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A Constrained Backpropagation Approach for the
Adaptive Solution of Partial Differential Equations

Keith Rudd, Gianluca Di Muro, and Silvia Ferrari, Senior Member, IEEE

Abstract— This paper presents a constrained backpropagation
(CPROP) methodology for solving nonlinear elliptic and par-
abolic partial differential equations (PDEs) adaptively, subject
to changes in the PDE parameters or external forcing. Unlike
existing methods based on penalty functions or Lagrange mul-
tipliers, CPROP solves the constrained optimization problem
associated with training a neural network to approximate the
PDE solution by means of direct elimination. As a result, CPROP
reduces the dimensionality of the optimization problem, while
satisfying the equality constraints associated with the boundary
and initial conditions exactly, at every iteration of the algorithm.
The effectiveness of this method is demonstrated through several
examples, including nonlinear elliptic and parabolic PDEs with
changing parameters and nonhomogeneous terms.

Index Terms— Adaptive algorithm, artificial neural networks
(ANNs), partial differential equations (PDEs), scientific
computing.

I. INTRODUCTION

ARTIFICIAL neural networks (ANNs) are commonly
implemented to obtain functional representations of par-

tial differential equation (PDE) solutions that are amenable
to mathematical analysis, and efficient processing by data
assimilation and estimation algorithms. Examples range
from solving the Poisson equation [1], to solving the
Hamilton–Jacobi–Bellman equation for finite-horizon opti-
mal control problems [2]. In many applications, however,
the PDEs describe dynamic processes that are subjected to
change. Therefore, while a given PDE problem may capture
a dynamic process on short time scales, the process, and thus
the PDE, may be undergo changes in the parameters and
external forcing. An adaptive method can respond to these
changes by adapting the solution incrementally to satisfy the
PDE problem with respect to changing parameters and/or a
changing nonhomogeneous term.

Given a PDE with fixed parameters and fixed initial
and boundary conditions (I/BCs), finite difference methods
(FDMs) and finite element methods (FEMs) determine an
approximate solution at a discrete number of points, producing
a lookup table that can be interpolated when the solution is
needed elsewhere in the domain [3], [4]. One disadvantage of
these methods is that, to obtain satisfactory solution accuracy,
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it may be necessary to deal with fine meshes that significantly
increase the size of the lookup table and memory required
[5], [6]. Another disadvantage is that a new numerical solu-
tion must be determined from scratch, and the previous one
discarded, every time a change occurs in the PDE problem.

ANNs provide an ideal representation tool for adaptive
PDE solutions because they are characterized by adjustable
parameters that can be modified by incremental training
algorithms [7], and because of their ability to approximate
nonlinear functions on a compact space. Another advantage of
ANN solutions over solutions obtained by FDM or FEM is that
ANN solutions are in a closed analytic form that is infinitely
differentiable. Thus, an ANN solution can be represented by a
small number of parameters, reducing the amount of memory
required compared with FDM and FEM [8]. Furthermore,
because an ANN solution is valid over the entire domain, it
eliminates the need for interpolation [9].

One approach for solving PDEs numerically using ANNs is
to use an FDM or FEM solution to train a neural network using
a backpropagation algorithm, such as Levenberg–Marquardt
(LM) [10]. Methods have also been proposed to determine the
PDE solution in one step, by training an ANN to minimize
an error function formulated in terms of the differential
operator. One of the main difficulties that arise in ANN-based
method lies in satisfying the BCs and ICs, which amounts
to a set of equality constraints on a continuous domain. One
possibility is to use a problem-specific ansatz that has been
tailored to automatically satisfy the BCs, and includes an
ANN that is trained to minimize the PDE error. Although
this approach has been shown effective in solving boundary
value problems (BVPs) with a high degree of accuracy [1],
[11], [12], it has yet to be demonstrated on initial BVPs
(IBVPs). Another disadvantage is that because the ansatz is
problem specific, this approach may not be applicable to all
PDE problems, and cannot be used to obtain an adaptive PDE
solution.

Another approach for incorporating the I/BCs in the ANN
solution is to use them for formulating a penalty function,
thereby converting the constrained optimization problem into
an unconstrained optimization problem [13]. As for all penalty
function methods, this method can display slow convergence,
and poor solution accuracy in the equality constraints. Improv-
ing accuracy typically requires using many more nodes in
the ANN hidden layer, and a dense set of collocation points
along the boundary of the domain. In addition to making
the approach computationally expensive, these steps involve
user intervention, and, therefore, do not allow for an adaptive
solution of the PDE problem.
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A well-known result from constrained optimization theory
is that if the equality constraints satisfy the implicit function
theorem, they can be at once satisfied exactly, and used
to reduce the dimensionality of the optimization problem,
through the method of direct elimination [14], [15]. Thus,
whenever applicable, direct elimination is to be preferred
over the penalty function method or the method of Lagrange
multipliers. This is because the latter relies on augmenting
the objective function by a function of the constraints and,
thus, increases the dimensionality of the unconstrained opti-
mization by introducing additional variables (e.g., Lagrange
multipliers).

It was recently shown in [16] that the method of direct
elimination can be used to train ANNs in the presence of
equality constraints through a method known as constrained
backpropagation (CPROP). CPROP preserves a set of input–
output and gradient information during incremental training
sessions by embedding this information into a set of equality
constraints that are formulated in terms of the neural weights
by means of algebraic training [17]. In [18], CPROP has
been used to eliminate interference and preserve prior knowl-
edge in fully connected sigmoidal neural networks, and to
adapt an ANN-based nonlinear controller online [16]. In [19],
CPROP was demonstrated on benchmark problems in function
approximation and system identification, and for the solution
of ordinary differential equations.

This paper shows that CPROP offers a natural paradigm for
solving PDEs via ANNs, because the ANN can be adapted
to minimize the error defined by the differential operator,
while satisfying the equality constraints provided by the I/BCs.
Furthermore, because it allows for the equality constraints to
be satisfied during incremental training sessions, CPROP can
be used to solve PDEs adaptively. It is also shown that the
adaptive CPROP solutions bring about a significant reduction
in computation time compared with existing methods [20].

This paper is organized as follows. The CPROP approach
is reviewed in Section II. The adaptive PDE solution problem
is formulated in Section III for elliptic and parabolic IBVPs,
and the novel CPROP method of solution is presented in
Section IV. The computational complexity of the CPROP PDE
solution algorithm is analyzed in Section V. In Section VI,
the method is demonstrated through several example problems
including the Laplace equation, the heat/diffusion equation,
and the Boussinesq equation.

II. BACKGROUND ON CPROP

Classical backpropagation algorithms solve an uncon-
strained optimization problem involving the minimization of
a scalar objective function with respect to all of the network
weights. CPROP, instead, solves a constrained optimization
problem involving the minimization of a scalar objective
function, subject to a set of equality constraints. In particular,
CPROP algorithms are based on the finding that, through
algebraic training [17], the method of direct elimination can
be used to train a nonlinear ANNs in the presence of equality
constraints that are automatically satisfied during repeated
incremental training sessions. Algebraic training consists of

p1

p2

pr

WL

LTM nodes

STM nodes

VLσ

û

KL

•
•
•

•
•

•
•

VS
σKL+1

WS σK

σ1

Fig. 1. Partitioning of ANN nodes and weights into LTM (L) and
STM (S) sets.

deriving a set of nonlinear equations from the training data
and the neural network input–output and derivative equations.
Then, by letting the number of nodes be equal to the number
of samples in the training set, it can be shown that an exact
solution to the nonlinear algebraic training equations can be
obtained by solving linear systems of equations.

As shown in Section III, CPROP can be used to approximate
and adapt the solution of a PDE, u = h(p), where p ∈ R

r×1,
and h : R

r → R is a smooth scalar function of r independent
variables, based on a (changing) differential operator, while
satisfying a set of equality constraints obtained from the PDE
I/BCs at all times. Consider a feedforward one-hidden-layer
sigmoidal ANN that is characterized by universal function
approximation abilities [21]–[23]. The hidden layer can be
represented by an operator with repeated sigmoidal functions,
�(n) := [σ(n1) · · ·σ(nK )]T , where ni is the i th component
of the input-to-node vector n ∈ R

K×1, and σ(ni ) := (eni −1)/
(eni + 1). Then, the neural network input–output equation is
as follows:

û = �(pT WT + bT )VT ≈ h(p) (1)

where b ∈ R
K×1, W ∈ R

K×r , and V ∈ R
1×K , are

the adjustable bias, input, and output weights, respectively.
The neural network derivative equations can be obtained by
differentiating û with respect to p.

In CPROP, an objective function to be minimized is obtained
from a training set of input–output information, denoted by
TS = {pk, uk}k=1,...,NS , that may be obtained in batch mode
or incrementally over time, and thus is referred to as short-
term memory (STM) [16]. In this paper, the STM training set
is obtained from the PDE differential operator that may change
as a result changing PDE parameters and/or nonhomogeneous
term (forcing). Another training set, referred to as long-
term memory (LTM), consists of input–output and derivative
information to be preserved at all times, and is denoted by
TL = {p�, hn(p�)}�=1,...,NL , where hn(·) denotes the nth-order
derivative of h with respect to p, and n = 1, . . . , ND . The
LTM is used to formulate the CPROP equality constraints
via algebraic training, and, in this paper, is obtained from the
PDE I/BCs.

The CPROP constraints are derived by partitioning the K
nodes into an LTM set of KL nodes, and an STM set of
KS nodes, as shown in Fig. 1, such that KL = NL and
KL + KS = K . Then, letting the subscript L denotes the
weights associated with LTM-node connections, and letting
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the subscript S denotes the weights associated with STM-node
connections, the neural network input–output equation (1) can
be partitioned as follows:

û(p) = �
(

pT WT
L + bT

L

)
VT

L + �
(

pT WT
S + bT

S

)
VT

S (2)

and the LTM and STM weights can be reorganized into two
vectors wL ∈ R

ML and wS ∈ R
MS . Then, from the input–

output equation (2) and its derivatives, the LTM data TL can
be embedded into an implicit function c : R

M → R
ν , where

ν = NL + ND , such that the LTM data are preserved provided
the equality constraint

c(wL , wS) = 0 (3)

is satisfied. Furthermore, a training method that preserves TL

while minimizing an objective function e : R
M → R obtained

from TS can be formulated as a constrained optimization
problem

min e(wL, wS)

s.t. c(wL , wS) = 0 (4)

in the neural network weights wL , wS .
Now, if (3) satisfies the implicit function theorem, it

uniquely implies the function

wL = C(wS) (5)

and the method of direct elimination can be applied by
rewriting the objective function as

E(wS) = e(C(wS), wS) (6)

such that the value of wS can be determined independently
of wL . In this case, the solution of (4) is an extremum of (6)
that obeys ∂ E/∂wS( j) = 0 for j = 1, . . . , MS . Throughout this
paper, the j th element of a vector is denoted by a subscript ( j).
For matrices, a single subscript (l) denotes the lth column of
the matrix, and a subscript (i, j) denotes the element in the
i th row and j th column of the matrix.

Once the optimal value of wS is determined, the optimal
value of wL can be obtained from wS using (5). Furthermore,
the extremum of (6) can be obtained numerically using the
adjoined error gradient

∂ E

∂wS(i)

= ∂e

∂wS(i)

+ ∂e

∂C
∂C

∂wS(i)

(7)

obtained from (6) using the chain rule [24]. Then, the objective
function in (6) can be rewritten as follows:

E(wS) = 1

2
εT ε (8)

where ε( j ) is the error associated with the j th sample in TS .
In this paper, LM is the training algorithm of choice because

of its excellent convergence and stability properties [10], [25].
In the LM algorithm, the update to the weights, �wS , is found
by solving a nonlinear system of equations

(
JT J + ηI

)
�wS = −JT ε = −∇wS E (9)

where I is the identity matrix, η is a positive constant known
as learning rate, and J is the Jacobian matrix. The CPROP

LM training algorithm is obtained by deriving the adjoined
Jacobian

J(m,n)(wS) = ∂ε(m)[C(wS), wS]
∂wS(n)

= ∂ε(m)(wL , wS)

∂wS(n)

+∂ε(m)[C(wS), wS]
∂C

∂C
∂wS(n)

(10)

and by updating the STM weights according to (9) and (10).
The following sections illustrate how the CPROP LM training
approach can be applied to the solution of elliptic and par-
abolic IBVPs, by deriving (5), the objective function (8), and
the adjoined Jacobian (10).

III. CPROP SOLUTION OF ELLIPTIC AND

PARABOLIC IBVPs

The CPROP approach offers a natural paradigm for solving
PDEs via ANNs, because ANNs can be trained to minimize
the error defined by the differential operator, while satisfy-
ing the I/BCs equality constraints. Satisfying I/BCs typically
involves a smooth function approximation problem that can be
represented by the equality constraints (3), obtained through
algebraic training [17]. Therefore, CPROP can be used to guar-
antee that the I/BCs equality constraints are satisfied during
repeated incremental sessions by introducing a sequence of
objective functions en , for n = 1, 2, . . ., such that the PDE
solution is obtained and, then, adapted subject to changes in
the PDE parameters or external forcing.

The CPROP PDE solution approach is illustrated for linear
and nonlinear elliptic BVPs and parabolic IBVPs of second
order that arise in many areas of science and engineering, and
can greatly benefit from an adaptive solution method. As will
be shown in a separate paper, the method is also applicable to
PDEs of higher and lower orders, and to other PDE problems.
A second-order PDE obeys the form

a(ξ, η, u)
∂2u

∂ξ2 + b(ξ, η, u)
∂2u

∂ξ∂η
+ c(ξ, η, u)

∂2u

∂η2

+d(ξ, η, u)
∂u

∂ξ
+ e(ξ, η, u)

∂u

∂η
+ h(ξ, η, u)u = F. (11)

The above PDE is said to be elliptic if b2 −4ac < 0, parabolic
if b2 − 4ac = 0, and hyperbolic if b2 − 4ac > 0 [26]. Elliptic
and parabolic PDEs can be written in compact form

Ln
[
u(p)

] = fn(p) (12)

where p ∈ I ⊂ R
r , Ln is the differential operator, and fn :

R
r → R is a forcing function or source term.
In many science and engineering applications, the PDE

differential operator and/or forcing function in (12) may be
subject to change. In this case, a solution of (12) may be
required for a sequence of PDEs, represented by the sequence
of functions {(Ln, fn) : n = 1, 2, . . .}, where each pair of
functions (Ln, fn) defines one elliptic or parabolic PDE. The
I/BCs associated with the nth PDE, (Ln, fn), may also be
subject to change. Let every PDE problem be indexed by n,
and assume that the nth PDE problem holds for a period �T
that is much greater than the time required to obtain the ANN
solution. Then, the sequence of PDE problems can be solved
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incrementally by adapting the ANN solution (2) through
CPROP, such that the (n + 1)th solution is obtained after the
ANN has converged to the solution of the nth PDE problem.

At every iteration of the CPROP training algorithm, the
adjoined Jacobian is used to satisfy the equality constraints
expressed by a training set TL , while minimizing an objective
function defined by the differential operator. For elliptic equa-
tions, TL is obtained from the BCs, and for parabolic equa-
tions, it is obtained from the ICs. The objective function (8) is
obtained using a training set of points taken from the interior
of the domain, denoted by TS = {pk |pk ∈ I \ ∂I}k=1,...,q . Let
û(p) represent the PDE solution approximated by the ANN.
Then, the objective function (8) can be written in terms of the
differential operator error as follows:

ε(k) ≡ {
fn(pk) − Ln

[
û(pk)

]}
, pk ∈ TS (13)

where ε(k) denotes the kth element of the error ε in (8).

A. Elliptic BVPs

In this section, let Ln in (12) denote an elliptic operator
defined over a compact set I ∈ R

r , with BCs

B
[
u(p)

] = h(p) ∀p ∈ ∂I (14)

where B is a linear differential operator of order less than Ln ,
and h : R

r → R is a continuous and known function.
Satisfying the BCs in (14) requires solving a smooth function
approximation problem that can be formulated as an equality
constraint (3), using an LTM training set in the form

TL = {p�, h(p�)}�=1,...,NL . (15)

Because we seek an approximate ANN solution to the ellip-
tic BVP problem (12), (14), the number of LTM nodes is
KL = NL , based on the algebraic training approach in [17].
The number of STM nodes, KS , is determined heuristically,
based on the size and complexity of TS .

The CPROP objective function (4) is obtained by applying
the differential operator Ln to the approximate ANN solu-
tion (2), and by substituting the result in (13) as follows.
Consider the partial derivative

χ(p) = ∂γ u(p)

∂pm1
(1) . . . ∂pmr

(r)

(16)

where γ = m1+· · ·+mr . Let ωS j represents a diagonal matrix
of the j th column of WS , and let

�S =
r∏

j=1

ω
m j
S j

. (17)

Similarly, �L is a product of diagonal matrices taken from
columns of WS . Then, the ANN input–output equation (2) is
differentiated with respect to p

∂γ û(p)

∂pm1
(1) . . . ∂pmr

(r)

≡ χ̂ (p) = �γ
(

pT WT
L + bT

L

)
�LVT

L

+�γ
(

pT WT
S + bT

S

)
�SVT

S (18)

where �γ (·) denotes the γ th derivative of the sigmoidal
operator. Thus, all the partial derivatives in Ln[û(p)] can be
obtained in the closed form from (2)–(17), and substituted in
(13) to determine the ANN objective function (8).

B. Parabolic IBVPs

In this section, let Ln in (12) denote a parabolic operator,
and let the parabolic PDE solution be a function of p ∈ I,
where I = H × [t0, t f ) ⊂ R

r , and H is a compact set. We
consider the case of Dirichlet BCs

u(p) = h(p) ∀p ∈ ∂H × [t0, t f ) (19)

where h : R
r → R. IBVPs differ from BVPs in that they also

have an IC associated with one of the variables in p, denoted
here by p(r), where t0 ≤ p(r) ≤ t f . Then, in addition to (19),
the PDE solution must also satisfy the IC

u(p(1), . . . , p(r−1), t0) = d(p(1), . . . , p(r−1)) (20)

where d : R
r−1 → R is a known function.

From the ANN input–output equation (2), the approximate
ANN solution can be written as

û(p) = h̃(p) + q(p)
[
�
(

pT WT
L + bT

L

)
VT

L

+ �
(

pT WT
S + bT

S

)
VT

S

]
(21)

where h̃ : R
r → R is a differentiable function, that satisfies

the BCs in (19) for all p in I. The function q : R
r → R

also is differentiable, and it is zero for p ∈ ∂H, and nonzero
for p ∈ {H\∂H}. When the BCs do not change over time,
using (21) has the advantage that the BCs are automatically
satisfied, leaving the IC as the only equality constraint.

With the above simplification, the ANN equality constraint
(3) is obtained from the training set

TL = {p�, z(p�)}�=1,...,NL

=
⎧
⎨
⎩[p(1), . . . , p(r−1), t0]T

� ,
u(p) − h̃(p)

q(p)

∣∣∣∣∣
p=p�

⎫
⎬
⎭

�=1,...,NL

for p1, . . . , pr−1 ∈ H. The ANN objective function (8)
to be minimized is obtained from the parabolic differential
operator Ln , as shown in Section III-A. For the parabolic IBVP
problem described in this subsection, the partial derivatives,
however, differ from (18) because Ln is applied to the ANN
approximate solution in (21). The derivatives of (21) consist of
products of q(p) and its derivatives, and the derivatives of the
ANN output, χ̂(p), shown in (18). In particular, the first-order
derivatives of (21) are given by

∂ û(p)

∂p( j )
= ∂ h̃(p)

∂p( j )
+ ∂q(p)

∂p( j )

×
[
�
(

pT WT
L + bT

L

)
VT

L + �
(

pT WT
S + bT

S

)
VT

S

]

+q(p)
[
�1
(

pT WT
L + bT

L

)
ωL j V

T
L

+ �1
(

pT WT
S + bT

S

)
ωS j V

T
S

]
(22)

and the second-order derivatives of (21) are given by (62), in
Appendix VII.
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IV. DERIVATION OF ADJOINED JACOBIAN FOR

ELLIPTIC AND PARABOLIC PDEs

This section derives the CPROP adjoined Jacobian (10)
from the PDE objective functions derived in the previous
section. As shown in Section II, the adjoined Jacobian
accounts for the ANN equality constraints (5) and, thus, can be
used to minimize the constrained objective function numeri-
cally. Although the adjoined Jacobian depends on the form
of the differential operator Ln , for all elliptic and parabolic
PDEs it can be expressed in terms of the partial derivative
χ̂ , defined in (16), as shown in this section. Then, because
the constraint (5) and the Jacobian (10) are functions of the
PDE parameters and external forcing, the ANN solution can
be adapted incrementally over time.

Because the forcing function fn(·) in (13) is indepen-
dent of wS , it follows that ∂ε(k)/∂wS = −∂Ln/∂wS|pk for
any k, where k = 1, . . . , q . Let M denotes the number of
partial derivatives of û in Ln . Then, the equality constraint
Ln = F(χ̂1, . . . , χ̂M ), the adjoined error gradient (7), and the
Jacobian (10) can be obtained from the gradient

∂Ln[û(p)]
∂wS(k)

=
∑

i

∂ F

∂χ̂i

∂χ̂i

∂wS(k)

. (23)

For every i th derivative, let

∂ F

∂χ̂i

∂χ̂i

∂wS(k)

= ∂ F

∂χ̂i

[
g1(p) + g2(p)

]
(24)

where

g1(p) = ∂

∂wS(k)

[
�γ (pT WT

L + bT
L )�LVT

L

]

g2(p) = ∂

∂wS(k)

[
�γ (pT WT

S + bT
S )�SVT

S

]
(25)

and ∂[·]/∂wS(k) denotes the kth element of the gradient vector
∂[·]/∂wS. Because wS is obtained by regrouping the elements
of WS , bS , and VS , the partial derivatives with respect to these
weights are derived separately as follows.

As a first step, consider the input weights, where wS(k)

corresponds to the input weight WS(i, j) , and let

αi j ≡ m j
(
WS(i, j)

)m j −1
r∏

k 
= j

(
WS(i,k)

)mk . (26)

Then, for any input weight WS(i, j) , the term g2(p) in (24) can
be written as

g2(p) = ∂

∂WS(i, j)

[
�γ (pT WT

S + bT
S )�SVT

S

]

=
[
αi j �

γ
(i)(p

T WT
S + bT

S )

+ �S(i,i)�
γ+1
(i) (pT WT

S + bT
S )p( j )

]
VS(i) (27)

and for any input bias bS(i) , or output weight VS(i) , g2(p) can
be written as

g2(p) = ∂

∂bS(i)

[
�γ (pT WT

S + bT
S )�SVT

S

]

= �S(i,i)�
γ+1
(i) (pT WT

S + bT
S )VS(i) (28)

or

g2(p) = ∂

∂VS(i)

[
�γ (pT WT

S + bT
S )�SVT

S

]

= �S(i,i)�
γ
(i)(p

T WT
S + bT

S ) (29)

respectively. These equations provide the first term of the
adjoined Jacobian (10), and correspond to the (unconstrained)
partial derivatives used in classical backpropagation. The
second term in the adjoined Jacobian (10) is given by
(∂ F/∂χ̂i )g1(p) in (24). This term is referred to as constrained
derivative because it takes into account the ANN constraint
(5), and is derived in the following sections.

A. Constrained Derivative in Elliptic BVPs

The equality constraint for an elliptic PDE is obtained from
a training set TL determined from the BCs. When the BCs in
(14) are imposed on the ANN approximate solution (2), they
can be written as

B[û(p)] = B
[
�
(

pT WT
L + bT

L

)]
VT

L

+B
[
�
(

pT WT
S + bT

S

)]
VT

S (30)

for a linear operator B. According to the algebraic training
approach in [17], (30) is evaluated at the collocation points
in the training set TL and arranged into a linear system of
equations. It follows that an ANN that satisfies TL at all
times can be obtained provided training satisfies the following
equality constraint:

h = �VT
L + �VT

S (31)

where

h(�) ≡ h(p�) (32)

�(�,k) ≡ B
[
�(k)

(
pT

� WT
L + bT

L

)]
(33)

�(�,k) ≡ B
[
�(k)

(
pT

� WT
S + bT

S

)]
(34)

for all p� ∈ TL . Then, an explicit equality constraint in the
form (5) can be obtained from (31) as follows:

VT
L = �−1[h − �VT

S ] (35)

where � is assumed to be an invertible matrix that can be
constructed using the method in [17].

According to the CPROP training approach reviewed in
Section II, the objective function (8) is minimized with respect
to wS , while WL is held constant. Thus, the matrix � remains
known and constant at all times. With the constraint now
defined, the function g1(p) in (24) is

g1(p) = �γ
(

pT WT
L + bT

L

)
�L

∂VT
L

∂wS(k)

. (36)

Then, the derivative of the explicit constraint equation (35)
with respect to any STM input weight wS(k) = WS(i, j) is
given by

∂VT
L

∂WS(i, j)

= −�−1yVS(i) . (37)
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For any point p� ∈ ∂I at which B defines the Dirichlet BCs,
the �th element of the vector y in (37) is given by

y(�) = p�( j)�
′
(i)

(
pT

� WT
S + bT

S

)
. (38)

While for any point p� ∈ ∂I at which B defines BCs on the
derivatives of u

y(�) = αi j �
γ
(i)

(
pT

� WT
S + bT

S

)

+�S(i,i) p�( j)�
γ+1
(i)

(
pT

� WT
S + bT

S

)
. (39)

Similarly, the derivative of the constraint (35) with respect
to the input bias is given by

∂VT
L

∂bS(i)

= −�−1yVS(i) (40)

where for any point p� ∈ ∂I at which B defines Dirichlet BCs

y(�) = �′
(i)

(
pT

� WT
S + bT

S

)
(41)

and for any point p� ∈ ∂I at which B defines BCs on the
derivatives of u

y(�) = �S(i,i)�
γ+1
(i)

(
pT

� WT
S + bT

S

)
. (42)

Finally, the derivative of (35) with respect to the output
weights is

∂VT
L

∂VS(i)

= −�−1y (43)

where
y(�) = �(i)

(
pT

� WT
S + bT

S

)
(44)

for points with Dirichlet BCs, and

y(�) = �S(i,i)�
γ
(i)

(
pT

� WT
S + bT

S

)
. (45)

for points with BCs on the derivatives of u.
Equations (27)–(29) and (37)–(43) complete the derivation

of the equality constraints and corresponding adjoined Jaco-
bian for elliptic BVPs. The following section derives the equal-
ity constraints and adjoined Jacobian for parabolic IBVPs.

B. Constrained Derivative in Parabolic IBVPs

The equality constraint for a parabolic PDE is obtained by
evaluating the ANN input–output equation in (21) at all points
in the training set TL , defined in (22). The resulting set of
algebraic equations is then organized into a linear system of
equations that can be solved to obtain the explicit equality
constraint

VT
L = �−1

(
z − �VT

S

)
(46)

where � and � are defined as in Section IV-A, z( j ) ≡ z(p j ),
and z(·) is defined in (22). It can be seen that if the problem is
shifted so that t0 = 0, the term pT

k WT
L in (33) is independent

of the weights in the r th column of WL , and, thus, so is
the equality constraint (46) representing the PDE ICs. This
equality constraint is also independent of the r th column
of WS , and, thus, the corresponding derivatives needed to
train these weights can be computed by means of classical
backpropagation.

TABLE I

COMPUTATIONAL COMPLEXITY OF ANN PDE SOLUTION METHODS

Because the equality constraint (46) is in the same form as
the elliptic constraint (35), the derivatives in (37)–(43) are also
used to compute the adjoined Jacobian for the parabolic IBVP.
Given the explicit equality constraint equations, the adjoined
Jacobian, and objective function derived in Sections III and IV,
the CPROP LM algorithm described in Section II is used
to determine the ANN weights incrementally, such that the
chosen PDE is solved within a user-defined tolerance etol.

V. COMPUTATIONAL COMPLEXITY ANALYSIS

This section analyzes how the computational time required
by CPROP grows with respect to the number of ANN weights,
which is proportional to the number of nodes in the hidden
layer, and with respect to the number of collocation points.
Thus, in this section, the order of the computation required
by the adjoined Jacobian is derived for the case of linear
elliptic/parabolic PDEs, and a comparison is made between
the order of operations of the constrained and unconstrained
training algorithms, as shown in Table I.

Consider the computation of the derivatives of the differen-
tial operator in (24), required to obtain the adjoined gradient
for elliptic BVPs. Let NS represents the number of training
pairs in TS , and NL represents the number of training pairs
in TL , and let N = NL + NS . The term �γ (pT WT

L + bT
L )

is a row vector of length KL that is independent of wS . The
derivative of VT

L is given by (37) and (43), which multiply
the matrix �−1 ∈ R

KL×NL by an NL × 1 vector. Then, the
most computationally expensive operation in (24) is a matrix–
vector multiplication that is O(KL NL ). Performing this multi-
plication for NS collocation points and KS weights leads to a
computational complexity O(KL NL KS NS ) for the derivatives
in (24). In the case of a parabolic IBVP, the complexity of
(24) can be reduced compared with the elliptic case because
WL is held constant, and thus �γ (pT WT

L + bT
L )�−1 can

be computed for all NS points and stored prior to training.
Then, the matrix–vector multiplication in (24) is reduced to a
vector–vector multiplication with a total number of operations
O(NL NS KS).

The function g2(p) in (24) does not contain the constraint,
and thus is of the same order as unconstrained LM, and can be
obtained from (27)–(29). The most computationally expensive
operation in (27)–(29) is evaluating �γ at NS × KS points, an
operation that requires O(NS KS) computations. When the dif-
ferential operator is linear, ∂Ln[û(p)]/∂χ̂ in (24) is a constant.
Thus, computing the Jacobian is O(NL NS KS) for elliptic
problems, and O(NL NS KL KS) for parabolic problems.

One approach that has been used extensively in the literature
is to use a numerical solution method, such as FDM, to
obtain a discrete solution in the form of a lookup table,
and then to use this solution to train an ANN [27], [28].
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Explicit FDM schemes are known to be O(N), although,
in practice, more computations may be required to obtain
an accurate solution and avoid instabilities. Hence, the most
computationally expensive step in training an ANN via FDM
is determining the (unconstrained) Jacobian, which requires
evaluating � at N K points and, thus, is O(N K ). It can be
easily shown that this is also the order of the computation
required by the Jacobian in penalty function methods, which
include all the collocation points in TL .

Suppose the LM algorithm is used to train an ANN, either
using classical unconstrained backpropagation or CPROP. LM
requires computing JT J, and solving the linear system of
equations in (9) to update the weights (LM update). In the
case of CPROP, computing JT J is O(K 2

S NS), whereas in the
case of unconstrained ANN training (using the FDM solution
or penalty function method), computing JT J is O(N S2). The
order of the computations required to solve the system of
equations in (9) for CPROP is O(K 3

S), whereas for the FDM
solution and the penalty function method, it is O(K 3). As can
be expected, the most expensive step in the CPROP method
is computing the Jacobian, with complexity O(NS NL KS) for
the elliptic case, whereas the most expensive step in the
other methods is O(N K 2). Because, typically, N > K to
avoid over-fitting, it can be concluded that the computational
complexity of CPROP is comparable both with the process
of training an ANN using an FDM solution, and to the
method of solving the PDE via ANNs using penalty function
methods.

VI. NUMERICAL SIMULATIONS AND RESULTS

This section demonstrates the effectiveness of the CPROP
methodology through several examples of elliptic and par-
abolic PDEs. Unlike other methods of solution, such as
the MATLAB PDE toolbox [29] used here for comparison,
the CPROP methodology does not pose any restrictions on
the class of the PDE, or on the form of the I/BCs and their
domain. In each example, the CPROP solution is compared
either with the analytical solution, or the best available numer-
ical solution when an analytical solution is not known.

A. Adaptive CPROP Solution of Elliptic BVP

Consider the elliptic equation

∇2u(p)+αneu(p) = αn

[
1+p2

(1)+p2
(2)+

4

(1+p2
(1)+p2

(2))
2

]

p ∈ I = [−1, 1] × [−1, 1] (47)

with the BC

u(p) = log(p2
(1) + p2

(2) + 1) ∀p ∈ ∂I. (48)

The above PDE can be used to capture many dynamic
processes in fluid mechanics, electrostatics, and thermodynam-
ics, such as steady incompressible irrotational fluid flow in two
dimensions, and heat/diffusion processes in steady state. The
adaptive CPROP solution approach is illustrated by changing
the parameter αn , representing the relative importance of the
nonlinear term versus the forcing function. A sequence of
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Fig. 2. (a) CPROP solution of the elliptic PDE (47) when n = 0, and
(b) corresponding training blue.

six PDEs problems in (47) and (48) is obtained by letting
n = 0, . . . , 5, and αn = 0.2n. For αn = 0, the PDE in (47)
reduces to Laplace’s equation.

Using the CPROP methodology presented in Section IV,
the ANN in (2) is trained to solve these six PDEs adaptively.
When the objective function decreases below etol, the CPROP
algorithm ceases training the ANN. Then, when the value of
αn is modified, the change is reflected in the training sets
and, subsequently, in the objective function. As a result, the
objective function exceeds etol, and the CPROP algorithm
resumes training the ANN incrementally, starting with the
weights obtained during the last training session.

The input data in TL consist of 180 equally spaced colloca-
tion points in ∂I. The input data in TS consist of a 35×35 grid
of points in the interior of I. The corresponding output data for
the two training sets are computed as explained in Section IV.
The ANN is partitioned into 40 LTM nodes and 20 STM nodes
(defined in Fig. 1). The training set TS is used to formulate
the objective function (13) in terms of the differential operator
in (47). At n = 0, the weights are initialized randomly. No
training of WL and bL is required and, instead, it is sufficient
to initialize the input weights with uniformly distributed values
in the interval (−5, 5), similarly to [30] and [31]. The CPROP
adaptive solution is obtained for n = 0, . . . , 5, and is plotted
in Figs. 2 and 3 for n = 0 and n = 5, respectively, along with
the objective function e, defined in (8).

For n = 0, the CPROP solution is evaluated using the
MATLAB PDE toolbox solution [29], and for n = 5, it is
evaluated using the analytical solution, u(p) = log(p2

(1) +
p2

(2) + 1) [12]. For n = 5, a quantitative comparison between
the CPROP ANN solution, û, and the analytical solution, u,
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Fig. 3. (a) CPROP solution of the elliptic PDE (47) when n = 5, and
(b) corresponding training blue.
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Fig. 4. Box plot of REN between the CPROP and the analytical solution of
the elliptic PDE (47) when n = 5, for different ANN sizes (K ).

is obtained by computing the relative error norm (REN)

REN =
∑

i [u(pi ) − û(pi )]2
∑

i u2(pi )
(49)

using a validation set of points in the domain that was not used
for training. Because the REN varies with network size and
with different random initializations of the weights, a box plot
of REN is obtained using eight network sizes (K ) shown in
Fig. 4. It is found that the CPROP solution achieves the same
order of accuracy as the MATLAB finite element solution.
Each box plot in Fig. 4 shows the distribution of REN resulting
from 100 CPROP solutions with random initializations, for
the chosen numbers of nodes. Similar results were obtained
by comparing the CPROP solution and the MATLAB solution
for n = 0, but are omitted for brevity.

For n = 1, . . . , 4, analytical solutions are not available,
and the MATLAB PDE toolbox is not applicable because
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Fig. 6. Box plot of CPROP training epochs needed to solve the elliptic PDE
(47) adaptively from the αn−1 solution, and nonadaptively.

of the presence of the nonlinearity in the elliptic PDE (47).
Therefore, the adaptive CPROP solution is evaluated by
monitoring the objective function e, defined in terms of the
differential operator. The simulation results in Fig. 5 show
that the value of e at the end of each training session, denoted
by efinal, decreases exponentially with n. Because the order of
magnitude of the PDE solution does not vary with n, this result
shows that the REN also decreases exponentially with n and,
thus, the accuracy of the CPROP solution improves from one
PDE problem to the next. This is because the adaptive CPROP
approach benefits from its knowledge of the previous solution
through incremental training. Furthermore, as shown in Fig. 6,
with every new PDE problem, fewer iterations are required to
converge a satisfactory CPROP solution (with e < etol). The
results in Fig. 6 were obtained by solving the elliptic PDE
in (47) adaptively 100 times using CPROP. In every case,
the PDE problem was also solved using CPROP with random
initial weights (nonadaptively). As shown in Fig. 6, the number
of epochs required by the adaptive CPROP solution is far less
than that required by the nonadaptive CPROP solution.

B. Adaptive CPROP Solution of Parabolic IBVPs

This section presents the results obtained for a 2-D lin-
ear unsteady heat/diffusion equation without convection or
source/sink terms, which is one of the most basic parabolic
equations. The same equation is then solved in 3-D space.
Both types of PDE problems are solved adaptively, subject
to a changing coefficient that represents the diffusivity of the
material. Then, the CPROP methodology is demonstrated on
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û

p(3) = 0 s 

p(1)p(2)

-1 0 1
-1

-1 0 1
-1

0
1

-0.5

0

0.5

0
1

-0.5

0

p(3) = 0 s 

0.5

u

p(1)p(2)

u û
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Fig. 7. Solutions of 2-D heat/diffusion equation obtained using MATLAB
and CPROP for n = 0, p(3) = 0 s, p(3) = 0.6 s, and p(3) = 1 s.

a nonlinear diffusion PDE problem, commonly known as the
Boussinesq equation, which is chosen to show the applicability
of the method to nonlinear parabolic IBVPs.

1) Linear 2-D Heat/Diffusion Equation: The unsteady lin-
ear 2-D heat/diffusion equation is

∂u(p)

∂p(3)
= kn

[
∂2u(p)

∂p2
(1)

+ ∂2u(p)

∂p2
(2)

]
(50)

where u(p) represents the temperature in the heat equation,
or the density in the diffusion equation. The coefficient kn ,
which is typically held constant, represents the diffusivity of
the material, and determines the rate at which heat or mass
is diffused through the system. The domain of the PDE is
(p(1), p(2)) ∈ H = [−1, 1]×[−1, 1], and p(3) ≥ 0, where p(3)

represents time. The PDE in (50) has Dirichlet BCs

u(p) = 0 ∀(p(1), p(2)) ∈ ∂H (51)

and the IC

u(p(1), p(2), 0) = e−7(p2
(1)+p2

(2)) sin(2πp(1)), ∀(p(1), p(2)) ∈ H
(52)

which must be satisfied by the solution everywhere in H, at
time p(3) = 0.
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Fig. 8. Adaptive CPROP solution of the 2-D heat/diffusion (50) for n = 1 is
compared with the (nonadaptive) solution obtained using MATLAB at times
p(3) = 0 s, p(3) = 0.6 s, and p(3) = 1 s.

The ANN solution takes the form (21), with a user-defined
function q(p) ≡ (p2

(1) − 1)(p2
(2) − 1). The ANN in (21) is

chosen to have 50 LTM nodes and 30 STM nodes (defined
in Fig. 1). The input data in TL consist of a 30 × 30 grid
of equally spaced points in H, which are used together with
the ICs (52) to formulate the equality constraint in (46). The
input data in TS consist of a 15 × 15 × 15 lattice of points in
H × (0, 1].

To illustrate the adaptive CPROP solution approach, two
PDE problems in (50)–(52) were considered by letting n =
0, 1, with k0 = 0.01, and k1 = 0.1. The results in Fig. 7
show sample snapshots of the PDE solutions obtained using
MATLAB and CPROP for n = 0, at sample moments in
time. These results are representative of 20 CPROP solutions
obtained using random weight initializations and K = 120,
all resulting in an REN between the MATLAB and CPROP
solutions of O(10−2). The results also show that the REN
can be further reduced to O(10−3) by increasing the number
of nodes to K = 140. Because benchmark finite element
solutions to (50)–(52) can be shown to have an REN of
O(10−3), however, it is not possible to investigate RENs
below this order of magnitude in the absence of an analytical
solution.
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The adaptive CPROP solution obtained for n = 1 is plotted
and compared with the (nonadaptive) MATLAB solution in
Fig. 8. The adaptive CPROP solution was found to rapidly
converge to the steady-state zero solution. This type of flat
function is one of the hardest to approximate via ANNs
because all of the sigmoidal nonlinearities must cancel each
other out everywhere in H× (0, 1] in order to produce a zero
output (temperature). The CPROP solutions plotted in Fig. 8
(for n = 1) are representative of 20 adaptive CPROP solutions,
all resulting in an REN of O(10−2). As in the previous
examples, the REN could be further reduced by increasing the
number of nodes, and/or decreasing etol, and by increasing the
input data grid size.

2) Linear 3-D Heat/Diffusion Equation: This subsection
presents the CPROP results obtained for the parabolic unsteady
linear 3-D heat/diffusion equation

∂u(u)

∂p(4)
= kn

[
∂2u(p)

∂p2
(1)

+ ∂2u(p)

∂p2
(2)

+ ∂2u(p)

∂p2
(3)

]
(53)

where (p(1), p(2), p(3)) ∈ I = [−1, 1]×[−1, 1]×[−1, 1], and
time is denoted by p(4) ≥ 0. The 3-D heat/diffusion equation
in (53) is subjected to the BCs

u(p) = 0 ∀(p(1), p(2), p(3)) ∈ ∂I (54)

and to the ICs

u(p(1), p(2), p(3), 0) = 2
(

e−10||p−p0||2 − e−10||p+p0||2
)

∀(p(1), p(2), p(3)) ∈ I (55)

where p0 = [0.5 0.5 0.5 0]T is a known constant vector.
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Fig. 11. Box plot of training epochs needed to solve the 3-D heat/diffusion
equation (50) adaptively and nonadaptively, using CPROP.

The PDE problem in (53)–(55) is chosen to demonstrate
the CPROP method’s ability to cope with several variables,
and to adapt a 4-D PDE solution to changing parameters,
by letting n = 0, 1, where k0 = 0.01 and k1 = 0.1. The
ANN solution takes the form (21), with a user-defined function
q(p) = (p2

(1) − 1)(p2
(2) − 1)(p2

(3) − 1). The ANN architecture
consists of 30 LTM nodes and 60 STM nodes. The input data
in TL consist of a 25 × 25 × 25 lattice of spatial points in
the interior of I, whereas the input data in TS consist of an
8 × 8 × 8 × 8 lattice of points in H × (0, 1].
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The CPROP solution obtained using random weight ini-
tialization, for n = 0, is plotted in Fig. 9. The ANN
solution in Fig. 9 is then adapted by the CPROP algo-
rithm for n = 1, obtaining the solution plotted in
Fig. 10. As for the previous examples, the CPROP solu-
tion was found to converge to a satisfactory objective
function (e < etol), and to the known steady-state solu-
tion, u = 0. To illustrate the computational savings
brought about by the adaptive CPROP solution, the 3-D
heat/diffusion PDE problem (53)–(55) with n = 1 was also
solved 20 times using random initial weights (nonadaptively).
As shown in Fig. 11, it was found that the adaptive CPROP
solution significantly decreases the number of epochs required
by benefiting from its knowledge of the previous solution
(n = 0) through incremental training.

3) Nonlinear 3-D Heat/Diffusion, or Boussinesq, Equation:
The Boussinesq equation is a model of heat/diffusion process
with nonlinear diffusive properties that is used extensively
in numerical groundwater flow simulations [32], and can be
written as

Sn
∂u

∂p(3)
= ∂

∂p(1)

[
Knu

∂u

∂p(1)

]
+ ∂

∂p(2)

[
Knu

∂u

∂p(2)

]
(56)

where u is the elevation of the water table above a horizontal
base, the spatial coordinates are (p(1), p(2)) ∈ H = [−1, 1] ×
[−1, 1], and p(3) ≥ 0 is time. Sn is the specific yield, or
the amount of water released per volume of porous medium
when changing from a saturated state to an unsaturated
state high above the water table, and Kn is the hydraulic
conductivity.

To demonstrate the ability of CPROP for solving nonlinear
parabolic IBVPs adaptively, the specific yield and hydraulic
connectivity are modeled here as nonlinear functions of the
PDE variables p(1) and p(2), as follows:

Sn ≡ 0.2

(
1 + βn

e10p(1)+2p(2) − 1

e10p(1)+2p(2) + 1

)
(57)

Kn ≡ 0.0002

(
1 − βn

e10p(1)+2p(2) − 1

e10p(1)+2p(2) + 1

)
(58)

also rendering the PDE problem considerably more challeng-
ing. The Boussinesq PDE in (56) has the ICs

u(p(1), p(2), 0) = 10 + 9 sin(π(p(1)p(2) + p2
(1)))

× cos(2π(p2
(2) + .1))(p2

(1) − 1)(p2
(2) − 1)

× exp(− sin2(2πp(2))) ∀(p(1), p(2)) ∈ H (59)

and the Dirichlet BCs

u(p) = 10 ∀(p(1), p(2)) ∈ ∂H. (60)

The MATLAB PDE toolbox is only capable of solving linear
parabolic PDEs. Therefore, in this section, the CPROP solution
is compared with the numerical solution obtained using FDM.
The implemented FDM scheme discretizes the PDE domain
by letting

um
i, j = u(−1 + i�p(1),−1 + j�p(2), m�p3) (61)

denote a pointwise solution, and using a forward stepping
temporal difference to approximate ∂u/∂p(3), with central
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Fig. 12. Solution of Boussinesq PDE (56) obtained by CPROP when n = 0
is compared with FDM solution at p(3) = 0 s, p(3) = 0.5 s, and p(3) = 1 s.

differencing for spatial derivatives. The FDM stencil is shown
in Appendix VII. The PDE domain, H, is discretized using
small increments, i.e., �p(3) = 5e−4 and �p(1) = �p(2) =
0.02 to avoid stability issues exhibited by strictly explicit FDM
schemes applied to nonlinear PDEs.

The CPROP solution of the Boussinesq PDE problem
(56)–(60) is obtained using input data in TL that consist of
a 40 × 40 grid in H, and input data in TS that consist of a
20×20×20 lattice in H×(0, 1], with 110 LTM nodes and 30
STM nodes. Because the ICs in (59) are more challenging to
approximate than the ICs of earlier examples, a larger number
of LTM nodes, and a larger input data set TL were required to
achieve the desired accuracy (etol). To illustrate the adaptive
CPROP solution, the parameter βn in (57) and (58) is varied
from β0 = 0 (n = 0) to β1 = 0.5 (n = 1), obtaining two
Boussinesq PDE problems.

The results in Fig. 12 show sample snapshots of the PDE
solutions obtained using FDM and CPROP for n = 0, at
sample moments in time. These results are representative of 20
CPROP solutions obtained using random weight initializations
and K = 140, all resulting in an REN between the FDM
and CPROP solutions of O(10−2). The REN could be further
reduced by increasing the number of nodes and/or decreasing
etol, and by increasing the input data grid size. The adaptive
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Fig. 13. Adaptive solution of Boussinesq PDE (56) obtained by CPROP
when n = 1 is compared with (nonadaptive) FDM solution at p(3) = 0 s,
p(3) = 0.5 s, and p(3) = 1 s.
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Fig. 14. Box plot of number of training epochs needed to solve the
Boussinesq PDE (56) adaptively and nonadaptively using CPROP.

CPROP solution obtained for n = 1 is plotted and compared
with the (nonadaptive) FDM solution in Fig. 13.

The Boussinesq PDE problem (56)–(60) with n = 1 was
also solved 20 times nonadaptively (with random weight ini-
tializations) using CPROP. As shown in Fig. 14, it was found
that the adaptive CPROP solution significantly decreases the
number of epochs required by benefiting from its knowledge

of the previous solution (n = 0). Furthermore, by comparing
Figs. 14 with 11, it can be seen that, for this nonlinear 3-D
heat/diffusion PDE problem, the computational savings were
even more significant than for the linear 3-D heat/diffusion
PDE problem in (53)–(55).

VII. CONCLUSION

ANNs have been used in a number of applications to provide
functional representations of PDE solutions that are amenable
to mathematical analysis, and to more efficient processing by
data assimilation and estimation algorithms. In many of these
applications, however, the PDE parameters and/or external
forcing may be subject to change. CPROP offers a natural
paradigm for solving PDEs adaptively over time, because
the ANN solution can be adapted to minimize the error
defined by the differential operator, while satisfying I/BCs
through direct elimination. In this paper, the effectiveness of
the CPROP solution method is demonstrated through several
examples of linear and nonlinear elliptic and parabolic PDEs,
subject to I/BCs. The numerical results show that the CPROP
methodology can be used to solve elliptic BVPs and par-
abolic IBVPs adaptively, with excellent accuracy. Furthermore,
CPROP eliminates the need for user intervention, as required
by the FDM-based method, and requires less weights, less
collocation points, and less training epochs than the penalty
function method, because it reduces the dimensionality of the
optimization problem using direct elimination. For both elliptic
and parabolic equations, CPROP brings about a significant
reduction in the number of iterations required for solving
the PDE adaptively, and is characterized by a computational
complexity and a solution accuracy that compare favorably
with the existing methods of solution. Finally, as will be shown
in a separate paper, the method can be extended to irregular
domains, and to other classes of PDEs, including hyperbolic
equations.

APPENDIX A

IBVP PARTIAL DERIVATIVE

The second partial derivative of the ansatz to the parabolic
IBVP is given by

∂2û(p)

∂p( j )∂p(k)
= ∂2h̃(p)

∂p( j )∂p(k)
+ ∂2q(p)

∂p( j )∂p(k)

×[�(pT WT
L + bT

L )VT
L + �(pT WT

S + bT
S )VT

S ]
+∂q(p)

∂p( j )
[�1(pT WT

L + bT
L )ωLk VT

L

+ �1(pT WT
S + bT

S )ωSk VT
S ]

+∂q(p)

∂p(k)
[�1(pT WT

L + bT
L )ωL j V

T
L

+ �1(pT WT
S + bT

S )ωS j V
T
S ]

+q(p)[�2(pT WT
L + bT

L ωL j ωLk VT
L

+ �2(pT WT
S + bT

S )ωS j ωSk VT
S ]. (62)
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APPENDIX B

FDM STENCIL

The FDM stencil used to solve the Boussinesq equation is
given by

Sm
ni, j

(
u(m+1)

i, j − u(m)
i, j

)

�p(3)
=
(

∂Kn

∂p(1)

)m

i, j
um

i, j

(
u(m)

i+1, j − u(m)
i−1, j

)

2�p(1)

+
(

∂Kn

∂p(2)

)m

i, j
um

i, j

(
u(m)

i, j+1 − u(m)
i, j+1

)

2�p(2)

+K m
ni, j

⎡
⎣
(

um
i+1, j − um

i−1, j

2�p(1)

)2

+
(

um
i, j+1 − um

i, j−1

2�p(2)

)2
⎤
⎦

+K m
ni, j

um
i, j

(
um

i+1, j − 2um
i, j + um

i−1, j

�p2
(1)

+ um
i, j+1 − 2um

i, j + um
i, j−1

�p2
(2)

)
. (63)
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