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Abstract—This paper investigates the comparative performance
of several information-driven search strategies and decision rules
using a canonical target classification problem. Five sensor models
are considered: one obtained from classical estimation theory and
four obtained from Bernoulli, Poisson, binomial, and mixture-
of-binomial distributions. A systematic approach is presented
for deriving information functions that represent the expected
utility of future sensor measurements from mutual information,
Rènyi divergence, Kullback–Leibler divergence, information po-
tential, quadratic entropy, and the Cauchy–Schwarz distance. The
resulting information-driven strategies are compared to direct-
search, alert–confirm, task-driven (TS), and log-likelihood-ratio
(LLR) search strategies. Extensive numerical simulations show
that quadratic entropy typically leads to the most effective search
strategy with respect to correct-classification rates. In the presence
of prior information, the quadratic-entropy-driven strategy also
displays the lowest rate of false alarms. However, when prior
information is absent or very noisy, TS and LLR strategies achieve
the lowest false-alarm rates for the Bernoulli, mixture-of-binomial,
and classical sensor models.

Index Terms—Classification, detection, information driven,
information theory, management, optimal, planning, search,
sensor, strategy, target.

I. INTRODUCTION

IN MANY applications, the set of all measurements that can
be acquired by a sensor significantly exceeds its available

time and processing capabilities [1]. Therefore, sensor planning
is used to select the best measurement sequence in order to
optimize the sensor performance [2]–[4]. A basic difficulty
consists of assessing the sensor performance prior to obtaining
the measurement sequence [5]–[7]. In most sensor applications,
there exist no closed-form representations for the expected rate
of correct target classification or rate of false alarms. Target
classification can be reduced to the problem of estimating one
or more random variables, referred to as target state, from
partial or imperfect measurements [8]. Therefore, the sensor
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performance depends on the amount of information, or lack
thereof, associated with the target state. In this case, the utility
of future measurements may be represented by their expected
information value.

Several information theoretic functions have been proposed
in the literature to assess the information value of an avail-
able set of measurements. Relative entropy was used in [9]
to solve a multisensor–multitarget assignment problem and in
[10] and [11] to manage agile sensors with Gaussian models
for target detection and classification. Shannon entropy and
the Mahalanobis distance were applied and compared in [7]
for sensor selection in ad hoc sensor networks. Shannon en-
tropy was also used in [12] and [13] for tracking a moving
target using a Kalman filter. An approach based on mutual
information was presented in [14] for adjusting the parameters
of a camera in an object recognition application. However,
there presently exists no general approach for computing in-
formation theoretic functions prior to obtaining the sensor
measurements.

Due to the significant differences between sensor data and
applications, little work has been done on comparing informa-
tion functions on canonical sensor problems and on generaliz-
ing the results beyond a particular sensor type and application.
The comparative study closest to the one presented in this paper
pertains to the optimal choice of the α parameter in the Rènyi
divergence [11]. It was determined in [11] that the optimal
value of α for a multitarget tracking application involving a
simulated moving-target-indicator sensor is 0.5. An empirical
study showing that task-driven (TS) approaches may slightly
outperform information-driven approaches was recently con-
ducted in [15] using a synthetic-aperture-radar model with two
modes of operation and eight possible target locations or cells.
However, the study in [15] only considered one sensor model
and the Rènyi divergence function.

This paper presents a general approach for estimating the
expected information value using objective functions derived
from mutual information, Rènyi divergence, Kullback–Leibler
(KL) divergence, and quadratic entropy, as well as using two
functions known as information potential and Cauchy–Schwarz
(CS) distance, which have been recently used for blind-source
separation, feature extraction, and machine learning in [16]–
[18]. Then, a greedy information-driven strategy selects the
measurement sequence that maximizes the chosen information
function at every time step. Other effective search strategies that
have been proposed in the literature and are implemented in this
paper are direct search (DS), alert–confirm (AS) search, TS or
Bayes-risk search, and log-likelihood-ratio (LLR) search [15],
[19], [20].
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In order to provide a comparative study that is easily
validated and generalized, this paper implements the afore-
mentioned search strategies on five simulated sensor models
obtained from Bernoulli, Poisson, binomial, and mixture-
of-binomial distributions and a noisy power law. The same
approach can be applied to sensor data by first obtaining a
parametric sensor model, as shown in [21] and [22]. Each strat-
egy is evaluated using the Neyman–Pearson, maximum like-
lihood, and maximum a posteriori decision rules. The effects
of prior information are investigated using prior distributions
with three levels of information-to-noise ratio. The simulation
results and growth curve model (GCM) analysis [23]–[26] show
that quadratic entropy typically leads to the most effective
search strategy with respect to correct-classification rates. In
the presence of prior information, the quadratic-entropy-driven
strategy displays the lowest false-alarm rates. However, when
prior information is absent or very noisy, TS and LLR strategies
achieve the lowest false-alarm rates for Bernoulli, mixture-of-
binomial, and classical sensor models.

II. BACKGROUND ON INFORMATION

THEORETIC FUNCTIONS

Information theoretic functions have been used to evalu-
ate the information value of sensor measurements in a wide
range of applications. As pointed out in [7], a natural choice
for measuring information value is entropy. Shannon entropy
measures the uncertainty of a discrete and random variable X ,
with finite range X , from its probability mass function (PMF)
pX(x) = Pr({X = x}) for x ∈ X and is defined as

H(X) = −
∑
x∈X

pX(x) log2 pX(x). (1)

Since the computation of (1) requires knowledge of the PMF,
it cannot be used to compute the information value because the
posterior PMF of X , or belief state, is unknown before the mea-
surements are obtained [7]. Furthermore, the optimization of
entropy-based functions is usually ill posed because entropy is
nonadditive and myopic, i.e., it does not consider the effects of
prior measurements on those that are performed subsequently
[2]. Another shortcoming of (1) is that it is not a true metric
because it is nonsymmetric, and it does not satisfy the triangle
inequality [5]. In the remainder of this paper, the PMF pX(x)
is represented by the shorthand notation p(x). Also, uppercase
characters are used to denote discrete random variables, and
lower case characters are used to denote real numbers, such as
the numerical values of random variables.

The Rény information or α-divergence has been proposed in
[27] as a means for quantifying the change in the belief state
brought about by the sensor measurements. It is based on the
Rény’s entropy of order α, defined as

HRα
(X) =

1
1 − α

log2

∑
x∈X

pα(x) (2)

which relates to (1) through the properties limα→1 HRα
(X) =

H(X) and HRα
(X) ≥ H(X) ≥ HRβ

(X) if 1 > α > 0 and
β > 1. Let the current belief state be represented by a PMF
q(x), and suppose that a posterior distribution p(x) is expected

as a result of a sensor decision pertaining to the sensor mode
and measurement sequence. Then, the α-divergence

Dα(p‖q) =
1

α − 1
log2

∑
x∈X

pα(x)q1−α(x) (3)

can be viewed as a measure of the difference between the two
PMFs q(x) and p(x), where the α parameter represents the
emphasis placed on the degree of differentiation between the
tails of the distributions. In [11], the value α = 0.5 was found to
be optimal for representing the information value in multitarget
tracking applications in which the two PMFs q(x) and p(x) are
close. In the limit of α → 1, (3) can be shown to reduce to the
KL divergence or relative entropy, defined as

D(p‖q) =
∑
x∈X

p(x) log2

p(x)
q(x)

(4)

which was first applied to sensor planning in the seminal work
of Kastella [10]. Like entropy, however, the Rény information
and KL divergence functions are nonadditive and nonsymmet-
ric and do not satisfy the triangle inequality.

An additive, symmetric, and nonmyopic function based on
conditional mutual information was recently proposed by the
authors in [28] and successfully applied to multitarget detection
and classification in [5]. Mutual information is a measure of
the information content of one random variable about another
random variable [29]. The conditional mutual information of
two random variables X and Z, given Y , is defined as

I(X;Z|Y ) =H(X|Y ) − H(X|Z, Y )

=
∑
x∈X

∑
y∈Y

∑
z∈Z

p(x, y, z) log2

p(x, z|y)
p(x|y)p(z|y)

(5)

and represents the reduction in uncertainty in X due to the
knowledge of Z, when Y is given. H(X|Y ) denotes the
conditional entropy of X , given Y , and is defined in [29,
p. 16]. While (5) does not obey the triangle inequality, a
related metric can be obtained using the function d(X;Z|Y ) =
H(X,Z|Y ) − I(X;Z|Y ), which obeys all properties of met-
rics. Mutual information can also be shown to be a concave
function of p(x|y) for fixed p(z|x, y) [29, p. 31].

Although they have not been previously applied to sensor
planning, the information potential and CS distance have been
recently introduced in [16]–[18] and shown very effective for
blind-source separation, feature extraction, and machine learn-
ing. Based on the CS inequality, the CS information function
defined as

C(p, q) = log2

∑
x∈X p2(x)

∑
x∈X q2(x)[∑

x∈X p(x)q(x)
]2 (6)

was proposed as a measure of the difference between two PMFs
p(x) and q(x) in [16] and [17] and used therein for blind-source
separation and feature extraction. The information function in
(6) is based on quadratic entropy, which is obtained from (2)
by letting α = 2. Quadratic forms are particularly well suited
to numerical optimization because they are characterized by
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high convergence rates and smooth gradient variations near
the minimum. Additionally, in the absence of constraints, they
typically do not exhibit multiple stationary points. Therefore,
in this paper, quadratic entropy and the information potential,
defined as

V (X) =
∑
x∈X

p2(x) (7)

are also applied to sensor planning. In Section IV, the infor-
mation theoretic functions reviewed earlier are used to derive
closed-form representations for the measurements’ expected
information value in the target classification problem described
in the next section.

III. CANONICAL SENSOR PLANNING PROBLEM

In standard estimation theory, a sensor that obtains a vector of
measurements, Z ∈ R

r, in order to estimate an unknown state
vector, X ∈ R

n, at time k is modeled as

Zk = h(Xk, λk) (8)

where h : R
n×℘ → R

r is a deterministic vector function that is
possibly nonlinear, and time is discretized and indexed by k =
1, . . . , f [8]. The random parameter vector λ ∈ R

℘ represents
the sensor characteristics, such as sensor mode, environmental
conditions, and sensor noise or measurement errors. In many
sensor applications, however, the state, the measurements, and
the sensor characteristics also are random variables. Therefore,
a more general observation or measurement model that has
been proposed in the literature is the joint PMF, p(Zk,Xk, λk),
which typically can be factorized as follows:

p(Zk,Xk, λk) = p(Zk|Xk, λk)p(Xk)p(λk) (9)

assuming Xk and λk are independent random variables [5],
[21], [30]. Both models (8) and (9) are time invariant. Thus, in
later sections, the superscript k is omitted for brevity. The prob-
lem dimensions are chosen as n = r = 1 and ℘ = 3 because
they result in efficient and representative numerical simulations.

The probabilistic model in (9) assumes that Z, X , and λ
are discrete random variables with finite ranges Z , X , and Λ,
respectively. Continuous random variables can be considered
using an analogous model based on the joint probability density
function [11]. The conditional PMF p(Z|X,λ) is obtained from
the physical principles underlying the measurement process.
The priors p(X) and p(λ) are computed from prior environ-
mental information when available or are otherwise assumed to
be uniformly distributed. Various sensors, including infrared,
ground penetrating radars, and synthetic aperture radars, have
been modeled from real data using (9), as shown in [10], [11],
[15], [21], and [22].

It is assumed that the sensor is deployed for the purpose of
classifying multiple targets confined to a discrete set of cells
K = {κ1, . . . , κc}. It is also assumed that there is at most
one target in each cell and that targets do not move and do
not change over time. The state of the ith cell κi, denoted
by Xi ∈ X , represents the presence and classification of a

target in κi. Thus, the range X contains mutually exclusive
values representing an empty cell and all possible target types,
including a “high-risk” target type denoted by xr. Then, the
sensor planning problem considered in this paper consists of
selecting one cell from K at every time k = 1, . . . , f such that
the rate of correct target classification is maximized and the rate
of false alarms is minimized.

The measurement variable associated with κi, denoted by
Zi, is a discrete random variable with finite range Z , that is
unknown a priori. If the sensor obtains the measurement value
zk from κi at time k, then Zk = Zi = zk, Xk = Xi, λk = λi,
and zk is known thereafter. However, since measurements are
imperfect and random, the actual value of Xi remains unknown.
Thus, Xi must be estimated, or classified, from zk using the
decision rules described in Section VI. Over time, the sensor
may obtain multiple measurements from the same cell in order
to improve its classification performance. At every time k, the
search strategy decides which cell to measure in K, prior to
obtaining zk, based only on the sensor model and the set of
measurements Mk−1 = {z1, . . . , zk−1} obtained up to time
(k − 1).

The sensor performance is characterized by the rates of
correct classification and false alarms. In most sensor applica-
tions, closed-form representations for these rates as functions
of future sensor measurements are not available and therefore
cannot be directly optimized over time. Once the measurements
are obtained and processed by a decision rule, however, they
can be computed as follows. At time k, let n(k) denote the total
number of cells with a state value that is estimated correctly
and nr(k) denote the number of cells with the high-risk state
value xr that is estimated correctly. The number of false alarms,
nfa(k), represents the number of cells that are empty but are
incorrectly declared to contain a target by the decision rule.
Then, at any time k, the rate of correct classification is

Fc(k) =
n(k)

c
(10)

where c is the total number of cells in K. The rate of correct
classification for high-risk targets at time k is

Fr(k) =
nr(k)

cr
(11)

where cr is the number of cells in K with state value xr. The
frequency of false alarms at time k is

Ffa(k) =
nfa(k)

ce
(12)

where ce is the number of empty cells in K. At the end of the
time interval (k = f), average rates, denoted by F̄c, F̄r, and
F̄fa, can be computed by summing Fc(k), Fr(k), and Ffa(k),
respectively, over k and normalizing the results by f .

Since the classification and false-alarm rates defined earlier
are unknown a priori, a search strategy can be adopted to select
which cell to measure at every time k, based on the information-
value functions presented in the next section.
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IV. INFORMATION VALUE FUNCTIONS

FOR SENSOR PLANNING

Information theoretic functions are a natural choice for rep-
resenting the value of information because they measure the
absolute or relative information content of probability mass (or
density) functions. However, as shown in Section II, computing
these functions requires knowledge of the PMFs representing
the prior and the posterior belief state. Since, in sensor plan-
ning, the posterior belief state is unknown, this section presents
a general approach for estimating the information value of a cell
or target based on prior sensor measurements and the sensor
model.

Based on the problem formulation in Section III, at every
time k, the sensor must decide from which cell κi ∈ K to obtain
an unknown measurement Zi, given all past measurements
Mk−1. The information value of κi can be represented by
the change in belief state brought about by Zi and estimated
using the sensor model (9). At time k, the change between
the prior belief state, p(Xi|Mk−1, λi), and the posterior belief
state, p(Xi|Zi,Mk−1, λi), can be estimated by taking the
expectation with respect to Zi, denoted by EZi

. Then, from
(3), the information value can be represented by the expected
α-divergence, defined as

ϕ̂Dα
(Xi;Zi|Mk−1, λi)

≡EZi

{
Dα

[
p(Xi|Zi,Mk−1, λi)‖p(Xi|Mk−1, λi)

]}
=
∑
zj∈Z

Dα

[
p(Xi|Zi =zj ,Mk−1, λi)‖p(Xi|Mk−1, λi)

]
×p(Zi =zj |Mk−1, λi), for ∀i, and k=2, . . . , f. (13)

By taking the expectation with respect to Zi, the measurement
value zk is no longer needed, and ϕ̂Dα

can be computed from
Mk−1 and the sensor model, as explained hereinafter.

In many sensor applications, measurements that are
obtained at different time instants can be assumed to
be conditionally independent given the target state, i.e.,
p(zk−1|Xi, z

k−2, . . . , z1, λi) = p(zk−1|Xi, λi). As a result, an
efficient rule can be derived for updating the belief state itera-
tively over time using the sensor model (9) in combination with
Bayes’ rule. Suppose that a measurement zk−1 is obtained from
cell κi ∈ K at time (k − 1). Then, the PMF of Xi given Mk−1

and λi can be updated by the rule

p(Xi|Mk−1, λi)
= p(Xi|zk−1,Mk−2, λi)

=
p(zk−1|Xi,Mk−2, λi)p(Xi|Mk−2, λi)

p(zk−1|Mk−2, λi)

=
p(zk−1|Xi, λi)p(Xi|Mk−2, λi)∑

x�∈X p(zk−1|Xi = x�, λi)p(Xi = x�|Mk−2, λi)
,

for ∀i, and k = 2, . . . , f (14)

where p(Xi|Mk−2, λi) is known from the previous time step
(k − 2) and p(zk−1|Xi, λi) is known from (9). As additional
measurements are obtained at subsequent time steps, (14) can
be implemented iteratively by updating the time and cell index
accordingly. Finally, the posterior belief inside the expectation

in (13) is computed by applying Bayes’ rule for every value
zj ∈ Z , i.e.,

p(Xi|Zi = zj ,Mk−1, λi)

=
p(zj |Xi, λi)p(Xi|Mk−1, λi)∑

x�∈X p(zj |Xi = x�, λi)p(Xi = x�|Mk−1, λi)
. (15)

The expected discrimination gain (EDG), originally pro-
posed in [10], can be derived by taking the expectation of the
KL divergence defined in (4), i.e.,

ϕ̂D(Xi;Zi|Mk−1, λi)

≡ EZi

{
D
[
p(Xi|Zi,Mk−1, λi)‖q(Xi|Mk−1, λi)

]}
=
∑
zj∈Z

D
[
p(Xi|Zi = zj ,Mk−1, λi)‖q(Xi|Mk−1, λi)

]

× p(Zi = zj |Mk−1, λi). (16)

It can be seen that, by this approach, the EDG can be computed
from the same PMFs in (14) and (15) used to compute ϕ̂Dα

.
As shown in [5], an information value function based on

conditional mutual information can be used to represent the re-
duction in uncertainty in Xi, due to the knowledge of Zi, when
Mk−1 and λi are given. Based on the definition in (5), com-
puting the conditional mutual information I(Xi;Zi|Mk−1, λi)
requires computing the entropy H(Xi|Zi,Mk−1, λi), which,
in turn, requires knowledge of Zi. Therefore, a function better
suited to sensor planning is the expected conditional mutual
information, defined as

ϕ̂I(Xi;Zi|Mk−1, λi)

≡ EZi

{
I(Xi;Zi|Mk−1, λi)

}
= H(Xi|Mk−1, λi) − EZi

{
H(Xi|Zi,Mk−1, λi)

}
= H(Xi|Mk−1, λi) −

∑
zj∈Z

H(Xi|Zi = zj ,Mk−1, λi)

× p(Zi = zj |Mk−1, λi) (17)

where the entropy H(Xi|Zi = zj ,Mk−1, λi) is computed
from (1), using (15).

The expected CS information function is derived from (6) by
letting

ϕ̂C(Xi;Zi|Mk−1, λi)

≡ EZi

{
C
[
p(Xi|Zi,Mk−1, λi), p(Xi|Mk−1, λi)

]}
=
∑
zj∈Z

C
[
p(Xi|Zi = zj ,Mk−1, λi), p(Xi|Mk−1, λi)

]

× p(Zi = zj |Mk−1, λi). (18)

The above CS function provides an alternative measure of the
expected distance between the prior and the posterior belief
state for a cell κi, prior to obtaining Zi.

By viewing the information potential as an alternative mea-
sure of the uncertainty associated with a distribution, the
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information value of κi can be represented by the expected
information potential gain derived from (7) and defined as

ϕ̂V (Xi;Zi|Mk−1, λi)
≡EZi

{
V
[
p(Xi|Zi,Mk−1, λi)

]
− V

[
p(Xi|Mk−1, λi)

]}
=EZi

{
V
[
p(Xi|Zi,Mk−1, λi)

]}
− V

[
p(Xi|Mk−1, λi)

]
=
∑
zj∈Z

V
[
p(Xi|Zi =zj ,Mk−1, λi)

]
p(Zi =zj |Mk−1, λi)

−V
[
p(Xi|Mk−1, λi)

]
. (19)

Similarly, the expected quadratic entropy reduction is defined as

ϕ̂R2(Xi;Zi|Mk−1, λi)
≡ EZi

{
HR2

[
p(Xi|Mk−1, λi)

]
−HR2

[
p(Xi|Zi,Mk−1, λi)

]}
= HR2

[
p(Xi|Mk−1, λi)

]
− EZi

{
HR2

[
p(Xi|Zi,Mk−1, λi)

]}
= HR2

[
p(Xi|Mk−1)

]
−
∑
zj∈Z

HR2

[
p(Xi|Zi = zj ,Mk−1, λi)

]
× p(Zi = zj |Mk−1, λi) (20)

where HR2 is obtained from (2) by letting α = 2.
All of the information functions derived in this section can

be computed prior to acquiring the value of Zi, using the sensor
model (9), and the PMFs in (14) and (15).

V. SEARCH STRATEGIES

Information-driven search (IS) strategies select the measure-
ment sequence based on the maximum expected information
value. Assume that the expected information value can be
represented by one of the functions derived in Section IV,
denoted by ϕ̂. Then, at every time k, the cell κl with index

l = arg max
i

{
ϕ̂(Xi;Zi|Mk−1, λi)

}
(21)

is selected from K. After the measurement value Zl = zk is
obtained, the measurement set is updated by letting Mk =
{Mk−1, zk}, and the PMF of Xl is updated using (14). The IS
strategy is applied iteratively over time, until k = f . DS, AS,
TS, and LLR strategies are also implemented for comparison
because they have been shown to outperform other approaches,
such as the index rule and the sequential-probability-ratio
test [19].

DS consists of selecting cells in the order in which they are
provided in K, obtaining only one measurement from each cell
[19]. AS is a sensor management approach implemented in
multitarget radar systems which consists of selecting cells in
the order in which they are provided in K until an “alert” is
obtained. The alert triggers a “confirm” cycle that obtains addi-
tional measurements until a desired confidence level (CL), such
as a desired signal-to-noise ratio, is achieved or until the prob-
ability of detection exceeds that of false alarm [19], [20]. Only
when the confirm cycle is completed does the sensor move on

to the next cell. In this paper, the CL for the AS strategy is rep-
resented by a desired belief state or posterior PMF, defined as

CLi ≡ max
x�

{
p(Xi = x�|Mk−1, λi)

}
(22)

and is required to be equal to 0.9. Therefore, at time k, the
sensor obtains a measurement from κi if CLi < 0.9. Otherwise,
the sensor moves to κi+1 and obtains measurements from κi+1

until CLi+1 ≥ 0.9. Although AS can lead to good sensor
performance, its key disadvantage is that it cannot be used to
minimize time or energy consumption.

TS, or Bayes-risk, search strategies have been recently pro-
posed for applications in which a sensor is deployed to perform
a single task, such as to find mines or minimize tracking errors.
TS strategies base the management decisions on a heuristic cri-
terion, such as the associated risk level [15]. These applications
are considered here by introducing the high-risk state value xr,
which represents a high-risk target class (such as a mine) or
target location. Then, the TS strategy selects the cells with the
maximum a posteriori probability for the value xr, optimizing
the risk associated with declaring Xi = xr [15]. Since the a
posteriori probability of xr is unknown at the time of the sensor
decision, it is estimated as follows

P̂ k
r (Xi) ≡ EZi

[
p(Xi = xr|Mk−1, λi, Zi)

]
(23)

similarly to the approach proposed in [15]. Then, at time k, the
TS strategy selects the cell κl with index

l = arg max
i

{
P̂ k

r (Xi)
}

(24)

from K. Since P̂ k
r (Xi) is independent of Zi, (24) can be

simplified as follows:

l = arg max
i

{
EZi

[
p(Xi = xr|Mk−1, λi, Zi)

]}
= arg max

i

{ ∑
zj∈Z

p(Xi = xr|Mk−1, λi, Zi = zj)

× p(Zi = zj |Mk−1, λi)

}

= arg max
i

{ ∑
zj∈Z

p(Xi = xr,Mk−1, λi, Zi = zj)
p(Zi = zj |Mk−1, λi)p(Mk−1, λi)

× p(Zi = zj |Mk−1, λi)

}

= arg max
i



∑
zj∈Z

p(Xi = xr, Zi = zj |Mk−1, λi)




= arg max
i

{
p(Xi = xr|Mk−1, λi)

}
. (25)

Then, the TS strategy selects cells in the order of decreasing
probability of the high-risk state xr.

The LLR criterion has been successfully implemented for
the evaluation of track formation hypotheses in multiple target
tracking applications [20], [31]. When two possible hypothesis
can be used to explain the data, the LLR is proportional to the
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ratio of the likelihood of the data given the first hypothesis
over the likelihood of the data given the second hypothesis.
Typically, the likelihood is multiplied by the prior probability of
the hypothesis such that the LLR can be computed recursively
using Bayes’ rule [20]. In this paper, the LLR definition in [20]
is extended to nonbinary state variables with a high-risk value
xr as follows:

Lk(Xi)≡ ln
[
p(Zi|Xi =xr)p(Xi =xr)
p(Zi|Xi �=xr)p(Xi �=xr)

]

= ln

[
p(Zi|Xi =xr)p(Xi =xr)∑

x�∈X ,x� �=xr p(Zi|Xi =x�)p(Xi =x�)

]
. (26)

Then, since a cell κi must be selected before Zi and its likeli-
hoods are known, the LLR search (LLRS) strategy is developed
by taking the expectation of (26) and selecting the cell κl with
the highest expected LLR, as shown in (27) shown at the bottom
of the page. It can be seen from (27) that LLRS selects cells
in the order of decreasing log ratio of the expected posterior
probability of xr, divided by the expected posterior probability
of all other state values in X .

VI. SENSOR DECISION RULES

The sensor decision rule refers to the criterion used to decide
or estimate the state value of a cell after a sensor measurement
is obtained. Although this criterion does not affect the search
strategy because it is implemented a posteriori, it affects the
sensor performance. As reviewed in [31, p. 213], a number
of decision rules may be employed to decide what value of
Xi to accept based on the posterior belief state. Where, the
posterior belief state, p(Xi|Mk, λi), is computed from (14)
using the latest measurement zk. The Neyman–Pearson rule
accepts a state value only if its likelihood ratio is greater
than a desired significance level. The minimax and Bayes cost
functions utilize user-defined weights to quantify the risk or
cost of choosing one state value over the others based on its
likelihood and posterior probability, respectively. When these
weights are set equal to one, the minimax and Bayes cost
functions reduce respectively to the maximum likelihood and
maximum a posteriori rules implemented in this paper.

The maximum a posteriori rule accepts the state value x∗ ∈
X if its probability is greater than the posterior probability of

any other value given the data, i.e.,

X̂i = x∗, iff p(Xi = x∗|Mk, λi) ≥ p(Xi = x�|Mk, λi),
∀x� ∈ X , x� �= x∗. (28)

When Mk contains no measurements about a cell κi, the
prior is used in place of the posterior probability in (28). The
maximum-likelihood estimate (MLE) rule accepts the state
value x∗ ∈ X if its likelihood is greater than that of any other
value given the data, i.e.,

X̂i = x∗, iff p(zk|Xi = x∗) ≥ p(zk|Xi = x�),
∀x� ∈ X , x� �= x∗. (29)

It can be seen from (29) that the MLE rule can only be applied
to cells for which at least one measurement has been obtained.

VII. SIMULATED SENSOR MODELS

The comparative performance of the information functions,
search strategies, and decision rules presented in the previous
sections is investigated by simulating three types of prior
distributions and five sensor models. Four probabilistic sen-
sor models are simulated by generating the joint PMF in (9)
from Bernoulli, binomial, Poisson, and mixture-of-binomial
distributions. One classical sensor model in the form of (8) is
simulated using a nonlinear power law and Gaussian noise. The
canonical sensor planning problem in Section III is simulated
by generating the set of cells K with corresponding sensor
measurements, as explained in the following sections.

A. Probabilistic Sensor Models

The probabilistic sensor model (9) represents the joint prob-
ability of the sensor measurements in Z , the target state values
in X , and the sensor and environmental characteristics in Λ. In
practice, this joint probability distribution is determined from
the physical processes underlying the sensor measurements and
by the nature of the targets and environmental conditions in the
region of interest [21]. In this paper, (9) is simulated by means
of well-known probability distributions to conduct a compara-
tive study that is independent of the sensing application. A set
K of c = ct + ce cells, with ct targets and ce empty cells, is
generated by sampling uniformly and independently the range
of Xi. The cell state Xi has the range X = {x1, x2, x3, x4},

l = arg max
i

EZi

{
ln
[
p(Zi|Xi = xr,Mk−1, λi)p(Xi = xr|Mk−1, λi)
p(Zi|Xi �= xr,Mk−1, λi)p(Xi �= xr|Mk−1, λi)

]}

= arg max
i

∑
zj∈Z

p(Zi = zj |Mk−1, λi) ln
[
p(Zi = zj |Xi = xr,Mk−1, λi)p(Xi = xr|Mk−1, λi)
p(Zi = zj |Xi �= xr,Mk−1, λi)p(Xi �= xr|Mk−1, λi)

]

= arg max
i

∑
zj∈Z

p(Zi = zj |Mk−1, λi) ln
[
p(Zi = zj ,Xi = xr,Mk−1, λi)p(Mk−1, λi)
p(Zi = zj ,Xi �= xr,Mk−1, λi)p(Mk−1, λi)

]

= arg max
i

∑
zj∈Z

p(Zi = zj |Mk−1, λi) ln

[
p(Xi = xr|Mk−1, λi, Zi = zj)∑

x�∈X ,x� �=xr p(Xi = x�|Mk−1, λi, Zi = zj)

]
(27)
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where x1 and x2 denote two types of empty cells (e.g., clear
terrain and clutter), x3 and x4 denote two types of targets, and
the high-risk value is xr = x4. The sensor characteristics and
environmental conditions in κi are represented by the random
vector λi = [φi βi γi]T . Each random element in λi is assumed
to have three possible values; thus, the range Λ of λi has nine
possible values.

Let θ ∈ [0, 1] denote a parameter of the distribution that can
be viewed as the influence of the cell state and environmental
conditions on the probability of success of the sensor measure-
ments. Then, θ can be modeled as a function of Xi and λi, i.e.,

θ=g(Xi, λi)≡η�φ
a�1
i βa�2

i γa�3
i , Xi =x�, ∀x�∈X (30)

where η� > 0 and A = {a�i} ∈ R
4×3 are parameters that repre-

sent the effluence of Xi and λi on θ, respectively, and are shown
in Appendix A.

1) Bernoulli Sensor Model: Bernoulli trials and Poisson
models have both been used to model moving target detections
by distributed sensor networks in [32]–[34]. A Bernoulli ex-
periment has a random outcome that can take two mutually
exclusive values (e.g., success or failure) and, when repeated
N independent times, leads to a sequence of N Bernoulli
trials [35, p. 134]. Let the measurement Zi denote the ran-
dom variable associated with one Bernoulli trial. Since, in the
Bernoulli sensor model, Zi must be binary, all Bernoulli targets
are assigned the high-risk value xr. Then, the probability of a
measurement’s success (zj = 1) and the probability of failure
(zj = 0) can be obtained from the Bernoulli distribution

p(Zi = zj |θ) = θzj (1 − θ)1−zj , zj = 0, 1 (31)

where success represents the detection of a high-risk target and
failure represents the detection of an empty cell.

2) Binomial Sensor Model: In the binomial sensor model,
the measurement Zi denotes the number of observed successes
in N Bernoulli trials such that Z = {z1, . . . , zN}. Then, the
posterior PMF in the binomial sensor model can be generated
using the binomial distribution

p(Zi =zj |θ)=
(

N

zj

)
θzj (1−θ)N−zj , zj =0, . . . , N, (32)

where Xi can take all four possible values in X and N = 3.
3) Poisson Sensor Model: A Poisson process is a random

experiment that generates a number of changes in a fixed
interval, such as space or time, and whose probability can be
described by an infinite series that converges to an exponential
function [35, p. 143]. Let the measurement Zi denote the
number of changes in each interval, and let θ in (30) represent
the parameter of the distribution. Then, assuming that the
number of changes in nonoverlapping intervals is independent
and θ > 0, the Poisson sensor model can be generated from the
Poisson distribution

p(Zi = zj |θ) = e−θ θzj

zj !
, zj = 0, 1, 2, . . . . (33)

It can be shown that θ is equal to the expected number of
changes in the process or θ = E(Zi).

4) Mixture-of-Binomial Sensor Model: A more complex
sensor model is obtained by means of a mixture of distributions,
which compounds multiple PMFs using positive mixing pro-
portions or weights [35, p. 189]. Mixture models are used in a
variety of applications, ranging from classification to statistical
inference, and are reviewed comprehensively in [36]. Since
the random variables considered in this paper are discrete, we
consider a mixture of two binomial distributions

f(Y )=
2∑

l=1

wl

(
Nl

Y

)
θY

l (1 − θl)Nl−Y , 0≤wl≤1,
2∑

l=1

wl = 1

(34)

formulated in terms of a discrete random variable Y with range
Y = ∪2

l=1{0, . . . , Nl}, where the distributions are indexed by
l. The mixing proportions are w1 and w2, and the binomial
parameters are θ1 and θ2. Let θ1 = θ = g(Xi, λi) in (30), with
the parameters shown in Appendix A. Also, let θ2 =

√
θ1,

N1 = 3, and N2 = 5. Then, the posterior PMF in the mixture-
of-binomial sensor model can be generated according to the
distribution

p(Zi = zj |θ) = w

(
N1

zj

)
θzj (1 − θ)N1−zj + (1 − w)

(
N2

zj

)

×θzj/2(1 −
√

θ)N2−zj , 0 ≤ w ≤ 1, zj = 0, . . . , 5 (35)

where w is a user-defined weight that is set equal to 0.5.

B. Classical Sensor Model

A sensor model that is widely applicable and obeys the
classical form (8) is an exponential power law that models the
received isotropic energy generated by a constant target source
level and attenuated by the environment. This power law is
commonly applied to acoustic, magnetic, and optical sensor
measurements that are governed by linear wave propagation
models [6]. When the received signal exceeds the sensor’s
threshold, the target is detected, and its distance from the
sensor is computed using the sensor model and the known
environmental conditions. We consider a multitarget scenario
in which each target is located in one cell, for example, κi ∈ K,
and the state Xi represents the distance between the sensor and
the target in κi. Then, the distance Xi can be estimated from a
measurement Zi obtained according to the power law

Zi = ai‖Xi‖−αi + νi, i = 1, . . . , ct (36)

and subject to additive zero-mean Gaussian noise νi, where ‖ · ‖
denotes the L2-norm, ai is a known constant that depends on the
target characteristics, and αi is an attenuation coefficient that
depends on the environmental conditions. In this paper, it is as-
sumed that Xi is a scalar, ai = 10, and αi = 0.3 for all κi ∈ K.

In order to compare the classical model results to those
obtained for the probabilistic sensor models, the range of Xi

is discretized into four possible values X = {1, 2, 3, 4}. The
zero-mean Gaussian noise νi is fully specified by its standard
deviation σi. Thus, the sensor and environmental parameters
can be represented by λi = [ai αi σi]T . It follows that the
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Fig. 1. Posterior probability of classical sensor measurements for σi = 1.

posterior probability of the classical sensor measurements in
κi, given Xi and λi, is

p(Zi = zj |Xi, λi) =
1√

2πσi

e
−
(
zj−aiX

−αi
i

)2
/(2σ2

i ),

zj ∈ [0, 13] (37)

where Zi and λi are continuous random variables and Xi

is a discrete random variable. Thus, (37) is referred to as a
normal mixed model [37]. In this paper, three noise models
are considered with standard deviations σi = 1, 3, and 5 for all
κi ∈ K. As an example, the posterior probability (37) is plotted
in Fig. 1 for σi = 1.

The five sensor models are simulated as follows. When a
cell κi is selected from K at time k, one measurement value
zk is sampled from the corresponding joint PMF in (9), given
the values of Xi and λi in κi. The prior p(Xi) represents in-
formation available about the cells’ state variables at k = 0. In
this paper, three models of p(Xi) are considered: uninformative
prior, informative prior, and informative prior with large noise.
The uninformative prior is modeled as a uniform probability
distribution over the range X , indicating that any value of Xi

is equally probable for any cell κi ∈ K. The informative prior
is generated by using the sensor to obtain one measurement per
cell. The informative prior with large noise represents expert
knowledge or prior measurements obtained by a less accurate
sensor. For the probabilistic sensor models in (31)–(35), this
prior is generated by adding a random uniformly distributed
error to every sensor measurement used to generate the infor-
mative prior. For the classical sensor model in (37), the error
is sampled from a Gaussian distribution with zero mean and
standard deviation equal to 2σi.

VIII. NUMERICAL SIMULATIONS AND RESULTS

This section presents the results obtained by implementing
all information theoretic functions and search strategies on the
canonical sensor problem described in Section III. The canoni-
cal sensor problem is simulated by generating a set K with c =
1000 cells as follows. In the Bernoulli sensor simulation, all

ct = 500 cells with targets are assigned the high-risk state value
x4 = xr (as explained in Section VII), 300 cells are assigned
the value x1 (empty), and 200 cells are assigned the value x2

(clutter). In the binomial, Poisson, and binomial-mixture sensor
simulations, 300 cells are assigned the value x1 (empty), 200
cells are assigned the value x2 (clutter), 200 cells are assigned
the value x3 (target), and 300 cells are assigned the value
x4 = xr. In the classical sensor simulation, the state values
represent the sensor’s distance from the target (see Section VII).
Therefore, a target is assigned to every cell in K such that
ct = c = 1000, where 200 cells are assigned the distance x1,
300 cells are assigned the distance x2, 200 cells are assigned
the distance x3, and 300 cells are assigned the distance x4.

In all sensor simulations, the state values are assigned to the
chosen number of cells in random order, by sampling the cell
index using a uniform pseudorandom number generator [38].
The value of the parameter vector λi is assigned randomly
to each cell by sampling the uniform prior distribution p(λk)
over the range Λ. The probability p(Xi) is not uniform and
is unknown a priori. The three models of uninformative, in-
formative, and large-noise informative priors (see Section VII)
are implemented separately to simulate cases in which prior
information about Xi is either unavailable, available, or is
available but very noisy, respectively. After the set of cells K
is generated, the sensor measurements are obtained using the
search strategies presented in Section V. In order to investigate
how the search performance varies as a function of time, k
is varied from 0 to f = 3000. As soon as a measurement is
obtained from a cell, it is processed using the belief-state update
rule in (14) and the decision rules in Section VI.

The numerical results are organized as follows. For each
sensor model, the rates of correct classification (Fc), correct
classification for high-risk targets (Fr), and false alarms (Ffa)
are first evaluated using the IS strategy with each of the in-
formation functions presented in Section IV. The IS strategy
with the best performance is then compared to DS, AS, TS,
and LLRS. For every sensor model and search strategy, a com-
parative study is conducted using the maximum a posteriori
and MLE decision rules and the three models of prior informa-
tion. The results obtained from extensive numerical simulations
are organized by sensor model in Sections VIII-A–E. Then,
Section VIII-F provides a summary of the search strategies with
the best classification and false-alarm rates, on average, over the
chosen time interval.

A. Bernoulli Sensor Model

The simulation results from the Bernoulli and other sensor
models consistently showed that the maximum a posteriori
rule significantly outperforms the MLE rule for all information
functions. As an example, the correct classification rates for
high-risk targets obtained by the IS strategy using the maximum
a posteriori rule and the MLE rule are plotted in Figs. 2 and 3,
respectively. This comparison is representative of all numerical
results obtained for Fc and Ffa, and for other priors and sensor
models, which are omitted here for brevity. Also, while it may
be well suited for sensor applications that require a very low
rate of false alarms, the Neyman–Pearson rule was found to
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Fig. 2. Correct classification rate for high-risk targets obtained with the
maximum a posterior decision rule and an informative prior.

Fig. 3. Correct classification rate for high-risk targets obtained with the MLE
decision rule and an informative prior.

perform poorly compared to both the a posteriori and MLE
rules because of its high rate of unclassified cells that do not
meet the required significance level. Therefore, in the remainder
of this paper, only the results obtained by the maximum a
posteriori decision rule are presented.

As shown in Fig. 2, the information function based on
quadratic entropy, ϕ̂R2 , leads to the best rate of correct classi-
fication of high-risk targets, Fr. On the other hand, as shown
in Fig. 4, ϕ̂R2 leads to the highest rate of false alarms. In
the Bernoulli sensor simulation, all information functions were
found to display approximately the same value of correct clas-
sification rate, Fc, for all 0 ≤ k ≤ f . Therefore, information
functions that achieve high values of Fr perform poorly in terms
of Ffa and vice versa. The information function ϕ̂I provides a
good compromise between Fr and Ffa.

The IS strategy was found to achieve the highest rate of
correct classification among all strategies (see Fig. 5) and the
highest rate of correct classification for high-risk targets (not
shown for brevity). The AS, TS, and LLRS strategies display
the lowest false-alarm rate because they obtain multiple mea-
surements from few selected cells with low uncertainty until
they achieve high CLs for the estimated state values. In the
presence of an uninformative prior, the information functions

Fig. 4. Average false-alarm rate with informative prior.

Fig. 5. Correct-classification rate with informative prior.

were found to perform similarly under all three measures of
performance, Fr, Fc, and Ffa. The IS strategy was found to out-
perform all other search strategies in classification performance
(Fr and Fc) but was significantly outperformed by the AS, TS,
and LLRS strategies with respect to the false-alarm rate Ffa.
Therefore, it can be concluded that, for the Bernoulli sensor
model, the IS strategy with the mutual-information function,
ϕ̂I , leads to the best classification performance. The AS, TS,
and LLRS strategies exhibit similar performance and lead to
the lowest rate of false alarms.

B. Poisson Sensor Model

The average rates of correct classification and false alarms
for the Poisson sensor model with informative prior are plotted
in Figs. 6 and 7, respectively. The simulation results show that,
while initially ϕ̂I and ϕ̂R2 perform similarly, over time, ϕ̂R2

achieves the best performance with respect to both classification
and false alarms. When compared to other strategies, the IS
strategy based on quadratic entropy achieves the highest rates
of correct classification (see Figs. 6 and 8), and the lowest rate
of false alarms (see Fig. 7), with an informative prior.

In the presence of an informative prior with large noise (see
Fig. 9), all information functions perform similarly with respect
to Fc. However, ϕ̂R2 achieves slightly better performance with
respect to Fr and significantly better performance with respect



ZHANG et al.: COMPARISON OF INFORMATION FUNCTIONS AND SEARCH STRATEGIES 11

Fig. 6. Average correct-classification rate with informative prior.

Fig. 7. Average false-alarm rate with informative prior.

Fig. 8. Correct-classification rate for high-risk state targets with informative
prior.

to the rate of false alarms, as shown in Fig. 10. When compared
to other search strategies, IS leads to significantly higher rates
of correct classification, Fc (see Fig. 9) and Fr, and to a signif-
icantly lower rate of false alarms, Ffa (see Fig. 10). Therefore,
for the Poisson sensor model, the IS strategy with quadratic
entropy, ϕ̂R2 , leads to the best sensor performance overall in
the presence of an informative prior and an informative prior
with large noise.

Fig. 9. Average correct-classification rate with large-noise informative prior.

Fig. 10. Average false-alarm rate with large-noise informative prior.

Fig. 11. Average correct-classification rate with informative prior.

C. Binomial Sensor Model

The same set of simulations performed for the Bernoulli
and Poisson sensor models was performed using the binomial
sensor model. The results (e.g., Fig. 11) showed that, for the
binomial model, the IS strategy with the quadratic-entropy
function ϕ̂R2 achieves the best performance of all strategies
with respect to all three performance measures, Fc, Fr, and
Ffa. In this section, the IS strategy based on quadratic entropy,
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Fig. 12. Correct-classification rate for high-risk state targets, with informative
prior, c = 50, and f = 3000.

Fig. 13. False-alarm rate with informative prior, c = 50, and f = 3000.

DS, AS, TS, and LLRS are also implemented using an infinite
time horizon, defined as f → ∞. In practice, an infinite-time
horizon is simulated by letting f 
 c, such that Fc → 1 and
Fr → 0, as k → f . For this study, the number of cells in K is
chosen as c = 50, and measurements are obtained up to a final
time f = 3000.

As shown by the results in Figs. 12 and 13, in the limit of
k → f , the IS strategy classifies all cells correctly and elimi-
nates all false alarms. The AS and DS strategies approach the
IS performance with a slower rate of convergence and leave a
small percentage of cells improperly classified. Although the
TS and LLRS strategies have the advantage of displaying low
false-alarm rates (see Section VIII-A), by selecting cells with a
high expected CL, TS and LLRS leave a substantial percentage
of cells improperly classified even as k → f (see Figs. 12 and
13). Therefore, it can be concluded that the IS strategy is better
suited to infinite-horizon problems where, given sufficient time
and sensor measurements, it is desirable to correctly classify all
targets.

D. Mixture-of-Binomial Sensor Model

The average rates of correct classification and false alarms,
F̄r and F̄fa, for the mixture-of-binomial sensor model are plot-
ted respectively in Figs. 14 and 15, using an informative prior.

Fig. 14. Average correct-classification rate for high-risk state targets with
informative prior.

Fig. 15. Average false-alarm rate with informative prior.

It can be seen that ϕ̂R2 clearly outperforms other functions with
respect to both F̄r and F̄fa, as well as with respect to Fc (results
not shown for brevity). It can be seen from Figs. 14 and 15 that
the IS strategy based on quadratic entropy outperforms all other
strategies, both with respect to classification and false alarms.

Extensive mixture-of-binomial sensor simulations were also
conducted using the uninformative prior and the informative
prior with large noise. It was found that, in these cases, the
information functions all perform similarly with respect to Fc,
Fr, and Ffa, on average and over time. Also, while the IS
strategy led to significantly higher values of Fr compared to the
other search strategies, IS was outperformed by the DS strategy
with respect to Fc and Ffa.

E. Classical Sensor Model

For the classical sensor model, the correct classification
rate Fc was found to be approximately the same for all six
information functions, sensor-noise levels (σi = 1, 3, and 5),
and priors p(Xs). As the noise level increases, however, differ-
ent information functions lead to increasingly different values
of Ffa and Fr. For example, it was found that ϕ̂I and ϕ̂D

achieve slightly better values of Fr than other functions for
σi = 1, 3, and 5, respectively, but display the highest rates of
false alarms (see Fig. 16). On the other hand, ϕ̂R2 achieves
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Fig. 16. Average false-alarm rate with informative prior and σi = 1.

Fig. 17. Average correct-classification rate for high-risk targets, with infor-
mative prior, σi = 1, and σi = 5.

slightly lower values of Fr but displays the lowest rate of false
alarms of all information functions (e.g., see Fig. 16) for all σi.

It can be seen from Fig. 17 that the IS strategy based on
quadratic entropy achieves the highest value of Fc and Fr (see
Fig. 17) and the lowest value of Ffa (see Fig. 16). As the
noise level in the sensor model is increased, the IS strategy
outperforms the other strategies even more significantly with
respect to Fc and Fr (see Fig. 17) but is then outperformed by
TS and LLRS with respect to Ffa. It can be concluded that, for
the classical sensor model, the IS strategy leads to the best rates
of correct classification, but in the presence of high noise, the
TS and LLRS strategies lead to lower rates of false alarms.

F. Summary of Search Strategy Performance Comparison

The numerical results presented in the previous sections
illustrate how the correct-classification and false-alarm rates
of different search strategies vary as a function of time and
how they are influenced by the sensor model, prior information,
noise level, and decision rule. In this section, the results of these
extensive numerical simulations are summarized by presenting
the best search strategy for each sensor and prior information
models in Figs. 19 and 20. The search strategies with the best
value of F̄c, F̄r, and F̄fa are shown in Figs. 18–20, respectively.
It can be seen that, in most cases, the IS strategy based on

Fig. 18. Strategy with the highest classification rate, F̄c, and percent improve-
ment over DS.

Fig. 19. Strategy with the highest classification rate for high-risk targets, F̄r ,
and percent improvement over DS.

Fig. 20. Strategy with the lowest false-alarm rate, F̄fa, and percent improve-
ment over DS.

quadratic entropy outperforms other strategies. The percent
improvement over the DS strategy is also shown because DS is
the simplest yet, overall, most efficient of the non-information-
driven strategies.

IX. SEARCH STRATEGIES PERFORMANCE ANALYSIS

The GCM has been used for generalized multivariate analysis
in a wide variety of applications, ranging from biology to
engineering [23]–[25]. Unlike the classical least squares model
[39], the GCM is applicable to repeated noisy measurements
obtained at a series of known times from multiple experiments
that may change over time but potentially are highly corre-
lated. In GCM analysis, each time series is approximated by
a polynomial function, and the resulting curves are used to
determine whether the difference between experiments is sta-
tistically significant. In Section IX-A, GCM analysis is used to
determine whether the performance difference observed among
IS strategies is statistically significant. Based on Figs. 19 and
20, the Poisson sensor model is chosen as a representative
example. Then, the computational complexity of all search
strategies is analyzed in Section IX-B.
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A. GCM Analysis

The GCM approach proposed in [23] is applied to ana-
lyze multiple IS strategies by viewing each strategy as an
experiment. It is assumed that the true correct-classification
rate of a strategy implementing ϕ̂, denoted by Jϕ̂(k) and
typically unknown, can be approximated by a second-order
polynomial. In order to estimate the coefficients of the poly-
nomial, each strategy (or experiment) is simulated q times. Let
F �

c (k) denote the correct-classification rate computed for the
�th simulation, with � = 1, . . . , q. It is also assumed that, at
every k, F �

c (k) has a normal distribution with mean Jϕ̂(k)
and variance σc(k), where the uncertainty is caused by the
sensor measurement noise. Based on the strong law of large
numbers, the probability of F̃c(k) ≡ limq→∞

∑q
i=1 F �

c (k)/q =
Jϕ̂(k) equals one [40]. Since, in practice, the sensor simulation
cannot be performed an infinite number of times, the GCM is
used to fit a curve that represents the change in F̃c(k) brought
about by different IS strategies, as a function of k. The curve
is then used to analyze whether the change is caused by a
difference in performance or simply by the sensor measurement
noise.

Hereon, the information functions are ordered and indexed as
follows: {ϕ̂s}s=1,...,6 ≡ {ϕ̂R2 , ϕ̂I , ϕ̂C , ϕ̂Dα

, ϕ̂V , ϕ̂D}. Based
on the previous sections, the GCM simulation parameters are
chosen as f = 1000 and q = 30. N time instants, with k =
50, 100, . . . , 1000, are considered in the interval (0, f ] and
indexed by K = 1, . . . , N , with N = 20. Let gs,�(k) denote
the value of F �

c (k) for the sth information function ϕ̂s. Then,
over time, this value is approximated by the second-order
polynomial in k

gs,�(k)≈us,1+us,2

(
k

50
− 21

2

)
+

1
10

us,3

(
k

50
− 21

2

)2

+es,�(k)

(38)

where s = 1, . . . , 6, � = 1, . . . , 30, ei,j(k) is the noise caused
by the sensor measurement at time k, and us,1, us,2, and us,3

are the coefficients to be determined.
The correct-classification rates computed from all experi-

ments are organized in an N × 180 matrix, G, defined such
that its Kth row is a vector of correct-classification values,
[g1,1(K) . . . g1,30(K) . . . g6,1(K) . . . g6,30(K)], for the Kth
time instant. It can be easily shown from (38) that G can be
factorized in terms of an N × 180 matrix B, a 3 × 6 matrix
U defined in terms of the polynomial’s coefficients, a 6 ×
180 matrix C of ones and zeros, and an N × 180 matrix E of
measurement noise values as follows:

G = BUC + E. (39)

Now, let Js(k) denote the value of the true correct-classification
rate Jϕ̂(k) for the sth strategy. Then, the N × 6 matrix

J ≡




J1(50) J2(50) · · · J6(50)
J1(100) J2(100) · · · J6(100)

...
...

. . .
...

J1(1000) J2(1000) . . . J6(1000)


 (40)

Fig. 21. Correct-classification rate computed experimentally with an informa-
tive prior.

Fig. 22. Correct-classification rate approximated by GCM with an informa-
tive prior.

can be written as J = BU . The value of U can be approximated
by the MLE method [23] and subsequently used to approximate
the correct-classification rates by the matrix J̃ = BŨ , where
each column corresponds to one IS strategy. The simulations
show that the classification rate F̃c, computed from experiments
and plotted in Fig. 21, follows closely the classification rate J̃ ,
approximated via curve fitting and plotted in Fig. 22.

Finally, three hypothesis tests are formulated to examine
whether the GCM polynomials obtained from different infor-
mation functions have coefficients that are statistically differ-
ent. The three hypotheses to test are

Hi : u1,i = u2,i = . . . = u6,i, for i = 1, 2, 3. (41)

Using the approach in [24], it was found that all three hypothe-
ses are rejected with a 95% CL. This indicates that correct-
classification rates of different IS strategies are statistically
different with a probability of error that is less than 0.05.

A similar GCM analysis was used to compare the correct-
classification rates obtained by the quadratic-entropy IS strat-
egy and DS, and the rates Fr and Ffa obtained by different
IS strategies and DS. All of these results, shown in [41] and
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omitted here for brevity, showed that the differences in classifi-
cation performance observed in this paper are statistically sig-
nificant, and thus, the search strategy and information function
should be carefully selected based on the sensor model and the
quality of prior information.

B. Complexity Analysis

The computational complexity of the search strategies con-
sidered in this paper is derived as a function of the dimensions
of the target state, X ∈ R

n, and the sensor measurement vector,
Z ∈ R

n. For this reason, in this section, n, r > 1, and a new
notation is adopted by which Xi denotes the ith element of X
with range Xi. xi�

∈ Xi denotes the �th value of Xi. Zj denotes
the jth element of Z with range Zj , and zj�

∈ Zj denotes the
�th value of Zj . | · | denotes the cardinality of a set. Computing
an information function, such as the EDG in (16), requires
computing p(X|Zk,Mk−1, λ) from (15) and the PMF

p(Zk|Mk−1, λ) =
∑
x�∈X

p(Zk|X = x�, λ)p(X = x�|Mk−1, λ)

(42)

where x� = [x1�
. . . xn�

]T ∈ R
n. Assume that the computation

of each sensor measurement can be implemented in unit time.
Then, for every x�, (42) can be computed directly from the
sensor measurement and prior information in time O(1). By
the multiplication principle [42], the computational complexity
of (42) is obtained by multiplying the cardinality of the ranges
Xi, i = 1, . . . , n, thus requiring a time O(Πn

i=1|Xi|). The state
PMF can be computed from (15), such that

p(X|Zk,Mk−1, λ)=
p(Zk|X,Mk−1, λ)p(X|Mk−1, λ)∑

x�∈X p(X =x�, Zk,Mk−1, λ)
(43)

where the numerator can be computed in time O(1) and
p(X|Zk,Mk−1, λ) can be obtained by normalizing the numer-
ator for all possible outcomes of x� ∈ X . Since the number
of possible outcomes of X is Πn

i=1|Xi|, the computational
complexity of (43) is O(Πn

i=1|Xi|).
Computing an information function such as the entropy

H(X|Zk,Mk−1, λ) requires computing the posterior probabil-
ity p(X|Zk = zj ,M

k−1, λ) for every possible value zj . Thus,
from the multiplication principle, the entropy-based function
has a computational complexity Πr

j=1|Zj |(O(Πn
i=1|Xi|)) =

O(Πr
j=1Π

n
i=1|Zj ||Xi|). Now, assume that the DS strategy is

implemented via a random algorithm that can choose one cell to
measure in unit time. Since the DS strategy randomly chooses
only one cell at every time k, its computational complexity is
O(1). Assume that the search for the highest value in a known
prior probability distribution can be achieved in unit time.
Since the prior distribution at every time k is used to decide
which cell to measure, the computational complexity of the
AS and TS strategies is O(1). Implementing the LLR strategy
requires the computation of Lk(X) using (26). This requires
computing the likelihood of X , and since X has Πn

i=1|Xi| pos-
sible values, (26) has computational complexity O(Πn

i=1|Xi|).
Subsequently, (27) requires taking the expectation with re-
spect to Z, which requires a time Πr

j=1|Zj |(O(Πn
i=1|Xi|)) =

O(Πr
j=1Π

n
i=1|Zj ||Xi|). Thus, the computational complexity of

the LLR strategy is O(Πr
j=1Π

n
i=1|Zj ||Xi|). It can be concluded

that DS, AS, and TS are the strategies with the lowest com-
putational complexity, O(1), while the entropy-based IS and
LLRS strategies have the highest computational complexity,
O(Πr

j=1Π
n
i=1|Zj ||Xi|), which also grows with the dimensions

of X and Z.

X. SUMMARY AND CONCLUSION

In most applications, sensor performance measures, such as
correct-classification and false-alarm rates, are not available in
closed form and can only be computed after the sensor measure-
ments have been gathered and processed. Information theoretic
functions are a natural choice for representing the information
value of a measurement sequence, but they typically require
knowledge of the belief state before and after the measurements
arrive. This paper presents a general and systematic approach
for deriving information functions that represent the expected
value of future sensor measurements and thus can be utilized
for sensor planning. A corresponding IS strategy can decide
the measurement sequence by selecting cells, or targets, with
the highest expected information value. In order to provide a
comparative study that can be easily validated and generalized,
this paper implements the aforementioned search strategies
on simulated sensor models, priors, and decision rules that
have been previously validated using real data. It is found
that quadratic entropy typically leads to the most effective
information function and that the corresponding IS strategy
outperforms all others in correct-classification performance. In
the presence of prior information, IS also displays the lowest
rate of false alarms. However, when prior information is absent
or very noisy, the TS and LLR strategies achieve the lowest
false-alarm rates for the Bernoulli, mixture-of-binomial, and
classical sensor models.

APPENDIX A
SENSOR MODEL PARAMETERS

The sensor model parameters were chosen to simulate the en-
vironmental parameters’ influence on the accuracy of the sensor
measurements, while guaranteeing θ ∈ [0, 1]. In the Bernoulli,
Poisson, and binomial sensor models, η1 = 0.1/3, η2 = 1/3,
η3 = 2/3, and η4 = 1. For the Bernoulli sensor model

A =




0.1 0.11 0.12
0.1 0.11 0.12
−0.1 0.11 −0.12
−0.1 −0.11 −0.12


 (44)

and for the Poisson and binomial sensor models

A =




0.1 0.11 −0.12
0.1 0.11 −0.12
0.1 0.11 −0.12
0.1 0.11 −0.12


 . (45)
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