTj

∥∥∥∥≤ (z − tj)

(t− tj)
r

}
(7)

contains the set of all target tracks that intersect the ith sensor’s
FOV C(t)at any time t ∈ (tj , tj+1].

An example of coverage cone is shown in Fig. 1, where K(t)
(magenta) is plotted at time t = 0.8 (hr), for a sensor that moves

along a trajectory xi(t) (green line) and has the FOV shown
by a red disk. Because (7) is a circular cone that is possibly
oblique, it is difficult to define a Lebesgue measure of the tracks
contained by K(t) that can be computed analytically from the
sensor position and the Markov parameters. By extending the
approach in [10] to a moving sensor, K(t) can be represented
by a pair of 2-D cones, referred to as heading cone and velocity
cone, for which a Lebesgue measure of the tracks detected by
a sensor at xi(t) can be provided in terms of unit vectors. The
2-D representation of the coverage cone in Fig. 1 is plotted in
orange (heading cone) and cyan (velocity cone), and derived in
the remainder of this subsection.

Let the 2-D heading cone Kθ be defined as the projection of
K onto the plane

Ψθ =
{
[x y z ]T ∈ Ω | z = tj

}
. (8)

such that Kθ (shown in yellow in Fig. 1) contains all possible
headings of a target detected by the ith sensor at any time
t ∈ (tj , tj+1]. Since Kθ is a 2-D cone, it can be expressed as
a linear combination of two unit vectors on the heading plane
with respect to a local coordinate frame Fj such that

Kθ [xi(t), zj ] =
{
c1ĥ

(j)

i (t) + c2l̂
(j)

i (t)
∣∣c1, c2 ≥ 0

}
, (9)

where

ĥ
(j)
i (t) =

⎡
⎢⎣ cosα

(j)
i (t) − sinα

(j)
i (t)

sinα
(j)
i (t) cosα

(j)
i (t)

0 0

⎤
⎥⎦ d(j)(t)∥∥d(j)(t)

∥∥

≡

⎡
⎢⎣ cosλ

(j)
i (t)

sinλ
(j)
i (t)
0

⎤
⎥⎦ , (10)

l̂
(j)

i (t) =

⎡
⎢⎣ cosα

(j)
i (t) sinα

(j)
i (t)

− sinα
(j)
i (t) cosα

(j)
i (t)

0 0

⎤
⎥⎦ d

(j)
i (t)∥∥∥d(j)
i (t)

∥∥∥

≡

⎡
⎢⎣ cos γ

(j)
i (t)

sin γ
(j)
i (t)
0

⎤
⎥⎦

d
(j)
i (t) � (xi(t)− xTj

) and α
(j)
i (t) = sin−1(r/‖d(j)

i (t)‖).
Now, let the velocity cone Kv be defined as the intersection

of K with the velocity plane

Ψv = {[x y z]T ∈ Ω | (x sin θTj
− y cos θTj

)

= [sin θTj
cos θTj

]xTj
, z ≥ tj}.

such that Kv represents the speeds of all targets with heading
θTj

(contained in Kθ) that are detected by the ith sensor at t ∈
(tj , tj+1]. The velocity cone Kv can be represented by two unit
vectors defined with respect to Fj such that

Kv [xi(t), zj ] =
{
c1ξ̂

(j)

i (t) + c2ω̂
(j)
i (t)

∣∣c1, c2 ≥ 0
}

(11)
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where

ξ̂
(j)

i (t)=

⎡
⎢⎣ sin η

(j)
i (t) cos θTj

sin η
(j)
i (t) sin θTj

cos η
(j)
i (t)

⎤
⎥⎦ ,

ω̂
(j)
i (t)=

⎡
⎢⎣ sinμ

(j)
i (t) cos θTj

sinμ
(j)
i (t) sin θTj

cosμ
(j)
i (t)

⎤
⎥⎦ ,

η
(j)
i (t)=tan−1

[
1

t− tj

([
cos θTj

sin θTj

] [
xi(t)− xTj

]

−
√
r2 −

([
sin θTj

− cos θTj

] [
xi(t)− xTj

])2)]
,

μ
(j)
i (t)=tan−1

[
1

t− tj

([
cos θTj

sin θTj

] [
xi(t)− xTj

]

+

√
r2 −

([
sin θTj

− cos θTj

] [
xi(t)− xTj

])2)]
.

(12)

An example of these coverage cone representations is illustrated
in Fig. 1.

As proven in [10], the pair of 2-D time-varying cones
{Kθ,Kv} can be used to represent all tracks contained by the
3-D time-varying coverage cone K. It follows that the prob-
ability of detection by the ith sensor at time t ∈ (tj , tj+1] is
the probability that the Markov parameters are contained by the
heading and velocity cones, i.e.,

Pd(t) ≡P [mj(t) ∈ K(t)] =

∫
A

fxTj
(xTj

)

λ
(j)
i (t)∫

γ
(j)
i (t)

fΘTj
(θTj

)

×
tanμ

(j)
i (t)∫

tanη
(j)
i (t)

fVTj
(vTj

)dvTj
dθTj

dxTj
(13)

where the Markov motion PDFs are known from the tracking
algorithms (Section II).

IV. DISTRIBUTED OPTIMAL CONTROL PROBLEM

The control of the N omnidirectional sensors is achieved
by optimizing a weighted sum of the probability of target
detection, energy consumption, and collision avoidance in the
ROI. The energy consumption can be modeled as a quadratic
function of the vehicle-control vector ui. By introducing a
repulsive potential function Urep generated from the obstacle
geometries [18], [39], the obstacle avoidance objective can be

expressed as the product of ℘ and Urep. Then, the total sensor
network performance can expressed as the integral cost function

J =

m∑
j=1

tj+1∫
tj

∫
A

[wr℘(xi, t)Urep − wd℘(xi, t)Pd(t)

+ weu
T
i Rui]dxidt �

m∑
j=1

tj+1∫
tj

∫
A

L{℘(xi, t),ui, t}dxidt

(14)

and must be minimized with respect to the network state ℘ and
control law ui = c[℘(xi, t)]subject to (1),(2), (3). The constant
weights wd, wr, and we, are chosen by the user based on the
desired tradeoff between the sensing, obstacle-avoidance, and
energy objectives, and R is a diagonal positive-definite matrix.

Because the dynamic constraints (1) are a function of the
sensor (microscopic) state and control, xi and ui, the next
step is to determine the macroscopic evolution of ℘ subject
to (1). It was shown in [18] and [20] that if agents are never
created nor destroyed and are advected by a known velocity
field (1), then the evolution of ℘ can be described by the
advection equation. The advection equation is a hyperbolic
partial differential equation (PDE) that governs the motion of
a conserved, scalar quantity, such as a PDF, when subject to a
known velocity field [40]. From (1), the PDF ℘ is advected by
the velocity field vi = ẋi, resulting in macroscopic dynamics

∂℘

∂t
= −∇ · {℘(xi, t)vi} = −∇ · {℘(xi, t)f [si,ui, t]} . (15)

The gradient ∇ represents a row vector of partial derivatives
with respect to xi, and (·) denotes the dot product.

Because the initial agent distribution is usually given, based
on the initial positions of the sensors in the ROI, the PDE (15)
is subject to the initial condition

℘[xi, T0] = ℘0(xi). (16)

Also, in order to guarantee that agents are neither created
nor destroyed in A, the PDE (15) is subject to the boundary
condition

℘[xi ∈ ∂A, t] = 0, ∀t ∈ (T0, Tf ] (17)

state constraints

℘[xi 
∈ A, t] = 0, ∀t ∈ (T0, Tf ] (18)

and the normalization condition (2).
Now, consider a square area A′ ⊂ A with side length Δx.

In order to guarantee independent detections, the density of the
sensors in the area A′ must satisfy the following inequality:

(Δx)2

πr2
≥ N(Δx)2℘(x′

i, t), x′
i ∈ A′ (19)

where ℘(·) can be assumed constant in A′ for a small Δx. The
right-hand side (RHS) in (19) is the number of the sensors in the
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area A, and the left-hand side (LHS) in (19) is a upper bound.
Then, the following constraint can be obtained:

℘(xi, t) ≤
1

Nπr2
(20)

and is used to guarantee that there are no overlapping FOVs
or, in other words, that sensor detections are independent. The
analysis presented in the next section shows that the closed-loop
DOC problem is a Hamiltonian system and, thus, the agent PDF
℘ is conserved over time. As a result, numerical solutions of the
DOC problem can be obtained using conservative numerical
algorithms, such as finite volume (FV), that are known to be
computationally efficient and allow for coarse-grain discretiza-
tions without dissipation errors [41].

V. CONSERVATION LAW ANALYSIS

Hamiltonian systems are characterized by a constant of mo-
tion, or Hamiltonian function, by which optimal trajectories
can be shown to have vanishing variations along this constant
of motion, according to Pontryagin’s minimum principle [42],
[43]. Because in the DOC problem, the coarse dynamics are
described by the advection equation (15), the open-loop system
is inherently conservative [44]. The goal of this section is
to show that the controlled dynamics (or closed-loop system)
is also conservative, by proving that it satisfies Hamilton
equations

∂ψ

∂q
= −dp

dt
,

∂ψ

∂p
=

dq

dt
(21)

where ψ = ψ(p,q, t) is the Hamiltonian function, q = q(t) ∈
R

n are the generalized coordinates, and p = p(t) ∈ R
n are the

generalized momenta.
For simplicity, the proof is presented for n = 2, where xi =

[xi yi]
T denotes the position of the ith agent in R

2. Then, the
Hamiltonian function is determined by recasting the detailed
equation (1) into a 3-D time-invariant ODE. Letting x̂i =
[xT

i t]
T and ûi = c[℘(xi, t)] = c[℘(x̂i)], the sensor equation of

motion (1) can be written as

˙̂xi(t) = [ẋi(x̂i, ûi) ẏi(x̂i, ûi) 1]T = f̂(x̂i, ûi) (22)

in the time-space domain Ω. It also follows that the macroscopic
evolution equation (15) can be rewritten as

∂℘(x̂i)

∂t
+

∂ [℘(x̂i)ẋi(x̂i, ûi)]

∂xi
+

∂ [℘(x̂i)ẏi(x̂i, ûi)]

∂yi
= 0

(23)
where, now ℘ is only a function of x̂i.

Now, let A ≡ [Ax Ay At] = A(x̂i) denote the vector po-
tential of the product (℘ûi) i.e.,

℘(x̂i)ûi(x̂i) = ∇×A(x̂i). (24)

By performing a coordinate transformation to a canonical ref-
erence frame defined such that Ay = 0, A can be used to
relate the 2-D time-varying system to the 3-D time-invariant
form, such that the Hamiltonian functions for the two forms

are equivalent [44], [45]. The coordinate transformation is then
given by F : x̂i → x̃i, where x̃i = [xi a t]T and

a = −Ax[xi, h(xi, a, t), t]. (25)

The resulting vector potential is

A = [Ax(xi, h(xi, a, t), t) 0 At(xi, h(xi, a, t), t)] ,

which is governed by

℘ ẋi =
∂At

∂yi
, ℘ ẏi =

∂Ax

∂t
− ∂At

∂xi
, ℘ = −∂Ax

∂yi
(26)

where the function h(xi, a, t) is implicitly defined in (25). Then,
the equivalent system is

dx̃i

dt
= f̃(x̃i) =

[
∂At

∂a
− ∂At

∂xi
1

]T
(27)

and the time scales in the physical and canonical forms are also
equivalent.

Finally, choose the Hamiltonian function

ψ(xi, a, t) = At[xi, h(xi, a, t), t]. (28)

By substituting (28) into (27), Hamilton equations in (21) are
satisfied as follows:

∂ψ

∂xi
= −da

dt
,

∂ψ

∂a
=

dxi

dt
(29)

and are equivalent to a 2-D time-varying system in canonical
space Ω̃ = F(Ω), with Hamiltonian function ψ. Furthermore,
this Hamiltonian formulation holds for any system governed by
(1) and (15), and is mathematically equivalent to the Lagrangian
fluid transport for unsteady flow in two dimensions [44], prov-
ing the conservation law for (15).

VI. NUMERICAL SOLUTION OF DOC PROBLEM

The necessary conditions for optimality conditions for the
DOC problems in the form of (14)–(18) were recently derived
in [18]. These optimality conditions amount to a set of par-
abolic PDEs without a known analytical solution. This section
presents a direct DOC solution method that parameterizes the
agent PDF by a finite Gaussian mixture model, and discretizes
the continuous DOC problem about a finite set of collocation
points to obtain a nonlinear program (NLP) that is solved
numerically using sequential quadratic programming (SQP).
Based on the conservation analysis results in Section V, the
discretized DOC problem can be obtained using an efficient FV
discretization scheme that has a computational complexity far
reduced compared to classical optimal control.

It is assumed that the optimal sensor PDF can be ap-
proximated by a finite Gaussian mixture model (GMM) [46]
obtained from the linear superposition of Z time-varying
components with density

fj(xi, t) =
1

(2π)
n
2 |Σj |

1
2

e[−(
1
2 )(xi−μj)

T
∑−1

j (xi−μj)] (30)
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where j = 1, . . . , Z, | · | denotes the matrix determinant, (·)−1

denotes the matrix inverse, μj ∈ R
n is a time-varying mean

vector, Σj ∈ R
n×n is a time-varying covariance matrix, and Z

is an integer chosen by the user. Thus, at any time t ∈ (T0, Tf ]
the optimal agent distribution can be represented as

℘(xi, t) =

Z∑
j=1

wj(t)fj(xi, t) (31)

where the mixing proportions or weights w1, . . . , wZ obey 0 ≤
wj ≤ 1 ∀j and

∑Z
j=1 wj = 1 at all times [33].

An approximately optimal agent distribution ℘∗ can be ob-
tained by determining the optimal trajectories of the mixture
model parameters wj , μj , and Σj , for j = 1, . . . , Z. Let Δt
denote a constant discretization time interval, and k denote
a discrete time index, such that Δt = (Tf − T0)/K and thus
tk = kΔt, for k = 0, . . . ,K. Assume that the microscopic con-
trol inputs u are piecewise constant during every time interval
Δt and that

℘k � ℘(xi, tk) ≈
Z∑

j=1

wj(tk)fj(xi, tk)

≡
Z∑

j=1

wjk
1

(2π)
n
2 |Σjk|

1
2

e[−(
1
2 )(xi−μjk)

T
∑−1

jk (xi−μjk)] (32)

represents the agent distribution at tk. Then, the weights wjk

and the elements of μjk and Σjk, for all j and k are organized
into a vector ζ of parameters to be determined such that the
DOC cost function (14) is minimized, the DOC constraints
(15)–(18) are satisfied, and such that the component densities
f1, . . . , fL are non-negative and obey the normalization condi-
tion for all k.

Since ℘ is a conserved quantity of a Hamiltonian system
(Section V), the evolution equation (15) can be discretized
using a conservative FV discretization algorithm that does not
suffer from dissipative error when using a coarse-grained state
discretization [41]. The FV algorithm adopted in this paper
partitions the state space A into finite volumes defined by a
constant discretization interval Δx ∈ R

n that are each centered
about a collocation point xl ∈ A ⊂ R

n, l = 1, . . . , X .
Now, let ℘l,k and ul,k denote FV approximations of ℘(xl, tk)

and c[℘(xl, tk)], respectively. Then, the FV approximation
of the evolution equation (15) is obtained by applying the
divergence theorem to (15) in every finite volume, such that
℘k+1 = ℘k +Δtρk, where

ρk � −
∫
S

[℘kf(sl,k,ul,k, tk)] · n̂ dS (33)

and S and n̂ denote the finite volume boundary and unit normal,
respectively. To ensure numerical stability, the discretization in-
tervals Δt and Δx are chosen to satisfy the Courant-Friedrichs-
Lewy condition [41].

Then, letting Δx(j) denote the jth element of Δx, the dis-
cretized DOC problem can be written as the finite-dimensional
NLP

min JD =

n∑
j=1

Δx(j)

X∑
l=1

[
φl,K +Δt

K∑
k=1

L(℘l,k,ul,k, tk)

]

sbj to ℘k+1 − ℘k −Δtρk = 0, k = 1, . . . ,K

n∑
j=1

Δx(j)

X∑
l=1

℘l,k − 1 = 0, k = 1, . . . ,K (34)

℘l,0 = g0(xl), ∀xl ∈ A
℘l,k = 0, ∀xl ∈ ∂A, k = 1, . . . ,K

℘k ≤
Δx(j)

Nπr2
k = 1, . . . ,K

where ℘l,0 is the initial distribution at xl, and φl,K � φ(℘l,K)
is the terminal constraint. In addition, the inequality results
from the geometric constraint in (20).

From (32), it can be seen that ℘l,k and ul,k are functions
solely of the mixture model parameters ζ and, thus, the el-
ements of ζ constitute the NLP variables. Also, since ℘ is
modeled by a Gaussian mixture, the state constraint (18) is
always satisfied and needs not be included in the NLP. The
solution ζ∗ of the NLP in (34) is obtained using an SQP al-
gorithm that solves the Karush-Kuhn-Tucker (KKT) optimality
conditions by representing (34) as a sequence of unconstrained
quadratic programming (QP) subproblems with objective func-
tion JS(ζ) = JD(ζ) +

∑
j λjξj(ζ), where ξj denotes the jth

constraint in (34), and λj denotes a vector of multipliers of
proper dimensions.

At every major iteration � of the SQP algorithm, the Hessian
matrix H = ∂JS/∂ζ is approximated using the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) rule

H�+1 = H� +
q�q

T
�

qT
� Δζ�

− HT
� ΔζT

� Δζ�H�

ΔζT
� H�Δζ�

(35)

where Δζ� = ζ� − ζ�−1, and q� is the change in the gradient
∇JS = ∂JS/∂ζ at the �th iteration [47]. The Hessian approxi-
mation (35) is then used to generate a QP subproblem

min h(d�) =

(
1

2

)
dT
� H�d� +∇JT

S d�

sbj to ∇ξTj d� + ξj = 0, ∀j
(36)

in the search direction d�. The optimal search direction d∗
� is

computed from the above QP using an off-the-shelf QP solver
[48], such that ζ�+1 = ζ� + α�d

∗
�.

The step size α� is determined by an approximate line search
in the direction d∗

�, aimed at producing a sufficient decrease in
the merit function

Ψ(ζ�) = J(ζ�) +
∑
j

rT�,jξj(ζ�) (37)
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TABLE I
COMPUTATIONAL COMPLEXITY OF THE SQP SOLUTION

based on the Armijo condition, and a penalty parameter r�,j
defined in [47]. The algorithm terminates when the KKT con-
ditions are satisfied within a desired tolerance.

The NLP solution ζ∗ provides the optimal agent PDF ℘∗

according to (32), and ℘∗ can be used to obtain a microscopic
control law u∗

i (tk) = c[℘∗(xi, tk)] for each sensor using the
potential field approach presented in [18]. Other PDF-based
control approaches, such as Voronoi diagrams [26], [27], or
virtual boundary methods [28] can potentially also be used
since the optimal and reachable PDF is now known from ℘∗.

VII. COMPUTATIONAL COMPLEXITY ANALYSIS

The computational complexity of the direct DOC method
presented in the previous section is compared to that of a direct
method for classical optimal control (OC) taken from [49]. The
direct method in [49] obtains an NLP representation of the
classical optimal control problem by discretizing N -coupled
ODEs in the form (1) and the corresponding integral cost
function about a finite set of collocation points. Subsequently,
the NLP solution can be obtained using an SQP algorithm with
the computational complexity shown in Table I (Classical OC).
This classical direct method was also used in [16] to optimize
the track coverage of a mobile sensor network for N < 100.

Similar to classical OC, the computational complexity of
the SQP algorithm for DOC, described in Section VI, can
be analyzed by determining the computation required by the
three most expensive steps, namely, the Hessian update (35),
the solution of the QP subproblem (36), and the line-search
minimization of the merit function (37). As shown in Table I,
the solution of the QP subproblem, which is carried out by a
QR decomposition of the active constraints using Householder
Triangularization [47], is the dominant computation in deter-
mining ℘∗.

It can be easily shown (Section VIII) that the computation
required to obtain the microscopic control law from ℘∗ grows
linearly with N . Thus, the computation required by the DOC
direct method exhibits cubic growth only with respect to K, and
quadratic growth with respect to Z. On the other hand, the com-
putation required by the classical OC direct method exhibits
cubic growth with respect to K and N , and becomes prohibitive
for N >> 1. Thus, for sensor networks with X � nN and
Z � mN , the DOC approach can bring about considerable
computational savings.

VIII. SIMULATION RESULTS

The effectiveness of the DOC approach presented in the
previous sections is demonstrated on a network of N = 250

Fig. 2. Initial sensor distribution in (a) and PDF of initial target distribution in
(b) in an ROI with three obstacles.

omnidirectional sensors that are each installed on a vehicle with
nonlinear unicycle kinematics

ẋi = vi cos θi ẏi = vi sin θ θ̇i = ωi (38)

and deployed in an obstacle-populated workspace A = [0, L]×
[0, L] shown in Fig. 2(b), with L = 16 km, over a time interval
(T0, Tf ], with T0 = 0 and Tf = 15 hr. The sensor state si =
[xi yi θi]

T consists of the sensor x, y-coordinates, and sensor
heading angle θi. The sensor control vector is ui = [vi ωi]

T ,
where vi is the linear velocity, and ωi is the angular velocity.
The sensors are assumed to have constant linear velocities of
vi = 0.5 km/hr, and maximum angular velocities of ωmax =
0.52 rad/s, such that ω ∈ [−ωmax,+ωmax]. It is assumed that
the sensors are deployed in A with an initial distribution ℘0

[Fig. 2(a)] and, thus, at t = T0 they are located at a set of
initial positions sampled from ℘0. The number of independent
elementary detections required to declare a target track detec-
tion is chosen to be k = 3, and the sensor effective range is
r = 0.2 km.

The PDF of the initial target position (j = 0) is plotted in
Fig. 2(b), and is modeled by the Gaussian mixture

f(xT0
)=

3∑
�=1

w�

(2π)
n
2 det(Σ�)

1
2

e[−(
1
2 )(xT0

−μ�)
TΣ−1

� (xT0
−μ�)]

(39)
where μ1 = [0.5 7.5]T km, μ2 = [0.75 7]T km, and μ3 =
[1.5 8]T km, and Σ1 = 0.1 I2, Σ2 = 0.1 I2, and Σ3 = .3 I2.
The mixing proportions are w1 = 0.2, w2 = 0.2, and w3 =
0.6. The Markov model PDFs are shown in Table II, and the
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TABLE II
MARKOV MOTION MODEL PROBABILITY DENSITY FUNCTIONS (PDFS)

Fig. 3. Evolution of target PDF at three instants in time.

evolution of the target PDF over time obtained by numerical
integration is plotted in Fig. 3. The cost function weights are
chosen to be ws = 1, wr = 0.02, and we = 0.1, based on the
relative importance of the sensing, obstacle-avoidance, and
energy objectives, respectively.

The optimal time-varying PDF ℘∗ is obtained using the
direct DOC method presented in Section VI, where the chosen
number of mixture components is Z = 9, the state space is
discretized into X = 900 collocation points, for Δt = 1 hr,

Fig. 4. Evolution of optimal sensor PDF ℘∗ microscopic state (red dots) and
FOVs (red circles) at three instants in time.

and K = 15. Given ℘∗ and the estimated sensor PDF ℘̂, an
attractive potential

U(xi, tk) �
1

2
[℘̂(xi, tk + δt)− ℘∗(xi, tk + δt)]2 (40)

can be used to generate virtual forces that pull the sensors
toward ℘∗ for a small time increment δt [18]. At any time tk,
the sensor PDF can be estimated efficiently from measurements
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Fig. 5. Time required to compute the microscopic control law in (41) as a
function of the number of sensors.

of the microscopic sensor state using Kernel density estimation
[19]. Then, the microscopic feedback control law

u∗
i (tk) = [vi Q(θi, φ)]

T (41)

can be shown to minimize (40) and provide closed-loop stabil-
ity, provided φ = −∇U(xi, tk) and

Q(·) � {ϑ(θi)− ϑ [Θ(φ)]} sgn {ϑ [Θ(φ)]− ϑ(θ)} (42)

represents the minimum differential between the actual heading
angle θi and the desired heading angle Θ(φ) computed from the
gradient of the attractive potential function (40), where sgn(·) is
the sign function, and ϑ(·) is an angle wrapping function [39].

The optimal sensor PDF and microscopic sensor state and
FOVs obtained by DOC are plotted in Fig. 4, at three sample
moments in time. The probabilities of detection of these four
methods are presented in Fig. 9. From these simulations, it
can be seen that the sensors are maximizing the probability
of detection by anticipating the target motion forecast, while
also avoiding obstacles and minimizing energy consumption.
As shown in Fig. 5, ℘∗ can be used to generate control laws
with a cost linear in the number of sensors N .

The performance of the DOC method is compared to four
existing sensor network deployment strategies known as sto-
chastic gradient, uniform, grid, and random strategies. Uniform,
grid, and random strategies are static deployments in which
N sensor positions are obtained using finite-mixture sampling
[33]. The uniform deployment is obtained by sampling a uni-
form distribution over the obstacle-free space in A. The grid
deployment is obtained by sampling a Gaussian mixture with
Z = 11 components centered on a grid, and the random deploy-
ment samples a Gaussian mixture with Z = 15 components
randomly centered in A. In these static deployment strategies,
collisions can be avoided by removing components that overlap
obstacles, and by requiring sampled positions to be at a desired
minimum distance from the nearest obstacle, as shown by the
deployment examples in Fig. 6.

Fig. 6. (a) Grid, (b) random, and (c) uniform sensor deployments (black dots)
and corresponding FOVs (black circles).

The stochastic gradient method presented in [34] is also
simulated here for comparison. This method obtains the control
law for each sensor from the gradient of a function of the
sensor initial and goal state in A. Uncertainties in the state
measurements or environmental dynamics result in the control
law that is obtained from the stochastic gradient descent of an
appropriately chosen function. For the example in Fig. 2(b), the
initial sensor states are sampled from ℘0, and the goal states are
sampled from a time-invariant goal sensor PDF that minimizes
the cost function (14) at Tf , and is plotted in Fig. 7. With this
approach, each sensor seeks to move toward the closest goal
state not occupied by another sensor, and avoids obstacles by
means of a repulsive potential term, denoted by Urep. Then, a
feedback control law for sensors i, described by the unicycle
kinematics in (38), can be obtained in the form (41) by letting
U = wa‖x∗

i − xi0‖+ wbUrep, where x∗
i is the goal state, xi0

is the initial state, and wa = 1 and wb = 2.5 are weighting
constants.
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Fig. 7. Goal sensor PDF for the stochastic gradient method.

Fig. 8. Comparison between stochastic gradient sensor positions (blue dots)
with corresponding FOVs (blue circles), and DOC sensor positions and FOVs
(red dots and circles).

The results obtained by the stochastic gradient method are
plotted in Fig. 8 at three sample moments in time. It can be
seen that at the final time [Fig. 8(c)], the sensors have reached

Fig. 9. Comparison of probability of detection.

the goal states sampled from the distribution in Fig. 7 known to
maximize the probability of detection at Tf . As a result, the
final sensor positions in Fig. 8(c) are very close to the final
sensor positions obtained by DOC. But while the stochastic
gradient approach provides optimal performance only at Tf ,
the DOC approach optimizes performance over the entire time
interval (T0, Tf ], as shown in Fig. 5.

For each deployment strategy, the sensor performance is as-
sessed by evaluating and averaging the actual number of target
track detections obtained by 20 simulated sensor networks. The
cost function (14) is also evaluated by estimating the sensor
PDF from the microscopic sensor states using kernel density
estimation with a standard Gaussian kernel at every time step
in (T0, Tf ]. The performance comparison results, summarized
in Fig. 5, show that the DOC method significantly outperforms
all other strategies by providing a probability of detection
that is up to three times as large as the peak performance by
other methods. These results are representative of a number
of simulations involving different sensor initial conditions and
different target PDFs.

IX. CONCLUSION

This paper presents a DOC approach for controlling a net-
work of mobile omnidirectional sensors deployed to cooper-
atively track and detect moving targets in a region of interest.
Several authors have shown that the performance of cooperative
multiagent networks, such as sensor networks, can, in many
cases, be represented as a function of the agent PDF. Existing
approaches, however, assume that the optimal or goal PDF is
known a priori. This paper shows that the DOC approach can
be used to optimize a time-varying agent PDF subject to the
agent dynamic or kinematic equations. This paper also shows
that since the closed-loop DOC problem has a Hamiltonian
structure, an efficient direct method of solution can be obtained
using a finite-volume discretization scheme that has a compu-
tational complexity far reduced compared to that of classical
OC. The numerical simulation results show that the direct DOC
method presented in this paper is applicable to networks with
hundreds of sensors and, as a result, the network performance
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can be significantly increased compared to existing stochastic
gradient, uniform, grid, and random deployment strategies.
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