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A B S T R A C T

Real-life decision-making often involves combining multiple probabilistic sources of information under finite time
and cognitive resources. To mitigate these pressures, people “satisfice”, foregoing a full evaluation of all available
evidence to focus on a subset of cues that allow for fast and “good-enough” decisions. Although this form of
decision-making likely mediates many of our everyday choices, very little is known about the way in which the
neural encoding of cue information changes when we satisfice under time pressure. Here, we combined human
functional magnetic resonance imaging (fMRI) with a probabilistic classification task to characterize neural
substrates of multi-cue decision-making under low (1500 ms) and high (500 ms) time pressure. Using variational
Bayesian inference, we analyzed participants’ choices to track and quantify cue usage under each experimental
condition, which was then applied to model the fMRI data. Under low time pressure, participants performed near-
optimally, appropriately integrating all available cues to guide choices. Both cortical (prefrontal and parietal
cortex) and subcortical (hippocampal and striatal) regions encoded individual cue weights, and activity linearly
tracked trial-by-trial variations in the amount of evidence and decision uncertainty. Under increased time pres-
sure, participants adaptively shifted to using a satisficing strategy by discounting the least informative cue in their
decision process. This strategic change in decision-making was associated with an increased involvement of the
dopaminergic midbrain, striatum, thalamus, and cerebellum in representing and integrating cue values. We
conclude that satisficing the probabilistic inference process under time pressure leads to a cortical-to-subcortical
shift in the neural drivers of decisions.
1. Introduction

Decision-making often involves combining multiple pieces of infor-
mation, each associated with some degree of uncertainty in predicting an
outcome, within a tight deadline. For instance, to determine the best
treatment for a patient, a physician would ideally perform an exhaustive
set of diagnostic tests and integrate the test results, weighted by their
respective reliability. However, this decision process, in addition to being
computationally expensive, may take longer than is practical. If the case
is urgent, a doctor might forego considering all available tests and base a
quick but “good-enough” decision on a subset of information (Lamberts,
2000; Payne et al., 1988; Rieskamp and Hoffrage, 2008; Wright, 1974), a
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form of heuristic decision-making known as satisficing (Simon, 1956,
1955). While satisficing under uncertainty and high time pressure is
ubiquitous in daily life, very little is known about its underlying
computational principles and neural mechanisms.

In order to characterize such satisficing strategies, we recently
developed a novel, multi-cue probabilistic classification task that allowed
us to track the manner in which subjects weight and combine different
cues to arrive at their decisions (Oh et al., 2016). Under low time pres-
sure, information was integrated near-optimally across all available cues.
By contrast, under high pressure, participants dropped the weaker, less
predictive cues from the decision-making process, a satisficing strategy
we called “drop-the-worst”. To elucidate the neural dynamics underlying
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this shift in decision modes from optimal to satisficing, in the present
study we combined this task, performed under low (1500 ms) and high
(500 ms) time pressure, with functional magnetic resonance imaging
(fMRI). Using variational Bayesian inference, we quantified participants’
cue usage and related it to changes in regional blood-oxygen-level
dependent (BOLD) signals.

While we are not aware of any previous study assessing the neural
mediators of probabilistic inference under time pressure, prior reports on
statistical learning under stress, and studies of the speed-accuracy
tradeoff in perceptual decision-making, offer grounds for tentative hy-
potheses. Probabilistic inference has been studied extensively through
variants of the weather prediction task (Gluck and Bower, 1988;
Knowlton et al., 1994), where acquiring probabilistic cue-outcome
relationship through feedback has been shown to be associated with
activity in the striatum, hippocampus (Knowlton et al., 1996; Poldrack
et al., 2001; Shohamy et al., 2004) and parietal cortex (Yang and Shad-
len, 2007). In addition, other recent studies of probabilistic
decision-making suggest an important role for the frontoparietal atten-
tional control network in mediating learning in a multidimensional de-
cision environment (Niv et al., 2015), and the orbital/ventromedial
prefrontal cortex (vmPFC) in encoding expected reward, subjective
value, outcome predictions, and credit assignment (Akaishi et al., 2016;
Daw et al., 2006; Levy and Glimcher, 2012; O'Doherty et al., 2001).

Stress has been shown to bias decision-making strategies by reducing
contributions of the prefrontal cortex (PFC) and encouraging habitual
stimulus-response processes (Dias-Ferreira et al., 2009; Schwabe and
Wolf, 2009). Specifically, learning the weather prediction task under
stress induced by the cold pressor test has been associated with increased
use of implicit, striatum-mediated strategies (Schwabe and Wolf, 2012).
Similarly, time pressure on perceptual decision-making has been
Fig. 1. Task design and behavioral results. A, Schematic of the multi-cue probabilistic task. Par
features or cue dimensions (color, shape, contour, and line orientation). Participants then sele
“lose”). B, Sixteen compound stimuli used in the experiment. Each stimulus was paired with all t
the task runs. Plotted is the percentage of correct choices favored by the sum of cue weights, r
pressure (HighP) phases inside the fMRI scanner. Error bars indicate SEM. D, Percentage of
significantly improved with increasing SoE in all three experimental phases. E, RT as a function
phases but this effect disappeared under high time pressure. Shaded area represents SEM.
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associated with a deterioration in information processing in early sensory
areas (Ho et al., 2012) and increased activity in the striatum (Bogacz
et al., 2010; Forstmann et al., 2008), indicating that the striatum may
promote faster but possibly premature or sub-optimal decisions.

Here, we characterized how the brain encodes probabilistic cue in-
formation as participants shift from employing optimal to satisficing
decision strategies with increasing time pressure. Based on the above
studies, we predicted that probabilistic decisions will be mediated by
both subcortical (striatum, hippocampus) as well as prefrontal (lateral
and medial PFC) and parietal regions under low time pressure, with a
preferential involvement of the striatum under high time pressure. The
data supported this hypothesis and revealed details of the networks
involved in this cortical-to-subcortical shift of activity.

2. Materials and methods

2.1. Participants

Thirty-two healthy volunteers participated in this experiment. Seven
participants were excluded from further analysis: Five participants due to
chance-level performance and two participants due to excessive head
movement (>20 mm). The final sample consisted of twenty-five subjects
(13 females, mean age¼ 27 years, range¼ 18–40 years). All participants
provided informed consent in line with DukeMedical Center institutional
guidelines and were compensated with $40 for their time (2 h).
2.2. Stimuli

The task employed 16 unique compound stimuli (Fig. 1B), con-
structed by combining four different visual features, color (blue/red),
ticipants were presented with two different compound stimuli, each having four different
cted a stimulus that is more likely to win and received a probabilistic outcome (“win” or
he other stimuli, yielding a set of 120 unique trials. C, Behavioral performance throughout
egardless of outcome feedback. Participants completed the low pressure (LowP) and high
correct choices as a function of objective sum of evidence (SoE). Decision performance
of SoE. RT showed significant SoE modulation during the learning and low time pressure
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shape (circle/square), contour (white/black), and line orientation (ver-
tical/horizontal), which we refer to as cue dimensions. Each cue dimen-
sion was comprised of binary sub-features or cue states, each of which was
associated with a fixed weight for predicting the probability of winning.
These values were complementary and summed to one within each cue
dimension. The weights outlined in Table 1 were randomly assigned to
the different cue dimensions for each participant at the beginning of the
experiment, and every possible weight permutation (24 total) was used at
least once. Thus, our neuroimaging analyses focused on encoding of “cue
feature-invariant” informational value, by dissociating cue weights from
specific cue dimensions and visual features across the subject population.

2.3. Multi-cue probabilistic classification task

Participants performed a probabilistic classification task, in which
they were asked to compare two compound stimuli and make a predic-
tion about which stimulus is more likely to win (Fig. 1A). The stimuli
were sampled from the full set of the 16 compound cues (Fig. 1B), paired
with all the other stimuli, resulting in a set of 120 unique trials. For a
given trial, the two compound stimuli could differ anywhere from one to
four cue dimensions, and this difference governed the underlying win-
ning probabilities. That is, the probability that a left (L) or a right (R)
stimulus would win was determined based on the cue states comprising
the left stimulus, CL ¼ fcL;1; cL;2; cL;3; cL;4g , and the right stimulus,
CR ¼ fcR;1; cR;2; cR;3; cR;4g, and their associated weights, WL ¼
fwcL;1 ;wcL;2 ;wcL;2 ;wcL;4g and WR ¼ fwcR;1 ;wcR;2 ;wcR;2 ;wcR;4g:

PðLjCL;CRÞ ¼ 10
P4

i¼1ðwcL;i�wcR;iÞ

1þ 10
P4

i¼1ðwcL;i�wcR;i Þ
(1)

PðRjCL;CRÞ ¼ 1� PðLjCL;CRÞ (2)

where i represents cue dimension (Table 1). Based on Eqs. (1) and (2), the
winning stimulus was determined probabilistically on a trial-by-trial
basis, and the outcome was signaled to the participant by presenting
the words “win” or “lose” on the screen as post-decision feedback (Oh
et al., 2016).

2.4. Procedure

On each trial, participants were presented with two compound
stimuli and asked to indicate their choice via keypress within a specified
choice window (Fig. 1A). Upon the choice deadline, stimuli disappeared
from the screen, and the outcome of the choice (“win”, “lose”) or a no-
response warning (“miss”) was displayed for 500 ms. After a variable
intertrial interval (ITI) of 3–5 s drawn from a pseudo-exponential dis-
tribution (mean ITI ¼ 3.5 s), the next trial began with a new pair of
stimuli. Prior to the scan, all participants completed a 240 trial learning
phase, comprised of two successive sets of all unique trials presented in
random order. During the learning phase, participants were given a 1.5 s
choice window to register their responses. The goal of this phase was to
allow participants to explore and learn the cue weights by trial and error
and familiarize themselves with the probabilistic classification task. Once
the initial learning phase was complete, participants performed twomore
Table 1
Cue weight assignment.

Cue dimension ci Cue state 1 w1;i Cue state 2 w2;i Net cue weight
wnet;i ¼ w1;i � w2;i

c1 0.9 0.1 0.8
c2 0.8 0.2 0.6
c3 0.7 0.3 0.4
c4 0.6 0.4 0.2

Net weights indicate the relative importance of each cue dimension in determining the
positive outcome in a given stimulus pair.
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task phases (240 trials/phase) inside the scanner: (1) a low time pressure
(LowP) phase with 1.5 s choice window (identical to the practice phase),
and (2) a high time pressure (HighP) phase with a 0.5 s choice window.
Each phase was separated into four runs (60 trials/run).

2.5. Behavioral performance analysis

Data analyses were based on optimal choices favored by the proba-
bility of winning (Eqs. (1) and (2)), independent of the probabilistic
outcome provided to participants. In other words, a decision was
considered correct when a participant chose a stimulus with the larger
sum of weights. For the purpose of evaluating behavioral performance (%
correct choices), trials with two stimuli that had an equal sum of weights
were excluded since a correct choice cannot be defined, i.e.,
PðLjCL;CRÞ ¼ PðRjCL;CRÞ ¼ 0:5. In reporting analysis of variance
(ANOVA) measures, violations of sphericity assumptions were corrected
by Greenhouse-Geisser correction to the degrees of freedom. Similarly, in
reporting t-test results, degrees of freedom were corrected for unequal
variance where necessary.

2.5.1. Sum of evidence (SoE)
To formally define the objective difficulty of reaching the correct

decision for a given trial, we computed each trial's SoE, the sum of
available evidence, jP4

i¼1

�
wcL;i � wcR;i

���, which is equivalent to the ab-
solute value of log odds that the left (or right) stimulus will be the one
yielding a positive outcome. The inner term of the SoE equation corre-
sponds to a decision variable, where, ideally, the subject is assumed to
choose left, when

P4
i¼1ðwcL;i � wcR;i Þ>0, and right, whenP4

i¼1ðwcL;i � wcR;i Þ< 0. Hence, as the magnitude of SoE decreases, the
decision becomes more difficult, which is also associated with an
increasing uncertainty of observing a positive outcome. For the SoE an-
alyses, performance was analyzed by sorting trials based solely on the
magnitude of SoE and therefore, different combinations of cues that
share the same SoE were categorized as the same type of event. This
resulted in 11 SoE levels, ranging from 0 (no evidence,
PðLjCL;CRÞ ¼ PðRjCL;CRÞ ¼ 0:5) to 2 (maximum available evidence, e.g.,
PðLjCL;CRÞ ¼ 0:99). In addition to the objectively defined amount of
evidence, we also quantified the subjective SoE on each trial using the sum
of inferred cue weights,w* (see below), under low and high time pressure
conditions. Like the objective SoE, subjective SoE is closely related to
perceived decision difficulty of a given trial. For the behavioral data
analyses, we employed SoE as a basic manipulation check, by testing
whether % correct choices and response times scale with SoE. In the
neuroimaging analyses, we employed both subjective and objective SoE
to probe which brain regions tracked the amount of evidence or outcome
uncertainty, tailored to each participant's decision strategy under low
and high time pressure (detailed below).

2.5.2. Subjective cue weights
To characterize the decision strategies participants employed in the

LowP and HighP phases, we focused our analyses on quantifying the
degree to which each cue dimension affected participants’ choices. To
this end, we performed logistic regression using variational Bayesian
inference (Drugowitsch, 2013; Oh et al., 2016). We first defined an
optimal strategy model, Modelopt , which assumes that participants uti-
lized all four cue dimensions to guide their choices. Then, for each
participant per phase, we constructed an N (total number of trials) � 4
(number of cue dimensions) input matrix, xopt , coding for the sign of cue
dimension differences on each trial, i.e., 0 forwcL;i ¼ wcR;i , 1 forwcL;i >wcR;i ,
and�1 for wcL;i <wcR;i for a given cue dimension i. Logistic regression was
performed based on xopt , which returned parameters of a fitted logit
model, wopt , and a lower bound of the marginalized log-likelihood,
PðDjModeloptÞ, of the observed choice data, D:



Fig. 2. Subjective cue weights and strategy model selection. A, Average subjective cue
weights as a function of objective, pre-assigned cue weights. Participants learned and
utilized the correct relative rankings of the cues in both experimental phases. B-D,
Bayesian model selection results from comparing D, decision models covering every
possible cue usage. Filled circles (●) denote the cue dimensions that are included in a
given model. C, Exceedance probabilities of each strategy model under low and high time
pressure conditions. Under low time pressure (LowP), the optimal model (Model opt) was
the most likely model. Under high time pressure (HighP), participants shifted to
employing a satisficing decision strategy by utilizing only the three highest-weighted cues
and ignoring the least important one (Model 11). B, Percentage of correct choices when
only the least important cue is different between the stimulus pair. Error bars indicate
SEM; *p<0:01.
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P
�
choice ¼ Ljxopt;wopt

� ¼ 1

1þ e�ðw0þxopt�woptÞ (3)

P
�
woptjαopt

� ¼ N
�
woptj0; α�1

optI
�

(4)

P
�
αopt

� ¼ Gamma
�
αoptja0; b0

�
(5)

with w0 representing a N � 1 vector for estimating the intercept. Hyper
priors (a0 ¼ 0:345 and b0 ¼ 0:584) were chosen based on the posterior
distributions of the weights computed from the initial learning phase in
line with an empirical Bayesian approach (for additional details, see Oh
et al., 2016). Then, subjective cue weights, w*, were calculated by
transforming the fitted coefficients, wopt , to log base 10:

w* ¼ wopt � log10e (6)

In contrast to the net weights corresponding to the objective impor-
tance of each cue dimension (Table 1), subjective cue weights highlight
the perceived importance of each cue dimension for each subject. Since
the magnitude of subjective cue weights roughly corresponds to decision
noise, a subject can be considered relatively optimal when their subjec-
tive weights are perfectly correlated with the true net weights described
in Table 1.

2.5.3. Comparison between decision strategies adopted under low and high
time pressure

To identify the cue dimensions that were effectively used during each
phase, we further expanded our model space and explored a large set of
plausible decision strategy models, accounting for every possible com-
binations of cue usage including the optimal model defined above
(Fig. 2D). For a given model m (m ¼ 1;…; 14; opt), an input matrix, xm,
was constructed using cue dimensions that were included in the model,
which then was used to compute PðDjModelmÞ based on Eqs. (3)–(5). We
compared 15 different decision strategy models to identify the most
likely cue usage under conditions of low and high time pressure. The
optimal model represents a compensatory strategy model where partic-
ipants were assumed to integrate all four cue dimensions in making their
choices, whereas models 1 through 14 consisted of different variations of
sub-optimal cue weight integration. To characterize decision strategies at
the group level, we employed a Bayesian model selection procedure by
submitting the log model evidences obtained from the variational
Bayesian inference above (Rigoux et al., 2014; Stephan et al., 2009). This
approach fits the hierarchical model by treating models as random effects
that could vary across subjects, and estimates exceedance probabilities,
which reflect the belief that a model, m, is more likely than any other
model, given the marginalized likelihoods. The Bayesian model selection
results reported here were calculated using the spm_BMS routine of the
SPM12 software suite (http://www.fil.ion.ucl.ac.uk/spm/software/
spm12/). Note that using relatively uninformative hyper priors
(a0 ¼ 0:01 and b0 ¼ 0:0001) in Eq. (5) does not change the overall results
of model comparison.
2.6. fMRI data acquisition

Images were acquired on a 3 T GE MR750 scanner. T1-weighted
structural images were scanned parallel to the AC-PC plane (146 slices,
slice thickness ¼ 1 mm, TR ¼ 8.124 ms, FoV ¼ 256 mm � 256 mm, in-
plane resolution ¼ 1 mm � 1 mm). Functional images were scanned
using a T2*-weighted single-shot gradient EPI sequence (42 slices, slice
thickness ¼ 3 mm, TR ¼ 2 s, TE ¼ 28 ms, flip angle ¼ 90�,
FoV ¼ 192 mm � 192 mm, in-plane resolution ¼ 3 mm � 3 mm). 169
functional images per run were acquired for the first four runs of the
LowP phase and 139 images per run were acquired for the last four runs
of the HighP phase.
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2.7. Image preprocessing

Preprocessing and univariate statistical analyses were performed
using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/).
After discarding the first four scans of each run, functional images were
realigned to their mean image and corrected for slice timing. Each par-
ticipant's structural image was co-registered to the mean functional
image and segmented into gray matter, white matter, cerebro-spinal
fluid, bone, soft tissue, and air/background. The deformation field map
obtained through segmentation was applied to normalize the subject's
functional images to the Montreal Neurological Institute (MNI) template
space. Functional images were resampled into 3 � 3 � 3 mm voxel size
and spatially smoothed with a Gaussian kernel of 5 mm full-width at half
maximum (FWHM).
2.8. fMRI data analyses

Assuming that participants learned the cue structure and associated
weights, the decision task can be approached in two distinct but com-
plementary (and not mutually exclusive) ways: (1) analyzing each cue
dimension difference between the two compound stimuli present on a
given trial based on subjective cue weights, and adding them up, and/or (2)

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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summing the cue states comprising each compound stimulus and esti-
mating the difference between the sums of the two stimuli, which is also
equivalent to the subjective SoE. Both approaches would lead to the same
solution, with the first approach having more emphasis on parsing the
compound stimuli out into individual cue dimension differences prior to
integrating the cues to evaluate the total amount of evidence. The pref-
erential use of either of these two approaches might depend on a par-
ticipant's subjective cue weight distribution (e.g., weights are evenly
distributed or one cueweight dominates all others) as well as on trial type
(i.e., which cue dimensions differed between stimuli on a given trial). We
assumed that participants likely used a mixture of these approaches, and
we therefore focused our fMRI analyses on characterizing neural sub-
strates of both subjective cue weight and SoE representation as a function
of time pressure. For the following fMRI analyses, we used objectively
correct trials (as favored by the probability defined in Eq. (1) and (2)) as
the events of interest.

2.8.1. Neural representation of subjective cue weights
To identify brain regions that represent information about subjective

cue weights of individual cue dimensions, we employed a multivariate
decoding technique based on support vector machine regression (SVR).
Recall that these analyses solely concern the informational value of the
cues, rather than specific visual cue features, as our task design dissoci-
ated cue weights from specific cue dimensions/features across the subject
population. To achieve maximal sensitivity, we used realigned and slice
time corrected functional images in each participant's native space
without spatial normalization and smoothing. Functional data were first
analyzed using the standard general linear model (GLM) approach
(Friston et al., 1994) to regress the BOLD signal against task models and
to estimate parameter βs for conditions of interest. Four regressors, each
representing a unique cue dimension, tracked the presence of the cor-
responding cue dimension difference between a compound stimulus pair
on each trial. For example, if two stimuli were different in c1 and c2 di-
mensions but not in c3 and c4 on trial t, boxcar functions were created at
trial t only in the regressors for c1 and c2. Following this rule, all correct
trials were modeled as boxcar functions of durations 2 s (LowP) or 1 s
(HighP) aligned to trial onsets, capturing both the stimulus presentation
and the subsequent feedback in each phase. As regressors of no interest,
we included a categorical regressor of win (1) and lose (�1) probabilistic
feedback. To account for differences in response time (RT) across trials
and experimental phases, a parametric regressor of RT aligned to the trial
onsets was also included. In addition, incorrect trials and trials with no
response were modeled separately, along with six head-motion param-
eters and grand means of each run. All regressors were convolved with
the canonical hemodynamic response function. The resulting parameter
estimates of the four cue dimension regressors, βCi

ði ¼ 1;2; 3;4Þ, were
used to search for brain areas that contain information about the sub-
jective cue weights under low and high time pressure conditions.

Specifically, we conducted multivoxel pattern analysis (MVPA) with a
whole-brain searchlight approach (Haynes et al., 2007; Kriegeskorte
et al., 2006) that scanned through spheres of gray matter voxels
(searchlight radius ¼ 4 voxels) identified using each participant's gray
matter mask produced from T1 segmentation. The MVPA was performed
by using a linear SVR with a constant regularization parameter of C ¼ 1
(Kahnt et al., 2011), implemented in MATLAB. We iteratively used 3 of
the 4 runs to train an SVR model and then used the remaining run as the
test data set to predict the value of the subjective cue weights (i.e., a
leave-one-run-out procedure). Prediction accuracy was determined by
the Fisher's Z-transformed correlation coefficients (Kahnt et al., 2011)
between the predicted values and the subjective cue weights, w*, of the
test data set. An accuracy map was constructed by averaging the pre-
diction accuracy from 4-fold cross-validation for each center voxel of the
searchlight spheres. We conducted the decoding analyses separately for
the LowP and HighP phases, using the corresponding subjective
cue weights.
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The accuracy maps of each participant were normalized into the
template MNI space and smoothed with a Gaussian kernel
(FWHM ¼ 5 mm) to account for differences in activation localization
across subjects (Kahnt et al., 2011). The group analysis was performed by
entering the accuracy maps into one-sample t-tests, separately for LowP
and HighP phases. The p-value maps were corrected for multiple com-
parison using the CorrClusTh.m function developed for use with SPM
(http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic-
research/nichols/scripts/spm/spm8/corrclusth.m), which determined
that an uncorrected voxelwise threshold of p<0:005 combined with a
cluster size of 46 voxels corresponded to cluster level corrected threshold
of p<0:05.

2.8.2. Modulation of neural activity by SoE
Subjective SoE reflects the integrated sum of subjective cue weights of

a given trial, which should be highly correlated with the objective
amount of evidence and decision difficulty. Therefore, brain regions
modulated by subjective SoE likely encode not only the integrated sum of
cue weights but also decision processes involved in producing a final
choice output. Since subjective SoE can vary over up to 40 distinct levels,
it would not yield a sufficiently reliable estimation of parameter βs (~5
trials/level) to utilize the multivariate analysis approach carried out on
the subjective cue weights above (see Neural representation of subjective
cue weights.). Therefore, we instead employed a parametric modulation
analysis within the standard mass-univariate GLM approach to detect
areas whose activation was modulated by SoE. Correct trials were
modeled as boxcar functions of 2 s (LowP) or 1 s (HighP) duration,
aligned to trial onsets. A parametric regressor of subjective SoE, esti-
mated separately for the LowP and HighP phases using the associated
subjective weights, was attached to trial onsets. As the regressors of no
interest, a categorical feedback regressor and a parametric regressor of
RT were aligned to trial onsets. In addition, incorrect trials, trials with no
response, six head-motion parameters, and grand means of each run were
also included as regressors of no interest. All regressors were convolved
with the canonical hemodynamic response function and regressed
against the BOLD signal in each voxel. Within-subject effects of modu-
lation of neural activity by subjective SoE were assessed for the LowP and
HighP phases separately. The resulting single-subject contrast maps were
entered into group-level analyses, which treated subjects as
random effects.

To probe for differences between experimental conditions, we further
contrasted effects of SoE modulation between the LowP and HighP
phases. For all analyses, the p-value maps were corrected for multiple
comparison using the function CorrClusTh.m, which determined that an
uncorrected voxelwise threshold of p< 0:005 combined with a cluster
size 96 to 105 voxels ensured a false discovery rate <0:05. In addition,
although SPM orthogonalizes parametric modulators to compute the
GLM, results could potentially be influenced by the order of the modu-
lators. To ensure that the observed effects are independent from this
influence, we additionally ran GLMs by varying the order of parametric
regressors (subjective SoE, feedback, and RT), which did not yield any
significant difference in overall neuroimaging results.

2.8.3. Region-of-interest analysis of objective SoE
To further investigate the relationship between neural encoding of

objective and subjective SoE, we performed a region-of-interest (ROI)
analysis. First, we identified brain regions modulated by subjective SoE
in both low and high time pressure phases by applying a “logical AND”
conjunction analysis (Nichols et al., 2005). Voxels that passed the mul-
tiple comparison correction in both the LowP and HighP phases were
included in the conjunction map. For clusters that span multiple regions,
we applied anatomical masks to include only the voxels within a speci-
fied area. Anatomical ROIs were defined using the WFU PickAtlas
toolbox (Maldjian et al., 2004, 2003) and clusters with less than 10
voxels were excluded from the analysis. Then, we employed the same
GLM approach as above but treated each objective SoE level as a separate

http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic-research/nichols/scripts/spm/spm8/corrclusth.m
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic-research/nichols/scripts/spm/spm8/corrclusth.m
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condition. To roughly match the number of trials included in each re-
gressor, we merged the three highest SoE levels (1.6, 1.8, 2), which
resulted in nine parameter estimates βSoEi with i ranging from 0 (no ev-
idence) to 1:6* (high evidence). Similar to the previous GLMs, correct
trials corresponding to each SoE level were modelled with boxcar func-
tions along with parametric modulators of feedback and RT. Addition-
ally, incorrect trials, trials with no response, six head-motion parameters,
and grand means of each run were included. To investigate the effect of
objective SoE on modulating activities in regions sensitive to subjective
SoE, the parameter estimates obtained from the GLM were extracted and
averaged within each ROI, and tested for linear trend using a
repeated-measure ANOVA.

2.8.4. Practice effect analysis
Since participants completed the low and high time pressure phases in

a block-wise, sequential manner, it is important to rule out that changes
in BOLD signal across experimental phases are not merely driven by task
practice. Therefore, we conducted an additional GLM analysis to examine
the presence of neural practice effects. Specifically, we hypothesized that
we would observe gradual BOLD signal changes over time if practice
effects were present. To characterize overall changes in trial-induced
BOLD activation over the course of the experiment, we divided our
task into four different sets (120 trials/set, 2 sets/phase), each consisting
of a complete set of unique stimulus combinations. Then, correct trials
were modeled as boxcar functions of 2 s (LowP) or 1 s (HighP) duration,
aligned to trial onsets, with parametric regressors of feedback and RT.
Additionally, incorrect trials, trials with no response, six head-motion
parameters, and grand means of each run were included as regressors
of no interest. All regressors were convolved with the canonical hemo-
dynamic response function. Then, the percent signal changes (MarsBaR;
http://marsbar.sourceforge.net/) and the parameter estimates, βTrial,
were extracted and averagedwithin the predefined ROIs and entered into
2 (sets) � 2 (LowP/HighP phases) repeated-measures ANOVAs. To
further investigate changes in subjective SoE modulation per set, we
repeated the same GLM analysis using subjective SoE (see above), but
splitting the data into four sets instead of two phases.

3. Results

3.1. Behavioral data

3.1.1. Task performance
Participants performed a multi-cue probabilistic classification task

under low (1500 ms) and high (500 ms) time pressure inside the fMRI
scanner. Their task was to compare two compound stimuli comprised of
four different visual features (color, shape, contour, and line orientation)
and make a prediction as to which stimulus is more likely to win (Fig. 1A
and B). Upon each choice deadline, the outcome (“win” or “lose”),
determined probabilistically based on the cue weights, was displayed
(Table 1; see Materials and Methods). Performance was evaluated based
on the number of correct choices favored by the cue weights, indepen-
dent of the probabilistic outcome feedback participants experienced.
Throughout the learning phase prior to the scan, participants were able to
gradually improve their decision performance as characterized by a
significant main effect of run (accuracy: Fð3;72Þ ¼ 8:36; p<0:001; RT:
Fð3;72Þ ¼ 7:54; p ¼ 0:001) and a linear trend (accuracy:
Fð1;24Þ ¼ 14:52; p ¼ 0:001; RT: Fð1;24Þ ¼ 9:80; p ¼ 0:005) (Fig. 1C left). In
the LowP phase (1500 ms response window), participants achieved
better mean decision accuracy, t24 ¼ 5:62; p<0:001, and expedited de-
cision speed, t24 ¼ 4:12; p<0:001, compared to the learning phase as
they became yet more accustomed to the task, but performance remained
stable throughout the LowP phase (main effect of run, accuracy:
Fð3;72Þ ¼ 0:70; p ¼ 0:56; RT: Fð3;72Þ ¼ 2:66; p ¼ 0:06) (Fig. 1C middle).
Note that the marginal effect on RT was not due to a linear increase in
response speed over time, and is therefore unlikely to reflect continued
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learning in the LowP phase (see Table 2 for run-wise descriptive statis-
tics). In addition, performance scaled with objective SoE, defined by the
sum of cue weight differences between the stimulus pair. As SoE
increased, percent correct choices increased (linear trend,
Fð1;24Þ ¼ 153:03; p<0:001) and decision time decreased (linear trend,
Fð1;24Þ ¼ 30:54; p< 0:001), indicating that participants learned to inte-
grate the predictive value of the four cue dimensions to base their de-
cisions on (Fig. 1D and E).

As anticipated, increased time pressure in the HighP phase (500 ms
response window) speeded up decision time, t24 ¼ 20:86; p<0:001,
compared to the LowP phase, but had a detrimental effect on decision
making, revealed by a large decrease in accuracy, t24 ¼ 8:08; p<0:001,
which remained constant throughout the HighP phase (main effect of
run, accuracy: Fð3;72Þ ¼ 1:53; p ¼ 0:21; RT: Fð3;72Þ ¼ 0:62; p ¼ 0:56)
(Fig. 1C right). Despite this significant decrement in overall performance,
decision accuracy nevertheless scaled with objective SoE in the HighP
phase (linear trend, Fð1;24Þ ¼ 30:54; p<0:001), confirming that partici-
pants were able to use available cue information to guide their choices
(Fig. 1D). By contrast, RT was no longer related to SoE (linear trend,
Fð1;24Þ ¼ 0:96; p ¼ 0:34), presumably due to the severe time pressure
enforced in this condition (Fig. 1E).

3.1.2. Subjective cue weights
To examine the relative importance of each cue dimension in guiding

participants’ choices, separate sets of subjective cue weights for the LowP
and HighP phases were obtained using logistic regression (Fig. 2A, Eqs.
(3)–(6)). A repeated-measures ANOVA revealed a main effect of cue
weights, Fð3;72Þ ¼ 21:29; p< 0:001, which was characterized by a signif-
icant linear trend, Fð1;24Þ ¼ 39:02; p<0:001, indicating that participants
were able to correctly rank the cues according to their objective order of
importance, which was true for both the LowP, Fð3;72Þ ¼ 23:55; p<0:001,
and the HighP, Fð3;72Þ ¼ 8:86; p<0:001, phases. Nevertheless, the main
effect of phase was significant, Fð1;24Þ ¼ 38:71; p<0:001, as subjective
cue weights were overall smaller in the HighP than in the LowP phase,
reflecting a general down-weighting of cue weights under time pressure.
Since the magnitude of fitted weights also corresponds to the decision
noise, this overall decrease of cue weights reflects the deterioration of
decision making performance in the HighP phase. Finally, the
phase � cue weight interaction, Fð3;72Þ ¼ 11:23; p<0:001, was also sig-
nificant, as the relative difference between cue weights between the two
phases increased as a function of the assigned cue weights.

3.1.3. Decision strategy model selection
To characterize the difference in decision strategy under the condi-

tions of low and high time pressure, we explored 15 different plausible
strategy models covering every possible combinations of cue usage
(Fig. 2D). We estimated marginalized log-likelihood by fitting a logistic
function using variational Bayesian inference (Eqs. (3)–(5); Drugowitsch,
2013) for each model per participant. These log model evidences were
then used to fit the hierarchical model (Rigoux et al., 2014; Stephan et al.,
2009) to estimate the most likely strategy model employed in each
experimental phase at the group level (Fig. 2C). In the LowP phase, the
optimal cue integration model was the most likely model with an ex-
ceedance probability of 0.72. In the HighP phase, however, Model 11,
which utilizes only the three most informative cues, was the winning
model, with an exceedance probability of 0.79. This shift in strategy from
the optimal model to Model 11 suggests that participants dropped the
worst cue in their decision-making process under increasing time pres-
sure, replicating our previous results (Oh et al., 2016). Additionally, to
address the possibility that participants may have engaged in a
stimulus-based decision process by learning and memorizing weights of
each of the 16 compound stimuli rather than the four cue dimensions, we
also included a strategy model based on summed cue weights in the
model comparison with the other 15 aforementioned cue-based models
per phase. The group-level model comparison results yielded very weak

http://marsbar.sourceforge.net/
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support for the stimulus-based model in all three phases (exceedance
probabilities <0:005), suggesting that participants engaged in a cue
dimension-based decision process, regardless of time pressure.

To further investigate whether this shift in strategy was simply due to
running out of time to integrate all cues under severe time pressure,
rather than due to a strategic neglect of the weakest cue, we examined
performance on trials when only the least important cue, c4, was different
between the stimulus pair. Given the visual saliency of only one cue
differing between the two stimuli, and the fact that only that one cue (c4)
had to be evaluated in these trials, we would not expect a participant to
run out of time in this condition. However, as shown in Fig. 2B, the
difference in choice accuracy between the LowP and HighP phases was
significant, t24 ¼ 2:86; p ¼ 0:009, with HighP phase performance not
differing significantly from chance, t24 ¼ 0:13; p ¼ 0:90. Moreover, de-
cision accuracy in the LowP phase was 60.75%, which was significantly
greater than chance, t24 ¼ 2:29; p ¼ 0:03. Given that the probability of
receiving “win” feedback in this condition, if a correct choice is made, is
0.61 (see Eq. (1)), this observation is in line with probability matching
behavior, as shown in a number of previous studies (see e.g., Vulkan,
2000). In sum, these results further support the conclusion that the shift
in cue usage was a strategic choice of participants to restrict their search
space and therefore to integrate less cues to arrive at good-enough de-
cisions under severe time pressure. Having established that time pressure
produced noisier decisions and a dropping of the weakest cue, we turned
to ask how these changes in decision making are reflected in
brain activity.
3.2. Neuroimaging data

3.2.1. Neural representation of subjective cue weights
Once participants have formed an understanding of the cue structure,

one way to effectively solve the classification task is to compare a given
compound stimulus pair and extrapolate the differences in cue di-
mensions using subjective cue weights. Then, one can use this cue in-
formation to arrive at a final choice directly (e.g., when one cue out-
Table 2
Decision accuracy (%) and response time (ms) across task runs.

Run Learning Low time pressure

1 2 3 4 5 6

Accuracy (%) 60.9 (2.4) 65.7 (1.8) 69.9 (2.1) 69.9 (2.3) 76.3 (2.3) 74.0
RT (ms) 884 (29) 843 (28) 804 (29) 816 (30) 751 (23) 738 (

Numbers in parenthesis are standard error of the mean (SEM).

Fig. 3. Neural representation of subjective cue weights. A-B, Brain regions containing fMRI pat
high time pressure (p<0:05, corrected). Image display according to neurological convention (lef
each cluster. Accuracy of zero represents at chance decoding performance. dStr ¼ dorsal striat
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weighs the rest of available cue(s)) or sum the weights to arrive at the
(subjective) SoE. Hence, this process requires breaking down compound
stimuli into individual cue dimensions and weighting them appropri-
ately, which serves as a precursor to the estimation of subjective SoE
and/or a final choice output. Therefore, we first sought to examine which
brain regions contained information about the subjective importance of
each cue dimension in solving the classification task. We employed a
whole-brain searchlight SVR to find BOLD patterns that are significantly
predictive of the magnitude of subjective cue weights in each experi-
mental phase. As our behavioral data suggest, participants used varying
decision strategies under low and high time pressure, with increased
decision noise and a reduced information search space under high
pressure. This change is represented by relative over-weighting of the
cues that each participant deemed important and down-weighting the
cues that are considered less informative (Fig. 2A). Therefore, to account
for large individual differences in cue usage, we focused our neuro-
imaging analyses on using subject- and phase-specific subjective cue
weights (or the sum of weights represented by subjective SoE; see below),
rather than fixed objective cue weights, to achieve higher sensitivity in
detecting brain regions that encode decision evidence. Hence, our
decoding approach using a linear SVR aimed to delineate the brain re-
gions that are associated with the subjective evaluation of individual cue
dimensions under each experimental condition.

The results are summarized in Fig. 3 and Table 3 (p<0:05, corrected).
Under low time pressure, subjective cue weights could be successfully
decoded from neural signals in the dorsal striatum, dorsolateral pre-
frontal cortex (dlPFC), posterior cingulate cortex (PCC), and precuneus
(Fig. 3A). Under increased time pressure, however, above-chance
decoding of cue weight information was found in the postcentral gyrus
and cerebellum (Fig. 3B). Furthermore, there were significant differences
in decoding accuracies between task phases in the dorsal striatum
(t24 ¼ 3:26; p ¼ 0:003), dlPFC (t24 ¼ 2:45; p ¼ 0:02), and PCC
(t24 ¼ 4:45; p<0:001), indicating deterioration in individual cue weight
information in these clusters under increased time pressure (Fig. 3C).
Interestingly, we found significantly enhanced encoding of cue
High time pressure

7 8 9 10 11 12

(1.9) 74.9 (2.2) 76.6 (2.0) 62.0 (2.2) 58.4 (2.3) 61.0 (2.3) 62.1 (2.1)
22) 714 (22) 727 (20) 366 (5) 370 (5) 370 (6) 367 (7)

terns significantly predictive of subjective cue weights under A, low time pressure, and B,
t is left). C, Average prediction accuracy (Fisher's Z-transformed correlation coefficients) of
um; PG ¼ postcentral gyrus; Error bars indicate SEM; *p<0:05.



Table 3
Clusters showing significant decoding accuracy of subjective cue weights.

Region Hemisphere Peak MNI (x, y, z) Peak t Cluster size (searchlights)

Low time pressure
Precuneus/posterior cingulate L/R (�6, �46, 29) 4.73 1,219
Caudate/putamen R (9, 14, 2) 4.29 160
Middle/inferior frontal gyrus L (�45, 17, 29) 4.07 108
Middle frontal gyrus R (27, 17 38) 4.00 86

High time pressure
Postcentral/medial frontal gyrus L (�12, �25, 59) 3.58 65
Cerebellum L (�33, �49, �37) 3.45 66
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information in the cerebellum in the HighP phase (t24 ¼ 3:84; p<0:001).
Thus, in line with deterioration in behavioral decision making and down-
weighting of subjective cue weights, encoding of individual cue weight
information in fronto-parietal and striatal regions under low pressure
was dampened under high pressure. Note that the results remain
consistent over variations of the regularization parameter, C, in SVR. We
Fig. 4. Modulation of neural activity by SoE. A-C, Brain regions significantly modulated by subj
indicates activity increasing with accumulation of evidence, whereas negative modulation (bl
decision difficulty. C, Brain areas demonstrating significantly greater positive SoE modulation i
temporal gyrus; LG ¼ lingual gyrus. All maps were whole-brain corrected to p<0:05. D-E, Me
demonstrate significantly positive linear trend in the LowP and HighP phases. Objective SoE o
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next turned to interrogating how this loss of fidelity of subjective cue
weight representations for specific cue dimensions may be accompanied
by changes in the neural encoding of the SoE or decision variable.

3.2.2. Modulation of neural activity by SoE
The magnitude of SoE represents the log odds of observing a positive
ective SoE under A, low time pressure and B, high time pressure. Positive modulation (red)
ue) represents activity increasing with decreasing SoE, and hence, greater uncertainty or
n the HighP compared to the LowP phase. STG ¼ superior temporal gyrus; MTG ¼ middle
an activity as a function of objective SoE in the D, putamen, and E, vmPFC. Both clusters
f 1.6* includes trials with SoE levels ranging from 1.6 to 2. Shaded area indicates SEM.



Table 4
Activation clusters for positive subjective SoE modulation.

Region Hemisphere Peak MNI (x, y, z) Peak t Cluster size (voxels)

Low time pressure
Medial frontal gyrus/anterior cingulate L/R (�6, 56, �7) 7.33 725
Precuneus/posterior cingulate L/R (�9, �52, 38) 5.86 308
Superior/middle temporal gyrus/insula/hippocampus/putamen R (54, �28, 14) 5.66 771
Superior/middle frontal gyrus L (�12, 47, 41) 5.35 155
Superior/middle temporal gyrus/insula L (�60, �58, 20) 5.25 388
Parahippocampal gyrus/putamen/hippocampus L (�33, �19, �16) 4.60 107
Cingulate gyrus L (�9, �25, 41) 4.74 117
Cuneus R (18, �85, 20) 4.39 111

High time pressure
Putamen/insula/parahippocampal gyrus/midbrain/cerebellum L (�27, �4, 2) 6.87 1,088
Putamen/insula/parahippocampal gyrus R (30, �16, 5) 5.51 389
Posterior cingulate L (�12, �58, 14) 5.04 113
Postcentral/precentral gyrus/precuneus L/R (27, �52, 62) 4.76 377
Posterior cingulate/lingual gyrus/cerebellum R (15, �55, 11) 4.66 199
Medial frontal gyrus L/R (�9, 65, 5) 4.35 103
Supplementary motor area L/R (�3, �13, 44) 4.34 99
Precentral/postcentral gyrus R (27, �25, 44) 3.92 96

High time pressure > low time pressure
Cerebellum/lingual gyrus L (-24, �61, �22) 6.20 541
Putamen/thalamus L (-24, �4, 2) 5.76 241
Thalamus/midbrain R (18, �16, �1) 4.93 151
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outcome from choosing either a left or right compound stimulus.
Therefore, it represents the total amount of evidence available to a
participant, which in turn, determines the objective difficulty of a given
trial. That is, uncertainty of outcome increases with decreasing SoE,
which makes decision-making more difficult. Similarly, subjective SoE
reflects participants’ perceived difficulty of a given trial. Thus, we hy-
pothesized that brain regions modulated by SoE should encode both the
integrated sum of cue weights and associated uncertainty/difficulty that
produce the final choice output. Specifically, to account for individual
variability in cue learning and decision strategies employed under low
and high time pressure conditions, we sought to examine the areas
modulated by subjective SOE, which was estimated using the sum of
subjective weights of the cue dimension present on a given trial (see
Materials and Methods). To this end, we employed the standard GLM
approach using trial-by-trial subjective SoE as a parametric modulator.

The results are summarized in Fig. 4 and Tables 4 and 5 (p<0:05,
corrected). We found distinct sets of brain regions displaying either a
positive modulation effect (Table 4), reflecting increasing activity with
greater decision evidence and certainty, or a negative modulation effect
(Table 5), where activity increased with greater decision difficulty and
uncertainty (i.e., decreasing magnitude of SoE). In the LowP phase,
positive scaling with SoE magnitude was found in the vmPFC, extending
to the rostral anterior cingulate and superior frontal gyrus; in superior
temporal gyrus, extending to the insula, putamen and hippocampus; and
in precuneus and PCC (Fig. 4A, Table 4). By contrast, negative SoE
modulation was found in the dlPFC, dorsal medial PFC, and lateral
inferior parietal lobule (IPL) (Fig. 4A, Table 5), a set of regions that are
commonly activated under high attentional demand and are often
referred to as the fronto-parietal cognitive control network (Dosenbach
et al., 2006; Duncan and Owen, 2000; Niendam et al., 2012; Wager et al.,
Table 5
Activation clusters for negative subjective SoE modulation.

Region Hemisphere Pea

Low time pressure
Medial frontal gyrus L/R (�3
Middle/inferior frontal gyrus L (�4
Inferior parietal lobule L (�3
Middle/inferior frontal gyrus R (51
Inferior parietal lobule R (36

High time pressure
Inferior parietal lobule R (33
Middle/inferior frontal gyrus R (48
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2004). Under increased time pressure, similar areas positively modulated
by subjective SoE in the LowP condition were found, with more confined
activation in the putamen, vmPFC, and PCC. In addition, areas related to
motor control such as the supplementary motor area (SMA), cerebellum,
precentral and postcentral gyrus also showed enhanced modulation
(Fig. 4B, Table 4). Again, similar to the LowP phase, significant negative
modulation effects were observed in the right dlPFC and IPL (Fig. 4B,
Table 5), suggesting reduced engagement of the fronto-parietal control
network when choices have to be made quickly under severe
time pressure.

When testing for regions with similar response profiles across low and
high time pressure by means of a conjunction analysis, positive modu-
lation of SoE was commonly found in the putamen, vmPFC, PCC, pre-
cuneus, parahippocampal gyrus, and insula. Additionally, negative
modulation of SoE was commonly observed in the dlPFC and IPL, sug-
gesting a critical role of these regions associated with an accumulation of
evidence or subjective confidence regardless of time pressure. Finally,
andmost importantly, to determine the way in which time pressure alters
decision making in terms of the modulation of neural activity by decision
evidence, we directly contrasted the modulation effect of subjective SoE
between the LowP and HighP phases (Fig. 4C, Table 4). The results
revealed a significantly greater positive modulation of activity by SoE in
the putamen, thalamus, dopaminergic midbrain, and cerebellum during
the HighP compared to the LowP phase. The midbrain cluster consisted
of substantia nigra (SN, 83 voxels) and ventral tegmental area (VTA, 38
voxels), which were identified based on a probabilistic atlas (Murty et al.,
2014). In sum, the results highlight enhanced sensitivity in the basal
ganglia, thalamus, and cerebellum to decision-relevant evidence under
high time pressure.

Since participants’ performance scaled linearly with objective SoE
k MNI (x, y, z) Peak t Cluster size (voxels)

, 11, 50) 9.21 294
5, 8, 29) 7.71 374
6, �43, 38) 7.35 576
, 23, 32) 5.88 387
, �58, 47) 5.38 465

, �64, 41) 4.80 110
, 29, 20) 4.59 99
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(see Fig. 1D), we sought to examine whether the regions modulated by
subjective SoE are similarly sensitive to objective SoE. That is, since
objective and subjective SoEs are highly correlated, especially for high
performers, we expected that similar regions would also be modulated by
objective SoE. We conducted an additional ROI analysis based on the
clusters sensitive to subjective SoE modulation identified through the
conjunction analysis. We applied anatomical masks to separate clusters
that spanmultiple areas, and clusters withmore than 10 voxels were used
for ROI analysis. This included the putamen (70 voxels), vmPFC (57
voxels), and PCC (59 voxels) from the positive SoEmodulation effect, and
the dlPFC (81 voxels) and IPL (84 voxels) from the negative SoE modu-
lation effect. For both the low and high time pressure phases, parameter
estimates, βSoEi i ¼ 0;…;1:6*; SoE ¼ 1:6* includes trials from the three
highest SoE levels, 1.6, 1.8, and 2), from all five regions showed highly
significant linear trend as a function of objective SoE. Specifically,
the putamen (LowP: Fð1;24Þ ¼ 21:28; p< 0:001; HighP:
Fð1;24Þ ¼ 19:73; p<0:001) (Fig. 4D), vmPFC (LowP:
Fð1;24Þ ¼ 20:63; p<0:001; HighP: Fð1;24Þ ¼ 13:56; p ¼ 0:001) (Fig. 4E),
and PCC (LowP: Fð1;24Þ ¼ 21:47; p<0:001; HighP:
Fð1;24Þ ¼ 9:10; p ¼ 0:006) showed significantly positive linear relation-
ship with objective SoE. Similarly, both the dlPFC (LowP:
Fð1;24Þ ¼ 13:97; p ¼ 0:001; HighP: Fð1;24Þ ¼ 5:88; p ¼ 0:02) and IPL
(LowP: Fð1;24Þ ¼ 17:39; p< 0:001; HighP: Fð1;24Þ ¼ 9:03; p ¼ 0:006)
demonstrated significantly negative linear relationship with objective
SoE. The results suggest that these regions closely track the integrated
sum of decision-relevant information on each trial at both subjective and
objective level, regardless of time pressure.

Lastly, to ensure that our results were not simply driven by differences
in RT profiles in the LowP and HighP phases, we conducted additional
analyses. For all GLMs reported above, trial-by-trial RTs were modeled
explicitly as a parametric modulator, and we found no significant dif-
ferences in RT modulation across phases. Additionally, evidence accu-
mulation models such as the drift diffusion model (e.g., Ratcliff, 1978)
suggest that time pressure induces lowering of the decision bound, which
would in turn result in a change in the magnitude of the subjective cue
weights but not their ratios. To account for this prediction, we analyzed
fMRI data using normalized subjective cue weights, and found no dif-
ference in results, both in the subjective cue weights (SVR) and the
subjective SoE (parametric GLM) analyses. Therefore, it is highly unlikely
that the phase differences in neural cue weight and SoE encoding re-
ported above are merely reflective of RT differences between conditions.

Taken together, results from the SoE analysis showed that activity in
the putamen, dopaminergic midbrain (SN/VTA), thalamus, and cere-
bellum is positively correlated with trial-by-trial variations in subjective
SoE, and display a significantly greater sensitivity to the decision variable
under severe time pressure than under low time pressure. Furthermore,
regardless of time pressure, the putamen, vmPFC, and PCC were posi-
tively modulated by subjective SoE, whereas activity in the fronto-
parietal cognitive control network was consistently sensitive to deci-
sion uncertainty, characterized by negative SoE modulation. Addition-
ally, we found that these areas also closely tracked objective SoE,
confirming their role in encoding integrated decision-relevant
information.

3.2.3. Ruling out practice effects
We performed the time pressure manipulation in a block-wise,

sequential manner to avoid spillover effect of severe time pressure
influencing decision behavior on subsequent low pressure blocks. This
experimental design, however, raises a concern that changes in behavior
and cortical activity across experimental phases we report could be
influenced by task practice. At the behavioral level, practice effects are
defined as an increase in accuracy and decrease in response time (Ashby
et al., 2010; Kelly and Garavan, 2005; Schneider and Shiffrin, 1977). As
reported in the previous section (see Task performance), both decision
accuracy and RT remained constant within each the LowP and HighP
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phase during the scan (ps>0:05). In addition, contrary to the assumption
of improving performance with continued practice, we observed signif-
icant impairment in choice performance when moving from the low to
high time pressure condition. Hence, behaviorally, our within- and
between-phase observations do not support a practice effect hypothesis.

At the neural level, practice is usually associated with an overall
decrease in BOLD activation of the cognitive control and attentional
network (i.e., prefrontal and parietal areas) as the task becomes autom-
atized (see Kelly and Garavan, 2005 for a review). Some studies, addi-
tionally, have reported enhanced post-learning subcortical processing
(Doyon et al., 2009; Leh�ericy et al., 2005; Van Turennout et al., 2003),
although the results are rather mixed (see Ashby et al., 2010 for a
detailed discussion). To examine changes in cortical and subcortical ac-
tivity over time, we divided our experiment into four different sets (120
trials/set, 2 sets/phase), each consisting of a complete set of unique
stimulus combinations, and conducted an additional GLM analysis. If
practice effects are present, then we would expect to observe gradual
BOLD signal decrease in cortical regions, especially in the control
network, and steady increase in subcortical regions. Hence, we focused
our analyses on seven ROIs sensitive to the subjective SoE modulation: 1)
The control network (dlPFC, SMA, and IPL) and the vmPFC defined from
the LowP phase SoE modulation, and 2) the putamen, thalamus/mid-
brain, and cerebellum clusters identified from the HighP > LowP contrast
(see Tables 4 and 5). Specifically, to investigate overall changes in
trial-induced activation over time, we extracted and averaged the percent
signal changes and the parameter estimates, βTrial, in the seven ROIs.

Results from 2 (sets)� 2 (LowP/HighP phases) ANOVAs based on the
average percent signal changes showed no significant effect of phase nor
set in all seven ROIs (ps>0:05), suggesting that overall BOLD activation
remained stable in these regions throughout the experiment (see Fig. S1
and Table S1 in Supplementary Material). The mean βTrial, however,
demonstrated significant effects of phase for cognitive control regions
(dlPFC: Fð1;24Þ ¼ 24:02; p< 0:001 ; SMA: Fð1;24Þ ¼ 15:66; p ¼ 0:001; IPL:
Fð1;24Þ ¼ 26:44; p< 0:001) as well as subcortical regions (putamen:
Fð1;24Þ ¼ 4:59; p ¼ 0:04; thalamus/midbrain: Fð1;24Þ ¼ 5:97; p ¼ 0:02)
and the cerebellum (Fð1;24Þ ¼ 23:23; p< 0:001), all of which exhibited an
overall increase in trial-evoked response during the HighP phase. No
effect of set nor phase � set interaction was found (ps>0:05). In other
words, we did not observe the gradual changes in activity predicted by
the practice effect hypothesis, but rather a stepwise increase when
moving from the low-pressure to the high-pressure phase.

Finally, to account for within-phase strategy variability influencing
our neural data, we repeated decision strategy model selection using four
sets (2 sets/phase) (Fig. S2A). We observed no changes in the overall
winning model (i.e., model with the highest exceedance probability)
within each phase. There was, however, an increased tendency of
switching toModel 11 in the second set of the LowP phase, possibly a sign
of satisficing behavior induced by extended exposure to the task. In the
first set of the HighP phase, participants adopted an even more con-
stricted cue space, with exceedance probabilities spreading out to Model
11 (c1; c2; c3), Model 5 (c1; c2), and Model 1 (c1), thereby reflecting
substantial behavioral changes triggered by the onset of severe time
pressure. These time pressure induced changes in choice strategy are of
course in accordance with our “drop-the-worst” proposal.

To ensure that this observed strategy variability does not strongly
influence our neural results, we further contrasted fMRI data of the first
set of the LowP phase (highest reliability in using the optimal model)
versus the first set of the HighP phase (highest probability of adopting
sub-optimal satisficing strategy) (Fig. S2B-D, Table S2). Consistent with
our previous report, under low time pressure, the vmPFC and cognitive
control network were significantly modulated by subjective SoE, whereas
under high time pressure, increased modulation of the subcortical re-
gions was observed. Hence, although some variability in cue usage exists
within each phase and participants, the overall picture in terms of neu-
roimaging results does not differ much when individual sets are being
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considered as compared to collapsing across sets within each phase.
In sum, both behavioral and neural evidence speak quite strongly

against the possibility that the neural correlates of the phase-dependent
decision-making shifts we report here are simply reflecting practice ef-
fects. The significant between-phase differences, in the absence of
gradual behavioral and BOLD signal changes, are more likely to reflect
strategy changes triggered by the time pressure manipulation.

4. Discussion

To characterize neural mechanisms underlying satisficing decision-
making induced by time pressure, we tested participants on a multi-cue
probabilistic classification task under conditions of low (1500 ms) and
high (500 ms) pressure during fMRI. Specifically, we focused on inves-
tigating post-learning decision performance, after participants had
formed an understanding of the predefined cue structure through trial-
and-error feedback learning. Using subjective cue weights and SoE
inferred from a variational Bayesian approach, we demonstrate that,
under low time pressure, participants accurately ranked the cues and
integrated all available information to achieve near-optimal perfor-
mance. Under this condition, distributed fMRI patterns in the dorsal
striatum, dlPFC, and PCC could be used to make linear predictions about
the subjective cue weights. Additionally, the total amount of evidence,
quantified by subjective SoE, was encoded in the vmPFC, PCC, putamen,
and hippocampus, whereas decision uncertainty was represented in the
fronto-parietal cognitive control network. Under high time pressure, by
contrast, participants adopted a drop-the-worst satisficing strategy by
discounting the least important cue from their decision process, which
was accompanied by an overall deterioration of performance and cue
information encoding in the brain. Despite this degradation of informa-
tion processing, we found significantly greater subjective SoE modula-
tion under high time pressure in the putamen, dopaminergic midbrain,
thalamus, and cerebellum. These findings suggest that time pressure
triggers a shift from near-optimal decision-making dependent on both
subcortical and fronto-parietal regions to satisficing decision-making
characterized by a greater involvement of the midbrain, striatum, thal-
amus, and cerebellum.

Learning to perform probabilistic classification is thought to mainly
rely on an interplay between the striatum and the hippocampus
(Knowlton et al., 1996; Packard and Knowlton, 2002; Squire and Zola,
1996). The striatum serves an essential role in acquiring probabilistic
cue-outcome associations in the weather prediction task (Knowlton et al.,
1996; Poldrack et al., 2001) as well as other choice tasks that involve
learning from reinforcement (Daw and Doya, 2006; Delgado et al., 2000;
O'Doherty et al., 2003; Schultz, 1998; Schultz et al., 1997). Stress,
induced by a socially evaluated cold pressor test, has been shown to
trigger increased engagement of striatum-dependent implicit learning
and impair the use of the hippocampus-dependent declarative system
during probabilistic classification learning (Schwabe and Wolf, 2012).
This shift to striatum-mediated learning has also been found when par-
ticipants performed the weather prediction task under cognitive load
(Foerde et al., 2006). In studies of the speed-accuracy tradeoff, increased
activation was found in the striatum during trials with speed emphasis
compared to trials with accuracy emphasis (Forstmann et al., 2008; van
Veen et al., 2008), suggesting that enhanced striatal activity may be
critical in reducing inhibitory control and facilitating speeded responses
(Bogacz et al., 2010). Here, we significantly expand these findings by
directly demonstrating that increased time pressure decreases the
involvement of frontal and parietal regions and shifts probabilistic
multi-cue decision-making to the striatum, even after the completion of
initial cue learning.

In addition to the striatum, the midbrain (SN/VTA), and thalamus
demonstrated significantly enhanced encoding of subjective SoE under
high time pressure. Dopaminergic neurons in the SN/VTA are associated
with expected rewards (D'Ardenne et al., 2008; Schultz et al., 1997) and
control of motor responses (e.g., Hikosaka, 1989; Chevalier and Deniau,
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1990; Mink, 1996) in decision-making. The thalamus serves as a critical
relay structure between cortical and subcortical regions, facilitating in-
formation integration among the SN/VTA and striatum as well as pre-
frontal areas such as the vmPFC and dlPFC (Haber and Knutson, 2009).
The vmPFC has been widely implicated in subjective value encoding
(Daw et al., 2006; Kable and Glimcher, 2007; Levy and Glimcher, 2012;
Montague and Berns, 2002; Padoa-Schioppa and Assad, 2006; Plassmann
et al., 2007) and has been shown to integrate value information during
multi-attribute decision-making (Basten et al., 2010; Hare et al., 2011;
Kahnt et al., 2011). Building on these findings, we here show that vmPFC
encodes integrated cue values. Under high time pressure, this SoE
encoding was accompanied by enhanced modulation of the midbrain and
striatal-thalamic circuit, suggesting that these regions may particularly
facilitate information integration and evaluation when a speeded
response is required.

We also found a significant modulatory effect of decision uncertainty
on a fronto-parietal network that is consistently recruited during top-
down attentional control processes that assist goal-directed behavior
under cognitively demanding conditions (Dosenbach et al., 2006; Dun-
can and Owen, 2000; Niendam et al., 2012; Wager et al., 2004). In a
multi-cue decision environment where only a single dimension is rele-
vant, this network is involved in selecting the relevant feature, effectively
reducing the dimensionality of the problem (Niv et al., 2015). In the
current study, the dlPFC encoded individual cue weights as well as
combined SoE, indicating that this region may be directly involved in the
cue integration process. This is consistent with prior reports demon-
strating engagement of the dlPFC in evidence accumulation during
perceptual decision-making (Gold and Shadlen, 2007; Heekeren et al.,
2008), and encoding of ambiguity or difficulty in multi-attribute deci-
sion-making (Kahnt et al., 2011; Krebs et al., 2012). Our results further
demonstrate involvement of the fronto-parietal control network in a
feature-invariant evidence integration processes, possibly guiding atten-
tion to cues according to their weighted importance and tracking un-
certainty in choices.

Interestingly, the cerebellum was also involved in both cue value
encoding and subjective SoE modulation under high time pressure. The
cerebellum is traditionally regarded as contributing to movement plan-
ning and execution (It�o, 1984), and its role in cognitive functions is not
well understood. Due to this structure's extensive connections to the ce-
rebral cortex, including prefrontal areas (Habas et al., 2009), it has been
suggested that the cerebellum may contribute to higher-level cognition,
such as learning from feedback, which can support fast and adaptive
control of motor behavior (Buckner, 2013; Ito, 2008; Strick et al., 2009).
Hence, in the current task, the cerebellum may carry decision-relevant
signals to facilitate quick motor responses. Although it is difficult to
determine the precise role of the cerebellum in satisficing in the current
study, the apparent involvement of this structure in fast-paced probabi-
listic inference represents an interesting starting point for future studies.

Although the use of heuristics is ubiquitous in everyday life, most
neuroimaging studies on decision-making have focused on rather simple
scenarios, where all decision-relevant information is available and par-
ticipants are assumed to use a uniform, optimal strategy. Hence, neural
mechanisms underlying heuristic processes that are used to simplify
complex decision problems are not well understood (Volz and Giger-
enzer, 2012). Prior studies that did examine neural correlates of heuristic
decisions have largely focused on memory-guided heuristics (Khader
et al., 2015, 2011; Rosburg et al., 2011; Volz et al., 2010, 2006). Given
this focus on cached decision strategies and extensive training of explicit
task rules, this prior work did not necessarily address how people arrive
at decisions in more complex and natural decision environments. To
overcome this problem, we used a large set of non-deterministic cue
combinations, encouraging participants to actively integrate available
information on each trial. Our study, therefore, provides novel evidence
concerning the neural substrates of satisficing decision-making in the
context of active, speeded cue integration.

We show that participants discounted the least important cue in their
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decision processes under high time pressure, consistent with our previous
findings (Oh et al., 2016). Participants performed at chance when the
least important cue was the only differentiating cue between the two
compound stimuli (Fig. 2B), indicating that the use of the drop-the-worst
heuristic is a strategic choice, rather than due to having insufficient time
to evaluate evidence. Where in the brain might cue information be
“dropped” when decisions are made under high time pressure? It is
possible that the deterioration in cue processing occurs at the sensory
level (i.e., Ho et al., 2012) or alternatively, that it takes place at a later
stage of the decision-making process. Due to an insufficient number of
trials where only a single cue differentiated the competing stimuli, our
current paradigm could not provide an unambiguous answer to this
question. Despite this limitation, it is clear from the present data that the
dopaminergic midbrain, striatum, and cerebellum encode subjective SoE
preferentially under time pressure, and thus are key structures for facil-
itating satisficing decision-making.

In conclusion, the current study shows that near-optimal performance
in multi-cue probabilistic classification under low time pressure is sup-
ported by widely distributed regions including both subcortical (striatum
and hippocampus) and cortical (frontal and parietal) areas. Under high
time pressure, by contrast, participants adopted the drop-the-worst sat-
isficing strategy, which is characterized by increased involvement of the
dopaminergic midbrain, thalamus, striatum, and cerebellum in medi-
ating fast and good-enough decision-making.
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