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Abstract— Bayesian nonparametric models, such as the
Dirichlet Process Gaussian Process (DPGP), have been shown
very effective at learning models of dynamic targets exclusively
from data. Previous work on batch DPGP learning and infer-
ence, however, ceases to be efficient in multi-sensor applica-
tions that require decentralized measurements to be obtained
sequentially over time. Batch processing, in this case, leads to
redundant computations that may hinder online applicability.
This paper develops a recursive approach for DPGP learning
and inference in which a novel Dirichlet Process prior based
on Wasserstein metric is used for measuring the similarity
between multiple Gaussian Processes (GPs). Combined with the
GP recursive fusion law, the proposed recursive DPGP fusion
approach enables efficient online data fusion. The problem of
active sensing for recursive DPGP learning and inference is
also investigated by uncertainty reduction via expected mutual
information. Simulation and experimental results show that the
proposed approach successfully learns the models of moving
targets and outperforms existing benchmark methods.

I. Introduction

Learning the behavior of moving targets using recon-
figurable sensors, such as mobile cameras, is attracting
increasing attention because of its wide variety of appli-
cations, ranging from environmental monitoring [1], [2],
[3], to security and surveillance [4], [5], [6], and disaster
response [7]. In these applications, the region of interest
(ROI) greatly exceeds the size of the sensor’s field of view
(FOV) and, therefore, managing mobile sensor positions and
orientations is crucial to collectively learn the behavior of
many moving targets in the ROI. Unlike existing Kalman
estimators and particle filters, the approach presented in this
paper requires little or no prior information about target
behavior, and is applicable when the number and dynamics
of the targets of interest change over time, for example, as
new targets enter and old targets leave the ROI [4], [6]. As a
result, DPGP models provide a more flexible and systematic
approach for modeling moving targets when compared to
semi-Markov jump systems [8], linear stochastic models [9],
and nonholonomic dynamics models [10], [11].

Bayesian nonparametric approaches, such as DPGPs, have
been used for modeling a wide range of spatio-temporal
phenomena thanks to their flexibility, expressiveness, and
data-driven nature. GPs have been used to model ozone
concentration [12], topology [13], and ocean salinity [14].
DPGPs have been used to model urban traffic [15], [16] and
pedestrians [17] because of their ability to capture mixtures
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of behaviors. Previous GP and DPGP algorithms have relied
primarily on batch learning and inference, whereby the
model hyperparameters are learned from all of the available
data at once. Because the computational complexity associ-
ated with GP inference is cubic with respect to the size of
the training database [18], several approaches such as Sparse
Gaussian Process regression [16], [19] and recursive fusion
[13], [20] have been developed to improve its computational
efficiency. The recursive fusion approach sequentially fuses
new measurements as they are obtained. As such, it is suit-
able to learn GPs from multi-sensor measurements, because
it can assimilate measurements that are obtained and trans-
mitted to the fusion center sequentially and asynchronously.
Also, the approach can leverage previous inference results
so as to avoid performing redundant computations.

Methods for recursive GP fusion can be divided into data-
level fusion and estimate-level fusion [21]. Data-level fusion
[13] directly combines multiple sets of sensor measurements,
while estimate-level fusion [20], [22] probabilistically fuses
multiple prediction estimates that are first obtained by local
GPs. Estimate-level fusion approaches, including Mixture of
Experts [23] and Product of Experts [22] methods, are suc-
cessful at distributing computational burden between sensors.
However, they combine local sensor estimates in an ad-hoc
approach, while data-level fusion builds GP estimators that
fuse local measurements systematically, thereby allowing
to quantitatively investigate the effects of communication
delays, time asynchronicity, and bounded sensor FOV.

This paper contributes to existing data-level fusion meth-
ods by developing a recursive fusion approach for DPGP
modeling of moving targets from data obtained by multiple
and distributed sensor measurements. This is accomplished
by the following technical contributions. First, a recursive
data-level fusion approach for DPGP is proposed by de-
veloping an input dependent DP prior for measurement
clustering and combining with a recursive GP method for
online data fusion. Second, to quantitatively evaluate the sim-
ilarity between new and existing measurements, this paper
proposes to use the Wasserstein metric for modulating the DP
prior. Third, the proposed DPGP fusion approach is applied
to multi-target motion model estimation and the effects
of the recursive fusion are quantitatively investigated. An
analytical expression of information gain is obtained, which
can be utilzied for sensor motion planning. Simulation and
experimental results show the effectiveness of the proposed
approach in learning multiple target motion models. The pro-
posed recursive DPGP provides a computationally efficient
way for online sensor fusion, which can be combined with

2019 International Conference on Robotics and Automation (ICRA)
Palais des congres de Montreal, Montreal, Canada, May 20-24, 2019

978-1-5386-6027-0/19/$31.00 ©2019 IEEE 8034



Fig. 1. Illustration of target kinematics learning using multiple mobile
sensors. Yellow sectors represent sensor FOV. The dotted curves show the
trajectories of four kinematic models, each represented by a different color.
The six numbered blocks represent the moving area for each sensor.

the traditional batch DPGP learning by alternating between
these two methods to achieve balance between computational
efficiency and inference accuracy. To the best of authors’
knowledge, this is the first work that proposes a recursive
DPGP approach.

The paper is organized as follows. The problem for-
mulation is presented in Section II. Section III provides
background knowledge of the DPGP model. The proposed
approach is presented in Section IV by describing (a) the
recursive fusion rule for GP, (b) the input-dependent DP prior
using Wasserstein metric for GPs, (c) recursive DPGP fusion
approach, and (d) the expected uncertainty reduction using
the recursive DPGP fusion for active sensing. Simulation
and hardware results are presented in Section V. Finally,
conclusions are drawn in Section VI.

II. Problem Formulation

This paper considers the problem of learning the kine-
matics of mobile targets traversing a bounded workspace
W⊂ �2 using multiple mobile robots (Fig. 1). Each robot
is equipped with a vision sensor and is confined to a subset
of W, for example due to security or energy constraints.
As a result, fusing measurements from all sensors in the
network is necessary for accomplishing global modeling and
estimation of target kinematics inW. It is assumed that each
target follows a time-invariant nonlinear ordinary differential
equation (ODE),

ẋ j(t) = fi
[
x j(t)

]
, v j(t), j = 1, . . . ,N(t), (1)

where x j(k) ∈W and v j(t) ∈ �2 represent the position and
velocity of the jth target at time t. The total number of targets
in the workspace, N(t), is time varying because targets move
in and out of the ROI. The vector-valued function fi :�2→

�2 represents the ith velocity field (VF) that describes the
velocity at each position of the workspace, and is assumed
unknown a priori. It is also assumed that fi is drawn from a
family of continuously differentiable vector-valued functions,
F = {f1, . . . , fM}, where M is also unknown a priori.

Assuming a constant sampling interval ∆t, at any discrete
time k a camera obtains both target position and velocity
measurements from consecutive video frames obtained from
the field of view (FOV) projection onto W, denoted by
S(k) ⊂ W. The camera obeys a nonlinear measurement
model with additive Gaussian noise,

z j(k) =

h
[
x j(k),v j(k)

]
+ n(k) if x j(k) ∈ S(k)

∅ if x j(k) < S(k)
, (2)

where n ∈ �4 is a white, zero-mean Gaussian noise vector
with a known and symmetric covariance matrix σ2I ∈�4×4,
where I is the identity matrix. The nonlinear measurement
model, described by the vector function h(·) :�2×�2→�4,
can be obtained from computer vision principles [?]. The
objective is to collectively estimate fi by using measurements
from all sensors. Note that the realization of VF can only be
observed, i.e., z j(k) is nonempty, when the target is inside
a sensor FOV, as shown in (2). This results in intermittent
sensor measurements and thus a need for a recursive sensor
fusion strategy.

III. Background on Dirichlet Process Gaussian Process

Previous work by the PIs and other authors successfully
applied DPGPs to learn the kinematics of an unknown
number of moving targets from noisy sensor measurements
in batch mode [15], [24]. Since the number of targets, N(t),
and the number of VFs, M(t), are both unknown and not
necessarily equal, the target-VF associations are modeled
by a set of discrete random variables, c j ∈ {1, . . . ,M}, for
j ∈ {1, . . . ,N}, where the jth target is assigned to c jth VF. The
distribution of mixture weights, π= [π1, . . . ,πM]T , is modeled
by the Dirichlet Process (DP).

The main benefit of using DP is its capability to automat-
ically handle the birth of new classes. It has been shown that
the assignment of jth data, c j, given all other data assignment
c̄ j = {ci|i , j} and the concentration parameter α > 0, follows
the following probability distribution [25], [26]:

p(c j = i|c̄ j,α) =
n̄ j,i

n−1 +α
, (3a)

p(c j , c j′∀ j′ , j|c̄ j,α) =
α

n−1 +α
, (3b)

where n̄ j,i is the number of data that are assigned to ith
class excluding the jth data and n is the total number
of data points. These equations show that the conditional
probability of assignment to an existing class is proportional
to the number of data belonging to that class (3a), and the
conditional probability of creating a new class is proportional
to α (3b).

A multioutput GP defines a multivariate distribu-
tion over functions, P(fi), for fi, i = 1, . . . ,M. Let
{fi(x1), . . . , fi(xn)|xl ∈W, j = 1, . . . ,n} be a set of vector
function values obtained at n points in W. Define
θi(x j) , E[fi(x j)] as the GP mean, and Ψi(x j,x′j) ,
E
{
[fi(x j)−θi(x j)][fi(x′j)−θi(x′j)]

T
}

as the GP covariance,
where E[·] is the expectation operator. Then, θi and Ψi fully
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specify the ith GP [18]. For simplicity, it is assumed that all
GPs share the same known covariance function Ψ.

Under proper assumptions [27], the following DPGP mix-
ture model,

{θi,π} ∼ DP(α,GP(0,Ψ)) , i = 1, . . . ,∞
c j ∼ Cat(π), j ∈ {1, . . . ,N}

f̂c j (x) ∼ GP(θc j ,Ψ), x ∈W, j ∈ {1, . . . ,N} ,
(4)

can be used to describe the target kinematics in (1) from the
position and velocity measurements (2), where “Cat” denotes
the categorical distribution and “∼” denotes “is distributed
as”. Each VF is modeled as a Gaussian process, and the
target-VF association is modeled by c j. The hyperparameters
of DPGP can be learned using Monte Carlo approaches [25].

To model the VF, the collocation-point method [28], [?]
that represents the distribution of velocity in the workspace
using the velocities at a set of fixed collocation points is
adopted. Specifically, let Υ ,

{
ξi ∈W|i = 1, . . . ,V

}
be a set

of V collocation points distributed on a uniform grid in
W. Then every VF approximation is represented by f̂i(Υ) ,[
f̂i(ξ1)T , . . . , f̂i(ξV )T

]T
. All M VFs’ approximation learned by

DPGP is represented by f̂(Υ) ,
[
f̂1(Υ)T , . . . , f̂M(Υ)T

]T
.

Let Vk , {v(k)|k ∈ k} represent a set of target velocities
measured at time steps k and Xk , {x(k)|k ∈ k} denote the
corresponding positions. Also define Vi,k ⊂ Vk and Xi,k ⊂
Xk as the set of velocities and positions associated with ith
VF. Then the inference of ith VF, f̂i (Υ), follows a Gaussian
Model [18], [29]:

f̂i(Υ) ∼ N(µ̂i, Σ̂i), where
µ̂i = K

(
Υ,Xi,k

)
LiVi,k, (5a)

Σ̂i = K (Υ,Υ)−K
(
Υ,Xi,k

)
LiK

(
Xi,k,Υ

)
, (5b)

Li =
[
K

(
Xi,k,Xi,k

)
+σ2I

]−1
,

where K(·, ·) is the kernel for GP.

IV. Recursive Sensor Fusion for DPGP

The recursive DPGP sensor fusion approach presented in
this paper consists of two key steps: sequential assignment
of target trajectories to VF classes, followed by recursive
fusion of trajectories in GP models. Classic recursive GP
fusion for multi-target modeling is first reviewed in Section
IV-A for completeness. Then, a new recursive DPGP fusion
approach, using a Wasserstein metric-based DP prior for
sequential assignment of trajectories, is presented in Section
IV-B. Finally, the use of recursive DPGP fusion in uncer-
tainty reduction prediction for active sensing applications is
presented in Section IV-C.

A. Recursive GP Fusion

Consider the GP inference where two sets of training
data for ith VF, (Xi,k1 ,Vi,k1 ) and (Xi,k2 ,Vi,k2 ), are se-
quentially provided. This is a common situation in sensor
fusion, especially when measurements are intermittently ob-
tained. Different from (5) that computes f̂i(Υ|Vi,k1 ,Vi,k2 )
in a batch manner, where f̂i(Υ|V) means the estimated

VF based on measurements V, a recursive GP fusion first
computes f̂i(Υ|Vi,k1 ) and then derives f̂i(Υ|Vi,k1 ,Vi,k2 ) from
f̂i(Υ|Vi,k1 ).

Specifically, f̂i(Υ|Vi,k1 ) ∼ N(µ̂i,1, Σ̂i,1) by directly using
(5), where

µ̂i,1 = K
(
Υ,Xi,k1

) [
K

(
Xi,k1 ,Xi,k1

)
+σ2I

]−1
Vi,k1 ,

Σ̂i,1 = K (Υ,Υ)−K
(
Υ,Xi,k1

) [
K

(
Xi,k1 ,Xi,k1

)
+σ2I

]−1
K

(
Xi,k1 ,Υ

)
.

Continuing to fuse (Xi,k2 ,Vi,k2 ) results in the new proba-
bility distribution f̂i(Υ|Vi,1,Vi,2) ∼ N(µ̂i,2, Σ̂i,2), where

µ̂i,2 = µ̂i,1 +
[
K

(
Υ,Xi,k1

)
,K

(
Υ,Xi,k2

)]
Li

[
Vi,k1
Vi,k2

]
(6a)

Σ̂i,2 = Σ̂i,1 −
[
K

(
Υ,Xi,k1

)
,K

(
Υ,Xi,k2

)]
Li

 K
(
Υ,Xi,k1

)
K

(
Υ,Xi,k2

)  (6b)

where,

Li ,

[
K−1

11 K12K̃−1K21K−1
11 −K−1

11 K12K̃−1

−K̃−1K21K−1
11 K̃−1

]
K̃ , K22 −K21K−1

11 K12, K11 , K
(
Xi,k1 ,Xi,k1

)
+σ2I,

K12 , KT
21 = K

(
Xi,k1 ,Xi,k2

)
, K22 , K

(
Xi,k2 ,Xi,k2

)
+σ2I.

Equations (6) were presented in [13]. However, no derivation
was provided. This paper provides the derivation in the
Appendix.

The recursive formulation (6) allows the online fusion of
GP process without incurring large computational overhead.
To see this, let the dimension of X1 and X2 be n1 × d and
n2 × d respectively, where n1,n2 represents the number of
data points in X1 and X2 and d is the dimension of a
data point. Then when fusing X2, the batch approach (5)
will incur computation complexity O (n1 + n2)3 since [X1,X2]
are fused as an ensemble. On the contrary, the recursive
update will incur O

(
n2

1n2
)

if K−1
11 is computed before X2

is received (this is usually possible since X1 and X2 are
sequentially obtained). Since in the recursive fusion, n1 is the
size of previously received data and n2 is that of the newly
obtained data, n1 � n2 in general. Therefore the recursive
fusion approach (6) can significantly improve the online
computational efficiency.

B. Recursive DPGP fusion

The conditional probability of target assignment is used
in determining the target-VF association. To be specific, let
(Xc j ,Vc j ) be the set of measured positions and velocities of
jth target. The conditional probability of target-VF associa-
tion is represented as follows,

p(c j = i|c̄ j,Xc j ,Vc j ) ∝ p(c j = i|c̄ j)p(Vc j |Xc j ,c j = i), (7)

i = 1, . . . ,M, j = 1, . . . ,N,

where p(c j = i|c̄ j) is given by the DP prior (3) and
p(Vc j |Xc j ,c j = i) is the conditional probability that can be
computed by using the GP model f̂i(Υ) in (5). The value of
c j is then decided according to p(c j = i|c̄ j,Xc j ,Vc j ). Once
the class assignment is determined, the new trajectory can be
fused into the assigned VF class using the sequential fusion
rule (6).
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The traditional prior of the Dirichlet Process (3) is in-
put independent. This, however, loses useful information
on similarity between trajectories, which is critical for the
assignment of trajectories to VF classes. Therefore, inspired
by [29], this paper uses an input dependent estimate for n̄i, j.
Specifically, define

n̄ j,i = (n−1)
∑

j′, j K̄β(f̂ j(Υ), f̂ j′ (Υ))δ(c j′ , i)∑
j′, j K̄β(f̂ j(Υ), f̂ j′ (Υ))

, (8)

where δ(c j′ , i) is the delta function that takes value one if
and only if c j′ = i. Kernel function K̄β encodes the relation
between trajectories. This paper uses the Wasserstein metric
[30] for measuring the similarity between two GPs. The
Wasserstein metric on probability measures derives from the
optimal transport theory and is used to describe the optimal
cost of transporting a unit of mass from one probability
measure to another [30]. The Wasserstein metric for two GPs
can be represented as follows [31],

W2
2

(
f̂1(Υ), f̂2(Υ)

)
= l2(µ1,µ2) + Tr

Σ1 +Σ2 −2
(
Σ

1
2
1 Σ2Σ

1
2
1

) 1
2

 , (9)

where Tr is the trace operator for matrices and µi and
Σi are mean and covariance matrix of f̂i (i = 1,2). The l
denotes the metric between two vectors, and this paper uses
the Frobenius norm. The kernel function K̄β(xi, xi′ ) is then
defined as

K̄β

(
f̂1(Υ), f̂2(Υ)

)
= e−βW2

2

(
f̂1(Υ),f̂2(Υ)

)
, (10)

where β is a tuning parameter. The computational complexity
of computing p(c j = i|c̄ j) is O(MV3), where V is the number
of collocation points and M is the number of existing VFs.
This is due to executing matrix square root and multiplication
operations, of complexity O(V3), in (9) for M(t) times in (8).

C. Expected Uncertainty Reduction

The recursive DPGP fusion approach discussed so far
has been focused on sequentially fusing measurements from
multiple sensors. It can be easily applied to multi-target mod-
eling in active sensing settings, where sensors strategically
select their positions to make informative measurements.
The key for active sensing is choosing positions that will
maximally reduce estimation uncertainty. The KL divergence
is used to evaluate the effects of measurements in reducing
the uncertainty of VF estimation. By utilizing the recursive
GP in (6), this part presents, for the first time in literature,
an analytic expression of new measurement’s uncertainty
reduction.

Specifically, define the information gain of velocity and
position measurements, V∗ and X∗, as

D
(
f̂(Υ);V∗

)
= DKL

(
P(f̂(Υ)|V∗)||P(f̂(Υ))

)
, (11)

where DKL(r||q) = −
∫

r(ξ) log r(ξ)
s(ξ) dξ denotes the KL diver-

gence between two probability measures r and q. Then the
expected KL divergence for expected measurement V∗ can
be represented as

D
(
f̂(Υ);V∗

)
= EV∗Ec∗D

(
f̂(Υ);V∗

)
, (12)

where the expectations are taken over the stochastic measure-
ment outcomesV∗ and the association between the measure-
ment and VF classes c∗. According to [?], D

(
f̂(Υ);V∗

)
can

be decomposed into the sum of mutual informations from
each VF, i.e.,

D
(
f̂(Υ);V∗

)
=

M∑
i=1

πiI
(
f̂i(Υ);V∗

)
, (13)

where I
(
f̂i(Υ);V∗

)
represents the mutual information of

obtaining measurements V∗. Define Σ̂
∗

i as the GP covariance
of ith VF after fusing (X∗,V∗). By utilizing the recursive GP
fusion in (6), it can be derived that

I
(
f̂i(Υ);V∗

)
= H

(
f̂i(Υ)

)
−H

(
f̂i(Υ)|V∗

)
=

1
2

log

∣∣∣Σ̂i
∣∣∣∣∣∣Σ̂∗i ∣∣∣

=
1
2

log

∣∣∣Σ̂i
∣∣∣∣∣∣∣∣∣Σ̂i − [K (Υ,Xi) ,K (Υ,X∗)]Li

[
K (Xi,Υ)
K (X∗,Υ)

]∣∣∣∣∣∣
= −

1
2

log

∣∣∣∣∣∣I− Σ̂−1
i

[
K (Υ,Xi) ,K

(
Υ,X∗

)]
Li

[
K (Xi,Υ)
K (X∗,Υ)

]∣∣∣∣∣∣ , (14)

where H represents the information entropy. The first equal-
ity comes from the relationship between mutual information
and entropy, and the second equality follows from the
entropy of multivariate Gaussian distributions. By plugging
in (6b) and using the property that det AB = det Adet B if both
A and B are square matrices, the last equality is obtained.

Using (13) and (14) quantifies the expected uncertainty
reduction for measurementV∗. This closed-form information
gain function can be used in conjunction with optimal
control approaches for deciding the most informative sensor
positions. The interested readers can refer to [6], [32], [33]
for more details.

Remark It should be noted that the proposed recursive
DPGP approach is not to replace the batch approach of
DPGP learning. Instead, it provides a computationally ef-
ficient way for online sensor fusion. In fact, the recursive
fusion approach can be combined with the batch DPGP
learning by alternating between these two methods: between
two consecutive batch learning, multiple rounds of recursive
fusion can be conducted to efficiently fuse newly obtained
sensor measurements. The batch learning can then be con-
ducted to optimize hyperparameters and refine clustering
of data. The combination of recursive and batch DPGP
fusion provides a desirable balance between computational
efficiency and inference accuracy.

V. Simulations and Experiments

A. Numerical Simulation

In this section, the proposed recursive DPGP fusion ap-
proach is verified for a variety of target kinematics. The
simulations are performed in the Unreal Engine® (Fig. 2),
which is a commercial physical engine that provides high-
fidelity images and allows computer vision algorithms to
be tested on. Six moving cameras are used to collectively
monitor a workspace with size 30m × 20m. Each camera
moves within a subset of the workspace and the cameras’
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Fig. 2. The simulated workspace in UnrealEngine is of size 30m× 20m.
Multiple moving targets traverse the workspace and their positions and
velocities are measured by six mobile sensors. The example trajectories
of moving targets are showing as colored curves.

moving areas are disjoint. All cameras have the same sensing
range of 10m with horizontal angle of view being 110°.
Image frames are obtained with around 3.3Hz by each
camera. Targets of four different kinematics continuously
traverse the workspace, as shown in Fig. 2. The radial
basis function kernel [18] is used for GP inference (5).
The effectiveness of the recursive DPGP fusion is evaluated
by comparing with three benchmark methods, including no
fusion, random fusion, and ground-truth association. The
first method does not update the DPGP model, which is
the baseline approach. The second is a random association
algorithm that randomly assigns target trajectories to VFs.
The third uses the ground-truth knowledge of target-VF
association for assigning trajectories. All fusion happens
after a target moves outside of the workspace. Note that
no hyperparameter learning is conducted in this process.
Learning hyperparameters will be conducted in the phase
of batch fusion.

All four fusion approaches are evaluated in two tasks –
target motion prediction and expected uncertainty reduction –
to compare the performance of the target kinematics learned
by each fusion method. In the first task, the predicted target
positions in W at each time step are compared with true
positions. A prediction horizon h = 6 steps (i.e., 2s) is used
and the prediction is evaluated by using the root-mean-square
error (RMSE) as follows. Let K j denote the number of
measurements obtained from the jth target. Also define the
position of jth target estimated from a DPGP model, x̂ j(k), as
the weighted sum of predicted positions from all VF classes.
Then the RMSE is defined as

εpos =
1

NT

NT∑
j=1

√√√√
1

K j

K j∑
k=1

k+h∑
t=k+1

‖x j(t|k)− x̂ j(t|k)‖2, (15)

where NT is the total number of targets appearing in the
workspace, x̂ j(t|k) is the predicted target position for time t
from time k.

In the second task, the expected uncertainty reduction,
calculated using (13) and (14), are computed along the
target trajectories. The differences of expected uncertainty
reduction between the ground-truth association and recursive
DPGP fusion, random fusion, and no-fusion approaches,
respectively are computed and compared. Specifically, the
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Fig. 3. The mean and standard deviation of the RMSE of predicted position
error over ten simulation sets are shown. The x-axis shows the number
of trajectories that have been measured by sensors in each simulation.
Lines show the mean error over ten sets and the shaded areas show the
corresponding standard deviation.

RMSE of differences are computed, defined as

εunc =
1

NT

NT∑
j=1

√√√√
1

K j

K j∑
k=1

‖D
(
f̂(Υ);V∗k

)
−Dgt

(
f̂(Υ);V∗k

)
‖2,

(16)
where Dgt is the expected uncertainty reduction for the
ground-truth association. V∗k denotes the set of predicted
measurement in the prediction horizon h.

Ten sets of simulations are conducted, with each set con-
taining eleven randomly generated trajectories drawn from
four kinematic models. To demonstrate the effects of fusion
on improving prediction accuracy, the RMSE in predicted
target position and expected uncertainty reduction over the
ten simulation sets are summarized in Figs. 3 and 4 to show
the trend of RMSE as more trajectories are observed. It can
be observed that (1) fusing newly observed trajectories help
reduce prediction errors as the no-fusion approaches results
in largest prediction errors; (2) The proposed DPGP fusion
approach effectively learns kinematics models and achieves
close performance as that using the ground-truth association,
while significantly exceeding the performances of both no-
fusion and random fusion methods. It is worth noting that,
the ground-truth association gives nonzero prediction error.
This is because only the assignment of trajectories to VF
classes uses the ground-true value. However, there is still
stochasticity in position prediction. It can also be noticed
that sometimes DPGP gives better performance than ground-
truth association. This happens because the hyperparameters
of DPGP is not trained online in the proposed approach.
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Fig. 4. The mean and standard deviation of the RMSE of prediction error
over ten simulation sets are shown. The errors are computed by comparing
with the prediction value of the ground-truth association approach.

B. Hardware Experiment

The recursive DPGP fusion approach is also evaluated in
a physical experiment, the setup of which is shown in Fig.
5. Two ZED® stereo cameras are used for measuring the
position of flying targets (Crazyflie® drones) in a 4.5m×1.5m
field. One camera is mounted on a moving platform (Parrot®

ARDrone) and the other one is fixed to the ground. The
targets are identified from the RGB camera frames. The
target position in the world frame is computed by post-
processing camera measurements and the state estimation
from Crazyflie® drones at the 10Hz rate. The target follows
one of three different kinematic models, as shown on the
ground in Fig. 5. Seven trajectories with different initial
states (target position and orientation) are generated for each
model, totaling 21 trajectories. The target position prediction
with 10-step prediction horizon (i.e., 1s) is conducted. One
trajectory for each model is used as the initial trajectory set of
learning the DPGP model. The remaining 18 trajectories are
fused and tested sequentially. An average RMSE of 0.3505m
prediction error is achieved by using the recursive DPGP
fusion, which shows very accurate prediction capability of
the learned target models.

VI. Conclusion

This paper develops a recursive fusion approach for DPGP
modeling an unknown number of moving targets from data
obtained by multiple and distributed sensor measurements.
A recursive DPGP fusion approach is proposed that up-
dates the learned target model by sequentially fusing sensor
measurements. To incorporate similarity between GPs into
DP clustering, an input-dependent DP prior that depends on
Wasserstein metric is developed. A computationally efficient
GP fusion method is then utilized to update the DPGP model.
The application of the proposed approach in multi-target
motion modeling is investigated. Numerical simulations and

Target
Camera

Camera

Fig. 5. In the experiment, two stereo cameras are used to measure moving
targets. The target follows one of three kinematic models (orange dotted
lines and curves) with different starting positions (blue and yellow stickers
on the ground) in the workspace.

hardware experiments demonstrated a decreasing trend in
DPGP model error using the recursive DPGP fusion, and
an advantage over benchmark methods.

Future work will deal with certain drawbacks of DPGP,
such as slow response to changes in motion [34]. Online hy-
perparameter updating for the decentralized recursive DPGP
fusion also needs investigation. Besides, incorporating the
DPGP recursive fusion with optimal sensor control for active
sensing using multi-robot networks is another focus of future
work.

APPENDIX

The recursive GP fusion (6) is proved in this part. Utilizing
the conditional Gaussian property (5), the conditional mean
of Υ given X1 and X2 is

µ̂2 = K (Υ, [X1,X2]) K ([X1,X2], [X1,X2])−1
[
V1
V2

]
,

where K ([X1,X2], [X1,X2]) =

[
K11 K12
K21 K22

]
,with Ki j, i, j ∈

{1,2} defined in (6). Using the Schur complement and
Woodbury matrix identity [35] gives

K ([X1,X2], [X1,X2])−1 =[
K−1

11 + K−1
11 K12K̃−1K21K−1

11 −K−1
11 K12K̃−1

−K̃−1K21K−1
11 K̃−1

]
.

Therefore µ̂2 can be expanded as follows:

µ̂2 = K (Υ,X1) K−1
11 Z1+

[K (Υ,X1) ,K (Υ,X2)] ·[
K−1

11 K12K̃−1K21K−1
11 −K−1

11 K12K̃−1

−K̃−1K21K−1
11 K̃−1

] [
V1
V2

]
= µ̂1 + [K (Υ,X1) ,K (Υ,X2)]L

[
V1
V2

]
.

This proves (6a). Equation (6b) can be similarly proved.
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