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Recent developments in neural stimulation and recording technologies are providing scientists with the
ability of recording and controlling the activity of individual neurons in vitro or in vivo, with very
high spatial and temporal resolution. Tools such as optogenetics, for example, are having a significant
impact in the neuroscience field by delivering optical firing control with the precision and spatiotem-
poral resolution required for investigating information processing and plasticity in biological brains.
While a number of training algorithms have been developed to date for spiking neural network (SNN)
models of biological neuronal circuits, exiting methods rely on learning rules that adjust the synaptic
strengths (or weights) directly, in order to obtain the desired network-level (or functional-level) perfor-
mance. As such, they are not applicable to modifying plasticity in biological neuronal circuits, in which
synaptic strengths only change as a result of pre- and post-synaptic neuron firings or biological mech-
anisms beyond our control. This paper presents a weight-free training algorithm that relies solely on
adjusting the spatiotemporal delivery of neuron firings in order to optimize the network performance.
The proposed weight-free algorithm does not require any knowledge of the SNN model or its plasticity
mechanisms. As a result, this training approach is potentially realizable in vitro or in vivo via neural
stimulation and recording technologies, such as optogenetics and multielectrode arrays, and could be
utilized to control plasticity at multiple scales of biological neuronal circuits. The approach is demon-
strated by training SNNs with hundreds of units to control a virtual insect navigating in an unknown
environment.

Keywords: Spiking neural networks; optogenetics; neural control; spike timing-dependent plasticity; neu-
romorphic; reinforcement learning.
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1. Introduction

Recent developments in neural stimulation and
recording technologies are revolutionizing the field
of neuroscience, providing scientists with the ability
of recording and controlling the activity of individual
neurons in the brain of living animals, with very high
spatial and temporal resolution.1 Thanks to meth-
ods such as optogenetics, which deliver controlled
cell firings to live neurons in vitro or in vivo, it is
now becoming possible to determine which regions
of the brain are primarily responsible for encod-
ing particular stimuli and behaviors. Despite this
remarkable progress, the relationship between bio-
physical models of synaptic plasticity and circuit-
level learning, also known as functional plasticity,
remains unknown. This important gap has been
recently identified as one of the outstanding chal-
lenges in reverse engineering of the brain.2

Many spiking neural network (SNN) learning
algorithms have been proposed to model and repli-
cate both the synaptic plasticity and circuit-level
learning capabilities observed in biological neuronal
networks.3–9 Experimental evidence has shown that
learning in the brain is accompanied by changes in
synaptic efficacy referred to as synaptic plasticity.10

Developing learning rules for altering synaptic effi-
cacy, commonly referred to as synaptic strength or
weight, has since been the focus of both artificial neu-
ral networks (ANN) and SNN learning algorithms
to date. Along the same lines, SNN learning algo-
rithms inspired by biological mechanisms, such as
spike timing dependent plasticity (STDP),11–13 have
recently been proposed to modify synaptic weights
according to a learning rule model based on STDP
or Hebbian plasticity, so as to optimize the network
performance.14–19 Other SNN learning algorithms
include Spike-Prop20,21 and ReSuMe,22 which use
classical backpropagation and Widrow–Hoff learning
rules in combination with STDP to adapt the synap-
tic weights so as to produce a desired SNN response.
When trained by these approaches, computational
SNN have been shown to be very effective at solving
decision and control problems in a number of applica-
tions, including delay learning, memory, and pattern
classification.23–26

Despite their effectiveness, none of the com-
putational SNN learning algorithms to date have
been implemented or validated experimentally on

biological neurons in vitro or in vivo. Such
experimentation could help develop plausible models
linking synaptic-level and functional-level plasticity
in the brain, as well as find many potential neuro-
science applications by closing the loop around the
recording and the control of neuron firings. Existing
SNN learning algorithms, however, are difficult to
implement and test experimentally because they uti-
lize learning rules for manipulating synaptic weights,
while the strength of biological synapses is not eas-
ily modified in live neuronal networks. Experimental
methods for regulating synaptic strengths in biolog-
ical neurons, for example via alteration of intracel-
lular proteins or neurotransmitters such as AMPA
receptors,27 do not lend themselves to the imple-
mentation of parallel and frequent weight changes,
followed by the observation of network performance,
as typically dictated by SNN learning algorithms.

To overcome this fundamental hurdle, the
authors have proposed a new weight-free NN learn-
ing paradigm in which the learning rule regulates the
spatiotemporal pattern of cell firings (or spike trains)
to achieve a desired network-level response by indi-
rectly modulating synaptic plasticity.28,29 Because
this learning paradigm does not rely on manipu-
lating synaptic strengths, in principle its learning
rule can be implemented experimentally by deliver-
ing the neural stimulation patterns determined by
the algorithm to biological neurons using optogenet-
ics or intracellular stimulation. As a first step, this
new learning paradigm was demonstrated by show-
ing that the synaptic strengths of a few neurons
could be accurately controlled by optimizing a radial
basis function (RBF) spike model using an analyti-
cal steepest-gradient descent method.29 As a second
step, the method was extended to networks with
up to 10 neurons by introducing an unconstrained
numerical minimization algorithm for determining
the centers of the RBF model, such that the tim-
ings of the cell firings could be optimized.28 The
latter approach was also shown effective at train-
ing memristor-based neuromorphic computer chips
that aim to replicate the functionalities of bio-
logical circuitry.30,31 Because they are biologically
inspired, these neuromorphic chips are characterized
by STDP-like mechanisms that only adjust CMOS
synaptic strengths by virtue of controllable applied
voltages analogous to neuron firings. Therefore, they
too are amenable to a learning paradigm that
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seeks to regulate the spatiotemporal pattern of cell
firings (or spike trains) in lieu of the synaptic
strengths.

Both biological and neuromorphic circuits typi-
cally involve much larger numbers of units than have
been previously considered by the authors. Thus, this
paper presents a new perturbative learning approach
for scaling the weight-free learning paradigm up to
networks with hundreds of neurons. The proposed
approach is scalable because it does not rely on
computing the spike model gradients analytically
or numerically but rather on inferring the sign of
the gradient by perturbation methods, effectively
amounting to a weight-free resilient backpropaga-
tion32 algorithm for SNNs.

Even in the simplest organisms, brain circuits are
characterized by hundreds of neurons responsible for
integrating diverse stimuli and for controlling mul-
tiple functionalities.33 Because of their size, these
neuronal structures are believed to provide robust-
ness, redundancy, and reconfigurability, characteris-
tics that are also desirable in neuromorphic circuits
and engineering applications of computational SNNs.
Recent studies on living insects have established that
multiple forms of sensory inputs, such as visual, tac-
tile, and olfactory information are integrated within
the central complex (CX) circuit, to control and
adapt movements to surrounding environments.33,34

Inspired by these experimental studies in biol-
ogy, this paper seeks to demonstrate the weight-
free learning algorithm on a virtual simulation of
a walking insect in a similar arena, with multi-
ple sensory stimuli, and sensorimotor control pro-
vided by an SNN model. The simulation results show
that when the SNN model is trained by the pro-
posed weight-free learning algorithm, the insect is
capable to navigate new and complex terrains effi-
ciently and robustly, based only on the inputs from
simulated olfactory and tacticle receptors. Besides
validating the effectiveness of the learning algo-
rithm, these results demonstrate that the proposed
weight-free approach enables a more direct and effec-
tive transfer of biological findings to synthetic sys-
tems. Also, because the size of the SNN trained
in this paper is comparable to that of the insect
CX, the weight-free algorithm could potentially be
realized in vivo in living insects, to investigate
and control plasticity from the synaptic level to

the functional level, via electrical or optogenetics
stimulation.

2. SNN Model and Architecture

SNNs are computational models of neuronal net-
works motivated by biological studies demonstrat-
ing that spike patterns are an essential compo-
nent of information processing in the brain. It has
been hypothesized that SNNs have evolved in nature
because they are flexible or reconfigurable, tolerant
to noise or robust, require low power consump-
tion, and can encode complex temporal and spa-
tial inputs efficiently as correlated spike sequences
known as spike trains.35,36 Because of these potential
advantages, SNNs are implemented as neuromorphic
computational platforms in software or hardware for
applications such as classification,37 computational
neuroscience,38–40 and neurorobotics.41

The two crucial considerations involved in choos-
ing the SNN model are its range of neuro-
computational behaviors and its computational effi-
ciency.42 As can be expected, the implementation
efficiency typically increases with the number of fea-
tures and behaviors that can be accurately repro-
duced,42 such that each model offers a tradeoff
between these competing objectives. The compu-
tational neuron model that is most biophysically
accurate is the well-known Hodgkin–Huxley (HH)
model.43 Due to its extremely low computational
efficiency, however, using the HH model to simulate
large networks of neurons can be computationally
prohibitive.42 The simplest model of spiking neuron
is the leaky integrate-and-fire (LIF). While it can
only reproduce the dynamics of a Class-1 excitable
neurons that fire tonic spikes, LIF has the advantages
that it displays the highest computational efficiency
and is amenable to mathematical analysis. More-
over, the LIF model was found to accurately repro-
duce the firing dynamics of CMOS neurons.44 There-
fore, it is adopted in this paper to simulate all SNN
architectures, and is reviewed in the appendix for
completeness.

Motivated by both computational NNs and bio-
logical neuronal networks for sensorimotor control,
such as the insect CX,33 the following three regions
or circuits are identified in the SNN model: input
neurons (I), output neurons (O), and computational

1750015-3

In
t. 

J.
 N

eu
r.

 S
ys

t. 
20

18
.2

8.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 I

O
W

A
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 o
n 

06
/0

5/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.



January 12, 2018 15:56 1750015

X. Zhang et al.

Output Neurons
(Excitatory)

Computa onal Neurons
(Excitatory and Inhibitory)

Sensory Input Neurons
(Excitatory)

Sensory Input Neurons
(Excitatory)

Fig. 1. Computational SNN architecture where synap-
tic connections are illustrated for three neurons randomly
selected in each layer.

or hidden neurons (H). Input neurons receive exter-
nal information, such as sensory inputs, by virtue of
the synaptic currents of structures, such as neuropils,
that provide, for example, visual, olfactory, or tactile
inputs. In this paper, sensory inputs are assumed
to be already rate coded at the input-neuron level
in a manner proportional to the stimulus (Sec. 4).
The output neurons provide the network response
which, in neuromorphic systems, may be decoded
and used to command the actuators and, in biolog-
ical systems, may consist of synaptic current inputs
to motoneurons, such as for example central pat-
tern generators (CPGs), that actuate muscles and
limbs. Neurons that are only connected to input or
output neurons, or to each other, are referred to as
hidden neurons, as illustrated in Fig. 1. Assuming
the availability of optogenetics or other firing control
tool, this paper simulates a subset of input neurons
that are light sensitive and can be made to fire on
command.45

The goal of the proposed weight-free algorithm is
to determine the firing sequences to be delivered to
the input neurons (I), optically or via neural stim-
ulation, such that the dynamic network response to
all possible inputs is optimized. By stimulating the
training neurons and/or receiving sensory inputs,
the stimulus current Istim in Eq. (A.1) is modi-
fied, thereby altering the membrane potential. When
two or more neurons are connected by synapses, the
membrane potential of the postsynaptic neuron, gov-
erned by (A.1), also depends on the synaptic current
from the presynaptic neurons given by,

Isyn(t) = gsyn(t)∗[Vpost(t)− Esyn], (1)

where Isyn is the synaptic current from the presy-
naptic neurons, gsyn(t) is the synaptic conductance,
Vpost is the membrane potential of the postsynap-
tic neuron, and Esyn is the synaptic reversal poten-
tial. Therefore, stimulating neurons in I ultimately
causes other neurons in the SNN to fire at later times,
once their membrane potentials reach Vth via synap-
tic current inputs.

A biologically plausible model of synaptic con-
nections is constructed by sampling uniformly and
at random the distribution,46

pi,j = C exp

[
−
(

D(i, j)
λ

)2
]
, (2)

where for excitatory neurons C = 0.8, and for
inhibitory neurons C = 0.2. The function D(i, j)
represents the Euclidean distance between neurons
i and j in the neural circuit. The connection param-
eter λ is adjustable and, as λ approaches zero, so
does the number of connections. The value λ = 5 is
chosen for all SNN models in this paper. In partic-
ular, connections are formed according to the above
distributions within each SNN region, and pairwise
between adjacent regions, as schematized in Fig. 1.
As in many artificial and biological networks, the hid-
den neurons provide separation between input and
output neurons such that, although the network is
fully connected and recurrent, there are no synaptic
connections between input and output neurons. Once
synaptic connections are established probabilistically
from Eq. (2), each synaptic conductance is modeled
using the alpha function,47

gsyn(t) = ḡsynh(e
− t

τdelay − e
− t

τrise ), (3)

where the normalization factor is defined as,

h �
(
−e

− tpeak
τrise + e

− tpeak
τdecay

)−1

(4)

to ensure that the amplitude equals ḡsyn, and such
that the conductance peaks at time:

tpeak =
τdecay τrise

(τdecay − τrise)
ln
(

τdecay

τrise

)
. (5)

Importantly, the SNN learning algorithm has no
control over the synaptic strengths and, thus, all
synapses change over time only by virtue of the
STDP rule (reviewed in the appendix). As observed
in biological neurons,48,49 if the presynaptic neuron
fires before the postsynaptic neuron, the synapse
is strengthened, and if it fires after, the synapse is
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weakened. The pair-based STDP rule can be numer-
ically implemented in the LIF-SNN using two local
variables, xj and yi, representing low-pass filtered
versions of the presynaptic spike train and the post-
synaptic spike train, respectively.47 Let us consider
the synapse between neuron j and neuron i. Suppose
each spike from presynaptic neuron j contributes to
trace xj at the synapse,

dxj

dt
= −xj

τx
+
∑
tf
j

δ(t− tfj ), (6)

where tfj denotes the firing times of the presynap-
tic neuron, and δ is the Dirac function. Then, the
trace xj is increased by one at tfj and subsequently
decays with time constant τx. Similarly, each spike
from postsynaptic neuron i contributes to a trace yi

according to,

dyi

dt
= − yi

τy
+
∑
tf
i

δ(t− tfi ), (7)

where tfi denotes the firing times of the postsynaptic
neuron. When a presynaptic spike occurs, the weight
decreases proportionally to the value of the postsy-
naptic trace yi, while if a postsynaptic spike occurs,
a potentiation of the weight is induced.

Firing rate coding is used for conversions between
spike trains and continuous-time signals.47 Rate cod-
ing computes the mean firing frequency of a chosen
set of K neurons over a time window, [t − tr, t], as
follows,

f(tr) =
1
K

K∑
i

zi(tr), (8)

where zi(tr) denotes the number of spikes of neuron
i during [t− tr, t]. By this approach, the continuous-
time signal or function f(tr) can be encoded in the
firing sequences (or spike trains) of a population of K

neurons, where K can vary from one to many units.
Population decoding and encoding is adopted in this
paper, because it is believed to be more robust as
well as more biologically plausible than single-unit
decoding and encoding. Also, it is routinely utilized
in biological neural systems as a useful indicator of
neural activity in sensorimotor circuits and individ-
ual cells.50,51 Finally, the SNN model described in
this section is simulated using the open-source soft-
ware Neural Circuit SIMulator (CSIM),52 and the
parameters provided in the appendix.

3. Weight-free SNN Learning
Algorithm

In order to be applicable to biological and
neuromorphic circuits, the weight-free learning algo-
rithm presented in this section assumes that no
knowledge of the SNN neuron model, connectivity,
or synaptic strengths is available. It is assumed,
however, that the SNN input, output, hidden, and
training neurons, described in the previous section
can be stimulated or recorded from with high spa-
tiotemporal precision. In Sec. 5, noisy sensory inputs
and currents are introduced to investigate the SNN
robustness to stimulation errors by which the stimu-
lus delivered induces multiple nearby neurons to fire.

In the proposed algorithm, SNN learning and
synaptic plasticity are achieved through the appli-
cation of training stimuli (e.g. optical or electrical
pulses) delivered to pairs of training neurons at pre-
cise times determined via perturbative reinforcement
learning. By controlling the firing of selected training
neurons, the algorithm indirectly modifies the synap-
tic strengths according to internal synaptic plasticity
mechanisms, such as STDP. However, unlike exist-
ing methods,11–13 prior knowledge or models of these
mechanisms are never utilized by the weight-free
learning algorithm presented in this paper. The fir-
ing times of the training stimuli are determined solely
from the error between the observed SNN response
and the desired SNN response, by minimizing it in
batch mode.

Whether optical or electrical, a training stimulus
to an input neuron i ∈ I can be modeled as a square
pulse function,

si(t) = w

M∑
l=1

[
H

(
t− ci,l +

β

2

)

− H

(
t− ci,l − β

2

)]
, (9)

where ci,l represents the temporal center of the lth
square pulse, M is the total number of square pulses,
w is the pulse amplitude, β is the pulse duration,
and H(·) is the Heaviside function. Through simula-
tion or experimentation, the parameters of the pulse
function are chosen such that each pulse will reli-
ably induce neuron i to spike once and only once. In
this case, they are chosen as w = 7 × 10−7 (Amps)
and β = 0.004 (sec) based on the SNN simula-
tion described in Sec. 2. The pulses delivered to a
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pair of neighboring neurons (i, j), where i, j ∈ I,
are offset by a parameter bk that varies with the
training epoch, indexed by k, such that the choice
cj,l = ci,l +bk minimizes the network error over time.

Let m denote the number of training cases avail-
able for which the desired SNN response to a given
sensory stimulus is known. If pı (ı = 1, . . . , m)
denotes a vector of firing rates corresponding to a
known sensory stimulus, where each firing rate may
be defined with respect to a population (or subset)
of input neurons (I), then the desired SNN response
can be denoted by a corresponding vector u∗

ı of fir-
ing rates that represent the desired response for one
or more subsets of output neurons (O). Then, for a
training database D = {(p1,u∗

1), . . . , (pm,u∗
m)}, the

SNN error at the kth epoch is defined as,

ek =
1
m

√√√√ m∑
ı

[u∗
ı − uı(k)]T [u∗

i − ui(k)], (10)

where uı(k) is the decoded SNN output at epoch k,
obtained by applying Eq. (8) to the firings of the set
of output neurons (O), in response to input pı.

Because of the scale and the complexity of the
SNN, its response to a sensory input pı needs to be
determined experimentally. Moreover, to circumvent
computing the error gradient analytically or numer-
ically, the sign of the error change brought about
by the stimulus in Eq. (9) is also determined exper-
imentally, via the following perturbation technique.
Every iteration of the training algorithm, conducted
over time (t), is comprised of a testing phase fol-
lowed by a training phase. The testing phase con-
sists of determining the sign of the error change over
D, as brought about by training stimuli in the form
of Eq. (9). The training phase consists of delivering
additional training stimuli also in the form of Eq. (9),
but such that the synaptic strengths are changed in
the direction of minimum SNN error.

During the testing phase, the SNN error in
Eq. (10) is evaluated before and after synap-
tic strength perturbations. These perturbations are
accomplished by delivering the square pulses in
Eq. (9) with bk = b0 for any k, and b0 = ±0.002,
so as to induce small perturbations in the synaptic
strengths. At each epoch (k), the pair of input neu-
rons chosen to receive a pair of training stimuli, say
(i, j), i, j ∈ I, is chosen from an ordered list, N ,
containing all possible neuron pairs in I, such that

from the binomial coefficient, |N | = N !
2!(N−2)! , where

| · | denotes the cardinality of a set, N = |N |, and !
denotes the factorial of a non-negative integer. The
training stimuli are delivered in the absence of sen-
sory stimuli. Separately, before and after delivering
the training stimuli, the SNN error in Eq. (10) is
evaluated by delivering each (sensory stimulus) fir-
ing rate pı ∈ D to the corresponding subsets of
input neurons (I). This is accomplished by apply-
ing pulses with the desired frequency for a duration
of te = 0.04, chosen such that the signal can propa-
gate through the SNN and produce a response in the
output neurons (O) that can be reliably decoded as
output uı. Let ek,1 and ek,2 denote the SNN errors,
computed from Eq. (10), before and after the train-
ing stimuli are delivered, respectively. Then, the sign
of the error change, ∆ek � ek,2 − ek,1, reflects the
SNN error sensitivity to the weight perturbations
induced by the training stimuli in Eq. (9).

Based on the SNN-error sign changes during con-
secutive epochs, it is then possible to determine
the parameters of the square-pulse training stimuli,
defined in Eq. (9), such that the SNN error is min-
imized over time. This is accomplished during the
training phase, when the training stimuli in Eq. (9)
are designed using the offset parameter according to
the following learning rule,

bk+1 = − sgn(∆ek)b0 (11)

such that cj,l = ci,l + bk. In order to compensate for
former episodes of synaptic plasticity,53 the number
of square pulses adopted in Eq. (9) is chosen accord-
ing to the following rule,

Mk+1 =




2Mk, if b0 > 0 and ∆ek > 0,

1
2
Mk, if b0 < 0 and ∆ek > 0,

Mk, if ∆ek < 0.

(12)

At each epoch (k), a new pair of neurons is selected to
receive the training signals from the ordered list N ,
and the process is repeated until the error decreases
below a desired value or satisfies a desired stopping
criterion.

The implementation of the two phases, includ-
ing the above learning rules, is summarized in
the weight-free SNN learning algorithm in Fig. 2.
Figures 3 and 4 show that, without manipulating
the synaptic weights, the training stimuli delivered
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1 Initialize SNN

2 Set ek,2 = einit > emin for k = 0

3 Set k = 1

4 while ek−1,2 > emin do

5 Pick neurons i, j randomly

6 Randomly initialize b0

7 s1(t) = si(t) and s2(t) = sj(t + b0)

8 � = 1

9 while � ≤ 2 do

10

11

12

13

Stimulate SNN with p1, . . . ,pm

Record and decode SNN outputs u1, . . . ,um

Calculate ek,� according to (10)

if � = 2 then

14 if ek,2 > ek,1 then

15 bk = −sgn(ek−1,1 − ek−1,2)b0

16 s1(t) = si(t)

17 s2(t) = sj(t + bk)

18 end

19 end

20 Stimulate neurons i and j using stimuli s1(t) and s2(t), respectively

21 �=� + 1

22 end

23 k = k + 1

24 end

Fig. 2. Pseudocode of weight-free SNN learning
algorithm.

(a) (b)

Fig. 3. Training stimuli delivered by the weight-free
algorithm in Fig. 2(a), and induced action potentials of
two pairs of pre- and post-synaptic neurons (1, 19) and
(5, 22) (b), causing the weight changes in Fig. 4.

by this algorithm (Fig. 3(a)) induce pre- and post-
synaptic firings (Fig. 3(b)) that reliably cause synap-
tic strengths to change in the desired direction over
time (Fig. 4) by virtue of the underlying plasticity

(a)

(b)

Fig. 4. Synaptic strength changes brought about by the
weight-free algorithm’s training stimuli in Fig. 3, where
the pair of stimuli in Fig. 3(a) potentiates the synapse as
shown in (a), and the pair of stimuli in Fig. 3(b) depresses
the synapse as shown in (b).

mechanism. Because the weight-free algorithm does
not control the synaptic strengths or the plasticity
mechanism, it is potentially applicable to biological
neuronal networks.

4. Application: Virtual Insect Control
and Navigation

The brains of even the simplest of organisms have
shown the remarkable ability to adapt and learn to
solve complex problems necessary for survival. In
simple organisms, such as the cockroach, physiolog-
ical recordings have established that multiple forms
of sensory inputs, including visual cues and tactile
information from mechanosensors on the antenna,
are integrated within the CX to control and adapt
movements to surrounding environments.34 These
studies utilize methods for stimulating or recording
from populations of brain neurons in freely behav-
ing cockroaches using custom fabricated wire bun-
dles inserted into the animal brain prior to releasing
it into a controlled arena (Fig. 5(a)).

With the recording wires in place, the animal
is presented with controlled stimuli, including var-
ious obstacles, and its motion is recorded with a
video camera placed above the arena. These data
are merged so that timing of the neural activity
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relative to motion and stimuli is easily determined
(Fig. 5(b)). Extracellular recording and lesion tech-
niques link the CX to higher control of movement,
and demonstrate that changes in the activity (e.g.
firing rates) of individual units immediately precede
changes in the firing rates of motoneurons responsi-
ble for locomotory behaviors such as walking speed,
turning, and climbing.33,54 The same wires can be
used to stimulate the brain region to evoke altered
behavior and plasticity.55

Even in simple organisms, the relationship
between synaptic-level plasticity and higher-level
learning and behavior remains unknown. Motivated
by these experimental studies and the possibility of

(a)

(b)

Fig. 5. (Color online) Track of live insect in the arena
color coded based on the activity level of a CX unit
(a). Color-coded neural (spike) activity as a function
of translational and rotational velocity over entire track
(b), where warmer colors indicate higher firing frequency
(taken from Ref. 55).

Goal

Fig. 6. Virtual insect navigating toward the goal in a
complex terrain with hills of varying and unknown eleva-
tion (simulated in VRML56,57).

developing plausible models of sensorimotor mecha-
nisms and plasticity, the proposed weight-free algo-
rithm is used to train an idealized SNN model of
insect CX (Fig. 1) to control the motion and naviga-
tion of a virtual animal in an unknown environment.
After training, the virtual insect is placed in a region
of complex topography, simulated using Matlab Vir-
tual Reality Modeling Language (VRML),56,57 as
shown in Fig. 6. Using only the sensory stimuli from
virtual antennas, the simulated insect must navigate
the environment autonomously to reach a desired
target by choosing a path of minimum distance and
minimum elevation, so as to minimize its energy
consumption.

4.1. Insect sensorimotor model

A simple locomotion model is adopted by which the
six-legged insect moves its three right legs all at the
same speed vR, and its left legs all at the same speed
vL. By this simplification, the insect can be mod-
eled as a robot with two motors, each driving the
speed of the right or left legs (like wheels). Then, the
motion of the virtual insect in inertial frame FW can
be modeled by the modified unicycle robot,



ẋ = v cos θ,

ẏ = v sin θ,

v = (vL + vR)/2,

θ̇ = (vR − vL)/L,

(13)

where x and y are the coordinates of the insect cen-
ter of mass in FW , v is the insect speed, θ is insect
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Fig. 7. Virtual insect kinematic model in inertial frame
FW .

heading angle, and L is the distance between the two
motors, as illustrated in Fig. 7.

The right and left leg speeds, vR and vL, are
determined by the firing times of the corresponding
motoneurons, represented by tR and tL, respectively.
The right and left motoneurons belong to the set of
output neurons (O) in the SNN model illustrated in
Fig. 1. Then, using the Dirac delta function, δ(·), the
conversion between the motoneurons firings and the
insect leg speed can be modeled as follows,

v̇R,L = − vR,L

τmotor
+ η δ(t− tR,L), (14)

where τmotor is a time constant that results in a grad-
ual decay of the motor speed following a spike by the
corresponding motoneuron. As a result, the insect
stops moving only after the motoneurons have not
fired for a long time.

Sensory stimuli are simulated to provide the
insect with information about the environment, par-
ticularly as it relates to obstacles and its target. As
schematized in Fig. 8, the virtual insect has four
exteroceptive sensors comprised of two “olfactory”
sensors, to determine its distance from the target,

Target

dL

dR

Terrain

rL

(a) (b)

Fig. 8. Virtual insect olfactory (a) and tactile (b) sen-
sory input models.

and two terrain sensors, to determine the elevation
of the terrain nearby. These sensory inputs are rate-
encoded into current stimuli that are delivered to cor-
responding populations of SNN input neurons (i.e.
disjoint subsets of I).

The sensor measurements are assumed to occur
at the end points of the antennae, and the magni-
tudes of the current stimuli are governed by sensor
models, as follows. For a fixed point target in FW ,
let d(·) denote the Euclidean distance between the
target and the position of the right or left olfactory
sensors, denoted by coordinates (ξR, µR) or (ξL, µL),
respectively. Then, the right and left olfactory inputs
are modeled by,

gR,L(ξR,L, µR,L) = α{d(ξR,L, µR,L)

+ λ[d(ξR,L, µR,L)− d(ξR,L, µR,L)]} (15)

respectively, where α = 10−9 is a scaling factor,
and λ = 5 is a constant parameter chosen to cause
sensory stimuli to reliably produce realistic spike
responses within a desired range of dL and dR.
Because the position of the olfactory sensors depends
on the position of the insect, the sensor stimuli
are also implicit functions of the insect coordinates
(x, y).

The terrain “tactile” sensory stimuli are simu-
lated by considering left and right antennae that
sense the elevation of the terrain at their given
location. Let (χR, ζR) and (χL, ζL) denote the
coordinates of the right and left tactile sensors,
respectively. If H(χ, ζ) denotes the elevation at (χ, ζ)
in FW , then the tactile inputs can be modeled as,

hR,L =
(

αγ

Hmax

)
H(χR,L, ζR,L)

[1 + H(χR,L, ζR,L)]
, (16)

where γ = 0.1 is a constant parameter chosen to
bound the tactile inputs, and Hmax is the maximum
elevation value, such that when H = Hmax, the ter-
rain is an insurmountable obstacle. Similarly to the
olfactory inputs in Eq. (15), the tactile inputs in
Eq. (16) are rate-encoded into current stimuli that
are delivered to corresponding populations of input
neurons (I).

In order to investigate SNN robustness to errors,
each of the four olfactory and tactile sensory inputs,
gR, gL, hR, and hL, are corrupted by introducing
additive noise. Let n ∼ U(0, 1) denote a scalar ran-
dom variable sampled from a uniform distribution
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with range [0, 1]. Then, the sensor noise is modeled
as follows,

gR,L ← (ν · n)gR,L,

hR,L ← (ν · n)gh,L,
(17)

where 0 ≤ ν ≤ 1 is the maximum noise amplitude,
and the effect of noisy inputs can be investigated
by replacing each sensory input with its noisy value
given above.

4.2. Insect CX model

The virtual insect CX brain region, responsible for
controlling the animal movements based on inte-
grated sensory inputs, is simulated by means of the
SNN model of the same scale, described in Sec. 2.
In particular, the SNN input neurons (I) receive
all sensory input signals from olfactory and tactile
stimuli, and the output neurons (O) control the leg
speeds. As schematized in Fig. 9, the input neurons
are divided into four subsets that each receive the
stimulus current based on the corresponding sen-
sory inputs, computed by Eqs. (15) and (16). In
each SNN layer, excitatory and inhibitory neurons
are randomly generated with probability 0.8 and 0.2,
respectively, according to previous findings by the
authors.58 Excitatory and inhibitory neurons can be
simulated by utilizing positive and negative synaptic
strengths, respectively. Then, based on the sensory
stimuli and the subsequent activity of both input and
hidden neurons, the output motoneurons control the
speed of the right and left insect legs (Fig. 9).

Once the SNN model of the CX region is trained,
the leg control must occur such that the insect
reaches the target by minimizing distance and avoid-
ing terrains with high elevation. Based on CX insect
studies,55 these motion objectives are formulated in
terms of left (L) and right (R) motoneuron firing
rates as follows,(

f∗
L

f∗
R

)
=

(
hL gL

hR gR

)(
κ

η

)
(18)

such that the desired output firing rates, f∗
L and

f∗
R, depend on all four sensory inputs in Eqs. (15)

and (16). The constant parameters are chosen such
that κ > η, in order to prioritize terrain avoidance
over reaching the target.

The weight-free learning algorithm is applied
to the SNN CX model by developing a training

Olfactory/tactile
input neurons (R,L)

Excitatory neurons 
Inhibitory neurons 

Olfactory inputs (R)Olfactory inputs (L) 

Tactile inputs (R)Tactile inputs (L) 

Motor outputs (R)Motor outputs (L) 

Hidden neurons 

Olfactory/tactile
stimulus (R,L)

To all

Fig. 9. Architecture of SNN model of insect CX, where
input and output populations of neurons identified in the
diagram receive sensory stimuli and produce motor con-
trol signals, respectively.

database D comprised of m = 6 pairs of input and
(desired) output firing rates. Each pair of firing rates
(pı,u∗

ı ) encodes the sensory inputs and the (desired)
motor outputs obtained from one of the six situations
illustrated in Fig. 10, where the terrain is an obsta-
cle with maximum elevation Hmax. In every case, the
sensory input, pı = [gR gL hR hL]T , and the desired
motor output, u∗

ı = [f∗
Ri

f∗
Li

]T , are obtained from
Eqs. (15)–(18). Then, during training, the SNN error
in Eq. (10) can be computed by simulating the SNN
response to one of the given sensory inputs in D,
and by comparing the decoded SNN output to the
desired motor output, also in D. The results of this
weight-free SNN learning approach are presented in
the next section.

Case 1 Case 2 Case 3

Case 4 Case 5 Case 6

Fig. 10. Insect, terrain, and target locations for the six
training cases used by the weight-free algorithm.
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5. Simulation Results

The terrain used for the simulations is created via a
cloud generated in Photoshop�, where the grayscale
pixel value ranging from zero (white) to a maximum
value Hmax = 255 (black) represents the elevation
H ∈ [0, Hmax]. Three environments are considered:
an obstacle-free arena, an S-maze, and an irregular
terrain with various hills and narrow channels that
are also visualized using a three-dimensional render-
ing in VRML. No prior knowledge of these environ-
ments is used in training the SNN model, and the
virtual insect CX controls the insect motion based
only on the sensory inputs described in Sec. 4.1. The
SNN parameters, including the resting potential of
0.014V, and firing threshold of 0.017 are summa-
rized in the appendix, and adopted from experimen-
tal studies.59

Although, the insect can climb terrains of low
elevation, flat areas are preferable in that climbing
requires more energy expenditure. Initially, the SNN
synaptic connections are assigned random weights
and the naive insect has no control or navigation
knowledge. After learning with the weight-free rule
presented in Sec. 3, the virtual insect is placed
in one of the three environments and navigates
autonomously toward its target.

5.1. Weight-free learning algorithm

In order to circumvent computing the SNN error gra-
dient (analytically or numerically), every iteration
of the weight-free learning algorithm consists of a
testing phase followed by a training phase. During
the testing phase of the learning algorithm, olfac-
tory/tacticle sensory stimuli are introduced by sim-
ulating one of the training cases in Fig. 10. In every
case, the effect of small perturbations brought about
by the training stimuli (Eq. (9), with bk = b0) on the
SNN error is determined using Eq. (10). After the
testing phase, a series of training stimuli designed
according to Eqs. (11) and (12) are delivered to ran-
dom pairs of input neurons, in order to induce synap-
tic plasticity such that the SNN error is minimized.

Examples of sensory and training stimuli deliv-
ered during the testing and training phases are shown
in Fig. 11 for training Case 2. The SNN model in
this example is characterized by the architecture
in Table 4, with 184 neurons and random initial
weights. As illustrated in Fig. 10, in Case 2 there are

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0
1
2

x 10
-8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

x 10
-5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

x 10
-5

t (sec)

gL

(Amp)

si

(Amp)

sj

(Amp)

tA

tB tC

tD

Fig. 11. Time history of left olfactory input, gL, and
training stimuli, si and sj , delivered by the algorithm to
two randomly chosen neurons i and j, respectively, for
training Case 2. The response of all neurons at sample
moments in time, tA, tB , tC , and tD, is plotted in Fig. 12.

no obstacles nearby and the target is to the right of
the insect, thus the distance between the target and
the left olfactory sensor is greater than that between
the target and the right olfactory sensor. As a result,
the stimulus is encoded as an olfactory sensory input
gL, plotted in Fig. 11, and delivered around time
tA to the olfactory input neurons in the virtual CX,
located in the bottom left of the input layer (Fig. 1).
Because the initial SNN synaptic weights are ran-
dom, the insect motoneurons do not fire as a result
of this sensory input, as demonstrated by the mem-
brane potentials at tA and tB (Fig. 12). In order to
perturb the synaptic strengths and infer the error-
gradient sign change, at tC two sequences of training
stimuli (with bk = b0), plotted in Fig. 11, are deliv-
ered to a pair of input neurons during a time window
[0.05, 0.85]. Upon termination of the training stim-
uli, at tD, the olfactory sensory input gL is deliv-
ered again to the SNN input layer revealing the new
motoneuron activity shown in Fig. 12, which would
translate into the insect turning right. Since in this
case, the SNN response is close to the desired firing
rate in D, the algorithm moves on to a new iteration.

When the SNN response to a sensory input is
significantly different from the desired one, testing is
followed by another training phase that changes the
offset parameters and number of pulses so as to min-
imize the SNN error. This situation is illustrated by
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Fig. 12. SNN membrane potentials during testing and training phases, plotted at four sample times, tA, tB , tC , and tD,
when subject to the sensory and training stimuli in Fig. 11.

another example in which the SNN model is tested
and trained using Case 1, where there are no obsta-
cles nearby but the target is to the left of the insect
(Fig. 10). The neural activity in this example is illus-
trated using the raster plot in Fig. 13, where the
insect CX is subject to an olfactory sensor input gR

and the corresponding activity of the right motoneu-
rons results in a firing frequency fR (solid line) that
is very different from the desired value for Case 1,
denoted by f∗

R (dashed line). In this case, the train-
ing phase consists of delivering training stimuli with

 0 

(a) 

177 

183

 50 

 55 

 60 

 16 

 1 Testing Testing 

Training 

f R
*

f R

20

40 

 t (sec) 
0.02  0.04  0.12  0.28  0.44  0.60  0.76   0.84     0.86   0.88 0

Input 
neuron 
(index) 

Output 
neuron 
(index) 

(b) 

(c) 

Firing 
frequency 

(Hz) 

Fig. 13. Spike response during testing and training
phases (a) for training Case 1, where the three phases
are labeled by dashed squares, and, prior to training, the
SNN firing frequency of the right motoneurons (b), fR,
differs from the desired firing frequency, f∗

R (c). After
delivering the training stimuli (a), the firing frequency is
improved (c).

Mk = 10 pulses to neurons i = 1 and j = 16, dur-
ing a time window spanning tE = 0.4 to tF = 0.84,
designed to minimize the SNN error in Eq. (10). Sub-
sequently, when the same olfactory sensor input gR is
delivered again to the SNN input layer, it can be seen
that the synaptic plasticity induced during the train-
ing phase has altered the SNN output response, such
that its firing frequency fR is closer to the desired
frequency f∗

R.
The test-and-train routine is repeated iteratively

over time, selecting a new pair of neurons at every
epoch (k), such that the SNN error (Eq. (10))
decreases incrementally over time, as demonstrated
by the training blue in Fig. 14. Because the gradient
is never computed and the synaptic strengths are
perturbed by delivering stimuli to randomly selected
neurons, the error does not decrease monotonically.
Also, training is conducted in batch mode, such that
the SNN error is computed for all training cases
in the database D. As a result, the algorithm may
slow down in the presence of local minima and expe-
rience large fluctuations in the error changes, as
also incurred by classical resilient backpropagation
in artificial NNs.32 Ultimately, the algorithm termi-
nates when the SNN error meets desired stopping
criteria, e.g. is below a desired value emin, or ceases
to decrease beyond a desired threshold over many
consecutive epochs.

Because the computation required by this weight-
free algorithm scales linearly with the number of
hidden neurons (I), the approach is applicable to
SNNs with up to hundreds of neurons. Furthermore,
the effectiveness of the algorithm in modifying the
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ek

0 50 100 150 200 250 300 350
5

10

15

20

25

30

Epoch (k)

Fig. 14. Training blue with SNN error history.

Table 1. SNN output firing frequency comparison.

Case Initial (Hz) Final (Hz) Desired (Hz)
(No.) fL fR fL fR f∗

L f∗
R

1 0 5 22.5 41 20 46.7
2 0 12.5 40 15 46.7 20
3 7.5 15.0 80 25 100 20
4 2.5 27.5 35 60 46.7 73
5 10 12.5 60 40 73 46.7
6 0 32.5 30 90 20 100

high-level SNN response, without directly manipu-
lating the synaptic strengths, can be illustrated by
the results summarized in Table 1. These results
show that the output firing frequencies of the final
(trained) SNN model are very close to the desired
firing frequencies for all six training cases in the
database D, even though the network is initialized
poorly by the random approach, as indicated by its
initial firing frequencies.

5.2. Insect navigation

After learning, the virtual insect is placed in the
three environments illustrated in Figs. 15–17, and
compared to a naive insect controlled by the initial
SNN model, with random synaptic strengths. It can
be seen that, unlike the naive version, the trained
SNN is capable of integrating information regarding
the target location and terrain conditions and control
the legs of the virtual insect such that it avoids ele-
vated terrain, and reaches the target represented by
a star. In particular, when placed in the obstacle-free
environment, where only target information is rele-
vant, the virtual insect navigates to the target using

the path of shortest distance (Fig. 15(b)), while the
naive insect rotates in place (Fig. 15(a)).

Similarly to the arena used for biological exper-
iments in Fig. 5, the S-Maze involves a target and
two partial walls that the trained insect is capable
of navigating around efficiently to find the target
on the other side (Fig. 16(b)). Instead, the naive
insect moves in circles locally, responding to tactile

(a) (b)

Fig. 15. Comparison of insect trajectories for naive
(random synaptic strengths) (a) and trained (b) SNNs
in an obstacle-free arena.

(a) (b)

Fig. 16. Comparison of insect trajectories for naive
(random synaptic strengths) (a) and trained (b) SNNs
in an S-maze.

(a) (b)

Fig. 17. Comparison of insect trajectories for naive
(random synaptic strengths) (a) and trained (b) SNNs
in a complex terrain of variable elevation.
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(a) (b)

(c) (d) 
Target
Insect

Fig. 18. Insect behavior in a complex terrain (a), visualized in VRML, illustrating the ability of the trained SNN to
navigate through narrow passages (b)–(c), ultimately reaching the target (d).

information, but is unable to move past the first
wall (Fig 16(a)). The irregular terrain character-
ized by hills and narrow channels represents a fairly
complex landscape that would cause several path
planning algorithms to remain stuck in dead ends
or take long and inefficient detours. Instead, the
trained SNN is capable to navigate efficiently and
autonomously toward the goal, avoiding regions of
high elevation and exploiting useful canyons between
them (Fig. 17(b)). Although the naive insect can
respond to stimuli from contact with obstacles, it
is unable to reach the target (Fig. 17(a)).

When the simulation results are visualized in
VRML (Fig. 18), the virtual insect also appears
to display a realistic behavior (see insect video60).
Besides validating the effectiveness of the pro-
posed weight-free learning algorithm, these results
also demonstrate that this spike-based formalism
enables more direct and effective transfer of biolog-
ical findings from animal experiments to synthetic
platforms.

5.3. Scalability and robustness

The scalability and robustness of the SNN weight-
free learning algorithm are investigated by consider-
ing the effects of noisy sensory inputs, modeled by
Eq. (17), on three SNN architectures comprised of
11, 14, 184 neurons, and 819 neurons, described in

Tables 2–5. Numerical tests show that, for noise-free
sensory inputs, the weight-free learning algorithm
can successfully train all four SNN architectures to
properly control the virtual insect such that it can
successfully and efficiently navigate all three environ-
ments. As an example, the root mean square error or
training blue for the SNN with 819 neurons is plotted

Table 2. SNN architecture with 11 neurons.

Neuron Type Excitatory Inhibitory Total

Input sensor neurons 8 0 8
Hidden neurons 1 0 1
Output motor neurons 2 0 2

Table 3. SNN architecture with 14 neurons.

Neuron Type Excitatory Inhibitory Total

Input sensor neurons 6 2 8
Hidden neurons 4 0 4
Output motor neurons 2 0 2

Table 4. SNN architecture with 184 neurons.

Neuron Type Excitatory Inhibitory Total

Input sensor neurons 49 15 64
Hidden neurons 80 20 100
Output motor neurons 14 6 20
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Table 5. SNN architecture with 819 neurons.

Neuron Type Excitatory Inhibitory Total

Input sensor neurons 124 20 144
Hidden neurons 524 101 625
Output motor neurons 44 6 50

Fig. 19. Training blue for SNN with 819 neurons.

in Fig. 19. It can be seen that the error converges
steadily to its minimum even for a large network size.

In the presence of noise, the performance robust-
ness improves as the size of the SNN is increased.
Figure 20 shows the trajectories of the trained virtual
insect controlled by the three SNNs in an obstacle-
free environment, with and without sensor noise. It
can be seen that the 11-neuron SNN is unable to
navigate to the target in the presence of the sen-
sor noise with ν = 0.5. In contrast, the 14-neuron
SNN is capable to control the insect such that it
reaches the target, but the insect first spins in a circle
and only afterwards finds the shortest path. When
compared to the 14-neuron SNN, the 184-neuron
SNN shows a better performance, controlling the
insect such that it corrects its orientation by turn-
ing around and then navigating to the target along
the shortest path. The 819-neuron SNN shows the
best performance of all four networks, because the
noise has almost no impact on the insect trajectory
(Fig. 20(d)). This is confirmed by plotting the insect
distance from the target, as shown in Fig. 21 (where
the final time is chosen heuristically). It can be seen
that the largest (819-neuron) SNN performs better
than all other SNNs, with or without sensor noise,

(a) (b)

(c) (d)

Fig. 20. Trained insect trajectories with or without sen-
sory input noise for SNN with 11 neurons (a), 14 neurons
(b), 184 neurons (c) and 819 neurons (d) when ν = 0.5.

and that in the presence of noise (with ν = 0.5) the
insect performance improves even more significantly
with the SNN size.

To further understand SNN robustness to noisy
inputs, the insect performance is analyzed as a func-
tion of noise amplitude, ν ∈ [0, 1]. By varying ν in
Eq. (17), random noise is produced with a magni-
tude up to 100 · ν (%) of the original sensor input
(gR,L or hR,L). Let success be defined by the abil-
ity to reach the target in a desired time window, in
this case chosen as 5.6 (s) based on the initial target
distance and maximum insect speed. If the insect is
unable to navigate to the target in this time window
or leaves the arena, failure is declared.

By plotting the successes and failures as a func-
tion of noise amplitude (ν) in Fig. 22, the SNN
robustness to noisy sensor inputs is established in
the limit. It can be seen that robustness increases
with the size of the SNN, as the 819-neuron SNN is
effective up to ν = 0.8, while the 11-neuron SNN is
only effective up to ν = 0.2. This is attributed to the
presence of a larger hidden layer capable of compen-
sating for input errors. Surprisingly, the 14-neuron
SNN can cope with noise up to ν = 0.5, indicating
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(a) (b)

(c) (d)

Fig. 21. Time history of insect distance from the target in the presence of sensor noise, when ν = 0.5, using a trained
SNN with 11 neurons (a), 14 neurons (b), 184 neurons (c), and 819 neurons (d).

Fig. 22. Trained SNN effectiveness as a function of sen-
sor noise level, for different numbers of neurons.

that its limiting performance is acceptable up to a
very significant noise amplitude. However, as shown
in Figs. 20 and 21, the insect trajectories in this case
are far less efficient than the trajectories obtained
with the 819-neuron SNN. Thus, a large SNN can
not only provide robust performance in the limit, but
also robust optimal performance as may be desirable
in many biological and engineering systems.

The robustness of the weight-free learning algo-
rithm to errors in stimulus delivery is tested by mod-
ifying the ideal stimulus si, defined in Eq. (9), to a

square pulse with a Gaussian error, as follows. Con-
sider a neuron j in a neighborhood of neuron i, where
the scale of the neighborhood is represented by the
variance of a Gaussian distribution, σ. Then, when
the weight-free training algorithm delivers stimulus
si (in Eq. (9)) to neuron i, any neuron j in its neigh-
borhood is also stimulated with an amplitude,

wj = w
∑

i

exp
[
−D(i, j)

2σ2

]
(19)

that decreases exponentially with the distance
between neurons, D(i, j), using the stimulus,

sj(t) = wj

M∑
l=1

[
H

(
t− ci,l +

β

2

)

− H

(
t− ci,l − β

2

)]

which is delivered to all neighboring neurons. In this
paper, the value σ = 0.8 is found to adequately rep-
resent the error found in neuronal cultures, causing
multiple nearby neurons to fire, as shown in Fig. 23
for a neuron i with coordinates (X, Y ) = (2, 2).
When the weight-free algorithm in Fig. 2 is imple-
mented with the stimulus error in Eq. (19), the net-
work performance can still be optimized reliably, as
shown by the training blue in Fig. 24.
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Fig. 23. Seven neurons influenced by a training stimulus
with Gaussian error, as shown in Eq. (19), intended for
neuron i at (X, Y ) = (2, 2).

Fig. 24. Training blue in the presence of training stim-
ulus error for the network in Fig. 23, with σ = 0.8.

6. Conclusions

This paper presents a weight-free SNN learning algo-
rithm capable of manipulating plasticity at multiple
scales of neural circuits. The advantage of a weight-
free algorithm is that plasticity is altered by control-
ling cell activity and, thus, it is potentially realizable
in live biological neuronal networks via optogenet-
ics or intracellular stimulation. The idea of training
neural networks by controlling cell activity, rather
than by controlling the synaptic weights according
to a learning rule, was recently demonstrated by the
authors on small-scale SNNs. This idea is motivated
by techniques, such as optogenetics, that are having
a significant impact in the neuroscience field by deliv-
ering optical firing control with the precision and
spatiotemporal resolution required for investigating
information processing and plasticity in biological
brains.

Even in the simplest organisms, however, brain
circuits are characterized by hundreds of neurons
responsible for integrating diverse stimuli and for
controlling multiple functionalities. Because of their
size, these large neuronal structures are believed to
provide robustness and reconfigurability, character-
istics that are also desirable in neuromorphic cir-
cuits and engineering applications of computational
SNNs. This paper presents a new perturbative learn-
ing algorithm for scaling the weight-free paradigm
up to networks with over 800 neurons. The proposed
approach is scalable because it does not rely on gradi-
ent computations but, instead, delivers training stim-
uli based on consecutive changes in the sign of the
gradient, similarly to resilient backpropagation.

The results in this paper show that the weight-
free method is feasible for training SNNs on a
larger scale than previously shown in the literature,
and without any knowledge of their connectivity or
synaptic strengths. The spike-based method by per-
turbation reduces the computational load and dis-
plays improved convergence, also maintaining a high
level of accuracy and reliability in the chosen appli-
cation of virtual insect control and navigation. This
application is motivated by experimental studies in
biology which have recently revealed that changes
in the activity (e.g. firing rates) of individual units
immediately precede changes in the firing rates of
motoneurons responsible for locomotory behaviors
such as walking speed, turning, and climbing.33,34

The same wires used for recording cell activity can
be used to stimulate the brain region to evoke altered
behavior and plasticity. Hence, the weight-free learn-
ing algorithm is demonstrated on a virtual simulation
of the aforementioned insect experiments to demon-
strate its effectiveness at inducing higher level learn-
ing, as well as to illustrate how it might some day
be used for controlling plasticity in experiments on
living insects. The simulation results show that the
trained SNN sensorimotor controller is capable of
integrating different sensory stimuli and accomplish
desired behavioral goals efficiently and reliably. As
expected, the robustness of the trained SNN is shown
to improve significantly with network size, providing
near optimal performance even in the presence of
large sources of sensor noise.

Future work will explore the applicability of the
proposed algorithm to biological neuronal networks,
for example to investigate and alter plasticity in the
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CX of living insects in vivo, or to train live neu-
rons in slice, where Channel Rhodopsin2 neurons are
amenable to controlled cell firings via optogenetics.
These applications will require increased computa-
tional efficiency and may involve alternate mecha-
nisms of synaptic plasticity and temporal coding.
Also, future work will explore how stimulation accu-
racy and precision may influence the effectiveness of
the training algorithm, and how connectivity and
genetically modified regions may affect the propa-
gation of synaptic plasticity and resulting functional
plasticity.
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Appendix A. Neuron Model

The LIF membrane potential can be modeled by the
differential equation,4,5,47

τm
dV (t)

dt
= −V (t) + Rm[Istim(t) + Isyn(t) + Inoise],

(A.1)

where Istim is the stimulus current, e.g. from an
external stimulus such as blue light or a controlled
input voltage, Isyn is the synaptic current from the
presynaptic neurons, and Inoise is a random cur-
rent input modeled as a Gaussian variable with
zero mean and known variance. The passive mem-
brane time constant, τm = Cm · Rm, and the mem-
brane resistance, Rm, are assumed constant. When
the membrane potential reaches a threshold value,
V > Vthresh, the neuron fires (spikes), and the mem-
brane potential returns to a resting potential Erest.
The neuron model parameters are defined as follows,
with units in square brackets:

Cm [F] : Membrane capacity.
Rm [Ohm]: Membrane resistance.
Vthresh [V]: Membrane voltage threshold.
Vresting [V]: Resting membrane voltage.
Vinit [V]: Initial voltage, V (0), at time t = 0.
Trefract [s]: Length of absolute refractory period.
Inoise [A]: Standard deviation of current noise added
at each integration time constant.
The units for SNN variables and parameters are
shown in Table A.1.

Table A.1. Parameters and units.

Parameter Units

t, tL, tR, Trefract, tr, β, ci,l, b0, bk s
x, y,L, dL, dR, Hmax, D(a, b), λ mm
α Amp/mm

hL, gL, hR, gR, s(t), Si, S
0
i , Inoise, ω Amp

v, vL, vR, η mm/s

f, f∗
L, f∗

R, fL, fR, zi, f
0
L, f0

R Hz
Cm F
Rm Ohm
Vthresh, Vresting, Vinit V

Table A.2. Parameter values.

Parameter Simulation value

Cm (F) 3e-8
Rm (Ohm) 1e6
Vthresh (V) 0.017
Vresting (V) 0.014
Vinit (V) 0
Trefract (s) 0.002
Inoise (A) 5e-12

Appendix B. STDP Model

In the STDP mechanism, the synaptic plasticity
between two neurons changes according to timing of
the pre- and post-synaptic neuron spikes denoted by
tpre and tpost, respectively. The STDP rule for synap-
tic weight change is,

∆w =

{
A+ exp(−(tpost − tpre)/τ+),

A− exp((tpost − tpre)/τ−),
(A.2)

where A+ = 2e− 10, A− = −1e− 10 are the ampli-
tudes of the STDP synapses, and τ+ = 0.0148, τ− =
0.0338 are the time constants of exponential decay
of the positive learning window for STDP.
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