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An Information Potential Approach to Integrated
Sensor Path Planning and Control
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Abstract—This paper presents an information potential method
for integrated path planning and control. The method is applica-
ble to unicycle robotic sensors deployed to classify multiple targets
in an obstacle-populated environment. A new navigation function,
referred to as information potential, is generated from the target
conditional mutual information, and used to design a closed-loop
stable switched control law. The information potential is shown to
obey the properties of potential navigation functions and to enable
measurements that maximize the information value over time. The
information potential is also used to construct a local roadmap
for escaping local minima. The properties and computational com-
plexity of the local roadmap algorithm are analyzed. Numerical
simulation results show that the method outperforms other strate-
gies, such as rapidly exploring random trees and classical potential
field methods.

Index Terms—Demining systems, information value, mutual in-
formation, robot path planning, sensor networks.

I. INTRODUCTION

THIS paper addresses the problem of integrated path plan-
ning and control for a robotic sensor used to classify multi-

ple targets in an environment populated with obstacles and other
mobile sensors. This problem, which is also known as a trea-
sure hunt, is relevant to many mobile sensor applications such
as mine hunting [1], cleaning [2], and monitoring of urban en-
vironments [3] and manufacturing plants [4]. Diffeomorphism
models have been recently developed to learn the kinematics
of robotic sensors and actuators, and their environment, and to
recover nonlinear sensing phenomena with bounded field-of-
views (FOVs) [5]. However, most of the existing path-planning
methods are not designed to take into account such models of
environmental uncertainty and sensor measurements. Further-
more, they cannot be easily modified to account for the geome-
tries of the targets and sensor FOV, while also performing online
obstacle detection and avoidance.

Methods based on cell decomposition [6], probabilistic
roadmaps (PRMs) [18], and rapidly exploring random trees
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(RRTs) [7]–[9] have been proposed for planning the path of
robotic sensors based on the target geometry, or on the poste-
rior probability of a target state. These methods, however, can
produce paths that are infeasible under realistic dynamic con-
straints and cannot be efficiently implemented when obstacles
are detected online. Information-driven sensor planning meth-
ods have been recently proposed to make use of information-
theoretic functions for assessing the value of sensor measure-
ments, and to decide the best sensor mode or measurement se-
quence [10]–[12]. A maximum-likelihood solution to the prob-
lem of calibrating the parameters of exteroceptive sensors was
proposed in [13]. A proportion-integral average consensus esti-
mator was developed in [14] and used for the control of mobile
sensors in decentralized environmental modeling. Hierarchical
approaches have been developed to generate optimal sensing
actions or subtasks given the posterior probability of a target
state obtained through Bayesian inference [15], [16]. Although
these methods do not take into account the sensor FOV and tar-
get geometries, they have been proven very effective at planning
sensor decisions based on probabilistic models of the measure-
ment process that can account for environmental uncertainty
and prior information.

An information potential (IP) approach is presented for gen-
erating a potential navigation function and roadmap based on
a probabilistic model of the measurement process and on the
geometries of targets and sensor FOV. The potential navigation
function, based on mutual information, is used to develop a
switched feedback control law for integrated sensor path plan-
ning and control. Mutual information is a measure of the infor-
mation content of one random variable about another random
variable. It has been previously used for sensor planning in mul-
titarget detection, classification, and feature inference [6], [17].
In this paper, the target information value is represented by
a conditional mutual information function developed in [18].
Although other information-theoretic functions have been pro-
posed for sensor planning [19], conditional mutual information
is chosen here because it is additive, symmetric, nonmyopic,
and always nonnegative. Based on these characteristics, the IP
function can be shown to obey the properties of potential navi-
gation functions and results in a control law that is closed-loop
stable.

Although many potential navigation functions have been de-
veloped for robot motion planning, they are not applicable to
sensor path planning because they do not take into account the
geometries of the targets and sensor FOV and do not consider
the target information value [20]–[24]. In addition, while classi-
cal potential field (PF) methods are well suited to online motion
planning and stability analysis, their effectiveness can be limited
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by trapping in local minima, goals nonreachable with obstacles
nearby, stabilization, and inability to enter narrow passages [25].
All of these issues are exacerbated by the presence of targets
due to a higher density of local minima and to the difficulty
of reaching and stabilizing the robot in a C-target region in the
presence of no-slip constraints. Besides compromising robot
navigation, these issues can significantly decrease classification
performance, especially when important targets are located near
obstacles, local minima, or in narrow passages. One approach to
stabilizing nonholonomic systems has been to use time-varying
smooth control laws [26]–[28], while another has been to use
discontinuous feedback control [29]. In this paper, a switched
control approach based on switched potentials [30] is used to
integrate sensor path planning with dynamic feedback control.
As a result, the switched control law can be proven asymptoti-
cally stable and guaranteed to converge to the target of highest
information value.

An effective approach for escaping local minima is to follow
a new local path generated through a random-walk algorithm.
Another approach is to construct a PF without any local minima
via Morse (or harmonic) functions [31]–[34]. In the IP method,
the same IP function used to derive the switched control law
is utilized to build a local roadmap for escaping local min-
ima. Thus, the connectivity between milestones can be verified
a priori, and the robotic sensor is proven to asymptotically
converge to the milestone with the lowest potential (or high-
est information value). The simulation results show that the
IP-controlled robotic sensor is capable of obtaining measure-
ments from the most valuable targets, entering narrow passages,
and escaping local minima, while avoiding obstacles online. As
a result, the IP method leads to significant improvements in
classification performance and sensor efficiency compared with
existing RRT and PF methodologies.

II. PROBLEM FORMULATION AND ASSUMPTIONS

This paper considers the problem of integrated navigation and
control for a robotic sensor deployed to classify multiple targets
in an obstacle-populated environment. The robotic sensor con-
sists of an unmanned ground vehicle equipped with an on-board
sensor and with autonomous computing and wireless communi-
cation capabilities. Let the vehicle geometry be described by a
rigid object A that is a compact subset of a workspace W ⊂ R3 .
W is populated by N rigid obstacles B1 , . . . ,BN and M fixed
and rigid targets T1 , . . . , TM . It is assumed that all targets and
obstacles are closed subsets of W and that the set of targets is
selected by a target-assignment algorithm and represented by
an index set IT . Every target Ti , with i ∈ IT , is characterized
by a discrete random state variable X , with an unknown con-
stant value xi to be inferred or classified by the robotic sensor.
As schematized in Fig. 1, the sensor FOV, which is denoted by
S ⊂ R3 , is defined as a compact subset of W from which the
robot can obtain sensor measurements.

Let FW denote a fixed Cartesian frame, with origin OW ,
embedded in W , and FA denote a moving Cartesian frame, with
origin OA, embedded in A. Assuming A and S are both rigid,
and S is fixed with respect to A, the robot configuration q =

Fig. 1. Robotic sensor with vehicle geometry A and sensor FOV A.

[x y θ]T can be used to specify the position and orientation
of every point in A, and every point in S, with respect to FW ,
where x, y, and θ are the coordinates and orientation of FA
with respect to FW . Let C denote the configuration space and
A(q) denote the subset of W occupied by A at configuration q.
Then, the subset of W occupied by S at configuration q can be
denoted by S(q) and used to represent the set of all points in W
that can be measured by the on-board sensor when the robot is
at q. It follows that the robotic sensor can obtain measurements
zi from a target Ti iff Ti ∩ S(q) �= ∅.

The configuration vector q must also satisfy the robot dy-
namic equation which, in this paper, is given by the unicycle
model in 4-D phase space [35]

χ̇ =

⎡
⎢⎢⎢⎣

ẋ

ẏ

θ̇

v̇

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

v cos θ

v sin θ

w

a

⎤
⎥⎥⎥⎦ = f(χ,u) (1)

where χ ∈ R4 is the robot state, v is the linear velocity, w is
the angular velocity, and a is the linear acceleration. The robot
control vector is u = [u1 u2 ]T = [a w]T ∈ U ⊂ R2 , where U
represents the space of admissible control inputs. Although a
double-integrator model for (1) can be used for position-based
planning and control [34], this approach is not applicable to
configuration-based planning and control [35]. Thus, a switched
control law defined in a 3-D configuration space is presented in
Section III-B.

The target state X , the sensor measurement Z, and the sen-
sor parameter or environmental condition E are assumed to be
discrete random variables. If xi is any possible value of X , the
probability mass of xi , denoted by pX (xi), is the probability
of the event {X = xi} or P({X = xi}). Let upper case italic
characters denote random variables and lower case italic char-
acters denote real numbers. Then, the measurement process can
be described by a joint probability mass function (PMF) that,
typically, can be factorized as follows

pX,Z,E (xi, zi , ei) = pZ |X,E (zi |xi, ei)pX (xi)pE (ei) (2)

because X and E are independent random variables. The con-
ditional PMF pZ |X,E is obtained from the physical principles
underlying the measurement process. The PMFs pX and pE ,
known as priors, are computed from prior environmental in-
formation when available, or are otherwise assumed to be uni-
formly distributed. The probabilistic model in (2) can also be



LU et al.: INFORMATION POTENTIAL APPROACH TO INTEGRATED SENSOR PATH PLANNING AND CONTROL 921

extended to multiple state variables [36] and continuous random
variables [37]. Various sensors have been modeled by (2), either
from first principles or real data [36], [38].

A sensor measurement zi is obtained when the sensor FOV
intersects the ith target geometry and is represented by the event
{Z = zi | Ti ∩ S(q) �= ∅, E = ei}, where ei is assumed known
for simplicity. The posterior PMF of the ith target state can be
obtained from the measurement model (2) and Bayes’ rule

pX |Z,E (xi | zi, ei) =
pZ |X,E (zi |xi, ei)pX (xi)∑
xi

pZ |X,E (zi |xi, ei)pX (xi)
(3)

for i = 1, . . . ,M , since (2) holds for all targets. Then, the target
can be classified according to the conditional expectation

x̂i � EX [X |Z = zi, E = ei ] =
∑
xi

xipX |Z,E (xi | zi, ei)

(4)
and is considered to be correctly classified when x̂i = xi , where
xi is the true target state value.

The problem considered in this paper is to plan the path and
control for the robotic sensor in (1), such that (I) the number
of targets correctly classified is maximized, and (II) collisions
with all obstacles are avoided. This problem is motivated by
security and reconnaissance applications in which an in-situ
robotic sensor is deployed to classify targets after they have been
detected and localized based on environmental maps and remote
sensor measurements. Thus, it is assumed that at the initial time
t0 , the robotic sensor has no knowledge of the obstacles, which
may be fixed or moving inW . When a new obstacle is detected at
a time t > t0 , its geometry and location are assumed to become
known without error. Targets differ from the obstacles in that
they are fixed in W , and while their classification is unknown a
priori, their geometries and locations are assumed known at t0 .
In order to reduce the algorithm complexity, it is also assumed
that A is a right prism with the base face adjacent to the xy-
plane, and S is a 3-D cone. Obstacles and targets are assumed to
be right prisms with the base face parallel to the xy-plane. The
next section presents an IP integrated path planning and control
method that achieves control objectives (I) and (II) mentioned
above, and guarantees asymptotic closed-loop stability for the
robotic sensor in (1).

III. INFORMATION POTENTIAL METHOD

Information-driven sensor planning utilizes information-
theoretic functions to assess the value of a set of sensor mea-
surements and to decide the best sensor mode or measurement
sequence [11], [12]. Because target classification can be reduced
to the problem of estimating one or more random variables from
partial or imperfect measurements, the value of future measure-
ments may be represented by their expected information value.
Information-theoretic functions, such as information entropy,
have been proposed to assess the information value of sensor
measurements [19], [37]. This paper presents an approach for
building a potential navigation function and roadmap based on
the information value and geometry of the targets, referred to
as the IP method. The approach uses a novel IP function, which
is presented in Section III-A, to develop a switched feedback

control law for integrated sensor path planning and control (see
Section III-B), and an information roadmap algorithm for es-
caping local minima (see Section III-C).

A. Information Potential Function

Because the number of targets correctly classified by a sensor
cannot be established a priori, control objective (I) is achieved
by maximizing the expected information value of the measure-
ments, defined as the reduction of uncertainty in the target state
X brought about by Z. The uncertainty of a discrete and ran-
dom variable X , given another discrete and random variable Z,
can be measured from its posterior PMF using the conditional
Shannon entropy

H(X |Z) = −
∑
xi

∑
zi

pX,Z (xi, zi) log2[pX |Z (xi | zi)]. (5)

Then, for three correlated random variables X , Z, and E, the
decrease in uncertainty of X due to Z, and given the value of
E, can be measured by the conditional mutual information

I(X ; Z |E) = H(X |E) − H(X |Z, E)

=
∑
xi

∑
zi

∑
ei

pX,Z,E (xi,zi ,ei) log2

[
pX,Z |E (xi, zi | ei)

pX |E (xi | ei)pZ |E (zi | ei)

]
.

(6)

Prior to obtaining a noisy measurement value zi , the expected
information value of target Ti can be measured by the expected
conditional mutual information

Vi � EZ {I(X;Z | ei)} = H(X | ei) − EZ {H(X |Z, ei)}

= H(X) −
∑
zi

pZ |E (zi | ei)H(X | zi, ei) (7)

where H(X | ei) = H(X) because X and E are independent.
The marginal PMF

pZ |E (zi | ei) =
∑

x

pZ |X,E (zi |xi, ei)pX (xi) (8)

and all entropies in (7) can be computed from the PMFs in (2). If
prior sensor measurements from the ith target are available, they
can be treated similarly to ei to obtain a nonmyopic measure of
information value using (7), as shown in [6].

Then, the information value of a target can be mapped into
the robotic sensor’s configuration space through the following
definition, taken from [6].

Definition 3.1 (C-Target): The target Ti in W maps in the
robot’s configuration space C to the C-target region CT i = {q ∈
C | S(q) ∩ Ti �= ∅}.

In the IP method, the information value and C-target region
of every target in W are used to construct an attractive potential

Ui
trg (q) � η1σV b

i

{
1 − exp

[
−ρi(q)2

2σV b
i

]}
, i = 1, . . . ,M

(9)
based on the minimum Euclidean distance between q and Ti in
C, i.e.,

ρi(q) = min
q ′∈CT i

‖q′ − q‖, (10)
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where η1 is a positive scaling factor that represents the impor-
tance of targets relative to other path-planning objectives, ‖ · ‖
is the L2-norm, and σ and b are two positive constants that de-
termine the influence distance of the target. From (7), it can be
seen that Vi is a constant up to the time when a new measure-
ment is obtained from Ti , for any i ∈ IT , and that the attractive
potential (9) is twice differentiable with respect to q.

Then, the total attractive potential

Uatt(q) �
M∏
i=1

Ui
trg (q) (11)

can be shown to attain a local minimum at every C-target in C,
as follows. From (9) and (11), the gradient of the total attractive
potential at q is

[∂Uatt(q)/∂x ∂Uatt(q)/∂y ∂Uatt(q)/∂θ]

� ∇Uatt(q) =
M∑
i=1

Ni(q)ni(q) (12)

where

Ni(q) =
∏
j �=i

Uj
trg (q)η1ρi(q) exp

[
−ρi(q)2

2σV b
i

]
(13)

for i, j = 1, . . . ,M , and ni � ∇ρi . Thus, for any q, Ni repre-
sents a scaling factor for the local gradient ni , supported by a
vector from q to the closest point in CT i .

Two different repulsive potentials are defined for fixed and
moving obstacles. Once detected, the mobility of the obsta-
cle can be established using the Kalman filter and Stixel-world
hybrid method developed in [39], which estimates an object’s
longitude, poses, and laterals from multiple camera images ob-
tained over time. Then, for fixed obstacles, a potential barrier
is generated around the C-obstacle region to prevent collisions,
and, at the same time, to allow the robot to obtain measurements
from targets nearby. For a fixed obstacleBl ⊂ W , the C-obstacle
CBl = {q ∈ C |A(q) ∩ Bl �= ∅} is computed and used to deter-
mine the minimum distance from q in configuration space, i.e.,

�l(q) = min
q ′∈CBl

‖q − q′‖. (14)

Let B denote the index set of fixed obstacles detected in W up
to the present time. Then, the repulsive potential for Bl , l ∈ B,
is

Ul
obs(q) �

⎧
⎨
⎩

1
2
η2

[
1

�l(q)
− 1

d0

]2

Uatt(q), if �l(q) ≤ d0

0, if �l(q) > d0
(15)

where η2 is a positive scaling factor that represents the impor-
tance of fixed obstacles relative to other path-planning objec-
tives, and d0 is the obstacle distance of influence [40]. By this
novel definition of repulsive potential, a target within the dis-
tance of influence of an obstacle may be measured by the robotic
sensor. In addition, as in classical PF, only obstacles that are
within distance d0 , with index set B0 = {l | l ∈ B, �l(q) ≤ d0},
influence the robot motion.

Moving obstacles, such as other robots in W , are assumed
to have a configuration that is measured accurately in real time,
but is not estimated at future time for lack of suitable models
or computing power. Thus, the repulsive potential of a moving
obstacle creates a virtual barrier in C, regardless of the presence
of targets within the distance of influence. Let R denote the
index set of moving obstacles detected in W up to the present
time. Then, the repulsive potential for Bj with j ∈ R is

Uj
rob(q) �

⎧
⎨
⎩

1
2
η3

[
1

�j (q)
− 1

d0

]2

, if �j (q) ≤ d0

0, if �j (q) > d0

(16)

where η3 is a positive scaling factor that represents the impor-
tance of moving obstacles relative to other path-planning ob-
jectives. The index set R0 = {j | j ∈ R, �j (q) ≤ d0} contains
the indices of all moving obstacles that are within the distance
of influence from the robot contributing to the gradient of the
potential function. Then, the total repulsive potential is defined
as

Urep(q) �
∑
l∈B0

Ul
obs(q) +

∑
j∈R0

Uj
rob(q) (17)

and the robotic sensor potential function is the sum of the at-
tractive and repulsive potentials

U(q) = Uatt(q) + Urep(q). (18)

As in classical PF methods [40], the negative gradient of the
potential function (18) represents a virtual force on the robotic
sensor that is comprised of the sum of attractive and repulsive
forces, generated by the corresponding potentials. In this paper,
the attractive force is proportional to the information value of
the target that generates it. The gradient of the potential function
(18) can be obtained from (9)–(18) and simplified as follows

∇U(q) = ∇Uatt(q) + ∇Urep(q) =
∑
l∈B0

Fl(q)vl(q)

+
M∑
i=1

[Ni(q) + Ai(q)]ni(q)−
∑
j∈R0

η3

[
1

�j (q)
− 1

d0

]
vj (q)
�j (q)2

(19)

where

Fl(q) � η2

[
1

�l(q)
− 1

d0

]
Uatt(q)
�l(q)2 (20)

and vl(·) � ∇�l(·) is a vector supported by a vector between
q and the closest point in CBl , pointing away from CBl . The
functions Ni(·) have been defined in (13), while Ai(·) is defined
as follows:

Ai(q) � 1
2
η1η2

{∑
l∈B0

[
1

�l(q)
− 1

d0

]2
}∏

i �=j

Uj
trg (q)ρi(q)

× exp
[
−ρi(q)2

2σV b
i

]
, i = 1, . . . , M. (21)

In the next section, the gradient of the IP function (19) is
used to develop a switched feedback control law for the robotic
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Fig. 2. PT i is the intersection of CT i with the horizontal plane {x, y, βi}.

sensor that achieves the path planning and control objectives (I)
and (II) and is asymptotically stable (see Section IV-B).

B. Switched Control Law

In classical PF methods, the control law is obtained from
a virtual force given by the negative gradient of the potential
function. When this virtual force is used to control a nonholo-
nomic robot, however, several issues arise including trapping
in local minima, goals nonreachable with obstacles nearby, and
stabilization. Other issues include oscillations and no passages
between closely spaced obstacles. All of these issues are ex-
acerbated by the presence of targets due to a higher density of
local minima, and by the difficulty of reaching and stabilizing
the robot in a C-target region in the presence of no-slip con-
straints. Besides compromising robot navigation, these issues
can decrease the classification performance of the robotic sen-
sor, especially when important targets are located near obstacles,
local minima, or in narrow passages.

The control law is designed to switch from control inputs that
are based only on the position vector x � [x y]T , to drive the
robot near the target of highest information value, to control
inputs that adjust the robot configuration q = [xT θ]T , and to
enable sensor measurements once the robot is near the target.
This is accomplished by introducing a vector hi ∈ W that points
from OA to the target Ti . Then, every vector

hi � {arg min
y∈CT i

‖y − x‖ − x}, i ∈ IT (22)

specifies a goal orientation βi defined as the angle that the
projection of hi onto the inertial xy-plane makes with the
x-axis. LetPT i denote the intersection of CT i with the horizon-
tal plane {x, y, βi}, as shown in Fig. 2. Under the assumptions
in Section II, PT i is a polygon for which it is possible to de-
fine and compute an inscribed circle (see Fig. 3) defined as the
largest circle that is contained by the closure of PT i .

Now, let ξi and ri denote the center and radius of the in-
scribed circle in PT i , respectively, and ε ∈ (0, ri) denote a
positive constant chosen by the user. As illustrated in Fig. 4, the
goal of the switched control law is to bring the robot configu-
ration within a distance ε of a 3-D line segment in C, defined
as the set λi = {(x, y, θ) : [x y]T = ξi , 0 ≤ θ ≤ 2π}. Subse-

Fig. 3. Inscribed circle for polygon PT i with center ξi and radius ri .

Fig. 4. Goal of switched control law for an inscribed circle with center ξi ,
and a positive constant ε.

quently, the control law is switched to adjust the robot orienta-
tion to meet βi by means of the vector

h � arg min{ ‖hi‖ , i ∈ IT } (23)

such that, when ‖h‖ > ε, the potential function U is defined in
terms of the distance

ρi(q) = ‖ξi − x‖ (24)

to bring q within an ε of λi . Then, the potential-based control
law is given by

u1 = a = −S(q)T ∇U(q) − k1v (25)

where S(q) � [cos θ sin θ 0]T , k1 is a positive constant, and

u2 = w = α̇[U(q)] + k0{α[U(q)] − θ} (26)

where α is the orientation angle of vector ∂xU �
[∂xU(q) ∂yU(q)]T in the inertial xy-plane, and k0 is a posi-
tive constant.

The orientation angle, α, and its time derivative can be ob-
tained from the components of (19) as follows:

α[U(q)] = 2 arctan

⎡
⎢⎢⎣

∂U (q)
∂y√(

∂U (q)
∂y

)2
+

(
∂U (q)

∂x

)2
+ ∂U (q)

∂x

⎤
⎥⎥⎦+π

(27)
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Fig. 5. Construction of switched control law based on the components of the
potential function gradient ∇U (q), for ‖hi‖ > ε.

α̇[U(q)] =
∂U (q)

∂x(
∂U (q)

∂x

)2
+

(
∂U (q)

∂y

)2

[
∂2U(q)
∂x∂y

ẋ +
∂2U(q)

∂y2 ẏ

]

−
∂U (q)

∂y(
∂U (q)

∂x

)2
+

(
∂U (q)

∂y

)2

[
∂2U(q)
∂x∂y

ẏ +
∂2U(q)

∂x2 ẋ

]
.

(28)

The role of each gradient component in the construction of (25)
is schematized in Fig. 5.

When ‖h‖ ≤ ε, the distance in (10) is computed with re-
spect to the geometric dilatation of the C-target, CT ′

i � {q ∈
R3 |x = δr (x′ − ξi) + ξi ,∀ x′ ∈ PT i , 0 ≤ θ ≤ 2π}, where

δr =
(ri − C)

maxx∈PT i
‖hi‖

(29)

is the scale factor, and C ∈ (0, ri) is a constant chosen by
the user. Then, for |h | ≤ ε, the potential-based control law
is switched to

u1 = a = −kpS(q)T ∇U(q) − k1v (30)

where k1 and kp are positive constants, and

u2 = w = k0(βi − θ). (31)

Because PT i is a polygonal curve, the geometric dilatation
CT ′

i can be computed efficiently, as shown in [41]. The positive
constants C and ε are chosen based on the units and dimensions
of the C-targets to ensure that they each lie in the interval (0, ri),
for any i ∈ IT . The constant kp is chosen by the user to satisfy
the inequality

kp > (v2
max + 4π2)/[2(ϑ − ϕ)] (32)

where ϑ is a positive constant that bounds the potential func-
tion U from below when ρi = ri , and ϕ is another positive
constant that bounds U from above when ρi = ε. Then, the
movement of the robotic sensor is constrained into the cylinder
shown in Fig. 4, within which ‖ξi − x‖ < ri , and, thus, the sen-
sor is guaranteed to obtain measurements from target Ti , i.e.,
Ti ∩ S(q) �= ∅. Constants k0 and k1 are chosen based on the
desired convergence rate and maximum overshoot. As shown in
Section IV-B, by this approach, the control law is asymptotically
stable and guarantees that sensor measurements can be obtained

from a target Ti . Furthermore, to account for the discontinuity
of the control signal, the IIR filter

[
u∗

1(t)
u∗

2(t)

]
= e−

T s
τ

[
u∗

1(t − Ts)
u∗

2(t − Ts)

]
+

(
1 − e−

T s
τ

)[
u1(t)
u2(t)

]

(33)
can be inserted between the switched control law and the robot
[42]. Here, τ is the time constant and the sampling period Ts

is 0.01 (s). The simulations show that increasing the value of τ
results in shorter distance traveled but higher control usage, and
that the highest overall efficiency (as defined in Section V) is
obtained for τ > 0.02 (s).

C. Information Roadmap for Escaping Local Minima

A well-known limitation of PF methods is that the robot can
be trapped in local minima of U and not reach its goal configu-
ration [40]. When there exist multiple targets in W , the number
of local minima typically increases, and, since the robotic sen-
sor is attracted to the targets, trapping can impair its ability to
obtain target measurements. This section presents a new method
for escaping local minima while increasing the probability of
obtaining sensor measurements, subject to the robot kinematics
(1). The method is based on the observation that the IP function
defined in (18) can be utilized to derive a probability density
function (PDF) for sampling milestones and building a local
roadmap representation of the free configuration space. Unlike
traditional sampling methods for path planning [43], the method
presented in this section takes into account the robot kinematics
(1) to verify connectivity between milestones. As a result, after
escaping a local minimum, the robotic sensor configuration can
be proven to asymptotically converge to the milestone with the
lowest potential (or highest information value).

A milestone ml is defined as any possible value of the robot
configuration q ∈ C, which, during sampling, is viewed as a
continuous random vector. The PDF of a 3-D continuous ran-
dom vector is a joint PDF of the three elements, given by a
nonnegative function fq , such that

P(q ∈ Q) =
∫

Q

fq(q)dq =
∫ ∫ ∫

Q

fq(x, y, θ)dx dy dθ

(34)
for any subspace Q ⊂ C. To qualify as a PDF, fq must also obey
the normalization property

∫ ∞

−∞
fq(q)dq = 1. (35)

Suppose the robotic sensor arrives at a local minimum m0 of
U . Then, a PDF that obeys the above properties is obtained over
a randomly generated subspace Q ⊂ C, such that m0 ∈ Q, by
letting

fq(q) =

⎧
⎨
⎩

exp[−U(q)]∫
Q exp[−U(q)]dq

, q ∈ Q

0, q /∈ Q.

(36)

From (36), it can be seen that the probability of a sample falling
in a region of Q is higher (lower) where the value of U is lower
(higher). As a result, configurations in Q that are close to or
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Fig. 6. Process to construct the roadmap. (a) Initial milestones. (b) First step.
(c) Second step. (d) Final step. Local minima (dash circle); Milestones (white
circle); C-obstacles (black area).

inside C-targets with high information value, and that are far
away from obstacles, are sampled with higher probability.

Using a direct method [44], κ milestones are sampled from
(36), and used to construct an ordered set M = {m0 , . . . ,mκ}.
A local roadmap is then constructed by building an undirected
graph G = {(ml ,mi) : ml ,mi ∈ M, l �= i}, starting with the
local minimum m0 ∈ Q, and using a local planner to connect
m0 to other milestones in M, until no reachable milestones are
left in M. As schematized in Fig. 6, the local planner connects
any two milestones ml ,mi ∈ M, with i > l, provided that there
exist control inputs (25) and (26) that can bring q from ml

to mi in a finite time interval [tl , ti ] subject to (1), and with
(ti − tl) < tf , where tf is a predefined time limit chosen by the
user, and [ξT

i βi ]T = mi .
Assume that the path connecting ml to mi can be parameter-

ized by a vector function γi : t → q, where t ∈ [tl , ti ]. Then, the
algorithm connects ml to mi , if there exists a time t∗ ∈ (tl , ti)
such that

‖γi(t
∗) − mi‖ ≤ ε (37)

where ε is a positive constant, and for any t ∈ [tl , t∗] ⊂ [tl , ti ]

‖γi(t) − mi‖ > ε. (38)

As illustrated in Fig. 6, at every step of the algorithm, all the
milestones in M that can be connected to a milestone already in
G are added to G, and deleted from M [see Fig. 6(b) and (c)].
The algorithm continues until there are no more milestone in
M and then milestones that remain unconnected [see Fig. 6(d)]
are discarded. As shown in the next section, after building the
roadmap G, an escape path leading to a target can be obtained in
a finite number of iterations. In addition, through this path, the
robotic sensor has a higher probability to converge to a target
with higher information value.

IV. ANALYSIS OF INFORMATION POTENTIAL METHOD

This section analyzes the properties of the IP method pre-
sented in the previous section. In particular, it is shown that the
IP presented in Section III-A satisfies the properties of potential
navigation functions [45]; the switched control law presented in

Section III-B is asymptotically stable; the information roadmap
method presented in Section III-C is guaranteed to find an escape
path to a C-target using a finite number of iterations; the target
of highest information value has the highest probability of being
measured by the robotic sensor; and the average computational
complexity of the escape algorithm is less than O(n2).

A. Properties of Attractive Potential

The IP Ui
trg , defined in (9), obeys the following properties.

1) Ui
trg is an increasing function of ρi , defined in (10) as the

distance between the robot and the target Ti .
Proof: From (9), the first-order derivative of the IP of Ti

with respect to ρi is a nonnegative exponential function

∂Ui
trg (ρi)
∂ρi

� g(ρi) = η1ρi exp
[
− ρ2

i

2σV b
i

]
(39)

where ρi ≥ 0 and η1 , σ, and b are positive constants. It
follows that Ui

trg is an increasing function of ρi . �
2) As ρi → ∞, Ui

trg converges to a finite positive value.
Proof: From (9)

lim
ρi →∞

Ui
trg (ρi) = η1σV b

i (40)

where Vi is the information value defined in (7).
For any two dependent random variables X and Z,
I(X;Z | ei) > 0, for all ei [47, p. 27]. Similarly, Vi =
EZ {I(X;Z | ei)} > 0, because EZ {H(X;Z | ei)} ≥
H(X | ei) for all ei . Furthermore, from the properties of
entropy, H(·) ≤ 1. Thus, it can be easily shown that, since
b > 0, 0 < V b

i ≤ 1. It follows that the limit in (40) is a fi-
nite positive value. �

3) Let di denote the distance of influence of Ti . Then, for any
i, j ∈ IT , if Vi > Vj , it follows that di > dj .
Proof: From (39), the second-order derivative

∂2Ui
trg (ρi)
∂ρ2

i

=
∂g(ρi)
∂ρi

= η1

[
1 − ρ2

i

σV b
i

]
exp

[
− ρ2

i

2σV b
i

]

(41)
is a monotonically decreasing function of ρi . Because the
distance of influence is the inflection point ρ∗i of Ui

trg ,
at which g(ρ∗i ) = g′(ρ∗i ) = 0, it follows that di = ρ∗i =√

σV b
i . Then, since σ, b > 0, di is an increasing function

of Vi . �

B. Closed-Loop Stability of Switched Feedback Control Law

The switched control law presented in Section III-B can be
proven to be asymptotically stable under the following sim-
plifying assumptions: (I) q is within the influence distance of
only one target Ti , such that ρi(q) < di , and ρj (q) > dj for all
j ∈ IT , j �= i; and (II) there are no obstacles within a distance
d0 , i.e., B0 = R0 = ∅. Assumptions (I) and (II) can be satisfied
by choosing proper values of the parameters σ, b, and d0 .

Proof: Under assumptions (I) and (II), the gradient of the
potential function (19) is

∇U(q) = Nini(q) = η1ρi(q) exp
[
−ρi(q)2

2σV b
i

]
∇ρi (42)
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and the gradient of ρi in FW is

∇ρi =
[ 1

ρi (q) (ξi − x) 0
]T

. (43)

From (42) and (43), the gradient of the potential function can
be rewritten as

∇U(q) = [K(ξi − x) 0 ]T (44)

where K � η1 exp[−ρi(q)2/(2σV b
i )].

Now, consider the Lyapunov function candidate

V(χ) = U(q) +
1
2
v2 +

1
2
{α[U(q)] − θ}2 (45)

where α[·] is the orientation angle introduced in (26). Since
U(q) > 0, and the term v2 + {α[U(q)] − θ}2 ≥ 0, it follows
that V(χ) > 0 for all χ ∈ R4 . From the unicycle kinematics (1)
and the control law (25) and (26), the time derivative of V for
the closed-loop system is

V̇(χ) = ∇U(q)T q̇ + vv̇ + {α[U(q)] − θ}{α̇[U(q)] − w}

= ∇U(q)T

⎡
⎣

cos θ 0
sin θ 0

0 1

⎤
⎦

[
v
w

]

+ v
[
−S(q)T ∇U(q) − k1v

]
− k0 {α[U(q)] − θ}2

= ∇U(q)T S(q)v

− S(q)T ∇U(q)v − k1v
2 − k0 {α[U(q)] − θ}2

= −k1v
2 − k0{α[U(q)] − θ}2 ≤ 0. (46)

Since V(χ) is radially unbounded, given any positive constant
c, the set Ωc = {χ ∈ R4 | V(χ) ≤ c} is a compact positively
invariant set. For the robotic sensor, the value of c, and thus the
region of attraction, can be determined based on the bound in
(40) and the maximum linear velocity vmax . We want to show
that every trajectory starting in Ωc approaches the equilibrium
set E = {χ ∈ R4 |χ = [ξT

i α[U(ξi)] 0]T } as t → ∞.
The set Υ of all points in Ωc where V̇(χ) = 0 is Υ = {χ ∈

Ωc | θ = α[U(q)], v = 0}. Then, it can be shown that E is the
largest invariant set in Υ because for any χ ∈ {Υ\E}

v̇ = u1 = −S(q)T ∇U(q) − k1v

= [cos{α[U(q)} sin{α[U(q)} 0]∇U(q)

=
∇U(q)T

|∇U(q) | ∇U(q) = |∇U(q) | �= 0 (47)

where {Υ\E} denotes the complement set of E in Υ. Thus, any
trajectory starting in {Υ\E} cannot stay identically in Υ. On
the other hand, any trajectory starting at a point in E will remain
identically in Υ, because χ̇ = 0. Since E is the largest invariant
set in Υ, it follows from LaSalle’s invariance principle [48,
p. 128] that every trajectory starting in Ωc approaches E as
t → ∞.

When |h | ≤ ε, consider the candidate Lyapunov function

V(χ) = kpU(q) +
1
2
v2 +

1
2
(βi − θ)2 . (48)

From the unicycle model (1) and the control law (30) and (31),
the time derivative ofV for the closed-loop system can be written

as

V̇(q) = −k1v
2 − k0(βi − θ)2 ≤ 0. (49)

Since ε < ri , any time ‖h‖ ≤ ε, the state of the closed-loop
system is a point in the set Ωr = {χ ∈ R4 ‖h‖ ≤ ri, 0 ≤ θ ≤
2π, ‖v‖ < vmax}. Let φ = min‖h‖=ri

V(χ) in Ωr , where from
Section IV-A it can be easily shown that φ > 0. Take c ∈ (0, φ)
and let Ωc = {χ ∈ Ωr | V(χ) ≤ c}. We want to show that every
trajectory starting in Ωc approaches the equilibrium set E =
{χ ∈ Ωc | [cos βi sin βi ]∂xU = 0, θ = βi, v = 0} as t → ∞.

The set Υ of all points in Ωc where V̇(χ) = 0 is Υ = {χ ∈
Ωc | θ = βi, v = 0}. Then, it can be shown that E is the largest
invariant set in Υ because for any χ ∈ {Υ\E}

v̇ = u1 = −kpS(q)T ∇U(q) − k1v

= −kp [cos βi sin βi 0]∇U(q)

= −kp [cos βi sin βi ]∂xU �= 0 (50)

by definition of E . Thus, E is the largest invariant set in Υ,
because any trajectory starting in {Υ\E} cannot remain identi-
cally in Υ. On the other hand, any trajectory starting at a point in
E will remain identically in Υ, because χ̇ = 0. It follows from
LaSalle’s invariance principle [48, p. 128] that every trajectory
starting in Ωc approaches E as t → ∞. �

C. Expected Number of Iterations of Information Roadmap
Algorithm

The potential-based switched control law presented in
Section III-B may cause the robot to be trapped in a local mini-
mum of the potential function (18), defined as a stationary point
of U with a positive definite Hessian matrix ∂2U/∂q2 > 0 and
zero information value. In this case, it can be shown that the
roadmap G containing an escape path leading to a C-target can
be obtained in a finite number of iterations. Assume there exist a
finite number of local minima in U and all the configurations in
Q ⊂ C are reachable under the switched control law (25)–(31).
In addition, assume the subspace Q ⊂ C (defined in Section III-
C) contains at least one C-target. Then, Q can be partitioned into
(m + n) compact subspaces g1 , . . . , gm and h1 , . . . , hn , such
that for any q ∈ gj ⊂ Q, the robot will converge to a config-
uration q ∈ CT j ⊂ Q, and for any q ∈ hl ⊂ Q, the robot will
converge to a local minimum q̃l ∈ Q. Now, for a robot trapped
at q̃i the probability of sampling a milestone m in gj is

P({m ∈ gj} | {q = q̃i}) =
∫

q ′∈gj

fq(q′)dq′ � p(hi, gj )

(51)
and the probability of sampling a milestone m in hi is

P({m ∈ hl} | {q = q̃i}) =
∫

q ′∈hl

fq(q′)dq′ � p(hi, hl)

(52)
where fq(·) is the PDF defined in (36).

Since all milestones in G are reachable they are connected,
and p(hi, gj ) denotes the probability that the robot will con-
verge from q̃i to CT j , while p(hi, hl) denotes the probability
that it will converge from q̃i to another local minimum q̃l .
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Furthermore, since the probabilities in (51) and (52) are inde-
pendent of the robot position, its movement can be modeled
as a Markov chain, as shown in [48]. In particular, for a robot
controlled by the IP method, the transition matrix, denoted by
M, can be written in terms of the probabilities in (51) and (52),
as shown in (68). In addition, (68) can be partitioned as follows

M =
[
Im R
A B

]
(53)

where Im is an m × m identity matrix. Under the stated as-
sumptions, R ∈ Rm×n is a zero matrix, because when q̃i ∈ gj

no sampling is necessary. A ∈ Rn×m and B ∈ Rn×n are ma-
trices with nonnegative entries because fq(·) is a nonnegative
function.

By the properties of probability functions, the sum of the en-
tries in every row of B is less than one, i.e., every element of the
vector Bn is less than one, where n � 1n×1 . From Gershgorin’s
theorem [49], it follows that all eigenvalues of B are less than
one [50], and limι→∞ Bι → 0, where Bι represents the matrix
B raised to the ι power. It also follows that the matrix inverse
(In − B)−1 � C exists and can be written as

C = CB + In . (54)

It can be shown using the approach in [51] that the expected
number of times that the Markov chain will visit hk prior to
gj , when starting at hi , is equal to C(i,k) . Then, from (68) and
C(i,k) ≥ 0, whenever sampling starts at the event {q = q̃i},
the sampling event {m ∈ hl} is expected to take place ci times
prior to event {m ∈ gj}, where

ci �
n∑

k=1

C(i,k) . (55)

Multiplying (54) by n, and letting c � [c1 · · · cn ]T , it follows
that

Cn = CBn + Inn = CBn + n = c (56)

and

c ≤ γCn + n = γc + n (57)

where γ denotes the largest element in Bn. For two matrices A
and B with the same dimensions, the inequality A ≤ B means
that A(i,j ) ≤ B(i,j ) , for all (i, j) . Thus, from (57), the expected
number of iterations ci is finite for all i and has the upper bound
(UB) 1/(1 − γ).

D. Properties of Information Roadmap Method

The information roadmap method presented in Section III-C
is designed not only to help the robotic sensor escape local
minima, but also to increase the probability of obtaining valu-
able sensor measurements in the process. In particular, it can be
shown that given two targets Tj and T� , with the same geometry
but different information value, say Vj > V� , the robot config-
uration has a higher probability of converging to CT j than to
CT � , assuming the two paths from q̃i to the targets are otherwise
equivalent. Hence, targets with higher information value have

a higher probability of being measured by the robotic sensor
when it escapes a local minimum q̃i .

Since the targets have the same geometry, it can be assumed
without loss of generality that subspaces gj and g� have the same
geometry. For example, gj and g� could be disks of radii dj

and d� , respectively. From (68), the probability that the robotic
sensor will move from a milestone in gj to a milestone in hi is

PG (hi, gj ) =
n∑

k=1

p(hi, hk )PG (hk , gj ) + p(hi, gj ) (58)

or, in matrix notation

H = BH + A (59)

where H(i,j ) = PG (hi, gj ). From Section IV-C, the matrix
(In − B) is nonsingular; therefore, (59) can be written as

H = (In − B)−1A = CA. (60)

Since the paths to the two targets are assumed equivalent, they
can be represented by the same transition probabilities, and C
has the same value for both targets.

Now, recall from (36) that the PDF fq(q) is an increasing
function of the information value (6) associated with q. In ad-
dition, the information value for all q ∈ CT j is Vj , and the
information value for all q ∈ CT � is V� . Since gj and g� have
the same geometry, and map into C-targets CT j and CT � , it
follows from (51) that p(hk , gj ) > p(hk , g�) for any hk ∈ Q,
and from (60)

PG (hi, gj ) =
n∑

k=1

C(i,k)p(hk , gj )

>
n∑

k=1

C(i,k)p(hk , g�) = PG (hi, g�). (61)

Therefore, by using the information roadmap G to escape a local
minimum q̃i ∈ hi , the robotic sensor has a higher probability
of converging to target Tj than to T� , when Vj > V� . This result
is also demonstrated numerically in Section VI.

E. Computational Complexity of Information Roadmap
Method

The information roadmap method utilizes a local planner to
verify the reachability of every milestone in the set M , under
the switched-control law (25)–(31). Only reachable milestones
in M are then used to construct G. If all pairs of milestones
in M were considered by the planner, the number of iterations
required would be κ(κ + 1)/2, where κ is the number of mile-
stones added to M by the sampling process. However, it can
be shown that the information roadmap method requires on av-
erage, a smaller number of iterations. Let ri ≥ 0 denote the
number of milestones added at the ith iteration of the informa-
tion roadmap algorithm and T denote the last iteration. Then, it
can be easily shown that T ≤ κ and

∑T
i=1 ri ≤ κ. In the worst

case, the number of iterations τ is bounded as follows

τ ≤
(

κ
2

)
−

T∑
i=1

(
ri

2

)
−

(
κ −

∑T
i=1 ri

2

)
(62)
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Fig. 7. Average number of iterations as a function of pγ and comparison with
corresponding UB κ(κ + 1)/2.

Fig. 8. Average number of iterations as a function of κ and comparison with
corresponding UB κ(κ + 1)/2.

where for two scalar numbers n1 and n2

(
n1
n2

)
=

n1 !
(n1 − n2)!n2 !

(63)

denotes the binomial coefficient n1 choose n2 . If all mile-
stones in M can be connected to m0 at the first iteration,
then T = 1, r1 = κ, τ = κ, and the computational complex-
ity of the algorithm is O(κ). When T = 1 and r1 = δκ, where
0 < δ < 1, τ = κ + κ2(δ − δ2), and the computational com-
plexity is O(κ2). Similarly, for T > 1, the computational com-
plexity is still O(κ2), since, typically, ri or κ −

∑T
i=1 ri is much

less than κ, and κ2 in (62) cannot be eliminated.
Although, in the worst case, the computational complexity

has the same order as the UB κ(κ + 1)/2, the average value
of τ is less than UB. Average values of τ as a function of the
probability pγ of finding a free path between two milestones mi

and ml are computed using over 1000 simulations, and plotted
in Figs. 7 and 8. It can be seen that for all chosen values of
κ, τ achieves the highest value when pγ < 0.1. For pγ > 0.2,
the highest value of τ , obtained near pγ = 0.5, is about half of
UB. These results show that the average number of iterations is
below 50% of UB for most values of the probability pγ . Since the
computational complexity of the algorithm is O(κ2), for large
values of κ, the method can be too slow (see Fig. 8), especially
for online applications. One way to further decrease τ is to only
verify reachability of the nearest milestones in M . However,

in this case, the information roadmap properties proven in the
previous sections may no longer be guaranteed.

V. ROBOTIC SENSOR SIMULATIONS

The IP method presented in the previous sections is demon-
strated through a simulation environment developed using
MATLAB R©. All sensors are characterized by the geometric
objects in Fig. 1 and their motion simulated by integrating
the unicycle kinematics (1), with control inputs provided by
the switched control law (25)–(31). The closed-loop kinemat-
ics are integrated using a fourth-order Runge–Kutta integra-
tion method [52], over a time interval [t0 , tf ], with t0 = 0 (s)
and tf = 20 (s). Additionally, to make the robot kinematics
more realistic, the following bounds are simulated: | a | < 5
(m/s2), | v | < 2(m/s), and |w | < π/10 (rad/s2). Although
these bounds are not accounted for explicitly by the unicycle
model (1), it is shown in Section VI that the switched control
law remains stable under these conditions.

The probabilistic model of sensor measurements (2) is a
Bayesian network model of a ground-penetrating radar (GPR)
taken from [36]. The target classification variable X is nonob-
servable and has two mutually exclusive values X = {x1 , x2}.
The prior target PDF pX (xi) is given by prior measurements
obtained by a simulated airborne Agema Thermovision 900 in-
frared (IR) sensor [17], [36]. The prior pE (ei) is assumed to be
uniformly distributed over X , and ei is assumed known for all
i = 1, . . . ,M . When the sensor FOV S intersects a target Ti ,
the noisy measurement value zi is obtained, and xi is inferred
from zi using Bayes’ rule in (3) and (4). Let NIR denote the
number of targets that are correctly classified by the IR sensor,
prior to deploying the robotic GPR sensor, and let NGPR denote
the number of targets that are correctly classified after the GPR
measurements have been obtained. Then

Nc = NGPR − NIR (64)

represents the improvement in classification accuracy, or actual
classification performance, of the robotic sensor.

The IP method presented in Section III is designed to account
for the presence of other robotic sensors, which are considered as
moving obstacles. A simple sensor-target assignment algorithm
is used to assign targets to the sensors based on the distance
between the ith target and the jth sensor

ρij = min
q ′∈CT i

‖q′ − qj‖ (65)

where qj is the configuration of the jth robotic sensor. Then, the
set of targets assigned to the jth sensor is {Ti | ρij < ρik ,∀k �=
j}. The simulation terminates when all targets in W are mea-
sured by at least one robotic sensor, or when t = tf , whichever
occurs first. At tf , the distance traveled by a sensor is

D =
∫ tf

t0

[q̇(t)T q̇(t)]1/2dt. (66)

Then, the overall robotic sensor efficiency, defined as the correct
classification rate per unit distance, can be computed as follows

η =
Nc

D
× 100. (67)
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Fig. 9. Simulation results for one robotic sensor in a workspace with six
targets, two obstacles, and one narrow passage.

The performance metrics Nc , D, and η are used to evaluate the
effectiveness of the IP method, and to compare IP to that of
other path planning and control strategies.

VI. SIMULATION RESULTS

The properties and effectiveness of the IP method are tested
using a variety of workspaces obtained using the simulation
in Section V. The simulation results show that the method is
capable of controlling the robotic sensor in narrow passages,
without oscillations, in order to enable measurements from tar-
gets located near obstacles. In addition, the IP method is shown
effective at accounting for the location and geometry of the tar-
gets, and at avoiding collisions with other moving sensors based
only on real-time position measurements. The closed-loop sta-
bility and properties of the IP method are verified in simulations,
in the presence of multiple targets and obstacles, as well as con-
trol bounds. Then, the IP method is shown to outperform both
the RRT method proposed [7] and a classical PF method that
assigns a goal configuration to each target.

A. Information Potential Sensor Path Planning and Control in
Narrow Passages

The properties and effectiveness of the IP method are first
illustrated using a workspace containing a narrow passage (see
Fig. 9) and six targets, two of which (T3 and T4) are inside
the narrow passage, and one of which (T5) is near an obstacle.
Targets with medium information value (0.1 < Vi ≤ 0.15) are
shown in a magenta color and targets with low information value
(0 < Vi ≤ 0.1) are shown in blue. This workspace is designed
to test well-known issues of PF methods, such as 1) oscillations;
2) inability to enter narrow passages; and 3) goals nonreachable
with obstacles nearby. As shown in Fig. 9, the IP method does
not exhibit any of these limitations and allows the robot to
enter narrow passages and obtain measurements from valuable
targets despite their vicinity to obstacles. Other approaches for
preventing these issues include adding a dampening force [53] or
using a hybrid Voronoi diagram-visibility graph PF method [54].

The results in Fig. 9 also show that, in addition to maxi-
mizing target information value, the IP method considers the
distance traveled to the targets. For example, T1 and T2 , with

Fig. 10. Total IP for the example in Fig. 9.

Fig. 11. Contour and gradient vector field for the IP in Fig. 10.

V1 = V2 = 0.1314, have the same information value and geom-
etry, but are at a different distance from the robot when it exits
the narrow passage. Thus, in this case, the robotic sensor obtains
measurements from T1 because it is closer than T2 . The results
in Fig. 9 also show that the IP method allows the robotic sensor
to obtain measurements from targets near obstacles without col-
lisions, thanks to the IP plotted in Fig. 10, and further illustrated
through a contour plot and gradient vector field in Fig. 11.

B. Information Potential Multisensor Path Planning and
Control in Narrow Passages

A workspace containing a narrow passage and two targets
T1 and T2 (see Fig. 12) is used to illustrate that collisions with
other robotic sensors can be avoided under the same challenging
conditions used in Section VI-A. In this example, the two targets
are assigned manually to two robotic sensors, forcing them to
approach each other inside the narrow passage. The results show
that IP allows the two robots to measure their assigned target,
while avoiding a mutual collision, even when the two sensors are
in the same narrow passage. Therefore, even near fixed obstacles
(B1 and B2), the repulsive force defined in (16) is effective at
avoiding collisions with moving obstacles online.

C. Stability of Information Potential Switched Control Law

In Section IV-B, the IP switched control law (25)–(31)
was proven to be closed-loop stable, under proper simplifying
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Fig. 12. Simulation results for two robotic sensors in a workspace with two
targets, two obstacles, and one narrow passage.

Fig. 13. Simulation results for a robotic sensor that converges to its goal
configuration [ξT

i βi ]T , for a target Ti located near three obstacles, B1 , B2 , and
B3 .

assumptions. Extensive numerical simulations showed that the
IP switched control law remains stable even when these assump-
tions are violated, and the robotic sensor is subject to UBs on
its linear acceleration a, linear velocity v, and angular velocity
w. The effectiveness of IP when multiple targets are nearby, and
assumption (II) is violated, is demonstrated in Sections VI-A
and VI-B. The example in Fig. 13 is used to illustrate closed-
loop stability for a target Ti located near multiple obstacles B1 ,
B2 , and B3 , violating assumption (III), and for | a | < 5 m/s2 ,
| v | < 2 m/s, and |w | < π/10 rad/s. The path projected on
the xy-plane in Fig. 13 shows that the robot converges from
an initial configuration q0 , to the goal configuration [ξT

i βi ]T

specified implicitly by the switched control law. As a result, the
sensor is able to obtain measurements from the ith target when
S ∩ Ti �= ∅.

The variables used to design the switched control law (defined
in Section III-B) are shown in Fig. 14, where the goal coordinates
ξi are denoted by a star, and an example of sensor position x is
denoted by a cross. The arrows illustrate the robot orientation θ
and the goal orientation βi . The time histories of the state and
control inputs are plotted in Fig. 15, where tε denotes the time

Fig. 14. Example of sensor configuration [xT θ] and goal configuration [ξT
i βi ]

for the path in Fig. 13.

Fig. 15. Time histories of (a) sensor orientation, (b) linear velocity, (c) distance
from C-target, and (d) control inputs, for the example in Fig. 13.

at which | ξi − x | = ε. These results confirm that, under the
IP switched control law, ρi , defined in (24), goes to zero at tε ,
and subsequently, for t > tε , θ converges to βi , and v goes to
zero with a small overshoot so that the sensor remains inside the
cylinder illustrated in Fig. 4.

D. Information Roadmap Method for Escaping Local Minima

The properties of the information roadmap method, derived in
Sections IV-C and IV-D, are illustrated through the example in
Fig. 16, containing one concave obstacle and two targets:T1 with
information value V1 = 0.2, and T2 with information V2 = 0.1.
The two targets are otherwise equivalent, because they are sym-
metrically positioned above and below the obstacle, and have
the same geometry. The shape of the obstacle is chosen to create
a local minimum in the potential function (see Fig. 17), causing
the robot to be trapped at q̃i . Because U is characterized by a
wider well around T1 , the PDF fq , defined in (36), has higher
values in CT 1 than in CT 2 , and thus configurations in CT 1
have higher probability of being sampled than configurations in
CT 2 . From the set M of sampled configurations, a roadmap G
containing a collision-free path from q̃i to CT 1 is constructed
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Fig. 16. Simulation results for a robotic sensor escaping a local minimum and
converging to the target T1 with highest information value.

Fig. 17. IP contour for the example in Fig. 16 and information roadmap
generated to escape local minimum.

(see Fig. 17), such that the robot can successfully escape q̃i and
obtain measurements from the most valuable target T1 .

E. Performance Comparison

In this section, IP is compared to the RRT method pro-
posed [7], as well as to a classical PF method that does not
take into account target geometry and information value. Av-
erage values of classification performance (64), distance trav-
eled (66), and sensor efficiency (67) are obtained by comput-
ing several paths and control laws for three sensors that are
simultaneously deployed in five workspaces of the same size
as the example in Fig. 18. The workspaces are obtained by
first considering a medium obstacle density, coupled with a low
(M = 15), medium (M = 27), or high (M = 40) target density.
Then, a medium target density is considered, coupled with a low
(N = 10), medium (N = 17), or high (N = 24) obstacle den-
sity. For every simulation, the positions and geometries of the
targets and obstacles are generated randomly, as are the initial
configurations of the robotic sensors, and the information value
of the targets.

The average sensor efficiency obtained by IP is summarized
in Table I. It can be seen that for the same obstacle density, the
sensor performance increases when the target density increases,
because more targets can be classified per unit distance. In addi-
tion, as can be expected, for the same target density, the sensor

TABLE I
AVERAGE EFFICIENCY OF THE IP METHOD

TABLE II
AVERAGE PERFORMANCE COMPARISON FOR M = 27

performance increases when the obstacle density decreases, be-
cause the sensor can travel a shorter distance to reach the same
targets. One interesting outcome is that the efficiency does not
increase significantly when the target density increases from low
to medium (for a medium obstacle density), because a higher
target density also requires the sensor to travel farther and, pos-
sibly, inside narrow passages.

In Table II, the performance of IP is compared to the perfor-
mance of classic PF and RRT. It can be seen that sensors con-
trolled by IP outperform sensors controlled by PF and RRT not
only in average sensor efficiency (η̄), but also in the number of
targets correctly classified (Nc ), under all conditions examined.
On the other hand, as can be expected, the distance traveled (D)
by IP-controlled sensors may be higher than that of sensors con-
trolled by PF, because with IP the sensors travel to find targets of
high information value. Typically, IP leads to lower values of D
than RRT, because IP allows the robotic sensors to avoid unnec-
essary routes, and produces smoother paths. However, when the
obstacle density is high, D may be higher for IP because with IP
the sensors move to obtain measurements from approximately
75% of their assigned targets, while RRT typically measures
only 50% of the targets. As can be expected, classic PF displays
the worse classification performance because it does not take
into account the target information value in planning the robotic
sensor path.

An example of sensor paths obtained by IP in a workspace
with medium target and obstacle densities is shown in Fig. 18.
It can be seen from Fig. 19 that when the RRT method is imple-
mented in the same workspace, the paths are not as smooth as
with IP, and a smaller percentage of valuable targets is measured
by the sensors. In the simulations, it was found that the classic
PF method typically measures a smaller percentage of assigned
targets than RRT, because the sensors are easily trapped in local
minima, as shown in Fig. 21. As a result, PF exhibits the short-
est distance traveled and the smallest number of targets properly



932 IEEE TRANSACTIONS ON ROBOTICS, VOL. 30, NO. 4, AUGUST 2014

Fig. 18. Example of sensor paths obtained by IP for three sensors deployed in a workspace with N = 17 obstacles and M = 27 targets.

Fig. 19. Example of sensor paths obtained by RRT in the same workspace used in Fig. 18.

Fig. 20. Detail of sensor path obtained by the IP method.

classified for any conditions (see Table II). Furthermore, when
the obstacle density is high, PF exhibits the shortest distance
traveled (see Table II), because the higher the obstacle density,
the higher the probability of a sensor becoming trapped in a lo-
cal minimum. Finally, from Fig. 20, it can be seen that through
the new attractive potential function in (11), IP allows the sensor
to favor targets with higher information value. For example, in
Fig. 20, the IP-controlled robotic sensor measures T2 instead of
T1 , and T4 instead of T3 , despite each pair being at a similar
distance from the sensor path. On the other hand, as shown in

Fig. 21. Detail of sensor path obtained by the classic PF method.

Fig. 21, the PF-controlled sensor measures T2 instead of T1 ,
despite T1 being the target of the highest information value.

F. Information Potential Performance Analysis

This section analyzes the influence of the number of robots
and prior measurements on the performance of the IP method.
Eighty workspaces with the same dimensions as the one shown
in Fig. 18, medium target and obstacle density, and up to L = 8
robots, are simulated. The average performance metrics of each



LU et al.: INFORMATION POTENTIAL APPROACH TO INTEGRATED SENSOR PATH PLANNING AND CONTROL 933

Fig. 22. Average distance traveled, classification performance, and efficiency
as a function of the number of sensors in W .

TABLE III
TARGET INFORMATION INFLUENCE ON PERFORMANCE

sensor are plotted as a function of L in Fig. 22. It can be seen
that all metrics rapidly improve as L increases above 1, and then
come to a plateau around L = 7, due to the size of the workspace.
Thus, the IP method allows multiple robotic sensors to operate
efficiently, while avoiding mutual collisions. In order to illustrate
the influence of prior measurements on IP performance, the
IP method is also implemented using targets with the same
information value Vi for all i ∈ IT (IP1), and then with no
knowledge of the targets (IP2). The results in Table III show that,
by accounting for prior target information, the sensor efficiency
can be improved by as much as 422%, compared with when no
target information is utilized.

VII. CONCLUSION

This paper presents an IP method for integrated sensor path
planning and control in obstacle-populated environments. The
method is based on a potential function defined from conditional
mutual information that is used to design a switched feedback
control law, as well as to generate a local PRM for escaping
local minima, while obtaining valuable sensor measurements.
This paper proves several properties of the IP method, includ-
ing closed-loop stability. Numerical simulations verify that the
method takes advantage of online obstacle avoidance, prior tar-
get information, and coordination among robotic sensors, and
that it outperforms existing strategies, such as RRTs and a mod-
ified PF method.

APPENDIX

M =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

p(g1 , g1) . . . p(g1 , gm ) p(g1 , h1) . . . p(g1 , hn )
...

. . .
...

...
. . .

...
p(gm , g1) . . . p(gm , gm ) p(gm , h1) . . . p(gm , hn )
p(h1 , g1) . . . p(h1 , gm ) p(h1 , h1) . . . p(h1 , hn )

...
. . .

...
...

. . .
...

p(hn , g1) . . . p(hn , gm ) p(hn , h1) . . . p(hn , hn )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(68)
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