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Decisions often involve the consideration of multiple cues, each of which may inform selection on the
basis of learned probabilities. Our ability to use probabilistic inference for decisions is bounded by
uncertainty and constraints such as time pressure. Previous work showed that when humans choose
between visual objects in a multiple-cue, probabilistic task, they cope with time pressure by discounting
the least informative cues, an example of satisficing or “good enough” decision-making. We tested two
rhesus macaques (Macaca mulatta) on a similar task to assess their capacity for probabilistic inference
and satisficing in comparison with humans. In each trial, a monkey viewed two compound stimuli
consisting of four cue dimensions. Each dimension (e.g., color) had two possible states (e.g., red or blue)
with different probabilistic weights. Selecting the stimulus with highest total weight yielded higher odds
of receiving reward. Both monkeys learned the assigned weights at high accuracy. Under time pressure,
both monkeys were less accurate as a result of decreased use of cue information. One monkey adopted
the same satisficing strategy used by humans, ignoring the least informative cue dimension. Both
monkeys, however, exhibited a strategy not reported for humans, a “group-the-best” strategy in which the
top two cues were used similarly despite their different assigned weights. The results validate macaques
as an animal model of probabilistic decision-making, establishing their capacity to discriminate between
objects using at least four visual dimensions simultaneously. The time pressure data suggest caution,
however, in using macaques as models of human satisficing.
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Everyday decision-making may require the use of multiple,
simultaneous cues with different diagnostic values. A person or
animal choosing between pieces of fruit, for example, may assess
their ripeness, symmetry, and abrasions, that is, the dimensions of
color, shape, and texture. Probabilistically, color may be a better
indicator of palatability than shape, which may in turn be more

important than texture. In the human cognitive literature, learning
the statistical properties of such cues is termed probabilistic infer-
ence (for reviews, see Fiser, Berkes, Orbán, & Lengyel, 2010 and
Ma, 2012).

The ability to make decisions based on probabilistic inference of
multiple, simultaneous cues, such as in our fruit example, has been
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studied extensively in humans (Gluck & Bower, 1988; Knowlton,
Squire, & Gluck, 1994; Medin, Wattenmaker, & Hampson, 1987;
Nelson, 1984). Much of that work focused on categorization, and
recent studies extended the approach to macaques. Presented with
stimuli consisting of multiple visual cues, some of which are
strong indicators of category (“criterial cues”), it was shown that
macaques infer and use the criterial cues to varying degrees
depending on task design and cue dimensionality (Couchman,
Coutinho, & Smith, 2010; Smith, Beran, Crossley, Boomer, &
Ashby, 2010; Smith et al., 2012). Sigala and Logothetis (2002),
similarly, trained macaques on a categorization task that required
probabilistic inference of two out of four cue dimensions. Ma-
caques can also infer the probabilities of visual cues that signify
various forms of reinforcement (negative vs. positive: Amemori &
Graybiel, 2012; risky vs. ambiguous: Hayden, Heilbronner, &
Platt, 2010; flavor and amount: Raghuraman & Padoa-Schioppa,
2014) or cues that are revealed sequentially (Kira, Yang, &
Shadlen, 2015; Yang & Shadlen, 2007). Furthermore, by using opt
out and bail out options as a measure of confidence, it has been
demonstrated that animals and humans have a probabilistic inter-
pretation of their solutions to such tasks (Kiani & Shadlen, 2009;
for a review of both humans and animals, see Kepecs & Mainen,
2014). The present study extends all this work to examine, in a
highly quantified task framework, the extent to which macaques
apply probabilistic inference in the naturalistic situation of decid-
ing between two objects that each consist of several visual fea-
tures, all of which have varying levels of learned importance.

Decisions based on multiple, simultaneous cues may need to be
made under conditions of uncertainty or time pressure. In the
example of choosing fruit, a fast decision may be necessary to beat
a conspecific to the best piece. Faced with such challenges, hu-
mans switch to satisficing strategies to reach decisions that are
“good enough”; although not necessarily optimal, they are satis-
factory and sufficient for the task at hand (Gluck & Bower, 1988;
Simon, 1955, 1956). Satisficing includes, for instance, the use of
heuristics or “rules of thumb” (Gigerenzer & Gaissmaier, 2011;
Rieskamp & Hoffrage, 2008). Human satisficing strategies during
probabilistic decision-making were studied recently by Oh and
colleagues (Oh et al., 2016) using tasks that involved four simul-
taneously presented dimensions of visual information. They found
that, under time pressure, humans adopt a “drop-the-worst” heu-
ristic by ignoring the least informative cue dimensions. This
change in strategy is accompanied by a shift in brain activity from
cortical to subcortical networks as indicated by functional MRI
(Oh-Descher, Beck, Ferrari, Sommer, & Egner, 2017). Another
common satisficing strategy is the “take-the-best” heuristic (Gig-
erenzer & Goldstein, 1996) in which subjects search through cues
from the most to least informative and stop when they find the first
cue that discriminates between the possible choices (Gigerenzer &
Goldstein, 1996; Karelaia, 2006; Newell, Weston, & Shanks,
2003).

The neural basis of probabilistic inference and satisficing could
be explored in more detail using rhesus macaques if we had a
better understanding of their behavior. Therefore, the goal of the
present study was to test two hypotheses:

Hypothesis 1: Rhesus macaques use probabilistic inference to
choose between stimuli that are each defined by jointly pre-
sented, statistically informative visual dimensions.

Hypothesis 2: They adopt satisficing strategies when making
those decisions under time pressure.

We trained macaques on the same decision-making task tested on
humans (Oh et al., 2016) that involved visual stimuli composed of
four, probabilistically weighted cue dimensions. Using psychomet-
ric and modeling approaches, we analyzed the animals’ strategies
for performing the task under low and high time pressure. Our
results supported both hypotheses, with the caveat that satisficing
strategies differ in some ways between rhesus macaques and
humans.

Method

Animals and Apparatus

Two female rhesus monkeys (Macaca mulatta; Monkey A, 6 kg,
and Monkey L, 8 kg) were tested in their cages using touchscreens
(Elo 1537L 15” Intellitouch SER/USB, Elo Touch Solutions, Inc.,
Milpitas, CA) mounted onto the cage using custom built attach-
ments. A tube above the screen delivered 1 cc of water reward for
every correct trial. The animals received at least 20 cc/kg of water
per day. If they did not earn this amount of water during a session,
they were provided with the remaining water afterward. They also
received supplemental fruit daily. Aside from water control, there
were no other modifications to the monkeys’ routine husbandry.
No invasive procedures were required, animals were pair-housed,
and environmental enrichment was provided. Experimental con-
trol, including stimulus and reward delivery, was performed using
Psychtoolbox in MATLAB (www.mathworks.com). All proce-
dures were approved by the Institutional Animal Care and Use
Committee at Duke University (protocol A079-17-03).

Task Overview

We used the same probabilistic decision-making task used in
Experiments 1 and 2 in the Oh et al. (2016) study except for slight
modifications to facilitate monkey testing (e.g., four possible lo-
cations of stimuli instead of two, to discourage spatial habits and
maintain attentiveness). Figure 1 illustrates the overall procedure.
A monkey viewed stimuli on its in-cage touchscreen. Trials started
automatically with a white cross appearing in the center of the gray
background for 0.7 s. When the cross disappeared, two 2.5 � 2.5
cm stimuli appeared in two of four possible quadrants. Each
stimulus was constructed of features that varied across four visual
dimensions (Figure 1A). The two stimuli remained visible for a
maximum duration termed the response window (details in next
paragraph). Before the response window elapsed, the monkey had
to select one of the stimuli by touching it (Figure 1B). If it did not,
the trial was aborted. On each trial, two stimuli were drawn
without replacement from the 16 possible stimuli (Figure 1C).
Distributions of touches to the target locations were distinct (Fig-
ure 1D). As soon as a touch was detected, the stimuli disappeared.
If the animal earned water reward, it was delivered immediately.
After a 2-s intertrial interval, the central cross reappeared to start
a new trial. Monkeys worked to satiation (�4 hr, several hundred
trials/day).

In each testing session, a single response window was used that
defined the time pressure. For “Low Pressure” (LP) sessions, the
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response window ranged from 1.75 to 2 s. For “High Pressure”
(HP) sessions, the response window ranged from .35 to .50 s. We
tested Hypothesis 1, which states macaques use probabilistic in-
ference to choose between stimuli that are each defined by jointly
presented, statistically informative visual dimensions, by analyz-
ing data from LP sessions. We tested Hypothesis 2, which states
that monkeys make these decisions under time pressure using
satisficing strategies, by comparing data between HP and LP
sessions.

Compound Visual Stimuli and Weighting

Each visual stimulus was a compound object consisting of four
individual visual features, which we refer to as cue dimensions,
each of which could take on one of two cue states (Figure 1A), as
follows: Color dimension: A stimulus could have a blue or red
background; Shape dimension: A stimulus could be a circle or a
square; Border dimension: A stimulus could be outlined in white
or black; and Orientation dimension: Lines within a stimulus could
be horizontal or vertical. Given the combination of these cue
dimensions and possible cue states, there were 16 unique com-
pound stimuli (Figure 1C). On a given trial in which two different
stimuli were presented, there were therefore 120 possible unique
pairs of compound stimuli.

An optimal decision to select one stimulus over another required
evaluation of evidence from the four cue dimensions and a com-

parison between the two different stimuli. Within a cue dimension
(e.g., color), each of the two possible cue states (blue or red) had
an assigned weight. The difference between these assigned weights
defined the net weight or relative importance for a cue dimension.
Table 1 shows all the assigned weights. In experiments with
Monkey A, for example, “blue” had an assigned weight of .9, and
“red” had an assigned weight of .1, giving the cue dimension
“color” a net weight of .8. At the same time, the cue dimension

Figure 1. Overview of the task and data collection. (A) The four cue dimensions and the cue states for each.
(B) Monkey A using the in-cage touchscreen setup. (C) All 16 possible compound stimuli. (D) Heat map of
responses around each of the four possible stimulus locations during a typical session. Solid lines indicate
boundaries of stimulus display (2.5 � 2.5 cm), and dotted lines show the allowed response area (4.4 � 4.4 cm).

Table 1
Visual Stimulus Parameters

Cue dimension Cue states

Assigned weights

Monkey A Monkey L

Color Blue .9 .4
Red .1 .6

Shape Circle .8 .3
Square .2 .7

Border White .7 .2
Black .3 .8

Orientation Horizontal .6 .1
Vertical .4 .9

Note. Each stimulus had four cue dimensions, each with two states.
Weights were assigned as shown. Between monkeys, the ordering of
importance of the cue dimensions was reversed, and, within each dimen-
sion, the ordering of the states was flipped.
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“border” had a net weight of .4 because the assigned weights for
white and black borders were .7 and .3, respectively. For Monkey
A, therefore, color evidence was more informative than border
evidence. Net weights were limited to four values, .2, .4, .6, or .8,
but the cue dimensions corresponding to those net weights were
reversed between the two monkeys, that is, in order of probabilistic
importance, color � shape � border � orientation for Monkey A,
but orientation � border � shape � color for Monkey L. Also,
within each dimension, the relative importance of each cue state
was flipped between the monkeys. In the color dimension, for
instance, blue had a higher weight than red for Monkey A but a
lower weight than red for Monkey L (Table 1; for details, see the
Training section in the following text).

The assigned weights of each cue state were independent and
additive, yielding a summed, total weight for each compound
stimulus. For each pair of stimuli in a trial, the sum of evidence
(SoE) in favor of one stimulus was the difference between its total
weight and that of the other stimulus. This SoE was used to
calculate the probability of receiving reward after touching a
stimulus as follows:

P(reward | SoE) � 1
1 � 10�SoE (1)

For each pair of stimuli, therefore, selecting the one with the
positive SoE (greater total weight) resulted in higher, above-
chance probability of reward; it was the correct decision for
optimizing reward. Performance was calculated on the basis of
making these correct decisions. Trials where the SoE was 0 were
ignored when calculating accuracy. Note, monkeys were most
likely to receive reward if they selected the stimulus with positive
SoE, but because reward was probabilistic, selecting that stimulus
might yield no reward, or selecting the other stimulus might be
rewarded. This reward contingency encouraged the animals to
make their decisions by combining the probabilistic information of
the stimuli, rather than on the basis of stimulus-response contin-
gencies. The latter would require memorization of 120 possible
pairs of compound stimuli.

Training

To counterbalance our experimental design, the two monkeys
learned cue dimensions with reversed order of importance and,
within each cue dimension, opposite weighting of cue states (Table
1). For example, color was the most informative dimension for
Monkey A (net weight � .8) but the least informative for Monkey
L (net weight � .2). Within the color dimension, blue was
weighted more than red for Monkey A but red was weighted more
than blue for Monkey L. The purpose of this manipulation between
monkeys was to control for any differences in visual saliency
within and across dimensions. Performance therefore benefited
from learning the probabilistic weights of the features regardless of
whether some features seemed more salient than others.

Neither of the monkeys had previous experience with this set of
visual cue dimensions. Both monkeys required several weeks of
training to learn the task (see Learning Phase in Results). Response
windows were set to 2 s during training, so that monkeys did not
experience time pressure until the later testing sessions. Monkey A
was the first one trained. Because this monkey was used to pilot
the task and settle on appropriate spatial, temporal, and visual

dimension parameters, we do not have a learning curve for it. For
the second one, Monkey L, we used constant parameters and
documented the learning curve thoroughly. After a monkey
reached asymptotic levels of performance, formal testing sessions
commenced, one per day.

Subjective Weights

A major goal of our analysis was to infer the subjective impor-
tance of the various experimental parameters on each monkey’s
decision-making. The central analytic approach was to perform a
logistic regression using variational Bayesian inference (Drugow-
itsch, 2013; Oh et al., 2016) to calculate subjective weights, the
inferred values assigned by each monkey to different experimental
parameters. Specifically, we analyzed the contribution of the four
cue dimension net weights (.2, .4, .6, and .8), as well as the six
possible spatial configurations of the stimulus pairs (up left–up
right, up left–down left, up left–down right, up right–down left,
up right–down right, and down left–down right). Although stim-
ulus location was irrelevant to reward probability, monkeys exhib-
ited varying degrees of preference for certain locations in each
location pair, a form of spatial bias likely related to body posture
and the arm used. After completing data collection, we calculated
the average location preference order across all trials for both
monkeys. To keep the direction of location preference consistent
between monkeys, the stimulus in the preferred location on a given
trial was treated as the positive response in the logistic regression.
This was done by first labeling the stimuli in the more and less
preferred locations as “Stimulus A” and “Stimulus B,” respec-
tively. Bayesian logistic regression was then performed to infer the
posterior probability of choosing Stimulus A, given all of a mon-
key’s selections on an experimental session. In this way, any
spatial biases would be realized positively in the “A” direction for
all location pairs and monkeys, independently of cue weight ef-
fects.

Details of the Bayesian logistic regression are provided in
Appendix 1. In brief, the analysis used the cue dimension net
weights and target location pairs for each trial, in each session, to
fit the monkey’s choice responses. The analysis yielded subjective
cue weights for each of the four cue dimensions and subjective
spatial weights for each of the six spatial location pairs that best
explained the monkey’s responses. As a measure of decision noise
and spatial bias, we calculated the square root of the sum of
squares (SRSS) of the subjective cue weights and subjective
spatial weights, respectively. To assess strength of the learned cue
weight associations, it is useful to compare the SRSS of cue
weights to that of an ideal observer. In related human literature,
humans tend to match their choice probabilities to the true out-
come probabilities (Oh et al., 2016; Vulkan, 2000). We therefore
chose to compare monkey performance to an observer that makes
decisions based on sampling from the true posterior, that is, on the
observed probability of outcomes. This idealized decision process
would yield SRSS � 1.095 (the norm of the net weights) and, if
nothing else affected performance, an accuracy of approximately
79% (the expected probability of reward). Decisions based on
inference of the underlying cue weights rather than reward prob-
ability would increase SRSS and accuracy above these levels.

To isolate relative differences in subjective cue weighting from
overall task knowledge, subjective cue weights were then normal-
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ized to their SRSS. Finally, the weights were scaled by the preci-
sion of the regression estimates for each session and averaged for
each cue to yield the weighted-mean normalized subjective cue
weight w� ci

and its uncertainty �w� ci
for that cue. Monkeys perform-

ing with variable degrees of decision noise but the correct relative
valuation of cues would have the same normalized subjective cue
weight (represented by a 0.2:0.4:0.6:0.8 ratio). For subjective
spatial weights, SRSS measured spatial bias, the a priori influence
of location before stimuli onset. Decisions made with no spatial
bias would yield SRSS � 0. Because the evidence was spatially
unbiased, spatially biased behavior would increase SRSS and
decrease accuracy.

Decision Model Comparisons

To determine which experimental factors were being utilized for
task performance, we searched a model space of 32 decision
strategies that accounted for every combination of cue dimension
and inclusion or exclusion of spatial location (similar to Oh et al.,
2016; Figure 2). Specific models of interest include an “optimal
compensatory strategy” of using information from all four cue
dimensions to make decisions (Figure 2, Models 15 and 31), the
“drop-the-worst” strategy used by humans under time pressure
(Figure 2, Models 11 and 27; Oh et al., 2016), and the “take-the-
best strategy” that searches through cue dimensions in descending
order of their assigned weights and stops on the first cue that
differentiates the two options (Figure 2, Models 16 and 32; Gig-
erenzer & Goldstein, 1996). The remaining 29 models comprised
all possible combinations of cue dimensions crossed (starred mod-
els in Figure 2), or not, with the six spatial location pairings. The
Bayesian regression described earlier (Drugowitsch, 2013) was
performed for all 32 possible decision strategy models to calculate
a lower bound on the marginal log probability of each model in
each session. To characterize decision strategy across multiple
sessions, these log model evidences were submitted to a Bayesian
model selection procedure (Stephan, Penny, Daunizeau, Moran, &
Friston, 2009). This approach fits a hierarchical model by treating
the decision strategy models as random effects that could vary
across sessions and estimates the protected exceedance probabil-
ities, which represent the probability that each given model is more
likely than others, corrected for the possibility that observed dif-
ferences are due to chance (Rigoux, Stephan, Friston, &
Daunizeau, 2014). The model with the highest protected ex-

ceedance probability was selected as the preferred decision strat-
egy model for a given monkey and time pressure. Protected ex-
ceedance probabilities were calculated using the spm_BMS
routine of the SPM12 software suite (http://www.fil.ion.ucl.ac.uk/
spm/software/spm12/).

Results

Learning Phase

Monkeys were initially trained on the LP version of the task.
The learning curve, measured as a fraction of correct responses, is
shown for Monkey L in Figure 3A. “Session 1” corresponds to the
first day of training. The power law fit shows a rapid increase early
in training as the animal began to recognize the probabilistic
importance of the different visual stimuli, followed by a more
gradual rise toward a steady state plateau. In Figure 3B-D, nor-
malized subjective cue weights are plotted against net weights for
three individual sessions (labeled with arrows in Figure 3A). Note
that spatial location was included in these regressions but not depicted
here. Early in training, this monkey heavily favored the third cue
dimension, which had net weight of 0.6, even though the fourth
dimension was more informative at net weight 0.8 (Figure 3B). In
time, the monkey appeared to recognize the importance of the fourth
cue dimension (Figure 3C), culminating in the correct ordering of cue
dimensions during steady state performance (Figure 3D). In the learn-
ing curve of Figure 3A, black dots indicate sessions in which the
monkey accomplished the correct ordering of cue dimensions. The
first occurrence of 3 consecutive days of correct ordering (Session 95
in Figure 3A) defined the end of the learning phase.

Through the rest of this report, data from the learning phase
were excluded. As an additional criterion, we excluded aborted
trials and each trial that immediately followed a no-response
aborted trial (n � 7,679 trials, 12.9% of all trials for Monkey A;
n � 13,958 trials, 14.5% of all trials for Monkey L), to include
only those trials performed at a similar state of alertness or en-
gagement with the task and allow for an accurate measure of
response time. Both monkeys were free to roam in their cage and
generally performed the task in “bursts” of trials, so this criterion
typically excluded the first in a string of completed trials. Exper-
imental sessions were excluded if the number of trials performed
was too low for the logistic regression to converge. The final data

Figure 2. Complete space of strategy models explored. Filled black circles indicate that the corresponding cue
dimension is included in the regression for the given model. Gray circles under Models 16 and 32 are used to
indicate that these models use a “take-the-best” strategy, where the highest valued cue dimension that differs
between both stimuli is used to make a decision.
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set consisted of 52,085 trials, with median of 396 (interquartile
range 204 to 700) trials per session from Monkey A and 68,631
trials, with median of 895 (interquartile range 466 to 1,252) trials
per session from Monkey L.

Steady-State Behavior at LP

Once trained, the monkeys continued to perform LP sessions
(Monkey A: 56 sessions, 27,773 total trials; Monkey L: 51 ses-
sions, 57,772 total trials). In these LP trials, Monkey A selected the
correct stimulus at a rate of 86.0%, and Monkey L was correct at
86.5%, with mean response times of 399 ms and 634 ms, respec-
tively. Across these trials, both monkeys accurately discriminated
between features in all four visual cue dimensions by inferring the
correct order of subjective cue (Figure 4). All subjective cue
weights were significantly different in a monotonic rising progres-
sion as a function of net weights (statistics are in the Satisficing
section, and numerical data are in Table 2 associated with that
section). Recall that the assigned dimension order of importance
and within-dimension cue feature weights were counterbalanced
between Monkeys A and L, so the ordering was not a salience
artifact in monkeys (e.g., if color happened to be easier to discern
than orientation of the lines). Both monkeys had an average SRSS

of subjective cue weights much greater than 1.095, implying that
they used probabilistic inference of cue weights to improve accu-
racy above the expected reward rate (see Method).

Performance Under HP

Under HP conditions, mean accuracies across all trials for
Monkeys A and L were significantly decreased to 77.23% (Wi-
lcoxon’s rank sum, Cohen’s d � �.230, z � 25.56, p � .0001) and
72.57% (Wilcoxon’s rank sum, Cohen’s d � �.387, z � 35.89,
p � .0001), respectively. The mean response times decreased to
353 ms (t test, Cohen’s d � �.354, t � 40.78, p � .0001) and 486
ms (t test, Cohen’s d � �.515, t � 50.26, p � .0001) over 48
sessions (24,312 total trials) for Monkey A and 21 sessions
(10,533 total trials) for Monkey L.

The degradation of performance in HP trials coincided with a
decreased ability of the monkeys to utilize and discriminate be-
tween the cue features. Figure 5 shows the psychometric functions
between the proportion of trials a stimulus was selected (ordinate)
versus its SoE (abscissa). The greater the SoE of a stimulus (recall
Equation 1), the more likely it was to be selected. The slope at the
inflection point is a measure of the perceptual sensitivity to SoE as a
factor in performance. In HP sessions (Figure 5, white circles), the

Figure 3. Performance of Monkey L during training. (A) Fraction correct across sessions, fit with a power law
curve. Starting with first exposure to the task, performance in 116 sequential sessions are shown (except for six
sessions omitted due to insufficient trials for regression convergence). Black circles indicate sessions in which
subjective cue weights were properly ordered according to net weights (B-D). Examples of improvement in cue
weight ordering during training. Normalized subjective cue weights are plotted against net weights for (B)
Session 46, (C) Session 83, and (D) Session 116. In panel “A,” the data points corresponding to these sessions
are labeled b, c, and d, respectively. All training sessions were low pressure trials.
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psychometric slopes clearly decreased relative to LP sessions (Figure
5, gray circles) for both monkeys. That is, under time pressure,
performance was still driven by SoE, but with less sensitivity to it.

Multiple hypotheses could account for these effects of time pres-
sure on performance. One possibility is that the monkeys occasionally
made cue-independent decisions in HP trials due to lapses in attention
(Wichmann & Hill, 2001). This predicts, however, that the psycho-

metric curves would not asymptote to zero or one, and yet they do
(Figure 5). Hence this “lapse” hypothesis was ruled out. Three other
hypotheses and their predictions are as follows:

(1) Satisficing: Limitations in cognitive capacity under time
pressure could cause subjects to change how they eval-
uate the cue dimensions. The least informative cue di-

Figure 4. Performance for Monkey A (top) and Monkey L (bottom) at steady state. Left: mean normalized
subjective cue weights (w� ci

) across low pressure sessions. Error bars, smaller than the symbols, indicate
uncertainty (�w� ci

). Right: Mean (and standard error of the mean) of the SRSS of subjective cue weights across
low pressure sessions. The high SRSS levels, much greater than 1.095 (dotted line), indicates the use of
probabilistic inference for high accuracy rather than the matching of expected reward rates.

Table 2
Data Shown in Figure 6, Plus Effect Sizes (Cohen’s d) for High Pressure–Low Pressure Difference at Each Net Weight

Net weights

Monkey A Monkey L

.2 .4 .6 .8 .2 .4 .6 .8

Low pressure condition N � 56 N � 51
M, w� ci

.0797 .3213 .5630 .7395 .2151 .4124 .5877 .6472
Uncertainty, �w� ci

.0040 .0038 .0037 .0037 .0029 .0030 .0030 .0030
High pressure condition N � 48 N � 21
M, w� ci

.0740 .3087 .5980 .6861 .1984 .3652 .6027 .6045
Uncertainty, �w� ci

.0047 .0046 .0045 .0045 .0090 .0091 .0093 .0092
Cohen’s d �.0867 �.1952 �.5487 �.8372 �.2451 �.6854 �.2165 �.6182
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mension could be ignored, for example, as found by Oh
et al. (2016). Such satisficing strategies would predict
changes in the strengths or ordering of the normalized
subjective cue weights.

(2) Decision noise: Time pressure may introduce more
noise, or randomness, into the decision-making process.
This would predict a decrease in the SRSS of subjective
cue weights under time pressure, with no effect on the
relative strengths or ordering of the normalized subjec-
tive cue weights.

(3) Biased priors: When evidence is weak due to time
pressure, subjects might rely more on a priori prefer-
ences. Here, we consider priors on stimulus locations,
that is, the animals’ spatial biases. Biases toward these
priors under time pressure would predict increases in the
SRSS of subjective spatial weights.

These three hypotheses are not mutually exclusive. In the follow-
ing sections, we consider the evidence for each of them.

Satisficing

As a first step in determining whether the monkeys used satis-
ficing strategies to change their relative weighting of cue dimen-
sions under time pressure, we directly compared the individual
subjective cue weights between LP and HP sessions (Figure 6).
Specifically, the precision-weighted means of each (normalized)
subjective cue weight was compared four times: between the cue
dimensions within the LP or HP condition (three comparisons),
and between the LP and HP condition for each cue dimension (one
comparison), yielding a corrected criterion level of p � .0125. The
null hypothesis—no effect of time pressure, that is, HP condi-
tion—predicts significant differences for the first three compari-
sons (clear ordering of the subjective cue weights) but no signif-
icant difference for the fourth comparison (no effect of the HP
condition on subjective cue weights). In Figure 6, we label each
result that deviated from this null hypothesis. For Monkey A, the
first three comparisons (across cue dimensions) were all signifi-
cant, as expected, in both the LP and HP conditions (t tests, all p �
.0125). That is, subjective cue weights were ordered systematically

Figure 5. Performance as quantified by the psychometric curves for selecting a stimulus as a function of
evidence for it (sum of evidence [SoE]), across all low pressure (gray) and high pressure (white) trials. The
shallower the slope at SoE � 0, the less sensitive the performance was to SoE.

Figure 6. Mean normalized subjective cue weights (w� ci
) for low pressure (Low Pressure [LP]; gray) and high

pressure (High Pressure [HP]; white) sessions for each monkey. Arrows and labels show pairs of values that
violated the null hypothesis in that they were significantly different between the LP and HP conditions (�) or not
significantly different across dimensions (nsd). Error bars, smaller than the symbols, indicate the uncertainty
(�w� ci

). Note, the LP data are the same as in Figure 4, reproduced here for direct comparison with the HP data.
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as a function of net weights. The fourth comparison (LP vs. HP)
was not significant for the lower two dimensions (p � .0125) but
was significant for the higher two dimensions. The subjective cue
weight dropped in the HP condition for net weight � .8 (p �
4.00 � 10�8) and rose for net weight � .6 (p � 8.54 � 10�15),
bringing the two subjective weights closer together. For Monkey
L, all comparisons across cue dimensions were significant in LP
sessions (p � .0125). During HP sessions, however, the subjective
cue weights for net weights .6 and .8 were not significantly
different from each other (p � .89), as if the monkey treated them
the same. This was due to a significant drop in subjective weight-
ing for net weight .8 in HP sessions (p � 1.74 � 10�4). A similar
drop was found for weight .4 (p � 4.65 � 10�5), but no HP versus
LP difference was found for weights .2 and .6 (p � .0125). The
numerical data from Figure 6 are listed in Table 2. The common
finding between the two monkeys, therefore, was a shift in relative
subjective cue weighting for the top cue dimensions, reducing (or
in Monkey L, eliminating) the subjective difference between them.
This “group-the-best” satisficing strategy would serve to reduce
the dimensionality of the task from four sources of probabilistic
information to three.

We then examined whether this “group-the-best” effect was
present at the level of individual sessions. For each session, we
calculated the difference in subjective cue weights for the .6 and .8
cue dimensions. Smaller differences would represent closer sub-
jective weights and more of a grouping effect. We found that these
differences were significantly smaller in the HP condition for both
monkeys (Monkey A: means .153 in HP vs. .228 in LP, Cohen’s
d � .406, p � .041; Monkey L: means �.0245 in HP vs. .0655 in
LP, Cohen’s d � .779, p � .00370; t tests). To compare the effects
for both monkeys directly, we performed a two-factor analysis of
variance on the differences using monkey identity and time pres-
sure condition as factors. Both main effects were significant, due
to smaller overall differences for Monkey L (F � 43.16, p �
5.76 � 10�10) and smaller overall differences in the HP condition
(F � 10.08, p � .00178). The interaction was not significant,
meaning that the test found no difference in HP versus LP effects
between monkeys (F � .0899, p � .765). In sum, this session-by-
session analysis confirmed that both monkeys used a “group-the-
best” strategy under high time pressure.

When analyzing the same task in humans, Oh et al. (2016)
applied Bayesian model selection analyses to infer how strategies
changed in HP versus LP conditions. This approach evaluates
strategies that involve using subsets of the visual cues (Figure 2).
Under time pressure, humans consistently resorted to a “drop-the-
worst” satisficing strategy (Oh et al., 2016). We applied the same
analysis to the data from our monkeys across all experimental
sessions in the HP and LP conditions. Figure 7 illustrates the
protected exceedance probabilities calculated for each decision
model strategy. For Monkey A (Figure 7A), the maximum mar-
ginal likelihood strategy in the LP condition (gray bars) was Model
31, in which all four cue dimensions are used with spatial bias.
Under time pressure (HP condition, white bars), however, Monkey
A shifted to Model 27, the “drop-the-worst” strategy with spatial
bias. Monkey L (Figure 7B) did not exhibit a significant shift in
strategy that could be captured by these models. Its preferred
strategy for LP and HP was Model 31. In sum, both animals used
a “group-the-best” satisficing strategy for probabilistic decision-

making under time pressure, as described earlier, but Monkey A
also used a “drop-the-worst” strategy as found for humans.

Decision Noise

To evaluate whether increases in decision noise affected perfor-
mance in HP sessions, we calculated the average SRSS of the
subjective cue weights for LP and HP sessions for both monkeys
(Figure 8). In this pooled data, the average SRSS decreased sig-
nificantly in HP sessions for Monkey L (Figure 8, right; mean
SRSS � 1.65 for HP and 2.08 for LP, Cohen’s d � �.909,
Wilcoxon’s rank sum, z � 2.21, p � .027) but not for Monkey A
(Figure 8, left; mean SRSS � 2.22 for HP and 2.48 for LP,
Cohen’s d � �.354, Wilcoxon’s rank sum, z � 1.96, p � .501).
However, as will be shown in the Response Time Effects section,
Monkey A did show effects of decision noise when controlling for
response time. To a modest degree, therefore, increased decision
noise was a factor in the monkeys’ decision-making under time
pressure.

Biased Priors

If monkeys were spatially unbiased, we would expect an even
distribution of stimulus location selections. However, even in LP
sessions, both monkeys showed consistent spatial preferences
(Figure 9A, gray). They were biased toward selecting stimuli in the
upper two quadrants of the screen and to the right for Monkey A
or the left for Monkey L. This is counterproductive because
stimulus locations are irrelevant to the probability of receiving
reward. The reasons for these biases are unknown but may relate
to individual handedness or postures while using the touchscreen.
In HP sessions (Figure 9A, white), the innate spatial biases were
accentuated. The resulting reduction in performance was evident
upon recalculating the psychometric functions of Figure 5 with

Figure 7. Protected exceedance probabilities for all 32 strategy models
during low pressure (gray) and high pressure (white) sessions for (A)
Monkey A and (B) Monkey L.
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respect to selection of the stimulus in each pair that was at the
more-preferred location (termed “Stimulus A”; Figure 9B). Not
only did the psychometric slope decrease under HP, the inflection
point exhibited a negative shift, indicating elevated decisions to
preferentially located Stimulus A even when cue dimension evi-
dence (SoE) was against it (�0). The contribution of prior biases
to performance under time pressure is summarized by the SRSS of
subjective spatial weights (Figure 9C), which increased signifi-
cantly in HP sessions for both monkeys (Monkey A: means 2.59 in
HP and 1.16 in LP, Cohen’s d � 1.355, z � 5.77, p � 7.75 �
10�9; Monkey L: means 2.53 in HP and 0.988 in LP, Cohen’s d �
1.798, z � 4.15, p � 3.32 � 10�5; Wilcoxon’s rank sum tests).
Hence, one way that the monkeys compensated under high time
pressure was by exaggerating their biased priors for stimulus
location.

Response Time Effects

One consequence of time pressure is shortened durations for
viewing the stimuli. Having less time to see the stimuli could, by
itself, worsen performance metrics such as accuracy, decision
noise, and spatial bias. Viewing duration had an upper bound of
the response window, but on any particular trial, it was truncated
by the monkey’s response time (latency between onset of the
stimuli and touching the screen). Therefore, we compared data
from LP and HP trials matched by response times, and thus
viewing times, to see whether the effects of time pressure on
accuracy, decision nose, and spatial bias were still present (Figure
10). For a list of all the numerical data from Figure 10, see Table
A2 in Appendix 2. Specifically, we compared performance accu-
racy (Figure 10, top), SRSS of subjective cue weights (Figure 10,
middle), and SRSS of subjective spatial weights (Figure 10, bot-
tom) in LP versus HP trials within equal-sized response time bins
(bootstrapping, 10,000 resamples with replacement, using p �
.0033 criterion to correct for the 15 LP–HP comparisons in each
plot). The number of trials in each bin was set to the mean number
of trials in LP and HP sessions for each monkey (Monkey A: 496
trials/bin for LP and 506 trials/bin for HP; Monkey L: 1132
trials/bin for LP and 502 trials/bin for HP). At many of the
response time bins analyzed, both monkeys had lower accuracy,

lower SRSS of subjective cue weights, and higher SRSS of sub-
jective spatial weights in HP compared with LP trials (Figure 10).
Hence the effects found in HP trials were not just the equivalent of
a data analysis that excluded slow trials. Furthermore, the effects
of time pressure were not due to limited sensory exposure in HP
trials but were consistent with changes in behavioral and cognitive
strategies that allowed monkeys to adapt to the context of high
time pressure during the session. Note that when the results are
broken down by response time, the variability in SRSS of subjec-
tive cue weights for Monkey A explains the negative result in this
animal’s pooled data (Figure 8, left). The finer-grained analysis of
Figure 10, middle, demonstrates that at nearly all response times,
decision noise increased (i.e., SRSS of subjective cue weights
decreased) similarly in HP trials for both monkeys.

Discussion

Two rhesus macaques were trained to perform discrimination
decisions accurately by evaluating compound visual stimuli and
probabilistic feedback under different levels of time pressure. A
variational Bayesian regression was used to assess the monkeys’
subjective weighting of each dimension of the compound stimuli
as compared with the objective weight assignment. For LP ses-
sions (response window of 1.75 s to 2 s), both monkeys performed
the task accurately by correctly ranking the relative importance
each cue dimension. This supported our first hypothesis, that
rhesus macaques use probabilistic inference to choose between
stimuli that are each defined by jointly presented, statistically
informative visual dimensions. Importantly, the visual cues com-
bined to form discrete objects much the same way that colocalized
features define objects of interest in a monkey’s environment (e.g.,
a piece of food or a face). This contrasts with previous work that
used probabilistic cues to study categorization of single objects
(Couchman et al., 2010; Sigala & Logothetis, 2002; Smith et al.,
2010), reinforcement context (Amemori & Graybiel, 2012;
Hayden et al., 2010; Raghuraman & Padoa-Schioppa, 2014), or the
gradual accumulation of evidence (Kira et al., 2015; Yang &
Shadlen, 2007). Our data contribute to a quantitative understand-
ing of how macaques use probabilistic inference to compare and

Figure 8. Mean square root of the sum of squares (SRSS) of subjective cue weights across low pressure (LP;
gray) and high pressure (HP; white) sessions for each monkey. The mean SRSS decreased significantly (p � .05)
under time pressure for Monkey L (right) but not Monkey A (left). Error bars indicate standard error of the mean.
Dotted line at 1.095 indicates the SRSS of assigned net weights. Note, the low pressure data are the same as in
Figure 4, reproduced here for direct comparison with the high pressure data.
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choose between the types of visually complex objects they natu-
rally encounter.

Under HP (response window �500 ms), the animals still
performed the task, but at lower accuracy. Several factors
accounted for this change in performance under time pressure.
First, decision noise increased, as indicated by a drop in the
SRSS of subjective cue weights. Behaviorally, this translates to
a higher degree of randomness in choices under pressure. Sec-
ond, spatial biases increased, as indicated by a rise in the SRSS
of subjective spatial weights. Even though spatial biases were
always counterproductive (stimulus location was not a factor in
correct decision-making), both monkeys exhibited a baseline
level of bias even during low time pressure sessions. Under
high time pressure, the same biases were present, but accentu-

ated. Third, satisficing strategies emerged. Monkey A showed
evidence of a “drop-the-worst” satisficing strategy under high
time pressure as found in humans (Oh et al., 2016): The least
important cue dimension was ignored in favor of more infor-
mative dimensions. Also found in this monkey, and even more
so in Monkey L, was evidence for a “group-the-best” strategy,
in that the subjective weights of the top two cue dimensions
converged toward each other. Finally, all these effects were
categorical, influenced by the context of performing decisions
in low- versus high-pressure sessions. They were not simply
artifacts of making responses more quickly as demonstrated by
response time analyses. The results therefore supported our
second hypothesis, that rhesus macaques adopt satisficing strat-
egies when making probabilistic decisions under time pressure,

Figure 9. Spatial effects during low pressure (LP; gray) and high pressure (HP; white) sessions for each
monkey. (A) Overall fraction of trials in which a stimulus at each location was selected in LP and HP trials.
UL � up left; UR � up right; DL � down left; DR � down right. (B) Psychometric curves for LP and HP trials
for Stimulus A, the stimulus within each pair that was in the more-preferred location. (C) Square root of the sum
of squares of subjective spatial weights in LP and HP trials.
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but showed, as well, that satisficing is only one of several
factors influencing the behavior.

A limitation of our approach was that our visual cue dimensions
were selected to be readily distinguishable but not to be of equal
salience. It is possible that some cues, for example, orientation or
border, were less visually salient to the macaques than others, for
example, color or shape. These differences might have influenced
performance. We mitigated this potential confound, however, by
counterbalancing all of the visual stimulation between the two
monkeys. It appears that this worked well because nearly all results
were similar between the monkeys, indicating that they learned
and used the probabilistic information in the cues despite any
differences in salience. Specifically, even if some cues were less
salient than others, both monkeys still sorted out the rankings of
each cue dimension in both the LP condition (Figures 5, 7, 8, 9,
and 10, gray data) and HP condition (Figures 5, 8, 9, and 10, white
data). The only major difference between the monkeys was the use
of a “drop-the-worst” satisficing strategy in Monkey A but not in
Monkey L (Figure 7). It is possible that this difference was
facilitated for Monkey A by assignment of the lowest probabilistic
information to a cue (orientation) that may have been less salient
than the others. We did not attempt to equalize salience between

the visual dimensions out of concern that we might influence the
monkeys’ judgments about the cues through repeated, preliminary
testing to titrate salience levels, which might have required more
exposure to some cues than others. Another concern was how often
(or whether) we would need to interrupt data collection on the task
to retest and potentially recalibrate salience levels. We therefore do
not know, quantitatively, the extent to which visual salience con-
tributed to the difference in decision strategies observed in HP
conditions. It is not unusual for two monkeys in a study to have
different levels of performance and apparently different strategies
in a highly demanding task for reasons that are not definitively
resolved (Couchman et al., 2010; Shields, Smith, Guttmannova, &
Washburn, 2005). We do see it as advisable in follow-up work,
however, to equalize salience across cue dimensions or to vary
salience systematically as a trade-off with probabilistic informa-
tion to understand how the two factors interact in macaque
decision-making.

In the human literature, probabilistic inference has been studied
with nuanced categorization paradigms, such as the weather-
prediction task, that include manipulation of task statistics (Gluck
& Bower, 1988; Knowlton et al., 1994). Studies on humans using
the present task showed that they infer the probabilistic values of

Figure 10. Response time effects for low pressure (gray) and high pressure (white) trials. Response time bins
(x axis) are of equal size within a condition, centered at equal intervals. As a function of response time for
Monkey A (left) and L (right), the graphs plot accuracy (top row), square root of the sum of squares of subjective
cue weights (middle row), and square root of the sum of squares of subjective spatial weights (bottom row). Error
bars are standard deviations. � p � .0033.
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the different visual cues (Oh et al., 2016) and that prefrontal,
parietal, and subcortical brain regions encode the inferential oper-
ations (Oh-Descher et al., 2017). Comparatively, our macaques
exploited stimulus probabilities as humans did, but more slowly,
requiring multiple sessions of training to learn the cue–probability
associations (Figure 3). After they learned the associations, we did
not manipulate task statistics because the goal was to achieve
stable, not malleable, probabilistic decision-making to isolate the
influence of time pressure. Paradigms more akin to classical prob-
abilistic categorization, such as a weather-prediction task modified
for macaques (Yang & Shadlen, 2007), were used previously to
focus on probabilistic reasoning itself, its flexibility, and its neural
correlates (Kira et al., 2015). Yang and Shadlen (2007, p. 1079)
concluded that their results “. . . demonstrated a crude capacity for
probabilistic inference in monkeys.” Our main purpose was to
build on this previous conclusion, using a more naturalistic task in
which macaques simply chose between visual stimuli, as a way of
studying the animals’ satisficing strategies. Given that we did not
manipulate task statistics, the specific type of probabilistic infer-
ence we documented might be more precisely termed “probabilis-
tic preference,” in that it was used to select the preferred stimulus
(in terms of likelihood of reward). This alternative term, however,
is already in use for other purposes in the literature (Vitelli,
Sørensen, Crispino, Frigessi, & Arjas, 2018). All of these consid-
erations should be kept in mind when comparing the present work
to previous studies of probabilistic reasoning in macaques and
humans.

Decision Noise and Spatial Bias

One of the nonsatisficing factors that influenced behavior under
time pressure, decision noise, is well known to affect the selection
of visual stimuli in macaques (reviewed in Gold & Shadlen, 2007),
although it had not been evaluated previously in the conditions of
our study, namely, probabilistic decision-making across multiple
visual dimensions. Time pressure caused approximately a doubling
of decision noise for both monkeys (halving of SRSS of subjective
cue weights) across many response times (Figure 10, middle). For
one monkey, a significant, smaller effect was evident even in its
overall pooled data (Figure 8, right). The other nonsatisficing
factor that was modulated by time pressure, spatial bias, mani-
fested as an increased reliance on favored spatial locations. The
specifics of this spatial bias may be partially explained by the
in-cage experimental setup. The stimulus locations for each mon-
key’s biases roughly correspond to both the handedness and height
of each monkey. Decisions may have been made based on the
effort required to make the appropriate reach, with further reaches
judged as less valuable (Morel, Ulbrich, & Gail, 2017). Indeed, our
behavioral results provide evidence that the monkeys applied a
subjective value to the spatial location of onscreen stimuli that
became more important to them under time constraints. Moreover,
the time pressures used in this study may approach the physiolog-
ical limit for a macaque to process the visual information and
physically reach toward the stimulus. At high speeds, the use of a
priori biases becomes especially important when executing a quick
reach (Wolpert & Landy, 2012). Further studies may address this
by either continuing to use touch responses but including varia-
tions of the spatial presentation of stimuli, or using eye movements
to report decisions.

Satisficing

The “drop-the-worst” strategy observed in Monkey A is consis-
tent with satisficing exhibited in the same task in humans (Oh et
al., 2016). By selectively discounting less valuable information,
the cognitive load for decisions is lowered. In addition, both
monkeys showed a “group-the-best” strategy, reducing or elimi-
nating the difference in subjective weights attributed to the top two
stimulus dimensions under time pressure. Similar to a “take-the-
best” strategy, the end result is to save time by focusing on the
dimensions of information that are most valuable. Unlike a “take-
the-best” strategy, however, this “group-the-best” strategy serves
to categorize the two best dimensions together, evaluate this new
category together with the lower two dimensions, and thus effect
a form of dimensionality reduction. Grouping of the two best
dimensions was manifested as a steady behavior exhibited across
trials as the sessions unfolded. Human subjects are known to
improve on “take-the-best” strategies by exploiting confirming
evidence within trials (Karelaia, 2006; Newell et al., 2003). In our
task, this would be revealed as selection based on a stimulus’s top
two cue dimensions (Strategy 5/21, without/with spatial regres-
sors, in Figure 2), but we found no evidence for such a strategy in
our monkeys (Figure 7).

The differences in type and degree of satisficing strategies
between Monkeys A and L may suggest that satisficing in ma-
caques may be more idiosyncratic than in humans, but such a
conclusion has two caveats. First, our sample size (n � 2 mon-
keys) was much smaller than that tested in studies of human
satisficing, for example, Oh et al. (2016; 46 humans). Second,
humans also exhibit considerable intersubject variability in their
satisficing behavior. On an individual basis, approximately 32% of
participants studied by Oh et al. (2016) showed the “drop-the-
worst” strategy under time pressure, whereas 26% of individuals
continued to use the full cue integration strategy and thus failed to
satisfice at all (author Oh-Descher, personal observation). It is
possible, of course, that the latter group may have learned to
satisfice in the task if given more than one session to perform it.
Individual use of a “group-the-best” strategy was not examined in
humans (Oh et al., 2016). Satisficing is therefore variable in both
species, and comparisons between them need to consider the
strengths and limitations inherent to the study designs used for
each species (e.g., few subjects in macaque studies and few testing
sessions per subject in human studies).

Potential Neural Mechanisms

Studies of the neural basis of probabilistic inference and uncer-
tain decision-making in humans have used functional MRI to
identify several areas of interest (Behrens, Woolrich, Walton, &
Rushworth, 2007; Gold & Shadlen, 2007; Knowlton, Mangels, &
Squire, 1996; Oh-Descher et al., 2017; Poldrack et al., 2001;
Shohamy, Myers, Kalanithi, & Gluck, 2008). However, these data
are limited by both the temporal and spatial resolution of the
blood-oxygen-level dependent signal. Animal models and invasive
techniques allow for a finer grained analysis of the underlying
neural mechanisms. Research into neural correlates of decision-
making in macaques is extensive and has revealed that the sub-
jective value of decisions can be tracked at the single neuron level
in the lateral intraparietal area (Platt & Glimcher, 1999; Roitman
& Shadlen, 2002; Rorie, Gao, McClelland, & Newsome, 2010) and
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prefrontal cortex (Kim & Shadlen, 1999). Furthermore, lateral
intraparietal area neurons are able track the accumulation of evi-
dence across sequentially presented visual cues (Kira et al., 2015;
Yang & Shadlen, 2007). The present work demonstrates the fea-
sibility of extending this research to neural studies of probabilistic
visual discrimination under LP and HP. An important caveat,
however, is that not all macaques react to high time pressure with
the human “drop-the-worst” strategy. If the aim is to test that form
of satisficing, monkeys should be prescreened to find those that
exhibit it. Comparing neural activity between satisficing strategies
would be informative too, and macaques appear to provide the
opportunity to compare at least the “drop-the-worst” and “group-
the-best” strategies, sometimes in the same subject (such as Mon-
key A in our study).

Conclusion

The present work explored the psychophysics of making deci-
sions between objects based on probabilistic visual cues in rhesus
macaques. We found similarities between macaque behavior and
previously reported human behavior, in that both species can
perform probabilistic discrimination between visual stimuli and
can satisfice under time pressure, in some cases even using the
same strategy (“drop-the-worst”). We found differences as well,
likely reflecting a mix of real interspecies differences and neces-
sary task design and sample size differences. Future work that
compares macaques and humans with even more closely matched
experiments, complemented by computational models that probe
and compare the underlying algorithms used by each species,
would help to address unresolved issues. Overall, our results
provide support for using macaques to study the neural basis of
probabilistic decision-making and satisficing under time pressure.
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Appendix 1

Details of the Bayesian Logistic Regression

Regressors for the effect of cue dimension net weights were
coded into a T � 4 matrix, XC, with columns for each dimension
(1 through 4; color, shape, orientation, and border) and rows for
each trial (up to T total trials per session). If WAi,j and WBi,j are the
assigned weights of the cue state on trial i in cue dimension j for
Stimuli A and B, respectively, then the elements of XC are defined
as follows: XCi,j � 1 if WAi,j �WBi,j, XCi,j � �1 if WAi,j � WBi,j,
and XCi,j � 0 if WAi,j � WBi,j. The effect of spatial location was
entered into the regression by assigning each of the six location
pairs a unique row vector in a T � 6 matrix XS. The row vectors
contained five zeros and a single entry of ‘1’ in a column unique
to the stimulus location pair. This coding scheme allows location
pairs to be treated as discrete categorical variables, while returning
continuous numerical coefficients indicating the degree of spatial
bias through regression.

Logistic regression was performed for each experimental ses-
sion, fitting cue states and spatial locations in matrix X � [Xc, Xs]
to a T � 1 response vector. Each response was 1 if stimulus A was
selected or �1 if Stimulus B was selected. The regression returned
model parameters by fitting the following hierarchical model (Dru-
gowitsch, 2013):

P(select A | X, wout) � 1
1 � e�(Xwout)

(2)

P(wout | �) � �(wout | 0, a�1I) (3)

P(�) � Gamma(� |a0, b0) (4)

where I is the 10 � 10 identity matrix. The regression returned
estimated coefficients in 10 � 1 vectors wout, and precisions in
Vn

�1. The elements of wout and Vn
�1 each correspond to cue and

spatial dimensions in the columns of XC and XS. The values of the
hyper parameters a0 and b0 were set in accordance with an em-
pirical Bayesian approach. First, wout was calculated for each
session using relatively uninformative hyperparameters (a0 �
0.01, b0 � 0.0001). Then all regressions were run again with a0 �
1 and the value of b0 estimated as the variance of wout across all
sessions individually for each monkey (b0 � 0.729 for Monkey A
and b0 � 0.382 for Monkey L). This strategy selected an expo-
nential conjugate prior on 	 with the appropriate mean.

To calculate subjective weights, each wout was converted to
exponential base 10 in vector wn

� , (for experimental session n) to

remain consistent with the base used on each trial to calculate
reward probability:

wn
* � log10e

wout (5)

Subjective weights were then divided into sets corresponding to
the four cue dimensions (subjective cue weights wn,C

� ) and six
spatial location pairs (subjective spatial weights wn,S

� ). For each
experimental session, the square root of the sum of squares (SRSS)
of subjective cue weights and subjective spatial weights were
calculated, respectively, as follows:

SRSSn,C � |wn,C
* | ���

i�1

4

wn, Ci

* 2 (6)

SRSSn,S � |wn,S
* | ���

j�1

6

wn, Sj

* 2 (7)

To compare relative changes in subjective cue weights between
HP and LP conditions, the weights in each session n and cue
dimension i were normalized by the mean SRSS across all sessions
both conditions as follows:

ŵn,Ci
�

wn,Ci

*

1
N�

n
SRSSn,C

(8)

where N is the number of experimental sessions in the given
condition. This normalization controls for the absolute magnitude
of the subjective weights to isolate the relative importance between
the weights. Finally, to account for variability in precision (Vn,Ci

�1 ),
the weighted mean of each normalized subjective cue weight, w� ci
and its corresponding uncertainty �w� ci

were calculated as follows:

w�Ci
�

�
n

Vn,Ci

�1 ŵn,Ci

�
n

Vn,Ci

�1
(9)

�w�Ci
� � 1

�
n

Vn,Ci

�1
(10)

Because all the regressors were binary, w� ci
provides a measure

of the relative subjective importance of each cue dimension and
spatial location pair.

(Appendices continue)
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Table A2
Data From Figure 10

Monkey A Monkey L

Low pressure High pressure

Cohen’s d

Low pressure High pressure

Cohen’s dM SD M SD M SD M SD

Fraction Correct
0.880 .015 0.731 .021 �8.204 .912 .013 0.676 .022 �14.626
0.865 .016 0.755 .020 �6.189 .899 .014 0.693 .022 �12.245
0.841 .017 0.759 .020 �4.478 .896 .014 0.756 .012 �8.616
0.906 .014 0.748 .020 �9.295 .888 .015 0.722 .021 �9.803
0.856 .016 0.782 .019 �4.203 .905 .014 0.738 .021 �10.406
0.878 .015 0.762 .020 �6.517 .914 .013 0.730 .021 �11.694
0.895 .014 0.758 .020 �7.944 .884 .015 0.772 .019 �6.860
0.881 .015 0.775 .019 �6.115 .887 .015 0.779 .019 �6.725
0.860 .016 0.802 .018 �3.340 .878 .015 0.785 .019 �5.622
0.863 .016 0.810 .018 �3.139 .878 .015 0.778 .019 �5.972
0.868 .016 0.778 .019 �5.129 .866 .016 0.799 .019 �3.984
0.883 .015 0.832 .017 �3.181 .876 .015 0.791 .019 �5.111
0.883 .015 0.826 .018 �3.464 .872 .016 0.800 .019 �4.380
0.843 .017 0.840 .017 �.143 .853 .017 0.803 .018 �2.888
0.852 .016 0.817 .018 �2.003 .869 .016 0.815 .018 �3.254

Square root of the sum of squares of subjective cue weights
2.463 .282 1.334 .142 �5.066 2.007 .223 1.299 .169 �3.404
2.057 .224 1.361 .147 �3.684 2.041 .182 0.916 .105 �6.922
2.440 .226 1.304 .118 �6.328 1.976 .181 1.345 .134 �3.758
2.652 .287 1.336 .129 �5.930 2.006 .194 1.102 .109 �5.246
1.932 .185 1.643 .173 �1.618 2.511 .260 1.208 .121 �5.755
2.672 .261 1.278 .118 �6.915 2.453 .255 1.041 .117 �6.371
2.144 .216 1.324 .133 �4.586 2.040 .201 1.102 .104 �5.309
2.249 .207 1.280 .121 �5.728 2.044 .189 1.230 .107 �4.856
2.385 .220 1.577 .168 �4.143 2.062 .191 1.275 .115 �4.598
2.178 .204 1.291 .126 �5.245 1.910 .172 1.083 .117 �5.265
2.159 .188 1.265 .115 �5.755 1.963 .181 1.229 .119 �4.468
2.339 .246 1.596 .142 �3.704 2.092 .191 1.432 .128 �3.785
2.562 .295 1.461 .142 �4.772 2.029 .190 1.429 .126 �3.466
2.187 .202 1.453 .149 �4.142 1.818 .176 1.255 .117 �3.516
1.857 .179 1.364 .148 �2.997 1.788 .181 1.316 .126 �2.848

Square root of the sum of squares of subjective spatial weights
1.707 .248 2.583 .211 3.801 1.311 .225 3.636 .404 7.983
1.498 .249 2.654 .277 4.389 0.972 .194 2.101 .219 5.581
0.893 .189 1.942 .201 5.368 0.783 .170 2.633 .256 9.222
0.837 .213 1.858 .199 4.957 0.598 .160 1.977 .201 7.945
0.587 .131 2.328 .229 9.298 0.962 .200 2.100 .235 5.374
1.012 .228 1.524 .172 2.533 0.749 .177 1.397 .170 3.711
0.671 .148 1.720 .178 6.405 0.650 .154 0.985 .136 2.253
0.709 .151 1.254 .153 3.589 0.560 .140 1.159 .144 4.252
1.341 .190 0.825 .165 �2.900 0.602 .160 1.088 .152 3.079
1.171 .179 0.983 .158 �1.111 0.598 .147 1.006 .149 2.765
0.911 .159 0.809 .129 �.709 0.707 .145 1.000 .153 1.991
1.122 .179 0.778 .147 �2.107 0.660 .145 1.272 .172 3.975
1.439 .222 0.648 .134 �4.319 0.748 .151 1.271 .171 3.316
1.439 .179 0.691 .141 �4.730 0.635 .148 1.087 .152 3.027
0.964 .156 0.623 .138 �2.324 0.673 .143 1.025 .152 2.416

Note. For each monkey and measure (e.g. fraction correct), entries are means, standard deviations, and effect sizes (Cohen’s d). Rows in each section
correspond to response time bins along the abscissas of the respective panels of Figure 10, from shorter (upper rows) to longer (lower rows) response times.
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