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A DISJUNCTIVE PROGRAMMING
APPROACH FOR MOTION PLANNING OF
MOBILE ROUTER NETWORKS

Nicola Bezzo,* Rafael Fierro,* Ashleigh Swingler,** and Silvia Ferrari**

Abstract

In this paper we develop a framework based on disjunctive pro-
gramming for motion planning of robotic networks. Although the
methodology presented in this paper can be applied to general
motion planning problems we focus on coordinating a team of mo-
bile routers to maintain connectivity between a fixed base station
and a mobile user within a walled environment. This connectivity
management problem is decomposed into three steps: (i) a feasible
line-of-sight path between the base station and the mobile user is
computed; (ii) the number of required routers and their goal loca-
tions are determined; and (iii} the motion planning with obstacle
and inter-vehicle collision avoidance problem is solved. To illustrate
the flexibility of the proposed approach we also formulate a novel
motion planning algorithm for a team of mobile robots as a dis-
junctive program. Cell decomposition is used to take into account
the size and orientation of the robots. In both cases, connectivity
and motion planning, the mixed-integer optimization problems are
solved using CPLEX. Moreover, the proposed approach can easily
accommodate input and other constraints and mission objectives.

Simulation results show the applicability of the proposed strategy.
Key Words

Moticn planning, communications, mobile routers, disjunctive pro-

gramming
1. Introduction

Multi-robot and sensor networks are increasingly being
considered as a means of performing complex functions
within dynamic environments, including such applications
as homeland security, search and rescue operations, disas-
ter relief operations, multi-targeting/multi-platform bat-
tlefield groups, intelligent highway/vehicle systems, and
wireless surveillance networks. A fundamental challenge of
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multi-robot coordination is how to deploy a group of robots
to carry out sensing (i.e., mobile sensors) and communi-
cation (i.e., mobile routers) tasks. Although significant
progress has been made in the last decade, many issues
still need to be addressed to make robotic networks com-
monplace. For instance, how to deal with realistic com-
munications and sensing limitations of the mobile robots
is still not well understood.

A mobile network that is deployed in a cluttered en-
vironment can experience uncertainty in communication,
navigation and sensing. The objects in the environment
(such as buildings) will attenuate, reflect, and refract
the transmitted waves, thus degrading the performance
of wireless communication. On one hand, mobile robots
have to plan their paths such that collision with obstacles
and other robots are avoided while minimizing an appro-
priate cost function. On the other hand, mobile robots
should maintain certain connectivity constraints such that
the coordination task can be accomplished. If robots are
to provide a wireless.communication infrastructure, then
the motion planning problem needs to incorporate wireless
communication constraints [1, 2]. This will create a multi-
objective optimization problem in which optimum motion
planning decisions considering only navigation may not be
the best for communication. How to address this funda-
mental problem in a systematic way is the objective of this
paper.

To be more specific, the goal of this paper is to provide
a general framework based on disjunctive programming
(DP) [3, 4] for the motion planning of cooperative robotic
networks. We illustrate the applicability of the proposed
methodology via two motion planning problems. First, we
consider a mobile router network where the goal of the
network is to maintain connectivity between a mobile user
and a fixed base station while avoiding obstacles and inter-
agent collisions. We assume that the trajectory of the user
can be estimated and that the base station, the user, and
the robots have limited connectivity coverage. Therefore,
to establish a communication bridge between the user and
stationary base station we need to form a chain of robots.
The number of robotic routers necessary every time may
vary depending on the position of the user. Using Mixed-
Integer Linear Programming (MILP), it is possible to make




the robots navigate safely in a walled environment. In
the second motion planning problem, cell decomposition
is used to take into account the size and orientation of
the robots navigating within an environment populated
by generally nonconvex obstacles. In both problems the
mixed-integer programs are solved using CPLEX [5].

1.1 Related Work

Multi-robot coordination problems have witnessed inten-
sive research activity in recent years. Most of the research
relating sensor motion planning has focused on the effects
that the uncertainty in the geometric models of the en-
vironment has on the motion strategies of the robot [6].
Hence, considerable progress has been made on planning
strategies based on only partial or nondeterministic knowl-
edge of the workspace [7].

Obstacle-avoidance motion planners have been effec-
tively investigated in [8] to plan the path of mobile sensors
for the detection and classification of stationary targets in
an obstacle-populated environment. Coverage control for
mobile sensors has been treated in [9, 10] using Voronoi
diagrams to achieve uniform sensing performance over an
area-of-interest. Moreover, in [11] we derive a decentralized
coordination algorithm that allows a team of mobile sensors
to navigate a region containing nonconvex obstacles and
take measurements in areas with the highest probability of
having good information first.

Recently, target tracking problems have been the focus
of attention of the robotic network community. In our
previous work [12], we developed an approach based on
geometric optimization to deploy a mobile sensor network
for the purpose of detecting and capturing mobile targets
that are sensed intermittently. In this previous work,
communication constraints were not considered. Most
recently, the authors in [13] formulated simultaneously the
problems of target coverage and network connectivity as
linear-matrix-inequalities (LMIs).

It is well-known that communication plays a key role
in the overall performance of cooperative mobile networks.
Communication between mobile agents can be degraded
due to distance-dependent path-loss, shadowing or fading.
Most work on motion planning and control, however, does
not consider the communication uncertainties introduced
in realistic environments. For instance, it is common to
assume either ideal links or links that are perfect within a
certain radius of the node. The effects of noise, quantiza-
tion, packet loss, and fading on wireless control of mobile
sensors networks are studied in [14, 15]. In [14] the authors
introduce communication-aware motion planning using an
information-gain strategy. In this approach, each node can
predict the information gained through its communications
by online learning of link quality measures such as received
signal-to-noise ratio (SNR.).

Connectivity problems and their variants have been
investigated by many researchers. A distributed connec-
tivity control based on hybrid systems is proposed in [16].
Closely related to the connectivity problem considered in
this paper is the work presented in [17-19]. In [17]
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unmanned aerial vehicles (UAVs) are used as communica-
tion relays for surveillance missions. It is assumed that
a surveying UAV needs free line-of-sight (LOS) to a base
station. A dual ascent algorithm and a modification of the
Bellman—-Ford algorithm are developed to generate com-
munication relays. In [18] a team of robots are supposed
to maintain a communication link between an exploring
robot and a base robot. In this approach, the quality of
connectivity is measured using the second eigenvalue of
the weighted Laplacian representing the network topology
while maintaining k-connectivity of the network. F inally,
the authors in [19] develop motion planning algorithms for
robotic routers to maintain connectivity between a base
station and both a cooperative and non-cooperative user.

The remainder of the paper is organized as follows.
Definitions and mathematical preliminaries are given in
Section 2. A mobile router problem is considered in Sec-
tion 3, where the emphasis is given to connectivity con-
straints and their representation with disjunctive program-
ming techniques. Section 4 formulates a motion planning
algorithm for a team of mobile robots as a disjunctive pro-
gram, where cell decomposition is used to take into account
the size and orientation of the robots and nonconvex ob-
stacles in the environment. Conclusions are finally drawn
in Section 5.

2. Preliminaries

2.1 Disjunctive Programming

Disjunctive Programming (DP) has been introduced in (20]
and lately extended in [21] where the authors use this tool
as an alternative to mixed-integer programming (MIP) to
solve large optimization problems. This technique has
the powerful advantage of representing constraints as a
conjunction A = AND of n clauses with each clause being
a disjunction \/ = OR of m; inequalities [3]. A disjunctive
program becomes

min f(z)

subject to /\

i=1,...,n

Vo cu@<o], ()

where z is a vector of decision variables and f(z) is the cost
function to be minimized. DP has been introduced as an
alternative to mixed-integer programming for representing
discrete/continuous optimization problems. In this paper,
we combine the disjunctive model for the constraints with
the use of MIP to have a more robust system, which is
easier to understand and solve. In fact while the MIP
model is based on algebraic equations and inequalities, the
DP model allows a combination of algebraic and logical
constraints facilitating the representation of discrete de-
cisions. This technique will prove useful when including
communication constraints and taking into account the ge-
ometry and rotation of both the robots and obstacles (not
necessarily convex) in the environment.
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2.2 Mixed-Integer Linear Programming

In this section we present the well-known theory of mixed-
integer programming focusing in particular on the linear
case (MILP). This section is based on previous work [22]
and summarizes the main aspect of this technique.

Many of the practical multi-vehicle path planning
problems can be modelled with continuous and discrete
variables and using linear or quadratic constraints [23].
Discrete optimization shows its power and flexibility when
using decision variables and indicator variables. Decision
variables are discrete variables that can take only the value
1 or 0, and are usually related to the logical TRUE and
FALSE. Indicator variables, like the decision variables, can
take only the value 1 or 0, and they are usually used to
indicate the state of certain continuous variables. These
variables are especially useful when dealing with relation
indicators such as <, >, #, ete.

MILP is a tool used to incorporate logical constraints
in the problem formulation. These constraints that use
logical operators such as AND, OR, and NOT can be
combined to model complex logical statements. For this
purpose the well-known big M technique is utilized. This
technique allows to connect indicator variables to continu-
ous variables. The basic building block for this technique
is the translation of the implication

z>0 — 6=1, (2)
that means z >0 implies § =1. The implication in (2)
can be converted into the following mixed-integer linear
constraint

z— M6<0, (3)

where M is a large positive number.

Unfortunately the MILP approach is a N P-hard prob-
lem meaning the solution time grows exponentially with
the size of the problem.

2.3 Path Loss Model for Communication

Mobile radio propagation is an important field that has
attracted researchers all around the world for several years,
although only recently has an enormous attention been
given to wireless communication in robotics. Communica-
tion can be seen as another sensing behaviour of mobile
robots; therefore we need to build a model that takes
into account this important characteristic. In this section
a discussion about wireless communication is presented
followed by a simple but realistic model for propagation.
The transmission between transmitter (Tx) and re-
ceiver (Rx) is dependent on the environment we are ana-
lyzing and can be a simple line-of-sight path or obstructed
by obstacles such as people, furniture, walls, buildings, and
mountains. Also, not only noise, interference, scattering
and other channel impediments affect the quality of the
transmitted signal but these impediments change in time
due to the movements of people and dynamics of the en-
vironment. Therefore due to this random nature, radio
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channels are very difficult to analyze and modelling relies
on statistical procedures based on specific measurements.
The signal propagated from a transmitter to a receiver can
be decomposed into three separate and well-known charac-
teristics: path loss, shadowing, and multipath [24]. Path
loss is caused by dissipation of the radiated power from
the transmitter and by effects of the propagation channel.
Shadowing is caused by obstacles between the transmitter
and the receiver that cause reflection, scattering, absorp-
tion and attenuation of the signal propagated. Finally, the
constructive and destructive addition of multipath com-
ponents creates rapid fluctuations of the received signal
strength over short periods of time. In this paper, we
focus mainly on the path loss model since it is the most
predominant characteristic in connectivity problems.

In free space, power received by a receiving antenna
situated at a distance d from a transmitting antenna is
given by the Friis formula [24]

P,G,G \?
P.(d) = AR (4)

where P, is the transmitted power, P.(d) is the received
power which is a function of the separation Tx-Rx, G, is
the transmitter gain, G, is the receiver gain, and A is the
wavelength.

A more complicated model is the two-ray model in
which the received signal consists of two components:
the line-of-sight component that is the transmitted signal
through free space and the component that is reflected off
the ground. The received signal power is approximately
given by

hthrr, 5

P, = PG.:G, {d_z

where h; and h, are the height of the transmitting antenna
and of the receiving antenna, respectively. It is interesting
to notice that for large distances (d > v/hih,) the received
power falls off inversely with the fourth of the power of
d or in dB at a rate of —40dB/decade while for shorter
distances we have a behaviour close to the Friis model with
power falling off at —20dB/decade [24]. The rapid falloff
with distance is due to the fact that the signal components
only combine destructively and, therefore, are out of phase
of approximately .

Several other models are available in the literature,
most of them are empirical and come from specific exper-
iments for intended communicaticn systems or allocations
such as the Okumura model, the Hata model and many
more. For a detailed discussion, the reader is referred to
[24].

In general a simplified path loss model can be built to
capture the essence of signal propagation. The following
equation

P = PK {%9} ! (6)
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Figure 1. A virtual environment with mobile robot routers.

represents a generalized approximation of a real channel.
Here K is a constant that depends on the antenna char-
acteristics and channel attenuation, do is a reference dis-
tance, and ~y is the path loss exponent. Typical values of
~ are in a range 1.6-3.5 in an office building and 3.7-6.5
in an urban environment [24]. It is important to note in
(6) that the generalized path loss model is a function of
the distance Tx—Rx. This last consideration is used later
in Section 3.2.2 when building the communication con-
straints for the mobile router connectivity problem under
investigation.

3. Coordination of Mobile Routers via Disjunctive
Programming

The problem considered here is the control of a team of
robots trying to maintain connectivity between a base sta-
tion b and a user 7 moving in a known environment, as
shown in Figs. 1 and 2. The environment is populated by
walled obstacles that deteriorate the quality of the com-
munication. Therefore, the mobile routers have to move
in positions that guarantee a connectivity link between
the base station and the user while avoiding obstacles and
collisions. This section describes the model used for the
routers and obstacles, and the task the routers need to
accomplish.

3.1 Problem Formulation

There is an increasing interest in deploying autonomous
robotic agents to create a reconfigurable communication
infrastructure. The basic idea is to exploit the mobility
of the robotic routers to maintain a communication link
with a user 7. This problem is motivated by the DARPA
LANdroids program [25]. The goal is to develop software
tools that enable the following required capabilities:

o Self-Configuration.

e Self-Optimization.
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o Self-Healing.

e Tethering: As users move through a LANdroid cov-
ered region, the network itself should adapt and stretch
to keep them covered with communications whenever
possible. When it is not possible to keep the user cov-
ered, the network should recognize this and advise the
user to drop another router to extend the range [25).

e Intelligent Power Management.

In this paper we address in some degree all the above
capabilities but focus on tethering. Specifically, the mo-
bile router problem is formulated as a target assignment
problem in which a user and a fixed base station are targets
that need to be covered by mobile routers most of the time
while maintaining connectivity of the network and avoiding
collisions. Fig. 1 depicts a typical scenario where a mobile
router network made of Pioneer-3AT robots maintains a
connection between a human user and a base station (lower
left corner in Fig. 1).

The objective of every robotic router in the network
is to maintain connectivity between a fixed base station,
located at (z,y»), and a target moving along a known tra-
jectory (x1,9(zT,1)) EW, with known initial conditions
(z7(0), yr(0)), by navigating a two-dimensional Euclidian
workspace denoted by W C R2. The ith-router is denoted
by A; and assumed to be a point mass. The router’s
configuration q; specifies the position of a moving Carte-
sian frame Fg4,, embedded in A,, with respect to a fixed
Cartesian frame Fwy.

3.1.1 Robot’s Model

The dynamics of the ith robotic router can be approxi-
mated using the following model

qi':viv ZEI‘P:[lva} (7)

v = Wy,

TN
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Figure 2. Base station, mobile router and user position
within the area of interest.

where q;=[z; |7 €R? is the position vector of Fa,
relative to Fiy, v; € R?, and u; € R? denote the velocity and
acceleration (control input), respectively, for each router
i€ Ip. The router’s workspace, W, is populated with N,
fixed polygonal obstacles {0, ..., Oy, }, whose geometries
and positions are assumed known a priori.

Since the disjunctive programs are solved in discrete-
time, the model in (7) is discretized with sampling time
AT. The discretized model is given by

x(k + 1) = Fx(k) + Gu(k), (8)
where
1 0 AT 0O 0 0
01 0 AT 0 0
F= , G = )
0 0 1 0 AT 0
00 0 1 0 AT
9
and x=[q7 7|7, thus
x(k) = y(k) ’ u(k) = uz (k) (10)
vz (k) uy (k)
Uy(k)

8.1.2 Environment

The robots move in an environment cluttered with obsta-
cles. For the scenario we are investigating in this article
these obstacles are walls that can be described by sets of
linear inequalities of the form [22, 26]

OX<r, X= , (11)
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where O is an R x 2 matrix, and R is the number of
linear constraints needed to define an obstacle. With this
representation it is possible to describe a wide range of
different situations like the modelling of linear nonconvex
obstacles by composing convex sets. All the obstacles must
be enlarged to consider the actual dimensions of the robots
and because we are considering a discretized model. In fact
obstacle avoidance will be guaranteed only at the sampling
time, so it would be possible to have a trajectory that
is collision free at the sampling time but that would end
up in a collision during the time between the samplings.
This situation can occur when the robot is close to the
corner of the obstacle or when the obstacle is relatively
small and at the sampling time the robot is positioned
right in one of the edge of the obstacle. The enlargement
depends on the maximum distance D, that a robot can
travel between samplings. Dy, is function of the maximum
velocity of the robots, Vinax, and of the sampling time,
AT, in particular Dpp = VimaxAT. Once the obstacle is
enlarged, the following implication needs to be true

Vz1,z2 € 00, such that ||z; — z2f] < Dpy,
z=Ar1+(1-XNzg, Ae[0,1], z¢€0O (12)

where O, is the convex set describing the enlarged obstacle,
90, is its boundary, while O is the convex set describing
the original obstacle [26].

3.2 Constraint Modelling using MILP and DP

In this section it is shown how using mixed-integer linear
programming makes it possible to model some common
constraints in coordination control like, for example, ob-
stacle or collision avoidance. These constraints are used
in the optimization problem. Also, the communication
constraints are presented using a disjunctive programming
technique.

3.2.1 Motion Planning with Obstacle and Collision
Avoidance

The obstacle avoidance constraint makes the optimization
problem nonconvex, since the feasible space of the solutions
is nonconvex. Consequently, traditional convex optimiza-
tion techniques cannot be used to solve the optimization
problem. Using MILP instead, this nonconvex problem can
be modelled and solved. As stated before, all the obstacles
in the environment will be described by (11). For each
row of the matrix O, it is possible to define the following
implication

Opllij(k‘) + Op2yj(k) <7y = w];j =1,

(13)
Vp=1,...,R;Vj=1,...,Ng; Vk=1,...,T

where Ng denotes the number of routers used to maintain

a communication chain and T is the control/time horizon.

These implications will drive the auxiliary variable ng to

one if the pth inequality defining the obstacle is satisfied

by the jth robot at the kth sampling time. All the points



inside the obstacle satisfy all the R inequalities in (11). To
ensure obstacle avoidance at least one of the R inequalities
defining the obstacle needs to be violated and so it is
necessary to add the following constraint

R

k
prj <SR-,
p=1

Vj=1,...,Ng;Vk=1,...,T.

(14)

Collision avoidance among teammates can be seen as a
special case of obstacle avoidance. We can assume that
every robot has a safety zone around it that nobody can
enter. In this way, the other team members can be thought
as moving obstacles that need to be avoided. For the sake
of simplicity, it is considered a square safety zone around
the robot. The equations that model collision avoidance
are

i(k) — z;
Ca zi(k) — z;(k) <84,

yi(k) — y;(k)

> i (k)
p=1

Vi=1,...,Ngjj=i+1,... Neik=1,...,T

IA
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where the 2 x 4 matrix C4 and the vector sy4 define a safety
zone around the robot. (p;; is an auxiliary binary variable
which is 1 if the pth inequality in the first equation in
(15) is satisfied. Note that imposing these constraints is
equivalent to require that two robots never get closer than
Sq4 in at least one coordinate.

3.2.2 Short Range Coverage Connectivity Constraints

Communication models can be very complicated especially
when dealing with wireless technologies. As mentioned in
Section 3.2, in this paper we consider the path loss model
that gives us a good approximation of the real behaviour
of wireless propagation. Following (6) we see that the
received signal decreases with the distance. Therefore
signal strength and distance are closely related. Generally
a wireless antenna has omnidirectional propagation and
limited range, that is, we can think of the coverage of the
wireless router as a pattern centered at the position of the
antenna (Fig. 3). For simplicity we consider a pattern with
a circular shape. While we stand inside the circle we have
reception from the transmitting antenna but when we are
out of this pattern we cannot establish communication,
that is

1 ifd<$é
S = , (16)
0 ifd>$

where d is the distance between the transmitting antenna
and the receiving antenna and ¢ is the maximum range
radius of the transmitting antenna. To maintain connec-
tivity between base station and user, the constraints are
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Figure 3. Geometric representation of a mobile router
chain.

stated as a conjunction of disjunctions following the dis-
junctive programming technique introduced in Section 2.
These constraints and the formulation of the problem are
as follows:

Nr Ng

min dip + dmt + Z Z dy;

1=1 j=1

with j #1  (17)

subject to:

\/ (e<d¢b§6)/\ \/ (6<dln<5)
i=1,...,Ngn n=1,.,Ng
with n # [,
\V} (<dmr <HAN| \V (e<dmn<9)
m=1,...,Ng n=1,..., Ng
with n # m,

A ¢V

i=1,....Ng |7=1,....Ngr

withi#m #L,j#u,k#7#1,

\/ (e<du <6
=1,..,Nr

€<dy<H/\
k

where din, dmn, di;, dix represent the distance robot/robot,
di, is the distance robot/base station and d,,7 is the
distance between the robot and the user (i.e., target).
¢ is the upper connectivity threshold and represents the
dimension of the coverage circle around the antenna. € is
the lower threshold that takes into account the dimensions
of the robots such that the robots do not get to close to
each other or with the user and base station as depicted in
Fig. 3.

With the first constraint we guarantee that one robot
is connected to the base station. The second constraint in
the same way guarantees that one robot is close enough to
the user to allow connection. Finally, the last constraint
guarantees that between the base station and the user the
robots form a connectivity chain. A logical AND is inter-
posed between the constraints because all constraints must
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be satisfied together. We take into account all the con-
straints only when N > 3. If Ng =2 the third constraint
is not necessary, if Ng =1 just the first constraint is used
with n=7T and finally when Ng =0 we just need to make
sure that the distance base station/user is bounded by the
two thresholds € and 4. Note also that in this case Ng is not
the total number of robots but just the number of robots
necessary to maintain connectivity. We could use all the
robots each time but this solution would be sub-optimal
with waste of energy whereas it is not necessary to have
all the robots interconnected and possible interferences in
the communication. Therefore each time the position of
the user is sampled, the optimal configuration of robots
necessary to maintain connectivity is determined.

To be more specific Ny is computed in the following
way. A line-of-sight path is calculated between the base
station and the user position by running a MIP that
returns the optimal path avoiding obstacles. Knowing the
threshold 4 and the length of the line-of-sight £, Ng is

given simply by
4

From this point, following the constraint described above, it
is straightforward to find the positions P (Np = Ng) where
the robots have to go in order to maintain connectivity.
The assignment robot /position is discussed in the following
section. For details about the algorithm see Section 3.3.

3.2.8 Network Formation

Network Formation is about finding the matching
robot/position that minimizes the total energy spent from
the whole team while maintaining connectivity. Network
formation can be seen as the well-known target assignment
problem. However, in this paper we prefer to refer to
positions instead of targets, because the robots are moving
to some spots in the environment to guarantee connection
rather than trying to reach some targets. To model this
problem the introduction of a set of binary decision vari-
ables is necessary. We define a variable 7;; that is one if
the jth robot (among the total N) is assigned to the ith
position. Since there is not the same number of robots
and positions, we need to assign the optimal robot to each
position. The equations

Np
Yri=1, I=1,...,N (19)
j=1

N
> > 7| =Ne (20)

model the assignment robot/position constraint. It is now
necessary to relate the decision variables to the continuous
variables describing the state of the robots. More formally,
the following implications need to be translated into a
mixed-integer constraint:
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T = 1:>xj(T)—z1=0,
T =1=y(T) -y =0,
Vj=1,...,Np;l=1,...,N. (21)

The implications state that if the Ith robot is assigned
to the jth position (;; =1), then the difference between
the coordinates of the I-th robot at the end of the control
horizon T and the coordinates of the jth position needs to
be zero. This kind of implication can easily be translated
into a mixed-integer constraint [27]. When the assignment
robot position is terminated, Ng robots, among the total
N available, are chosen and driven to the Np positions.
3.2.4 Optimization Algorithm for Obstacle and
Collision Avoidance

MIP is used here to drive the robots to the positions while
avoiding obstacles and collisions. This problem is solved
by defining a global cost function that includes all the
constraints in a global flat optimization problem. In this
way we find the global optimum but the complexity of the
problem grows exponentially with the number of robots
and the intricacy of the environment [26]. The global
optimization problem can be formulated as follows:

T Ng

min Y > [z, (k) + 2, (k)], (22)

k=1 j=1
where 2, 1, is a continuous variable constrained by

2z; (k)
2z, (k)

VvV 1V
|

2 J

k.H

=

(23)

Zz,|y; model the absolute value of the input U, |y, (k).

The optimization problem is subject to:
e the dynamic equation of the system (8);
o the network formation constraints (19), (20), (21);
» the obstacles avoidance constraints (13), (14);
e the collision avoidance constraint (15);
¢ the bounds on the input:

|U‘I,y| S Umax; (24)
e the bound on the maximum velocity:

2,y € Vinax; (25)

the equations that model the absolute value for
e, (k) (23).

The above optimization problem will find the input
ug, (k) for all the robots and for all the time instants
in the control horizon to reach the assigned positions
and maintain in this way connectivity. The connectivity
constraints do not enter into the MIP but are solved
separately to make the robots move in position. In this way
the computation complexity is reduced because the tasks



are divided into two separate problems. The optimization
problem is run over the whole set of continuous and binary
variables and the complete set of constraints. Note that the
time required to solve the optimization problem depends
on the number of obstacles, robots and users, and therefore
on the number of binary variables. More specifically
it is easy to see that the number of binary variables is
O(T Nr(Nr+ No)) where T is the length of the control
horizon, N is the number of robots and No is the number
of obstacles.

The purpose of the hierarchical formulation presented
in the next section is to explain the steps necessary for the
algorithm to solve the problem under investigation.

3.3 DP Algorithm Description

All the algorithms described in the previous sections are
parts of a higher level optimization. In other words, a more
general optimization is run following Algorithm 1. This
algorithm illustrates how the simulation scenario has been
implemented and summarizes the chronology of the main
events which occur during the simulation.

Algorithm 1 Tethering of Mobile Routers.

1: for all Target positions

2: Compute the line-of-sight path £ from the base station
to the target position

3: Divide £ by the connectivity threshold and find the
positions P in which the robots have to go for
optimal connectivity

4: forall Robots do

5: forall Positions P do

6: Compute the optimal path robot-position P
avoiding obstacles and collisions

7 end for

8: end for

9: for all Positions P do

10:  Select the shortest path robot-position to go

11:  Make the robots move to the assigned positions P
avoiding obstacles and collision

12: end for

13: end for

The first action taken during the simulation is the
line-of-sight path computation. The main assumption here
is that the path of the user is known from previous es-
timations or there are some other sensors in the network
that take care of the tracking of the user in the environ-
ment. Also, since some obstacles can attenuate or block
the communication depending on the material they are
made from, their dimension and shape, we are considering
a line-of-sight model. Therefore the first step consists of
finding the line-of-sight path from the base station to the
user that is to find a path to move from the base station to
the user avoiding obstacles.

Following Algorithm 1, the connectivity constraints
are taken into account and the thresholds discussed in
Section 3.2.2 are used to determine the number of robots
necessary to maintain the connectivity with the user. The
positions P where the robots have to move are found
following the algorithm in 3.2.2.
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At this point the path planning algorithm takes place
and the optimal path each robot has to compute to reach
the position for connectivity is calculated. The optimal
paths are determined and assigned to specific robots in
such a way to minimize the total energy of the group.

Finally in the last step of the algorithm, once the
assignment robot-position is ready, the MILP optimization
problem (Section 3.2.4) consists of driving the robots to
the positions while avoiding obstacles and collisions. Not
all the robots need to be used each time, just some of them
can be used. The other routers stay in the same positions
ready to move if needed based on the next sampled position
of the target.

These four steps are repeated in a loop until the target
has reached a determined position and does not move. It
is important to remark that the optimization procedure
takes some time, therefore we are assuming that the user is
moving slower than the robots. Faster is the computation
and more positions of the user can be sampled.

3.4 Mobile Routers Simulation Results

All the algorithms and simulations have been coded in
Matlab. To solve the MILP problem the well-known
commercial solver CPLEX [5] has been used. CPLEX
functions are called from Matlab through the TOMLAB
interface [28].

We consider scenarios with obstacles shaped as to
form rooms inside a building therefore nonconvex type
obstacles and with a base station situated in a corner of the
environment, eight robots located close to the base station
and one user moving from one room to another.

Figure 4 reports successive snapshots of the user po-
sitions and the trajectories each time the robots have to
complete to reach the optimal positions from the preview
optimal positions. The overlapping circles in the figure
represent the communication coverage for the base station,
robots and user and as stated in the theory before this
section, the combination base station/robots/user forms a
connectivity chain with different shapes and length while
the user is moving to the final position.

Important behaviours to remark are the following:
¢ the configuration can change from one step to another;

o there are not always the same amount of robots be-
tween user and base station;

o different robots are used during the simulation.

An example of these behaviours can be seen in Fig. 4,
where the communication chain is made at first of four
robots, then three in Fig. 4(d), then two in Fig. 4(f)
and finally back to three in Fig. 4(g). Therefore, in this
scenario some robots are never used and others are used
only for certain intervals of time. Note also that the more
steps the user can make, the more precise the simulation
is, but as a drawback the optimization needs more time
to complete the computation. Moreover, even if it is not
shown specifically in this paper, collision does not take
place during the simulation.
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Figure 4. The sequence of steps the user follows from the starting point (top left) to the final point (bottom right).

4. Motion Planning by Cell Decomposition and
Disjunctive Programming

In this section we switch our attention to a path planning
problem using disjunctive programming. The method we
present in this paper is novel compared to the approach
described in (3] because by introducing the use of cell
decomposition it allows the geometry of the robot to be
taken into consideration, as well as polygonal obstacles
that are not necessarily convex.

4.1 Robot Model

In this particular scenario the dynamics of the sth robot can
be approximated using the nonholonomic unicycle model

[£: 9 6] =[vicost; v;sinb; wil, (26)
where q;=[z; y 6;]T€R® and p;=[z; w]T€R? is
the position vector of F 4, relative to Fyy.
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Again, the workspace, W, is populated with N, fixed
polygonal obstacles Oy,...,0p,, whose geometries and
positions are assumed known a priori.

4.2 Optimization Algorithm using Cell Decompo-
sition and DP

Cell decomposition is a well-known obstacle avoidance
method that decomposes the obstacle-free robot configu-
ration space into a finite collection of non-overlapping con-
vex polygons, known as cells, within which a robot path
is easily generated. This method’s advantage over other
approaches, such as roadmap or potential field methods, is
that, under proper assumptions, it is resolution complete.
Exact cell decomposition, which has been applied to re-
stricted classes of robot geometries, such as planar objects,
three-dimensional convex polytopes and polyhedral objects
[29-33], is guaranteed to find a free path in W, when-
ever one exists, and otherwise to return failure. However,



it is computationally intensive in high-dimensional con-
figuration spaces (e.g., robot manipulators), and it does
not typically allow for the incorporation of other motion
constraints, such as, nonholonomic dynamics, or commu-
nication constraints, as required by the router problem for-
mulated in Section 3.2.2. Also, it is not directly applicable
to cooperative networks, in which the path of one robot
is influenced by that of the other agents in the network.
In this section, cell decomposition is combined with DP
to overcome these limitations, while addressing nonconvex
obstacles and rotations.

Let the configuration space C denotes the space of all
possible robot configurations. A C-obstacle is a subset of C
that causes collisions between the ith robot and at least one
obstaclein W, i.e.,CO; ={q; €C| Ai(q;) N O; # 3}, where
A;(q;) denotes the subset of W occupied by the platform
geometry A; when the robot is in the configuration q; [32].
Then, the union U?’:"ICOJ- is the C-obstacle region, and
the obstacle-free robot configuration space is defined as

No No
Crree =C \ |JCO; = q@i € ClA(w) N Jos| =2

j=1 j=1
(27)

In classical cell decomposition, the union of the cells
composing Cfree i8 used to construct a connectivity graph
representing the adjacency relationships between the cells.
This graph is then searched for the shortest path between
the cells containing the initial and final robot configura-
tions.

The methodology presented in this paper relies on the
computation of the C-obstacles corresponding to each ob-
stacle in W. This computation can be performed as ex-
plained in [32], by sliding the robot geometry A; along the
sides of each obstacle. When the robot is capable of rotat-
ing, the C-obstacles become three-dimensional polyhedra.
To use DP all concave C-obstacle are decomposed into a
finite collection of non-overlapping convex polygons (cells),
resulting in a set of L convex polygons K ={k1,.--, KL}
A line-sweeping algorithm can be utilized to compute K,
as illustrated in the sample workspace in Fig. 5.

Unlike classical cell decomposition, which decomposes
Cfree, this approach decomposes the C-obstacle region to
determine a consistent set of disjunctive inequalities. To
avoid all obstacles in W, the ith robot configuration must
satisfy the following inequalities

AV akait) > b (28)

¢=1,...,L1=1,...,8

where s is the number of sides of the ¢th cell, and aﬁ
and by are known constants defining the cell boundaries as
described in [3]. This set of inequalities states that qi(t)
must lie outside of all cells in K at time ¢.

For a network of N robots, inter-collision avoidance is
addressed by a set of inequalities that maintain a safety
distance between robot configurations at all times. Let pz
and p, denote the minimum safety distances in the z and
y directions, respectively, which guarantee that any two
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Figure 5. C-obstacle region decomposition for a robot with
geometry A.

robot geometries A; and A; will not collide. Then, for all
i=1,...,N,and j>i, the clause

(a(t) — 2;(8)] > pa V [z (8) — @) > pa V [i(t) = w5 (2)]
> py V [y5(t) — vi(B)] > py (29)

avoids collisions between any two robots 7 and j, at time
t.  The minimum-distance robots’ trajectories between
the set of initial and final configurations q:1(0),...,an(0)
and qi(ts), --- an(ts) is determined by minimizing the
L,-norm of the distance travelled by each robot defined as

1 o
J=— lim / Zrqui(t)ldt, (30)
0 =1

tf tg—00

where r is a weighting vector that represents the desired
tradeoff between translations and rotations. Using the
L,-norm in place of the traditional Lo-norm or Euclidian
distance gives rise to a MILP in place of a mixed-integer
quadratic program (MIQP), thus the solution can be easily
obtained by available CPLEX and Matlab algorithms. The
cost function in (30) can be easily modified to include the
cost of control usage, or to minimize the travel time in
place of distance (33].

Finally, the MILP representation of the obstacle and
collision avoidance problem is obtained by discretizing the
cost function and constraints with respect to time. Let
k=t/AT represents the k-sampling time, where AT is
the discretization interval, and the minimization of (30)
is transformed into a finite-horizon problem by choos-
ing M =t;/AT as an arbitrary large integer, and by
introducing a terminal cost pla(M)]. Then, the set
of collision-free minimum-distance trajectories of the N
robots, P={ai(1), - -- cqu(M=1),...,an(1),. .- canv (M-
1)}, is obtained by solving the following MILP in P:

N M
min {(b[Q(M)] + 2 Z I‘quz'(k)\} (31)

=1 k=1
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Figure 6. Sequence of steps for the minimum-distance trajectories of three robots computed via MILP.

subject to:

qi(k + 1) = Fai(k) + Gu;(k), Vi,k,
AV alhailk) > bu, ik,

=1 El=1;::8
[Il(k) i Ij(k)] > Pz \/ [zj(k) i xi(k)] > Pz, i’kvj > 1,
i (k) — y; (k)] > py \/[y; (k) — vi (k)] > py, Vi, k,j > i

where, the Jacobian matrices F and G for the robot’s dy-
namics in configuration space are obtained by a coordinate
transformation from (8).

4.3 Motion Planning Simulation Results

The effectiveness of the MILP solution is illustrated by
planning the trajectories of three rectangular robots in
the obstacle-populated workspace of Fig. 5. As shown
in Fig. 6, the robots’ initial and final positions are pur-
posely chosen such that the minimum-distance trajectories
intersect in the workspace. However, by accounting for
the robots’ dynamics and positions in time, the MILP ap-
proach computes minimum-distance trajectories that avoid
mutual collisions, as well as the obstacles. By this ap-
proach, non-holonomic dynamic constraints and multiple
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vehicles can be treated within a common trajectory plan-
ning framework that allows to simultaneously account for
concave robot and obstacle geometries.

5. Conclusions -

In this work we have presented a framework based on dis-
junctive programming for solving two different problems:
a connectivity problem and a motion planning problem. In
both scenarios not only have we presented a feasible solu-
tion, but have also allowed for new features to be taken into
account. For the communication part we are able to main-
tain connectivity between a base station and a moving tar-
get by interposing a connectivity chain of robots between
user and base station. This chain has the unique charac-
teristic that it is able to change configuration and adapt
depending on the situation, i.e., the number of robots nec-
essary to form the chain changes and not always the same
amount are used because not necessary, therefore giving
a more optimal solution. For the motion planning part,
thanks to the combined use of disjunctive programming
and cell decomposition, the dimensions and the orientation
of the robots are taken into account and hence a more
realistic model is given allowing inter-collision avoidance
in convex and nonconvex obstacles scenarios.

The main drawback of this technique is the time re-
quired for solving the optimizations. The dimensions of



the environment, the number of robots, the number of
obstacles together with all the constraints slow the simu-
lations and these issues become more critical when trying
to combine together the two problems solved in this pa-
per. However future work will be centered on extending
the proposed methodologies to three-dimensional scenarios
with UAVSs relays together with UGVs. Experimental de-
ployment of a robotic router network using the MARHES
multivehicle testbed [34] is also in our research agenda.

In conclusion, disjunctive programming in the context
of robotics is a powerful tool that provides a good modelling
representation of a class of real-world planning problems
with optimal results, as outlined in this paper.
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