
A Model-based Cell Decomposition Approach to On-line
Pursuit-Evasion Path Planning and the Video Game Ms. Pac-Man

Greg Foderaro, Ashleigh Swingler and Silvia Ferrari

Abstract—This paper presents an on-line approach for opti-
mizing paths for a pursuit-evasion problem, in which an agent
must visit several target positions within an environment while si-
multaneously avoiding one or more actively-pursuing adversaries.
This problem is found in a variety of fields, such as robotic path
planning, mobile-sensor applications, and path exposure. The
methodology developed utilizes cell decomposition to construct a
modified decision tree, which balances the reward associated with
visiting target locations and the risk of capture by the adversaries.
By computing paths on-line, the algorithm can quickly adapt
to unexpected adversary behaviors and dynamic environments.
The methodology developed in this paper is implemented as a
controller for an artificial player in the Ms. Pac-Man arcade
games and is entered into the IEEE CIG 2012 screen capture
Ms. Pac-Man competition. The approach presented achieved a
high score of 44,630 points.

I. INTRODUCTION

The problem of determining an optimal strategy for an agent
in a pursuit-evasion scenarios is prevalent in a variety of fields,
including homeland security, battlefield logistics, and surveil-
lance systems. These applications, in the most general sense,
consist of two distinct groups, pursuers and evaders. Games
provide ideal testing environments for intelligence theories
and algorithms, as they contain sets of well defined rules
and objectives in challenging dynamic workspaces, [1]. In
addition to the aforementioned benefits, games are well suited
as testbeds for determining the strengths and weaknesses of
different algorithms. As a result, many competitions have been
developed that use the level playing fields found in games to
compare artificial intelligence methodologies.

The Ms. Pac-Man arcade game constitutes an excellent
environment for testing algorithms addressing pursuit-evasion
scenarios, as it is analogous to a multitude of current research
interests, such as robotic path planning [2], [3], mobile-sensor
networks [4], and path exposure [5], [6]. In this single-player
video game, the user takes on the role of Ms. Pac-Man. The
Ms. Pac-Man agent must navigate a two-dimensional maze
while avoiding a team of pursuing adversaries, referred to
as ghosts. In order to progress to following levels, the user
must collect (“eat”) a predetermined arrangement of targets
(“dots”) distributed throughout the workspace, an example
of which can be seen in Fig. 1. When no dots remain in a
given maze, the player advances to the next level of the game.
Subsequent levels contain more complicated mazes, as well
as faster adversaries. In the game, the user is awarded points

Silvia Ferrari, Greg Foderaro, and Ashleigh Swingler are with the
Department of Mechanical Engineering and Materials Science, Duke
University, Durham, NC 27708 USA (email: sferrari@duke.edu,
greg.foderaro@duke.edu, ashleigh.swingler@duke.edu)

for eating various objects throughout the maze. Therefore,
one metric for determining the success of an algorithm as a
controller for the Ms. Pac-Man agent is the final score obtained
by the methodology. The screen-capture version of the Ms.
Pac-Man competition [7] challenges researchers to develop
high scoring algorithms, where the highest scoring agent (over
several games) is the champion.

This paper presents an approach for determining the optimal
trajectory for an agent that must balance the tasks of evading
adversaries and fulfilling its target collection objective. The
algorithm developed is tested using the Ms. Pac-Man game
within the limits of the artificial intelligence competition
rules and regulations. A variety of methodologies have been
successfully applied as controllers for the Ms. Pac-Man agent.
Wirth and Gallagher [8] created an artificial player based on
an influence map model of the game mazes. The highest
documented score by the aforementioned method was 19,490
points, however, the method averaged a score of only 6,848
points. Robles and Lucas [9] presented a simple tree search
strategy for determining the paths for the Ms. Pac-Man agent,
which averaged 9,630 points per game. The Pambush family
of controllers, developed by Thawonmas et al., [10], [11],
has been very successful in recent Ms. Pac-Man screen cap-
ture competitions. These rule-based controllers dominated the
competition circuit with trials reaching 30,010 points, and
averaging scores around 15,000. Arguing that the limits of
rule-based controllers had been reached, Ikehata and Ito [12]
began work on an entirely different approach, implementing a
Monte-Carlo tree search algorithm to avoid pincer moves by
the ghosts. This methodology won the 2011 IEEE CIG Ms.
Pac-Man screen capture competition with a score of 36,280
points.

The algorithm described in this paper utilizes cell decom-
position [2] in order to transform the free configuration space,
i.e. areas in the environment in which the agent can travel,
into a set of convex cells. The set of cells obtained from the
decomposition is used to create a decision tree for the agent.
This tree is then used to select an optimal path within the
environment, such that the agent minimizes the risk of capture
by the adversaries and maximizes the reward associated with
visiting the target locations.

The remainder of the paper is organized as follows: The
formulation of the pursuit evasion problem, in terms of the Ms.
Pac-Man game, is defined in Section II. Tracking strategies for
the adversaries are modeled and verified through simulation in
Section III. The results obtained from the methodology defined
in Section IV are found in Section V.

978-1-4673-1194-6/12/$31.00 ©2012 IEEE 281

Fig. 1. Screenshot of Level 1 game maze.

II. PROBLEM FORMULATION AND ASSUMPTIONS

The objective of this research is to develop an intelligent
algorithm for determining the cost-optimal trajectory for a sin-
gle mobile agent in a two-dimensional Euclidean workspace,
W ⊂ R2. Distributed throughout the workspace is a set of
targets that the agent must collect, while avoiding collision
with (similarly, capture by) a team of pursuing adversaries. An
optimal path can, therefore, be defined as a continuous path
in the workspace that simultaneously maximizes the number
of targets acquired and minimizes the risk of capture by the
adversaries. The geometry of the workspace and distribution
of the targets are assumed known a priori. Adversary positions
are determined in real-time, and the control laws of the
adversaries are considered to be known.

The paradigm presented above can be found in the video
game Ms. Pac-Man. In this game, the agent of interest, Ms.
Pac-Man, has state and control vectors defined, respectively,
as

xP =
[
xP yP

]T
(1)

uP =
[
uP vP

]T
(2)

The state vector, xP , represents the x and y coordinates, in
pixels, of Ms. Pac-Man as compared to the reference frame
of the workspace, FW . This reference frame is such that all
possible agent configurations are in the positive orthant of the
Euclidean workspace. The control vector in (2) corresponds
to the attempted direction of movement of the agent. The
state and control vectors of the adversaries, referred to as
ghosts, are defined similarly as xIG and uIG, where I is a
unique identifier for each ghost. The identifiers belong to the

v = +1

u = -1 u = +1

v = -1

Fig. 2. Control Vector Conventions

set IG = {I|I ∈ {r, p, b, o}}, which correspond to the colors
of the ghosts (red, pink, blue and orange).

The methodology developed requires the use of discretized
time. Let k define a discrete instance in time such that k∆t ∈
[ti, tf], where ti indicates the time of the start of the game
level, and tf is the final time, i.e. completion of the level or
death by collision with a ghost. Collision (or capture) occurs
when Ms. Pac-Man and a ghost are located in the same 8 ×
8 pixel tile,

xP (k) = xIG(k) ∀I ∈ IG (3)

The geometries of the agents, in conjunction with the design
of the mazes, allow only for bidirectional motion. As a
result, each point within the maze is associated with a set
of admissible actions, U [x(k)] ∈ U , where U is the space of
all possible control values for all game agents, such that

U = [a1, a2, a3, a4] ≡
{[

0
1

]
,

[
−1
0

]
,

[
0
−1

]
,

[
1
0

]}
(4)

Consequently, the control vectors of the ghosts and Ms. Pac-
Man have the conventions found in Fig. 2.

III. MODELING OF ADVERSARY BEHAVIOR

The Ms. Pac-Man game contains four pursuing adversaries,
the movements of which are governed by unique policies for
tracking Ms. Pac-Man. These policies are comprised of a set of
rules that select a target location, xIT , that is used in calculating
the control vector, uIT , for the respective ghost. Each policy
is a function of the position (i.e. state, (1)) of Ms. Pac-Man in
the maze. Although the pursuit behaviors of the ghosts differ
in how target locations are selected, the ghosts share the same
algorithm for moving towards their targets.

The target position of the red ghost, I = r, is set to the
current location of Ms. Pac-Man,

xrT (k) = xP (k) (5)

This tracking strategy results in the red ghost most often
pursuing the player from behind.

Using a slightly different policy, the pink ghost, I = p,
targets a position in front of Ms. Pac-Man (in the direction
that the player is moving),

xpT (k) = xP (k) + Aid for uP (k) = ai (6)

2012 IEEE Conference on Computational Intelligence and Games (CIG’12) 282

where d = [32 32]T pixels. By index, uP (k) = ai corresponds
to the respective matrix below,

A1 =

[
−1 0
0 1

]
A2 =

[
−1 0
0 0

]
(7)

A3 =

[
0 0
0 −1

]
A4 =

[
1 0
0 0

]
The strategy of the pink ghost is such that the player is often
presented with an adversary pursuing from the front.

The blue ghost, I = b, is governed by the most complicated
targeting policy. The target position is the location found by
reflecting the position of the red ghost about a point, xR(k),
16 pixels from the position of Ms. Pac-Man in the direction
that the user is moving,

xbT (k) = 2 · xR(k)− xrG(k) (8)

The reflection point is defined as

xR(k) = xbT (k) + Aie for uP (k) = ai (9)

where e = [16 16]T pixels.
If Ms. Pac-Man is within a radius, c, of 64 pixels of the

orange ghost, I = o, the target for this ghost is set to the
the bottom left corner of the maze, `. When Ms. Pac-Man is
outside of this radius, the target is set as the position of Ms.
Pac-Man.

xoT (k) =

{
` if ||xoG(k)− xP (k)|| ≤ c
xP (k) if ||xoG(k)− xP (k)|| > c

(10)

As previously stated, once the target positions have been
obtained the ghosts use the same algorithm to move towards
their targets. This manifests itself in the definition of the
control vectors of the ghosts,

uIG(k) =

ai = H{B} ◦ sgn{D} if ai ∈ U [xIG(k)]
aj = H{C} ◦ sgn{D} if ai /∈ U [xIG(k)]

aj ∈ U [xIG(k)]
ak = U [xIG(k)]{1} if ai /∈ U [xIG(k)]

aj /∈ U [xIG(k)]
(11)

where ◦ denotes the Schur product, H{·} represents the Heavi-
side function, and |·| is the absolute value. Let x̂IG = [yIG x

I
G]T ,

then

B =
[
|xIG(k)− xIT (k)| |x̂IG(k)− x̂IT (k)|

]
(12)

C =
[
|x̂IG(k)− x̂IT (k)| |xIG(k)− xIT (k)|

]
(13)

D = |xIG(k)− xIT (k)| (14)

Due to the definition of the control vector in (11), the ghosts
will not choose an action contrary to their current action,
i.e. the ghosts will not reverse directions along their paths.
Therefore, they can only effectively make pursuit decisions
when located at a maze position where there are at least three
possible directions for the ghosts to move.

It should also be noted that the models above do not apply
at all times in the game. For the first 7 seconds of each play
(either at the start of a new maze or when resuming play after
the player has lost a life), the adversaries choose their decisions

randomly when they reach an intersection, excluding the possi-
bility of reversing direction. Similarly, when the player moves
over a power pill, the ghosts immediately reverse direction
and temporarily abandon their primary policies, exhibiting the
same random behavior mentioned above.

A. Numerical Verification

The trajectories of the four ghosts were recorded during
typical game play, i.e. t > 7 seconds, by a screen-capture
program in an emulated Ms. Pac-Man game, [13]. Using the
same path taken by Ms. Pac-Man, the ghost trajectories were
simulated using the models developed above. Fig. 3 shows a
comparison of the simulated paths to those extracted from the
emulated game.

As stated above, the ghosts only effectively make decision
at maze junctions with three or more possible direction for the
ghosts to move. In order to verify the models, the number of
correct decisions made by the simulated ghosts was counted.
If an incorrect decision was made, the error was recorded, and
the ghost trajectories were reset to those of the actual game.
The emulated game was run to completion several times by a
human player. In these games, the adversaries made 28,089
decisions. Simulations, using the method described above,
were run for the targeting models developed. The simulated
ghosts made 818 incorrect decisions, resulting in an accuracy
of about 97.1 %.

As seen in the results, the simulation of the trajectories
closely approximates the actual paths. The errors that do
occur are speculated to be a result of the screen-capture
program. This hypothesis is strengthened by the fact that the
models of the pink and blue ghosts were less accurate, as
the tracking policies of the pink and blue ghosts depend on
both the location of and direction that Ms. Pac-Man is moving.
Because these policies have an additional input, screen-capture
inaccuracies would have a greater affect on the simulations of
the respective ghosts.

IV. METHODOLOGY

The methodology developed for the Ms. Pac-Man controller
is as follows. The maze is decomposed into a finite set of
cells, which is used to create a connectivity tree based on the
adjacency relationships of the cells and the position of the
Ms. Pac-Man agent. This tree is then used to calculate the
instantaneous optimal path for the agent, based on the current
game state extracted from the game image and the predicted
future game state computed from the models described in
Section III.

A. Cell Decomposition and the Connectivity Tree

Cell decomposition is a commonly implemented approach
in robotic path planning for obstacle avoidance, [14]–[16].
The obstacle free region is decomposed into a finite set of
non-overlapping polygons, referred to as cells. The obstacles
of classic cell decomposition correspond to the walls of the
maze in the Ms. Pac-Man testing environment. Using a line-
sweeping algorithm, the free space of the maze is decomposed

2012 IEEE Conference on Computational Intelligence and Games (CIG’12) 283

(a) Red Ghost

(b) Pink Ghost

(c) Blue Ghost

(d) Orange Ghost

Fig. 3. Comparisons of the ghost trajectories extracted from the game
(circles) and the simulations from the derived models (dots). The solid green
circle is the initial position, and the solid blue circle is the final position.

into a set of rectangular cells, an example of which is found
in Fig. 4.

The decomposition can be used to create a connectivity
graph corresponding to the adjacency relationships of the
workspace cells.

Definition 5.1: A connectivity graph is a non-directed graph
that is used to represent the cells in a decomposed workspace.
Nodes correspond to cells in the decomposition, while arcs
represent the adjacency of connected cells.

Due to the assumption of a continuous path, the user may
only move from the cell containing its current location to
an adjacent cell, thus creating a causal relationship between
current location and potential future paths. This relationship
is commonly represented by a connectivity tree.

Definition 5.2: A connectivity tree is a tree graph associated
with a connectivity graph, G, and the current cell of the agent,
xP (k) ∈ κP . The tree has κP as the root and branches with
length L.

The branches of the connectivity tree correspond to ordered
sets of cells that contain possible paths for the agent beginning
in κP . Each arc in the tree is assigned a weight, which
changes based on the game scenario. Fig. 5 shows an example
connectivity tree based on the decomposition found in Fig. 4.

As a result of the cell properties and character mobility,
a unique action value can be assigned to each arc in the
connectivity tree. Therefore, the set of admissible actions is a
function of xP (k) as well as uP (k− 1), because as the agent
is not allowed to immediately reverse, the set of admissible
actions is the complement of uP (k − 1).

Fig. 4. Cell decomposition of the Level 1 maze (as seen in [17])

B. State Extraction and Optimal Agent Strategy

In order to decode the game state from the image obtained
via screen-capture, a simple method is implemented that

2012 IEEE Conference on Computational Intelligence and Games (CIG’12) 284

Fig. 5. Connectivity tree of the cell decomposition (as seen in [17])

searches for pixels of particular colors, which correspond to
different game objects. When a pixel containing a color of
interest is found, the adjacent space is searched for additional
pixels of the same color using a flood fill algorithm. If enough
pixels of a given color are found, the game object corre-
sponding to this color is recorded at the particular location.
As many of the game objects have similar colors, e.g. the
red ghost and the strawberry, object specific properties are
searched for. For example, the red pixels of the strawberry
may have an adjacent green pixel, while the red pixels of the
red ghost may have an adjacent blue pixel. In addition, the
pixels representing the eyes of the ghosts are examined. The
direction that the eyes point corresponds to the direction of
motion of the particular ghost. Therefore, an analysis of the
eyes results in additional information regarding the game state.
To increase the efficiency of the state extraction, the method
checks a stored set of pixels instead of the entire maze, as
illustrated in Fig. 6. Similarly, the dot states are updated by
checking a saved list of locations for pixels of the particular
dot color.

The player’s instantaneous reward for visiting a particular
cell in the decomposition can be calculated by a reward
function, L. This function is defined as a trade-off between the
predicted benefit and risk for the agent in visiting a particular
cell. The reward function is defined as follows,

L[xP (k),uP (k)] = wDD[xP (k),uP (k)] (15)
+ wBB[xP (k),uP (k)]

+ wFF [xP (k),uP (k)]

+ wRR[xP (k),uP (k)]

where D, B, F and R are event specific reward and risk
functions. The function D corresponds to the number of
dots that can be eaten in a particular cell. When Ms. Pac-
Man passes over a power-pill, the player is able to eat the
“frightened” ghosts. The function B is associated with the
predicted score that can be achieved by eating frightened
ghosts. The final reward component of (15), F , corresponds

Fig. 6. Stored list of pixels in the level 1 maze to be searched for state
extraction. The stored pixels are drawn in yellow.

to the possibility of eating a fruit. The terms wD, wB , and wF
are weighting coefficients for the respective functions. These
user defined values vary from level to level as they are related
to factors such as character speed and maze complexity. Note
that once a player has passed through a cell the associated
reward changes. The function R and weighting coefficient wR
correspond to the risk of capture, and are governed by the
distances between the agent and the ghosts,

R[xp(k),up(k)] =
∑
I∈IG

[q(xp,x
I
G)− ρ0]2 + γ (16)

The function q(xp,xIG) is the minimum distance between Ms.
Pac-Man and the ghost, I , as measured along the corridors
of the maze. The parameter ρ0 is a user-defined parameter
distance-of-influence weight that is selected such that ghosts
at a distance greater than ρ0 from the user are not considered
when calculating the risk term, i.e. q → ρ0, R → 0.
To emphasize the cost of losing a life, γ is set as a very
large positive number, e.g. γ = 100, 000, if Ms. Pac-Man is
predicted to collide with a ghost and zero otherwise.

The objective of the methodology is to determine an optimal
sequence of actions for the agent that both maximizes the point
reward and minimizes the risk of capture. Let the optimal
strategy, σ∗, be defined by a sequence of functions, ck, that
map the state, xP to an admissible action. Mathematically, the
optimal strategy is as follows,

σ∗ = ci, ..., cF (17)

where

uP (k) = ck[xP (k)], for k = 1, ..., F (18)

This in turn maximizes the cost-to-go function evaluated over

2012 IEEE Conference on Computational Intelligence and Games (CIG’12) 285

the interval [ti, tF],

Ji,F [xP (i)] =
F∑
k=i

αkL[xP (k),uP (k)] (19)

where ti is the current time and tF is the final time. A discount
factor, αk, that is an exponential function of k, is applied such
that the rewards at future times are discounted compared to
immediate ones.

Using the above formulation, the connectivity tree can be
used as a decision tree, where the instantaneous rewards are
computed as the branches of the tree are grown. In addition,
the cumulative cost Ji,k[xp(i)] can be evaluated using the
instantaneous reward, and then stored at each node iteratively
over time.

Ji,k[xP (i)] =
k∑
j=i

αjL[xP (j),uP (j)] (20)

Therefore, the optimal path can be selected by choosing the
branch corresponding to the maximum value of Ji,F . The
optimal branch then governs the optimal strategy, σ∗, by
chaining together the sequence of control values stored in the
arcs of the branch.

During game-play, as stated in Section III, the movements
of the adversaries are not always governed by the tracking
policies. The ghosts exhibit random behavior during the first
7 seconds of play and when they are in a frightened state.
To address the random ghost decisions at the start of play, the
ghost models are ignored, and the risk term in (16) is replaced
with an artificial repulsive potential term. Artificial potential
fields are a well-known robot motion planning approach that
treat agents as particles under the influence of potential fields
[2]. A repulsive potential “pushes” the agent away from a
ghosts if they are within a threshold distance. This potential
is defined as,

P [xP (k),uP (k)] =

[

1
ρ(xP ,xG) −

1
ρ0

]2
if ρ(xP ,xG) ≤ ρ0

0 if ρ(xP ,xG) > ρ0
(21)

The instantaneous reward function, (15), can then be updated
to include P ,

L[xP (k),uP (k)] = wDD[xP (k),uP (k)] (22)
+ wBB[xP (k),uP (k)]

+ wFF [xP (k),uP (k)] (23)
+ wPP [xP (k),uP (k)]

where wP is a weighting coefficient.
When Ms. Pac-Man has eaten a power pill, the future states

of the ghosts cannot be predicted by the tracking models.
Instead, when the ghosts are frightened they are modeled as
probabilistic states, such that a ghost would have a state xIjG
with probability pIj . Essentially, each time a ghost reaches
an intersection in the predictive simulation, new instances
of that ghost are created for each potential action with a
corresponding probability of occurrence. Then, the reward for

Distribution of Scores for 100 Games

0

5

10

15

20

25

30

35

0 - 7500 7500 - 15000 15000 - 22500 22500 - 30000 30000 - 37500 37500 - 45000

Range of Scores (points)

Fr
eq

ue
nc

y
(g

am
es

)

Fig. 7. Trial Score Distribution

eating a ghost with state xIjG is weighted by the probability
pIj , such that

B[xP (k),uP (k)] = pIjb[xP (k),uP (k)] (24)

As this is more computationally intensive than using the
deterministic ghost model, the branch length, L, is reduced
when a power pill is active.

In order to increase the likelihood of Ms. Pac-Man capturing
frightened ghosts, when a decision is made to traverse a
cell containing a power pill, the planned set of actions is
interrupted when the distance between Ms. Pac-Man and the
power pill is small. The controller lets the player either rest
or moves the player back and forth at the same position until
a ghost is close. Then, the agent moves over the power pill
and resumes the methodology described above.

V. RESULTS

The controller developed by this research was implemented
as an artificial player in the web version of the Ms. Pac-Man
game (freely available at [13]). Using screen capture and the
methodology defined above, the classic arcade game was run
to completion (i.e. ’game over’) 100 times using a connectivity
tree with a branch length of L = 16 cells for regular game play
and L = 11 when a power pill is active and the ghosts exhibit
random behavior. Table I documents the major statistics of the
results obtained, and Fig. 7 shows the score distribution. The
highest score obtained over the 100 trials was 44, 630 points,
which is higher than the score of the 2011 screen-capture Ms.
Pac-Man competition [12] winner, which achieved a score of
36,280 points.

The majority of player deaths can be attributed to inac-
curacies in the extracted game state due to computational
delays, as well as incomplete adversary models. Although
the models presented in Section III adequately represent the
tracking policies, the details of additional behaviors, including
duration of the “frightened” ghost states and the timing of
sudden ghost direction reversals were not sufficiently defined
in the methodology. Errors accumulated due to the sensitivity
of the adversary dynamics to inaccuracies in the extracted
game state severely affect path planning for the agent. The
approach presented above attempts to compensate for these

2012 IEEE Conference on Computational Intelligence and Games (CIG’12) 286

errors by frequently reevaluating player decisions. However
in high risk scenarios, there is sometimes not enough time to
correct poor decisions before capture.

Although the algorithm developed has weaknesses attributed
to inaccuracies in the extracted game state, it is able to over-
come many of the shortcomings of other methods. Previous
approaches have either ignored the tracking policies of the
ghosts or have considered incorrect or highly approximate
models. As a result, these algorithms are unable to effectively
plan ahead, and consequently, often move their player into dan-
gerous situations. Many previous methodologies use metrics
dominated by ghost proximities and directions of movement,
which often result in the mislabeling of optimal paths as
dangerous.

The methodology described in this paper is an effective
and competitive controller for the Ms. Pac-Man screen capture
competition. However, as explained above, the methodology
has some weaknesses. Future work will focus on improving the
performance of the cell decomposition approach by including
additional features in the game model. Implementing a more
detailed model of the game state is expected to reduce the
number of scenarios that result in incorrect predictions of
future game states, and, in turn, decrease the number of
suboptimal controller decisions. Furthermore, the accuracy of
the game state extraction and the size of the connectivity tree
are limited by computational delays. Optimizing the code of
the algorithms and using a faster computer will help to increase
the success of the methodology.

TABLE I
PERFORMANCE OF ARTIFICIAL MS. PAC-MAN PLAYER OVER 100 RUNS

Score Mazes Cleared
Highest 44630 5
Lowest 6200 0
Average 23296 2.57

VI. CONCLUSIONS

A novel approach for an artificial player of the game Ms.
Pac-Man is presented. The game state is decoded from the
game image by use of a basic screen-scraping technique, and
the future game state is predicted through a verified ghost
model. The method uses cell decomposition in combination
with a connectivity tree to compute optimal decisions for
the player and returns a control value corresponding to the
resulting player action. During instances in the game when
the objects are known to behave randomly, such as the first
few seconds of the game or when Ms. Pac-Man eats a power
pill, the algorithm uses an alternate probabilistic ghost model
and employs a potential field method in combination with the
connectivity tree. Results are presented that show a high score
of 44,630 points over 100 runs.

ACKNOWLEDGMENTS

This work is partially supported by the Office of Naval
Research Code 321, the National Science Foundation under

Grant ECCS 1028506, and the National Science Foundation
under Grant DGE 1068871.

REFERENCES

[1] S. M. Lucas and G. Kendall, “Evolutionary computation and games,”
IEEE Computer Intelligence Magazine, vol. 1, no. 1, 2006.

[2] J. Latombe, Robot Motion Planning. Kluwer Academic Publishers,
1998.

[3] Z. Sun and J. Reif, “On robotic optimal path planning in polygonal
regions with pseudo-eucledian metrics,” IEEE Transactions on Systems,
Man, and Cybernetics - Part A, vol. 37, no. 4, pp. 925–936, 2007.

[4] D. E. D. Culler and M. Srivastava, “Overview of sensor networks,”
Computer, vol. 37, no. 8, pp. 41–49, 2004.

[5] S. Megerian, F. Koushanfar, G. Q. amd G. Veltri, and M. Potkonjak,
“Exposure in wireless sensor networks: Theory and practical solutions,”
Wireless Networks, vol. 8, pp. 443–454, 2002.

[6] V. Phipatanasuphorn and P. Ramanathan, “Vulnerability of sensor net-
works to unauthorized traversal and monitoring,” IEEE Transactions on
Computers, vol. 53, no. 3, 2004.

[7] S. M. Lucas, “Ms pac-man competition,” SIGEVOlution, vol. 2, no. 4,
pp. 37–38, Dec. 2007.

[8] N. Wirth and M. Gallagher, “An influence map model for playing
Ms. Pac-Man,” in IEEE Symposium On Computational Intelligence and
Games, dec 2008, pp. 228 –233.

[9] D. Robles and S. M. Lucas, “A simple tree search method for playing
Ms. Pac-Man,” in Proceedings of the 5th international conference on
Computational Intelligence and Games, 2009, pp. 249–255.

[10] R. Thawonmas and H. Matsumoto, “Automatic controller of Ms. Pac-
Man and its performance: Winner of the IEEE CEC 2009 software
agent Ms. Pac-Man competition,” in Proceedings of the Asia Simulation
Conference, oct 2009.

[11] R. Thawonmas and T. Ashida, “Evolution strategy for optimizing
paramters in Ms. Pac-Man controller ICE Pambush 3,” in Computational
Intelligence and Games, IEEE Symposium on, 2010, pp. 235 – 240.

[12] N. Ikehata and T. Ito, “Monte-carlo tree search in ms. pac-man,” in
Computational Intelligence and Games (CIG), 2011 IEEE Conference
on, sept 2011, pp. 39 –46.

[13] Ms. Pacman Game. http://webpacman.com/.
[14] D. Zhu and J. C. Latombe, “New heuristic algorithms for efficient hierar-

chical path planning,” IEEE Transactions on Robotics and Automation,
vol. 7, no. 1, pp. 9–20, 1991.

[15] K. Kadem and M. Sharir, “An efficient motion planning algorithm for
convex polygonal object in 2-dimensional polygonal space,” Courant
Institute of Mathematical Science, New York, NY, Tech. Rep. 253.

[16] S. Ferrari and C. Cai, “Information-driven search strategies in the board
game of clue,” Trans. on Systems, Man, and Cypernetics, vol. 39, no. 3,
2009.

[17] G. Foderaro, V. Raju, and S. Ferrari, “A model-based approximate λ-
policy iteration approach to online evasive path planning and the video
game Ms. Pac-Man,” Journal of Control Theory and Applications, vol. 9,
no. 3, pp. 391–399, 2011.

2012 IEEE Conference on Computational Intelligence and Games (CIG’12) 287

