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Optimal Control of an Underwater Sensor Network
for Cooperative Target Tracking

Kelli A. C. Baumgartner, Member, IEEE, Silvia Ferrari, Senior Member, IEEE, and Anil V. Rao

Abstract—Optimal control (OC) is a general and effective ap-
proach for trajectory optimization in dynamical systems. So far,
however, it has not been applied to mobile sensor networks due to
the lack of suitable objective functions and system models. In this
paper, an integral objective function representing the quality of
service of a sensor network performing cooperative track detec-
tion over time is derived using a geometric transversals approach.
A set of differential equations modeling the sensor network’s
dynamics is obtained by considering three dependent subsystems,
i.e., underwater vehicles, onboard sensors, and oceanographic
fields. Each sensor-equipped vehicle is modeled as a bounded
subset of a Euclidian space, representing the sensor’s field of view
(FOV), which moves according to underwater vehicle dynamics.
By this approach, the problem of generating optimal sensors’
trajectories is formulated as an OC problem in computational
geometry. The numerical results show that OC significantly im-
proves the network’s quality of service compared to area-coverage
and path-planning methods. Also, it can be used to incorporate
sensing and energy constraints on the sensors’ state and control
vectors, and to generate fronts of Pareto optimal trajectories.

Index Terms—Cooperative, detection, optimal control (OC), op-
timization, planning, sensor networks, target tracking, track cov-
erage, trajectory.

I. INTRODUCTION

T HE development of reliable sensor networks and au-
tonomous-vehicle technologies are producing advanced

surveillance systems that are characterized by a high degree
of functionality and reconfigurability. Examples include mo-
bile sensor networks for tracking and monitoring endangered
species [1], [2], or for tracking and detecting possible intruders
[3]–[6]. Many of these applications employ wireless sensors
that have limited range and are characterized by frequent false
alarms due to highly variable ocean environments [5]. Thus,
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their objective is to cooperatively detect target tracks, i.e., to
obtain multiple elementary target detections over time [7],
where a track is said to be detected when multiple independent
sensor detections can be fused to form a feasible target track
in an approach known as track-before-detect [5]. The quality
of service of a sensor network performing cooperative track
detection, referred to as track coverage, has received consid-
erable attention [5], [7]–[12]. Several authors have addressed
the placement of sensors to provide a desired level of track
coverage in the region of interest (ROI), assuming that they re-
main stationary at all times [8], [13]–[16]. This paper addresses
the case in which these sensors are expected to operate in a
dynamic ocean environment, and are installed on autonomous
underwater vehicles (AUVs) that can survey the ROI for several
days.

Approaches for generating a sensor’s path or trajectory in-
clude area coverage (AC) [17], [18], random [18], grid [19], and
optimal search strategies [19], [20]. Optimal search strategies
have been shown to outperform other approaches in applications
where prior information is available, such as sensor models, en-
vironmental conditions, and prior measurements. However, they
typically are not applicable to sensors with a limited range, or
to cooperative sensing objectives, such as track coverage. Co-
operative control methods have been developed to provide point
or AC [17], [21], or to cooperatively manage the sensors’ for-
mation in response to the sensed environment [18], [22], [23].
Although they are very effective in some applications, these
methods are not applicable to networks that perform other coop-
erative sensing tasks, such as target tracking, or that are charac-
terized by nonlinear dynamics and time-varying environments.
This paper presents a novel optimal control (OC) approach for
generating the trajectories of a mobile sensor network composed
of a fleet of sensor-equipped underwater vehicles that perform
cooperative track detection. Its advantage over the aforemen-
tioned techniques is that it can be used to optimize any co-
operative sensing task, such as area or track coverage, subject
to nonlinear sensor dynamics and time-varying environmental
conditions.

The problem formulation most closely related to that pre-
sented in this paper is an approach that generates the optimal
trajectories of a cooperative sensor network for the purpose of
ocean sampling [24]. In this sampling approach, a performance
metric is obtained from the background covariance function
to represent the ability of a network of underwater gliders to
sample an ROI [24]. A coordinated control strategy is then
obtained by modeling each glider as a point mass that moves
at constant heading and speed, and by parameterizing families
of collectives over closed curves, such as circles, that represent
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the trajectories of subgroups of vehicles in the network. As
pointed out in [24] and [25], these sensor-equipped AUVs
are among the newest available sensing technology, and offer
compelling opportunities because of their ability to operate
cooperatively, and to scour the ocean in search for data and
information. Although motivated by the same technology,
ocean sampling approaches cannot be extended to the problem
of cooperative track detection, because they employ different
performance metrics and assume vehicle formations that are
not necessarily optimal for track coverage. Classical trajec-
tory-planning methods for AUVs (e.g., [26]–[29]) are also
inapplicable because they are vehicle-centric and, as such, they
do not account for the performance of the onboard sensors, or
for the cooperative nature of the network.

Although OC is considered the most general and effective
approach to trajectory optimization [28], [30]–[32], so far it has
not been applied to mobile sensor networks due to the lack of
suitable objective functions and system models. In this paper,
the geometric transversals formulation of track coverage pre-
sented in [8] is extended to mobile sensors with time-varying
positions and fields of view. By this approach, an integral
track-coverage objective function is obtained that represents
the network’s ability to cooperatively detect targets over time.
Bridging recent developments in sensor networks research [5],
[8], [33] and AUVs [26], [27], a model of sensor network’s dy-
namics is obtained by considering three dependent subsystems,
i.e., underwater vehicles, onboard sensors, and oceanographic
fields. The field-of-view (FOV) of many wireless sensors with
limited range can be represented by a bounded subset of a
Euclidian space (e.g., a disk or a sector) whose geometry and
dimensions depend on the physical principles underlying the
measurement process, and on the environmental conditions [5],
[13], [33]–[35]. In this paper, each sensor’s FOV is represented
by a disk of time-varying radius that moves according to un-
derwater vehicle dynamics. The influence of the ocean currents
on vehicle dynamics is modeled by a neural network obtained
from an ocean current forecast, using Bayesian regularization
[36], oceanographic prediction models [37], and real data [38].
Thus, over time, the vehicles’ energy consumption can be
minimized while the network’s track coverage is maximized.

Using this model of the sensor network’s dynamics (pre-
sented in Section III), the sensors’ trajectories can be generated
via OC (reviewed in Section II). Since the dynamics are non-
linear, near-optimal trajectories are computed numerically
using the direct shooting method (DSM), and are verified
using the Gauss pseudospectral method (GPM), reviewed in
Section IV. In Section VI, the OC approach is demonstrated
by generating the trajectories of sensor networks deployed in
an ROI near the New Jersey coast, using real ocean current
data obtained from the Coastal Ocean Observation Labora-
tory (COOL), Rutgers—The State University of New Jersey,
Piscataway [38], and the vehicle models in [28]. Since track
coverage and energy consumption are competing objectives, a
parametric study is conducted in Section VI-B to determine the
Pareto front and analyze the influence of the objective function
weighting on the sensors’ trajectories. The numerical results
show that OC significantly improves performance compared to
methods that are obtained by modifying AC and path planning

(PP) techniques (Section VI-C). These results also illustrate the
influence of the ocean currents on the optimal sensors’ trajecto-
ries, and demonstrate the importance of forecast models of the
ocean dynamics in sensor deployment techniques. Finally, in
Section VI-D, the generality of the OC approach is illustrated
by computing sensors’ trajectories that guarantee a minimum
required track-coverage performance, with minimum energy
consumption, through the use of inequality constraints.

II. BACKGROUND ON OPTIMAL CONTROL

The trajectories of a cooperative sensor network are generated
using the OC framework reviewed in this section. Consider a
system whose dynamics can be approximated by a nonlinear
differential equation

(1)

where is the system state, is the control, and
is a vector of time-varying parameters that represent

the physical characteristics of the system, and scale the system’s
response to control inputs and to its own motions [30]. OC seeks
to determine the state and control trajectories that optimize an
integral cost function

(2)

over a time interval , subject to (1) and to the
-dimensional inequality constraint on the state and control

(3)

In this paper, it is assumed that is fixed and finite. The OC
equations (1)–(3) representing the sensor network’s dynamics
and performance are derived in Section III.

The necessary conditions for optimality are given by the
well-known Euler–Lagrange equations, which can be de-
rived using calculus of variations, as shown in [30]. For a
nonlinear system, such as (1), these equations amount to a
Hamiltonian boundary-value (HPBV) problem for which there
is no closed-form solutions, and therefore, they typically are
solved numerically [30], [39], [40]. As reviewed in [40], nu-
merical methods for solving OC problems can be classified
into direct and indirect methods. Indirect methods solve the
HPBV problem numerically, to determine candidate optimal
trajectories known as extremals. Direct methods determine
near-optimal solutions by discretizing the continuous-time
problem about collocation points and then transcribing it into
a finite-dimensional nonlinear program (NLP). The NLP is
then solved using an appropriate optimization method, such
as sequential quadratic programming (SQP) [41], [42]. Direct
methods are typically easier to implement than indirect methods
and can be applied to a wider range of OC problems [43]–[45].
Therefore, in this paper, two popular direct methods, DSM and
GPM, reviewed in Section IV are applied and compared to
solve the problem of optimally controlling a cooperative sensor
network, which is derived in the next section.
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III. MATHEMATICAL MODELS

In this section, the OC framework is used to formulate the
problem of optimizing the state and control trajectories of a net-
work of cooperative underwater sensors in a dynamic ocean
environment. Every sensor in the network is installed on an
AUV, and is assumed to be omnidirectional, where the sensor’s
FOV is approximated by a circle centered at the vehicle’s lo-
cation. The sensor network is deployed in an ROI for the pur-
pose of tracking and detecting unauthorized targets that are as-
sumed to maintain a constant heading over a time interval ,
without any prior knowledge of the target tracks. A model of the
system dynamics (1) is obtained in Sections III-A and III-B, by
considering the interactions of three subsystems composed of

AUVs, the onboard sensors, and the oceanographic fields in
the ROI. The cost function (2) is defined as a tradeoff between
the network’s quality of service and energy consumption. As
shown in Section III-C, the quality of service of a mobile net-
work that performs cooperative track detection is formulated in
closed form with respect to the sensors’ positions and FOVs,
using the geometric transversals approach presented in [8]. Fi-
nally, the inequality constraint (3) is used to specify physical
bounds representing the ROI, the available control power, and,
possibly, the minimum quality of service to be achieved by the
network, as shown in Section III-D.

A. Vehicle Equations of Motion

For the purposes of trajectory generation, the th underwater
vehicle in the network can be assumed to be a freely swimming
rigid body, propelled by onboard thrustors, that obeys the equa-
tion of motion

(4)

as shown in [46]–[48]. The positive-definite matrix contains
the vehicle inertia and the hydrodynamic added inertia. is
a vector of gravitational forces and moments, and the external
forcing generated by the control inputs is premultiplied by
a control-effect matrix , which is determined by the location
of the actuators. The matrices and represent Coriolis and
dissipative hydrodynamic effects, respectively, and depend on
the vehicle’s speed in the body coordinate frame (fixed to the
vehicle) represented by . Let
denote a vector of the th vehicle’s position coordinates , ,
and , and orientation , , and , with respect to an inertial
coordinate frame. Then, if represents the local current
speed vector, the relative vehicle’s speed can be written as

. As shown in [28], every element of the control vector
represents the thrust from one of the propellers of

the th vehicle. By performing a coordinate transformation [46],
the vehicle dynamics in the inertial frame can be obtained from
(4), and can be written in state–space form

(5)

(6)

where . The Jacobian is a block-diagonal ma-
trix containing a orthogonal rotation matrix, and a
transformation matrix that are functions of the roll, pitch, and
yaw angles , , and , respectively (see [28] for more details).

The model parameters , , , and can be assumed
constant, provided the inner-loop controller used for trajectory
tracking is designed to compensate for parameter variations,
e.g., through integral compensation or adaptive filtering tech-
niques [30, pp. 283–284], [49]. Two additional assumptions that
are commonly introduced to reduce the dimensionality of the
trajectory optimization problem are that the AUV maintains a
constant depth and a zero pitch angle, and that the roll angle is
zero [26], [27]. The sensors’ trajectories are generated over a
time interval of several days, in an ROI for which the current
speed varies significantly with respect to both time and posi-
tion. Thus, assuming the vertical and rotational components of
the current speed are negligible compared to the translational
components [26], [27], the current speed vector at the th sensor
location can be defined in terms of its components in the inertial
coordinate frame

(7)
Since is assumed constant, the th-sensor state to be optimized
can be simplified to , and the state of the sensor
network is defined as . Similarly, the control
and current speed vectors for the sensor network are defined
as and , respectively.
Then, from (5), the dynamics of a network with sensors can
be approximated by the th-order differential equation

...
...

...

(8)

The same approach can be applied to other underwater vehicles
by modifying (8). Also, the above simplifying assumptions can
be relaxed at the expense of computation time.

The influence of ocean currents on the sensors’ motion is
modeled in (8) in order to exploit the natural dynamics for
sensors’ transport to minimize energy consumption (as shown
by the results in Section VI). The model of the ocean current
field over the ROI is obtained from a forecast that is initial-
ized with real-time measurements and estimates [50], and is
computed from physical models and data via state-estimation
techniques [37], [51]. A current speed forecast typically con-
sists of a multidimensional array containing estimated values
of the components in (7) at sample points in space and time.
Although tabular data representations can potentially be treated
in the OC framework, they typically lead to problems that are
computationally intractable, and may compromise convergence
[52]. To circumvent these problems, an approach based on
open-boundary model analysis and B-splines basis functions
was proposed in [26], [27], and [53]. In this paper, the neural
network approach presented in [54], and reviewed in this sec-
tion, is adopted to model the current speed forecast, and account
for its influence on the sensors’ dynamics (8). The advantages
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of this approach over B-splines are that it can be carried out
in one step, without preprocessing the speed forecast, and it
is very effective both at smoothing and generalizing the data
[36], [55]–[58]. The approach in [54] obtains a neural network
representation of the spatial and temporal characteristics of the
current speed field over a 2-D ROI , and a time interval

. Let , where ,
and be a training set containing the
value of the current speed vector (7), at the location , and
instant , for sample points in . Then, is used to obtain
a feedforward neural network

(9)

with two linear output neurons, and one hidden layer of sig-
moidal functions represented by the operator

(10)

where is the input to the hidden layer, and
. The neural network weights

, , , and are determined
from by a Bayesian regularization backpropagation algorithm
(“trainbr’ [59]) that minimizes a linear combination of neural
network squared errors and weights, as shown in [36], [54],
and [60]. The effectiveness of this approach has been verified
through numerical experiments using forecast data as well as
real measurements, as shown in Section V.

The differential equations (8) combined with the neural net-
work (9) are used to model the sensor network dynamics in
the OC problem formulation. As shown in the next section, the
measurement process is represented by a moving binary sensor
model in the shape of a disk whose dimensions may be obtained
from oceanographic field information and acoustic propagation
models.

B. Sensor Model

Many applications in tracking and surveillance employ
passive sensors, such as proximity sensors, that have limited
processing abilities and must minimize wireless information
transfer to a central processor [5]. Particularly, in highly variable
and unknown ocean environments, which are characterized by
frequent false alarms, tracking is performed by a central fusion
processor based on multiple and independent detection events
reported in the ROI. For example, each sensor may report only
its location and one value of received signal level at the closest
point of approach (CPA). In this paper, we assume that the
signal received by the th sensor is isotropic energy attenuated
by the environment according to the following power law:

(11)

where is the distance between the th sensor and the target
at the time of the CPA detection. The values of the attenua-
tion coefficient and of the scaling constant depend on the
physical mechanisms of wave propagation and on the environ-
mental conditions. represents the target source level that is
independent of both time and sensor location. The measurement
model in (11) can be applied to acoustic, magnetic, and optical

Fig. 1. Geometry of interior and exterior tracks formed from two CPA detec-
tions obtained by two omnidirectional sensors, placed at � and � (adapted
from [62]).

sensor measurements that are governed by linear wave propa-
gation models [61], [62].

A CPA detection occurs when exceeds a threshold ,
which is typically tuned by an operator for each sensor [63],
and the values of and at the CPA time are reported by the
th sensor to the central processor. These values are then fused

with the information obtained from the other CPA detections,
using (11), to form hypothetical target tracks without knowl-
edge of and [62]. For example, if two sensors indexed by

are located at and and have each reported a CPA
detection, four hypothetical target tracks can be obtained, as il-
lustrated in Fig. 1. The number of required target detections
depends on the false-alarm rate, on the measurement errors, and
on the track accuracy required by the surveillance system [62].
In [62], was found to provide accurate tracking by prox-
imity sensors subject to few false alarms, and errors normally
distributed with a standard deviation of 20%.

From (11), the maximum range at which the th sensor can
report a CPA detection, given a target source level and a
threshold , is . The value of can be
estimated from the environmental conditions and, in this paper,
it is assumed constant for simplicity [5], [8], [33]. This approach
also can be extended to account for effects of a nonuniform and
time-varying ocean environment on , by using high-fidelity
acoustic wave propagation models and oceanographic field es-
timates [35]. The noise generated by the propellers to control
the vehicle increases the signal required to report a detection
and, consequently, decreases the maximum sensor range. Thus,
the effective sensor range is modeled as the sum of the CPA de-
tection range and of a monotonically decreasing function of the
controls

(12)

where and are positive constants and, thus,
. The constants and are chosen based on the sensor

and propeller design characteristics [64]. A CPA detection is re-
ported by the th sensor only if the target comes within its effec-
tive range (12). Let the FOV of the th sensor, located at

at time , be defined as a closed and bounded subset
of the ROI, , such that the th sensor has a nonzero
probability of detecting a target located at a point , at
. For an acoustic omnidirectional sensor that obeys the isotropic
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Fig. 2. Schematic of the �th mobile sensor (not to scale).

law (11), is a disk of time-varying ra-
dius , centered at [5], [13], [33]. Then, as schematized
in Fig. 2, each sensor in the network can be viewed as a disk that
moves in according to the dynamic equation (5), and whose
radius changes in time as shown in (12). For an omnidirectional
network, the range vector and the
state vector together specify the FOVs of all sensors that
are represented by the set .

Recently, the performance of a network composed of om-
nidirectional sensors deployed in an ROI to cooperatively track
unauthorized targets was shown to be a function of the sensors’
ranges and positions [8]. In the next section, the approach pre-
sented in [8] is extended to a network of sensors with time-
varying positions and ranges, and the objective function of the
sensor network is obtained in closed form.

C. Objective Function

The problem of cooperative track detection is motivated by
surveillance systems in which little or no prior information is
available about the target, and sensor measurements are infre-
quent and prone to false alarms [5], [7], [8], [62]. For example,
in track-before-detect surveillance systems, the presence of an
unauthorized target is established only after a hypothetical track
can be formed from multiple independent detections obtained
by the sensor network in . The dimensions of and the time
interval are chosen such that the target can be assumed to
move at a constant speed and heading, and to maintain a con-
stant source amplitude. After a minimum of detections are
obtained from distinct sensors in the network, a tracking al-
gorithm is used to form the target track [6], [62], [65]. When
the sensors are deployed at a depth that enables target detec-
tions within their effective ranges, the ROI can be assumed to
be 2-D and, in this paper, it is represented by a fixed rectangle

.
The quality of service of a sensor network performing coop-

erative track detection in a polygonal ROI is referred to as track
coverage, and has received considerable attention in the litera-
ture [5], [7], [8], [11], [12]. In [7], [11], and [12], closed-form
solutions for probability of multiple target detections were ob-
tained using search theory and Poisson approximations. This ap-
proach assumed a uniform distribution of sensors with constant
range, and modeled the moving target as a two-state Markov

processes. More recent studies showed that the track coverage
of a network with binary sensor models can be formulated as a
function of the sensors’ ranges and positions and , allowing
to compute the probability of multiple detections for sensors
with variable range, located anywhere in the ROI [5], [8]. Con-
sequently, track coverage can be optimized with respect to the
free design parameters to position the sensors in [8], or to de-
sign the sensors’ ranges [66]. As a result, the quality of service
of the network can be increased by several orders of magnitude
compared to existing deployment schemes [13], [67].

Unlike these previous studies, which considered static sensor
networks, in this paper, the track coverage of a mobile sensor
network is considered and optimized subject to the dynamic
equation of the vehicles (8). The geometric transversals ap-
proach presented in [8] is adopted here because it leads to
a track coverage function that is formulated in terms of the
individual sensors’ ranges and positions. In this section, we
show that track coverage can be formulated as a function of
time, and integrated over the time interval to represent the
quality of service of a mobile sensor network that is deployed
for a period of time that can last up to several days. In order
for the mission to be sustainable, the energy utilized by the
vehicles must be minimized subject to the model of ocean cur-
rents in (9). Thus, in this section, a cost function that includes
both objectives is obtained by defining the Lagrangian to be a
weighted combination of track coverage and power required.

As a first step, we derive the time-dependent track coverage
function by representing the target tracks detected by as geo-
metric transversals. A set of geometric objects in is said to
have a -transversal when all the objects are simultaneously in-
tersected by a -dimensional flat or translate of a linear subspace
[68]. A line transversal with , , and , also
referred to as stabber, is a straight line that intersects at least

members of a family of objects. For example, line transver-
sals of a family of five disks, with , are shown in Fig. 3.
Since the targets can be assumed to move at a constant speed
and heading , every target track in can be represented by a
ray or half line with intercept , where is the
perimeter of . Since there is no prior knowledge of the target
tracks, the track parameters and have a uniform probability
distribution over their range. Thus, assuming all targets traverse

during the time interval , the track coverage of the net-
work at any time is directly proportional to its prob-
ability of track detection, as shown in [8]. The track coverage
function at can be derived by observing that the th sensor in
the network detects a track at time if and only if the
track intersects its FOV, i.e., , and is a
stabber of at . Then, a target track that is cooperatively de-
tected by sensors in the network during the time interval
is a stabber of . Since the target tracks are uniformly dis-
tributed and may intersect members of at any time during

, the set of all stabbers of for all represents the
set of all tracks detected by the network.

Let the inertial -frame of reference be placed along two
sides of , with the origin at the lower left corner,
such that all target tracks traverse in the positive orthant
(Fig. 4). As proven in Appendix I, the set of stabbers of a disk
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Fig. 3. Example of line transversals for a family of � � � disks and � � �
(adapted from [68, p. 182]).

in , with -intercept , can be rep-
resented by the cone that is finitely generated by the following
unit vectors:

(13)

and

(14)

where

and

The coverage cone is finitely generated by the above
unit vectors when it contains all of their linear combinations
[69], that is

(15)

Since the unit vectors and are implicit func-
tions of and , as shown in (13) and (14), the above
coverage cone is a function of the th sensor’s position and range
at . contains the set of all tracks that are detected
by the th sensor at time , and its opening angle is a Lebesgue
measure over this set.

The unit vectors (13) and (14) are also used to determine the
stabbers of families of disks in , which represent tracks de-
tected by at least of the sensors. Let all unit vectors in
be ordered based on the orientation of the -frame, where two
vectors are ordered as if when these
vectors are translated such that their origins coincide, and
is rotated through the smallest possible angle to meet , then
this orientation is in the same direction as the orientation of the

-frame [70]. Then, the family of stabbers with -intercept
can be obtained for a family of disks in , as shown by the
following result.

Fig. 4. Reference frames used to define the �-coverage cones illus-
trated at time � for � �� � � �� �� �� � �� ��, and at time � for
� �� � � �� �� �� � �� ��, for a network with � � � � �.

Proposition 3.1: The set of all stabbers of a family of disks
, through , is contained by

the finitely generated cone

(16)

where

such that

(17)

and denotes the index set of . If , then
.

A proof is provided in Appendix II.
The cone contains the set of tracks detected by

a family of sensors at time , and is referred to as -coverage
cone. The opening angle of the -coverage cone is a Lebesgue
measure over the set of line stabbers of [8], and is obtained
by the cross product

(18)

with

(19)

where , and
for . In the above equations, the time

argument is omitted for brevity, and the indices and are ob-
tained from (17). The Heaviside function guarantees that
if , the opening angle of the coverage cone is equal
to zero. By placing a second inertial frame of reference
along the remaining sides of , Proposition 3.1 can be applied
to stabbers that intercept the -, -, and -axis at , , and

, respectively, as shown in Fig. 4. The opening angles of the
corresponding -coverage cones are denoted by , , and , re-
spectively, and are illustrated in Fig. 4 for . The set
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of tracks traversing and intersecting at least disks in
is approximated by the union of the -coverage cones over a fi-
nite set of intercept values indexed by . The intercept values
are obtained by discretizing the perimeter of the ROI , using
a constant interval . Then, as shown in Appendix III, the fol-
lowing track coverage function is a Lebesgue measure on the set
of tracks that intersect at least disks in at time :

(20)

where the summation is the sum over all
distinct integer -tuples satisfying

, and denotes the th -subset of
, at time [71]. The proof is based on the principle of

inclusion–exclusion [8], and is shown in Appendix III. Since
the track parameters are uniformly distributed over their range,
and all targets are assumed to traverse in time , the
network’s quality of service can be obtained by integrating (20)
with respect to time.

The power required by the sensors to move and search for a
target in is minimized to obtain sustainable missions that can
last up to several days [24], [27]. By assuming that the thrusters
are driven by direct current (dc) motors, and that the power dis-
sipation due to the armature resistance is much smaller than that
due to the interaction between the propeller and the water, the
mechanical power required by the th propeller of the th ve-
hicle can be approximated by

(21)

and is a function of the control input [28], where is the
th element in , and is assumed to be a known constant

that can be computed from the water density , the diameter
, and the torque and thrust coefficients and of the

th propeller of the th vehicle [28]. Let denote
a diagonal weighting matrix with elements that represent the
relative importance of the control inputs given, for example,
by the coefficients . Then, the quadratic integral
energy function

(22)

is used to minimize the power required by the sensor network,
because it has a smooth gradient variation near the minimum,
and it penalizes large power dissipations more heavily than
small dissipations [30, p. 190].

The sensor network objective function

(23)
combines the track coverage and energy functions to simultane-
ously optimize the quality of service and power required over
the time interval . The weights and are used to
specify the desired tradeoff between these two conflicting ob-
jectives. In Section VI-B, a parametric cost–benefit analysis is
performed to illustrate how the choice of weights influences the
optimal sensors’ trajectories. The terminal cost

(24)

can be used to specify desired final sensor positions , for ex-
ample, in case that the vehicles need to be recovered, or must
meet additional objectives. The optimal sensors’ trajectories are
computed by minimizing the cost function in (23) subject to
the system dynamics in (8) and to the inequality constraints de-
scribed in Section III-D.

D. Inequality Constraints on the State and the Control

The terminal cost function described in Section III-C can be
used to express state constraints at the final time. Inequality and
equality constraints that must be met at every instant of the tra-
jectories can also be introduced via penalty functions or La-
grange multipliers [30, p. 231]. In the case of a mobile sensor
network performing cooperative track detections in , this class
of constraints is used to guarantee that the sensors obtain -in-
dependent detections (Section III-B), remain in , and demand
reasonable control usage at all times.

When two or more FOVs intersect in , multiple detections
by different sensors may be due to the same false alarm, such
as the same environmental conditions or false target. Therefore,
the ability of a sensor network to provide independent detections
in the ROI, also known as AC [72], [73], is maximized by de-
ploying the sensors such that their FOVs are disjoint. When the
sensor network is static, this can be accomplished by means of
circle packing algorithms [74], [75], or mathematical program-
ming [8], [16]. When the sensor network is mobile, trajectories
that prevent intersections between the FOVs can be computed
by introducing an AC function in the Lagrangian, or by means
of inequality constraints on the state. Adding an additional term
to the Lagrangian is known as a soft constraint, and the result
is that a tradeoff between AC and other sensors’ objectives is
optimized. Introducing hard inequality constraints on the state
guarantees that, if a solution is found, its AC is maximum at all
times. In this paper, disjoint FOVs are guaranteed by using the

-dimensional state inequality constraint ,
where each constraint has the form

(25)

and .
Since both area and track coverage decrease if the sensors

leave , an additional constraint is introduced to guarantee
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that the sensors remain in during the entire time interval
. Thus, the sensors’ trajectories are optimized subject to the

-dimensional state inequality constraint

(26)

where . Finally, to obtain
feasible trajectories, the physical limitations of the vehicles are
taken into account by specifying the maximum available thrust
of each vehicle denoted by the vector through the
following inequality constraint on the control:

(27)

where denotes the absolute value of a vector, defined
in [76, p. 343]. Then, the inequality constraint (3) for the
sensor network is defined as , where

. Since all constraints consist of inequalities,
they are evoked only some of the time, and they are not overly
restrictive, typically resulting in a successful optimization, as
shown by numerical results in Section VI.

As shown in this section, the OC of a mobile sensor network
involves nonlinear system dynamics and constraints, and an ob-
jective function that is not quadratic. Thus, the optimal sensors’
trajectories are computed numerically, using the direct methods
reviewed in the next section.

IV. NUMERICAL SOLUTION OF THE OPTIMAL

CONTROL PROBLEM

Nonlinear OC problems with no closed-form solution arise in
many practical applications, ranging from spacecraft trajectory
optimization [43] to OC of diseases [77]. As a consequence,
many numerical methods have been devised in the litera-
ture to find approximate near-optimal solutions, based on a
parametrization of the control, of the time interval, or both.
An excellent survey of numerical methods for solving OC
problems can be found in [40]. In recent years, direct methods
have become increasingly popular thanks to their ability to
solve a wide range of complex OC problems [43]–[45]. Of the
methods investigated in this research, which include parametric
control [30] and various direct methods [44], [45], it was found
that only direct shooting [40], [78], [79] and GPMs [43] were
capable of computing near-optimal trajectories for various
real-size networks (shown in Section VI-A). In particular, the
DSM, reviewed in Section IV-A, was found to be the fastest
and most reliable method for solving the OC problem stated in
(8) and (23)–(27). When both the system dynamics and the La-
grangian are time invariant, the minimum principle can be used
as a global criterion for optimality to evaluate the trajectories
obtained by the numerical optimization [30, p. 217]. However,
since the sensor network’s dynamics (8) are time varying, the
trajectories computed by DSM are evaluated by comparing
their performance (23) to those computed by GPM (reviewed
in Section IV-B), and by performing random initializations to
avoid local maxima.

A. Background on Direct Shooting Method

The DSM solves nonlinear OC problems numerically through
parametric zero-order hold control of a uniformly discretized
dynamical system [40], [78], [79]. The system dynamics, cost
function, and inequality constraints are evaluated at discrete
points in time, known as collocation points, over the interval

. Then, the nonlinear OC problem can be trans-
formed into an NLP, for which several effective algorithms are
available [80], [81]. Between collocation points, the control is
assumed to be piecewise constant and the system dynamics (8)
are integrated by Euler (rectangular) integration [30, p. 77]. Al-
though this is the crudest type of numerical integration, it was
found to be adequate for integrating (8) when compared to more
accurate and computationally expensive methods, such as the
Runge–Kutta integration.

For equally spaced collocation points ,
, where is the discretiza-

tion interval, let denote an unknown parameter vector
that uniquely defines the system state and control trajectories,
and is defined as

(28)

where , , and .
Then, the OC problem (Section II) is transformed into a fi-
nite-dimensional NLP by discretizing the cost function (2) with
respect to time

(29)

and by performing an implicit integration of the system dy-
namics (1). Using Euler integration, the residuals

(30)
are computed at all collocation points using only one function
evaluation per residual, and are driven to zero as part of the op-
timization process [79]. When the inequality constraint (3) is
evaluated at every collocation point , it is transformed into

inequality constraints ,
, that are a function of the parameter vector

. Thus, the solution of the NLP

maximize (31)

subject to (32)

(33)

is used to obtain near-optimal state and control trajectories for
the OC problem (1)–(3). The NLP solution can be made arbi-
trarily close to the OC problem solution by using a higher order
integration rule and by choosing the size of the parameter vector
arbitrarily large, letting and , at the expense
of the computation time [40].

In Section VI, the near-optimal trajectories of a cooperative
sensor network are obtained by transforming the OC problem
(8),(23)–(27) into an NLP, and by computing its solution using
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SQP [41], [42]. In order to validate this approach, the perfor-
mance of the near-optimal trajectories is compared to that of
trajectories computed by GPM, as described in Section IV-B.

B. Background on Gauss Pseudospectral Method

Pseudospectral methods are a well-known class of direct
methods that parameterize the state and control using global
polynomials, and approximate the system dynamics via orthog-
onal collocation. They have been shown in [82] and [83] to
exhibit faster convergence rates than other methods. Recently,
the GPM has been successfully implemented for multivehicle
trajectory optimization problems in the form (1)–(3) [43],
[85]. In GPM, orthogonal collocation of the dynamics (1) is
performed at the Legendre–Gauss (LG) points, where the state
and control are approximated, but not at the boundary points.
This collocation leads to a set of Karush–Kuhn–Tucker (KKT)
conditions that are equivalent to the discretized first-order
optimality conditions at the LG points, leading to accurate
estimates of the state, costate, and control vectors (see [86] and
[87] for more details).

In order to apply GPM, the time interval
must be transformed to the time interval using the
mapping

(34)

It follows that the cost function (2) can be written as

(35)

and is to be optimized subject to the constraints

(36)

(37)

The state and control are parameterized using a basis of La-
grange interpolating polynomials on the interval

(38)

where is the Kronecker delta, such that

(39)

and

(40)

where is given by (38) after shifting the index from 0 to 1.
The system dynamics are approximated at the collocation points
by differentiating (39) with respect to time

(41)

TABLE I
SENSOR NETWORKS’ SIZE AND CPA DETECTION RANGES

and by representing the time derivative of each Lagrange poly-
nomial at the LG points by a differential approximation matrix

, with elements given by

(42)

and computed offline for and .
With the above transformations, the cost function (35) is ap-

proximated using a Gauss quadrature [88], the system dynamics
(36) are approximated by algebraic constraints, and the path
constraint (37) is evaluated at the LG points, leading to -di-
mensional inequality constraints. Thus, the OC problem (1)–(3)
is transformed into the NLP

maximize (43)

subject to

(44)

(45)

with variables and ,
, where are the Gauss weights, and

denotes the vector of system parameters evaluated at the collo-
cation point .

The numerical solution of the above NLP is obtained using
the software of [90] and [91] that implements the method de-
veloped in [87] and [89], and provides near-optimal state and
control trajectories for the OC problem (1)–(3). In the next sec-
tions, this approach is implemented to compute the near-optimal
trajectories of a cooperative sensor network in an ROI near the
New Jersey coast. The results presented in Section VI show
that the resulting sensors’ trajectories outperform existing tech-
niques, including trajectory planning by area-coverage and en-
ergy optimization.

V. IMPLEMENTATION

The OC approach presented in the previous sections is im-
plemented on three networks with the sizes and CPA detection
ranges listed in Table I, and different values of required detec-
tions . Every sensor in the network is mobile, and is composed
of a low-speed underwater vehicle equipped with an acoustic
sensor. As an example, the network is deployed in an ROI
of dimensions 90 km and 82.5 km, shown by a
black solid line in Fig. 5(a), for a time interval lasting up to
five days. The CPA detection ranges (Table I) can be estimated
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Fig. 5. Point-mass trajectories obtained from the neural network model and from CODAR measurements in an ROI (black rectangle) with longitude of 72.7 W
to 74.1 W, and latitude of 38.6 N to 39.5 N (taken from [54]).

from the sensor operating conditions [35] and are used to com-
pute the sensors’ effective ranges, as shown in (12). The system
dynamics are simulated by integrating (8) explicitly using a
fourth-order Runge–Kutta routine with variable stepsize [92].
This routine was also used to verify that the Euler integration
used by the DSM (Section IV-A) brings about a negligible error,
with a mean on the order of 1 km over the entire .

The time-varying ocean current field in and around is
simulated using real coastal ocean dynamics applications radar
(CODAR) data provided by the COOL [38]. A snapshot of the
current speed field is shown in Fig. 5 by plotting sample vectors
whose length is proportional to the speed’s magnitude, at a
representative moment in time. The current speed forecast is
represented by a feedforward neural network (9), with ,
obtained by the approach in Section III-A. The database of
CODAR measurements was also used to simulate a five-day
forecast with , via sampling techniques, and the
remaining data were used to validate the neural network model.
Fig. 6 shows a comparison between the neural network output

and the measured speed components drawn from both
the training and the validation data at 610 sample locations,
and 122 h. The neural network approximation of the
speed components and at two sample moments in time
is plotted in Fig. 7 together with the CODAR measurements
represented by black dots. The effectiveness of the approxi-
mation is also validated by comparing the trajectories of point
masses placed in the speed field modeled by the neural network
(9) to those obtained using the CODAR database combined
with a cubic-spline interpolation routine (“trainbr” [93]). Each
point mass is randomly placed in the ROI and allowed to drift
according to a second-order Newtonian dynamic model [94]
for a period of five days. As shown by the three examples in
Fig. 5(a), and by the higher resolution example in Fig. 5(b), the
trajectories obtained with the neural network approximator are
very close to those obtained from the real CODAR measure-
ments.

VI. RESULTS

In this section, DSM is first validated by comparing its per-
formance to GPM, which has been shown effective at solving

Fig. 6. Comparison of neural network approximation and measured speed
components at 600 sample locations in the ROI, at time � � 122 h (taken from
[54]).

trajectory optimization problems involving multiple spacecraft
[43], [85]. The results in Section VI-A show that DSM trajec-
tories have a slightly higher performance than GPM trajecto-
ries, and require significantly less computation time. The influ-
ence of the objective function weighting (23) on the sensors’
trajectories is illustrated by conducting a parametric study in
Section VI-B, where the Pareto front is obtained numerically
for a network with sensors, and required de-
tections. Then, in Section VI-C, the effectiveness of the OC ap-
proach is demonstrated by comparing the quality of service of
networks deployed by OC to that of sensors deployed by ex-
isting strategies, such as area-coverage optimization [33], [72],
[73], and minimum-energy trajectory planning [26]–[28]. Fi-
nally, in Section VI-D, the versatility of the approach presented
in this paper is demonstrated by modifying the OC formula-
tion to include additional constraints, such as minimum required
track coverage over .

A. Comparison Between DSM and GPM Solution Methods

In this research, several numerical methods were investigated
for the solution of the OC problem in (8) and (23)–(27). It was
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Fig. 7. Neural network approximation of the speed components as a function of position at (a) � � 66 h and (b) � � 101 h, with available CODAR measurements
superimposed in black dots (taken from [54]). Latitude: N; longitude: W.

TABLE II
COMPARISON BETWEEN DSM AND GPM NUMERICAL SOLUTIONS

found that, due to the dimensionality of the dynamic equation
(8) and to the complexity of the cost function (23), only DSM
and GPM were capable of computing near-optimal trajectories
for real-size networks, such as those in Table I. Since the sensor
network’s dynamics (8) are time varying, the optimality of the
numerical solutions cannot be verified by the minimum prin-
ciple. A heuristic approach to evaluating the solutions consists
of comparing the results of two independent approximation
methods [80]. Thus, in this section, the performance of the
DSM trajectories, as expressed by the objective function (23),
is compared to that of the GPM trajectories. Also, random
initializations are used for both methods to avoid local maxima
and obtain trajectories that can be considered to be reasonable
approximations to the global solutions.

The performance comparison summarized in Table II is rep-
resentative of extensive numerical studies involving DSM and
GPM, conducted on an Intel (R) Core (TM) 2 Duo Processor
T7500 (4M Cache, 2.20 GHz, 800-MHz FSB). Methods to re-
duce the computation time are currently being investigated for
real-time OC implementations, and will be the subject of a sepa-
rate paper. The objective function , defined in (23) as a tradeoff
between energy and track coverage, and the individual perfor-
mance functions are all shown in Table II for two examples, and

. In the first example, the time interval is
chosen as [0, 120] h, and the initial sensors’ placement

is given. In the second example, the time interval is chosen as
[0, 72] h, and is optimized together with the state and

control trajectories. These results show that the performance of

the DSM solutions is slightly higher than that of the GPM so-
lutions, and that the DSM solutions are computed in approxi-
mately half the time. As shown in Fig. 8, the DSM state tra-
jectories are very similar to those obtained by GPM, indicating
that they likely are near a global optimum. Similar results are
obtained when comparing the time histories of the performance
functions obtained by DSM and GPM, plotted in Fig. 9, and
those of the OC inputs (omitted for brevity). It can be concluded
that for this OC problem DSM is faster than GPM, and con-
verges to solutions that are near a global optimum. Therefore,
DSM is implemented in all of the numerical studies presented
in the remainder of this paper. The clustered formations near
the corners of the ROI in Fig. 8 are obtained because they maxi-
mize track coverage by intersecting a large percentage of tracks
in multiple times (as is also shown in [8]). As shown in
Table II, when the initial placement is optimized, the energy
consumption is greatly reduced because OC exploits the current
field model to place the sensors such that trajectories with high
track coverage (e.g., clustered formations) can be achieved with
lesser effort.

B. Numerical Analysis of Objective Function Weighting

According to a classical OC approach [30], competing objec-
tives such as maximizing track coverage and minimizing energy
can be combined into a single objective function by changing
their influence on through weights specified by the user (e.g.,

and ). Because selecting the correct weights is an im-
portant but sometimes difficult step, a parametric study is con-
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Fig. 8. Comparison of optimal initial positions and state trajectories obtained by (a) DSM and (b) GPM for � � ��, � � �, and �� � 72 h. Latitude: N;
longitude: W.

TABLE III
PARAMETRIC STUDY

Fig. 9. Comparison of track coverage, energy, and Lagrangian time histories
obtained by DSM and GPM for � � ��, � � �, �� � 120 h, and a fixed � .

ducted in this section to determine the sensitivity of the optimal
sensor trajectories to the magnitudes of these weights, and to
prevent an improper choice of weights that could result in a bias
toward either objectives [31], [95]. The parametric study con-
siders multiple combinations of and , obtained such that

, by letting , and , for
a variable parameter , and a user-defined constant
that is chosen based on the units of the objective functions. The

OC solution is controlled by the weights and [95], and
a Pareto front can be obtained by plotting the optimal values of
energy versus track coverage.

The study is conducted for a sensor network with ,
, and , optimizing the initial sensor positions
together with the state and control trajectories. For each

combination of weights, obtained by varying the parameter
over its range, the optimal trajectories of the sensor networks
are computed by DSM, and the optimal total track coverage and
total energy are obtained by integrating in (20) and in (22)
over the time interval . The results in Table III are interpo-
lated to obtain an approximation of the Pareto front, shown in
Fig. 10(a), which represents a set of optimal solutions with dif-
ferent tradeoffs between the two competing objectives [96]. Al-
though in some missions the user may wish to emphasize either
energy or track coverage, in many applications, the goal is to
find the optimal solution that offers the least objective conflict,
also known as Pareto optimum [95]. As shown in Fig. 10(a), this
solution can be found from the “knee” of the Pareto front, for
which no single objective can be improved upon without dete-
riorating the other.

The influence of the weights on the OC solutions can be seen
in Fig. 10(b)–(d), where the optimal sensors’ trajectories are
plotted for , and . As can be
expected, when , the sensors follow the
currents and provide poor track coverage compared to the other
solutions, resulting in trajectories that are qualitatively similar
to the zero-control solutions (not shown for brevity). When en-
ergy and track coverage are equally weighted, the solution is
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Fig. 10. Numerical approximation of Pareto front and (a) optimal sensors’ trajectories for �� �� � equal to (b) �� � ��, (c) �� � ��, and (d) �� � ��. Latitude:
N; longitude: W.

close to the Pareto optimum, and the sensors move efficiently
by exploiting the ocean currents, but also maneuver to increase
track coverage. When , the optimal ini-
tial positions and trajectories are such that the sensors attempt
to remain stationary near a configuration with optimal (static)
track coverage, at the expense of the energy required. Due to
symmetry, reflections of this configuration also exhibit optimal
track coverage. However, the solution in Fig. 10(d) is obtained
by virtue of the ocean currents [Fig. 5(a)], which in this region
produce an external forcing in the southwest direction and, then,
die out in the bottom-left corner of , allowing sensors to re-
main there with little or zero energy consumption. Since in sim-
ulations the Pareto optimum [Fig. 10(a)] was found to be robust
to the OC conditions and parameters, the corresponding set of
weights, obtained by interpolation, was adopted for all subse-
quent trajectory optimizations.

C. Comparison Between OC and Existing
Deployment Methods

Although existing sensor-deployment methods do not ad-
dress the track coverage of a mobile sensor network in a
variable ocean environment, very effective methods have been
developed for optimizing the AC of static sensor networks [33],
[72], [73], and for generating minimum-energy trajectories in
a time-invariant ocean current field [26]–[28]. In this section,

these methods are extended and implemented on the cooper-
ative sensor networks in Table I to compare them to the OC
approach presented in this paper and illustrate its effectiveness.

AC is a well-known performance measure for sensor net-
works with binary sensor models [33], [72], [73], and is defined
as the union of the areas representing the sensors’ FOVs divided
by the areas of the ROI [33]. The approach of placing sensors in
an ROI such that their AC is maximized can be extended to the
case of a mobile sensor network by modifying the OC approach
in Sections III and IV to compute minimum-energy trajectories
that guarantee disjoint FOVs. When the th sensor’s FOV can
be represented by the disk , the network’s AC is given
by

(46)

where denotes the area covered by the th sensor. Then,
the maximum AC is attained when the sensors’ positions

are such that their FOVs lie entirely in
and do not intersect. When the sensors are static, circle packing
algorithms can be used to find the sensors’ positions in that
lead to [74], [75]. When the sensors are mobile their trajec-
tories must be generated such that these conditions are satisfied
at all times. For comparison, minimum-energy trajectories with
maximum AC are computed by maximizing (23) with
and , subject to the dynamic constraint (8), and
the inequality constraints (25) and (26), using DSM.
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TABLE IV
COMPARISON BETWEEN OPTIMAL CONTROL AND OTHER DEPLOYMENT TECHNIQUES

PP approaches compute minimum-energy collision-free tra-
jectories for a network of vehicles that must travel from a set
of given initial positions to a set of given final po-
sition in [26]. Similarly to [26], in this paper,
PP is implemented by minimizing the energy required by the
vehicles subject to the ocean speed forecast in (9). Collisions
between the sensors are avoided by modifying the inequality
constraint (25) to include a minimum safety distance in place
of the FOV radius . Since the network must perform cooper-
ative track detections, and are chosen as sensor network
configurations that maximize the instantaneous track coverage
function (20). Subsequently, DSM is used to compute noncoop-
erative minimum-energy trajectories by maximizing (23) with

and , subject to (8) and (25). Finally,
to demonstrate the advantage of onboard controls and actuators,
zero-control trajectories are simulated by setting the thrust in-
puts in (8) equal to zero at all times, thereby allowing the sensors
to drift in similarly to point masses.

The performance of sensor networks deployed using OC, AC,
PP, and zero control (ZC) is summarized in Table IV for four
missions involving the networks in Table I. A comparison of
sensors’ trajectories obtained by the four deployment methods
is shown in Fig. 11 for a network with , , a given
(fixed) , and 72 h. It can be seen from Table IV that by
implementing the OC approach presented in this paper, the total
sensor network performance , defined in (23) as a weighted
combination of track coverage and energy, is improved by up
to 776% compared to the zero-control solution, and by up to
163% and 111% compared to the area-coverage and path-plan-
ning solutions, respectively. Although energy consumption typ-
ically is higher for the optimally controlled network, as a re-
sult, OC also improves track coverage by up to one order of
magnitude (Table IV). Since PP optimizes track coverage at

and , it outperforms the AC and zero-control techniques
(Table IV). However, OC always outperforms PP, because it

maximizes track coverage throughout the time interval , and
it can simultaneously optimize , , and state and con-
trol trajectories, thereby considering extremals with all possible
initial and final conditions. As a result, track coverage is con-
siderably improved at all times, as shown by the time histories
plotted in Fig. 12.

D. Optimal Sensors’ Trajectories Subject to
Track Coverage Constraints

Sensor networks’ applications often require that a minimum
required quality of service, such as track coverage, be main-
tained at all times using minimum resources. Sequential de-
ployment algorithms based on path exposure or NLP were pre-
sented in [67] and [8], respectively, to achieve a required prob-
ability of detection in static sensor networks. As shown in Sec-
tions VI-A–VI-C, when the sensor network is mobile, its quality
of service changes over time, and is a function of the system
dynamics and environmental conditions. Hence, maintaining a
minimum required quality of service can be more challenging
as well as more crucial to the sensor network operability. An-
other advantage of the OC approach presented in this paper is
that different objectives and constraints can be accommodated
by the same formalism, without the need for reformulating the
problem or for changing the solution method.

As an example, in this section, the sensors’ trajectories are
computed such that the network is guaranteed to maintain a min-
imum required track coverage at all times, with minimal
energy consumption. A similar approach can be used to opti-
mize track coverage subject to maximum allowable energy con-
straints, e.g., to facilitate recovery of the sensors at . Thanks
to the OC problem formulation, this is easily accomplished by
including an additional scalar constraint

(47)
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Fig. 11. Comparison of sensors’ trajectories obtained by (a) OC, (b) AC, (c) ZC, and (d) PP, for a network with � � ��, � � �, � fixed, and �� � 3 days.
Latitude: N; longitude: W.

TABLE V
PERFORMANCE OF TRACK COVERAGE CONSTRAINED TRAJECTORIES

in (3), letting , , and
in (23). In this study, both and the sensors’ state

and control trajectories are optimized subject to both dynamic
and inequality constraints. The numerical results are presented
in Table V for a sensor network with and (Table I),
and three levels of required track coverage. The time histories of
the optimal track coverage and energy consumption are plotted
in Fig. 13. It can be seen from Fig. 13(a) that the track coverage
of the sensor network remains above at all times for all three
examples. However, the energy required is significantly higher
when is equal to 300 and 315, as shown in Fig. 13(b) and
Table V. As shown in Fig. 14, the optimal initial positions and
state trajectories can be highly influenced by the value of . In
this example, due to the nature of the ocean currents [Fig. 5(a)],
the energy required by the solutions with equal to 300 and
315 is utilized mostly during the first day, while later the sensors
require little or no control to remain in the high track coverage
configuration located in the bottom-left corner of [Fig. 14(b)].
When is equal to 290, the amount of energy required to

Fig. 12. Comparison of instantaneous track coverage � ���, and objective
function ����, obtained by OC, AC, ZC, and PP.

operate the sensor network is very small, and is more evenly
distributed throughout [Fig. 13(b)].

From these results, it can be concluded that highly efficient
network deployments, such as the one shown in Fig. 14(a), can
be obtained by optimizing the sensors’ initial positions, as well
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Fig. 13. Time histories of (a) track coverage and (b) energy for �� equal to (i) 315, (ii) 300, and (iii) 290.

as their state and control trajectories. Similarly to other OC
problems, such as spacecraft trajectory optimization [30], [43],
the optimal sensors’ trajectories are very sensitive to inequality
constraints. Therefore, the approach presented in this section is
convenient only when energy is of great concern, and a low but
fairly constant quality of service is necessary. When the quality
of service is to be maximized, the multiobjective optimization
approach utilized in the previous sections computes the trajec-
tories with the best tradeoff between energy and track coverage.

VII. SUMMARY AND CONCLUSION

An approach is presented for optimally controlling an un-
derwater sensor network that is deployed to cooperatively
track unauthorized targets in an ROI. An integral objective
function representing the sensor network’s track coverage
over time is obtained using geometric transversals. A differ-
ential equation model of the sensor network’s dynamics is
obtained by considering three dependent subsystems, i.e., un-
derwater vehicles, onboard sensors, and oceanographic fields.
Each sensor-equipped vehicle is modeled as a disk, with a
time-varying radius, that moves according to underwater-ve-
hicle dynamics. By this approach, sensors’ trajectories that
maximize track coverage and minimize energy consumption
can be computed using a DSM, which transcribes the OC
problem into an NLP. The approach is implemented on three
simulated sensor networks that are deployed in a simulated
ROI near the New Jersey coastline. The numerical results
show that OC significantly improves the sensor network’s
performance compared to AC and PP methods. Also, it can be
used to incorporate useful inequality constraints on the sensors’
performance, state, and control vectors, and to generate fronts
of Pareto optimal trajectories.

APPENDIX I
COVERAGE CONE

Let denote a ray that intersects a disk
with radius , and centered at at time

, in . Consider any two points that lie on
and inside , and let denote their positions
relative to the origin of the coverage cone .
By construction, , and a vector joining the

two points will lie on the ray . Let and denote
any two positive constants. By definition of vector sum and
subtraction [70], if , then has the same origin
as and . Thus, since lies on , intercepts
the -axis at the cone’s origin . If ,

does not have the same origin as and and, thus,
does not intercept the -axis at . By definition (15),

is the set of all nonnegative combinations of
the elements in . Since and are two elements in

, and any nonnegative combination of these two elements
can be written as , with , it follows
that . Finally, since
denotes any ray with intercept that intersects in ,
and provided that intersects the -axis
at , it also follows that any that intersects both
and the -axis at is contained by in (15).

APPENDIX II
PROOF OF PROPOSITION 3.1

This proof considers a family of disks
with index set . The results

can be extended to higher by induction. The coverage cone
contains the set of all rays that intersect in

, at time , where . Then, from set theory, the set of
tracks intersecting all circles in the family is given by the
following intersection:

(48)

From the properties of cones [69, p. 70], the intersection of a
collection of cones is also a cone and, thus, is a
cone. A vector representing a ray with the same slope and
origin lies in a cone if and only if lies in , since any
point on can be written as , with .

Consider a ray , where
, and thus can be represented by a vector
with constants . Then,

and, by the properties of the vector sum, . Next,
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Fig. 14. Optimal sensors’ trajectories and initial positions for �� equal to (a) 290 and (b) 315. Latitude: N; longitude: W.

consider a cone that is finitely generated by
two unit vectors and with , and as-
sume . By the properties of finitely generated cones [69],
defined as in (15), any vector with constants

must lie in . It follows that a ray with the same
slope and origin as must also lie in , since any point on

can be written as , with . Since is a linear com-
bination of and , it also follows that .

According to Proposition 3.1, choose and
. Suppose the unit vectors of can

be ordered as and . Then, the unit
vectors and can be ordered as follows:

(49)
or, more explicitly

(50)

Since the above order also implies , ,
then . Thus, from (48),

, provided
and are chosen subject to (49).

So far it was assumed that . If the unit vectors of
are such that , then there are no vectors that can satisfy
the order , and .

APPENDIX III
DERIVATION OF TRACK COVERAGE FUNCTION

First, we seek a Lebesgue measure on the set of tracks that
are detected by at least sensors in at time given by

(51)

where denotes the th -subset of at time , and the
number of possible -subsets is given by the binomial coef-
ficient , as shown in (51). Since is a union of possibly
disjoint cones, defined in (16), it may not be a cone [69], and is

computed using the principle of inclusion–exclusion [97], such
that

(52)
where

and

is a sum over all the distinct integer -tuples
satisfying . Also,

denotes a measure on the set. Since the right-hand side of (52)
is an intersection of cones, it also is a cone on which we can
impose the Lebesgue measure .

Now, consider the intersection of cones
inside the inner summation in (52).

denotes the th -subset of at time , where is a positive
integer between 1 and , and is the total number of -sub-
sets in . By the properties of cones, this intersection is also a
cone, and represents the set of tracks through that intersect all
sensors in the family . Based
on the properties of -subsets, this set must contain
elements of and, thus, is a -subset of . From Proposi-
tion 3.1, the set of line transversals of through can be
represented by the -coverage cone .
Using the Lebesgue measure (18) on -coverage cones, (52) can
be written as

(53)
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(54)

(55)

where is the number of elements in the union of -subsets
of , and is given by (18).

The set of tracks that traverse and are detected by at least
sensors is given by the union of all -coverage cones with

origins , and with opening angles denoted
by , , , and , respectively (Fig. 4). To obtain representa-
tions that are computationally tractable, is discretized into
increments of size , and intercept values,
indexed by , are considered. Using an appropriate transfor-
mation [8], (13)–(18) can be used to compute all opening
angles, , , , and

, as a function of their origins and of the sensors’
positions and ranges in the -frame. By considering
that every track in this union intersects two sides of and
belongs to two -coverage cones, and by shifting the indices
to consider intercepts at the corners only once, the final track
coverage function in (20) is obtained.
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